Merge tag 'dmaengine-4.2-rc1' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 if (mddev == NULL || mddev->pers == NULL
261 || !mddev->ready) {
262 bio_io_error(bio);
263 return;
264 }
265 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 return;
268 }
269 smp_rmb(); /* Ensure implications of 'active' are visible */
270 rcu_read_lock();
271 if (mddev->suspended) {
272 DEFINE_WAIT(__wait);
273 for (;;) {
274 prepare_to_wait(&mddev->sb_wait, &__wait,
275 TASK_UNINTERRUPTIBLE);
276 if (!mddev->suspended)
277 break;
278 rcu_read_unlock();
279 schedule();
280 rcu_read_lock();
281 }
282 finish_wait(&mddev->sb_wait, &__wait);
283 }
284 atomic_inc(&mddev->active_io);
285 rcu_read_unlock();
286
287 /*
288 * save the sectors now since our bio can
289 * go away inside make_request
290 */
291 sectors = bio_sectors(bio);
292 mddev->pers->make_request(mddev, bio);
293
294 cpu = part_stat_lock();
295 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 part_stat_unlock();
298
299 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304 * to the device, and that any requests that have been submitted
305 * are completely handled.
306 * Once mddev_detach() is called and completes, the module will be
307 * completely unused.
308 */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 BUG_ON(mddev->suspended);
312 mddev->suspended = 1;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 mddev->suspended = 0;
324 wake_up(&mddev->sb_wait);
325 mddev->pers->quiesce(mddev, 0);
326
327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 md_wakeup_thread(mddev->thread);
329 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 struct md_personality *pers = mddev->pers;
336 int ret = 0;
337
338 rcu_read_lock();
339 if (mddev->suspended)
340 ret = 1;
341 else if (pers && pers->congested)
342 ret = pers->congested(mddev, bits);
343 rcu_read_unlock();
344 return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 struct mddev *mddev = data;
350 return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354 struct bvec_merge_data *bvm,
355 struct bio_vec *biovec)
356 {
357 struct mddev *mddev = q->queuedata;
358 int ret;
359 rcu_read_lock();
360 if (mddev->suspended) {
361 /* Must always allow one vec */
362 if (bvm->bi_size == 0)
363 ret = biovec->bv_len;
364 else
365 ret = 0;
366 } else {
367 struct md_personality *pers = mddev->pers;
368 if (pers && pers->mergeable_bvec)
369 ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 else
371 ret = biovec->bv_len;
372 }
373 rcu_read_unlock();
374 return ret;
375 }
376 /*
377 * Generic flush handling for md
378 */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 struct md_rdev *rdev = bio->bi_private;
383 struct mddev *mddev = rdev->mddev;
384
385 rdev_dec_pending(rdev, mddev);
386
387 if (atomic_dec_and_test(&mddev->flush_pending)) {
388 /* The pre-request flush has finished */
389 queue_work(md_wq, &mddev->flush_work);
390 }
391 bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 struct md_rdev *rdev;
400
401 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 atomic_set(&mddev->flush_pending, 1);
403 rcu_read_lock();
404 rdev_for_each_rcu(rdev, mddev)
405 if (rdev->raid_disk >= 0 &&
406 !test_bit(Faulty, &rdev->flags)) {
407 /* Take two references, one is dropped
408 * when request finishes, one after
409 * we reclaim rcu_read_lock
410 */
411 struct bio *bi;
412 atomic_inc(&rdev->nr_pending);
413 atomic_inc(&rdev->nr_pending);
414 rcu_read_unlock();
415 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 bi->bi_end_io = md_end_flush;
417 bi->bi_private = rdev;
418 bi->bi_bdev = rdev->bdev;
419 atomic_inc(&mddev->flush_pending);
420 submit_bio(WRITE_FLUSH, bi);
421 rcu_read_lock();
422 rdev_dec_pending(rdev, mddev);
423 }
424 rcu_read_unlock();
425 if (atomic_dec_and_test(&mddev->flush_pending))
426 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 struct bio *bio = mddev->flush_bio;
433
434 if (bio->bi_iter.bi_size == 0)
435 /* an empty barrier - all done */
436 bio_endio(bio, 0);
437 else {
438 bio->bi_rw &= ~REQ_FLUSH;
439 mddev->pers->make_request(mddev, bio);
440 }
441
442 mddev->flush_bio = NULL;
443 wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 spin_lock_irq(&mddev->lock);
449 wait_event_lock_irq(mddev->sb_wait,
450 !mddev->flush_bio,
451 mddev->lock);
452 mddev->flush_bio = bio;
453 spin_unlock_irq(&mddev->lock);
454
455 INIT_WORK(&mddev->flush_work, submit_flushes);
456 queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 struct mddev *mddev = cb->data;
463 md_wakeup_thread(mddev->thread);
464 kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 mddev->bio_set = NULL;
489 if (mddev->gendisk) {
490 /* We did a probe so need to clean up. Call
491 * queue_work inside the spinlock so that
492 * flush_workqueue() after mddev_find will
493 * succeed in waiting for the work to be done.
494 */
495 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 queue_work(md_misc_wq, &mddev->del_work);
497 } else
498 kfree(mddev);
499 }
500 spin_unlock(&all_mddevs_lock);
501 if (bs)
502 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507 mutex_init(&mddev->open_mutex);
508 mutex_init(&mddev->reconfig_mutex);
509 mutex_init(&mddev->bitmap_info.mutex);
510 INIT_LIST_HEAD(&mddev->disks);
511 INIT_LIST_HEAD(&mddev->all_mddevs);
512 init_timer(&mddev->safemode_timer);
513 atomic_set(&mddev->active, 1);
514 atomic_set(&mddev->openers, 0);
515 atomic_set(&mddev->active_io, 0);
516 spin_lock_init(&mddev->lock);
517 atomic_set(&mddev->flush_pending, 0);
518 init_waitqueue_head(&mddev->sb_wait);
519 init_waitqueue_head(&mddev->recovery_wait);
520 mddev->reshape_position = MaxSector;
521 mddev->reshape_backwards = 0;
522 mddev->last_sync_action = "none";
523 mddev->resync_min = 0;
524 mddev->resync_max = MaxSector;
525 mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 struct mddev *mddev, *new = NULL;
532
533 if (unit && MAJOR(unit) != MD_MAJOR)
534 unit &= ~((1<<MdpMinorShift)-1);
535
536 retry:
537 spin_lock(&all_mddevs_lock);
538
539 if (unit) {
540 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 if (mddev->unit == unit) {
542 mddev_get(mddev);
543 spin_unlock(&all_mddevs_lock);
544 kfree(new);
545 return mddev;
546 }
547
548 if (new) {
549 list_add(&new->all_mddevs, &all_mddevs);
550 spin_unlock(&all_mddevs_lock);
551 new->hold_active = UNTIL_IOCTL;
552 return new;
553 }
554 } else if (new) {
555 /* find an unused unit number */
556 static int next_minor = 512;
557 int start = next_minor;
558 int is_free = 0;
559 int dev = 0;
560 while (!is_free) {
561 dev = MKDEV(MD_MAJOR, next_minor);
562 next_minor++;
563 if (next_minor > MINORMASK)
564 next_minor = 0;
565 if (next_minor == start) {
566 /* Oh dear, all in use. */
567 spin_unlock(&all_mddevs_lock);
568 kfree(new);
569 return NULL;
570 }
571
572 is_free = 1;
573 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 if (mddev->unit == dev) {
575 is_free = 0;
576 break;
577 }
578 }
579 new->unit = dev;
580 new->md_minor = MINOR(dev);
581 new->hold_active = UNTIL_STOP;
582 list_add(&new->all_mddevs, &all_mddevs);
583 spin_unlock(&all_mddevs_lock);
584 return new;
585 }
586 spin_unlock(&all_mddevs_lock);
587
588 new = kzalloc(sizeof(*new), GFP_KERNEL);
589 if (!new)
590 return NULL;
591
592 new->unit = unit;
593 if (MAJOR(unit) == MD_MAJOR)
594 new->md_minor = MINOR(unit);
595 else
596 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598 mddev_init(new);
599
600 goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607 if (mddev->to_remove) {
608 /* These cannot be removed under reconfig_mutex as
609 * an access to the files will try to take reconfig_mutex
610 * while holding the file unremovable, which leads to
611 * a deadlock.
612 * So hold set sysfs_active while the remove in happeing,
613 * and anything else which might set ->to_remove or my
614 * otherwise change the sysfs namespace will fail with
615 * -EBUSY if sysfs_active is still set.
616 * We set sysfs_active under reconfig_mutex and elsewhere
617 * test it under the same mutex to ensure its correct value
618 * is seen.
