Merge tty-next into 3.6-rc1
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170 {
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190 {
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295 }
296
297 /*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312 #define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
341
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
346 }
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
359 }
360 finish_wait(&mddev->sb_wait, &__wait);
361 }
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
364
365 /*
366 * save the sectors now since our bio can
367 * go away inside make_request
368 */
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
371
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
376
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
386 */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
394
395 del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
404
405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413 return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418 * Generic flush handling for md
419 */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423 struct md_rdev *rdev = bio->bi_private;
424 struct mddev *mddev = rdev->mddev;
425
426 rdev_dec_pending(rdev, mddev);
427
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
431 }
432 bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct md_rdev *rdev;
441
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 rdev_for_each_rcu(rdev, mddev)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
451 */
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
464 }
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473 struct bio *bio = mddev->flush_bio;
474
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 mddev->pers->make_request(mddev, bio);
481 }
482
483 mddev->flush_bio = NULL;
484 wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489 spin_lock_irq(&mddev->write_lock);
490 wait_event_lock_irq(mddev->sb_wait,
491 !mddev->flush_bio,
492 mddev->write_lock, /*nothing*/);
493 mddev->flush_bio = bio;
494 spin_unlock_irq(&mddev->write_lock);
495
496 INIT_WORK(&mddev->flush_work, submit_flushes);
497 queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
502 {
503 struct mddev *mddev = cb->data;
504 md_wakeup_thread(mddev->thread);
505 kfree(cb);
506 }
507 EXPORT_SYMBOL(md_unplug);
508
509 static inline struct mddev *mddev_get(struct mddev *mddev)
510 {
511 atomic_inc(&mddev->active);
512 return mddev;
513 }
514
515 static void mddev_delayed_delete(struct work_struct *ws);
516
517 static void mddev_put(struct mddev *mddev)
518 {
519 struct bio_set *bs = NULL;
520
521 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
522 return;
523 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
524 mddev->ctime == 0 && !mddev->hold_active) {
525 /* Array is not configured at all, and not held active,
526 * so destroy it */
527 list_del_init(&mddev->all_mddevs);
528 bs = mddev->bio_set;
529 mddev->bio_set = NULL;
530 if (mddev->gendisk) {
531 /* We did a probe so need to clean up. Call
532 * queue_work inside the spinlock so that
533 * flush_workqueue() after mddev_find will
534 * succeed in waiting for the work to be done.
535 */
536 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
537 queue_work(md_misc_wq, &mddev->del_work);
538 } else
539 kfree(mddev);
540 }
541 spin_unlock(&all_mddevs_lock);
542 if (bs)
543 bioset_free(bs);
544 }
545
546 void mddev_init(struct mddev *mddev)
547 {
548 mutex_init(&mddev->open_mutex);
549 mutex_init(&mddev->reconfig_mutex);
550 mutex_init(&mddev->bitmap_info.mutex);
551 INIT_LIST_HEAD(&mddev->disks);
552 INIT_LIST_HEAD(&mddev->all_mddevs);
553 init_timer(&mddev->safemode_timer);
554 atomic_set(&mddev->active, 1);
555 atomic_set(&mddev->openers, 0);
556 atomic_set(&mddev->active_io, 0);
557 spin_lock_init(&mddev->write_lock);
558 atomic_set(&mddev->flush_pending, 0);
559 init_waitqueue_head(&mddev->sb_wait);
560 init_waitqueue_head(&mddev->recovery_wait);
561 mddev->reshape_position = MaxSector;
562 mddev->reshape_backwards = 0;
563 mddev->resync_min = 0;
564 mddev->resync_max = MaxSector;
565 mddev->level = LEVEL_NONE;
566 }
567 EXPORT_SYMBOL_GPL(mddev_init);
568
569 static struct mddev * mddev_find(dev_t unit)
570 {
571 struct mddev *mddev, *new = NULL;
572
573 if (unit && MAJOR(unit) != MD_MAJOR)
574 unit &= ~((1<<MdpMinorShift)-1);
575
576 retry:
577 spin_lock(&all_mddevs_lock);
578
579 if (unit) {
580 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
581 if (mddev->unit == unit) {
582 mddev_get(mddev);
583 spin_unlock(&all_mddevs_lock);
584 kfree(new);
585 return mddev;
586 }
587
588 if (new) {
589 list_add(&new->all_mddevs, &all_mddevs);
590 spin_unlock(&all_mddevs_lock);
591 new->hold_active = UNTIL_IOCTL;
592 return new;
593 }
594 } else if (new) {
595 /* find an unused unit number */
596 static int next_minor = 512;
597 int start = next_minor;
598 int is_free = 0;
599 int dev = 0;
600 while (!is_free) {
601 dev = MKDEV(MD_MAJOR, next_minor);
602 next_minor++;
603 if (next_minor > MINORMASK)
604 next_minor = 0;
605 if (next_minor == start) {
606 /* Oh dear, all in use. */
607 spin_unlock(&all_mddevs_lock);
608 kfree(new);
609 return NULL;
610 }
611
612 is_free = 1;
613 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
614 if (mddev->unit == dev) {
615 is_free = 0;
616 break;
617 }
618 }
619 new->unit = dev;
620 new->md_minor = MINOR(dev);
621 new->hold_active = UNTIL_STOP;
622 list_add(&new->all_mddevs, &all_mddevs);
623 spin_unlock(&all_mddevs_lock);
624 return new;
625 }
626 spin_unlock(&all_mddevs_lock);
627
628 new = kzalloc(sizeof(*new), GFP_KERNEL);
629 if (!new)
630 return NULL;
631
632 new->unit = unit;
633 if (MAJOR(unit) == MD_MAJOR)
634 new->md_minor = MINOR(unit);
635 else
636 new->md_minor = MINOR(unit) >> MdpMinorShift;
637
638 mddev_init(new);
639
640 goto retry;
641 }
642
643 static inline int mddev_lock(struct mddev * mddev)
644 {
645 return mutex_lock_interruptible(&mddev->reconfig_mutex);
646 }
647
648 static inline int mddev_is_locked(struct mddev *mddev)
649 {
650 return mutex_is_locked(&mddev->reconfig_mutex);
651 }
652
653 static inline int mddev_trylock(struct mddev * mddev)
654 {
655 return mutex_trylock(&mddev->reconfig_mutex);
656 }
657
658 static struct attribute_group md_redundancy_group;
659
660 static void mddev_unlock(struct mddev * mddev)
661 {
662 if (mddev->to_remove) {
663 /* These cannot be removed under reconfig_mutex as
664 * an access to the files will try to take reconfig_mutex
665 * while holding the file unremovable, which leads to
666 * a deadlock.
667 * So hold set sysfs_active while the remove in happeing,
668 * and anything else which might set ->to_remove or my
669 * otherwise change the sysfs namespace will fail with
670 * -EBUSY if sysfs_active is still set.
671 * We set sysfs_active under reconfig_mutex and elsewhere
672 * test it under the same mutex to ensure its correct value
673 * is seen.
674 */
675 struct attribute_group *to_remove = mddev->to_remove;
676 mddev->to_remove = NULL;
677 mddev->sysfs_active = 1;
678 mutex_unlock(&mddev->reconfig_mutex);
679
680 if (mddev->kobj.sd) {
681 if (to_remove != &md_redundancy_group)
682 sysfs_remove_group(&mddev->kobj, to_remove);
683 if (mddev->pers == NULL ||
684 mddev->pers->sync_request == NULL) {
685 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
686 if (mddev->sysfs_action)
687 sysfs_put(mddev->sysfs_action);
688 mddev->sysfs_action = NULL;
689 }
690 }
691 mddev->sysfs_active = 0;
692 } else
693 mutex_unlock(&mddev->reconfig_mutex);
694
695 /* As we've dropped the mutex we need a spinlock to
696 * make sure the thread doesn't disappear
697 */
698 spin_lock(&pers_lock);
699 md_wakeup_thread(mddev->thread);
700 spin_unlock(&pers_lock);
701 }
702
703 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
704 {
705 struct md_rdev *rdev;
706
707 rdev_for_each(rdev, mddev)
708 if (rdev->desc_nr == nr)
709 return rdev;
710
711 return NULL;
712 }
713
714 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
715 {
716 struct md_rdev *rdev;
717
718 rdev_for_each(rdev, mddev)
719 if (rdev->bdev->bd_dev == dev)
720 return rdev;
721
722 return NULL;
723 }
724
725 static struct md_personality *find_pers(int level, char *clevel)
726 {
727 struct md_personality *pers;
728 list_for_each_entry(pers, &pers_list, list) {
729 if (level != LEVEL_NONE && pers->level == level)
730 return pers;
731 if (strcmp(pers->name, clevel)==0)
732 return pers;
733 }
734 return NULL;
735 }
736
737 /* return the offset of the super block in 512byte sectors */
738 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
739 {
740 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
741 return MD_NEW_SIZE_SECTORS(num_sectors);
742 }
743
744 static int alloc_disk_sb(struct md_rdev * rdev)
745 {
746 if (rdev->sb_page)
747 MD_BUG();
748
749 rdev->sb_page = alloc_page(GFP_KERNEL);
750 if (!rdev->sb_page) {
751 printk(KERN_ALERT "md: out of memory.\n");
752 return -ENOMEM;
753 }
754
755 return 0;
756 }
757
758 void md_rdev_clear(struct md_rdev *rdev)
759 {
760 if (rdev->sb_page) {
761 put_page(rdev->sb_page);
762 rdev->sb_loaded = 0;
763 rdev->sb_page = NULL;
764 rdev->sb_start = 0;
765 rdev->sectors = 0;
766 }
767 if (rdev->bb_page) {
768 put_page(rdev->bb_page);
769 rdev->bb_page = NULL;
770 }
771 kfree(rdev->badblocks.page);
772 rdev->badblocks.page = NULL;
773 }
774 EXPORT_SYMBOL_GPL(md_rdev_clear);
775
776 static void super_written(struct bio *bio, int error)
777 {
778 struct md_rdev *rdev = bio->bi_private;
779 struct mddev *mddev = rdev->mddev;
780
781 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
782 printk("md: super_written gets error=%d, uptodate=%d\n",
783 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
784 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
785 md_error(mddev, rdev);
786 }
787
788 if (atomic_dec_and_test(&mddev->pending_writes))
789 wake_up(&mddev->sb_wait);
790 bio_put(bio);
791 }
792
793 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
794 sector_t sector, int size, struct page *page)
795 {
796 /* write first size bytes of page to sector of rdev
797 * Increment mddev->pending_writes before returning
798 * and decrement it on completion, waking up sb_wait
799 * if zero is reached.
800 * If an error occurred, call md_error
801 */
802 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
803
804 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
805 bio->bi_sector = sector;
806 bio_add_page(bio, page, size, 0);
807 bio->bi_private = rdev;
808 bio->bi_end_io = super_written;
809
810 atomic_inc(&mddev->pending_writes);
811 submit_bio(WRITE_FLUSH_FUA, bio);
812 }
813
814 void md_super_wait(struct mddev *mddev)
815 {
816 /* wait for all superblock writes that were scheduled to complete */
817 DEFINE_WAIT(wq);
818 for(;;) {
819 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
820 if (atomic_read(&mddev->pending_writes)==0)
821 break;
822 schedule();
823 }
824 finish_wait(&mddev->sb_wait, &wq);
825 }
826
827 static void bi_complete(struct bio *bio, int error)
828 {
829 complete((struct completion*)bio->bi_private);
830 }
831
832 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
833 struct page *page, int rw, bool metadata_op)
834 {
835 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
836 struct completion event;
837 int ret;
838
839 rw |= REQ_SYNC;
840
841 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
842 rdev->meta_bdev : rdev->bdev;
843 if (metadata_op)
844 bio->bi_sector = sector + rdev->sb_start;
845 else if (rdev->mddev->reshape_position != MaxSector &&
846 (rdev->mddev->reshape_backwards ==
847 (sector >= rdev->mddev->reshape_position)))
848 bio->bi_sector = sector + rdev->new_data_offset;
849 else
850 bio->bi_sector = sector + rdev->data_offset;
851 bio_add_page(bio, page, size, 0);
852 init_completion(&event);
853 bio->bi_private = &event;
854 bio->bi_end_io = bi_complete;
855 submit_bio(rw, bio);
856 wait_for_completion(&event);
857
858 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
859 bio_put(bio);
860 return ret;
861 }
862 EXPORT_SYMBOL_GPL(sync_page_io);
863
864 static int read_disk_sb(struct md_rdev * rdev, int size)
865 {
866 char b[BDEVNAME_SIZE];
867 if (!rdev->sb_page) {
868 MD_BUG();
869 return -EINVAL;
870 }
871 if (rdev->sb_loaded)
872 return 0;
873
874
875 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
876 goto fail;
877 rdev->sb_loaded = 1;
878 return 0;
879
880 fail:
881 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
882 bdevname(rdev->bdev,b));
883 return -EINVAL;
884 }
885
886 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888 return sb1->set_uuid0 == sb2->set_uuid0 &&
889 sb1->set_uuid1 == sb2->set_uuid1 &&
890 sb1->set_uuid2 == sb2->set_uuid2 &&
891 sb1->set_uuid3 == sb2->set_uuid3;
892 }
893
894 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
895 {
896 int ret;
897 mdp_super_t *tmp1, *tmp2;
898
899 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
900 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
901
902 if (!tmp1 || !tmp2) {
903 ret = 0;
904 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
905 goto abort;
906 }
907
908 *tmp1 = *sb1;
909 *tmp2 = *sb2;
910
911 /*
912 * nr_disks is not constant
913 */
914 tmp1->nr_disks = 0;
915 tmp2->nr_disks = 0;
916
917 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
918 abort:
919 kfree(tmp1);
920 kfree(tmp2);
921 return ret;
922 }
923
924
925 static u32 md_csum_fold(u32 csum)
926 {
927 csum = (csum & 0xffff) + (csum >> 16);
928 return (csum & 0xffff) + (csum >> 16);
929 }
930
931 static unsigned int calc_sb_csum(mdp_super_t * sb)
932 {
933 u64 newcsum = 0;
934 u32 *sb32 = (u32*)sb;
935 int i;
936 unsigned int disk_csum, csum;
937
938 disk_csum = sb->sb_csum;
939 sb->sb_csum = 0;
940
941 for (i = 0; i < MD_SB_BYTES/4 ; i++)
942 newcsum += sb32[i];
943 csum = (newcsum & 0xffffffff) + (newcsum>>32);
944
945
946 #ifdef CONFIG_ALPHA
947 /* This used to use csum_partial, which was wrong for several
948 * reasons including that different results are returned on
949 * different architectures. It isn't critical that we get exactly
950 * the same return value as before (we always csum_fold before
951 * testing, and that removes any differences). However as we
952 * know that csum_partial always returned a 16bit value on
953 * alphas, do a fold to maximise conformity to previous behaviour.
954 */
955 sb->sb_csum = md_csum_fold(disk_csum);
956 #else
957 sb->sb_csum = disk_csum;
958 #endif
959 return csum;
960 }
961
962
963 /*
964 * Handle superblock details.
965 * We want to be able to handle multiple superblock formats
966 * so we have a common interface to them all, and an array of
967 * different handlers.
968 * We rely on user-space to write the initial superblock, and support
969 * reading and updating of superblocks.
970 * Interface methods are:
971 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
972 * loads and validates a superblock on dev.
973 * if refdev != NULL, compare superblocks on both devices
974 * Return:
975 * 0 - dev has a superblock that is compatible with refdev
976 * 1 - dev has a superblock that is compatible and newer than refdev
977 * so dev should be used as the refdev in future
978 * -EINVAL superblock incompatible or invalid
979 * -othererror e.g. -EIO
980 *
981 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
982 * Verify that dev is acceptable into mddev.
983 * The first time, mddev->raid_disks will be 0, and data from
984 * dev should be merged in. Subsequent calls check that dev
985 * is new enough. Return 0 or -EINVAL
986 *
987 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
988 * Update the superblock for rdev with data in mddev
989 * This does not write to disc.
990 *
991 */
992
993 struct super_type {
994 char *name;
995 struct module *owner;
996 int (*load_super)(struct md_rdev *rdev,
997 struct md_rdev *refdev,
998 int minor_version);
999 int (*validate_super)(struct mddev *mddev,
1000 struct md_rdev *rdev);
1001 void (*sync_super)(struct mddev *mddev,
1002 struct md_rdev *rdev);
1003 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1004 sector_t num_sectors);
1005 int (*allow_new_offset)(struct md_rdev *rdev,
1006 unsigned long long new_offset);
1007 };
1008
1009 /*
1010 * Check that the given mddev has no bitmap.
1011 *
1012 * This function is called from the run method of all personalities that do not
1013 * support bitmaps. It prints an error message and returns non-zero if mddev
1014 * has a bitmap. Otherwise, it returns 0.
1015 *
1016 */
1017 int md_check_no_bitmap(struct mddev *mddev)
1018 {
1019 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1020 return 0;
1021 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1022 mdname(mddev), mddev->pers->name);
1023 return 1;
1024 }
1025 EXPORT_SYMBOL(md_check_no_bitmap);
1026
1027 /*
1028 * load_super for 0.90.0
1029 */
1030 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1031 {
1032 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1033 mdp_super_t *sb;
1034 int ret;
1035
1036 /*
1037 * Calculate the position of the superblock (512byte sectors),
1038 * it's at the end of the disk.
1039 *
1040 * It also happens to be a multiple of 4Kb.
1041 */
1042 rdev->sb_start = calc_dev_sboffset(rdev);
1043
1044 ret = read_disk_sb(rdev, MD_SB_BYTES);
1045 if (ret) return ret;
1046
1047 ret = -EINVAL;
1048
1049 bdevname(rdev->bdev, b);
1050 sb = page_address(rdev->sb_page);
1051
1052 if (sb->md_magic != MD_SB_MAGIC) {
1053 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1054 b);
1055 goto abort;
1056 }
1057
1058 if (sb->major_version != 0 ||
1059 sb->minor_version < 90 ||
1060 sb->minor_version > 91) {
1061 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1062 sb->major_version, sb->minor_version,
1063 b);
1064 goto abort;
1065 }
1066
1067 if (sb->raid_disks <= 0)
1068 goto abort;
1069
1070 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1071 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1072 b);
1073 goto abort;
1074 }
1075
1076 rdev->preferred_minor = sb->md_minor;
1077 rdev->data_offset = 0;
1078 rdev->new_data_offset = 0;
1079 rdev->sb_size = MD_SB_BYTES;
1080 rdev->badblocks.shift = -1;
1081
1082 if (sb->level == LEVEL_MULTIPATH)
1083 rdev->desc_nr = -1;
1084 else
1085 rdev->desc_nr = sb->this_disk.number;
1086
1087 if (!refdev) {
1088 ret = 1;
1089 } else {
1090 __u64 ev1, ev2;
1091 mdp_super_t *refsb = page_address(refdev->sb_page);
1092 if (!uuid_equal(refsb, sb)) {
1093 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1094 b, bdevname(refdev->bdev,b2));
1095 goto abort;
1096 }
1097 if (!sb_equal(refsb, sb)) {
1098 printk(KERN_WARNING "md: %s has same UUID"
1099 " but different superblock to %s\n",
1100 b, bdevname(refdev->bdev, b2));
1101 goto abort;
1102 }
1103 ev1 = md_event(sb);
1104 ev2 = md_event(refsb);
1105 if (ev1 > ev2)
1106 ret = 1;
1107 else
1108 ret = 0;
1109 }
1110 rdev->sectors = rdev->sb_start;
1111 /* Limit to 4TB as metadata cannot record more than that */
1112 if (rdev->sectors >= (2ULL << 32))
1113 rdev->sectors = (2ULL << 32) - 2;
1114
1115 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1116 /* "this cannot possibly happen" ... */
1117 ret = -EINVAL;
1118
1119 abort:
1120 return ret;
1121 }
1122
1123 /*
1124 * validate_super for 0.90.0
1125 */
1126 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1127 {
1128 mdp_disk_t *desc;
1129 mdp_super_t *sb = page_address(rdev->sb_page);
1130 __u64 ev1 = md_event(sb);
1131
1132 rdev->raid_disk = -1;
1133 clear_bit(Faulty, &rdev->flags);
1134 clear_bit(In_sync, &rdev->flags);
1135 clear_bit(WriteMostly, &rdev->flags);
1136
1137 if (mddev->raid_disks == 0) {
1138 mddev->major_version = 0;
1139 mddev->minor_version = sb->minor_version;
1140 mddev->patch_version = sb->patch_version;
1141 mddev->external = 0;
1142 mddev->chunk_sectors = sb->chunk_size >> 9;
1143 mddev->ctime = sb->ctime;
1144 mddev->utime = sb->utime;
1145 mddev->level = sb->level;
1146 mddev->clevel[0] = 0;
1147 mddev->layout = sb->layout;
1148 mddev->raid_disks = sb->raid_disks;
1149 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1150 mddev->events = ev1;
1151 mddev->bitmap_info.offset = 0;
1152 mddev->bitmap_info.space = 0;
1153 /* bitmap can use 60 K after the 4K superblocks */
1154 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1155 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1156 mddev->reshape_backwards = 0;
1157
1158 if (mddev->minor_version >= 91) {
1159 mddev->reshape_position = sb->reshape_position;
1160 mddev->delta_disks = sb->delta_disks;
1161 mddev->new_level = sb->new_level;
1162 mddev->new_layout = sb->new_layout;
1163 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1164 if (mddev->delta_disks < 0)
1165 mddev->reshape_backwards = 1;
1166 } else {
1167 mddev->reshape_position = MaxSector;
1168 mddev->delta_disks = 0;
1169 mddev->new_level = mddev->level;
1170 mddev->new_layout = mddev->layout;
1171 mddev->new_chunk_sectors = mddev->chunk_sectors;
1172 }
1173
1174 if (sb->state & (1<<MD_SB_CLEAN))
1175 mddev->recovery_cp = MaxSector;
1176 else {
1177 if (sb->events_hi == sb->cp_events_hi &&
1178 sb->events_lo == sb->cp_events_lo) {
1179 mddev->recovery_cp = sb->recovery_cp;
1180 } else
1181 mddev->recovery_cp = 0;
1182 }
1183
1184 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1185 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1186 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1187 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1188
1189 mddev->max_disks = MD_SB_DISKS;
1190
1191 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1192 mddev->bitmap_info.file == NULL) {
1193 mddev->bitmap_info.offset =
1194 mddev->bitmap_info.default_offset;
1195 mddev->bitmap_info.space =
1196 mddev->bitmap_info.space;
1197 }
1198
1199 } else if (mddev->pers == NULL) {
1200 /* Insist on good event counter while assembling, except
1201 * for spares (which don't need an event count) */
1202 ++ev1;
1203 if (sb->disks[rdev->desc_nr].state & (
1204 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1205 if (ev1 < mddev->events)
1206 return -EINVAL;
1207 } else if (mddev->bitmap) {
1208 /* if adding to array with a bitmap, then we can accept an
1209 * older device ... but not too old.
1210 */
1211 if (ev1 < mddev->bitmap->events_cleared)
1212 return 0;
1213 } else {
1214 if (ev1 < mddev->events)
1215 /* just a hot-add of a new device, leave raid_disk at -1 */
1216 return 0;
1217 }
1218
1219 if (mddev->level != LEVEL_MULTIPATH) {
1220 desc = sb->disks + rdev->desc_nr;
1221
1222 if (desc->state & (1<<MD_DISK_FAULTY))
1223 set_bit(Faulty, &rdev->flags);
1224 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1225 desc->raid_disk < mddev->raid_disks */) {
1226 set_bit(In_sync, &rdev->flags);
1227 rdev->raid_disk = desc->raid_disk;
1228 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1229 /* active but not in sync implies recovery up to
1230 * reshape position. We don't know exactly where
1231 * that is, so set to zero for now */
1232 if (mddev->minor_version >= 91) {
1233 rdev->recovery_offset = 0;
1234 rdev->raid_disk = desc->raid_disk;
1235 }
1236 }
1237 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1238 set_bit(WriteMostly, &rdev->flags);
1239 } else /* MULTIPATH are always insync */
1240 set_bit(In_sync, &rdev->flags);
1241 return 0;
1242 }
1243
1244 /*
1245 * sync_super for 0.90.0
1246 */
1247 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1248 {
1249 mdp_super_t *sb;
1250 struct md_rdev *rdev2;
1251 int next_spare = mddev->raid_disks;
1252
1253
1254 /* make rdev->sb match mddev data..
1255 *
1256 * 1/ zero out disks
1257 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1258 * 3/ any empty disks < next_spare become removed
1259 *
1260 * disks[0] gets initialised to REMOVED because
1261 * we cannot be sure from other fields if it has
1262 * been initialised or not.
1263 */
1264 int i;
1265 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1266
1267 rdev->sb_size = MD_SB_BYTES;
1268
1269 sb = page_address(rdev->sb_page);
1270
1271 memset(sb, 0, sizeof(*sb));
1272
1273 sb->md_magic = MD_SB_MAGIC;
1274 sb->major_version = mddev->major_version;
1275 sb->patch_version = mddev->patch_version;
1276 sb->gvalid_words = 0; /* ignored */
1277 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1278 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1279 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1280 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1281
1282 sb->ctime = mddev->ctime;
1283 sb->level = mddev->level;
1284 sb->size = mddev->dev_sectors / 2;
1285 sb->raid_disks = mddev->raid_disks;
1286 sb->md_minor = mddev->md_minor;
1287 sb->not_persistent = 0;
1288 sb->utime = mddev->utime;
1289 sb->state = 0;
1290 sb->events_hi = (mddev->events>>32);
1291 sb->events_lo = (u32)mddev->events;
1292
1293 if (mddev->reshape_position == MaxSector)
1294 sb->minor_version = 90;
1295 else {
1296 sb->minor_version = 91;
1297 sb->reshape_position = mddev->reshape_position;
1298 sb->new_level = mddev->new_level;
1299 sb->delta_disks = mddev->delta_disks;
1300 sb->new_layout = mddev->new_layout;
1301 sb->new_chunk = mddev->new_chunk_sectors << 9;
1302 }
1303 mddev->minor_version = sb->minor_version;
1304 if (mddev->in_sync)
1305 {
1306 sb->recovery_cp = mddev->recovery_cp;
1307 sb->cp_events_hi = (mddev->events>>32);
1308 sb->cp_events_lo = (u32)mddev->events;
1309 if (mddev->recovery_cp == MaxSector)
1310 sb->state = (1<< MD_SB_CLEAN);
1311 } else
1312 sb->recovery_cp = 0;
1313
1314 sb->layout = mddev->layout;
1315 sb->chunk_size = mddev->chunk_sectors << 9;
1316
1317 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1318 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1319
1320 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1321 rdev_for_each(rdev2, mddev) {
1322 mdp_disk_t *d;
1323 int desc_nr;
1324 int is_active = test_bit(In_sync, &rdev2->flags);
1325
1326 if (rdev2->raid_disk >= 0 &&
1327 sb->minor_version >= 91)
1328 /* we have nowhere to store the recovery_offset,
1329 * but if it is not below the reshape_position,
1330 * we can piggy-back on that.
1331 */
1332 is_active = 1;
1333 if (rdev2->raid_disk < 0 ||
1334 test_bit(Faulty, &rdev2->flags))
1335 is_active = 0;
1336 if (is_active)
1337 desc_nr = rdev2->raid_disk;
1338 else
1339 desc_nr = next_spare++;
1340 rdev2->desc_nr = desc_nr;
1341 d = &sb->disks[rdev2->desc_nr];
1342 nr_disks++;
1343 d->number = rdev2->desc_nr;
1344 d->major = MAJOR(rdev2->bdev->bd_dev);
1345 d->minor = MINOR(rdev2->bdev->bd_dev);
1346 if (is_active)
1347 d->raid_disk = rdev2->raid_disk;
1348 else
1349 d->raid_disk = rdev2->desc_nr; /* compatibility */
1350 if (test_bit(Faulty, &rdev2->flags))
1351 d->state = (1<<MD_DISK_FAULTY);
1352 else if (is_active) {
1353 d->state = (1<<MD_DISK_ACTIVE);
1354 if (test_bit(In_sync, &rdev2->flags))
1355 d->state |= (1<<MD_DISK_SYNC);
1356 active++;
1357 working++;
1358 } else {
1359 d->state = 0;
1360 spare++;
1361 working++;
1362 }
1363 if (test_bit(WriteMostly, &rdev2->flags))
1364 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1365 }
1366 /* now set the "removed" and "faulty" bits on any missing devices */
1367 for (i=0 ; i < mddev->raid_disks ; i++) {
1368 mdp_disk_t *d = &sb->disks[i];
1369 if (d->state == 0 && d->number == 0) {
1370 d->number = i;
1371 d->raid_disk = i;
1372 d->state = (1<<MD_DISK_REMOVED);
1373 d->state |= (1<<MD_DISK_FAULTY);
1374 failed++;
1375 }
1376 }
1377 sb->nr_disks = nr_disks;
1378 sb->active_disks = active;
1379 sb->working_disks = working;
1380 sb->failed_disks = failed;
1381 sb->spare_disks = spare;
1382
1383 sb->this_disk = sb->disks[rdev->desc_nr];
1384 sb->sb_csum = calc_sb_csum(sb);
1385 }
1386
1387 /*
1388 * rdev_size_change for 0.90.0
1389 */
1390 static unsigned long long
1391 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1392 {
1393 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1394 return 0; /* component must fit device */
1395 if (rdev->mddev->bitmap_info.offset)
1396 return 0; /* can't move bitmap */
1397 rdev->sb_start = calc_dev_sboffset(rdev);
1398 if (!num_sectors || num_sectors > rdev->sb_start)
1399 num_sectors = rdev->sb_start;
1400 /* Limit to 4TB as metadata cannot record more than that.
1401 * 4TB == 2^32 KB, or 2*2^32 sectors.
1402 */
1403 if (num_sectors >= (2ULL << 32))
1404 num_sectors = (2ULL << 32) - 2;
1405 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1406 rdev->sb_page);
1407 md_super_wait(rdev->mddev);
1408 return num_sectors;
1409 }
1410
1411 static int
1412 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1413 {
1414 /* non-zero offset changes not possible with v0.90 */
1415 return new_offset == 0;
1416 }
1417
1418 /*
1419 * version 1 superblock
1420 */
1421
1422 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1423 {
1424 __le32 disk_csum;
1425 u32 csum;
1426 unsigned long long newcsum;
1427 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1428 __le32 *isuper = (__le32*)sb;
1429 int i;
1430
1431 disk_csum = sb->sb_csum;
1432 sb->sb_csum = 0;
1433 newcsum = 0;
1434 for (i=0; size>=4; size -= 4 )
1435 newcsum += le32_to_cpu(*isuper++);
1436
1437 if (size == 2)
1438 newcsum += le16_to_cpu(*(__le16*) isuper);
1439
1440 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1441 sb->sb_csum = disk_csum;
1442 return cpu_to_le32(csum);
1443 }
1444
1445 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1446 int acknowledged);
1447 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1448 {
1449 struct mdp_superblock_1 *sb;
1450 int ret;
1451 sector_t sb_start;
1452 sector_t sectors;
1453 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1454 int bmask;
1455
1456 /*
1457 * Calculate the position of the superblock in 512byte sectors.
1458 * It is always aligned to a 4K boundary and
1459 * depeding on minor_version, it can be:
1460 * 0: At least 8K, but less than 12K, from end of device
1461 * 1: At start of device
1462 * 2: 4K from start of device.
1463 */
1464 switch(minor_version) {
1465 case 0:
1466 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1467 sb_start -= 8*2;
1468 sb_start &= ~(sector_t)(4*2-1);
1469 break;
1470 case 1:
1471 sb_start = 0;
1472 break;
1473 case 2:
1474 sb_start = 8;
1475 break;
1476 default:
1477 return -EINVAL;
1478 }
1479 rdev->sb_start = sb_start;
1480
1481 /* superblock is rarely larger than 1K, but it can be larger,
1482 * and it is safe to read 4k, so we do that
1483 */
1484 ret = read_disk_sb(rdev, 4096);
1485 if (ret) return ret;
1486
1487
1488 sb = page_address(rdev->sb_page);
1489
1490 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1491 sb->major_version != cpu_to_le32(1) ||
1492 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1493 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1494 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1495 return -EINVAL;
1496
1497 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1498 printk("md: invalid superblock checksum on %s\n",
1499 bdevname(rdev->bdev,b));
1500 return -EINVAL;
1501 }
1502 if (le64_to_cpu(sb->data_size) < 10) {
1503 printk("md: data_size too small on %s\n",
1504 bdevname(rdev->bdev,b));
1505 return -EINVAL;
1506 }
1507 if (sb->pad0 ||
1508 sb->pad3[0] ||
1509 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1510 /* Some padding is non-zero, might be a new feature */
1511 return -EINVAL;
1512
1513 rdev->preferred_minor = 0xffff;
1514 rdev->data_offset = le64_to_cpu(sb->data_offset);
1515 rdev->new_data_offset = rdev->data_offset;
1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1517 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1518 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1519 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1520
1521 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1522 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1523 if (rdev->sb_size & bmask)
1524 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1525
1526 if (minor_version
1527 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1528 return -EINVAL;
1529 if (minor_version
1530 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1531 return -EINVAL;
1532
1533 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1534 rdev->desc_nr = -1;
1535 else
1536 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1537
1538 if (!rdev->bb_page) {
1539 rdev->bb_page = alloc_page(GFP_KERNEL);
1540 if (!rdev->bb_page)
1541 return -ENOMEM;
1542 }
1543 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1544 rdev->badblocks.count == 0) {
1545 /* need to load the bad block list.
1546 * Currently we limit it to one page.
1547 */
1548 s32 offset;
1549 sector_t bb_sector;
1550 u64 *bbp;
1551 int i;
1552 int sectors = le16_to_cpu(sb->bblog_size);
1553 if (sectors > (PAGE_SIZE / 512))
1554 return -EINVAL;
1555 offset = le32_to_cpu(sb->bblog_offset);
1556 if (offset == 0)
1557 return -EINVAL;
1558 bb_sector = (long long)offset;
1559 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1560 rdev->bb_page, READ, true))
1561 return -EIO;
1562 bbp = (u64 *)page_address(rdev->bb_page);
1563 rdev->badblocks.shift = sb->bblog_shift;
1564 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1565 u64 bb = le64_to_cpu(*bbp);
1566 int count = bb & (0x3ff);
1567 u64 sector = bb >> 10;
1568 sector <<= sb->bblog_shift;
1569 count <<= sb->bblog_shift;
1570 if (bb + 1 == 0)
1571 break;
1572 if (md_set_badblocks(&rdev->badblocks,
1573 sector, count, 1) == 0)
1574 return -EINVAL;
1575 }
1576 } else if (sb->bblog_offset == 0)
1577 rdev->badblocks.shift = -1;
1578
1579 if (!refdev) {
1580 ret = 1;
1581 } else {
1582 __u64 ev1, ev2;
1583 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1584
1585 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1586 sb->level != refsb->level ||
1587 sb->layout != refsb->layout ||
1588 sb->chunksize != refsb->chunksize) {
1589 printk(KERN_WARNING "md: %s has strangely different"
1590 " superblock to %s\n",
1591 bdevname(rdev->bdev,b),
1592 bdevname(refdev->bdev,b2));
1593 return -EINVAL;
1594 }
1595 ev1 = le64_to_cpu(sb->events);
1596 ev2 = le64_to_cpu(refsb->events);
1597
1598 if (ev1 > ev2)
1599 ret = 1;
1600 else
1601 ret = 0;
1602 }
1603 if (minor_version) {
1604 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1605 sectors -= rdev->data_offset;
1606 } else
1607 sectors = rdev->sb_start;
1608 if (sectors < le64_to_cpu(sb->data_size))
1609 return -EINVAL;
1610 rdev->sectors = le64_to_cpu(sb->data_size);
1611 return ret;
1612 }
1613
1614 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1615 {
1616 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1617 __u64 ev1 = le64_to_cpu(sb->events);
1618
1619 rdev->raid_disk = -1;
1620 clear_bit(Faulty, &rdev->flags);
1621 clear_bit(In_sync, &rdev->flags);
1622 clear_bit(WriteMostly, &rdev->flags);
1623
1624 if (mddev->raid_disks == 0) {
1625 mddev->major_version = 1;
1626 mddev->patch_version = 0;
1627 mddev->external = 0;
1628 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1629 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1630 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1631 mddev->level = le32_to_cpu(sb->level);
1632 mddev->clevel[0] = 0;
1633 mddev->layout = le32_to_cpu(sb->layout);
1634 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1635 mddev->dev_sectors = le64_to_cpu(sb->size);
1636 mddev->events = ev1;
1637 mddev->bitmap_info.offset = 0;
1638 mddev->bitmap_info.space = 0;
1639 /* Default location for bitmap is 1K after superblock
1640 * using 3K - total of 4K
1641 */
1642 mddev->bitmap_info.default_offset = 1024 >> 9;
1643 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1644 mddev->reshape_backwards = 0;
1645
1646 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1647 memcpy(mddev->uuid, sb->set_uuid, 16);
1648
1649 mddev->max_disks = (4096-256)/2;
1650
1651 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1652 mddev->bitmap_info.file == NULL) {
1653 mddev->bitmap_info.offset =
1654 (__s32)le32_to_cpu(sb->bitmap_offset);
1655 /* Metadata doesn't record how much space is available.
1656 * For 1.0, we assume we can use up to the superblock
1657 * if before, else to 4K beyond superblock.
1658 * For others, assume no change is possible.
1659 */
1660 if (mddev->minor_version > 0)
1661 mddev->bitmap_info.space = 0;
1662 else if (mddev->bitmap_info.offset > 0)
1663 mddev->bitmap_info.space =
1664 8 - mddev->bitmap_info.offset;
1665 else
1666 mddev->bitmap_info.space =
1667 -mddev->bitmap_info.offset;
1668 }
1669
1670 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1671 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1672 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1673 mddev->new_level = le32_to_cpu(sb->new_level);
1674 mddev->new_layout = le32_to_cpu(sb->new_layout);
1675 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1676 if (mddev->delta_disks < 0 ||
1677 (mddev->delta_disks == 0 &&
1678 (le32_to_cpu(sb->feature_map)
1679 & MD_FEATURE_RESHAPE_BACKWARDS)))
1680 mddev->reshape_backwards = 1;
1681 } else {
1682 mddev->reshape_position = MaxSector;
1683 mddev->delta_disks = 0;
1684 mddev->new_level = mddev->level;
1685 mddev->new_layout = mddev->layout;
1686 mddev->new_chunk_sectors = mddev->chunk_sectors;
1687 }
1688
1689 } else if (mddev->pers == NULL) {
1690 /* Insist of good event counter while assembling, except for
1691 * spares (which don't need an event count) */
1692 ++ev1;
1693 if (rdev->desc_nr >= 0 &&
1694 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1695 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1696 if (ev1 < mddev->events)
1697 return -EINVAL;
1698 } else if (mddev->bitmap) {
1699 /* If adding to array with a bitmap, then we can accept an
1700 * older device, but not too old.
1701 */
1702 if (ev1 < mddev->bitmap->events_cleared)
1703 return 0;
1704 } else {
1705 if (ev1 < mddev->events)
1706 /* just a hot-add of a new device, leave raid_disk at -1 */
1707 return 0;
1708 }
1709 if (mddev->level != LEVEL_MULTIPATH) {
1710 int role;
1711 if (rdev->desc_nr < 0 ||
1712 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1713 role = 0xffff;
1714 rdev->desc_nr = -1;
1715 } else
1716 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1717 switch(role) {
1718 case 0xffff: /* spare */
1719 break;
1720 case 0xfffe: /* faulty */
1721 set_bit(Faulty, &rdev->flags);
1722 break;
1723 default:
1724 if ((le32_to_cpu(sb->feature_map) &
1725 MD_FEATURE_RECOVERY_OFFSET))
1726 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1727 else
1728 set_bit(In_sync, &rdev->flags);
1729 rdev->raid_disk = role;
1730 break;
1731 }
1732 if (sb->devflags & WriteMostly1)
1733 set_bit(WriteMostly, &rdev->flags);
1734 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1735 set_bit(Replacement, &rdev->flags);
1736 } else /* MULTIPATH are always insync */
1737 set_bit(In_sync, &rdev->flags);
1738
1739 return 0;
1740 }
1741
1742 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1743 {
1744 struct mdp_superblock_1 *sb;
1745 struct md_rdev *rdev2;
1746 int max_dev, i;
1747 /* make rdev->sb match mddev and rdev data. */
1748
1749 sb = page_address(rdev->sb_page);
1750
1751 sb->feature_map = 0;
1752 sb->pad0 = 0;
1753 sb->recovery_offset = cpu_to_le64(0);
1754 memset(sb->pad3, 0, sizeof(sb->pad3));
1755
1756 sb->utime = cpu_to_le64((__u64)mddev->utime);
1757 sb->events = cpu_to_le64(mddev->events);
1758 if (mddev->in_sync)
1759 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1760 else
1761 sb->resync_offset = cpu_to_le64(0);
1762
1763 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1764
1765 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1766 sb->size = cpu_to_le64(mddev->dev_sectors);
1767 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1768 sb->level = cpu_to_le32(mddev->level);
1769 sb->layout = cpu_to_le32(mddev->layout);
1770
1771 if (test_bit(WriteMostly, &rdev->flags))
1772 sb->devflags |= WriteMostly1;
1773 else
1774 sb->devflags &= ~WriteMostly1;
1775 sb->data_offset = cpu_to_le64(rdev->data_offset);
1776 sb->data_size = cpu_to_le64(rdev->sectors);
1777
1778 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1779 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1780 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1781 }
1782
1783 if (rdev->raid_disk >= 0 &&
1784 !test_bit(In_sync, &rdev->flags)) {
1785 sb->feature_map |=
1786 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1787 sb->recovery_offset =
1788 cpu_to_le64(rdev->recovery_offset);
1789 }
1790 if (test_bit(Replacement, &rdev->flags))
1791 sb->feature_map |=
1792 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1793
1794 if (mddev->reshape_position != MaxSector) {
1795 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1796 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1797 sb->new_layout = cpu_to_le32(mddev->new_layout);
1798 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1799 sb->new_level = cpu_to_le32(mddev->new_level);
1800 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1801 if (mddev->delta_disks == 0 &&
1802 mddev->reshape_backwards)
1803 sb->feature_map
1804 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1805 if (rdev->new_data_offset != rdev->data_offset) {
1806 sb->feature_map
1807 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1808 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1809 - rdev->data_offset));
1810 }
1811 }
1812
1813 if (rdev->badblocks.count == 0)
1814 /* Nothing to do for bad blocks*/ ;
1815 else if (sb->bblog_offset == 0)
1816 /* Cannot record bad blocks on this device */
1817 md_error(mddev, rdev);
1818 else {
1819 struct badblocks *bb = &rdev->badblocks;
1820 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1821 u64 *p = bb->page;
1822 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1823 if (bb->changed) {
1824 unsigned seq;
1825
1826 retry:
1827 seq = read_seqbegin(&bb->lock);
1828
1829 memset(bbp, 0xff, PAGE_SIZE);
1830
1831 for (i = 0 ; i < bb->count ; i++) {
1832 u64 internal_bb = *p++;
1833 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1834 | BB_LEN(internal_bb));
1835 *bbp++ = cpu_to_le64(store_bb);
1836 }
1837 bb->changed = 0;
1838 if (read_seqretry(&bb->lock, seq))
1839 goto retry;
1840
1841 bb->sector = (rdev->sb_start +
1842 (int)le32_to_cpu(sb->bblog_offset));
1843 bb->size = le16_to_cpu(sb->bblog_size);
1844 }
1845 }
1846
1847 max_dev = 0;
1848 rdev_for_each(rdev2, mddev)
1849 if (rdev2->desc_nr+1 > max_dev)
1850 max_dev = rdev2->desc_nr+1;
1851
1852 if (max_dev > le32_to_cpu(sb->max_dev)) {
1853 int bmask;
1854 sb->max_dev = cpu_to_le32(max_dev);
1855 rdev->sb_size = max_dev * 2 + 256;
1856 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1857 if (rdev->sb_size & bmask)
1858 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1859 } else
1860 max_dev = le32_to_cpu(sb->max_dev);
1861
1862 for (i=0; i<max_dev;i++)
1863 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1864
1865 rdev_for_each(rdev2, mddev) {
1866 i = rdev2->desc_nr;
1867 if (test_bit(Faulty, &rdev2->flags))
1868 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1869 else if (test_bit(In_sync, &rdev2->flags))
1870 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1871 else if (rdev2->raid_disk >= 0)
1872 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1873 else
1874 sb->dev_roles[i] = cpu_to_le16(0xffff);
1875 }
1876
1877 sb->sb_csum = calc_sb_1_csum(sb);
1878 }
1879
1880 static unsigned long long
1881 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1882 {
1883 struct mdp_superblock_1 *sb;
1884 sector_t max_sectors;
1885 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1886 return 0; /* component must fit device */
1887 if (rdev->data_offset != rdev->new_data_offset)
1888 return 0; /* too confusing */
1889 if (rdev->sb_start < rdev->data_offset) {
1890 /* minor versions 1 and 2; superblock before data */
1891 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1892 max_sectors -= rdev->data_offset;
1893 if (!num_sectors || num_sectors > max_sectors)
1894 num_sectors = max_sectors;
1895 } else if (rdev->mddev->bitmap_info.offset) {
1896 /* minor version 0 with bitmap we can't move */
1897 return 0;
1898 } else {
1899 /* minor version 0; superblock after data */
1900 sector_t sb_start;
1901 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1902 sb_start &= ~(sector_t)(4*2 - 1);
1903 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1904 if (!num_sectors || num_sectors > max_sectors)
1905 num_sectors = max_sectors;
1906 rdev->sb_start = sb_start;
1907 }
1908 sb = page_address(rdev->sb_page);
1909 sb->data_size = cpu_to_le64(num_sectors);
1910 sb->super_offset = rdev->sb_start;
1911 sb->sb_csum = calc_sb_1_csum(sb);
1912 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1913 rdev->sb_page);
1914 md_super_wait(rdev->mddev);
1915 return num_sectors;
1916
1917 }
1918
1919 static int
1920 super_1_allow_new_offset(struct md_rdev *rdev,
1921 unsigned long long new_offset)
1922 {
1923 /* All necessary checks on new >= old have been done */
1924 struct bitmap *bitmap;
1925 if (new_offset >= rdev->data_offset)
1926 return 1;
1927
1928 /* with 1.0 metadata, there is no metadata to tread on
1929 * so we can always move back */
1930 if (rdev->mddev->minor_version == 0)
1931 return 1;
1932
1933 /* otherwise we must be sure not to step on
1934 * any metadata, so stay:
1935 * 36K beyond start of superblock
1936 * beyond end of badblocks
1937 * beyond write-intent bitmap
1938 */
1939 if (rdev->sb_start + (32+4)*2 > new_offset)
1940 return 0;
1941 bitmap = rdev->mddev->bitmap;
1942 if (bitmap && !rdev->mddev->bitmap_info.file &&
1943 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1944 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1945 return 0;
1946 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1947 return 0;
1948
1949 return 1;
1950 }
1951
1952 static struct super_type super_types[] = {
1953 [0] = {
1954 .name = "0.90.0",
1955 .owner = THIS_MODULE,
1956 .load_super = super_90_load,
1957 .validate_super = super_90_validate,
1958 .sync_super = super_90_sync,
1959 .rdev_size_change = super_90_rdev_size_change,
1960 .allow_new_offset = super_90_allow_new_offset,
1961 },
1962 [1] = {
1963 .name = "md-1",
1964 .owner = THIS_MODULE,
1965 .load_super = super_1_load,
1966 .validate_super = super_1_validate,
1967 .sync_super = super_1_sync,
1968 .rdev_size_change = super_1_rdev_size_change,
1969 .allow_new_offset = super_1_allow_new_offset,
1970 },
1971 };
1972
1973 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1974 {
1975 if (mddev->sync_super) {
1976 mddev->sync_super(mddev, rdev);
1977 return;
1978 }
1979
1980 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1981
1982 super_types[mddev->major_version].sync_super(mddev, rdev);
1983 }
1984
1985 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1986 {
1987 struct md_rdev *rdev, *rdev2;
1988
1989 rcu_read_lock();
1990 rdev_for_each_rcu(rdev, mddev1)
1991 rdev_for_each_rcu(rdev2, mddev2)
1992 if (rdev->bdev->bd_contains ==
1993 rdev2->bdev->bd_contains) {
1994 rcu_read_unlock();
1995 return 1;
1996 }
1997 rcu_read_unlock();
1998 return 0;
1999 }
2000
2001 static LIST_HEAD(pending_raid_disks);
2002
2003 /*
2004 * Try to register data integrity profile for an mddev
2005 *
2006 * This is called when an array is started and after a disk has been kicked
2007 * from the array. It only succeeds if all working and active component devices
2008 * are integrity capable with matching profiles.
2009 */
2010 int md_integrity_register(struct mddev *mddev)
2011 {
2012 struct md_rdev *rdev, *reference = NULL;
2013
2014 if (list_empty(&mddev->disks))
2015 return 0; /* nothing to do */
2016 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2017 return 0; /* shouldn't register, or already is */
2018 rdev_for_each(rdev, mddev) {
2019 /* skip spares and non-functional disks */
2020 if (test_bit(Faulty, &rdev->flags))
2021 continue;
2022 if (rdev->raid_disk < 0)
2023 continue;
2024 if (!reference) {
2025 /* Use the first rdev as the reference */
2026 reference = rdev;
2027 continue;
2028 }
2029 /* does this rdev's profile match the reference profile? */
2030 if (blk_integrity_compare(reference->bdev->bd_disk,
2031 rdev->bdev->bd_disk) < 0)
2032 return -EINVAL;
2033 }
2034 if (!reference || !bdev_get_integrity(reference->bdev))
2035 return 0;
2036 /*
2037 * All component devices are integrity capable and have matching
2038 * profiles, register the common profile for the md device.
2039 */
2040 if (blk_integrity_register(mddev->gendisk,
2041 bdev_get_integrity(reference->bdev)) != 0) {
2042 printk(KERN_ERR "md: failed to register integrity for %s\n",
2043 mdname(mddev));
2044 return -EINVAL;
2045 }
2046 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2047 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2048 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2049 mdname(mddev));
2050 return -EINVAL;
2051 }
2052 return 0;
2053 }
2054 EXPORT_SYMBOL(md_integrity_register);
2055
2056 /* Disable data integrity if non-capable/non-matching disk is being added */
2057 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2058 {
2059 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2060 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2061
2062 if (!bi_mddev) /* nothing to do */
2063 return;
2064 if (rdev->raid_disk < 0) /* skip spares */
2065 return;
2066 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2067 rdev->bdev->bd_disk) >= 0)
2068 return;
2069 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2070 blk_integrity_unregister(mddev->gendisk);
2071 }
2072 EXPORT_SYMBOL(md_integrity_add_rdev);
2073
2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2075 {
2076 char b[BDEVNAME_SIZE];
2077 struct kobject *ko;
2078 char *s;
2079 int err;
2080
2081 if (rdev->mddev) {
2082 MD_BUG();
2083 return -EINVAL;
2084 }
2085
2086 /* prevent duplicates */
2087 if (find_rdev(mddev, rdev->bdev->bd_dev))
2088 return -EEXIST;
2089
2090 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2091 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2092 rdev->sectors < mddev->dev_sectors)) {
2093 if (mddev->pers) {
2094 /* Cannot change size, so fail
2095 * If mddev->level <= 0, then we don't care
2096 * about aligning sizes (e.g. linear)
2097 */
2098 if (mddev->level > 0)
2099 return -ENOSPC;
2100 } else
2101 mddev->dev_sectors = rdev->sectors;
2102 }
2103
2104 /* Verify rdev->desc_nr is unique.
2105 * If it is -1, assign a free number, else
2106 * check number is not in use
2107 */
2108 if (rdev->desc_nr < 0) {
2109 int choice = 0;
2110 if (mddev->pers) choice = mddev->raid_disks;
2111 while (find_rdev_nr(mddev, choice))
2112 choice++;
2113 rdev->desc_nr = choice;
2114 } else {
2115 if (find_rdev_nr(mddev, rdev->desc_nr))
2116 return -EBUSY;
2117 }
2118 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2119 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2120 mdname(mddev), mddev->max_disks);
2121 return -EBUSY;
2122 }
2123 bdevname(rdev->bdev,b);
2124 while ( (s=strchr(b, '/')) != NULL)
2125 *s = '!';
2126
2127 rdev->mddev = mddev;
2128 printk(KERN_INFO "md: bind<%s>\n", b);
2129
2130 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2131 goto fail;
2132
2133 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2134 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2135 /* failure here is OK */;
2136 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2137
2138 list_add_rcu(&rdev->same_set, &mddev->disks);
2139 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2140
2141 /* May as well allow recovery to be retried once */
2142 mddev->recovery_disabled++;
2143
2144 return 0;
2145
2146 fail:
2147 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2148 b, mdname(mddev));
2149 return err;
2150 }
2151
2152 static void md_delayed_delete(struct work_struct *ws)
2153 {
2154 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2155 kobject_del(&rdev->kobj);
2156 kobject_put(&rdev->kobj);
2157 }
2158
2159 static void unbind_rdev_from_array(struct md_rdev * rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162 if (!rdev->mddev) {
2163 MD_BUG();
2164 return;
2165 }
2166 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2167 list_del_rcu(&rdev->same_set);
2168 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2169 rdev->mddev = NULL;
2170 sysfs_remove_link(&rdev->kobj, "block");
2171 sysfs_put(rdev->sysfs_state);
2172 rdev->sysfs_state = NULL;
2173 rdev->badblocks.count = 0;
2174 /* We need to delay this, otherwise we can deadlock when
2175 * writing to 'remove' to "dev/state". We also need
2176 * to delay it due to rcu usage.
2177 */
2178 synchronize_rcu();
2179 INIT_WORK(&rdev->del_work, md_delayed_delete);
2180 kobject_get(&rdev->kobj);
2181 queue_work(md_misc_wq, &rdev->del_work);
2182 }
2183
2184 /*
2185 * prevent the device from being mounted, repartitioned or
2186 * otherwise reused by a RAID array (or any other kernel
2187 * subsystem), by bd_claiming the device.
2188 */
2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2190 {
2191 int err = 0;
2192 struct block_device *bdev;
2193 char b[BDEVNAME_SIZE];
2194
2195 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2196 shared ? (struct md_rdev *)lock_rdev : rdev);
2197 if (IS_ERR(bdev)) {
2198 printk(KERN_ERR "md: could not open %s.\n",
2199 __bdevname(dev, b));
2200 return PTR_ERR(bdev);
2201 }
2202 rdev->bdev = bdev;
2203 return err;
2204 }
2205
2206 static void unlock_rdev(struct md_rdev *rdev)
2207 {
2208 struct block_device *bdev = rdev->bdev;
2209 rdev->bdev = NULL;
2210 if (!bdev)
2211 MD_BUG();
2212 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2213 }
2214
2215 void md_autodetect_dev(dev_t dev);
2216
2217 static void export_rdev(struct md_rdev * rdev)
2218 {
2219 char b[BDEVNAME_SIZE];
2220 printk(KERN_INFO "md: export_rdev(%s)\n",
2221 bdevname(rdev->bdev,b));
2222 if (rdev->mddev)
2223 MD_BUG();
2224 md_rdev_clear(rdev);
2225 #ifndef MODULE
2226 if (test_bit(AutoDetected, &rdev->flags))
2227 md_autodetect_dev(rdev->bdev->bd_dev);
2228 #endif
2229 unlock_rdev(rdev);
2230 kobject_put(&rdev->kobj);
2231 }
2232
2233 static void kick_rdev_from_array(struct md_rdev * rdev)
2234 {
2235 unbind_rdev_from_array(rdev);
2236 export_rdev(rdev);
2237 }
2238
2239 static void export_array(struct mddev *mddev)
2240 {
2241 struct md_rdev *rdev, *tmp;
2242
2243 rdev_for_each_safe(rdev, tmp, mddev) {
2244 if (!rdev->mddev) {
2245 MD_BUG();
2246 continue;
2247 }
2248 kick_rdev_from_array(rdev);
2249 }
2250 if (!list_empty(&mddev->disks))
2251 MD_BUG();
2252 mddev->raid_disks = 0;
2253 mddev->major_version = 0;
2254 }
2255
2256 static void print_desc(mdp_disk_t *desc)
2257 {
2258 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2259 desc->major,desc->minor,desc->raid_disk,desc->state);
2260 }
2261
2262 static void print_sb_90(mdp_super_t *sb)
2263 {
2264 int i;
2265
2266 printk(KERN_INFO
2267 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2268 sb->major_version, sb->minor_version, sb->patch_version,
2269 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2270 sb->ctime);
2271 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2272 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2273 sb->md_minor, sb->layout, sb->chunk_size);
2274 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2275 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2276 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2277 sb->failed_disks, sb->spare_disks,
2278 sb->sb_csum, (unsigned long)sb->events_lo);
2279
2280 printk(KERN_INFO);
2281 for (i = 0; i < MD_SB_DISKS; i++) {
2282 mdp_disk_t *desc;
2283
2284 desc = sb->disks + i;
2285 if (desc->number || desc->major || desc->minor ||
2286 desc->raid_disk || (desc->state && (desc->state != 4))) {
2287 printk(" D %2d: ", i);
2288 print_desc(desc);
2289 }
2290 }
2291 printk(KERN_INFO "md: THIS: ");
2292 print_desc(&sb->this_disk);
2293 }
2294
2295 static void print_sb_1(struct mdp_superblock_1 *sb)
2296 {
2297 __u8 *uuid;
2298
2299 uuid = sb->set_uuid;
2300 printk(KERN_INFO
2301 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2302 "md: Name: \"%s\" CT:%llu\n",
2303 le32_to_cpu(sb->major_version),
2304 le32_to_cpu(sb->feature_map),
2305 uuid,
2306 sb->set_name,
2307 (unsigned long long)le64_to_cpu(sb->ctime)
2308 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2309
2310 uuid = sb->device_uuid;
2311 printk(KERN_INFO
2312 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2313 " RO:%llu\n"
2314 "md: Dev:%08x UUID: %pU\n"
2315 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2316 "md: (MaxDev:%u) \n",
2317 le32_to_cpu(sb->level),
2318 (unsigned long long)le64_to_cpu(sb->size),
2319 le32_to_cpu(sb->raid_disks),
2320 le32_to_cpu(sb->layout),
2321 le32_to_cpu(sb->chunksize),
2322 (unsigned long long)le64_to_cpu(sb->data_offset),
2323 (unsigned long long)le64_to_cpu(sb->data_size),
2324 (unsigned long long)le64_to_cpu(sb->super_offset),
2325 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2326 le32_to_cpu(sb->dev_number),
2327 uuid,
2328 sb->devflags,
2329 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2330 (unsigned long long)le64_to_cpu(sb->events),
2331 (unsigned long long)le64_to_cpu(sb->resync_offset),
2332 le32_to_cpu(sb->sb_csum),
2333 le32_to_cpu(sb->max_dev)
2334 );
2335 }
2336
2337 static void print_rdev(struct md_rdev *rdev, int major_version)
2338 {
2339 char b[BDEVNAME_SIZE];
2340 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2341 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2342 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2343 rdev->desc_nr);
2344 if (rdev->sb_loaded) {
2345 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2346 switch (major_version) {
2347 case 0:
2348 print_sb_90(page_address(rdev->sb_page));
2349 break;
2350 case 1:
2351 print_sb_1(page_address(rdev->sb_page));
2352 break;
2353 }
2354 } else
2355 printk(KERN_INFO "md: no rdev superblock!\n");
2356 }
2357
2358 static void md_print_devices(void)
2359 {
2360 struct list_head *tmp;
2361 struct md_rdev *rdev;
2362 struct mddev *mddev;
2363 char b[BDEVNAME_SIZE];
2364
2365 printk("\n");
2366 printk("md: **********************************\n");
2367 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2368 printk("md: **********************************\n");
2369 for_each_mddev(mddev, tmp) {
2370
2371 if (mddev->bitmap)
2372 bitmap_print_sb(mddev->bitmap);
2373 else
2374 printk("%s: ", mdname(mddev));
2375 rdev_for_each(rdev, mddev)
2376 printk("<%s>", bdevname(rdev->bdev,b));
2377 printk("\n");
2378
2379 rdev_for_each(rdev, mddev)
2380 print_rdev(rdev, mddev->major_version);
2381 }
2382 printk("md: **********************************\n");
2383 printk("\n");
2384 }
2385
2386
2387 static void sync_sbs(struct mddev * mddev, int nospares)
2388 {
2389 /* Update each superblock (in-memory image), but
2390 * if we are allowed to, skip spares which already
2391 * have the right event counter, or have one earlier
2392 * (which would mean they aren't being marked as dirty
2393 * with the rest of the array)
2394 */
2395 struct md_rdev *rdev;
2396 rdev_for_each(rdev, mddev) {
2397 if (rdev->sb_events == mddev->events ||
2398 (nospares &&
2399 rdev->raid_disk < 0 &&
2400 rdev->sb_events+1 == mddev->events)) {
2401 /* Don't update this superblock */
2402 rdev->sb_loaded = 2;
2403 } else {
2404 sync_super(mddev, rdev);
2405 rdev->sb_loaded = 1;
2406 }
2407 }
2408 }
2409
2410 static void md_update_sb(struct mddev * mddev, int force_change)
2411 {
2412 struct md_rdev *rdev;
2413 int sync_req;
2414 int nospares = 0;
2415 int any_badblocks_changed = 0;
2416
2417 repeat:
2418 /* First make sure individual recovery_offsets are correct */
2419 rdev_for_each(rdev, mddev) {
2420 if (rdev->raid_disk >= 0 &&
2421 mddev->delta_disks >= 0 &&
2422 !test_bit(In_sync, &rdev->flags) &&
2423 mddev->curr_resync_completed > rdev->recovery_offset)
2424 rdev->recovery_offset = mddev->curr_resync_completed;
2425
2426 }
2427 if (!mddev->persistent) {
2428 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2429 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2430 if (!mddev->external) {
2431 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2432 rdev_for_each(rdev, mddev) {
2433 if (rdev->badblocks.changed) {
2434 rdev->badblocks.changed = 0;
2435 md_ack_all_badblocks(&rdev->badblocks);
2436 md_error(mddev, rdev);
2437 }
2438 clear_bit(Blocked, &rdev->flags);
2439 clear_bit(BlockedBadBlocks, &rdev->flags);
2440 wake_up(&rdev->blocked_wait);
2441 }
2442 }
2443 wake_up(&mddev->sb_wait);
2444 return;
2445 }
2446
2447 spin_lock_irq(&mddev->write_lock);
2448
2449 mddev->utime = get_seconds();
2450
2451 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2452 force_change = 1;
2453 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2454 /* just a clean<-> dirty transition, possibly leave spares alone,
2455 * though if events isn't the right even/odd, we will have to do
2456 * spares after all
2457 */
2458 nospares = 1;
2459 if (force_change)
2460 nospares = 0;
2461 if (mddev->degraded)
2462 /* If the array is degraded, then skipping spares is both
2463 * dangerous and fairly pointless.