619 */
620 struct attribute_group *to_remove = mddev->to_remove;
621 mddev->to_remove = NULL;
622 mddev->sysfs_active = 1;
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 if (mddev->kobj.sd) {
626 if (to_remove != &md_redundancy_group)
627 sysfs_remove_group(&mddev->kobj, to_remove);
628 if (mddev->pers == NULL ||
629 mddev->pers->sync_request == NULL) {
630 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 if (mddev->sysfs_action)
632 sysfs_put(mddev->sysfs_action);
633 mddev->sysfs_action = NULL;
634 }
635 }
636 mddev->sysfs_active = 0;
637 } else
638 mutex_unlock(&mddev->reconfig_mutex);
639
640 /* As we've dropped the mutex we need a spinlock to
641 * make sure the thread doesn't disappear
642 */
643 spin_lock(&pers_lock);
644 md_wakeup_thread(mddev->thread);
645 spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 struct md_rdev *rdev;
652
653 rdev_for_each_rcu(rdev, mddev)
654 if (rdev->desc_nr == nr)
655 return rdev;
656
657 return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each(rdev, mddev)
666 if (rdev->bdev->bd_dev == dev)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 struct md_rdev *rdev;
675
676 rdev_for_each_rcu(rdev, mddev)
677 if (rdev->bdev->bd_dev == dev)
678 return rdev;
679
680 return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 struct md_personality *pers;
686 list_for_each_entry(pers, &pers_list, list) {
687 if (level != LEVEL_NONE && pers->level == level)
688 return pers;
689 if (strcmp(pers->name, clevel)==0)
690 return pers;
691 }
692 return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 rdev->sb_page = alloc_page(GFP_KERNEL);
705 if (!rdev->sb_page) {
706 printk(KERN_ALERT "md: out of memory.\n");
707 return -ENOMEM;
708 }
709
710 return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 if (rdev->sb_page) {
716 put_page(rdev->sb_page);
717 rdev->sb_loaded = 0;
718 rdev->sb_page = NULL;
719 rdev->sb_start = 0;
720 rdev->sectors = 0;
721 }
722 if (rdev->bb_page) {
723 put_page(rdev->bb_page);
724 rdev->bb_page = NULL;
725 }
726 kfree(rdev->badblocks.page);
727 rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733 struct md_rdev *rdev = bio->bi_private;
734 struct mddev *mddev = rdev->mddev;
735
736 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 printk("md: super_written gets error=%d, uptodate=%d\n",
738 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 md_error(mddev, rdev);
741 }
742
743 if (atomic_dec_and_test(&mddev->pending_writes))
744 wake_up(&mddev->sb_wait);
745 bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 sector_t sector, int size, struct page *page)
750 {
751 /* write first size bytes of page to sector of rdev
752 * Increment mddev->pending_writes before returning
753 * and decrement it on completion, waking up sb_wait
754 * if zero is reached.
755 * If an error occurred, call md_error
756 */
757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 bio->bi_iter.bi_sector = sector;
761 bio_add_page(bio, page, size, 0);
762 bio->bi_private = rdev;
763 bio->bi_end_io = super_written;
764
765 atomic_inc(&mddev->pending_writes);
766 submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771 /* wait for all superblock writes that were scheduled to complete */
772 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 struct page *page, int rw, bool metadata_op)
777 {
778 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 int ret;
780
781 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 rdev->meta_bdev : rdev->bdev;
783 if (metadata_op)
784 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 else if (rdev->mddev->reshape_position != MaxSector &&
786 (rdev->mddev->reshape_backwards ==
787 (sector >= rdev->mddev->reshape_position)))
788 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 else
790 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 bio_add_page(bio, page, size, 0);
792 submit_bio_wait(rw, bio);
793
794 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 bio_put(bio);
796 return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 char b[BDEVNAME_SIZE];
803
804 if (rdev->sb_loaded)
805 return 0;
806
807 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 goto fail;
809 rdev->sb_loaded = 1;
810 return 0;
811
812 fail:
813 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 bdevname(rdev->bdev,b));
815 return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 return sb1->set_uuid0 == sb2->set_uuid0 &&
821 sb1->set_uuid1 == sb2->set_uuid1 &&
822 sb1->set_uuid2 == sb2->set_uuid2 &&
823 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 int ret;
829 mdp_super_t *tmp1, *tmp2;
830
831 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834 if (!tmp1 || !tmp2) {
835 ret = 0;
836 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 goto abort;
838 }
839
840 *tmp1 = *sb1;
841 *tmp2 = *sb2;
842
843 /*
844 * nr_disks is not constant
845 */
846 tmp1->nr_disks = 0;
847 tmp2->nr_disks = 0;
848
849 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 kfree(tmp1);
852 kfree(tmp2);
853 return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858 csum = (csum & 0xffff) + (csum >> 16);
859 return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 u64 newcsum = 0;
865 u32 *sb32 = (u32*)sb;
866 int i;
867 unsigned int disk_csum, csum;
868
869 disk_csum = sb->sb_csum;
870 sb->sb_csum = 0;
871
872 for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 newcsum += sb32[i];
874 csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877 /* This used to use csum_partial, which was wrong for several
878 * reasons including that different results are returned on
879 * different architectures. It isn't critical that we get exactly
880 * the same return value as before (we always csum_fold before
881 * testing, and that removes any differences). However as we
882 * know that csum_partial always returned a 16bit value on
883 * alphas, do a fold to maximise conformity to previous behaviour.
884 */
885 sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 sb->sb_csum = disk_csum;
888 #endif
889 return csum;
890 }
891
892 /*
893 * Handle superblock details.
894 * We want to be able to handle multiple superblock formats
895 * so we have a common interface to them all, and an array of
896 * different handlers.
897 * We rely on user-space to write the initial superblock, and support
898 * reading and updating of superblocks.
899 * Interface methods are:
900 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901 * loads and validates a superblock on dev.
902 * if refdev != NULL, compare superblocks on both devices
903 * Return:
904 * 0 - dev has a superblock that is compatible with refdev
905 * 1 - dev has a superblock that is compatible and newer than refdev
906 * so dev should be used as the refdev in future
907 * -EINVAL superblock incompatible or invalid
908 * -othererror e.g. -EIO
909 *
910 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
911 * Verify that dev is acceptable into mddev.
912 * The first time, mddev->raid_disks will be 0, and data from
913 * dev should be merged in. Subsequent calls check that dev
914 * is new enough. Return 0 or -EINVAL
915 *
916 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
917 * Update the superblock for rdev with data in mddev
918 * This does not write to disc.
919 *
920 */
921
922 struct super_type {
923 char *name;
924 struct module *owner;
925 int (*load_super)(struct md_rdev *rdev,
926 struct md_rdev *refdev,
927 int minor_version);
928 int (*validate_super)(struct mddev *mddev,
929 struct md_rdev *rdev);
930 void (*sync_super)(struct mddev *mddev,
931 struct md_rdev *rdev);
932 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
933 sector_t num_sectors);
934 int (*allow_new_offset)(struct md_rdev *rdev,
935 unsigned long long new_offset);
936 };
937
938 /*
939 * Check that the given mddev has no bitmap.
940 *
941 * This function is called from the run method of all personalities that do not
942 * support bitmaps. It prints an error message and returns non-zero if mddev
943 * has a bitmap. Otherwise, it returns 0.
944 *
945 */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 return 0;
950 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 mdname(mddev), mddev->pers->name);
952 return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957 * load_super for 0.90.0
958 */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 mdp_super_t *sb;
963 int ret;
964
965 /*
966 * Calculate the position of the superblock (512byte sectors),
967 * it's at the end of the disk.
968 *
969 * It also happens to be a multiple of 4Kb.
970 */
971 rdev->sb_start = calc_dev_sboffset(rdev);
972
973 ret = read_disk_sb(rdev, MD_SB_BYTES);
974 if (ret) return ret;
975
976 ret = -EINVAL;
977
978 bdevname(rdev->bdev, b);
979 sb = page_address(rdev->sb_page);
980
981 if (sb->md_magic != MD_SB_MAGIC) {
982 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 b);
984 goto abort;
985 }
986
987 if (sb->major_version != 0 ||
988 sb->minor_version < 90 ||
989 sb->minor_version > 91) {
990 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 sb->major_version, sb->minor_version,
992 b);
993 goto abort;
994 }
995
996 if (sb->raid_disks <= 0)
997 goto abort;
998
999 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 b);
1002 goto abort;
1003 }
1004
1005 rdev->preferred_minor = sb->md_minor;
1006 rdev->data_offset = 0;
1007 rdev->new_data_offset = 0;
1008 rdev->sb_size = MD_SB_BYTES;
1009 rdev->badblocks.shift = -1;
1010
1011 if (sb->level == LEVEL_MULTIPATH)
1012 rdev->desc_nr = -1;
1013 else
1014 rdev->desc_nr = sb->this_disk.number;
1015
1016 if (!refdev) {
1017 ret = 1;
1018 } else {
1019 __u64 ev1, ev2;
1020 mdp_super_t *refsb = page_address(refdev->sb_page);
1021 if (!uuid_equal(refsb, sb)) {
1022 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 b, bdevname(refdev->bdev,b2));
1024 goto abort;
1025 }
1026 if (!sb_equal(refsb, sb)) {
1027 printk(KERN_WARNING "md: %s has same UUID"
1028 " but different superblock to %s\n",
1029 b, bdevname(refdev->bdev, b2));
1030 goto abort;
1031 }
1032 ev1 = md_event(sb);
1033 ev2 = md_event(refsb);
1034 if (ev1 > ev2)
1035 ret = 1;
1036 else
1037 ret = 0;
1038 }
1039 rdev->sectors = rdev->sb_start;
1040 /* Limit to 4TB as metadata cannot record more than that.
1041 * (not needed for Linear and RAID0 as metadata doesn't
1042 * record this size)
1043 */
1044 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 rdev->sectors = (2ULL << 32) - 2;
1046
1047 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 /* "this cannot possibly happen" ... */
1049 ret = -EINVAL;
1050
1051 abort:
1052 return ret;
1053 }
1054
1055 /*
1056 * validate_super for 0.90.0
1057 */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 mdp_disk_t *desc;
1061 mdp_super_t *sb = page_address(rdev->sb_page);
1062 __u64 ev1 = md_event(sb);
1063
1064 rdev->raid_disk = -1;
1065 clear_bit(Faulty, &rdev->flags);
1066 clear_bit(In_sync, &rdev->flags);
1067 clear_bit(Bitmap_sync, &rdev->flags);
1068 clear_bit(WriteMostly, &rdev->flags);
1069
1070 if (mddev->raid_disks == 0) {
1071 mddev->major_version = 0;
1072 mddev->minor_version = sb->minor_version;
1073 mddev->patch_version = sb->patch_version;
1074 mddev->external = 0;
1075 mddev->chunk_sectors = sb->chunk_size >> 9;
1076 mddev->ctime = sb->ctime;
1077 mddev->utime = sb->utime;
1078 mddev->level = sb->level;
1079 mddev->clevel[0] = 0;
1080 mddev->layout = sb->layout;
1081 mddev->raid_disks = sb->raid_disks;
1082 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 mddev->events = ev1;
1084 mddev->bitmap_info.offset = 0;
1085 mddev->bitmap_info.space = 0;
1086 /* bitmap can use 60 K after the 4K superblocks */
1087 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 mddev->reshape_backwards = 0;
1090
1091 if (mddev->minor_version >= 91) {
1092 mddev->reshape_position = sb->reshape_position;
1093 mddev->delta_disks = sb->delta_disks;
1094 mddev->new_level = sb->new_level;
1095 mddev->new_layout = sb->new_layout;
1096 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 if (mddev->delta_disks < 0)
1098 mddev->reshape_backwards = 1;
1099 } else {
1100 mddev->reshape_position = MaxSector;
1101 mddev->delta_disks = 0;
1102 mddev->new_level = mddev->level;
1103 mddev->new_layout = mddev->layout;
1104 mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 }
1106
1107 if (sb->state & (1<<MD_SB_CLEAN))
1108 mddev->recovery_cp = MaxSector;
1109 else {
1110 if (sb->events_hi == sb->cp_events_hi &&
1111 sb->events_lo == sb->cp_events_lo) {
1112 mddev->recovery_cp = sb->recovery_cp;
1113 } else
1114 mddev->recovery_cp = 0;
1115 }
1116
1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122 mddev->max_disks = MD_SB_DISKS;
1123
1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 mddev->bitmap_info.file == NULL) {
1126 mddev->bitmap_info.offset =
1127 mddev->bitmap_info.default_offset;
1128 mddev->bitmap_info.space =
1129 mddev->bitmap_info.default_space;
1130 }
1131
1132 } else if (mddev->pers == NULL) {
1133 /* Insist on good event counter while assembling, except
1134 * for spares (which don't need an event count) */
1135 ++ev1;
1136 if (sb->disks[rdev->desc_nr].state & (
1137 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 if (ev1 < mddev->events)
1139 return -EINVAL;
1140 } else if (mddev->bitmap) {
1141 /* if adding to array with a bitmap, then we can accept an
1142 * older device ... but not too old.
1143 */
1144 if (ev1 < mddev->bitmap->events_cleared)
1145 return 0;
1146 if (ev1 < mddev->events)
1147 set_bit(Bitmap_sync, &rdev->flags);
1148 } else {
1149 if (ev1 < mddev->events)
1150 /* just a hot-add of a new device, leave raid_disk at -1 */
1151 return 0;
1152 }
1153
1154 if (mddev->level != LEVEL_MULTIPATH) {
1155 desc = sb->disks + rdev->desc_nr;
1156
1157 if (desc->state & (1<<MD_DISK_FAULTY))
1158 set_bit(Faulty, &rdev->flags);
1159 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 desc->raid_disk < mddev->raid_disks */) {
1161 set_bit(In_sync, &rdev->flags);
1162 rdev->raid_disk = desc->raid_disk;
1163 rdev->saved_raid_disk = desc->raid_disk;
1164 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 /* active but not in sync implies recovery up to
1166 * reshape position. We don't know exactly where
1167 * that is, so set to zero for now */
1168 if (mddev->minor_version >= 91) {
1169 rdev->recovery_offset = 0;
1170 rdev->raid_disk = desc->raid_disk;
1171 }
1172 }
1173 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 set_bit(WriteMostly, &rdev->flags);
1175 } else /* MULTIPATH are always insync */
1176 set_bit(In_sync, &rdev->flags);
1177 return 0;
1178 }
1179
1180 /*
1181 * sync_super for 0.90.0
1182 */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 mdp_super_t *sb;
1186 struct md_rdev *rdev2;
1187 int next_spare = mddev->raid_disks;
1188
1189 /* make rdev->sb match mddev data..
1190 *
1191 * 1/ zero out disks
1192 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 * 3/ any empty disks < next_spare become removed
1194 *
1195 * disks[0] gets initialised to REMOVED because
1196 * we cannot be sure from other fields if it has
1197 * been initialised or not.
1198 */
1199 int i;
1200 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202 rdev->sb_size = MD_SB_BYTES;
1203
1204 sb = page_address(rdev->sb_page);
1205
1206 memset(sb, 0, sizeof(*sb));
1207
1208 sb->md_magic = MD_SB_MAGIC;
1209 sb->major_version = mddev->major_version;
1210 sb->patch_version = mddev->patch_version;
1211 sb->gvalid_words = 0; /* ignored */
1212 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217 sb->ctime = mddev->ctime;
1218 sb->level = mddev->level;
1219 sb->size = mddev->dev_sectors / 2;
1220 sb->raid_disks = mddev->raid_disks;
1221 sb->md_minor = mddev->md_minor;
1222 sb->not_persistent = 0;
1223 sb->utime = mddev->utime;
1224 sb->state = 0;
1225 sb->events_hi = (mddev->events>>32);
1226 sb->events_lo = (u32)mddev->events;
1227
1228 if (mddev->reshape_position == MaxSector)
1229 sb->minor_version = 90;
1230 else {
1231 sb->minor_version = 91;
1232 sb->reshape_position = mddev->reshape_position;
1233 sb->new_level = mddev->new_level;
1234 sb->delta_disks = mddev->delta_disks;
1235 sb->new_layout = mddev->new_layout;
1236 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 }
1238 mddev->minor_version = sb->minor_version;
1239 if (mddev->in_sync)
1240 {
1241 sb->recovery_cp = mddev->recovery_cp;
1242 sb->cp_events_hi = (mddev->events>>32);
1243 sb->cp_events_lo = (u32)mddev->events;
1244 if (mddev->recovery_cp == MaxSector)
1245 sb->state = (1<< MD_SB_CLEAN);
1246 } else
1247 sb->recovery_cp = 0;
1248
1249 sb->layout = mddev->layout;
1250 sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 rdev_for_each(rdev2, mddev) {
1257 mdp_disk_t *d;
1258 int desc_nr;
1259 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261 if (rdev2->raid_disk >= 0 &&
1262 sb->minor_version >= 91)
1263 /* we have nowhere to store the recovery_offset,
1264 * but if it is not below the reshape_position,
1265 * we can piggy-back on that.