2464 * Dangerous because a device that was removed from the array
2465 * might have a event_count that still looks up-to-date,
2466 * so it can be re-added without a resync.
2467 * Pointless because if there are any spares to skip,
2468 * then a recovery will happen and soon that array won't
2469 * be degraded any more and the spare can go back to sleep then.
2470 */
2471 nospares = 0;
2472
2473 sync_req = mddev->in_sync;
2474
2475 /* If this is just a dirty<->clean transition, and the array is clean
2476 * and 'events' is odd, we can roll back to the previous clean state */
2477 if (nospares
2478 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2479 && mddev->can_decrease_events
2480 && mddev->events != 1) {
2481 mddev->events--;
2482 mddev->can_decrease_events = 0;
2483 } else {
2484 /* otherwise we have to go forward and ... */
2485 mddev->events ++;
2486 mddev->can_decrease_events = nospares;
2487 }
2488
2489 if (!mddev->events) {
2490 /*
2491 * oops, this 64-bit counter should never wrap.
2492 * Either we are in around ~1 trillion A.C., assuming
2493 * 1 reboot per second, or we have a bug:
2494 */
2495 MD_BUG();
2496 mddev->events --;
2497 }
2498
2499 rdev_for_each(rdev, mddev) {
2500 if (rdev->badblocks.changed)
2501 any_badblocks_changed++;
2502 if (test_bit(Faulty, &rdev->flags))
2503 set_bit(FaultRecorded, &rdev->flags);
2504 }
2505
2506 sync_sbs(mddev, nospares);
2507 spin_unlock_irq(&mddev->write_lock);
2508
2509 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2510 mdname(mddev), mddev->in_sync);
2511
2512 bitmap_update_sb(mddev->bitmap);
2513 rdev_for_each(rdev, mddev) {
2514 char b[BDEVNAME_SIZE];
2515
2516 if (rdev->sb_loaded != 1)
2517 continue; /* no noise on spare devices */
2518
2519 if (!test_bit(Faulty, &rdev->flags) &&
2520 rdev->saved_raid_disk == -1) {
2521 md_super_write(mddev,rdev,
2522 rdev->sb_start, rdev->sb_size,
2523 rdev->sb_page);
2524 pr_debug("md: (write) %s's sb offset: %llu\n",
2525 bdevname(rdev->bdev, b),
2526 (unsigned long long)rdev->sb_start);
2527 rdev->sb_events = mddev->events;
2528 if (rdev->badblocks.size) {
2529 md_super_write(mddev, rdev,
2530 rdev->badblocks.sector,
2531 rdev->badblocks.size << 9,
2532 rdev->bb_page);
2533 rdev->badblocks.size = 0;
2534 }
2535
2536 } else if (test_bit(Faulty, &rdev->flags))
2537 pr_debug("md: %s (skipping faulty)\n",
2538 bdevname(rdev->bdev, b));
2539 else
2540 pr_debug("(skipping incremental s/r ");
2541
2542 if (mddev->level == LEVEL_MULTIPATH)
2543 /* only need to write one superblock... */
2544 break;
2545 }
2546 md_super_wait(mddev);
2547 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2548
2549 spin_lock_irq(&mddev->write_lock);
2550 if (mddev->in_sync != sync_req ||
2551 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2552 /* have to write it out again */
2553 spin_unlock_irq(&mddev->write_lock);
2554 goto repeat;
2555 }
2556 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2557 spin_unlock_irq(&mddev->write_lock);
2558 wake_up(&mddev->sb_wait);
2559 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2560 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2561
2562 rdev_for_each(rdev, mddev) {
2563 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2564 clear_bit(Blocked, &rdev->flags);
2565
2566 if (any_badblocks_changed)
2567 md_ack_all_badblocks(&rdev->badblocks);
2568 clear_bit(BlockedBadBlocks, &rdev->flags);
2569 wake_up(&rdev->blocked_wait);
2570 }
2571 }
2572
2573 /* words written to sysfs files may, or may not, be \n terminated.
2574 * We want to accept with case. For this we use cmd_match.
2575 */
2576 static int cmd_match(const char *cmd, const char *str)
2577 {
2578 /* See if cmd, written into a sysfs file, matches
2579 * str. They must either be the same, or cmd can
2580 * have a trailing newline
2581 */
2582 while (*cmd && *str && *cmd == *str) {
2583 cmd++;
2584 str++;
2585 }
2586 if (*cmd == '\n')
2587 cmd++;
2588 if (*str || *cmd)
2589 return 0;
2590 return 1;
2591 }
2592
2593 struct rdev_sysfs_entry {
2594 struct attribute attr;
2595 ssize_t (*show)(struct md_rdev *, char *);
2596 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2597 };
2598
2599 static ssize_t
2600 state_show(struct md_rdev *rdev, char *page)
2601 {
2602 char *sep = "";
2603 size_t len = 0;
2604
2605 if (test_bit(Faulty, &rdev->flags) ||
2606 rdev->badblocks.unacked_exist) {
2607 len+= sprintf(page+len, "%sfaulty",sep);
2608 sep = ",";
2609 }
2610 if (test_bit(In_sync, &rdev->flags)) {
2611 len += sprintf(page+len, "%sin_sync",sep);
2612 sep = ",";
2613 }
2614 if (test_bit(WriteMostly, &rdev->flags)) {
2615 len += sprintf(page+len, "%swrite_mostly",sep);
2616 sep = ",";
2617 }
2618 if (test_bit(Blocked, &rdev->flags) ||
2619 (rdev->badblocks.unacked_exist
2620 && !test_bit(Faulty, &rdev->flags))) {
2621 len += sprintf(page+len, "%sblocked", sep);
2622 sep = ",";
2623 }
2624 if (!test_bit(Faulty, &rdev->flags) &&
2625 !test_bit(In_sync, &rdev->flags)) {
2626 len += sprintf(page+len, "%sspare", sep);
2627 sep = ",";
2628 }
2629 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2630 len += sprintf(page+len, "%swrite_error", sep);
2631 sep = ",";
2632 }
2633 if (test_bit(WantReplacement, &rdev->flags)) {
2634 len += sprintf(page+len, "%swant_replacement", sep);
2635 sep = ",";
2636 }
2637 if (test_bit(Replacement, &rdev->flags)) {
2638 len += sprintf(page+len, "%sreplacement", sep);
2639 sep = ",";
2640 }
2641
2642 return len+sprintf(page+len, "\n");
2643 }
2644
2645 static ssize_t
2646 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2647 {
2648 /* can write
2649 * faulty - simulates an error
2650 * remove - disconnects the device
2651 * writemostly - sets write_mostly
2652 * -writemostly - clears write_mostly
2653 * blocked - sets the Blocked flags
2654 * -blocked - clears the Blocked and possibly simulates an error
2655 * insync - sets Insync providing device isn't active
2656 * write_error - sets WriteErrorSeen
2657 * -write_error - clears WriteErrorSeen
2658 */
2659 int err = -EINVAL;
2660 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2661 md_error(rdev->mddev, rdev);
2662 if (test_bit(Faulty, &rdev->flags))
2663 err = 0;
2664 else
2665 err = -EBUSY;
2666 } else if (cmd_match(buf, "remove")) {
2667 if (rdev->raid_disk >= 0)
2668 err = -EBUSY;
2669 else {
2670 struct mddev *mddev = rdev->mddev;
2671 kick_rdev_from_array(rdev);
2672 if (mddev->pers)
2673 md_update_sb(mddev, 1);
2674 md_new_event(mddev);
2675 err = 0;
2676 }
2677 } else if (cmd_match(buf, "writemostly")) {
2678 set_bit(WriteMostly, &rdev->flags);
2679 err = 0;
2680 } else if (cmd_match(buf, "-writemostly")) {
2681 clear_bit(WriteMostly, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "blocked")) {
2684 set_bit(Blocked, &rdev->flags);
2685 err = 0;
2686 } else if (cmd_match(buf, "-blocked")) {
2687 if (!test_bit(Faulty, &rdev->flags) &&
2688 rdev->badblocks.unacked_exist) {
2689 /* metadata handler doesn't understand badblocks,
2690 * so we need to fail the device
2691 */
2692 md_error(rdev->mddev, rdev);
2693 }
2694 clear_bit(Blocked, &rdev->flags);
2695 clear_bit(BlockedBadBlocks, &rdev->flags);
2696 wake_up(&rdev->blocked_wait);
2697 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2698 md_wakeup_thread(rdev->mddev->thread);
2699
2700 err = 0;
2701 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2702 set_bit(In_sync, &rdev->flags);
2703 err = 0;
2704 } else if (cmd_match(buf, "write_error")) {
2705 set_bit(WriteErrorSeen, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "-write_error")) {
2708 clear_bit(WriteErrorSeen, &rdev->flags);
2709 err = 0;
2710 } else if (cmd_match(buf, "want_replacement")) {
2711 /* Any non-spare device that is not a replacement can
2712 * become want_replacement at any time, but we then need to
2713 * check if recovery is needed.
2714 */
2715 if (rdev->raid_disk >= 0 &&
2716 !test_bit(Replacement, &rdev->flags))
2717 set_bit(WantReplacement, &rdev->flags);
2718 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2719 md_wakeup_thread(rdev->mddev->thread);
2720 err = 0;
2721 } else if (cmd_match(buf, "-want_replacement")) {
2722 /* Clearing 'want_replacement' is always allowed.
2723 * Once replacements starts it is too late though.
2724 */
2725 err = 0;
2726 clear_bit(WantReplacement, &rdev->flags);
2727 } else if (cmd_match(buf, "replacement")) {
2728 /* Can only set a device as a replacement when array has not
2729 * yet been started. Once running, replacement is automatic
2730 * from spares, or by assigning 'slot'.
2731 */
2732 if (rdev->mddev->pers)
2733 err = -EBUSY;
2734 else {
2735 set_bit(Replacement, &rdev->flags);
2736 err = 0;
2737 }
2738 } else if (cmd_match(buf, "-replacement")) {
2739 /* Similarly, can only clear Replacement before start */
2740 if (rdev->mddev->pers)
2741 err = -EBUSY;
2742 else {
2743 clear_bit(Replacement, &rdev->flags);
2744 err = 0;
2745 }
2746 }
2747 if (!err)
2748 sysfs_notify_dirent_safe(rdev->sysfs_state);
2749 return err ? err : len;
2750 }
2751 static struct rdev_sysfs_entry rdev_state =
2752 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2753
2754 static ssize_t
2755 errors_show(struct md_rdev *rdev, char *page)
2756 {
2757 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2758 }
2759
2760 static ssize_t
2761 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2762 {
2763 char *e;
2764 unsigned long n = simple_strtoul(buf, &e, 10);
2765 if (*buf && (*e == 0 || *e == '\n')) {
2766 atomic_set(&rdev->corrected_errors, n);
2767 return len;
2768 }
2769 return -EINVAL;
2770 }
2771 static struct rdev_sysfs_entry rdev_errors =
2772 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2773
2774 static ssize_t
2775 slot_show(struct md_rdev *rdev, char *page)
2776 {
2777 if (rdev->raid_disk < 0)
2778 return sprintf(page, "none\n");
2779 else
2780 return sprintf(page, "%d\n", rdev->raid_disk);
2781 }
2782
2783 static ssize_t
2784 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2785 {
2786 char *e;
2787 int err;
2788 int slot = simple_strtoul(buf, &e, 10);
2789 if (strncmp(buf, "none", 4)==0)
2790 slot = -1;
2791 else if (e==buf || (*e && *e!= '\n'))
2792 return -EINVAL;
2793 if (rdev->mddev->pers && slot == -1) {
2794 /* Setting 'slot' on an active array requires also
2795 * updating the 'rd%d' link, and communicating
2796 * with the personality with ->hot_*_disk.
2797 * For now we only support removing
2798 * failed/spare devices. This normally happens automatically,
2799 * but not when the metadata is externally managed.
2800 */
2801 if (rdev->raid_disk == -1)
2802 return -EEXIST;
2803 /* personality does all needed checks */
2804 if (rdev->mddev->pers->hot_remove_disk == NULL)
2805 return -EINVAL;
2806 err = rdev->mddev->pers->
2807 hot_remove_disk(rdev->mddev, rdev);
2808 if (err)
2809 return err;
2810 sysfs_unlink_rdev(rdev->mddev, rdev);
2811 rdev->raid_disk = -1;
2812 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2813 md_wakeup_thread(rdev->mddev->thread);
2814 } else if (rdev->mddev->pers) {
2815 /* Activating a spare .. or possibly reactivating
2816 * if we ever get bitmaps working here.
2817 */
2818
2819 if (rdev->raid_disk != -1)
2820 return -EBUSY;
2821
2822 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2823 return -EBUSY;
2824
2825 if (rdev->mddev->pers->hot_add_disk == NULL)
2826 return -EINVAL;
2827
2828 if (slot >= rdev->mddev->raid_disks &&
2829 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2830 return -ENOSPC;
2831
2832 rdev->raid_disk = slot;
2833 if (test_bit(In_sync, &rdev->flags))
2834 rdev->saved_raid_disk = slot;
2835 else
2836 rdev->saved_raid_disk = -1;
2837 clear_bit(In_sync, &rdev->flags);
2838 err = rdev->mddev->pers->
2839 hot_add_disk(rdev->mddev, rdev);
2840 if (err) {
2841 rdev->raid_disk = -1;
2842 return err;
2843 } else
2844 sysfs_notify_dirent_safe(rdev->sysfs_state);
2845 if (sysfs_link_rdev(rdev->mddev, rdev))
2846 /* failure here is OK */;
2847 /* don't wakeup anyone, leave that to userspace. */
2848 } else {
2849 if (slot >= rdev->mddev->raid_disks &&
2850 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2851 return -ENOSPC;
2852 rdev->raid_disk = slot;
2853 /* assume it is working */
2854 clear_bit(Faulty, &rdev->flags);
2855 clear_bit(WriteMostly, &rdev->flags);
2856 set_bit(In_sync, &rdev->flags);
2857 sysfs_notify_dirent_safe(rdev->sysfs_state);
2858 }
2859 return len;
2860 }
2861
2862
2863 static struct rdev_sysfs_entry rdev_slot =
2864 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2865
2866 static ssize_t
2867 offset_show(struct md_rdev *rdev, char *page)
2868 {
2869 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2870 }
2871
2872 static ssize_t
2873 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2874 {
2875 unsigned long long offset;
2876 if (strict_strtoull(buf, 10, &offset) < 0)
2877 return -EINVAL;
2878 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2879 return -EBUSY;
2880 if (rdev->sectors && rdev->mddev->external)
2881 /* Must set offset before size, so overlap checks
2882 * can be sane */
2883 return -EBUSY;
2884 rdev->data_offset = offset;
2885 rdev->new_data_offset = offset;
2886 return len;
2887 }
2888
2889 static struct rdev_sysfs_entry rdev_offset =
2890 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2891
2892 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2893 {
2894 return sprintf(page, "%llu\n",
2895 (unsigned long long)rdev->new_data_offset);
2896 }
2897
2898 static ssize_t new_offset_store(struct md_rdev *rdev,
2899 const char *buf, size_t len)
2900 {
2901 unsigned long long new_offset;
2902 struct mddev *mddev = rdev->mddev;
2903
2904 if (strict_strtoull(buf, 10, &new_offset) < 0)
2905 return -EINVAL;
2906
2907 if (mddev->sync_thread)
2908 return -EBUSY;
2909 if (new_offset == rdev->data_offset)
2910 /* reset is always permitted */
2911 ;
2912 else if (new_offset > rdev->data_offset) {
2913 /* must not push array size beyond rdev_sectors */
2914 if (new_offset - rdev->data_offset
2915 + mddev->dev_sectors > rdev->sectors)
2916 return -E2BIG;
2917 }
2918 /* Metadata worries about other space details. */
2919
2920 /* decreasing the offset is inconsistent with a backwards
2921 * reshape.
2922 */
2923 if (new_offset < rdev->data_offset &&
2924 mddev->reshape_backwards)
2925 return -EINVAL;
2926 /* Increasing offset is inconsistent with forwards
2927 * reshape. reshape_direction should be set to
2928 * 'backwards' first.
2929 */
2930 if (new_offset > rdev->data_offset &&
2931 !mddev->reshape_backwards)
2932 return -EINVAL;
2933
2934 if (mddev->pers && mddev->persistent &&
2935 !super_types[mddev->major_version]
2936 .allow_new_offset(rdev, new_offset))
2937 return -E2BIG;
2938 rdev->new_data_offset = new_offset;
2939 if (new_offset > rdev->data_offset)
2940 mddev->reshape_backwards = 1;
2941 else if (new_offset < rdev->data_offset)
2942 mddev->reshape_backwards = 0;
2943
2944 return len;
2945 }
2946 static struct rdev_sysfs_entry rdev_new_offset =
2947 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2948
2949 static ssize_t
2950 rdev_size_show(struct md_rdev *rdev, char *page)
2951 {
2952 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2953 }
2954
2955 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2956 {
2957 /* check if two start/length pairs overlap */
2958 if (s1+l1 <= s2)
2959 return 0;
2960 if (s2+l2 <= s1)
2961 return 0;
2962 return 1;
2963 }
2964
2965 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2966 {
2967 unsigned long long blocks;
2968 sector_t new;
2969
2970 if (strict_strtoull(buf, 10, &blocks) < 0)
2971 return -EINVAL;
2972
2973 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2974 return -EINVAL; /* sector conversion overflow */
2975
2976 new = blocks * 2;
2977 if (new != blocks * 2)
2978 return -EINVAL; /* unsigned long long to sector_t overflow */
2979
2980 *sectors = new;
2981 return 0;
2982 }
2983
2984 static ssize_t
2985 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2986 {
2987 struct mddev *my_mddev = rdev->mddev;
2988 sector_t oldsectors = rdev->sectors;
2989 sector_t sectors;
2990
2991 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2992 return -EINVAL;
2993 if (rdev->data_offset != rdev->new_data_offset)
2994 return -EINVAL; /* too confusing */
2995 if (my_mddev->pers && rdev->raid_disk >= 0) {
2996 if (my_mddev->persistent) {
2997 sectors = super_types[my_mddev->major_version].
2998 rdev_size_change(rdev, sectors);
2999 if (!sectors)
3000 return -EBUSY;
3001 } else if (!sectors)
3002 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3003 rdev->data_offset;
3004 }
3005 if (sectors < my_mddev->dev_sectors)
3006 return -EINVAL; /* component must fit device */
3007
3008 rdev->sectors = sectors;
3009 if (sectors > oldsectors && my_mddev->external) {
3010 /* need to check that all other rdevs with the same ->bdev
3011 * do not overlap. We need to unlock the mddev to avoid
3012 * a deadlock. We have already changed rdev->sectors, and if
3013 * we have to change it back, we will have the lock again.
3014 */
3015 struct mddev *mddev;
3016 int overlap = 0;
3017 struct list_head *tmp;
3018
3019 mddev_unlock(my_mddev);
3020 for_each_mddev(mddev, tmp) {
3021 struct md_rdev *rdev2;
3022
3023 mddev_lock(mddev);
3024 rdev_for_each(rdev2, mddev)
3025 if (rdev->bdev == rdev2->bdev &&
3026 rdev != rdev2 &&
3027 overlaps(rdev->data_offset, rdev->sectors,
3028 rdev2->data_offset,
3029 rdev2->sectors)) {
3030 overlap = 1;
3031 break;
3032 }
3033 mddev_unlock(mddev);
3034 if (overlap) {
3035 mddev_put(mddev);
3036 break;
3037 }
3038 }
3039 mddev_lock(my_mddev);
3040 if (overlap) {
3041 /* Someone else could have slipped in a size
3042 * change here, but doing so is just silly.
3043 * We put oldsectors back because we *know* it is
3044 * safe, and trust userspace not to race with
3045 * itself
3046 */
3047 rdev->sectors = oldsectors;
3048 return -EBUSY;
3049 }
3050 }
3051 return len;
3052 }
3053
3054 static struct rdev_sysfs_entry rdev_size =
3055 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3056
3057
3058 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3059 {
3060 unsigned long long recovery_start = rdev->recovery_offset;
3061
3062 if (test_bit(In_sync, &rdev->flags) ||
3063 recovery_start == MaxSector)
3064 return sprintf(page, "none\n");
3065
3066 return sprintf(page, "%llu\n", recovery_start);
3067 }
3068
3069 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3070 {
3071 unsigned long long recovery_start;
3072
3073 if (cmd_match(buf, "none"))
3074 recovery_start = MaxSector;
3075 else if (strict_strtoull(buf, 10, &recovery_start))
3076 return -EINVAL;
3077
3078 if (rdev->mddev->pers &&
3079 rdev->raid_disk >= 0)
3080 return -EBUSY;
3081
3082 rdev->recovery_offset = recovery_start;
3083 if (recovery_start == MaxSector)
3084 set_bit(In_sync, &rdev->flags);
3085 else
3086 clear_bit(In_sync, &rdev->flags);
3087 return len;
3088 }
3089
3090 static struct rdev_sysfs_entry rdev_recovery_start =
3091 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3092
3093
3094 static ssize_t
3095 badblocks_show(struct badblocks *bb, char *page, int unack);
3096 static ssize_t
3097 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3098
3099 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3100 {
3101 return badblocks_show(&rdev->badblocks, page, 0);
3102 }
3103 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3104 {
3105 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3106 /* Maybe that ack was all we needed */
3107 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3108 wake_up(&rdev->blocked_wait);
3109 return rv;
3110 }
3111 static struct rdev_sysfs_entry rdev_bad_blocks =
3112 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3113
3114
3115 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3116 {
3117 return badblocks_show(&rdev->badblocks, page, 1);
3118 }
3119 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3120 {
3121 return badblocks_store(&rdev->badblocks, page, len, 1);
3122 }
3123 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3124 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3125
3126 static struct attribute *rdev_default_attrs[] = {
3127 &rdev_state.attr,
3128 &rdev_errors.attr,
3129 &rdev_slot.attr,
3130 &rdev_offset.attr,
3131 &rdev_new_offset.attr,
3132 &rdev_size.attr,
3133 &rdev_recovery_start.attr,
3134 &rdev_bad_blocks.attr,
3135 &rdev_unack_bad_blocks.attr,
3136 NULL,
3137 };
3138 static ssize_t
3139 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3140 {
3141 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3142 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3143 struct mddev *mddev = rdev->mddev;
3144 ssize_t rv;
3145
3146 if (!entry->show)
3147 return -EIO;
3148
3149 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3150 if (!rv) {
3151 if (rdev->mddev == NULL)
3152 rv = -EBUSY;
3153 else
3154 rv = entry->show(rdev, page);
3155 mddev_unlock(mddev);
3156 }
3157 return rv;
3158 }
3159
3160 static ssize_t
3161 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3162 const char *page, size_t length)
3163 {
3164 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3165 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3166 ssize_t rv;
3167 struct mddev *mddev = rdev->mddev;
3168
3169 if (!entry->store)
3170 return -EIO;
3171 if (!capable(CAP_SYS_ADMIN))
3172 return -EACCES;
3173 rv = mddev ? mddev_lock(mddev): -EBUSY;
3174 if (!rv) {
3175 if (rdev->mddev == NULL)
3176 rv = -EBUSY;
3177 else
3178 rv = entry->store(rdev, page, length);
3179 mddev_unlock(mddev);
3180 }
3181 return rv;
3182 }
3183
3184 static void rdev_free(struct kobject *ko)
3185 {
3186 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3187 kfree(rdev);
3188 }
3189 static const struct sysfs_ops rdev_sysfs_ops = {
3190 .show = rdev_attr_show,
3191 .store = rdev_attr_store,
3192 };
3193 static struct kobj_type rdev_ktype = {
3194 .release = rdev_free,
3195 .sysfs_ops = &rdev_sysfs_ops,
3196 .default_attrs = rdev_default_attrs,
3197 };
3198
3199 int md_rdev_init(struct md_rdev *rdev)
3200 {
3201 rdev->desc_nr = -1;
3202 rdev->saved_raid_disk = -1;
3203 rdev->raid_disk = -1;
3204 rdev->flags = 0;
3205 rdev->data_offset = 0;
3206 rdev->new_data_offset = 0;
3207 rdev->sb_events = 0;
3208 rdev->last_read_error.tv_sec = 0;
3209 rdev->last_read_error.tv_nsec = 0;
3210 rdev->sb_loaded = 0;
3211 rdev->bb_page = NULL;
3212 atomic_set(&rdev->nr_pending, 0);
3213 atomic_set(&rdev->read_errors, 0);
3214 atomic_set(&rdev->corrected_errors, 0);
3215
3216 INIT_LIST_HEAD(&rdev->same_set);
3217 init_waitqueue_head(&rdev->blocked_wait);
3218
3219 /* Add space to store bad block list.
3220 * This reserves the space even on arrays where it cannot
3221 * be used - I wonder if that matters
3222 */
3223 rdev->badblocks.count = 0;
3224 rdev->badblocks.shift = 0;
3225 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3226 seqlock_init(&rdev->badblocks.lock);
3227 if (rdev->badblocks.page == NULL)
3228 return -ENOMEM;
3229
3230 return 0;
3231 }
3232 EXPORT_SYMBOL_GPL(md_rdev_init);
3233 /*
3234 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3235 *
3236 * mark the device faulty if:
3237 *
3238 * - the device is nonexistent (zero size)
3239 * - the device has no valid superblock
3240 *
3241 * a faulty rdev _never_ has rdev->sb set.
3242 */
3243 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3244 {
3245 char b[BDEVNAME_SIZE];
3246 int err;
3247 struct md_rdev *rdev;
3248 sector_t size;
3249
3250 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3251 if (!rdev) {
3252 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3253 return ERR_PTR(-ENOMEM);
3254 }
3255
3256 err = md_rdev_init(rdev);
3257 if (err)
3258 goto abort_free;
3259 err = alloc_disk_sb(rdev);
3260 if (err)
3261 goto abort_free;
3262
3263 err = lock_rdev(rdev, newdev, super_format == -2);
3264 if (err)
3265 goto abort_free;
3266
3267 kobject_init(&rdev->kobj, &rdev_ktype);
3268
3269 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3270 if (!size) {
3271 printk(KERN_WARNING
3272 "md: %s has zero or unknown size, marking faulty!\n",
3273 bdevname(rdev->bdev,b));
3274 err = -EINVAL;
3275 goto abort_free;
3276 }
3277
3278 if (super_format >= 0) {
3279 err = super_types[super_format].
3280 load_super(rdev, NULL, super_minor);
3281 if (err == -EINVAL) {
3282 printk(KERN_WARNING
3283 "md: %s does not have a valid v%d.%d "
3284 "superblock, not importing!\n",
3285 bdevname(rdev->bdev,b),
3286 super_format, super_minor);
3287 goto abort_free;
3288 }
3289 if (err < 0) {
3290 printk(KERN_WARNING
3291 "md: could not read %s's sb, not importing!\n",
3292 bdevname(rdev->bdev,b));
3293 goto abort_free;
3294 }
3295 }
3296 if (super_format == -1)
3297 /* hot-add for 0.90, or non-persistent: so no badblocks */
3298 rdev->badblocks.shift = -1;
3299
3300 return rdev;
3301
3302 abort_free:
3303 if (rdev->bdev)
3304 unlock_rdev(rdev);
3305 md_rdev_clear(rdev);
3306 kfree(rdev);
3307 return ERR_PTR(err);
3308 }
3309
3310 /*
3311 * Check a full RAID array for plausibility
3312 */
3313
3314
3315 static void analyze_sbs(struct mddev * mddev)
3316 {
3317 int i;
3318 struct md_rdev *rdev, *freshest, *tmp;
3319 char b[BDEVNAME_SIZE];
3320
3321 freshest = NULL;
3322 rdev_for_each_safe(rdev, tmp, mddev)
3323 switch (super_types[mddev->major_version].
3324 load_super(rdev, freshest, mddev->minor_version)) {
3325 case 1:
3326 freshest = rdev;
3327 break;
3328 case 0:
3329 break;
3330 default:
3331 printk( KERN_ERR \
3332 "md: fatal superblock inconsistency in %s"
3333 " -- removing from array\n",
3334 bdevname(rdev->bdev,b));
3335 kick_rdev_from_array(rdev);
3336 }
3337
3338
3339 super_types[mddev->major_version].
3340 validate_super(mddev, freshest);
3341
3342 i = 0;
3343 rdev_for_each_safe(rdev, tmp, mddev) {
3344 if (mddev->max_disks &&
3345 (rdev->desc_nr >= mddev->max_disks ||
3346 i > mddev->max_disks)) {
3347 printk(KERN_WARNING
3348 "md: %s: %s: only %d devices permitted\n",
3349 mdname(mddev), bdevname(rdev->bdev, b),
3350 mddev->max_disks);
3351 kick_rdev_from_array(rdev);
3352 continue;
3353 }
3354 if (rdev != freshest)
3355 if (super_types[mddev->major_version].
3356 validate_super(mddev, rdev)) {
3357 printk(KERN_WARNING "md: kicking non-fresh %s"
3358 " from array!\n",
3359 bdevname(rdev->bdev,b));
3360 kick_rdev_from_array(rdev);
3361 continue;
3362 }
3363 if (mddev->level == LEVEL_MULTIPATH) {
3364 rdev->desc_nr = i++;
3365 rdev->raid_disk = rdev->desc_nr;
3366 set_bit(In_sync, &rdev->flags);
3367 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3368 rdev->raid_disk = -1;
3369 clear_bit(In_sync, &rdev->flags);
3370 }
3371 }
3372 }
3373
3374 /* Read a fixed-point number.
3375 * Numbers in sysfs attributes should be in "standard" units where
3376 * possible, so time should be in seconds.
3377 * However we internally use a a much smaller unit such as
3378 * milliseconds or jiffies.
3379 * This function takes a decimal number with a possible fractional
3380 * component, and produces an integer which is the result of
3381 * multiplying that number by 10^'scale'.
3382 * all without any floating-point arithmetic.
3383 */
3384 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3385 {
3386 unsigned long result = 0;
3387 long decimals = -1;
3388 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3389 if (*cp == '.')
3390 decimals = 0;
3391 else if (decimals < scale) {
3392 unsigned int value;
3393 value = *cp - '0';
3394 result = result * 10 + value;
3395 if (decimals >= 0)
3396 decimals++;
3397 }
3398 cp++;
3399 }
3400 if (*cp == '\n')
3401 cp++;
3402 if (*cp)
3403 return -EINVAL;
3404 if (decimals < 0)
3405 decimals = 0;
3406 while (decimals < scale) {
3407 result *= 10;
3408 decimals ++;
3409 }
3410 *res = result;
3411 return 0;
3412 }
3413
3414
3415 static void md_safemode_timeout(unsigned long data);
3416
3417 static ssize_t
3418 safe_delay_show(struct mddev *mddev, char *page)
3419 {
3420 int msec = (mddev->safemode_delay*1000)/HZ;
3421 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3422 }
3423 static ssize_t
3424 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3425 {
3426 unsigned long msec;
3427
3428 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3429 return -EINVAL;
3430 if (msec == 0)
3431 mddev->safemode_delay = 0;
3432 else {
3433 unsigned long old_delay = mddev->safemode_delay;
3434 mddev->safemode_delay = (msec*HZ)/1000;
3435 if (mddev->safemode_delay == 0)
3436 mddev->safemode_delay = 1;
3437 if (mddev->safemode_delay < old_delay)
3438 md_safemode_timeout((unsigned long)mddev);
3439 }
3440 return len;
3441 }
3442 static struct md_sysfs_entry md_safe_delay =
3443 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3444
3445 static ssize_t
3446 level_show(struct mddev *mddev, char *page)
3447 {
3448 struct md_personality *p = mddev->pers;
3449 if (p)
3450 return sprintf(page, "%s\n", p->name);
3451 else if (mddev->clevel[0])
3452 return sprintf(page, "%s\n", mddev->clevel);
3453 else if (mddev->level != LEVEL_NONE)
3454 return sprintf(page, "%d\n", mddev->level);
3455 else
3456 return 0;
3457 }
3458
3459 static ssize_t
3460 level_store(struct mddev *mddev, const char *buf, size_t len)
3461 {
3462 char clevel[16];
3463 ssize_t rv = len;
3464 struct md_personality *pers;
3465 long level;
3466 void *priv;
3467 struct md_rdev *rdev;
3468
3469 if (mddev->pers == NULL) {
3470 if (len == 0)
3471 return 0;
3472 if (len >= sizeof(mddev->clevel))
3473 return -ENOSPC;
3474 strncpy(mddev->clevel, buf, len);
3475 if (mddev->clevel[len-1] == '\n')
3476 len--;
3477 mddev->clevel[len] = 0;
3478 mddev->level = LEVEL_NONE;
3479 return rv;
3480 }
3481
3482 /* request to change the personality. Need to ensure:
3483 * - array is not engaged in resync/recovery/reshape
3484 * - old personality can be suspended
3485 * - new personality will access other array.