1266 */
1267 is_active = 1;
1268 if (rdev2->raid_disk < 0 ||
1269 test_bit(Faulty, &rdev2->flags))
1270 is_active = 0;
1271 if (is_active)
1272 desc_nr = rdev2->raid_disk;
1273 else
1274 desc_nr = next_spare++;
1275 rdev2->desc_nr = desc_nr;
1276 d = &sb->disks[rdev2->desc_nr];
1277 nr_disks++;
1278 d->number = rdev2->desc_nr;
1279 d->major = MAJOR(rdev2->bdev->bd_dev);
1280 d->minor = MINOR(rdev2->bdev->bd_dev);
1281 if (is_active)
1282 d->raid_disk = rdev2->raid_disk;
1283 else
1284 d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 if (test_bit(Faulty, &rdev2->flags))
1286 d->state = (1<<MD_DISK_FAULTY);
1287 else if (is_active) {
1288 d->state = (1<<MD_DISK_ACTIVE);
1289 if (test_bit(In_sync, &rdev2->flags))
1290 d->state |= (1<<MD_DISK_SYNC);
1291 active++;
1292 working++;
1293 } else {
1294 d->state = 0;
1295 spare++;
1296 working++;
1297 }
1298 if (test_bit(WriteMostly, &rdev2->flags))
1299 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 }
1301 /* now set the "removed" and "faulty" bits on any missing devices */
1302 for (i=0 ; i < mddev->raid_disks ; i++) {
1303 mdp_disk_t *d = &sb->disks[i];
1304 if (d->state == 0 && d->number == 0) {
1305 d->number = i;
1306 d->raid_disk = i;
1307 d->state = (1<<MD_DISK_REMOVED);
1308 d->state |= (1<<MD_DISK_FAULTY);
1309 failed++;
1310 }
1311 }
1312 sb->nr_disks = nr_disks;
1313 sb->active_disks = active;
1314 sb->working_disks = working;
1315 sb->failed_disks = failed;
1316 sb->spare_disks = spare;
1317
1318 sb->this_disk = sb->disks[rdev->desc_nr];
1319 sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323 * rdev_size_change for 0.90.0
1324 */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 return 0; /* component must fit device */
1330 if (rdev->mddev->bitmap_info.offset)
1331 return 0; /* can't move bitmap */
1332 rdev->sb_start = calc_dev_sboffset(rdev);
1333 if (!num_sectors || num_sectors > rdev->sb_start)
1334 num_sectors = rdev->sb_start;
1335 /* Limit to 4TB as metadata cannot record more than that.
1336 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 */
1338 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 num_sectors = (2ULL << 32) - 2;
1340 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 rdev->sb_page);
1342 md_super_wait(rdev->mddev);
1343 return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 /* non-zero offset changes not possible with v0.90 */
1350 return new_offset == 0;
1351 }
1352
1353 /*
1354 * version 1 superblock
1355 */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 __le32 disk_csum;
1360 u32 csum;
1361 unsigned long long newcsum;
1362 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 __le32 *isuper = (__le32*)sb;
1364
1365 disk_csum = sb->sb_csum;
1366 sb->sb_csum = 0;
1367 newcsum = 0;
1368 for (; size >= 4; size -= 4)
1369 newcsum += le32_to_cpu(*isuper++);
1370
1371 if (size == 2)
1372 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 sb->sb_csum = disk_csum;
1376 return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 struct mdp_superblock_1 *sb;
1384 int ret;
1385 sector_t sb_start;
1386 sector_t sectors;
1387 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 int bmask;
1389
1390 /*
1391 * Calculate the position of the superblock in 512byte sectors.
1392 * It is always aligned to a 4K boundary and
1393 * depeding on minor_version, it can be:
1394 * 0: At least 8K, but less than 12K, from end of device
1395 * 1: At start of device
1396 * 2: 4K from start of device.
1397 */
1398 switch(minor_version) {
1399 case 0:
1400 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 sb_start -= 8*2;
1402 sb_start &= ~(sector_t)(4*2-1);
1403 break;
1404 case 1:
1405 sb_start = 0;
1406 break;
1407 case 2:
1408 sb_start = 8;
1409 break;
1410 default:
1411 return -EINVAL;
1412 }
1413 rdev->sb_start = sb_start;
1414
1415 /* superblock is rarely larger than 1K, but it can be larger,
1416 * and it is safe to read 4k, so we do that
1417 */
1418 ret = read_disk_sb(rdev, 4096);
1419 if (ret) return ret;
1420
1421 sb = page_address(rdev->sb_page);
1422
1423 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 sb->major_version != cpu_to_le32(1) ||
1425 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 return -EINVAL;
1429
1430 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 printk("md: invalid superblock checksum on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (le64_to_cpu(sb->data_size) < 10) {
1436 printk("md: data_size too small on %s\n",
1437 bdevname(rdev->bdev,b));
1438 return -EINVAL;
1439 }
1440 if (sb->pad0 ||
1441 sb->pad3[0] ||
1442 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 /* Some padding is non-zero, might be a new feature */
1444 return -EINVAL;
1445
1446 rdev->preferred_minor = 0xffff;
1447 rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 rdev->new_data_offset = rdev->data_offset;
1449 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 if (rdev->sb_size & bmask)
1457 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459 if (minor_version
1460 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 return -EINVAL;
1462 if (minor_version
1463 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 return -EINVAL;
1465
1466 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 rdev->desc_nr = -1;
1468 else
1469 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471 if (!rdev->bb_page) {
1472 rdev->bb_page = alloc_page(GFP_KERNEL);
1473 if (!rdev->bb_page)
1474 return -ENOMEM;
1475 }
1476 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 rdev->badblocks.count == 0) {
1478 /* need to load the bad block list.
1479 * Currently we limit it to one page.
1480 */
1481 s32 offset;
1482 sector_t bb_sector;
1483 u64 *bbp;
1484 int i;
1485 int sectors = le16_to_cpu(sb->bblog_size);
1486 if (sectors > (PAGE_SIZE / 512))
1487 return -EINVAL;
1488 offset = le32_to_cpu(sb->bblog_offset);
1489 if (offset == 0)
1490 return -EINVAL;
1491 bb_sector = (long long)offset;
1492 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 rdev->bb_page, READ, true))
1494 return -EIO;
1495 bbp = (u64 *)page_address(rdev->bb_page);
1496 rdev->badblocks.shift = sb->bblog_shift;
1497 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 u64 bb = le64_to_cpu(*bbp);
1499 int count = bb & (0x3ff);
1500 u64 sector = bb >> 10;
1501 sector <<= sb->bblog_shift;
1502 count <<= sb->bblog_shift;
1503 if (bb + 1 == 0)
1504 break;
1505 if (md_set_badblocks(&rdev->badblocks,
1506 sector, count, 1) == 0)
1507 return -EINVAL;
1508 }
1509 } else if (sb->bblog_offset != 0)
1510 rdev->badblocks.shift = 0;
1511
1512 if (!refdev) {
1513 ret = 1;
1514 } else {
1515 __u64 ev1, ev2;
1516 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 sb->level != refsb->level ||
1520 sb->layout != refsb->layout ||
1521 sb->chunksize != refsb->chunksize) {
1522 printk(KERN_WARNING "md: %s has strangely different"
1523 " superblock to %s\n",
1524 bdevname(rdev->bdev,b),
1525 bdevname(refdev->bdev,b2));
1526 return -EINVAL;
1527 }
1528 ev1 = le64_to_cpu(sb->events);
1529 ev2 = le64_to_cpu(refsb->events);
1530
1531 if (ev1 > ev2)
1532 ret = 1;
1533 else
1534 ret = 0;
1535 }
1536 if (minor_version) {
1537 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 sectors -= rdev->data_offset;
1539 } else
1540 sectors = rdev->sb_start;
1541 if (sectors < le64_to_cpu(sb->data_size))
1542 return -EINVAL;
1543 rdev->sectors = le64_to_cpu(sb->data_size);
1544 return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 __u64 ev1 = le64_to_cpu(sb->events);
1551
1552 rdev->raid_disk = -1;
1553 clear_bit(Faulty, &rdev->flags);
1554 clear_bit(In_sync, &rdev->flags);
1555 clear_bit(Bitmap_sync, &rdev->flags);
1556 clear_bit(WriteMostly, &rdev->flags);
1557
1558 if (mddev->raid_disks == 0) {
1559 mddev->major_version = 1;
1560 mddev->patch_version = 0;
1561 mddev->external = 0;
1562 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 mddev->level = le32_to_cpu(sb->level);
1566 mddev->clevel[0] = 0;
1567 mddev->layout = le32_to_cpu(sb->layout);
1568 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 mddev->dev_sectors = le64_to_cpu(sb->size);
1570 mddev->events = ev1;
1571 mddev->bitmap_info.offset = 0;
1572 mddev->bitmap_info.space = 0;
1573 /* Default location for bitmap is 1K after superblock
1574 * using 3K - total of 4K
1575 */
1576 mddev->bitmap_info.default_offset = 1024 >> 9;
1577 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 mddev->reshape_backwards = 0;
1579
1580 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583 mddev->max_disks = (4096-256)/2;
1584
1585 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 mddev->bitmap_info.file == NULL) {
1587 mddev->bitmap_info.offset =
1588 (__s32)le32_to_cpu(sb->bitmap_offset);
1589 /* Metadata doesn't record how much space is available.
1590 * For 1.0, we assume we can use up to the superblock
1591 * if before, else to 4K beyond superblock.
1592 * For others, assume no change is possible.
1593 */
1594 if (mddev->minor_version > 0)
1595 mddev->bitmap_info.space = 0;
1596 else if (mddev->bitmap_info.offset > 0)
1597 mddev->bitmap_info.space =
1598 8 - mddev->bitmap_info.offset;
1599 else
1600 mddev->bitmap_info.space =
1601 -mddev->bitmap_info.offset;
1602 }
1603
1604 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 mddev->new_level = le32_to_cpu(sb->new_level);
1608 mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 if (mddev->delta_disks < 0 ||
1611 (mddev->delta_disks == 0 &&
1612 (le32_to_cpu(sb->feature_map)
1613 & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 mddev->reshape_backwards = 1;
1615 } else {
1616 mddev->reshape_position = MaxSector;
1617 mddev->delta_disks = 0;
1618 mddev->new_level = mddev->level;
1619 mddev->new_layout = mddev->layout;
1620 mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 }
1622
1623 } else if (mddev->pers == NULL) {
1624 /* Insist of good event counter while assembling, except for
1625 * spares (which don't need an event count) */
1626 ++ev1;
1627 if (rdev->desc_nr >= 0 &&
1628 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 if (ev1 < mddev->events)
1631 return -EINVAL;
1632 } else if (mddev->bitmap) {
1633 /* If adding to array with a bitmap, then we can accept an
1634 * older device, but not too old.
1635 */
1636 if (ev1 < mddev->bitmap->events_cleared)
1637 return 0;
1638 if (ev1 < mddev->events)
1639 set_bit(Bitmap_sync, &rdev->flags);
1640 } else {
1641 if (ev1 < mddev->events)
1642 /* just a hot-add of a new device, leave raid_disk at -1 */
1643 return 0;
1644 }
1645 if (mddev->level != LEVEL_MULTIPATH) {
1646 int role;
1647 if (rdev->desc_nr < 0 ||
1648 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 role = 0xffff;
1650 rdev->desc_nr = -1;
1651 } else
1652 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 switch(role) {
1654 case 0xffff: /* spare */
1655 break;
1656 case 0xfffe: /* faulty */
1657 set_bit(Faulty, &rdev->flags);
1658 break;
1659 default:
1660 rdev->saved_raid_disk = role;
1661 if ((le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_OFFSET)) {
1663 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 if (!(le32_to_cpu(sb->feature_map) &
1665 MD_FEATURE_RECOVERY_BITMAP))
1666 rdev->saved_raid_disk = -1;
1667 } else
1668 set_bit(In_sync, &rdev->flags);
1669 rdev->raid_disk = role;
1670 break;
1671 }
1672 if (sb->devflags & WriteMostly1)
1673 set_bit(WriteMostly, &rdev->flags);
1674 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 set_bit(Replacement, &rdev->flags);
1676 } else /* MULTIPATH are always insync */
1677 set_bit(In_sync, &rdev->flags);
1678
1679 return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct mdp_superblock_1 *sb;
1685 struct md_rdev *rdev2;
1686 int max_dev, i;
1687 /* make rdev->sb match mddev and rdev data. */
1688
1689 sb = page_address(rdev->sb_page);
1690
1691 sb->feature_map = 0;
1692 sb->pad0 = 0;
1693 sb->recovery_offset = cpu_to_le64(0);
1694 memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696 sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 sb->events = cpu_to_le64(mddev->events);
1698 if (mddev->in_sync)
1699 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 else
1701 sb->resync_offset = cpu_to_le64(0);
1702
1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 sb->size = cpu_to_le64(mddev->dev_sectors);
1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 sb->level = cpu_to_le32(mddev->level);
1709 sb->layout = cpu_to_le32(mddev->layout);
1710
1711 if (test_bit(WriteMostly, &rdev->flags))
1712 sb->devflags |= WriteMostly1;
1713 else
1714 sb->devflags &= ~WriteMostly1;
1715 sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 }
1722
1723 if (rdev->raid_disk >= 0 &&
1724 !test_bit(In_sync, &rdev->flags)) {
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 sb->recovery_offset =
1728 cpu_to_le64(rdev->recovery_offset);
1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 }
1733 if (test_bit(Replacement, &rdev->flags))
1734 sb->feature_map |=
1735 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737 if (mddev->reshape_position != MaxSector) {
1738 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 sb->new_level = cpu_to_le32(mddev->new_level);
1743 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 if (mddev->delta_disks == 0 &&
1745 mddev->reshape_backwards)
1746 sb->feature_map
1747 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 if (rdev->new_data_offset != rdev->data_offset) {
1749 sb->feature_map
1750 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 - rdev->data_offset));
1753 }
1754 }
1755
1756 if (rdev->badblocks.count == 0)
1757 /* Nothing to do for bad blocks*/ ;
1758 else if (sb->bblog_offset == 0)
1759 /* Cannot record bad blocks on this device */
1760 md_error(mddev, rdev);
1761 else {
1762 struct badblocks *bb = &rdev->badblocks;
1763 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 u64 *p = bb->page;
1765 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 if (bb->changed) {
1767 unsigned seq;
1768
1769 retry:
1770 seq = read_seqbegin(&bb->lock);
1771
1772 memset(bbp, 0xff, PAGE_SIZE);
1773
1774 for (i = 0 ; i < bb->count ; i++) {
1775 u64 internal_bb = p[i];
1776 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 | BB_LEN(internal_bb));
1778 bbp[i] = cpu_to_le64(store_bb);
1779 }
1780 bb->changed = 0;
1781 if (read_seqretry(&bb->lock, seq))
1782 goto retry;
1783
1784 bb->sector = (rdev->sb_start +
1785 (int)le32_to_cpu(sb->bblog_offset));
1786 bb->size = le16_to_cpu(sb->bblog_size);
1787 }
1788 }
1789
1790 max_dev = 0;
1791 rdev_for_each(rdev2, mddev)
1792 if (rdev2->desc_nr+1 > max_dev)
1793 max_dev = rdev2->desc_nr+1;
1794
1795 if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 int bmask;
1797 sb->max_dev = cpu_to_le32(max_dev);
1798 rdev->sb_size = max_dev * 2 + 256;
1799 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 if (rdev->sb_size & bmask)
1801 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 } else
1803 max_dev = le32_to_cpu(sb->max_dev);
1804
1805 for (i=0; i<max_dev;i++)
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808 rdev_for_each(rdev2, mddev) {
1809 i = rdev2->desc_nr;
1810 if (test_bit(Faulty, &rdev2->flags))
1811 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 else if (test_bit(In_sync, &rdev2->flags))
1813 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 else if (rdev2->raid_disk >= 0)
1815 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 else
1817 sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 }
1819
1820 sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 struct mdp_superblock_1 *sb;
1827 sector_t max_sectors;
1828 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 return 0; /* component must fit device */
1830 if (rdev->data_offset != rdev->new_data_offset)
1831 return 0; /* too confusing */
1832 if (rdev->sb_start < rdev->data_offset) {
1833 /* minor versions 1 and 2; superblock before data */
1834 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 max_sectors -= rdev->data_offset;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 } else if (rdev->mddev->bitmap_info.offset) {
1839 /* minor version 0 with bitmap we can't move */
1840 return 0;
1841 } else {
1842 /* minor version 0; superblock after data */
1843 sector_t sb_start;
1844 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 sb_start &= ~(sector_t)(4*2 - 1);
1846 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 rdev->sb_start = sb_start;
1850 }
1851 sb = page_address(rdev->sb_page);
1852 sb->data_size = cpu_to_le64(num_sectors);
1853 sb->super_offset = rdev->sb_start;
1854 sb->sb_csum = calc_sb_1_csum(sb);
1855 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 rdev->sb_page);
1857 md_super_wait(rdev->mddev);
1858 return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 unsigned long long new_offset)
1865 {
1866 /* All necessary checks on new >= old have been done */
1867 struct bitmap *bitmap;
1868 if (new_offset >= rdev->data_offset)
1869 return 1;
1870
1871 /* with 1.0 metadata, there is no metadata to tread on
1872 * so we can always move back */
1873 if (rdev->mddev->minor_version == 0)
1874 return 1;
1875
1876 /* otherwise we must be sure not to step on
1877 * any metadata, so stay:
1878 * 36K beyond start of superblock
1879 * beyond end of badblocks
1880 * beyond write-intent bitmap
1881 */
1882 if (rdev->sb_start + (32+4)*2 > new_offset)
1883 return 0;
1884 bitmap = rdev->mddev->bitmap;
1885 if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 return 0;
1889 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 return 0;
1891
1892 return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896 [0] = {
1897 .name = "0.90.0",
1898 .owner = THIS_MODULE,
1899 .load_super = super_90_load,
1900 .validate_super = super_90_validate,
1901 .sync_super = super_90_sync,
1902 .rdev_size_change = super_90_rdev_size_change,
1903 .allow_new_offset = super_90_allow_new_offset,
1904 },
1905 [1] = {
1906 .name = "md-1",
1907 .owner = THIS_MODULE,
1908 .load_super = super_1_load,
1909 .validate_super = super_1_validate,
1910 .sync_super = super_1_sync,
1911 .rdev_size_change = super_1_rdev_size_change,
1912 .allow_new_offset = super_1_allow_new_offset,
1913 },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 if (mddev->sync_super) {
1919 mddev->sync_super(mddev, rdev);
1920 return;
1921 }
1922
1923 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925 super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 struct md_rdev *rdev, *rdev2;
1931
1932 rcu_read_lock();
1933 rdev_for_each_rcu(rdev, mddev1)
1934 rdev_for_each_rcu(rdev2, mddev2)
1935 if (rdev->bdev->bd_contains ==
1936 rdev2->bdev->bd_contains) {
1937 rcu_read_unlock();
1938 return 1;
1939 }
1940 rcu_read_unlock();
1941 return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947 * Try to register data integrity profile for an mddev
1948 *
1949 * This is called when an array is started and after a disk has been kicked
1950 * from the array. It only succeeds if all working and active component devices
1951 * are integrity capable with matching profiles.