3486 */
3487
3488 if (mddev->sync_thread ||
3489 mddev->reshape_position != MaxSector ||
3490 mddev->sysfs_active)
3491 return -EBUSY;
3492
3493 if (!mddev->pers->quiesce) {
3494 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3495 mdname(mddev), mddev->pers->name);
3496 return -EINVAL;
3497 }
3498
3499 /* Now find the new personality */
3500 if (len == 0 || len >= sizeof(clevel))
3501 return -EINVAL;
3502 strncpy(clevel, buf, len);
3503 if (clevel[len-1] == '\n')
3504 len--;
3505 clevel[len] = 0;
3506 if (strict_strtol(clevel, 10, &level))
3507 level = LEVEL_NONE;
3508
3509 if (request_module("md-%s", clevel) != 0)
3510 request_module("md-level-%s", clevel);
3511 spin_lock(&pers_lock);
3512 pers = find_pers(level, clevel);
3513 if (!pers || !try_module_get(pers->owner)) {
3514 spin_unlock(&pers_lock);
3515 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3516 return -EINVAL;
3517 }
3518 spin_unlock(&pers_lock);
3519
3520 if (pers == mddev->pers) {
3521 /* Nothing to do! */
3522 module_put(pers->owner);
3523 return rv;
3524 }
3525 if (!pers->takeover) {
3526 module_put(pers->owner);
3527 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3528 mdname(mddev), clevel);
3529 return -EINVAL;
3530 }
3531
3532 rdev_for_each(rdev, mddev)
3533 rdev->new_raid_disk = rdev->raid_disk;
3534
3535 /* ->takeover must set new_* and/or delta_disks
3536 * if it succeeds, and may set them when it fails.
3537 */
3538 priv = pers->takeover(mddev);
3539 if (IS_ERR(priv)) {
3540 mddev->new_level = mddev->level;
3541 mddev->new_layout = mddev->layout;
3542 mddev->new_chunk_sectors = mddev->chunk_sectors;
3543 mddev->raid_disks -= mddev->delta_disks;
3544 mddev->delta_disks = 0;
3545 mddev->reshape_backwards = 0;
3546 module_put(pers->owner);
3547 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3548 mdname(mddev), clevel);
3549 return PTR_ERR(priv);
3550 }
3551
3552 /* Looks like we have a winner */
3553 mddev_suspend(mddev);
3554 mddev->pers->stop(mddev);
3555
3556 if (mddev->pers->sync_request == NULL &&
3557 pers->sync_request != NULL) {
3558 /* need to add the md_redundancy_group */
3559 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3560 printk(KERN_WARNING
3561 "md: cannot register extra attributes for %s\n",
3562 mdname(mddev));
3563 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3564 }
3565 if (mddev->pers->sync_request != NULL &&
3566 pers->sync_request == NULL) {
3567 /* need to remove the md_redundancy_group */
3568 if (mddev->to_remove == NULL)
3569 mddev->to_remove = &md_redundancy_group;
3570 }
3571
3572 if (mddev->pers->sync_request == NULL &&
3573 mddev->external) {
3574 /* We are converting from a no-redundancy array
3575 * to a redundancy array and metadata is managed
3576 * externally so we need to be sure that writes
3577 * won't block due to a need to transition
3578 * clean->dirty
3579 * until external management is started.
3580 */
3581 mddev->in_sync = 0;
3582 mddev->safemode_delay = 0;
3583 mddev->safemode = 0;
3584 }
3585
3586 rdev_for_each(rdev, mddev) {
3587 if (rdev->raid_disk < 0)
3588 continue;
3589 if (rdev->new_raid_disk >= mddev->raid_disks)
3590 rdev->new_raid_disk = -1;
3591 if (rdev->new_raid_disk == rdev->raid_disk)
3592 continue;
3593 sysfs_unlink_rdev(mddev, rdev);
3594 }
3595 rdev_for_each(rdev, mddev) {
3596 if (rdev->raid_disk < 0)
3597 continue;
3598 if (rdev->new_raid_disk == rdev->raid_disk)
3599 continue;
3600 rdev->raid_disk = rdev->new_raid_disk;
3601 if (rdev->raid_disk < 0)
3602 clear_bit(In_sync, &rdev->flags);
3603 else {
3604 if (sysfs_link_rdev(mddev, rdev))
3605 printk(KERN_WARNING "md: cannot register rd%d"
3606 " for %s after level change\n",
3607 rdev->raid_disk, mdname(mddev));
3608 }
3609 }
3610
3611 module_put(mddev->pers->owner);
3612 mddev->pers = pers;
3613 mddev->private = priv;
3614 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3615 mddev->level = mddev->new_level;
3616 mddev->layout = mddev->new_layout;
3617 mddev->chunk_sectors = mddev->new_chunk_sectors;
3618 mddev->delta_disks = 0;
3619 mddev->reshape_backwards = 0;
3620 mddev->degraded = 0;
3621 if (mddev->pers->sync_request == NULL) {
3622 /* this is now an array without redundancy, so
3623 * it must always be in_sync
3624 */
3625 mddev->in_sync = 1;
3626 del_timer_sync(&mddev->safemode_timer);
3627 }
3628 pers->run(mddev);
3629 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3630 mddev_resume(mddev);
3631 sysfs_notify(&mddev->kobj, NULL, "level");
3632 md_new_event(mddev);
3633 return rv;
3634 }
3635
3636 static struct md_sysfs_entry md_level =
3637 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3638
3639
3640 static ssize_t
3641 layout_show(struct mddev *mddev, char *page)
3642 {
3643 /* just a number, not meaningful for all levels */
3644 if (mddev->reshape_position != MaxSector &&
3645 mddev->layout != mddev->new_layout)
3646 return sprintf(page, "%d (%d)\n",
3647 mddev->new_layout, mddev->layout);
3648 return sprintf(page, "%d\n", mddev->layout);
3649 }
3650
3651 static ssize_t
3652 layout_store(struct mddev *mddev, const char *buf, size_t len)
3653 {
3654 char *e;
3655 unsigned long n = simple_strtoul(buf, &e, 10);
3656
3657 if (!*buf || (*e && *e != '\n'))
3658 return -EINVAL;
3659
3660 if (mddev->pers) {
3661 int err;
3662 if (mddev->pers->check_reshape == NULL)
3663 return -EBUSY;
3664 mddev->new_layout = n;
3665 err = mddev->pers->check_reshape(mddev);
3666 if (err) {
3667 mddev->new_layout = mddev->layout;
3668 return err;
3669 }
3670 } else {
3671 mddev->new_layout = n;
3672 if (mddev->reshape_position == MaxSector)
3673 mddev->layout = n;
3674 }
3675 return len;
3676 }
3677 static struct md_sysfs_entry md_layout =
3678 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3679
3680
3681 static ssize_t
3682 raid_disks_show(struct mddev *mddev, char *page)
3683 {
3684 if (mddev->raid_disks == 0)
3685 return 0;
3686 if (mddev->reshape_position != MaxSector &&
3687 mddev->delta_disks != 0)
3688 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3689 mddev->raid_disks - mddev->delta_disks);
3690 return sprintf(page, "%d\n", mddev->raid_disks);
3691 }
3692
3693 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3694
3695 static ssize_t
3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698 char *e;
3699 int rv = 0;
3700 unsigned long n = simple_strtoul(buf, &e, 10);
3701
3702 if (!*buf || (*e && *e != '\n'))
3703 return -EINVAL;
3704
3705 if (mddev->pers)
3706 rv = update_raid_disks(mddev, n);
3707 else if (mddev->reshape_position != MaxSector) {
3708 struct md_rdev *rdev;
3709 int olddisks = mddev->raid_disks - mddev->delta_disks;
3710
3711 rdev_for_each(rdev, mddev) {
3712 if (olddisks < n &&
3713 rdev->data_offset < rdev->new_data_offset)
3714 return -EINVAL;
3715 if (olddisks > n &&
3716 rdev->data_offset > rdev->new_data_offset)
3717 return -EINVAL;
3718 }
3719 mddev->delta_disks = n - olddisks;
3720 mddev->raid_disks = n;
3721 mddev->reshape_backwards = (mddev->delta_disks < 0);
3722 } else
3723 mddev->raid_disks = n;
3724 return rv ? rv : len;
3725 }
3726 static struct md_sysfs_entry md_raid_disks =
3727 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3728
3729 static ssize_t
3730 chunk_size_show(struct mddev *mddev, char *page)
3731 {
3732 if (mddev->reshape_position != MaxSector &&
3733 mddev->chunk_sectors != mddev->new_chunk_sectors)
3734 return sprintf(page, "%d (%d)\n",
3735 mddev->new_chunk_sectors << 9,
3736 mddev->chunk_sectors << 9);
3737 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3738 }
3739
3740 static ssize_t
3741 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3742 {
3743 char *e;
3744 unsigned long n = simple_strtoul(buf, &e, 10);
3745
3746 if (!*buf || (*e && *e != '\n'))
3747 return -EINVAL;
3748
3749 if (mddev->pers) {
3750 int err;
3751 if (mddev->pers->check_reshape == NULL)
3752 return -EBUSY;
3753 mddev->new_chunk_sectors = n >> 9;
3754 err = mddev->pers->check_reshape(mddev);
3755 if (err) {
3756 mddev->new_chunk_sectors = mddev->chunk_sectors;
3757 return err;
3758 }
3759 } else {
3760 mddev->new_chunk_sectors = n >> 9;
3761 if (mddev->reshape_position == MaxSector)
3762 mddev->chunk_sectors = n >> 9;
3763 }
3764 return len;
3765 }
3766 static struct md_sysfs_entry md_chunk_size =
3767 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3768
3769 static ssize_t
3770 resync_start_show(struct mddev *mddev, char *page)
3771 {
3772 if (mddev->recovery_cp == MaxSector)
3773 return sprintf(page, "none\n");
3774 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3775 }
3776
3777 static ssize_t
3778 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780 char *e;
3781 unsigned long long n = simple_strtoull(buf, &e, 10);
3782
3783 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3784 return -EBUSY;
3785 if (cmd_match(buf, "none"))
3786 n = MaxSector;
3787 else if (!*buf || (*e && *e != '\n'))
3788 return -EINVAL;
3789
3790 mddev->recovery_cp = n;
3791 return len;
3792 }
3793 static struct md_sysfs_entry md_resync_start =
3794 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3795
3796 /*
3797 * The array state can be:
3798 *
3799 * clear
3800 * No devices, no size, no level
3801 * Equivalent to STOP_ARRAY ioctl
3802 * inactive
3803 * May have some settings, but array is not active
3804 * all IO results in error
3805 * When written, doesn't tear down array, but just stops it
3806 * suspended (not supported yet)
3807 * All IO requests will block. The array can be reconfigured.
3808 * Writing this, if accepted, will block until array is quiescent
3809 * readonly
3810 * no resync can happen. no superblocks get written.
3811 * write requests fail
3812 * read-auto
3813 * like readonly, but behaves like 'clean' on a write request.
3814 *
3815 * clean - no pending writes, but otherwise active.
3816 * When written to inactive array, starts without resync
3817 * If a write request arrives then
3818 * if metadata is known, mark 'dirty' and switch to 'active'.
3819 * if not known, block and switch to write-pending
3820 * If written to an active array that has pending writes, then fails.
3821 * active
3822 * fully active: IO and resync can be happening.
3823 * When written to inactive array, starts with resync
3824 *
3825 * write-pending
3826 * clean, but writes are blocked waiting for 'active' to be written.
3827 *
3828 * active-idle
3829 * like active, but no writes have been seen for a while (100msec).
3830 *
3831 */
3832 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3833 write_pending, active_idle, bad_word};
3834 static char *array_states[] = {
3835 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3836 "write-pending", "active-idle", NULL };
3837
3838 static int match_word(const char *word, char **list)
3839 {
3840 int n;
3841 for (n=0; list[n]; n++)
3842 if (cmd_match(word, list[n]))
3843 break;
3844 return n;
3845 }
3846
3847 static ssize_t
3848 array_state_show(struct mddev *mddev, char *page)
3849 {
3850 enum array_state st = inactive;
3851
3852 if (mddev->pers)
3853 switch(mddev->ro) {
3854 case 1:
3855 st = readonly;
3856 break;
3857 case 2:
3858 st = read_auto;
3859 break;
3860 case 0:
3861 if (mddev->in_sync)
3862 st = clean;
3863 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3864 st = write_pending;
3865 else if (mddev->safemode)
3866 st = active_idle;
3867 else
3868 st = active;
3869 }
3870 else {
3871 if (list_empty(&mddev->disks) &&
3872 mddev->raid_disks == 0 &&
3873 mddev->dev_sectors == 0)
3874 st = clear;
3875 else
3876 st = inactive;
3877 }
3878 return sprintf(page, "%s\n", array_states[st]);
3879 }
3880
3881 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3882 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3883 static int do_md_run(struct mddev * mddev);
3884 static int restart_array(struct mddev *mddev);
3885
3886 static ssize_t
3887 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889 int err = -EINVAL;
3890 enum array_state st = match_word(buf, array_states);
3891 switch(st) {
3892 case bad_word:
3893 break;
3894 case clear:
3895 /* stopping an active array */
3896 err = do_md_stop(mddev, 0, NULL);
3897 break;
3898 case inactive:
3899 /* stopping an active array */
3900 if (mddev->pers)
3901 err = do_md_stop(mddev, 2, NULL);
3902 else
3903 err = 0; /* already inactive */
3904 break;
3905 case suspended:
3906 break; /* not supported yet */
3907 case readonly:
3908 if (mddev->pers)
3909 err = md_set_readonly(mddev, NULL);
3910 else {
3911 mddev->ro = 1;
3912 set_disk_ro(mddev->gendisk, 1);
3913 err = do_md_run(mddev);
3914 }
3915 break;
3916 case read_auto:
3917 if (mddev->pers) {
3918 if (mddev->ro == 0)
3919 err = md_set_readonly(mddev, NULL);
3920 else if (mddev->ro == 1)
3921 err = restart_array(mddev);
3922 if (err == 0) {
3923 mddev->ro = 2;
3924 set_disk_ro(mddev->gendisk, 0);
3925 }
3926 } else {
3927 mddev->ro = 2;
3928 err = do_md_run(mddev);
3929 }
3930 break;
3931 case clean:
3932 if (mddev->pers) {
3933 restart_array(mddev);
3934 spin_lock_irq(&mddev->write_lock);
3935 if (atomic_read(&mddev->writes_pending) == 0) {
3936 if (mddev->in_sync == 0) {
3937 mddev->in_sync = 1;
3938 if (mddev->safemode == 1)
3939 mddev->safemode = 0;
3940 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3941 }
3942 err = 0;
3943 } else
3944 err = -EBUSY;
3945 spin_unlock_irq(&mddev->write_lock);
3946 } else
3947 err = -EINVAL;
3948 break;
3949 case active:
3950 if (mddev->pers) {
3951 restart_array(mddev);
3952 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3953 wake_up(&mddev->sb_wait);
3954 err = 0;
3955 } else {
3956 mddev->ro = 0;
3957 set_disk_ro(mddev->gendisk, 0);
3958 err = do_md_run(mddev);
3959 }
3960 break;
3961 case write_pending:
3962 case active_idle:
3963 /* these cannot be set */
3964 break;
3965 }
3966 if (err)
3967 return err;
3968 else {
3969 if (mddev->hold_active == UNTIL_IOCTL)
3970 mddev->hold_active = 0;
3971 sysfs_notify_dirent_safe(mddev->sysfs_state);
3972 return len;
3973 }
3974 }
3975 static struct md_sysfs_entry md_array_state =
3976 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3977
3978 static ssize_t
3979 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3980 return sprintf(page, "%d\n",
3981 atomic_read(&mddev->max_corr_read_errors));
3982 }
3983
3984 static ssize_t
3985 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3986 {
3987 char *e;
3988 unsigned long n = simple_strtoul(buf, &e, 10);
3989
3990 if (*buf && (*e == 0 || *e == '\n')) {
3991 atomic_set(&mddev->max_corr_read_errors, n);
3992 return len;
3993 }
3994 return -EINVAL;
3995 }
3996
3997 static struct md_sysfs_entry max_corr_read_errors =
3998 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3999 max_corrected_read_errors_store);
4000
4001 static ssize_t
4002 null_show(struct mddev *mddev, char *page)
4003 {
4004 return -EINVAL;
4005 }
4006
4007 static ssize_t
4008 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4009 {
4010 /* buf must be %d:%d\n? giving major and minor numbers */
4011 /* The new device is added to the array.
4012 * If the array has a persistent superblock, we read the
4013 * superblock to initialise info and check validity.
4014 * Otherwise, only checking done is that in bind_rdev_to_array,
4015 * which mainly checks size.
4016 */
4017 char *e;
4018 int major = simple_strtoul(buf, &e, 10);
4019 int minor;
4020 dev_t dev;
4021 struct md_rdev *rdev;
4022 int err;
4023
4024 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4025 return -EINVAL;
4026 minor = simple_strtoul(e+1, &e, 10);
4027 if (*e && *e != '\n')
4028 return -EINVAL;
4029 dev = MKDEV(major, minor);
4030 if (major != MAJOR(dev) ||
4031 minor != MINOR(dev))
4032 return -EOVERFLOW;
4033
4034
4035 if (mddev->persistent) {
4036 rdev = md_import_device(dev, mddev->major_version,
4037 mddev->minor_version);
4038 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4039 struct md_rdev *rdev0
4040 = list_entry(mddev->disks.next,
4041 struct md_rdev, same_set);
4042 err = super_types[mddev->major_version]
4043 .load_super(rdev, rdev0, mddev->minor_version);
4044 if (err < 0)
4045 goto out;
4046 }
4047 } else if (mddev->external)
4048 rdev = md_import_device(dev, -2, -1);
4049 else
4050 rdev = md_import_device(dev, -1, -1);
4051
4052 if (IS_ERR(rdev))
4053 return PTR_ERR(rdev);
4054 err = bind_rdev_to_array(rdev, mddev);
4055 out:
4056 if (err)
4057 export_rdev(rdev);
4058 return err ? err : len;
4059 }
4060
4061 static struct md_sysfs_entry md_new_device =
4062 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4063
4064 static ssize_t
4065 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4066 {
4067 char *end;
4068 unsigned long chunk, end_chunk;
4069
4070 if (!mddev->bitmap)
4071 goto out;
4072 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4073 while (*buf) {
4074 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4075 if (buf == end) break;
4076 if (*end == '-') { /* range */
4077 buf = end + 1;
4078 end_chunk = simple_strtoul(buf, &end, 0);
4079 if (buf == end) break;
4080 }
4081 if (*end && !isspace(*end)) break;
4082 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4083 buf = skip_spaces(end);
4084 }
4085 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4086 out:
4087 return len;
4088 }
4089
4090 static struct md_sysfs_entry md_bitmap =
4091 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4092
4093 static ssize_t
4094 size_show(struct mddev *mddev, char *page)
4095 {
4096 return sprintf(page, "%llu\n",
4097 (unsigned long long)mddev->dev_sectors / 2);
4098 }
4099
4100 static int update_size(struct mddev *mddev, sector_t num_sectors);
4101
4102 static ssize_t
4103 size_store(struct mddev *mddev, const char *buf, size_t len)
4104 {
4105 /* If array is inactive, we can reduce the component size, but
4106 * not increase it (except from 0).
4107 * If array is active, we can try an on-line resize
4108 */
4109 sector_t sectors;
4110 int err = strict_blocks_to_sectors(buf, &sectors);
4111
4112 if (err < 0)
4113 return err;
4114 if (mddev->pers) {
4115 err = update_size(mddev, sectors);
4116 md_update_sb(mddev, 1);
4117 } else {
4118 if (mddev->dev_sectors == 0 ||
4119 mddev->dev_sectors > sectors)
4120 mddev->dev_sectors = sectors;
4121 else
4122 err = -ENOSPC;
4123 }
4124 return err ? err : len;
4125 }
4126
4127 static struct md_sysfs_entry md_size =
4128 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4129
4130
4131 /* Metdata version.
4132 * This is one of
4133 * 'none' for arrays with no metadata (good luck...)
4134 * 'external' for arrays with externally managed metadata,
4135 * or N.M for internally known formats
4136 */
4137 static ssize_t
4138 metadata_show(struct mddev *mddev, char *page)
4139 {
4140 if (mddev->persistent)
4141 return sprintf(page, "%d.%d\n",
4142 mddev->major_version, mddev->minor_version);
4143 else if (mddev->external)
4144 return sprintf(page, "external:%s\n", mddev->metadata_type);
4145 else
4146 return sprintf(page, "none\n");
4147 }
4148
4149 static ssize_t
4150 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4151 {
4152 int major, minor;
4153 char *e;
4154 /* Changing the details of 'external' metadata is
4155 * always permitted. Otherwise there must be
4156 * no devices attached to the array.
4157 */
4158 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4159 ;
4160 else if (!list_empty(&mddev->disks))
4161 return -EBUSY;
4162
4163 if (cmd_match(buf, "none")) {
4164 mddev->persistent = 0;
4165 mddev->external = 0;
4166 mddev->major_version = 0;
4167 mddev->minor_version = 90;
4168 return len;
4169 }
4170 if (strncmp(buf, "external:", 9) == 0) {
4171 size_t namelen = len-9;
4172 if (namelen >= sizeof(mddev->metadata_type))
4173 namelen = sizeof(mddev->metadata_type)-1;
4174 strncpy(mddev->metadata_type, buf+9, namelen);
4175 mddev->metadata_type[namelen] = 0;
4176 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4177 mddev->metadata_type[--namelen] = 0;
4178 mddev->persistent = 0;
4179 mddev->external = 1;
4180 mddev->major_version = 0;
4181 mddev->minor_version = 90;
4182 return len;
4183 }
4184 major = simple_strtoul(buf, &e, 10);
4185 if (e==buf || *e != '.')