1952 */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 struct md_rdev *rdev, *reference = NULL;
1956
1957 if (list_empty(&mddev->disks))
1958 return 0; /* nothing to do */
1959 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 return 0; /* shouldn't register, or already is */
1961 rdev_for_each(rdev, mddev) {
1962 /* skip spares and non-functional disks */
1963 if (test_bit(Faulty, &rdev->flags))
1964 continue;
1965 if (rdev->raid_disk < 0)
1966 continue;
1967 if (!reference) {
1968 /* Use the first rdev as the reference */
1969 reference = rdev;
1970 continue;
1971 }
1972 /* does this rdev's profile match the reference profile? */
1973 if (blk_integrity_compare(reference->bdev->bd_disk,
1974 rdev->bdev->bd_disk) < 0)
1975 return -EINVAL;
1976 }
1977 if (!reference || !bdev_get_integrity(reference->bdev))
1978 return 0;
1979 /*
1980 * All component devices are integrity capable and have matching
1981 * profiles, register the common profile for the md device.
1982 */
1983 if (blk_integrity_register(mddev->gendisk,
1984 bdev_get_integrity(reference->bdev)) != 0) {
1985 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 mdname(mddev));
1987 return -EINVAL;
1988 }
1989 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 mdname(mddev));
1993 return -EINVAL;
1994 }
1995 return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 struct blk_integrity *bi_rdev;
2003 struct blk_integrity *bi_mddev;
2004
2005 if (!mddev->gendisk)
2006 return;
2007
2008 bi_rdev = bdev_get_integrity(rdev->bdev);
2009 bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011 if (!bi_mddev) /* nothing to do */
2012 return;
2013 if (rdev->raid_disk < 0) /* skip spares */
2014 return;
2015 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 rdev->bdev->bd_disk) >= 0)
2017 return;
2018 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 char b[BDEVNAME_SIZE];
2026 struct kobject *ko;
2027 int err;
2028
2029 /* prevent duplicates */
2030 if (find_rdev(mddev, rdev->bdev->bd_dev))
2031 return -EEXIST;
2032
2033 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2034 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035 rdev->sectors < mddev->dev_sectors)) {
2036 if (mddev->pers) {
2037 /* Cannot change size, so fail
2038 * If mddev->level <= 0, then we don't care
2039 * about aligning sizes (e.g. linear)
2040 */
2041 if (mddev->level > 0)
2042 return -ENOSPC;
2043 } else
2044 mddev->dev_sectors = rdev->sectors;
2045 }
2046
2047 /* Verify rdev->desc_nr is unique.
2048 * If it is -1, assign a free number, else
2049 * check number is not in use
2050 */
2051 rcu_read_lock();
2052 if (rdev->desc_nr < 0) {
2053 int choice = 0;
2054 if (mddev->pers)
2055 choice = mddev->raid_disks;
2056 while (md_find_rdev_nr_rcu(mddev, choice))
2057 choice++;
2058 rdev->desc_nr = choice;
2059 } else {
2060 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061 rcu_read_unlock();
2062 return -EBUSY;
2063 }
2064 }
2065 rcu_read_unlock();
2066 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068 mdname(mddev), mddev->max_disks);
2069 return -EBUSY;
2070 }
2071 bdevname(rdev->bdev,b);
2072 strreplace(b, '/', '!');
2073
2074 rdev->mddev = mddev;
2075 printk(KERN_INFO "md: bind<%s>\n", b);
2076
2077 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078 goto fail;
2079
2080 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082 /* failure here is OK */;
2083 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084
2085 list_add_rcu(&rdev->same_set, &mddev->disks);
2086 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087
2088 /* May as well allow recovery to be retried once */
2089 mddev->recovery_disabled++;
2090
2091 return 0;
2092
2093 fail:
2094 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095 b, mdname(mddev));
2096 return err;
2097 }
2098
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102 kobject_del(&rdev->kobj);
2103 kobject_put(&rdev->kobj);
2104 }
2105
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108 char b[BDEVNAME_SIZE];
2109
2110 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111 list_del_rcu(&rdev->same_set);
2112 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113 rdev->mddev = NULL;
2114 sysfs_remove_link(&rdev->kobj, "block");
2115 sysfs_put(rdev->sysfs_state);
2116 rdev->sysfs_state = NULL;
2117 rdev->badblocks.count = 0;
2118 /* We need to delay this, otherwise we can deadlock when
2119 * writing to 'remove' to "dev/state". We also need
2120 * to delay it due to rcu usage.
2121 */
2122 synchronize_rcu();
2123 INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 kobject_get(&rdev->kobj);
2125 queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127
2128 /*
2129 * prevent the device from being mounted, repartitioned or
2130 * otherwise reused by a RAID array (or any other kernel
2131 * subsystem), by bd_claiming the device.
2132 */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 int err = 0;
2136 struct block_device *bdev;
2137 char b[BDEVNAME_SIZE];
2138
2139 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 if (IS_ERR(bdev)) {
2142 printk(KERN_ERR "md: could not open %s.\n",
2143 __bdevname(dev, b));
2144 return PTR_ERR(bdev);
2145 }
2146 rdev->bdev = bdev;
2147 return err;
2148 }
2149
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 struct block_device *bdev = rdev->bdev;
2153 rdev->bdev = NULL;
2154 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156
2157 void md_autodetect_dev(dev_t dev);
2158
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162
2163 printk(KERN_INFO "md: export_rdev(%s)\n",
2164 bdevname(rdev->bdev,b));
2165 md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 if (test_bit(AutoDetected, &rdev->flags))
2168 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 unlock_rdev(rdev);
2171 kobject_put(&rdev->kobj);
2172 }
2173
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 unbind_rdev_from_array(rdev);
2177 export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180
2181 static void export_array(struct mddev *mddev)
2182 {
2183 struct md_rdev *rdev;
2184
2185 while (!list_empty(&mddev->disks)) {
2186 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187 same_set);
2188 md_kick_rdev_from_array(rdev);
2189 }
2190 mddev->raid_disks = 0;
2191 mddev->major_version = 0;
2192 }
2193
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196 /* Update each superblock (in-memory image), but
2197 * if we are allowed to, skip spares which already
2198 * have the right event counter, or have one earlier
2199 * (which would mean they aren't being marked as dirty
2200 * with the rest of the array)
2201 */
2202 struct md_rdev *rdev;
2203 rdev_for_each(rdev, mddev) {
2204 if (rdev->sb_events == mddev->events ||
2205 (nospares &&
2206 rdev->raid_disk < 0 &&
2207 rdev->sb_events+1 == mddev->events)) {
2208 /* Don't update this superblock */
2209 rdev->sb_loaded = 2;
2210 } else {
2211 sync_super(mddev, rdev);
2212 rdev->sb_loaded = 1;
2213 }
2214 }
2215 }
2216
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219 struct md_rdev *rdev;
2220 int sync_req;
2221 int nospares = 0;
2222 int any_badblocks_changed = 0;
2223
2224 if (mddev->ro) {
2225 if (force_change)
2226 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 return;
2228 }
2229 repeat:
2230 /* First make sure individual recovery_offsets are correct */
2231 rdev_for_each(rdev, mddev) {
2232 if (rdev->raid_disk >= 0 &&
2233 mddev->delta_disks >= 0 &&
2234 !test_bit(In_sync, &rdev->flags) &&
2235 mddev->curr_resync_completed > rdev->recovery_offset)
2236 rdev->recovery_offset = mddev->curr_resync_completed;
2237
2238 }
2239 if (!mddev->persistent) {
2240 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242 if (!mddev->external) {
2243 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244 rdev_for_each(rdev, mddev) {
2245 if (rdev->badblocks.changed) {
2246 rdev->badblocks.changed = 0;
2247 md_ack_all_badblocks(&rdev->badblocks);
2248 md_error(mddev, rdev);
2249 }
2250 clear_bit(Blocked, &rdev->flags);
2251 clear_bit(BlockedBadBlocks, &rdev->flags);
2252 wake_up(&rdev->blocked_wait);
2253 }
2254 }
2255 wake_up(&mddev->sb_wait);
2256 return;
2257 }
2258
2259 spin_lock(&mddev->lock);
2260
2261 mddev->utime = get_seconds();
2262
2263 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264 force_change = 1;
2265 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266 /* just a clean<-> dirty transition, possibly leave spares alone,
2267 * though if events isn't the right even/odd, we will have to do
2268 * spares after all
2269 */
2270 nospares = 1;
2271 if (force_change)
2272 nospares = 0;
2273 if (mddev->degraded)
2274 /* If the array is degraded, then skipping spares is both
2275 * dangerous and fairly pointless.
2276 * Dangerous because a device that was removed from the array
2277 * might have a event_count that still looks up-to-date,
2278 * so it can be re-added without a resync.
2279 * Pointless because if there are any spares to skip,
2280 * then a recovery will happen and soon that array won't
2281 * be degraded any more and the spare can go back to sleep then.
2282 */
2283 nospares = 0;
2284
2285 sync_req = mddev->in_sync;
2286
2287 /* If this is just a dirty<->clean transition, and the array is clean
2288 * and 'events' is odd, we can roll back to the previous clean state */
2289 if (nospares
2290 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291 && mddev->can_decrease_events
2292 && mddev->events != 1) {
2293 mddev->events--;
2294 mddev->can_decrease_events = 0;
2295 } else {
2296 /* otherwise we have to go forward and ... */
2297 mddev->events ++;
2298 mddev->can_decrease_events = nospares;
2299 }
2300
2301 /*
2302 * This 64-bit counter should never wrap.
2303 * Either we are in around ~1 trillion A.C., assuming
2304 * 1 reboot per second, or we have a bug...
2305 */
2306 WARN_ON(mddev->events == 0);
2307
2308 rdev_for_each(rdev, mddev) {
2309 if (rdev->badblocks.changed)
2310 any_badblocks_changed++;
2311 if (test_bit(Faulty, &rdev->flags))
2312 set_bit(FaultRecorded, &rdev->flags);
2313 }
2314
2315 sync_sbs(mddev, nospares);
2316 spin_unlock(&mddev->lock);
2317
2318 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319 mdname(mddev), mddev->in_sync);
2320
2321 bitmap_update_sb(mddev->bitmap);
2322 rdev_for_each(rdev, mddev) {
2323 char b[BDEVNAME_SIZE];
2324
2325 if (rdev->sb_loaded != 1)
2326 continue; /* no noise on spare devices */
2327
2328 if (!test_bit(Faulty, &rdev->flags)) {
2329 md_super_write(mddev,rdev,
2330 rdev->sb_start, rdev->sb_size,
2331 rdev->sb_page);
2332 pr_debug("md: (write) %s's sb offset: %llu\n",
2333 bdevname(rdev->bdev, b),
2334 (unsigned long long)rdev->sb_start);
2335 rdev->sb_events = mddev->events;
2336 if (rdev->badblocks.size) {
2337 md_super_write(mddev, rdev,
2338 rdev->badblocks.sector,
2339 rdev->badblocks.size << 9,
2340 rdev->bb_page);
2341 rdev->badblocks.size = 0;
2342 }
2343
2344 } else
2345 pr_debug("md: %s (skipping faulty)\n",
2346 bdevname(rdev->bdev, b));
2347
2348 if (mddev->level == LEVEL_MULTIPATH)
2349 /* only need to write one superblock... */
2350 break;
2351 }
2352 md_super_wait(mddev);
2353 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354
2355 spin_lock(&mddev->lock);
2356 if (mddev->in_sync != sync_req ||
2357 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358 /* have to write it out again */
2359 spin_unlock(&mddev->lock);
2360 goto repeat;
2361 }
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 spin_unlock(&mddev->lock);
2364 wake_up(&mddev->sb_wait);
2365 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367
2368 rdev_for_each(rdev, mddev) {
2369 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370 clear_bit(Blocked, &rdev->flags);
2371
2372 if (any_badblocks_changed)
2373 md_ack_all_badblocks(&rdev->badblocks);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 }
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382 struct mddev *mddev = rdev->mddev;
2383 int err = 0;
2384
2385 if (!mddev->pers->hot_remove_disk) {
2386 /* If there is hot_add_disk but no hot_remove_disk
2387 * then added disks for geometry changes,
2388 * and should be added immediately.
2389 */
2390 super_types[mddev->major_version].
2391 validate_super(mddev, rdev);
2392 err = mddev->pers->hot_add_disk(mddev, rdev);
2393 if (err) {
2394 unbind_rdev_from_array(rdev);
2395 export_rdev(rdev);
2396 return err;
2397 }
2398 }
2399 sysfs_notify_dirent_safe(rdev->sysfs_state);
2400
2401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 if (mddev->degraded)
2403 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405 md_new_event(mddev);
2406 md_wakeup_thread(mddev->thread);
2407 return 0;
2408 }
2409
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411 * We want to accept with case. For this we use cmd_match.