4186 return -EINVAL;
4187 buf = e+1;
4188 minor = simple_strtoul(buf, &e, 10);
4189 if (e==buf || (*e && *e != '\n') )
4190 return -EINVAL;
4191 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4192 return -ENOENT;
4193 mddev->major_version = major;
4194 mddev->minor_version = minor;
4195 mddev->persistent = 1;
4196 mddev->external = 0;
4197 return len;
4198 }
4199
4200 static struct md_sysfs_entry md_metadata =
4201 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4202
4203 static ssize_t
4204 action_show(struct mddev *mddev, char *page)
4205 {
4206 char *type = "idle";
4207 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4208 type = "frozen";
4209 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4210 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4211 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4212 type = "reshape";
4213 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4214 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4215 type = "resync";
4216 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4217 type = "check";
4218 else
4219 type = "repair";
4220 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4221 type = "recover";
4222 }
4223 return sprintf(page, "%s\n", type);
4224 }
4225
4226 static void reap_sync_thread(struct mddev *mddev);
4227
4228 static ssize_t
4229 action_store(struct mddev *mddev, const char *page, size_t len)
4230 {
4231 if (!mddev->pers || !mddev->pers->sync_request)
4232 return -EINVAL;
4233
4234 if (cmd_match(page, "frozen"))
4235 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4236 else
4237 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4238
4239 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4240 if (mddev->sync_thread) {
4241 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4242 reap_sync_thread(mddev);
4243 }
4244 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4245 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4246 return -EBUSY;
4247 else if (cmd_match(page, "resync"))
4248 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4249 else if (cmd_match(page, "recover")) {
4250 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4252 } else if (cmd_match(page, "reshape")) {
4253 int err;
4254 if (mddev->pers->start_reshape == NULL)
4255 return -EINVAL;
4256 err = mddev->pers->start_reshape(mddev);
4257 if (err)
4258 return err;
4259 sysfs_notify(&mddev->kobj, NULL, "degraded");
4260 } else {
4261 if (cmd_match(page, "check"))
4262 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4263 else if (!cmd_match(page, "repair"))
4264 return -EINVAL;
4265 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4266 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4267 }
4268 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4269 md_wakeup_thread(mddev->thread);
4270 sysfs_notify_dirent_safe(mddev->sysfs_action);
4271 return len;
4272 }
4273
4274 static ssize_t
4275 mismatch_cnt_show(struct mddev *mddev, char *page)
4276 {
4277 return sprintf(page, "%llu\n",
4278 (unsigned long long) mddev->resync_mismatches);
4279 }
4280
4281 static struct md_sysfs_entry md_scan_mode =
4282 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4283
4284
4285 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4286
4287 static ssize_t
4288 sync_min_show(struct mddev *mddev, char *page)
4289 {
4290 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4291 mddev->sync_speed_min ? "local": "system");
4292 }
4293
4294 static ssize_t
4295 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4296 {
4297 int min;
4298 char *e;
4299 if (strncmp(buf, "system", 6)==0) {
4300 mddev->sync_speed_min = 0;
4301 return len;
4302 }
4303 min = simple_strtoul(buf, &e, 10);
4304 if (buf == e || (*e && *e != '\n') || min <= 0)
4305 return -EINVAL;
4306 mddev->sync_speed_min = min;
4307 return len;
4308 }
4309
4310 static struct md_sysfs_entry md_sync_min =
4311 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4312
4313 static ssize_t
4314 sync_max_show(struct mddev *mddev, char *page)
4315 {
4316 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4317 mddev->sync_speed_max ? "local": "system");
4318 }
4319
4320 static ssize_t
4321 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4322 {
4323 int max;
4324 char *e;
4325 if (strncmp(buf, "system", 6)==0) {
4326 mddev->sync_speed_max = 0;
4327 return len;
4328 }
4329 max = simple_strtoul(buf, &e, 10);
4330 if (buf == e || (*e && *e != '\n') || max <= 0)
4331 return -EINVAL;
4332 mddev->sync_speed_max = max;
4333 return len;
4334 }
4335
4336 static struct md_sysfs_entry md_sync_max =
4337 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4338
4339 static ssize_t
4340 degraded_show(struct mddev *mddev, char *page)
4341 {
4342 return sprintf(page, "%d\n", mddev->degraded);
4343 }
4344 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4345
4346 static ssize_t
4347 sync_force_parallel_show(struct mddev *mddev, char *page)
4348 {
4349 return sprintf(page, "%d\n", mddev->parallel_resync);
4350 }
4351
4352 static ssize_t
4353 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4354 {
4355 long n;
4356
4357 if (strict_strtol(buf, 10, &n))
4358 return -EINVAL;
4359
4360 if (n != 0 && n != 1)
4361 return -EINVAL;
4362
4363 mddev->parallel_resync = n;
4364
4365 if (mddev->sync_thread)
4366 wake_up(&resync_wait);
4367
4368 return len;
4369 }
4370
4371 /* force parallel resync, even with shared block devices */
4372 static struct md_sysfs_entry md_sync_force_parallel =
4373 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4374 sync_force_parallel_show, sync_force_parallel_store);
4375
4376 static ssize_t
4377 sync_speed_show(struct mddev *mddev, char *page)
4378 {
4379 unsigned long resync, dt, db;
4380 if (mddev->curr_resync == 0)
4381 return sprintf(page, "none\n");
4382 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4383 dt = (jiffies - mddev->resync_mark) / HZ;
4384 if (!dt) dt++;
4385 db = resync - mddev->resync_mark_cnt;
4386 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4387 }
4388
4389 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4390
4391 static ssize_t
4392 sync_completed_show(struct mddev *mddev, char *page)
4393 {
4394 unsigned long long max_sectors, resync;
4395
4396 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4397 return sprintf(page, "none\n");
4398
4399 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4400 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4401 max_sectors = mddev->resync_max_sectors;
4402 else
4403 max_sectors = mddev->dev_sectors;
4404
4405 resync = mddev->curr_resync_completed;
4406 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4407 }
4408
4409 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4410
4411 static ssize_t
4412 min_sync_show(struct mddev *mddev, char *page)
4413 {
4414 return sprintf(page, "%llu\n",
4415 (unsigned long long)mddev->resync_min);
4416 }
4417 static ssize_t
4418 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4419 {
4420 unsigned long long min;
4421 if (strict_strtoull(buf, 10, &min))
4422 return -EINVAL;
4423 if (min > mddev->resync_max)
4424 return -EINVAL;
4425 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4426 return -EBUSY;
4427
4428 /* Must be a multiple of chunk_size */
4429 if (mddev->chunk_sectors) {
4430 sector_t temp = min;
4431 if (sector_div(temp, mddev->chunk_sectors))
4432 return -EINVAL;
4433 }
4434 mddev->resync_min = min;
4435
4436 return len;
4437 }
4438
4439 static struct md_sysfs_entry md_min_sync =
4440 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4441
4442 static ssize_t
4443 max_sync_show(struct mddev *mddev, char *page)
4444 {
4445 if (mddev->resync_max == MaxSector)
4446 return sprintf(page, "max\n");
4447 else
4448 return sprintf(page, "%llu\n",
4449 (unsigned long long)mddev->resync_max);
4450 }
4451 static ssize_t
4452 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4453 {
4454 if (strncmp(buf, "max", 3) == 0)
4455 mddev->resync_max = MaxSector;
4456 else {
4457 unsigned long long max;
4458 if (strict_strtoull(buf, 10, &max))
4459 return -EINVAL;
4460 if (max < mddev->resync_min)
4461 return -EINVAL;
4462 if (max < mddev->resync_max &&
4463 mddev->ro == 0 &&
4464 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4465 return -EBUSY;
4466
4467 /* Must be a multiple of chunk_size */
4468 if (mddev->chunk_sectors) {
4469 sector_t temp = max;
4470 if (sector_div(temp, mddev->chunk_sectors))
4471 return -EINVAL;
4472 }
4473 mddev->resync_max = max;
4474 }
4475 wake_up(&mddev->recovery_wait);
4476 return len;
4477 }
4478
4479 static struct md_sysfs_entry md_max_sync =
4480 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4481
4482 static ssize_t
4483 suspend_lo_show(struct mddev *mddev, char *page)
4484 {
4485 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4486 }
4487
4488 static ssize_t
4489 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4490 {
4491 char *e;
4492 unsigned long long new = simple_strtoull(buf, &e, 10);
4493 unsigned long long old = mddev->suspend_lo;
4494
4495 if (mddev->pers == NULL ||
4496 mddev->pers->quiesce == NULL)
4497 return -EINVAL;
4498 if (buf == e || (*e && *e != '\n'))
4499 return -EINVAL;
4500
4501 mddev->suspend_lo = new;
4502 if (new >= old)
4503 /* Shrinking suspended region */
4504 mddev->pers->quiesce(mddev, 2);
4505 else {
4506 /* Expanding suspended region - need to wait */
4507 mddev->pers->quiesce(mddev, 1);
4508 mddev->pers->quiesce(mddev, 0);
4509 }
4510 return len;
4511 }
4512 static struct md_sysfs_entry md_suspend_lo =
4513 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4514
4515
4516 static ssize_t
4517 suspend_hi_show(struct mddev *mddev, char *page)
4518 {
4519 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4520 }
4521
4522 static ssize_t
4523 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4524 {
4525 char *e;
4526 unsigned long long new = simple_strtoull(buf, &e, 10);
4527 unsigned long long old = mddev->suspend_hi;
4528
4529 if (mddev->pers == NULL ||
4530 mddev->pers->quiesce == NULL)
4531 return -EINVAL;
4532 if (buf == e || (*e && *e != '\n'))
4533 return -EINVAL;
4534
4535 mddev->suspend_hi = new;
4536 if (new <= old)
4537 /* Shrinking suspended region */
4538 mddev->pers->quiesce(mddev, 2);
4539 else {
4540 /* Expanding suspended region - need to wait */
4541 mddev->pers->quiesce(mddev, 1);
4542 mddev->pers->quiesce(mddev, 0);
4543 }
4544 return len;
4545 }
4546 static struct md_sysfs_entry md_suspend_hi =
4547 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4548
4549 static ssize_t
4550 reshape_position_show(struct mddev *mddev, char *page)
4551 {
4552 if (mddev->reshape_position != MaxSector)
4553 return sprintf(page, "%llu\n",
4554 (unsigned long long)mddev->reshape_position);
4555 strcpy(page, "none\n");
4556 return 5;
4557 }
4558
4559 static ssize_t
4560 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4561 {
4562 struct md_rdev *rdev;
4563 char *e;
4564 unsigned long long new = simple_strtoull(buf, &e, 10);
4565 if (mddev->pers)
4566 return -EBUSY;
4567 if (buf == e || (*e && *e != '\n'))
4568 return -EINVAL;
4569 mddev->reshape_position = new;
4570 mddev->delta_disks = 0;
4571 mddev->reshape_backwards = 0;
4572 mddev->new_level = mddev->level;
4573 mddev->new_layout = mddev->layout;
4574 mddev->new_chunk_sectors = mddev->chunk_sectors;
4575 rdev_for_each(rdev, mddev)
4576 rdev->new_data_offset = rdev->data_offset;
4577 return len;
4578 }
4579
4580 static struct md_sysfs_entry md_reshape_position =
4581 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4582 reshape_position_store);
4583
4584 static ssize_t
4585 reshape_direction_show(struct mddev *mddev, char *page)
4586 {
4587 return sprintf(page, "%s\n",
4588 mddev->reshape_backwards ? "backwards" : "forwards");
4589 }
4590
4591 static ssize_t
4592 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4593 {
4594 int backwards = 0;
4595 if (cmd_match(buf, "forwards"))
4596 backwards = 0;
4597 else if (cmd_match(buf, "backwards"))
4598 backwards = 1;
4599 else
4600 return -EINVAL;
4601 if (mddev->reshape_backwards == backwards)
4602 return len;
4603
4604 /* check if we are allowed to change */
4605 if (mddev->delta_disks)
4606 return -EBUSY;
4607
4608 if (mddev->persistent &&
4609 mddev->major_version == 0)
4610 return -EINVAL;
4611
4612 mddev->reshape_backwards = backwards;
4613 return len;
4614 }
4615
4616 static struct md_sysfs_entry md_reshape_direction =
4617 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4618 reshape_direction_store);
4619
4620 static ssize_t
4621 array_size_show(struct mddev *mddev, char *page)
4622 {
4623 if (mddev->external_size)
4624 return sprintf(page, "%llu\n",
4625 (unsigned long long)mddev->array_sectors/2);
4626 else
4627 return sprintf(page, "default\n");
4628 }
4629
4630 static ssize_t
4631 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4632 {
4633 sector_t sectors;
4634
4635 if (strncmp(buf, "default", 7) == 0) {
4636 if (mddev->pers)
4637 sectors = mddev->pers->size(mddev, 0, 0);
4638 else
4639 sectors = mddev->array_sectors;
4640
4641 mddev->external_size = 0;
4642 } else {
4643 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4644 return -EINVAL;
4645 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4646 return -E2BIG;
4647
4648 mddev->external_size = 1;
4649 }
4650
4651 mddev->array_sectors = sectors;
4652 if (mddev->pers) {
4653 set_capacity(mddev->gendisk, mddev->array_sectors);
4654 revalidate_disk(mddev->gendisk);
4655 }
4656 return len;
4657 }
4658
4659 static struct md_sysfs_entry md_array_size =
4660 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4661 array_size_store);
4662
4663 static struct attribute *md_default_attrs[] = {
4664 &md_level.attr,
4665 &md_layout.attr,
4666 &md_raid_disks.attr,
4667 &md_chunk_size.attr,
4668 &md_size.attr,
4669 &md_resync_start.attr,
4670 &md_metadata.attr,
4671 &md_new_device.attr,
4672 &md_safe_delay.attr,
4673 &md_array_state.attr,
4674 &md_reshape_position.attr,
4675 &md_reshape_direction.attr,
4676 &md_array_size.attr,
4677 &max_corr_read_errors.attr,
4678 NULL,
4679 };
4680
4681 static struct attribute *md_redundancy_attrs[] = {
4682 &md_scan_mode.attr,
4683 &md_mismatches.attr,
4684 &md_sync_min.attr,
4685 &md_sync_max.attr,
4686 &md_sync_speed.attr,
4687 &md_sync_force_parallel.attr,
4688 &md_sync_completed.attr,
4689 &md_min_sync.attr,
4690 &md_max_sync.attr,
4691 &md_suspend_lo.attr,
4692 &md_suspend_hi.attr,
4693 &md_bitmap.attr,
4694 &md_degraded.attr,
4695 NULL,
4696 };
4697 static struct attribute_group md_redundancy_group = {
4698 .name = NULL,
4699 .attrs = md_redundancy_attrs,
4700 };
4701
4702
4703 static ssize_t
4704 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4705 {
4706 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4707 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4708 ssize_t rv;
4709
4710 if (!entry->show)
4711 return -EIO;
4712 spin_lock(&all_mddevs_lock);
4713 if (list_empty(&mddev->all_mddevs)) {
4714 spin_unlock(&all_mddevs_lock);
4715 return -EBUSY;
4716 }
4717 mddev_get(mddev);
4718 spin_unlock(&all_mddevs_lock);
4719
4720 rv = mddev_lock(mddev);
4721 if (!rv) {
4722 rv = entry->show(mddev, page);
4723 mddev_unlock(mddev);
4724 }
4725 mddev_put(mddev);
4726 return rv;
4727 }
4728
4729 static ssize_t
4730 md_attr_store(struct kobject *kobj, struct attribute *attr,
4731 const char *page, size_t length)
4732 {
4733 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4734 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4735 ssize_t rv;
4736
4737 if (!entry->store)
4738 return -EIO;
4739 if (!capable(CAP_SYS_ADMIN))
4740 return -EACCES;
4741 spin_lock(&all_mddevs_lock);
4742 if (list_empty(&mddev->all_mddevs)) {
4743 spin_unlock(&all_mddevs_lock);
4744 return -EBUSY;
4745 }
4746 mddev_get(mddev);
4747 spin_unlock(&all_mddevs_lock);
4748 rv = mddev_lock(mddev);
4749 if (!rv) {
4750 rv = entry->store(mddev, page, length);
4751 mddev_unlock(mddev);
4752 }
4753 mddev_put(mddev);
4754 return rv;
4755 }
4756
4757 static void md_free(struct kobject *ko)
4758 {
4759 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4760
4761 if (mddev->sysfs_state)
4762 sysfs_put(mddev->sysfs_state);
4763
4764 if (mddev->gendisk) {
4765 del_gendisk(mddev->gendisk);
4766 put_disk(mddev->gendisk);
4767 }
4768 if (mddev->queue)
4769 blk_cleanup_queue(mddev->queue);
4770
4771 kfree(mddev);
4772 }
4773
4774 static const struct sysfs_ops md_sysfs_ops = {
4775 .show = md_attr_show,
4776 .store = md_attr_store,
4777 };
4778 static struct kobj_type md_ktype = {
4779 .release = md_free,
4780 .sysfs_ops = &md_sysfs_ops,
4781 .default_attrs = md_default_attrs,
4782 };
4783
4784 int mdp_major = 0;
4785
4786 static void mddev_delayed_delete(struct work_struct *ws)
4787 {
4788 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4789
4790 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4791 kobject_del(&mddev->kobj);
4792 kobject_put(&mddev->kobj);
4793 }
4794
4795 static int md_alloc(dev_t dev, char *name)
4796 {
4797 static DEFINE_MUTEX(disks_mutex);
4798 struct mddev *mddev = mddev_find(dev);
4799 struct gendisk *disk;
4800 int partitioned;
4801 int shift;
4802 int unit;
4803 int error;
4804
4805 if (!mddev)
4806 return -ENODEV;
4807
4808 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4809 shift = partitioned ? MdpMinorShift : 0;
4810 unit = MINOR(mddev->unit) >> shift;
4811
4812 /* wait for any previous instance of this device to be
4813 * completely removed (mddev_delayed_delete).
4814 */
4815 flush_workqueue(md_misc_wq);
4816
4817 mutex_lock(&disks_mutex);
4818 error = -EEXIST;
4819 if (mddev->gendisk)
4820 goto abort;
4821
4822 if (name) {
4823 /* Need to ensure that 'name' is not a duplicate.
4824 */
4825 struct mddev *mddev2;
4826 spin_lock(&all_mddevs_lock);
4827
4828 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4829 if (mddev2->gendisk &&
4830 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4831 spin_unlock(&all_mddevs_lock);
4832 goto abort;
4833 }
4834 spin_unlock(&all_mddevs_lock);
4835 }
4836
4837 error = -ENOMEM;
4838 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4839 if (!mddev->queue)
4840 goto abort;
4841 mddev->queue->queuedata = mddev;
4842
4843 blk_queue_make_request(mddev->queue, md_make_request);
4844 blk_set_stacking_limits(&mddev->queue->limits);
4845
4846 disk = alloc_disk(1 << shift);
4847 if (!disk) {
4848 blk_cleanup_queue(mddev->queue);
4849 mddev->queue = NULL;
4850 goto abort;
4851 }
4852 disk->major = MAJOR(mddev->unit);
4853 disk->first_minor = unit << shift;
4854 if (name)
4855 strcpy(disk->disk_name, name);
4856 else if (partitioned)
4857 sprintf(disk->disk_name, "md_d%d", unit);
4858 else
4859 sprintf(disk->disk_name, "md%d", unit);
4860 disk->fops = &md_fops;
4861 disk->private_data = mddev;
4862 disk->queue = mddev->queue;
4863 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4864 /* Allow extended partitions. This makes the
4865 * 'mdp' device redundant, but we can't really
4866 * remove it now.
4867 */
4868 disk->flags |= GENHD_FL_EXT_DEVT;
4869 mddev->gendisk = disk;
4870 /* As soon as we call add_disk(), another thread could get
4871 * through to md_open, so make sure it doesn't get too far
4872 */
4873 mutex_lock(&mddev->open_mutex);
4874 add_disk(disk);
4875
4876 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4877 &disk_to_dev(disk)->kobj, "%s", "md");
4878 if (error) {
4879 /* This isn't possible, but as kobject_init_and_add is marked
4880 * __must_check, we must do something with the result
4881 */
4882 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4883 disk->disk_name);
4884 error = 0;
4885 }
4886 if (mddev->kobj.sd &&
4887 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4888 printk(KERN_DEBUG "pointless warning\n");
4889 mutex_unlock(&mddev->open_mutex);
4890 abort:
4891 mutex_unlock(&disks_mutex);
4892 if (!error && mddev->kobj.sd) {
4893 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4894 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4895 }
4896 mddev_put(mddev);
4897 return error;
4898 }
4899
4900 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4901 {
4902 md_alloc(dev, NULL);
4903 return NULL;
4904 }
4905
4906 static int add_named_array(const char *val, struct kernel_param *kp)
4907 {
4908 /* val must be "md_*" where * is not all digits.
4909 * We allocate an array with a large free minor number, and
4910 * set the name to val. val must not already be an active name.
4911 */
4912 int len = strlen(val);
4913 char buf[DISK_NAME_LEN];
4914
4915 while (len && val[len-1] == '\n')
4916 len--;
4917 if (len >= DISK_NAME_LEN)
4918 return -E2BIG;
4919 strlcpy(buf, val, len+1);
4920 if (strncmp(buf, "md_", 3) != 0)
4921 return -EINVAL;
4922 return md_alloc(0, buf);
4923 }
4924
4925 static void md_safemode_timeout(unsigned long data)
4926 {
4927 struct mddev *mddev = (struct mddev *) data;
4928
4929 if (!atomic_read(&mddev->writes_pending)) {
4930 mddev->safemode = 1;
4931 if (mddev->external)
4932 sysfs_notify_dirent_safe(mddev->sysfs_state);
4933 }
4934 md_wakeup_thread(mddev->thread);
4935 }
4936
4937 static int start_dirty_degraded;
4938
4939 int md_run(struct mddev *mddev)
4940 {
4941 int err;
4942 struct md_rdev *rdev;
4943 struct md_personality *pers;
4944
4945 if (list_empty(&mddev->disks))
4946 /* cannot run an array with no devices.. */
4947 return -EINVAL;
4948
4949 if (mddev->pers)
4950 return -EBUSY;
4951 /* Cannot run until previous stop completes properly */
4952 if (mddev->sysfs_active)
4953 return -EBUSY;
4954
4955 /*
4956 * Analyze all RAID superblock(s)
4957 */
4958 if (!mddev->raid_disks) {
4959 if (!mddev->persistent)
4960 return -EINVAL;
4961 analyze_sbs(mddev);
4962 }
4963
4964 if (mddev->level != LEVEL_NONE)
4965 request_module("md-level-%d", mddev->level);
4966 else if (mddev->clevel[0])
4967 request_module("md-%s", mddev->clevel);
4968
4969 /*
4970 * Drop all container device buffers, from now on
4971 * the only valid external interface is through the md
4972 * device.
4973 */
4974 rdev_for_each(rdev, mddev) {
4975 if (test_bit(Faulty, &rdev->flags))
4976 continue;
4977 sync_blockdev(rdev->bdev);
4978 invalidate_bdev(rdev->bdev);
4979
4980 /* perform some consistency tests on the device.
4981 * We don't want the data to overlap the metadata,
4982 * Internal Bitmap issues have been handled elsewhere.
4983 */
4984 if (rdev->meta_bdev) {
4985 /* Nothing to check */;
4986 } else if (rdev->data_offset < rdev->sb_start) {
4987 if (mddev->dev_sectors &&
4988 rdev->data_offset + mddev->dev_sectors
4989 > rdev->sb_start) {
4990 printk("md: %s: data overlaps metadata\n",
4991 mdname(mddev));
4992 return -EINVAL;
4993 }
4994 } else {
4995 if (rdev->sb_start + rdev->sb_size/512
4996 > rdev->data_offset) {
4997 printk("md: %s: metadata overlaps data\n",
4998 mdname(mddev));
4999 return -EINVAL;
5000 }
5001 }
5002 sysfs_notify_dirent_safe(rdev->sysfs_state);
5003 }
5004
5005 if (mddev->bio_set == NULL)
5006 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5007 sizeof(struct mddev *));
5008
5009 spin_lock(&pers_lock);
5010 pers = find_pers(mddev->level, mddev->clevel);
5011 if (!pers || !try_module_get(pers->owner)) {
5012 spin_unlock(&pers_lock);
5013 if (mddev->level != LEVEL_NONE)
5014 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5015 mddev->level);
5016 else
5017 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5018 mddev->clevel);
5019 return -EINVAL;
5020 }
5021 mddev->pers = pers;
5022 spin_unlock(&pers_lock);
5023 if (mddev->level != pers->level) {
5024 mddev->level = pers->level;
5025 mddev->new_level = pers->level;
5026 }
5027 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5028
5029 if (mddev->reshape_position != MaxSector &&
5030 pers->start_reshape == NULL) {
5031 /* This personality cannot handle reshaping... */
5032 mddev->pers = NULL;
5033 module_put(pers->owner);
5034 return -EINVAL;
5035 }
5036
5037 if (pers->sync_request) {
5038 /* Warn if this is a potentially silly
5039 * configuration.
5040 */
5041 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5042 struct md_rdev *rdev2;
5043 int warned = 0;
5044
5045 rdev_for_each(rdev, mddev)
5046 rdev_for_each(rdev2, mddev) {
5047 if (rdev < rdev2 &&
5048 rdev->bdev->bd_contains ==
5049 rdev2->bdev->bd_contains) {
5050 printk(KERN_WARNING
5051 "%s: WARNING: %s appears to be"
5052 " on the same physical disk as"
5053 " %s.\n",
5054 mdname(mddev),
5055 bdevname(rdev->bdev,b),
5056 bdevname(rdev2->bdev,b2));
5057 warned = 1;
5058 }
5059 }
5060
5061 if (warned)
5062 printk(KERN_WARNING
5063 "True protection against single-disk"
5064 " failure might be compromised.\n");
5065 }
5066
5067 mddev->recovery = 0;
5068 /* may be over-ridden by personality */
5069 mddev->resync_max_sectors = mddev->dev_sectors;
5070
5071 mddev->ok_start_degraded = start_dirty_degraded;
5072
5073 if (start_readonly && mddev->ro == 0)
5074 mddev->ro = 2; /* read-only, but switch on first write */
5075
5076 err = mddev->pers->run(mddev);
5077 if (err)
5078 printk(KERN_ERR "md: pers->run() failed ...\n");
5079 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5080 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5081 " but 'external_size' not in effect?\n", __func__);
5082 printk(KERN_ERR
5083 "md: invalid array_size %llu > default size %llu\n",
5084 (unsigned long long)mddev->array_sectors / 2,
5085 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5086 err = -EINVAL;
5087 mddev->pers->stop(mddev);
5088 }
5089 if (err == 0 && mddev->pers->sync_request &&
5090 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5091 err = bitmap_create(mddev);
5092 if (err) {
5093 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5094 mdname(mddev), err);
5095 mddev->pers->stop(mddev);
5096 }
5097 }
5098 if (err) {
5099 module_put(mddev->pers->owner);
5100 mddev->pers = NULL;
5101 bitmap_destroy(mddev);
5102 return err;
5103 }
5104 if (mddev->pers->sync_request) {
5105 if (mddev->kobj.sd &&
5106 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5107 printk(KERN_WARNING
5108 "md: cannot register extra attributes for %s\n",
5109 mdname(mddev));
5110 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5111 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5112 mddev->ro = 0;
5113
5114 atomic_set(&mddev->writes_pending,0);
5115 atomic_set(&mddev->max_corr_read_errors,
5116 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5117 mddev->safemode = 0;
5118 mddev->safemode_timer.function = md_safemode_timeout;
5119 mddev->safemode_timer.data = (unsigned long) mddev;
5120 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5121 mddev->in_sync = 1;
5122 smp_wmb();
5123 mddev->ready = 1;
5124 rdev_for_each(rdev, mddev)
5125 if (rdev->raid_disk >= 0)
5126 if (sysfs_link_rdev(mddev, rdev))
5127 /* failure here is OK */;
5128
5129 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5130
5131 if (mddev->flags)
5132 md_update_sb(mddev, 0);
5133
5134 md_new_event(mddev);
5135 sysfs_notify_dirent_safe(mddev->sysfs_state);
5136 sysfs_notify_dirent_safe(mddev->sysfs_action);
5137 sysfs_notify(&mddev->kobj, NULL, "degraded");
5138 return 0;
5139 }
5140 EXPORT_SYMBOL_GPL(md_run);
5141
5142 static int do_md_run(struct mddev *mddev)
5143 {
5144 int err;
5145
5146 err = md_run(mddev);
5147 if (err)
5148 goto out;
5149 err = bitmap_load(mddev);
5150 if (err) {
5151 bitmap_destroy(mddev);
5152 goto out;
5153 }
5154
5155 md_wakeup_thread(mddev->thread);
5156 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5157
5158 set_capacity(mddev->gendisk, mddev->array_sectors);
5159 revalidate_disk(mddev->gendisk);
5160 mddev->changed = 1;
5161 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5162 out:
5163 return err;
5164 }
5165
5166 static int restart_array(struct mddev *mddev)
5167 {
5168 struct gendisk *disk = mddev->gendisk;
5169
5170 /* Complain if it has no devices */
5171 if (list_empty(&mddev->disks))
5172 return -ENXIO;
5173 if (!mddev->pers)
5174 return -EINVAL;
5175 if (!mddev->ro)
5176 return -EBUSY;
5177 mddev->safemode = 0;
5178 mddev->ro = 0;
5179 set_disk_ro(disk, 0);
5180 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5181 mdname(mddev));
5182 /* Kick recovery or resync if necessary */
5183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5184 md_wakeup_thread(mddev->thread);
5185 md_wakeup_thread(mddev->sync_thread);
5186 sysfs_notify_dirent_safe(mddev->sysfs_state);
5187 return 0;
5188 }
5189
5190 /* similar to deny_write_access, but accounts for our holding a reference
5191 * to the file ourselves */
5192 static int deny_bitmap_write_access(struct file * file)
5193 {
5194 struct inode *inode = file->f_mapping->host;
5195
5196 spin_lock(&inode->i_lock);
5197 if (atomic_read(&inode->i_writecount) > 1) {
5198 spin_unlock(&inode->i_lock);
5199 return -ETXTBSY;
5200 }
5201 atomic_set(&inode->i_writecount, -1);
5202 spin_unlock(&inode->i_lock);
5203
5204 return 0;
5205 }
5206
5207 void restore_bitmap_write_access(struct file *file)
5208 {
5209 struct inode *inode = file->f_mapping->host;
5210
5211 spin_lock(&inode->i_lock);
5212 atomic_set(&inode->i_writecount, 1);
5213 spin_unlock(&inode->i_lock);
5214 }
5215
5216 static void md_clean(struct mddev *mddev)
5217 {
5218 mddev->array_sectors = 0;
5219 mddev->external_size = 0;
5220 mddev->dev_sectors = 0;
5221 mddev->raid_disks = 0;
5222 mddev->recovery_cp = 0;
5223 mddev->resync_min = 0;
5224 mddev->resync_max = MaxSector;
5225 mddev->reshape_position = MaxSector;
5226 mddev->external = 0;
5227 mddev->persistent = 0;
5228 mddev->level = LEVEL_NONE;
5229 mddev->clevel[0] = 0;
5230 mddev->flags = 0;
5231 mddev->ro = 0;
5232 mddev->metadata_type[0] = 0;
5233 mddev->chunk_sectors = 0;
5234 mddev->ctime = mddev->utime = 0;
5235 mddev->layout = 0;
5236 mddev->max_disks = 0;
5237 mddev->events = 0;
5238 mddev->can_decrease_events = 0;
5239 mddev->delta_disks = 0;
5240 mddev->reshape_backwards = 0;
5241 mddev->new_level = LEVEL_NONE;
5242 mddev->new_layout = 0;
5243 mddev->new_chunk_sectors = 0;
5244 mddev->curr_resync = 0;
5245 mddev->resync_mismatches = 0;
5246 mddev->suspend_lo = mddev->suspend_hi = 0;
5247 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5248 mddev->recovery = 0;
5249 mddev->in_sync = 0;
5250 mddev->changed = 0;
5251 mddev->degraded = 0;
5252 mddev->safemode = 0;
5253 mddev->merge_check_needed = 0;
5254 mddev->bitmap_info.offset = 0;
5255 mddev->bitmap_info.default_offset = 0;
5256 mddev->bitmap_info.default_space = 0;
5257 mddev->bitmap_info.chunksize = 0;
5258 mddev->bitmap_info.daemon_sleep = 0;
5259 mddev->bitmap_info.max_write_behind = 0;
5260 }
5261
5262 static void __md_stop_writes(struct mddev *mddev)
5263 {
5264 if (mddev->sync_thread) {
5265 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5266 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5267 reap_sync_thread(mddev);
5268 }
5269
5270 del_timer_sync(&mddev->safemode_timer);
5271
5272 bitmap_flush(mddev);
5273 md_super_wait(mddev);
5274
5275 if (!mddev->in_sync || mddev->flags) {
5276 /* mark array as shutdown cleanly */
5277 mddev->in_sync = 1;
5278 md_update_sb(mddev, 1);
5279 }
5280 }
5281
5282 void md_stop_writes(struct mddev *mddev)
5283 {
5284 mddev_lock(mddev);
5285 __md_stop_writes(mddev);
5286 mddev_unlock(mddev);
5287 }
5288 EXPORT_SYMBOL_GPL(md_stop_writes);
5289
5290 void md_stop(struct mddev *mddev)
5291 {
5292 mddev->ready = 0;
5293 mddev->pers->stop(mddev);
5294 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5295 mddev->to_remove = &md_redundancy_group;
5296 module_put(mddev->pers->owner);
5297 mddev->pers = NULL;
5298 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5299 }
5300 EXPORT_SYMBOL_GPL(md_stop);
5301
5302 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5303 {
5304 int err = 0;
5305 mutex_lock(&mddev->open_mutex);
5306 if (atomic_read(&mddev->openers) > !!bdev) {
5307 printk("md: %s still in use.\n",mdname(mddev));
5308 err = -EBUSY;
5309 goto out;
5310 }
5311 if (bdev)
5312 sync_blockdev(bdev);
5313 if (mddev->pers) {
5314 __md_stop_writes(mddev);
5315
5316 err = -ENXIO;
5317 if (mddev->ro==1)
5318 goto out;
5319 mddev->ro = 1;
5320 set_disk_ro(mddev->gendisk, 1);
5321 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5322 sysfs_notify_dirent_safe(mddev->sysfs_state);
5323 err = 0;
5324 }
5325 out:
5326 mutex_unlock(&mddev->open_mutex);
5327 return err;
5328 }
5329
5330 /* mode:
5331 * 0 - completely stop and dis-assemble array
5332 * 2 - stop but do not disassemble array
5333 */
5334 static int do_md_stop(struct mddev * mddev, int mode,
5335 struct block_device *bdev)
5336 {
5337 struct gendisk *disk = mddev->gendisk;
5338 struct md_rdev *rdev;
5339
5340 mutex_lock(&mddev->open_mutex);
5341 if (atomic_read(&mddev->openers) > !!bdev ||
5342 mddev->sysfs_active) {
5343 printk("md: %s still in use.\n",mdname(mddev));
5344 mutex_unlock(&mddev->open_mutex);
5345 return -EBUSY;
5346 }
5347 if (bdev)
5348 /* It is possible IO was issued on some other
5349 * open file which was closed before we took ->open_mutex.
5350 * As that was not the last close __blkdev_put will not
5351 * have called sync_blockdev, so we must.
5352 */
5353 sync_blockdev(bdev);
5354
5355 if (mddev->pers) {
5356 if (mddev->ro)
5357 set_disk_ro(disk, 0);
5358
5359 __md_stop_writes(mddev);
5360 md_stop(mddev);
5361 mddev->queue->merge_bvec_fn = NULL;
5362 mddev->queue->backing_dev_info.congested_fn = NULL;
5363
5364 /* tell userspace to handle 'inactive' */
5365 sysfs_notify_dirent_safe(mddev->sysfs_state);
5366
5367 rdev_for_each(rdev, mddev)
5368 if (rdev->raid_disk >= 0)
5369 sysfs_unlink_rdev(mddev, rdev);
5370
5371 set_capacity(disk, 0);
5372 mutex_unlock(&mddev->open_mutex);
5373 mddev->changed = 1;
5374 revalidate_disk(disk);
5375
5376 if (mddev->ro)
5377 mddev->ro = 0;
5378 } else
5379 mutex_unlock(&mddev->open_mutex);
5380 /*
5381 * Free resources if final stop
5382 */
5383 if (mode == 0) {
5384 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5385
5386 bitmap_destroy(mddev);
5387 if (mddev->bitmap_info.file) {
5388 restore_bitmap_write_access(mddev->bitmap_info.file);
5389 fput(mddev->bitmap_info.file);
5390 mddev->bitmap_info.file = NULL;
5391 }
5392 mddev->bitmap_info.offset = 0;
5393
5394 export_array(mddev);
5395
5396 md_clean(mddev);
5397 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5398 if (mddev->hold_active == UNTIL_STOP)
5399 mddev->hold_active = 0;
5400 }
5401 blk_integrity_unregister(disk);
5402 md_new_event(mddev);
5403 sysfs_notify_dirent_safe(mddev->sysfs_state);
5404 return 0;
5405 }
5406
5407 #ifndef MODULE
5408 static void autorun_array(struct mddev *mddev)
5409 {
5410 struct md_rdev *rdev;
5411 int err;
5412
5413 if (list_empty(&mddev->disks))
5414 return;
5415
5416 printk(KERN_INFO "md: running: ");
5417
5418 rdev_for_each(rdev, mddev) {
5419 char b[BDEVNAME_SIZE];
5420 printk("<%s>", bdevname(rdev->bdev,b));
5421 }
5422 printk("\n");
5423
5424 err = do_md_run(mddev);
5425 if (err) {
5426 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5427 do_md_stop(mddev, 0, NULL);
5428 }
5429 }
5430
5431 /*
5432 * lets try to run arrays based on all disks that have arrived
5433 * until now. (those are in pending_raid_disks)
5434 *
5435 * the method: pick the first pending disk, collect all disks with
5436 * the same UUID, remove all from the pending list and put them into
5437 * the 'same_array' list. Then order this list based on superblock
5438 * update time (freshest comes first), kick out 'old' disks and
5439 * compare superblocks. If everything's fine then run it.
5440 *
5441 * If "unit" is allocated, then bump its reference count
5442 */
5443 static void autorun_devices(int part)
5444 {
5445 struct md_rdev *rdev0, *rdev, *tmp;
5446 struct mddev *mddev;
5447 char b[BDEVNAME_SIZE];
5448
5449 printk(KERN_INFO "md: autorun ...\n");
5450 while (!list_empty(&pending_raid_disks)) {
5451 int unit;
5452 dev_t dev;
5453 LIST_HEAD(candidates);
5454 rdev0 = list_entry(pending_raid_disks.next,
5455 struct md_rdev, same_set);
5456
5457 printk(KERN_INFO "md: considering %s ...\n",
5458 bdevname(rdev0->bdev,b));
5459 INIT_LIST_HEAD(&candidates);
5460 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5461 if (super_90_load(rdev, rdev0, 0) >= 0) {
5462 printk(KERN_INFO "md: adding %s ...\n",
5463 bdevname(rdev->bdev,b));
5464 list_move(&rdev->same_set, &candidates);
5465 }
5466 /*
5467 * now we have a set of devices, with all of them having
5468 * mostly sane superblocks. It's time to allocate the
5469 * mddev.
5470 */
5471 if (part) {
5472 dev = MKDEV(mdp_major,
5473 rdev0->preferred_minor << MdpMinorShift);
5474 unit = MINOR(dev) >> MdpMinorShift;
5475 } else {
5476 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5477 unit = MINOR(dev);
5478 }
5479 if (rdev0->preferred_minor != unit) {
5480 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5481 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5482 break;
5483 }
5484
5485 md_probe(dev, NULL, NULL);
5486 mddev = mddev_find(dev);
5487 if (!mddev || !mddev->gendisk) {
5488 if (mddev)
5489 mddev_put(mddev);
5490 printk(KERN_ERR
5491 "md: cannot allocate memory for md drive.\n");
5492 break;
5493 }
5494 if (mddev_lock(mddev))
5495 printk(KERN_WARNING "md: %s locked, cannot run\n",
5496 mdname(mddev));
5497 else if (mddev->raid_disks || mddev->major_version
5498 || !list_empty(&mddev->disks)) {
5499 printk(KERN_WARNING
5500 "md: %s already running, cannot run %s\n",
5501 mdname(mddev), bdevname(rdev0->bdev,b));
5502 mddev_unlock(mddev);
5503 } else {
5504 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5505 mddev->persistent = 1;
5506 rdev_for_each_list(rdev, tmp, &candidates) {
5507 list_del_init(&rdev->same_set);
5508 if (bind_rdev_to_array(rdev, mddev))
5509 export_rdev(rdev);
5510 }
5511 autorun_array(mddev);
5512 mddev_unlock(mddev);
5513 }
5514 /* on success, candidates will be empty, on error
5515 * it won't...
5516 */
5517 rdev_for_each_list(rdev, tmp, &candidates) {
5518 list_del_init(&rdev->same_set);
5519 export_rdev(rdev);
5520 }
5521 mddev_put(mddev);
5522 }
5523 printk(KERN_INFO "md: ... autorun DONE.\n");
5524 }
5525 #endif /* !MODULE */
5526
5527 static int get_version(void __user * arg)
5528 {
5529 mdu_version_t ver;
5530
5531 ver.major = MD_MAJOR_VERSION;
5532 ver.minor = MD_MINOR_VERSION;
5533 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5534
5535 if (copy_to_user(arg, &ver, sizeof(ver)))
5536 return -EFAULT;
5537
5538 return 0;
5539 }
5540
5541 static int get_array_info(struct mddev * mddev, void __user * arg)
5542 {
5543 mdu_array_info_t info;
5544 int nr,working,insync,failed,spare;
5545 struct md_rdev *rdev;
5546
5547 nr=working=insync=failed=spare=0;
5548 rdev_for_each(rdev, mddev) {
5549 nr++;
5550 if (test_bit(Faulty, &rdev->flags))
5551 failed++;
5552 else {
5553 working++;
5554 if (test_bit(In_sync, &rdev->flags))
5555 insync++;
5556 else
5557 spare++;
5558 }
5559 }
5560
5561 info.major_version = mddev->major_version;
5562 info.minor_version = mddev->minor_version;
5563 info.patch_version = MD_PATCHLEVEL_VERSION;
5564 info.ctime = mddev->ctime;
5565 info.level = mddev->level;
5566 info.size = mddev->dev_sectors / 2;
5567 if (info.size != mddev->dev_sectors / 2) /* overflow */
5568 info.size = -1;
5569 info.nr_disks = nr;
5570 info.raid_disks = mddev->raid_disks;
5571 info.md_minor = mddev->md_minor;
5572 info.not_persistent= !mddev->persistent;
5573
5574 info.utime = mddev->utime;
5575 info.state = 0;
5576 if (mddev->in_sync)
5577 info.state = (1<<MD_SB_CLEAN);
5578 if (mddev->bitmap && mddev->bitmap_info.offset)
5579 info.state = (1<<MD_SB_BITMAP_PRESENT);
5580 info.active_disks = insync;
5581 info.working_disks = working;
5582 info.failed_disks = failed;
5583 info.spare_disks = spare;
5584
5585 info.layout = mddev->layout;
5586 info.chunk_size = mddev->chunk_sectors << 9;
5587
5588 if (copy_to_user(arg, &info, sizeof(info)))
5589 return -EFAULT;
5590
5591 return 0;
5592 }
5593
5594 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5595 {
5596 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5597 char *ptr, *buf = NULL;
5598 int err = -ENOMEM;
5599
5600 if (md_allow_write(mddev))
5601 file = kmalloc(sizeof(*file), GFP_NOIO);
5602 else
5603 file = kmalloc(sizeof(*file), GFP_KERNEL);
5604
5605 if (!file)
5606 goto out;
5607
5608 /* bitmap disabled, zero the first byte and copy out */
5609 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5610 file->pathname[0] = '\0';
5611 goto copy_out;
5612 }
5613
5614 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5615 if (!buf)
5616 goto out;
5617
5618 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5619 buf, sizeof(file->pathname));
5620 if (IS_ERR(ptr))
5621 goto out;
5622
5623 strcpy(file->pathname, ptr);
5624
5625 copy_out:
5626 err = 0;
5627 if (copy_to_user(arg, file, sizeof(*file)))
5628 err = -EFAULT;
5629 out:
5630 kfree(buf);
5631 kfree(file);
5632 return err;
5633 }
5634
5635 static int get_disk_info(struct mddev * mddev, void __user * arg)
5636 {
5637 mdu_disk_info_t info;
5638 struct md_rdev *rdev;
5639
5640 if (copy_from_user(&info, arg, sizeof(info)))
5641 return -EFAULT;
5642
5643 rdev = find_rdev_nr(mddev, info.number);
5644 if (rdev) {
5645 info.major = MAJOR(rdev->bdev->bd_dev);
5646 info.minor = MINOR(rdev->bdev->bd_dev);
5647 info.raid_disk = rdev->raid_disk;
5648 info.state = 0;
5649 if (test_bit(Faulty, &rdev->flags))
5650 info.state |= (1<<MD_DISK_FAULTY);
5651 else if (test_bit(In_sync, &rdev->flags)) {
5652 info.state |= (1<<MD_DISK_ACTIVE);
5653 info.state |= (1<<MD_DISK_SYNC);
5654 }
5655 if (test_bit(WriteMostly, &rdev->flags))
5656 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5657 } else {
5658 info.major = info.minor = 0;
5659 info.raid_disk = -1;
5660 info.state = (1<<MD_DISK_REMOVED);
5661 }
5662
5663 if (copy_to_user(arg, &info, sizeof(info)))
5664 return -EFAULT;
5665
5666 return 0;
5667 }
5668
5669 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5670 {
5671 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5672 struct md_rdev *rdev;
5673 dev_t dev = MKDEV(info->major,info->minor);
5674
5675 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5676 return -EOVERFLOW;
5677
5678 if (!mddev->raid_disks) {
5679 int err;
5680 /* expecting a device which has a superblock */
5681 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5682 if (IS_ERR(rdev)) {
5683 printk(KERN_WARNING
5684 "md: md_import_device returned %ld\n",
5685 PTR_ERR(rdev));
5686 return PTR_ERR(rdev);
5687 }
5688 if (!list_empty(&mddev->disks)) {
5689 struct md_rdev *rdev0
5690 = list_entry(mddev->disks.next,
5691 struct md_rdev, same_set);
5692 err = super_types[mddev->major_version]
5693 .load_super(rdev, rdev0, mddev->minor_version);
5694 if (err < 0) {
5695 printk(KERN_WARNING
5696 "md: %s has different UUID to %s\n",
5697 bdevname(rdev->bdev,b),
5698 bdevname(rdev0->bdev,b2));
5699 export_rdev(rdev);
5700 return -EINVAL;
5701 }
5702 }
5703 err = bind_rdev_to_array(rdev, mddev);
5704 if (err)
5705 export_rdev(rdev);
5706 return err;
5707 }
5708
5709 /*
5710 * add_new_disk can be used once the array is assembled
5711 * to add "hot spares". They must already have a superblock
5712 * written
5713 */
5714 if (mddev->pers) {
5715 int err;
5716 if (!mddev->pers->hot_add_disk) {
5717 printk(KERN_WARNING
5718 "%s: personality does not support diskops!\n",
5719 mdname(mddev));
5720 return -EINVAL;
5721 }
5722 if (mddev->persistent)
5723 rdev = md_import_device(dev, mddev->major_version,
5724 mddev->minor_version);
5725 else
5726 rdev = md_import_device(dev, -1, -1);
5727 if (IS_ERR(rdev)) {
5728 printk(KERN_WARNING
5729 "md: md_import_device returned %ld\n",
5730 PTR_ERR(rdev));
5731 return PTR_ERR(rdev);
5732 }
5733 /* set saved_raid_disk if appropriate */
5734 if (!mddev->persistent) {
5735 if (info->state & (1<<MD_DISK_SYNC) &&
5736 info->raid_disk < mddev->raid_disks) {
5737 rdev->raid_disk = info->raid_disk;
5738 set_bit(In_sync, &rdev->flags);
5739 } else
5740 rdev->raid_disk = -1;
5741 } else
5742 super_types[mddev->major_version].
5743 validate_super(mddev, rdev);
5744 if ((info->state & (1<<MD_DISK_SYNC)) &&
5745 rdev->raid_disk != info->raid_disk) {
5746 /* This was a hot-add request, but events doesn't
5747 * match, so reject it.
5748 */
5749 export_rdev(rdev);
5750 return -EINVAL;
5751 }
5752
5753 if (test_bit(In_sync, &rdev->flags))
5754 rdev->saved_raid_disk = rdev->raid_disk;
5755 else
5756 rdev->saved_raid_disk = -1;
5757
5758 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5759 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5760 set_bit(WriteMostly, &rdev->flags);
5761 else
5762 clear_bit(WriteMostly, &rdev->flags);
5763
5764 rdev->raid_disk = -1;
5765 err = bind_rdev_to_array(rdev, mddev);
5766 if (!err && !mddev->pers->hot_remove_disk) {
5767 /* If there is hot_add_disk but no hot_remove_disk
5768 * then added disks for geometry changes,
5769 * and should be added immediately.
5770 */
5771 super_types[mddev->major_version].
5772 validate_super(mddev, rdev);
5773 err = mddev->pers->hot_add_disk(mddev, rdev);
5774 if (err)
5775 unbind_rdev_from_array(rdev);
5776 }
5777 if (err)
5778 export_rdev(rdev);
5779 else
5780 sysfs_notify_dirent_safe(rdev->sysfs_state);
5781
5782 md_update_sb(mddev, 1);
5783 if (mddev->degraded)
5784 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5785 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5786 if (!err)
5787 md_new_event(mddev);
5788 md_wakeup_thread(mddev->thread);
5789 return err;
5790 }
5791
5792 /* otherwise, add_new_disk is only allowed
5793 * for major_version==0 superblocks
5794 */
5795 if (mddev->major_version != 0) {
5796 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5797 mdname(mddev));
5798 return -EINVAL;
5799 }
5800
5801 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5802 int err;
5803 rdev = md_import_device(dev, -1, 0);
5804 if (IS_ERR(rdev)) {
5805 printk(KERN_WARNING
5806 "md: error, md_import_device() returned %ld\n",
5807 PTR_ERR(rdev));
5808 return PTR_ERR(rdev);
5809 }
5810 rdev->desc_nr = info->number;
5811 if (info->raid_disk < mddev->raid_disks)
5812 rdev->raid_disk = info->raid_disk;
5813 else
5814 rdev->raid_disk = -1;
5815
5816 if (rdev->raid_disk < mddev->raid_disks)
5817 if (info->state & (1<<MD_DISK_SYNC))
5818 set_bit(In_sync, &rdev->flags);
5819
5820 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5821 set_bit(WriteMostly, &rdev->flags);
5822
5823 if (!mddev->persistent) {
5824 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5825 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5826 } else
5827 rdev->sb_start = calc_dev_sboffset(rdev);
5828 rdev->sectors = rdev->sb_start;
5829
5830 err = bind_rdev_to_array(rdev, mddev);
5831 if (err) {
5832 export_rdev(rdev);
5833 return err;
5834 }
5835 }
5836
5837 return 0;
5838 }
5839
5840 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5841 {
5842 char b[BDEVNAME_SIZE];
5843 struct md_rdev *rdev;
5844
5845 rdev = find_rdev(mddev, dev);
5846 if (!rdev)
5847 return -ENXIO;
5848
5849 if (rdev->raid_disk >= 0)
5850 goto busy;
5851
5852 kick_rdev_from_array(rdev);
5853 md_update_sb(mddev, 1);
5854 md_new_event(mddev);
5855
5856 return 0;
5857 busy:
5858 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5859 bdevname(rdev->bdev,b), mdname(mddev));
5860 return -EBUSY;
5861 }
5862
5863 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5864 {
5865 char b[BDEVNAME_SIZE];
5866 int err;
5867 struct md_rdev *rdev;
5868
5869 if (!mddev->pers)
5870 return -ENODEV;
5871
5872 if (mddev->major_version != 0) {
5873 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5874 " version-0 superblocks.\n",
5875 mdname(mddev));
5876 return -EINVAL;
5877 }
5878 if (!mddev->pers->hot_add_disk) {
5879 printk(KERN_WARNING
5880 "%s: personality does not support diskops!\n",
5881 mdname(mddev));
5882 return -EINVAL;
5883 }
5884
5885 rdev = md_import_device(dev, -1, 0);
5886 if (IS_ERR(rdev)) {
5887 printk(KERN_WARNING
5888 "md: error, md_import_device() returned %ld\n",
5889 PTR_ERR(rdev));
5890 return -EINVAL;
5891 }
5892
5893 if (mddev->persistent)
5894 rdev->sb_start = calc_dev_sboffset(rdev);
5895 else
5896 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5897
5898 rdev->sectors = rdev->sb_start;
5899
5900 if (test_bit(Faulty, &rdev->flags)) {
5901 printk(KERN_WARNING
5902 "md: can not hot-add faulty %s disk to %s!\n",
5903 bdevname(rdev->bdev,b), mdname(mddev));
5904 err = -EINVAL;
5905 goto abort_export;
5906 }
5907 clear_bit(In_sync, &rdev->flags);
5908 rdev->desc_nr = -1;
5909 rdev->saved_raid_disk = -1;
5910 err = bind_rdev_to_array(rdev, mddev);
5911 if (err)
5912 goto abort_export;
5913
5914 /*
5915 * The rest should better be atomic, we can have disk failures
5916 * noticed in interrupt contexts ...
5917 */
5918
5919 rdev->raid_disk = -1;
5920
5921 md_update_sb(mddev, 1);
5922
5923 /*
5924 * Kick recovery, maybe this spare has to be added to the
5925 * array immediately.
5926 */
5927 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5928 md_wakeup_thread(mddev->thread);
5929 md_new_event(mddev);
5930 return 0;
5931
5932 abort_export:
5933 export_rdev(rdev);
5934 return err;
5935 }
5936
5937 static int set_bitmap_file(struct mddev *mddev, int fd)
5938 {
5939 int err;
5940
5941 if (mddev->pers) {
5942 if (!mddev->pers->quiesce)
5943 return -EBUSY;
5944 if (mddev->recovery || mddev->sync_thread)
5945 return -EBUSY;
5946 /* we should be able to change the bitmap.. */
5947 }
5948
5949
5950 if (fd >= 0) {
5951 if (mddev->bitmap)
5952 return -EEXIST; /* cannot add when bitmap is present */
5953 mddev->bitmap_info.file = fget(fd);
5954
5955 if (mddev->bitmap_info.file == NULL) {
5956 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5957 mdname(mddev));
5958 return -EBADF;
5959 }
5960
5961 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5962 if (err) {
5963 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5964 mdname(mddev));
5965 fput(mddev->bitmap_info.file);
5966 mddev->bitmap_info.file = NULL;
5967 return err;
5968 }
5969 mddev->bitmap_info.offset = 0; /* file overrides offset */
5970 } else if (mddev->bitmap == NULL)
5971 return -ENOENT; /* cannot remove what isn't there */
5972 err = 0;
5973 if (mddev->pers) {
5974 mddev->pers->quiesce(mddev, 1);
5975 if (fd >= 0) {
5976 err = bitmap_create(mddev);
5977 if (!err)
5978 err = bitmap_load(mddev);
5979 }
5980 if (fd < 0 || err) {
5981 bitmap_destroy(mddev);
5982 fd = -1; /* make sure to put the file */
5983 }
5984 mddev->pers->quiesce(mddev, 0);
5985 }
5986 if (fd < 0) {
5987 if (mddev->bitmap_info.file) {
5988 restore_bitmap_write_access(mddev->bitmap_info.file);
5989 fput(mddev->bitmap_info.file);
5990 }
5991 mddev->bitmap_info.file = NULL;
5992 }
5993
5994 return err;
5995 }
5996
5997 /*
5998 * set_array_info is used two different ways
5999 * The original usage is when creating a new array.
6000 * In this usage, raid_disks is > 0 and it together with
6001 * level, size, not_persistent,layout,chunksize determine the
6002 * shape of the array.
6003 * This will always create an array with a type-0.90.0 superblock.
6004 * The newer usage is when assembling an array.
6005 * In this case raid_disks will be 0, and the major_version field is
6006 * use to determine which style super-blocks are to be found on the devices.
6007 * The minor and patch _version numbers are also kept incase the
6008 * super_block handler wishes to interpret them.
6009 */
6010 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6011 {
6012
6013 if (info->raid_disks == 0) {
6014 /* just setting version number for superblock loading */
6015 if (info->major_version < 0 ||
6016 info->major_version >= ARRAY_SIZE(super_types) ||
6017 super_types[info->major_version].name == NULL) {
6018 /* maybe try to auto-load a module? */
6019 printk(KERN_INFO
6020 "md: superblock version %d not known\n",
6021 info->major_version);
6022 return -EINVAL;
6023 }
6024 mddev->major_version = info->major_version;
6025 mddev->minor_version = info->minor_version;
6026 mddev->patch_version = info->patch_version;
6027 mddev->persistent = !info->not_persistent;
6028 /* ensure mddev_put doesn't delete this now that there
6029 * is some minimal configuration.
6030 */
6031 mddev->ctime = get_seconds();
6032 return 0;
6033 }
6034 mddev->major_version = MD_MAJOR_VERSION;
6035 mddev->minor_version = MD_MINOR_VERSION;
6036 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6037 mddev->ctime = get_seconds();
6038
6039 mddev->level = info->level;
6040 mddev->clevel[0] = 0;
6041 mddev->dev_sectors = 2 * (sector_t)info->size;
6042 mddev->raid_disks = info->raid_disks;
6043 /* don't set md_minor, it is determined by which /dev/md* was
6044 * openned
6045 */
6046 if (info->state & (1<<MD_SB_CLEAN))
6047 mddev->recovery_cp = MaxSector;
6048 else
6049 mddev->recovery_cp = 0;
6050 mddev->persistent = ! info->not_persistent;
6051 mddev->external = 0;
6052
6053 mddev->layout = info->layout;
6054 mddev->chunk_sectors = info->chunk_size >> 9;
6055
6056 mddev->max_disks = MD_SB_DISKS;
6057
6058 if (mddev->persistent)
6059 mddev->flags = 0;
6060 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6061
6062 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6063 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6064 mddev->bitmap_info.offset = 0;
6065
6066 mddev->reshape_position = MaxSector;
6067
6068 /*
6069 * Generate a 128 bit UUID
6070 */
6071 get_random_bytes(mddev->uuid, 16);
6072
6073 mddev->new_level = mddev->level;
6074 mddev->new_chunk_sectors = mddev->chunk_sectors;
6075 mddev->new_layout = mddev->layout;
6076 mddev->delta_disks = 0;
6077 mddev->reshape_backwards = 0;
6078
6079 return 0;
6080 }
6081
6082 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6083 {
6084 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6085
6086 if (mddev->external_size)
6087 return;
6088
6089 mddev->array_sectors = array_sectors;
6090 }
6091 EXPORT_SYMBOL(md_set_array_sectors);
6092
6093 static int update_size(struct mddev *mddev, sector_t num_sectors)
6094 {
6095 struct md_rdev *rdev;
6096 int rv;
6097 int fit = (num_sectors == 0);
6098
6099 if (mddev->pers->resize == NULL)
6100 return -EINVAL;
6101 /* The "num_sectors" is the number of sectors of each device that
6102 * is used. This can only make sense for arrays with redundancy.
6103 * linear and raid0 always use whatever space is available. We can only
6104 * consider changing this number if no resync or reconstruction is
6105 * happening, and if the new size is acceptable. It must fit before the
6106 * sb_start or, if that is <data_offset, it must fit before the size
6107 * of each device. If num_sectors is zero, we find the largest size
6108 * that fits.
6109 */
6110 if (mddev->sync_thread)
6111 return -EBUSY;
6112
6113 rdev_for_each(rdev, mddev) {
6114 sector_t avail = rdev->sectors;
6115
6116 if (fit && (num_sectors == 0 || num_sectors > avail))
6117 num_sectors = avail;
6118 if (avail < num_sectors)
6119 return -ENOSPC;
6120 }
6121 rv = mddev->pers->resize(mddev, num_sectors);
6122 if (!rv)
6123 revalidate_disk(mddev->gendisk);
6124 return rv;
6125 }
6126
6127 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6128 {
6129 int rv;
6130 struct md_rdev *rdev;
6131 /* change the number of raid disks */
6132 if (mddev->pers->check_reshape == NULL)
6133 return -EINVAL;
6134 if (raid_disks <= 0 ||
6135 (mddev->max_disks && raid_disks >= mddev->max_disks))
6136 return -EINVAL;
6137 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6138 return -EBUSY;
6139
6140 rdev_for_each(rdev, mddev) {
6141 if (mddev->raid_disks < raid_disks &&
6142 rdev->data_offset < rdev->new_data_offset)
6143 return -EINVAL;
6144 if (mddev->raid_disks > raid_disks &&
6145 rdev->data_offset > rdev->new_data_offset)
6146 return -EINVAL;
6147 }
6148
6149 mddev->delta_disks = raid_disks - mddev->raid_disks;
6150 if (mddev->delta_disks < 0)
6151 mddev->reshape_backwards = 1;
6152 else if (mddev->delta_disks > 0)
6153 mddev->reshape_backwards = 0;
6154
6155 rv = mddev->pers->check_reshape(mddev);
6156 if (rv < 0) {
6157 mddev->delta_disks = 0;
6158 mddev->reshape_backwards = 0;
6159 }
6160 return rv;
6161 }
6162
6163
6164 /*
6165 * update_array_info is used to change the configuration of an
6166 * on-line array.
6167 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6168 * fields in the info are checked against the array.
6169 * Any differences that cannot be handled will cause an error.
6170 * Normally, only one change can be managed at a time.
6171 */
6172 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6173 {
6174 int rv = 0;
6175 int cnt = 0;
6176 int state = 0;
6177
6178 /* calculate expected state,ignoring low bits */
6179 if (mddev->bitmap && mddev->bitmap_info.offset)
6180 state |= (1 << MD_SB_BITMAP_PRESENT);
6181
6182 if (mddev->major_version != info->major_version ||
6183 mddev->minor_version != info->minor_version ||
6184 /* mddev->patch_version != info->patch_version || */
6185 mddev->ctime != info->ctime ||
6186 mddev->level != info->level ||
6187 /* mddev->layout != info->layout || */
6188 !mddev->persistent != info->not_persistent||
6189 mddev->chunk_sectors != info->chunk_size >> 9 ||
6190 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6191 ((state^info->state) & 0xfffffe00)
6192 )
6193 return -EINVAL;
6194 /* Check there is only one change */
6195 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6196 cnt++;
6197 if (mddev->raid_disks != info->raid_disks)
6198 cnt++;
6199 if (mddev->layout != info->layout)
6200 cnt++;
6201 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6202 cnt++;
6203 if (cnt == 0)
6204 return 0;
6205 if (cnt > 1)
6206 return -EINVAL;
6207
6208 if (mddev->layout != info->layout) {
6209 /* Change layout
6210 * we don't need to do anything at the md level, the
6211 * personality will take care of it all.
6212 */
6213 if (mddev->pers->check_reshape == NULL)
6214 return -EINVAL;
6215 else {
6216 mddev->new_layout = info->layout;
6217 rv = mddev->pers->check_reshape(mddev);
6218 if (rv)
6219 mddev->new_layout = mddev->layout;
6220 return rv;
6221 }
6222 }
6223 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6224 rv = update_size(mddev, (sector_t)info->size * 2);
6225
6226 if (mddev->raid_disks != info->raid_disks)
6227 rv = update_raid_disks(mddev, info->raid_disks);
6228
6229 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6230 if (mddev->pers->quiesce == NULL)
6231 return -EINVAL;
6232 if (mddev->recovery || mddev->sync_thread)
6233 return -EBUSY;
6234 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6235 /* add the bitmap */
6236 if (mddev->bitmap)
6237 return -EEXIST;
6238 if (mddev->bitmap_info.default_offset == 0)
6239 return -EINVAL;
6240 mddev->bitmap_info.offset =
6241 mddev->bitmap_info.default_offset;
6242 mddev->bitmap_info.space =
6243 mddev->bitmap_info.default_space;
6244 mddev->pers->quiesce(mddev, 1);
6245 rv = bitmap_create(mddev);
6246 if (!rv)
6247 rv = bitmap_load(mddev);
6248 if (rv)
6249 bitmap_destroy(mddev);
6250 mddev->pers->quiesce(mddev, 0);
6251 } else {
6252 /* remove the bitmap */
6253 if (!mddev->bitmap)
6254 return -ENOENT;
6255 if (mddev->bitmap->storage.file)
6256 return -EINVAL;
6257 mddev->pers->quiesce(mddev, 1);
6258 bitmap_destroy(mddev);
6259 mddev->pers->quiesce(mddev, 0);
6260 mddev->bitmap_info.offset = 0;
6261 }
6262 }
6263 md_update_sb(mddev, 1);
6264 return rv;
6265 }
6266
6267 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6268 {
6269 struct md_rdev *rdev;
6270
6271 if (mddev->pers == NULL)
6272 return -ENODEV;
6273
6274 rdev = find_rdev(mddev, dev);
6275 if (!rdev)
6276 return -ENODEV;
6277
6278 md_error(mddev, rdev);
6279 if (!test_bit(Faulty, &rdev->flags))
6280 return -EBUSY;
6281 return 0;
6282 }
6283
6284 /*
6285 * We have a problem here : there is no easy way to give a CHS
6286 * virtual geometry. We currently pretend that we have a 2 heads
6287 * 4 sectors (with a BIG number of cylinders...). This drives
6288 * dosfs just mad... ;-)
6289 */
6290 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6291 {
6292 struct mddev *mddev = bdev->bd_disk->private_data;
6293
6294 geo->heads = 2;
6295 geo->sectors = 4;
6296 geo->cylinders = mddev->array_sectors / 8;
6297 return 0;
6298 }
6299
6300 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6301 unsigned int cmd, unsigned long arg)
6302 {
6303 int err = 0;
6304 void __user *argp = (void __user *)arg;
6305 struct mddev *mddev = NULL;
6306 int ro;
6307
6308 switch (cmd) {
6309 case RAID_VERSION:
6310 case GET_ARRAY_INFO:
6311 case GET_DISK_INFO:
6312 break;
6313 default:
6314 if (!capable(CAP_SYS_ADMIN))
6315 return -EACCES;
6316 }
6317
6318 /*
6319 * Commands dealing with the RAID driver but not any
6320 * particular array:
6321 */
6322 switch (cmd)
6323 {
6324 case RAID_VERSION:
6325 err = get_version(argp);
6326 goto done;
6327
6328 case PRINT_RAID_DEBUG:
6329 err = 0;
6330 md_print_devices();
6331 goto done;
6332
6333 #ifndef MODULE
6334 case RAID_AUTORUN:
6335 err = 0;
6336 autostart_arrays(arg);
6337 goto done;
6338 #endif
6339 default:;
6340 }
6341
6342 /*
6343 * Commands creating/starting a new array:
6344 */
6345
6346 mddev = bdev->bd_disk->private_data;
6347
6348 if (!mddev) {
6349 BUG();
6350 goto abort;
6351 }
6352
6353 err = mddev_lock(mddev);
6354 if (err) {
6355 printk(KERN_INFO
6356 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6357 err, cmd);
6358 goto abort;
6359 }
6360
6361 switch (cmd)
6362 {
6363 case SET_ARRAY_INFO:
6364 {
6365 mdu_array_info_t info;
6366 if (!arg)
6367 memset(&info, 0, sizeof(info));
6368 else if (copy_from_user(&info, argp, sizeof(info))) {
6369 err = -EFAULT;
6370 goto abort_unlock;
6371 }
6372 if (mddev->pers) {
6373 err = update_array_info(mddev, &info);
6374 if (err) {
6375 printk(KERN_WARNING "md: couldn't update"
6376 " array info. %d\n", err);
6377 goto abort_unlock;
6378 }
6379 goto done_unlock;
6380 }
6381 if (!list_empty(&mddev->disks)) {
6382 printk(KERN_WARNING
6383 "md: array %s already has disks!\n",
6384 mdname(mddev));
6385 err = -EBUSY;
6386 goto abort_unlock;
6387 }
6388 if (mddev->raid_disks) {
6389 printk(KERN_WARNING
6390 "md: array %s already initialised!\n",
6391 mdname(mddev));
6392 err = -EBUSY;
6393 goto abort_unlock;
6394 }
6395 err = set_array_info(mddev, &info);
6396 if (err) {
6397 printk(KERN_WARNING "md: couldn't set"
6398 " array info. %d\n", err);
6399 goto abort_unlock;
6400 }
6401 }
6402 goto done_unlock;
6403
6404 default:;
6405 }
6406
6407 /*
6408 * Commands querying/configuring an existing array:
6409 */
6410 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6411 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6412 if ((!mddev->raid_disks && !mddev->external)
6413 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6414 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6415 && cmd != GET_BITMAP_FILE) {
6416 err = -ENODEV;
6417 goto abort_unlock;
6418 }
6419
6420 /*
6421 * Commands even a read-only array can execute:
6422 */
6423 switch (cmd)
6424 {
6425 case GET_ARRAY_INFO:
6426 err = get_array_info(mddev, argp);
6427 goto done_unlock;
6428
6429 case GET_BITMAP_FILE:
6430 err = get_bitmap_file(mddev, argp);
6431 goto done_unlock;
6432
6433 case GET_DISK_INFO:
6434 err = get_disk_info(mddev, argp);
6435 goto done_unlock;
6436
6437 case RESTART_ARRAY_RW:
6438 err = restart_array(mddev);
6439 goto done_unlock;
6440
6441 case STOP_ARRAY:
6442 err = do_md_stop(mddev, 0, bdev);
6443 goto done_unlock;
6444
6445 case STOP_ARRAY_RO:
6446 err = md_set_readonly(mddev, bdev);
6447 goto done_unlock;
6448
6449 case BLKROSET:
6450 if (get_user(ro, (int __user *)(arg))) {
6451 err = -EFAULT;
6452 goto done_unlock;
6453 }
6454 err = -EINVAL;
6455
6456 /* if the bdev is going readonly the value of mddev->ro
6457 * does not matter, no writes are coming
6458 */
6459 if (ro)
6460 goto done_unlock;
6461
6462 /* are we are already prepared for writes? */
6463 if (mddev->ro != 1)
6464 goto done_unlock;
6465
6466 /* transitioning to readauto need only happen for
6467 * arrays that call md_write_start
6468 */
6469 if (mddev->pers) {
6470 err = restart_array(mddev);
6471 if (err == 0) {
6472 mddev->ro = 2;
6473 set_disk_ro(mddev->gendisk, 0);
6474 }
6475 }
6476 goto done_unlock;
6477 }
6478
6479 /*
6480 * The remaining ioctls are changing the state of the
6481 * superblock, so we do not allow them on read-only arrays.
6482 * However non-MD ioctls (e.g. get-size) will still come through
6483 * here and hit the 'default' below, so only disallow
6484 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6485 */
6486 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6487 if (mddev->ro == 2) {
6488 mddev->ro = 0;
6489 sysfs_notify_dirent_safe(mddev->sysfs_state);
6490 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6491 md_wakeup_thread(mddev->thread);
6492 } else {
6493 err = -EROFS;
6494 goto abort_unlock;
6495 }
6496 }
6497
6498 switch (cmd)
6499 {
6500 case ADD_NEW_DISK:
6501 {
6502 mdu_disk_info_t info;
6503 if (copy_from_user(&info, argp, sizeof(info)))
6504 err = -EFAULT;
6505 else
6506 err = add_new_disk(mddev, &info);
6507 goto done_unlock;
6508 }
6509
6510 case HOT_REMOVE_DISK:
6511 err = hot_remove_disk(mddev, new_decode_dev(arg));
6512 goto done_unlock;
6513
6514 case HOT_ADD_DISK:
6515 err = hot_add_disk(mddev, new_decode_dev(arg));
6516 goto done_unlock;
6517
6518 case SET_DISK_FAULTY:
6519 err = set_disk_faulty(mddev, new_decode_dev(arg));
6520 goto done_unlock;
6521
6522 case RUN_ARRAY:
6523 err = do_md_run(mddev);
6524 goto done_unlock;
6525
6526 case SET_BITMAP_FILE:
6527 err = set_bitmap_file(mddev, (int)arg);
6528 goto done_unlock;
6529
6530 default:
6531 err = -EINVAL;
6532 goto abort_unlock;
6533 }
6534
6535 done_unlock:
6536 abort_unlock:
6537 if (mddev->hold_active == UNTIL_IOCTL &&
6538 err != -EINVAL)
6539 mddev->hold_active = 0;
6540 mddev_unlock(mddev);
6541
6542 return err;
6543 done:
6544 if (err)
6545 MD_BUG();
6546 abort:
6547 return err;
6548 }
6549 #ifdef CONFIG_COMPAT
6550 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6551 unsigned int cmd, unsigned long arg)
6552 {
6553 switch (cmd) {
6554 case HOT_REMOVE_DISK:
6555 case HOT_ADD_DISK:
6556 case SET_DISK_FAULTY:
6557 case SET_BITMAP_FILE:
6558 /* These take in integer arg, do not convert */
6559 break;
6560 default:
6561 arg = (unsigned long)compat_ptr(arg);
6562 break;
6563 }
6564
6565 return md_ioctl(bdev, mode, cmd, arg);
6566 }
6567 #endif /* CONFIG_COMPAT */
6568
6569 static int md_open(struct block_device *bdev, fmode_t mode)
6570 {
6571 /*
6572 * Succeed if we can lock the mddev, which confirms that
6573 * it isn't being stopped right now.
6574 */
6575 struct mddev *mddev = mddev_find(bdev->bd_dev);
6576 int err;
6577
6578 if (!mddev)
6579 return -ENODEV;
6580
6581 if (mddev->gendisk != bdev->bd_disk) {
6582 /* we are racing with mddev_put which is discarding this
6583 * bd_disk.
6584 */
6585 mddev_put(mddev);
6586 /* Wait until bdev->bd_disk is definitely gone */
6587 flush_workqueue(md_misc_wq);
6588 /* Then retry the open from the top */
6589 return -ERESTARTSYS;
6590 }
6591 BUG_ON(mddev != bdev->bd_disk->private_data);
6592
6593 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6594 goto out;
6595
6596 err = 0;
6597 atomic_inc(&mddev->openers);
6598 mutex_unlock(&mddev->open_mutex);
6599
6600 check_disk_change(bdev);
6601 out:
6602 return err;
6603 }
6604
6605 static int md_release(struct gendisk *disk, fmode_t mode)
6606 {
6607 struct mddev *mddev = disk->private_data;
6608
6609 BUG_ON(!mddev);
6610 atomic_dec(&mddev->openers);
6611 mddev_put(mddev);
6612
6613 return 0;
6614 }
6615
6616 static int md_media_changed(struct gendisk *disk)
6617 {
6618 struct mddev *mddev = disk->private_data;
6619
6620 return mddev->changed;
6621 }
6622
6623 static int md_revalidate(struct gendisk *disk)
6624 {
6625 struct mddev *mddev = disk->private_data;
6626
6627 mddev->changed = 0;
6628 return 0;
6629 }
6630 static const struct block_device_operations md_fops =
6631 {
6632 .owner = THIS_MODULE,
6633 .open = md_open,
6634 .release = md_release,
6635 .ioctl = md_ioctl,
6636 #ifdef CONFIG_COMPAT
6637 .compat_ioctl = md_compat_ioctl,
6638 #endif
6639 .getgeo = md_getgeo,
6640 .media_changed = md_media_changed,
6641 .revalidate_disk= md_revalidate,
6642 };
6643
6644 static int md_thread(void * arg)
6645 {
6646 struct md_thread *thread = arg;
6647
6648 /*
6649 * md_thread is a 'system-thread', it's priority should be very
6650 * high. We avoid resource deadlocks individually in each
6651 * raid personality. (RAID5 does preallocation) We also use RR and
6652 * the very same RT priority as kswapd, thus we will never get
6653 * into a priority inversion deadlock.
6654 *
6655 * we definitely have to have equal or higher priority than
6656 * bdflush, otherwise bdflush will deadlock if there are too
6657 * many dirty RAID5 blocks.
6658 */
6659
6660 allow_signal(SIGKILL);
6661 while (!kthread_should_stop()) {
6662
6663 /* We need to wait INTERRUPTIBLE so that
6664 * we don't add to the load-average.
6665 * That means we need to be sure no signals are
6666 * pending
6667 */
6668 if (signal_pending(current))
6669 flush_signals(current);
6670
6671 wait_event_interruptible_timeout
6672 (thread->wqueue,
6673 test_bit(THREAD_WAKEUP, &thread->flags)
6674 || kthread_should_stop(),
6675 thread->timeout);
6676
6677 clear_bit(THREAD_WAKEUP, &thread->flags);
6678 if (!kthread_should_stop())
6679 thread->run(thread->mddev);
6680 }
6681
6682 return 0;
6683 }
6684
6685 void md_wakeup_thread(struct md_thread *thread)
6686 {
6687 if (thread) {
6688 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6689 set_bit(THREAD_WAKEUP, &thread->flags);
6690 wake_up(&thread->wqueue);
6691 }
6692 }
6693
6694 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6695 const char *name)
6696 {
6697 struct md_thread *thread;
6698
6699 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6700 if (!thread)
6701 return NULL;
6702
6703 init_waitqueue_head(&thread->wqueue);
6704
6705 thread->run = run;
6706 thread->mddev = mddev;
6707 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6708 thread->tsk = kthread_run(md_thread, thread,
6709 "%s_%s",
6710 mdname(thread->mddev),
6711 name);
6712 if (IS_ERR(thread->tsk)) {
6713 kfree(thread);
6714 return NULL;
6715 }
6716 return thread;
6717 }
6718
6719 void md_unregister_thread(struct md_thread **threadp)
6720 {
6721 struct md_thread *thread = *threadp;
6722 if (!thread)
6723 return;
6724 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6725 /* Locking ensures that mddev_unlock does not wake_up a
6726 * non-existent thread
6727 */
6728 spin_lock(&pers_lock);
6729 *threadp = NULL;
6730 spin_unlock(&pers_lock);
6731
6732 kthread_stop(thread->tsk);
6733 kfree(thread);
6734 }
6735
6736 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6737 {
6738 if (!mddev) {
6739 MD_BUG();
6740 return;
6741 }
6742
6743 if (!rdev || test_bit(Faulty, &rdev->flags))
6744 return;
6745
6746 if (!mddev->pers || !mddev->pers->error_handler)
6747 return;
6748 mddev->pers->error_handler(mddev,rdev);
6749 if (mddev->degraded)
6750 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6751 sysfs_notify_dirent_safe(rdev->sysfs_state);
6752 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6753 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6754 md_wakeup_thread(mddev->thread);
6755 if (mddev->event_work.func)
6756 queue_work(md_misc_wq, &mddev->event_work);
6757 md_new_event_inintr(mddev);
6758 }
6759
6760 /* seq_file implementation /proc/mdstat */
6761
6762 static void status_unused(struct seq_file *seq)
6763 {
6764 int i = 0;
6765 struct md_rdev *rdev;
6766
6767 seq_printf(seq, "unused devices: ");
6768
6769 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6770 char b[BDEVNAME_SIZE];
6771 i++;
6772 seq_printf(seq, "%s ",
6773 bdevname(rdev->bdev,b));
6774 }
6775 if (!i)
6776 seq_printf(seq, "<none>");
6777
6778 seq_printf(seq, "\n");
6779 }
6780
6781
6782 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6783 {
6784 sector_t max_sectors, resync, res;
6785 unsigned long dt, db;
6786 sector_t rt;
6787 int scale;
6788 unsigned int per_milli;
6789
6790 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6791
6792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6793 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6794 max_sectors = mddev->resync_max_sectors;
6795 else
6796 max_sectors = mddev->dev_sectors;
6797
6798 /*
6799 * Should not happen.
6800 */
6801 if (!max_sectors) {
6802 MD_BUG();
6803 return;
6804 }
6805 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6806 * in a sector_t, and (max_sectors>>scale) will fit in a
6807 * u32, as those are the requirements for sector_div.
6808 * Thus 'scale' must be at least 10
6809 */
6810 scale = 10;
6811 if (sizeof(sector_t) > sizeof(unsigned long)) {
6812 while ( max_sectors/2 > (1ULL<<(scale+32)))
6813 scale++;
6814 }
6815 res = (resync>>scale)*1000;
6816 sector_div(res, (u32)((max_sectors>>scale)+1));
6817
6818 per_milli = res;
6819 {
6820 int i, x = per_milli/50, y = 20-x;
6821 seq_printf(seq, "[");
6822 for (i = 0; i < x; i++)
6823 seq_printf(seq, "=");
6824 seq_printf(seq, ">");
6825 for (i = 0; i < y; i++)
6826 seq_printf(seq, ".");
6827 seq_printf(seq, "] ");
6828 }
6829 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6830 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6831 "reshape" :
6832 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6833 "check" :
6834 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6835 "resync" : "recovery"))),
6836 per_milli/10, per_milli % 10,
6837 (unsigned long long) resync/2,
6838 (unsigned long long) max_sectors/2);
6839
6840 /*
6841 * dt: time from mark until now
6842 * db: blocks written from mark until now
6843 * rt: remaining time
6844 *
6845 * rt is a sector_t, so could be 32bit or 64bit.
6846 * So we divide before multiply in case it is 32bit and close
6847 * to the limit.
6848 * We scale the divisor (db) by 32 to avoid losing precision
6849 * near the end of resync when the number of remaining sectors
6850 * is close to 'db'.
6851 * We then divide rt by 32 after multiplying by db to compensate.
6852 * The '+1' avoids division by zero if db is very small.
6853 */
6854 dt = ((jiffies - mddev->resync_mark) / HZ);
6855 if (!dt) dt++;
6856 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6857 - mddev->resync_mark_cnt;
6858
6859 rt = max_sectors - resync; /* number of remaining sectors */
6860 sector_div(rt, db/32+1);
6861 rt *= dt;
6862 rt >>= 5;
6863
6864 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6865 ((unsigned long)rt % 60)/6);
6866
6867 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6868 }
6869
6870 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6871 {
6872 struct list_head *tmp;
6873 loff_t l = *pos;
6874 struct mddev *mddev;
6875
6876 if (l >= 0x10000)
6877 return NULL;
6878 if (!l--)
6879 /* header */
6880 return (void*)1;
6881
6882 spin_lock(&all_mddevs_lock);
6883 list_for_each(tmp,&all_mddevs)
6884 if (!l--) {
6885 mddev = list_entry(tmp, struct mddev, all_mddevs);
6886 mddev_get(mddev);
6887 spin_unlock(&all_mddevs_lock);
6888 return mddev;
6889 }
6890 spin_unlock(&all_mddevs_lock);
6891 if (!l--)
6892 return (void*)2;/* tail */
6893 return NULL;
6894 }
6895
6896 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6897 {
6898 struct list_head *tmp;
6899 struct mddev *next_mddev, *mddev = v;
6900
6901 ++*pos;
6902 if (v == (void*)2)
6903 return NULL;
6904
6905 spin_lock(&all_mddevs_lock);
6906 if (v == (void*)1)
6907 tmp = all_mddevs.next;
6908 else
6909 tmp = mddev->all_mddevs.next;
6910 if (tmp != &all_mddevs)
6911 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6912 else {
6913 next_mddev = (void*)2;
6914 *pos = 0x10000;
6915 }
6916 spin_unlock(&all_mddevs_lock);
6917
6918 if (v != (void*)1)
6919 mddev_put(mddev);
6920 return next_mddev;
6921
6922 }
6923
6924 static void md_seq_stop(struct seq_file *seq, void *v)
6925 {
6926 struct mddev *mddev = v;
6927
6928 if (mddev && v != (void*)1 && v != (void*)2)
6929 mddev_put(mddev);
6930 }
6931
6932 static int md_seq_show(struct seq_file *seq, void *v)
6933 {
6934 struct mddev *mddev = v;
6935 sector_t sectors;
6936 struct md_rdev *rdev;
6937
6938 if (v == (void*)1) {
6939 struct md_personality *pers;
6940 seq_printf(seq, "Personalities : ");
6941 spin_lock(&pers_lock);
6942 list_for_each_entry(pers, &pers_list, list)
6943 seq_printf(seq, "[%s] ", pers->name);
6944
6945 spin_unlock(&pers_lock);
6946 seq_printf(seq, "\n");
6947 seq->poll_event = atomic_read(&md_event_count);
6948 return 0;
6949 }
6950 if (v == (void*)2) {
6951 status_unused(seq);
6952 return 0;
6953 }
6954
6955 if (mddev_lock(mddev) < 0)
6956 return -EINTR;
6957
6958 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6959 seq_printf(seq, "%s : %sactive", mdname(mddev),
6960 mddev->pers ? "" : "in");
6961 if (mddev->pers) {
6962 if (mddev->ro==1)
6963 seq_printf(seq, " (read-only)");
6964 if (mddev->ro==2)
6965 seq_printf(seq, " (auto-read-only)");
6966 seq_printf(seq, " %s", mddev->pers->name);
6967 }
6968
6969 sectors = 0;
6970 rdev_for_each(rdev, mddev) {
6971 char b[BDEVNAME_SIZE];
6972 seq_printf(seq, " %s[%d]",
6973 bdevname(rdev->bdev,b), rdev->desc_nr);
6974 if (test_bit(WriteMostly, &rdev->flags))
6975 seq_printf(seq, "(W)");
6976 if (test_bit(Faulty, &rdev->flags)) {
6977 seq_printf(seq, "(F)");
6978 continue;
6979 }
6980 if (rdev->raid_disk < 0)
6981 seq_printf(seq, "(S)"); /* spare */
6982 if (test_bit(Replacement, &rdev->flags))
6983 seq_printf(seq, "(R)");
6984 sectors += rdev->sectors;
6985 }
6986
6987 if (!list_empty(&mddev->disks)) {
6988 if (mddev->pers)
6989 seq_printf(seq, "\n %llu blocks",
6990 (unsigned long long)
6991 mddev->array_sectors / 2);
6992 else
6993 seq_printf(seq, "\n %llu blocks",
6994 (unsigned long long)sectors / 2);
6995 }
6996 if (mddev->persistent) {
6997 if (mddev->major_version != 0 ||
6998 mddev->minor_version != 90) {
6999 seq_printf(seq," super %d.%d",
7000 mddev->major_version,
7001 mddev->minor_version);
7002 }
7003 } else if (mddev->external)
7004 seq_printf(seq, " super external:%s",
7005 mddev->metadata_type);
7006 else
7007 seq_printf(seq, " super non-persistent");
7008
7009 if (mddev->pers) {
7010 mddev->pers->status(seq, mddev);
7011 seq_printf(seq, "\n ");
7012 if (mddev->pers->sync_request) {
7013 if (mddev->curr_resync > 2) {
7014 status_resync(seq, mddev);
7015 seq_printf(seq, "\n ");
7016 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7017 seq_printf(seq, "\tresync=DELAYED\n ");
7018 else if (mddev->recovery_cp < MaxSector)
7019 seq_printf(seq, "\tresync=PENDING\n ");
7020 }
7021 } else
7022 seq_printf(seq, "\n ");
7023
7024 bitmap_status(seq, mddev->bitmap);
7025
7026 seq_printf(seq, "\n");
7027 }
7028 mddev_unlock(mddev);
7029
7030 return 0;
7031 }
7032
7033 static const struct seq_operations md_seq_ops = {
7034 .start = md_seq_start,
7035 .next = md_seq_next,
7036 .stop = md_seq_stop,
7037 .show = md_seq_show,
7038 };
7039
7040 static int md_seq_open(struct inode *inode, struct file *file)
7041 {
7042 struct seq_file *seq;
7043 int error;
7044
7045 error = seq_open(file, &md_seq_ops);
7046 if (error)
7047 return error;
7048
7049 seq = file->private_data;
7050 seq->poll_event = atomic_read(&md_event_count);
7051 return error;
7052 }
7053
7054 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7055 {
7056 struct seq_file *seq = filp->private_data;
7057 int mask;
7058
7059 poll_wait(filp, &md_event_waiters, wait);
7060
7061 /* always allow read */
7062 mask = POLLIN | POLLRDNORM;
7063
7064 if (seq->poll_event != atomic_read(&md_event_count))
7065 mask |= POLLERR | POLLPRI;
7066 return mask;
7067 }
7068
7069 static const struct file_operations md_seq_fops = {
7070 .owner = THIS_MODULE,
7071 .open = md_seq_open,
7072 .read = seq_read,
7073 .llseek = seq_lseek,
7074 .release = seq_release_private,
7075 .poll = mdstat_poll,
7076 };
7077
7078 int register_md_personality(struct md_personality *p)
7079 {
7080 spin_lock(&pers_lock);
7081 list_add_tail(&p->list, &pers_list);
7082 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7083 spin_unlock(&pers_lock);
7084 return 0;
7085 }
7086
7087 int unregister_md_personality(struct md_personality *p)
7088 {
7089 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7090 spin_lock(&pers_lock);
7091 list_del_init(&p->list);
7092 spin_unlock(&pers_lock);
7093 return 0;
7094 }
7095
7096 static int is_mddev_idle(struct mddev *mddev, int init)
7097 {
7098 struct md_rdev * rdev;
7099 int idle;
7100 int curr_events;
7101
7102 idle = 1;
7103 rcu_read_lock();
7104 rdev_for_each_rcu(rdev, mddev) {
7105 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7106 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7107 (int)part_stat_read(&disk->part0, sectors[1]) -
7108 atomic_read(&disk->sync_io);
7109 /* sync IO will cause sync_io to increase before the disk_stats
7110 * as sync_io is counted when a request starts, and
7111 * disk_stats is counted when it completes.
7112 * So resync activity will cause curr_events to be smaller than
7113 * when there was no such activity.
7114 * non-sync IO will cause disk_stat to increase without
7115 * increasing sync_io so curr_events will (eventually)
7116 * be larger than it was before. Once it becomes
7117 * substantially larger, the test below will cause
7118 * the array to appear non-idle, and resync will slow
7119 * down.
7120 * If there is a lot of outstanding resync activity when
7121 * we set last_event to curr_events, then all that activity
7122 * completing might cause the array to appear non-idle
7123 * and resync will be slowed down even though there might
7124 * not have been non-resync activity. This will only
7125 * happen once though. 'last_events' will soon reflect
7126 * the state where there is little or no outstanding
7127 * resync requests, and further resync activity will
7128 * always make curr_events less than last_events.
7129 *
7130 */
7131 if (init || curr_events - rdev->last_events > 64) {
7132 rdev->last_events = curr_events;
7133 idle = 0;
7134 }
7135 }
7136 rcu_read_unlock();
7137 return idle;
7138 }
7139
7140 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7141 {
7142 /* another "blocks" (512byte) blocks have been synced */
7143 atomic_sub(blocks, &mddev->recovery_active);
7144 wake_up(&mddev->recovery_wait);
7145 if (!ok) {
7146 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7147 md_wakeup_thread(mddev->thread);
7148 // stop recovery, signal do_sync ....
7149 }
7150 }
7151
7152
7153 /* md_write_start(mddev, bi)
7154 * If we need to update some array metadata (e.g. 'active' flag
7155 * in superblock) before writing, schedule a superblock update
7156 * and wait for it to complete.
7157 */
7158 void md_write_start(struct mddev *mddev, struct bio *bi)
7159 {
7160 int did_change = 0;
7161 if (bio_data_dir(bi) != WRITE)
7162 return;
7163
7164 BUG_ON(mddev->ro == 1);
7165 if (mddev->ro == 2) {
7166 /* need to switch to read/write */
7167 mddev->ro = 0;
7168 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7169 md_wakeup_thread(mddev->thread);
7170 md_wakeup_thread(mddev->sync_thread);
7171 did_change = 1;
7172 }
7173 atomic_inc(&mddev->writes_pending);
7174 if (mddev->safemode == 1)
7175 mddev->safemode = 0;
7176 if (mddev->in_sync) {
7177 spin_lock_irq(&mddev->write_lock);
7178 if (mddev->in_sync) {
7179 mddev->in_sync = 0;
7180 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7181 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7182 md_wakeup_thread(mddev->thread);
7183 did_change = 1;
7184 }
7185 spin_unlock_irq(&mddev->write_lock);
7186 }
7187 if (did_change)
7188 sysfs_notify_dirent_safe(mddev->sysfs_state);
7189 wait_event(mddev->sb_wait,
7190 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7191 }
7192
7193 void md_write_end(struct mddev *mddev)
7194 {
7195 if (atomic_dec_and_test(&mddev->writes_pending)) {
7196 if (mddev->safemode == 2)
7197 md_wakeup_thread(mddev->thread);
7198 else if (mddev->safemode_delay)
7199 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7200 }
7201 }
7202
7203 /* md_allow_write(mddev)
7204 * Calling this ensures that the array is marked 'active' so that writes
7205 * may proceed without blocking. It is important to call this before
7206 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7207 * Must be called with mddev_lock held.
7208 *
7209 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7210 * is dropped, so return -EAGAIN after notifying userspace.
7211 */
7212 int md_allow_write(struct mddev *mddev)
7213 {
7214 if (!mddev->pers)
7215 return 0;
7216 if (mddev->ro)
7217 return 0;
7218 if (!mddev->pers->sync_request)
7219 return 0;
7220
7221 spin_lock_irq(&mddev->write_lock);
7222 if (mddev->in_sync) {
7223 mddev->in_sync = 0;
7224 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7225 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7226 if (mddev->safemode_delay &&
7227 mddev->safemode == 0)
7228 mddev->safemode = 1;
7229 spin_unlock_irq(&mddev->write_lock);
7230 md_update_sb(mddev, 0);
7231 sysfs_notify_dirent_safe(mddev->sysfs_state);
7232 } else
7233 spin_unlock_irq(&mddev->write_lock);
7234
7235 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7236 return -EAGAIN;
7237 else
7238 return 0;
7239 }
7240 EXPORT_SYMBOL_GPL(md_allow_write);
7241
7242 #define SYNC_MARKS 10
7243 #define SYNC_MARK_STEP (3*HZ)
7244 void md_do_sync(struct mddev *mddev)
7245 {
7246 struct mddev *mddev2;
7247 unsigned int currspeed = 0,
7248 window;
7249 sector_t max_sectors,j, io_sectors;
7250 unsigned long mark[SYNC_MARKS];
7251 sector_t mark_cnt[SYNC_MARKS];
7252 int last_mark,m;
7253 struct list_head *tmp;
7254 sector_t last_check;
7255 int skipped = 0;
7256 struct md_rdev *rdev;
7257 char *desc;
7258 struct blk_plug plug;
7259
7260 /* just incase thread restarts... */
7261 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7262 return;
7263 if (mddev->ro) /* never try to sync a read-only array */
7264 return;
7265
7266 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7267 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7268 desc = "data-check";
7269 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7270 desc = "requested-resync";
7271 else
7272 desc = "resync";
7273 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7274 desc = "reshape";
7275 else
7276 desc = "recovery";
7277
7278 /* we overload curr_resync somewhat here.
7279 * 0 == not engaged in resync at all
7280 * 2 == checking that there is no conflict with another sync
7281 * 1 == like 2, but have yielded to allow conflicting resync to
7282 * commense
7283 * other == active in resync - this many blocks
7284 *
7285 * Before starting a resync we must have set curr_resync to
7286 * 2, and then checked that every "conflicting" array has curr_resync
7287 * less than ours. When we find one that is the same or higher
7288 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7289 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7290 * This will mean we have to start checking from the beginning again.
7291 *
7292 */
7293
7294 do {
7295 mddev->curr_resync = 2;
7296
7297 try_again:
7298 if (kthread_should_stop())
7299 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7300
7301 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7302 goto skip;
7303 for_each_mddev(mddev2, tmp) {
7304 if (mddev2 == mddev)
7305 continue;
7306 if (!mddev->parallel_resync
7307 && mddev2->curr_resync
7308 && match_mddev_units(mddev, mddev2)) {
7309 DEFINE_WAIT(wq);
7310 if (mddev < mddev2 && mddev->curr_resync == 2) {
7311 /* arbitrarily yield */
7312 mddev->curr_resync = 1;
7313 wake_up(&resync_wait);
7314 }
7315 if (mddev > mddev2 && mddev->curr_resync == 1)
7316 /* no need to wait here, we can wait the next
7317 * time 'round when curr_resync == 2
7318 */
7319 continue;
7320 /* We need to wait 'interruptible' so as not to
7321 * contribute to the load average, and not to
7322 * be caught by 'softlockup'
7323 */
7324 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7325 if (!kthread_should_stop() &&
7326 mddev2->curr_resync >= mddev->curr_resync) {
7327 printk(KERN_INFO "md: delaying %s of %s"
7328 " until %s has finished (they"
7329 " share one or more physical units)\n",
7330 desc, mdname(mddev), mdname(mddev2));
7331 mddev_put(mddev2);
7332 if (signal_pending(current))
7333 flush_signals(current);
7334 schedule();
7335 finish_wait(&resync_wait, &wq);
7336 goto try_again;
7337 }
7338 finish_wait(&resync_wait, &wq);
7339 }
7340 }
7341 } while (mddev->curr_resync < 2);
7342
7343 j = 0;
7344 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7345 /* resync follows the size requested by the personality,
7346 * which defaults to physical size, but can be virtual size
7347 */
7348 max_sectors = mddev->resync_max_sectors;
7349 mddev->resync_mismatches = 0;
7350 /* we don't use the checkpoint if there's a bitmap */
7351 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7352 j = mddev->resync_min;
7353 else if (!mddev->bitmap)
7354 j = mddev->recovery_cp;
7355
7356 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7357 max_sectors = mddev->resync_max_sectors;
7358 else {
7359 /* recovery follows the physical size of devices */
7360 max_sectors = mddev->dev_sectors;
7361 j = MaxSector;
7362 rcu_read_lock();
7363 rdev_for_each_rcu(rdev, mddev)
7364 if (rdev->raid_disk >= 0 &&
7365 !test_bit(Faulty, &rdev->flags) &&
7366 !test_bit(In_sync, &rdev->flags) &&
7367 rdev->recovery_offset < j)
7368 j = rdev->recovery_offset;
7369 rcu_read_unlock();
7370 }
7371
7372 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7373 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7374 " %d KB/sec/disk.\n", speed_min(mddev));
7375 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7376 "(but not more than %d KB/sec) for %s.\n",
7377 speed_max(mddev), desc);
7378
7379 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7380
7381 io_sectors = 0;
7382 for (m = 0; m < SYNC_MARKS; m++) {
7383 mark[m] = jiffies;
7384 mark_cnt[m] = io_sectors;
7385 }
7386 last_mark = 0;
7387 mddev->resync_mark = mark[last_mark];
7388 mddev->resync_mark_cnt = mark_cnt[last_mark];
7389
7390 /*
7391 * Tune reconstruction:
7392 */
7393 window = 32*(PAGE_SIZE/512);
7394 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7395 window/2, (unsigned long long)max_sectors/2);
7396
7397 atomic_set(&mddev->recovery_active, 0);
7398 last_check = 0;
7399
7400 if (j>2) {
7401 printk(KERN_INFO
7402 "md: resuming %s of %s from checkpoint.\n",
7403 desc, mdname(mddev));
7404 mddev->curr_resync = j;
7405 }
7406 mddev->curr_resync_completed = j;
7407
7408 blk_start_plug(&plug);
7409 while (j < max_sectors) {
7410 sector_t sectors;
7411
7412 skipped = 0;
7413
7414 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7415 ((mddev->curr_resync > mddev->curr_resync_completed &&
7416 (mddev->curr_resync - mddev->curr_resync_completed)
7417 > (max_sectors >> 4)) ||
7418 (j - mddev->curr_resync_completed)*2
7419 >= mddev->resync_max - mddev->curr_resync_completed
7420 )) {
7421 /* time to update curr_resync_completed */
7422 wait_event(mddev->recovery_wait,
7423 atomic_read(&mddev->recovery_active) == 0);
7424 mddev->curr_resync_completed = j;
7425 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7426 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7427 }
7428
7429 while (j >= mddev->resync_max && !kthread_should_stop()) {
7430 /* As this condition is controlled by user-space,
7431 * we can block indefinitely, so use '_interruptible'
7432 * to avoid triggering warnings.
7433 */
7434 flush_signals(current); /* just in case */
7435 wait_event_interruptible(mddev->recovery_wait,
7436 mddev->resync_max > j
7437 || kthread_should_stop());
7438 }
7439
7440 if (kthread_should_stop())
7441 goto interrupted;
7442
7443 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7444 currspeed < speed_min(mddev));
7445 if (sectors == 0) {
7446 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7447 goto out;
7448 }
7449
7450 if (!skipped) { /* actual IO requested */
7451 io_sectors += sectors;
7452 atomic_add(sectors, &mddev->recovery_active);
7453 }
7454
7455 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7456 break;
7457
7458 j += sectors;
7459 if (j>1) mddev->curr_resync = j;
7460 mddev->curr_mark_cnt = io_sectors;
7461 if (last_check == 0)
7462 /* this is the earliest that rebuild will be
7463 * visible in /proc/mdstat
7464 */
7465 md_new_event(mddev);
7466
7467 if (last_check + window > io_sectors || j == max_sectors)
7468 continue;
7469
7470 last_check = io_sectors;
7471 repeat:
7472 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7473 /* step marks */
7474 int next = (last_mark+1) % SYNC_MARKS;
7475
7476 mddev->resync_mark = mark[next];
7477 mddev->resync_mark_cnt = mark_cnt[next];
7478 mark[next] = jiffies;
7479 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7480 last_mark = next;
7481 }
7482
7483
7484 if (kthread_should_stop())
7485 goto interrupted;
7486
7487
7488 /*
7489 * this loop exits only if either when we are slower than
7490 * the 'hard' speed limit, or the system was IO-idle for
7491 * a jiffy.
7492 * the system might be non-idle CPU-wise, but we only care
7493 * about not overloading the IO subsystem. (things like an
7494 * e2fsck being done on the RAID array should execute fast)
7495 */
7496 cond_resched();
7497
7498 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7499 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7500
7501 if (currspeed > speed_min(mddev)) {
7502 if ((currspeed > speed_max(mddev)) ||
7503 !is_mddev_idle(mddev, 0)) {
7504 msleep(500);
7505 goto repeat;
7506 }
7507 }
7508 }
7509 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7510 /*
7511 * this also signals 'finished resyncing' to md_stop
7512 */
7513 out:
7514 blk_finish_plug(&plug);
7515 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7516
7517 /* tell personality that we are finished */
7518 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7519
7520 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7521 mddev->curr_resync > 2) {
7522 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7523 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7524 if (mddev->curr_resync >= mddev->recovery_cp) {
7525 printk(KERN_INFO
7526 "md: checkpointing %s of %s.\n",
7527 desc, mdname(mddev));
7528 mddev->recovery_cp =
7529 mddev->curr_resync_completed;
7530 }
7531 } else
7532 mddev->recovery_cp = MaxSector;
7533 } else {
7534 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7535 mddev->curr_resync = MaxSector;
7536 rcu_read_lock();
7537 rdev_for_each_rcu(rdev, mddev)
7538 if (rdev->raid_disk >= 0 &&
7539 mddev->delta_disks >= 0 &&
7540 !test_bit(Faulty, &rdev->flags) &&
7541 !test_bit(In_sync, &rdev->flags) &&
7542 rdev->recovery_offset < mddev->curr_resync)
7543 rdev->recovery_offset = mddev->curr_resync;
7544 rcu_read_unlock();
7545 }
7546 }
7547 skip:
7548 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7549
7550 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7551 /* We completed so min/max setting can be forgotten if used. */
7552 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7553 mddev->resync_min = 0;
7554 mddev->resync_max = MaxSector;
7555 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7556 mddev->resync_min = mddev->curr_resync_completed;
7557 mddev->curr_resync = 0;
7558 wake_up(&resync_wait);
7559 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7560 md_wakeup_thread(mddev->thread);
7561 return;
7562
7563 interrupted:
7564 /*
7565 * got a signal, exit.
7566 */
7567 printk(KERN_INFO
7568 "md: md_do_sync() got signal ... exiting\n");
7569 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7570 goto out;
7571
7572 }
7573 EXPORT_SYMBOL_GPL(md_do_sync);
7574
7575 static int remove_and_add_spares(struct mddev *mddev)
7576 {
7577 struct md_rdev *rdev;
7578 int spares = 0;
7579 int removed = 0;
7580
7581 mddev->curr_resync_completed = 0;
7582
7583 rdev_for_each(rdev, mddev)
7584 if (rdev->raid_disk >= 0 &&
7585 !test_bit(Blocked, &rdev->flags) &&
7586 (test_bit(Faulty, &rdev->flags) ||
7587 ! test_bit(In_sync, &rdev->flags)) &&
7588 atomic_read(&rdev->nr_pending)==0) {
7589 if (mddev->pers->hot_remove_disk(
7590 mddev, rdev) == 0) {
7591 sysfs_unlink_rdev(mddev, rdev);
7592 rdev->raid_disk = -1;
7593 removed++;
7594 }
7595 }
7596 if (removed)
7597 sysfs_notify(&mddev->kobj, NULL,
7598 "degraded");
7599
7600
7601 rdev_for_each(rdev, mddev) {
7602 if (rdev->raid_disk >= 0 &&
7603 !test_bit(In_sync, &rdev->flags) &&
7604 !test_bit(Faulty, &rdev->flags))
7605 spares++;
7606 if (rdev->raid_disk < 0
7607 && !test_bit(Faulty, &rdev->flags)) {
7608 rdev->recovery_offset = 0;
7609 if (mddev->pers->
7610 hot_add_disk(mddev, rdev) == 0) {
7611 if (sysfs_link_rdev(mddev, rdev))
7612 /* failure here is OK */;
7613 spares++;
7614 md_new_event(mddev);
7615 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7616 }
7617 }
7618 }
7619 return spares;
7620 }
7621
7622 static void reap_sync_thread(struct mddev *mddev)
7623 {
7624 struct md_rdev *rdev;
7625
7626 /* resync has finished, collect result */
7627 md_unregister_thread(&mddev->sync_thread);
7628 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7629 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7630 /* success...*/
7631 /* activate any spares */
7632 if (mddev->pers->spare_active(mddev))
7633 sysfs_notify(&mddev->kobj, NULL,
7634 "degraded");
7635 }
7636 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7637 mddev->pers->finish_reshape)
7638 mddev->pers->finish_reshape(mddev);
7639
7640 /* If array is no-longer degraded, then any saved_raid_disk
7641 * information must be scrapped. Also if any device is now
7642 * In_sync we must scrape the saved_raid_disk for that device
7643 * do the superblock for an incrementally recovered device
7644 * written out.
7645 */
7646 rdev_for_each(rdev, mddev)
7647 if (!mddev->degraded ||
7648 test_bit(In_sync, &rdev->flags))
7649 rdev->saved_raid_disk = -1;
7650
7651 md_update_sb(mddev, 1);
7652 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7653 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7654 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7655 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7656 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7657 /* flag recovery needed just to double check */
7658 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7659 sysfs_notify_dirent_safe(mddev->sysfs_action);
7660 md_new_event(mddev);
7661 if (mddev->event_work.func)
7662 queue_work(md_misc_wq, &mddev->event_work);
7663 }
7664
7665 /*
7666 * This routine is regularly called by all per-raid-array threads to
7667 * deal with generic issues like resync and super-block update.
7668 * Raid personalities that don't have a thread (linear/raid0) do not
7669 * need this as they never do any recovery or update the superblock.
7670 *
7671 * It does not do any resync itself, but rather "forks" off other threads
7672 * to do that as needed.
7673 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7674 * "->recovery" and create a thread at ->sync_thread.
7675 * When the thread finishes it sets MD_RECOVERY_DONE
7676 * and wakeups up this thread which will reap the thread and finish up.
7677 * This thread also removes any faulty devices (with nr_pending == 0).
7678 *
7679 * The overall approach is:
7680 * 1/ if the superblock needs updating, update it.
7681 * 2/ If a recovery thread is running, don't do anything else.
7682 * 3/ If recovery has finished, clean up, possibly marking spares active.
7683 * 4/ If there are any faulty devices, remove them.
7684 * 5/ If array is degraded, try to add spares devices
7685 * 6/ If array has spares or is not in-sync, start a resync thread.
7686 */
7687 void md_check_recovery(struct mddev *mddev)
7688 {
7689 if (mddev->suspended)
7690 return;
7691
7692 if (mddev->bitmap)
7693 bitmap_daemon_work(mddev);
7694
7695 if (signal_pending(current)) {
7696 if (mddev->pers->sync_request && !mddev->external) {
7697 printk(KERN_INFO "md: %s in immediate safe mode\n",
7698 mdname(mddev));
7699 mddev->safemode = 2;
7700 }
7701 flush_signals(current);
7702 }
7703
7704 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7705 return;
7706 if ( ! (
7707 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7708 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7709 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7710 (mddev->external == 0 && mddev->safemode == 1) ||
7711 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7712 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7713 ))
7714 return;
7715
7716 if (mddev_trylock(mddev)) {
7717 int spares = 0;
7718
7719 if (mddev->ro) {
7720 /* Only thing we do on a ro array is remove
7721 * failed devices.
7722 */
7723 struct md_rdev *rdev;
7724 rdev_for_each(rdev, mddev)
7725 if (rdev->raid_disk >= 0 &&
7726 !test_bit(Blocked, &rdev->flags) &&
7727 test_bit(Faulty, &rdev->flags) &&
7728 atomic_read(&rdev->nr_pending)==0) {
7729 if (mddev->pers->hot_remove_disk(
7730 mddev, rdev) == 0) {
7731 sysfs_unlink_rdev(mddev, rdev);
7732 rdev->raid_disk = -1;
7733 }
7734 }
7735 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7736 goto unlock;
7737 }
7738
7739 if (!mddev->external) {
7740 int did_change = 0;
7741 spin_lock_irq(&mddev->write_lock);
7742 if (mddev->safemode &&
7743 !atomic_read(&mddev->writes_pending) &&
7744 !mddev->in_sync &&
7745 mddev->recovery_cp == MaxSector) {
7746 mddev->in_sync = 1;
7747 did_change = 1;
7748 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7749 }
7750 if (mddev->safemode == 1)
7751 mddev->safemode = 0;
7752 spin_unlock_irq(&mddev->write_lock);
7753 if (did_change)
7754 sysfs_notify_dirent_safe(mddev->sysfs_state);
7755 }
7756
7757 if (mddev->flags)
7758 md_update_sb(mddev, 0);
7759
7760 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7761 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7762 /* resync/recovery still happening */
7763 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7764 goto unlock;
7765 }
7766 if (mddev->sync_thread) {
7767 reap_sync_thread(mddev);
7768 goto unlock;
7769 }
7770 /* Set RUNNING before clearing NEEDED to avoid
7771 * any transients in the value of "sync_action".
7772 */
7773 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7774 /* Clear some bits that don't mean anything, but
7775 * might be left set
7776 */
7777 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7778 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7779
7780 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7781 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7782 goto unlock;
7783 /* no recovery is running.
7784 * remove any failed drives, then
7785 * add spares if possible.
7786 * Spare are also removed and re-added, to allow
7787 * the personality to fail the re-add.
7788 */
7789
7790 if (mddev->reshape_position != MaxSector) {
7791 if (mddev->pers->check_reshape == NULL ||
7792 mddev->pers->check_reshape(mddev) != 0)
7793 /* Cannot proceed */
7794 goto unlock;
7795 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7796 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7797 } else if ((spares = remove_and_add_spares(mddev))) {
7798 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7799 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7800 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7801 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7802 } else if (mddev->recovery_cp < MaxSector) {
7803 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7804 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7805 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7806 /* nothing to be done ... */
7807 goto unlock;
7808
7809 if (mddev->pers->sync_request) {
7810 if (spares) {
7811 /* We are adding a device or devices to an array
7812 * which has the bitmap stored on all devices.
7813 * So make sure all bitmap pages get written
7814 */
7815 bitmap_write_all(mddev->bitmap);
7816 }
7817 mddev->sync_thread = md_register_thread(md_do_sync,
7818 mddev,
7819 "resync");
7820 if (!mddev->sync_thread) {
7821 printk(KERN_ERR "%s: could not start resync"
7822 " thread...\n",
7823 mdname(mddev));
7824 /* leave the spares where they are, it shouldn't hurt */
7825 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7826 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7827 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7828 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7829 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7830 } else
7831 md_wakeup_thread(mddev->sync_thread);
7832 sysfs_notify_dirent_safe(mddev->sysfs_action);
7833 md_new_event(mddev);
7834 }
7835 unlock:
7836 if (!mddev->sync_thread) {
7837 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7838 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7839 &mddev->recovery))
7840 if (mddev->sysfs_action)
7841 sysfs_notify_dirent_safe(mddev->sysfs_action);
7842 }
7843 mddev_unlock(mddev);
7844 }
7845 }
7846
7847 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7848 {
7849 sysfs_notify_dirent_safe(rdev->sysfs_state);
7850 wait_event_timeout(rdev->blocked_wait,
7851 !test_bit(Blocked, &rdev->flags) &&
7852 !test_bit(BlockedBadBlocks, &rdev->flags),
7853 msecs_to_jiffies(5000));
7854 rdev_dec_pending(rdev, mddev);
7855 }
7856 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7857
7858 void md_finish_reshape(struct mddev *mddev)
7859 {
7860 /* called be personality module when reshape completes. */
7861 struct md_rdev *rdev;
7862
7863 rdev_for_each(rdev, mddev) {
7864 if (rdev->data_offset > rdev->new_data_offset)
7865 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7866 else
7867 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7868 rdev->data_offset = rdev->new_data_offset;
7869 }
7870 }
7871 EXPORT_SYMBOL(md_finish_reshape);
7872
7873 /* Bad block management.
7874 * We can record which blocks on each device are 'bad' and so just
7875 * fail those blocks, or that stripe, rather than the whole device.
7876 * Entries in the bad-block table are 64bits wide. This comprises:
7877 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7878 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7879 * A 'shift' can be set so that larger blocks are tracked and
7880 * consequently larger devices can be covered.
7881 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7882 *
7883 * Locking of the bad-block table uses a seqlock so md_is_badblock
7884 * might need to retry if it is very unlucky.
7885 * We will sometimes want to check for bad blocks in a bi_end_io function,
7886 * so we use the write_seqlock_irq variant.
7887 *
7888 * When looking for a bad block we specify a range and want to
7889 * know if any block in the range is bad. So we binary-search
7890 * to the last range that starts at-or-before the given endpoint,
7891 * (or "before the sector after the target range")
7892 * then see if it ends after the given start.
7893 * We return
7894 * 0 if there are no known bad blocks in the range
7895 * 1 if there are known bad block which are all acknowledged
7896 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7897 * plus the start/length of the first bad section we overlap.
7898 */
7899 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7900 sector_t *first_bad, int *bad_sectors)
7901 {
7902 int hi;
7903 int lo = 0;
7904 u64 *p = bb->page;
7905 int rv = 0;
7906 sector_t target = s + sectors;
7907 unsigned seq;
7908
7909 if (bb->shift > 0) {
7910 /* round the start down, and the end up */
7911 s >>= bb->shift;
7912 target += (1<<bb->shift) - 1;
7913 target >>= bb->shift;
7914 sectors = target - s;
7915 }
7916 /* 'target' is now the first block after the bad range */
7917
7918 retry:
7919 seq = read_seqbegin(&bb->lock);
7920
7921 hi = bb->count;
7922
7923 /* Binary search between lo and hi for 'target'
7924 * i.e. for the last range that starts before 'target'
7925 */
7926 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7927 * are known not to be the last range before target.
7928 * VARIANT: hi-lo is the number of possible
7929 * ranges, and decreases until it reaches 1
7930 */
7931 while (hi - lo > 1) {
7932 int mid = (lo + hi) / 2;
7933 sector_t a = BB_OFFSET(p[mid]);
7934 if (a < target)
7935 /* This could still be the one, earlier ranges
7936 * could not. */
7937 lo = mid;
7938 else
7939 /* This and later ranges are definitely out. */
7940 hi = mid;
7941 }
7942 /* 'lo' might be the last that started before target, but 'hi' isn't */
7943 if (hi > lo) {
7944 /* need to check all range that end after 's' to see if
7945 * any are unacknowledged.
7946 */
7947 while (lo >= 0 &&
7948 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7949 if (BB_OFFSET(p[lo]) < target) {
7950 /* starts before the end, and finishes after
7951 * the start, so they must overlap
7952 */
7953 if (rv != -1 && BB_ACK(p[lo]))
7954 rv = 1;
7955 else
7956 rv = -1;
7957 *first_bad = BB_OFFSET(p[lo]);
7958 *bad_sectors = BB_LEN(p[lo]);
7959 }
7960 lo--;
7961 }
7962 }
7963
7964 if (read_seqretry(&bb->lock, seq))
7965 goto retry;
7966
7967 return rv;
7968 }
7969 EXPORT_SYMBOL_GPL(md_is_badblock);
7970
7971 /*
7972 * Add a range of bad blocks to the table.
7973 * This might extend the table, or might contract it
7974 * if two adjacent ranges can be merged.
7975 * We binary-search to find the 'insertion' point, then
7976 * decide how best to handle it.
7977 */
7978 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7979 int acknowledged)
7980 {
7981 u64 *p;
7982 int lo, hi;
7983 int rv = 1;
7984
7985 if (bb->shift < 0)
7986 /* badblocks are disabled */
7987 return 0;
7988
7989 if (bb->shift) {
7990 /* round the start down, and the end up */
7991 sector_t next = s + sectors;
7992 s >>= bb->shift;
7993 next += (1<<bb->shift) - 1;
7994 next >>= bb->shift;
7995 sectors = next - s;
7996 }
7997
7998 write_seqlock_irq(&bb->lock);
7999
8000 p = bb->page;
8001 lo = 0;
8002 hi = bb->count;
8003 /* Find the last range that starts at-or-before 's' */
8004 while (hi - lo > 1) {
8005 int mid = (lo + hi) / 2;
8006 sector_t a = BB_OFFSET(p[mid]);
8007 if (a <= s)
8008 lo = mid;
8009 else
8010 hi = mid;
8011 }
8012 if (hi > lo && BB_OFFSET(p[lo]) > s)
8013 hi = lo;
8014
8015 if (hi > lo) {
8016 /* we found a range that might merge with the start
8017 * of our new range
8018 */
8019 sector_t a = BB_OFFSET(p[lo]);
8020 sector_t e = a + BB_LEN(p[lo]);
8021 int ack = BB_ACK(p[lo]);
8022 if (e >= s) {
8023 /* Yes, we can merge with a previous range */
8024 if (s == a && s + sectors >= e)
8025 /* new range covers old */
8026 ack = acknowledged;
8027 else
8028 ack = ack && acknowledged;
8029
8030 if (e < s + sectors)
8031 e = s + sectors;
8032 if (e - a <= BB_MAX_LEN) {
8033 p[lo] = BB_MAKE(a, e-a, ack);
8034 s = e;
8035 } else {
8036 /* does not all fit in one range,
8037 * make p[lo] maximal
8038 */
8039 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8040 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8041 s = a + BB_MAX_LEN;
8042 }
8043 sectors = e - s;
8044 }
8045 }
8046 if (sectors && hi < bb->count) {
8047 /* 'hi' points to the first range that starts after 's'.
8048 * Maybe we can merge with the start of that range */
8049 sector_t a = BB_OFFSET(p[hi]);
8050 sector_t e = a + BB_LEN(p[hi]);
8051 int ack = BB_ACK(p[hi]);
8052 if (a <= s + sectors) {
8053 /* merging is possible */
8054 if (e <= s + sectors) {
8055 /* full overlap */
8056 e = s + sectors;
8057 ack = acknowledged;
8058 } else
8059 ack = ack && acknowledged;
8060
8061 a = s;
8062 if (e - a <= BB_MAX_LEN) {
8063 p[hi] = BB_MAKE(a, e-a, ack);
8064 s = e;
8065 } else {
8066 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8067 s = a + BB_MAX_LEN;
8068 }
8069 sectors = e - s;
8070 lo = hi;
8071 hi++;
8072 }
8073 }
8074 if (sectors == 0 && hi < bb->count) {
8075 /* we might be able to combine lo and hi */
8076 /* Note: 's' is at the end of 'lo' */
8077 sector_t a = BB_OFFSET(p[hi]);
8078 int lolen = BB_LEN(p[lo]);
8079 int hilen = BB_LEN(p[hi]);
8080 int newlen = lolen + hilen - (s - a);
8081 if (s >= a && newlen < BB_MAX_LEN) {
8082 /* yes, we can combine them */
8083 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8084 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8085 memmove(p + hi, p + hi + 1,
8086 (bb->count - hi - 1) * 8);
8087 bb->count--;
8088 }
8089 }
8090 while (sectors) {
8091 /* didn't merge (it all).
8092 * Need to add a range just before 'hi' */
8093 if (bb->count >= MD_MAX_BADBLOCKS) {
8094 /* No room for more */
8095 rv = 0;
8096 break;
8097 } else {
8098 int this_sectors = sectors;
8099 memmove(p + hi + 1, p + hi,
8100 (bb->count - hi) * 8);
8101 bb->count++;
8102
8103 if (this_sectors > BB_MAX_LEN)
8104 this_sectors = BB_MAX_LEN;
8105 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8106 sectors -= this_sectors;
8107 s += this_sectors;
8108 }
8109 }
8110
8111 bb->changed = 1;
8112 if (!acknowledged)
8113 bb->unacked_exist = 1;
8114 write_sequnlock_irq(&bb->lock);
8115
8116 return rv;
8117 }
8118
8119 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8120 int is_new)
8121 {
8122 int rv;
8123 if (is_new)
8124 s += rdev->new_data_offset;
8125 else
8126 s += rdev->data_offset;
8127 rv = md_set_badblocks(&rdev->badblocks,
8128 s, sectors, 0);
8129 if (rv) {
8130 /* Make sure they get written out promptly */
8131 sysfs_notify_dirent_safe(rdev->sysfs_state);
8132 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8133 md_wakeup_thread(rdev->mddev->thread);
8134 }
8135 return rv;
8136 }
8137 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8138
8139 /*
8140 * Remove a range of bad blocks from the table.
8141 * This may involve extending the table if we spilt a region,
8142 * but it must not fail. So if the table becomes full, we just
8143 * drop the remove request.
8144 */
8145 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8146 {
8147 u64 *p;
8148 int lo, hi;
8149 sector_t target = s + sectors;
8150 int rv = 0;
8151
8152 if (bb->shift > 0) {
8153 /* When clearing we round the start up and the end down.
8154 * This should not matter as the shift should align with
8155 * the block size and no rounding should ever be needed.
8156 * However it is better the think a block is bad when it
8157 * isn't than to think a block is not bad when it is.
8158 */
8159 s += (1<<bb->shift) - 1;
8160 s >>= bb->shift;
8161 target >>= bb->shift;
8162 sectors = target - s;
8163 }
8164
8165 write_seqlock_irq(&bb->lock);
8166
8167 p = bb->page;
8168 lo = 0;
8169 hi = bb->count;
8170 /* Find the last range that starts before 'target' */
8171 while (hi - lo > 1) {
8172 int mid = (lo + hi) / 2;
8173 sector_t a = BB_OFFSET(p[mid]);
8174 if (a < target)
8175 lo = mid;
8176 else
8177 hi = mid;
8178 }
8179 if (hi > lo) {
8180 /* p[lo] is the last range that could overlap the
8181 * current range. Earlier ranges could also overlap,
8182 * but only this one can overlap the end of the range.
8183 */
8184 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8185 /* Partial overlap, leave the tail of this range */
8186 int ack = BB_ACK(p[lo]);
8187 sector_t a = BB_OFFSET(p[lo]);
8188 sector_t end = a + BB_LEN(p[lo]);
8189
8190 if (a < s) {
8191 /* we need to split this range */
8192 if (bb->count >= MD_MAX_BADBLOCKS) {
8193 rv = 0;
8194 goto out;
8195 }
8196 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8197 bb->count++;
8198 p[lo] = BB_MAKE(a, s-a, ack);
8199 lo++;
8200 }
8201 p[lo] = BB_MAKE(target, end - target, ack);
8202 /* there is no longer an overlap */
8203 hi = lo;
8204 lo--;
8205 }
8206 while (lo >= 0 &&
8207 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8208 /* This range does overlap */
8209 if (BB_OFFSET(p[lo]) < s) {
8210 /* Keep the early parts of this range. */
8211 int ack = BB_ACK(p[lo]);
8212 sector_t start = BB_OFFSET(p[lo]);
8213 p[lo] = BB_MAKE(start, s - start, ack);
8214 /* now low doesn't overlap, so.. */
8215 break;
8216 }
8217 lo--;
8218 }
8219 /* 'lo' is strictly before, 'hi' is strictly after,
8220 * anything between needs to be discarded
8221 */
8222 if (hi - lo > 1) {
8223 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8224 bb->count -= (hi - lo - 1);
8225 }
8226 }
8227
8228 bb->changed = 1;
8229 out:
8230 write_sequnlock_irq(&bb->lock);
8231 return rv;
8232 }
8233
8234 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8235 int is_new)
8236 {
8237 if (is_new)
8238 s += rdev->new_data_offset;
8239 else
8240 s += rdev->data_offset;
8241 return md_clear_badblocks(&rdev->badblocks,
8242 s, sectors);
8243 }
8244 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8245
8246 /*
8247 * Acknowledge all bad blocks in a list.
8248 * This only succeeds if ->changed is clear. It is used by
8249 * in-kernel metadata updates
8250 */
8251 void md_ack_all_badblocks(struct badblocks *bb)
8252 {
8253 if (bb->page == NULL || bb->changed)
8254 /* no point even trying */
8255 return;
8256 write_seqlock_irq(&bb->lock);
8257
8258 if (bb->changed == 0 && bb->unacked_exist) {
8259 u64 *p = bb->page;
8260 int i;
8261 for (i = 0; i < bb->count ; i++) {
8262 if (!BB_ACK(p[i])) {
8263 sector_t start = BB_OFFSET(p[i]);
8264 int len = BB_LEN(p[i]);
8265 p[i] = BB_MAKE(start, len, 1);
8266 }
8267 }
8268 bb->unacked_exist = 0;
8269 }
8270 write_sequnlock_irq(&bb->lock);
8271 }
8272 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8273
8274 /* sysfs access to bad-blocks list.
8275 * We present two files.
8276 * 'bad-blocks' lists sector numbers and lengths of ranges that
8277 * are recorded as bad. The list is truncated to fit within
8278 * the one-page limit of sysfs.
8279 * Writing "sector length" to this file adds an acknowledged
8280 * bad block list.
8281 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8282 * been acknowledged. Writing to this file adds bad blocks
8283 * without acknowledging them. This is largely for testing.
8284 */
8285
8286 static ssize_t
8287 badblocks_show(struct badblocks *bb, char *page, int unack)
8288 {
8289 size_t len;
8290 int i;
8291 u64 *p = bb->page;
8292 unsigned seq;
8293
8294 if (bb->shift < 0)
8295 return 0;
8296
8297 retry:
8298 seq = read_seqbegin(&bb->lock);
8299
8300 len = 0;
8301 i = 0;
8302
8303 while (len < PAGE_SIZE && i < bb->count) {
8304 sector_t s = BB_OFFSET(p[i]);
8305 unsigned int length = BB_LEN(p[i]);
8306 int ack = BB_ACK(p[i]);
8307 i++;
8308
8309 if (unack && ack)
8310 continue;
8311
8312 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8313 (unsigned long long)s << bb->shift,
8314 length << bb->shift);
8315 }
8316 if (unack && len == 0)
8317 bb->unacked_exist = 0;
8318
8319 if (read_seqretry(&bb->lock, seq))
8320 goto retry;
8321
8322 return len;
8323 }
8324
8325 #define DO_DEBUG 1
8326
8327 static ssize_t
8328 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8329 {
8330 unsigned long long sector;
8331 int length;
8332 char newline;
8333 #ifdef DO_DEBUG
8334 /* Allow clearing via sysfs *only* for testing/debugging.
8335 * Normally only a successful write may clear a badblock
8336 */
8337 int clear = 0;
8338 if (page[0] == '-') {
8339 clear = 1;
8340 page++;
8341 }
8342 #endif /* DO_DEBUG */
8343
8344 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8345 case 3:
8346 if (newline != '\n')
8347 return -EINVAL;
8348 case 2:
8349 if (length <= 0)
8350 return -EINVAL;
8351 break;
8352 default:
8353 return -EINVAL;
8354 }
8355
8356 #ifdef DO_DEBUG
8357 if (clear) {
8358 md_clear_badblocks(bb, sector, length);
8359 return len;
8360 }
8361 #endif /* DO_DEBUG */
8362 if (md_set_badblocks(bb, sector, length, !unack))
8363 return len;
8364 else
8365 return -ENOSPC;
8366 }
8367
8368 static int md_notify_reboot(struct notifier_block *this,
8369 unsigned long code, void *x)
8370 {
8371 struct list_head *tmp;
8372 struct mddev *mddev;
8373 int need_delay = 0;
8374
8375 for_each_mddev(mddev, tmp) {
8376 if (mddev_trylock(mddev)) {
8377 if (mddev->pers)
8378 __md_stop_writes(mddev);
8379 mddev->safemode = 2;
8380 mddev_unlock(mddev);
8381 }
8382 need_delay = 1;
8383 }
8384 /*
8385 * certain more exotic SCSI devices are known to be
8386 * volatile wrt too early system reboots. While the
8387 * right place to handle this issue is the given
8388 * driver, we do want to have a safe RAID driver ...
8389 */
8390 if (need_delay)
8391 mdelay(1000*1);
8392
8393 return NOTIFY_DONE;
8394 }
8395
8396 static struct notifier_block md_notifier = {
8397 .notifier_call = md_notify_reboot,
8398 .next = NULL,
8399 .priority = INT_MAX, /* before any real devices */
8400 };
8401
8402 static void md_geninit(void)
8403 {
8404 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8405
8406 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8407 }
8408
8409 static int __init md_init(void)
8410 {
8411 int ret = -ENOMEM;
8412
8413 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8414 if (!md_wq)
8415 goto err_wq;
8416
8417 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8418 if (!md_misc_wq)
8419 goto err_misc_wq;
8420
8421 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8422 goto err_md;
8423
8424 if ((ret = register_blkdev(0, "mdp")) < 0)
8425 goto err_mdp;
8426 mdp_major = ret;
8427
8428 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8429 md_probe, NULL, NULL);
8430 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8431 md_probe, NULL, NULL);
8432
8433 register_reboot_notifier(&md_notifier);
8434 raid_table_header = register_sysctl_table(raid_root_table);
8435
8436 md_geninit();
8437 return 0;
8438
8439 err_mdp:
8440 unregister_blkdev(MD_MAJOR, "md");
8441 err_md:
8442 destroy_workqueue(md_misc_wq);
8443 err_misc_wq:
8444 destroy_workqueue(md_wq);
8445 err_wq:
8446 return ret;
8447 }
8448
8449 #ifndef MODULE
8450
8451 /*
8452 * Searches all registered partitions for autorun RAID arrays
8453 * at boot time.
8454 */
8455
8456 static LIST_HEAD(all_detected_devices);
8457 struct detected_devices_node {
8458 struct list_head list;
8459 dev_t dev;
8460 };
8461
8462 void md_autodetect_dev(dev_t dev)
8463 {
8464 struct detected_devices_node *node_detected_dev;
8465
8466 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8467 if (node_detected_dev) {
8468 node_detected_dev->dev = dev;
8469 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8470 } else {
8471 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8472 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8473 }
8474 }
8475
8476
8477 static void autostart_arrays(int part)
8478 {
8479 struct md_rdev *rdev;
8480 struct detected_devices_node *node_detected_dev;
8481 dev_t dev;
8482 int i_scanned, i_passed;
8483
8484 i_scanned = 0;
8485 i_passed = 0;
8486
8487 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8488
8489 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8490 i_scanned++;
8491 node_detected_dev = list_entry(all_detected_devices.next,
8492 struct detected_devices_node, list);
8493 list_del(&node_detected_dev->list);
8494 dev = node_detected_dev->dev;
8495 kfree(node_detected_dev);
8496 rdev = md_import_device(dev,0, 90);
8497 if (IS_ERR(rdev))
8498 continue;
8499
8500 if (test_bit(Faulty, &rdev->flags)) {
8501 MD_BUG();
8502 continue;
8503 }
8504 set_bit(AutoDetected, &rdev->flags);
8505 list_add(&rdev->same_set, &pending_raid_disks);
8506 i_passed++;
8507 }
8508
8509 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8510 i_scanned, i_passed);
8511
8512 autorun_devices(part);
8513 }
8514
8515 #endif /* !MODULE */
8516
8517 static __exit void md_exit(void)
8518 {
8519 struct mddev *mddev;
8520 struct list_head *tmp;
8521
8522 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8523 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8524
8525 unregister_blkdev(MD_MAJOR,"md");
8526 unregister_blkdev(mdp_major, "mdp");
8527 unregister_reboot_notifier(&md_notifier);
8528 unregister_sysctl_table(raid_table_header);
8529 remove_proc_entry("mdstat", NULL);
8530 for_each_mddev(mddev, tmp) {
8531 export_array(mddev);
8532 mddev->hold_active = 0;
8533 }
8534 destroy_workqueue(md_misc_wq);
8535 destroy_workqueue(md_wq);
8536 }
8537
8538 subsys_initcall(md_init);
8539 module_exit(md_exit)
8540
8541 static int get_ro(char *buffer, struct kernel_param *kp)
8542 {
8543 return sprintf(buffer, "%d", start_readonly);
8544 }
8545 static int set_ro(const char *val, struct kernel_param *kp)
8546 {
8547 char *e;
8548 int num = simple_strtoul(val, &e, 10);
8549 if (*val && (*e == '\0' || *e == '\n')) {
8550 start_readonly = num;
8551 return 0;
8552 }
8553 return -EINVAL;
8554 }
8555
8556 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8557 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8558
8559 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8560
8561 EXPORT_SYMBOL(register_md_personality);
8562 EXPORT_SYMBOL(unregister_md_personality);
8563 EXPORT_SYMBOL(md_error);
8564 EXPORT_SYMBOL(md_done_sync);
8565 EXPORT_SYMBOL(md_write_start);
8566 EXPORT_SYMBOL(md_write_end);
8567 EXPORT_SYMBOL(md_register_thread);
8568 EXPORT_SYMBOL(md_unregister_thread);
8569 EXPORT_SYMBOL(md_wakeup_thread);
8570 EXPORT_SYMBOL(md_check_recovery);
8571 MODULE_LICENSE("GPL");
8572 MODULE_DESCRIPTION("MD RAID framework");
8573 MODULE_ALIAS("md");
8574 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.226185 seconds and 5 git commands to generate.