2412 */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415 /* See if cmd, written into a sysfs file, matches
2416 * str. They must either be the same, or cmd can
2417 * have a trailing newline
2418 */
2419 while (*cmd && *str && *cmd == *str) {
2420 cmd++;
2421 str++;
2422 }
2423 if (*cmd == '\n')
2424 cmd++;
2425 if (*str || *cmd)
2426 return 0;
2427 return 1;
2428 }
2429
2430 struct rdev_sysfs_entry {
2431 struct attribute attr;
2432 ssize_t (*show)(struct md_rdev *, char *);
2433 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439 char *sep = "";
2440 size_t len = 0;
2441 unsigned long flags = ACCESS_ONCE(rdev->flags);
2442
2443 if (test_bit(Faulty, &flags) ||
2444 rdev->badblocks.unacked_exist) {
2445 len+= sprintf(page+len, "%sfaulty",sep);
2446 sep = ",";
2447 }
2448 if (test_bit(In_sync, &flags)) {
2449 len += sprintf(page+len, "%sin_sync",sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WriteMostly, &flags)) {
2453 len += sprintf(page+len, "%swrite_mostly",sep);
2454 sep = ",";
2455 }
2456 if (test_bit(Blocked, &flags) ||
2457 (rdev->badblocks.unacked_exist
2458 && !test_bit(Faulty, &flags))) {
2459 len += sprintf(page+len, "%sblocked", sep);
2460 sep = ",";
2461 }
2462 if (!test_bit(Faulty, &flags) &&
2463 !test_bit(In_sync, &flags)) {
2464 len += sprintf(page+len, "%sspare", sep);
2465 sep = ",";
2466 }
2467 if (test_bit(WriteErrorSeen, &flags)) {
2468 len += sprintf(page+len, "%swrite_error", sep);
2469 sep = ",";
2470 }
2471 if (test_bit(WantReplacement, &flags)) {
2472 len += sprintf(page+len, "%swant_replacement", sep);
2473 sep = ",";
2474 }
2475 if (test_bit(Replacement, &flags)) {
2476 len += sprintf(page+len, "%sreplacement", sep);
2477 sep = ",";
2478 }
2479
2480 return len+sprintf(page+len, "\n");
2481 }
2482
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486 /* can write
2487 * faulty - simulates an error
2488 * remove - disconnects the device
2489 * writemostly - sets write_mostly
2490 * -writemostly - clears write_mostly
2491 * blocked - sets the Blocked flags
2492 * -blocked - clears the Blocked and possibly simulates an error
2493 * insync - sets Insync providing device isn't active
2494 * -insync - clear Insync for a device with a slot assigned,
2495 * so that it gets rebuilt based on bitmap
2496 * write_error - sets WriteErrorSeen
2497 * -write_error - clears WriteErrorSeen
2498 */
2499 int err = -EINVAL;
2500 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501 md_error(rdev->mddev, rdev);
2502 if (test_bit(Faulty, &rdev->flags))
2503 err = 0;
2504 else
2505 err = -EBUSY;
2506 } else if (cmd_match(buf, "remove")) {
2507 if (rdev->raid_disk >= 0)
2508 err = -EBUSY;
2509 else {
2510 struct mddev *mddev = rdev->mddev;
2511 if (mddev_is_clustered(mddev))
2512 md_cluster_ops->remove_disk(mddev, rdev);
2513 md_kick_rdev_from_array(rdev);
2514 if (mddev_is_clustered(mddev))
2515 md_cluster_ops->metadata_update_start(mddev);
2516 if (mddev->pers)
2517 md_update_sb(mddev, 1);
2518 md_new_event(mddev);
2519 if (mddev_is_clustered(mddev))
2520 md_cluster_ops->metadata_update_finish(mddev);
2521 err = 0;
2522 }
2523 } else if (cmd_match(buf, "writemostly")) {
2524 set_bit(WriteMostly, &rdev->flags);
2525 err = 0;
2526 } else if (cmd_match(buf, "-writemostly")) {
2527 clear_bit(WriteMostly, &rdev->flags);
2528 err = 0;
2529 } else if (cmd_match(buf, "blocked")) {
2530 set_bit(Blocked, &rdev->flags);
2531 err = 0;
2532 } else if (cmd_match(buf, "-blocked")) {
2533 if (!test_bit(Faulty, &rdev->flags) &&
2534 rdev->badblocks.unacked_exist) {
2535 /* metadata handler doesn't understand badblocks,
2536 * so we need to fail the device
2537 */
2538 md_error(rdev->mddev, rdev);
2539 }
2540 clear_bit(Blocked, &rdev->flags);
2541 clear_bit(BlockedBadBlocks, &rdev->flags);
2542 wake_up(&rdev->blocked_wait);
2543 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544 md_wakeup_thread(rdev->mddev->thread);
2545
2546 err = 0;
2547 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548 set_bit(In_sync, &rdev->flags);
2549 err = 0;
2550 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551 if (rdev->mddev->pers == NULL) {
2552 clear_bit(In_sync, &rdev->flags);
2553 rdev->saved_raid_disk = rdev->raid_disk;
2554 rdev->raid_disk = -1;
2555 err = 0;
2556 }
2557 } else if (cmd_match(buf, "write_error")) {
2558 set_bit(WriteErrorSeen, &rdev->flags);
2559 err = 0;
2560 } else if (cmd_match(buf, "-write_error")) {
2561 clear_bit(WriteErrorSeen, &rdev->flags);
2562 err = 0;
2563 } else if (cmd_match(buf, "want_replacement")) {
2564 /* Any non-spare device that is not a replacement can
2565 * become want_replacement at any time, but we then need to
2566 * check if recovery is needed.
2567 */
2568 if (rdev->raid_disk >= 0 &&
2569 !test_bit(Replacement, &rdev->flags))
2570 set_bit(WantReplacement, &rdev->flags);
2571 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572 md_wakeup_thread(rdev->mddev->thread);
2573 err = 0;
2574 } else if (cmd_match(buf, "-want_replacement")) {
2575 /* Clearing 'want_replacement' is always allowed.
2576 * Once replacements starts it is too late though.
2577 */
2578 err = 0;
2579 clear_bit(WantReplacement, &rdev->flags);
2580 } else if (cmd_match(buf, "replacement")) {
2581 /* Can only set a device as a replacement when array has not
2582 * yet been started. Once running, replacement is automatic
2583 * from spares, or by assigning 'slot'.
2584 */
2585 if (rdev->mddev->pers)
2586 err = -EBUSY;
2587 else {
2588 set_bit(Replacement, &rdev->flags);
2589 err = 0;
2590 }
2591 } else if (cmd_match(buf, "-replacement")) {
2592 /* Similarly, can only clear Replacement before start */
2593 if (rdev->mddev->pers)
2594 err = -EBUSY;
2595 else {
2596 clear_bit(Replacement, &rdev->flags);
2597 err = 0;
2598 }
2599 } else if (cmd_match(buf, "re-add")) {
2600 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601 /* clear_bit is performed _after_ all the devices
2602 * have their local Faulty bit cleared. If any writes
2603 * happen in the meantime in the local node, they
2604 * will land in the local bitmap, which will be synced
2605 * by this node eventually
2606 */
2607 if (!mddev_is_clustered(rdev->mddev) ||
2608 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609 clear_bit(Faulty, &rdev->flags);
2610 err = add_bound_rdev(rdev);
2611 }
2612 } else
2613 err = -EBUSY;
2614 }
2615 if (!err)
2616 sysfs_notify_dirent_safe(rdev->sysfs_state);
2617 return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631 char *e;
2632 unsigned long n = simple_strtoul(buf, &e, 10);
2633 if (*buf && (*e == 0 || *e == '\n')) {
2634 atomic_set(&rdev->corrected_errors, n);
2635 return len;
2636 }
2637 return -EINVAL;
2638 }
2639 static struct rdev_sysfs_entry rdev_errors =
2640 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2641
2642 static ssize_t
2643 slot_show(struct md_rdev *rdev, char *page)
2644 {
2645 if (rdev->raid_disk < 0)
2646 return sprintf(page, "none\n");
2647 else
2648 return sprintf(page, "%d\n", rdev->raid_disk);
2649 }
2650
2651 static ssize_t
2652 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2653 {
2654 char *e;
2655 int err;
2656 int slot = simple_strtoul(buf, &e, 10);
2657 if (strncmp(buf, "none", 4)==0)
2658 slot = -1;
2659 else if (e==buf || (*e && *e!= '\n'))
2660 return -EINVAL;
2661 if (rdev->mddev->pers && slot == -1) {
2662 /* Setting 'slot' on an active array requires also
2663 * updating the 'rd%d' link, and communicating
2664 * with the personality with ->hot_*_disk.
2665 * For now we only support removing
2666 * failed/spare devices. This normally happens automatically,
2667 * but not when the metadata is externally managed.
2668 */
2669 if (rdev->raid_disk == -1)
2670 return -EEXIST;
2671 /* personality does all needed checks */
2672 if (rdev->mddev->pers->hot_remove_disk == NULL)
2673 return -EINVAL;
2674 clear_bit(Blocked, &rdev->flags);
2675 remove_and_add_spares(rdev->mddev, rdev);
2676 if (rdev->raid_disk >= 0)
2677 return -EBUSY;
2678 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2679 md_wakeup_thread(rdev->mddev->thread);
2680 } else if (rdev->mddev->pers) {
2681 /* Activating a spare .. or possibly reactivating
2682 * if we ever get bitmaps working here.
2683 */
2684
2685 if (rdev->raid_disk != -1)
2686 return -EBUSY;
2687
2688 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2689 return -EBUSY;
2690
2691 if (rdev->mddev->pers->hot_add_disk == NULL)
2692 return -EINVAL;
2693
2694 if (slot >= rdev->mddev->raid_disks &&
2695 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2696 return -ENOSPC;
2697
2698 rdev->raid_disk = slot;
2699 if (test_bit(In_sync, &rdev->flags))
2700 rdev->saved_raid_disk = slot;
2701 else
2702 rdev->saved_raid_disk = -1;
2703 clear_bit(In_sync, &rdev->flags);
2704 clear_bit(Bitmap_sync, &rdev->flags);
2705 err = rdev->mddev->pers->
2706 hot_add_disk(rdev->mddev, rdev);
2707 if (err) {
2708 rdev->raid_disk = -1;
2709 return err;
2710 } else
2711 sysfs_notify_dirent_safe(rdev->sysfs_state);
2712 if (sysfs_link_rdev(rdev->mddev, rdev))
2713 /* failure here is OK */;
2714 /* don't wakeup anyone, leave that to userspace. */
2715 } else {
2716 if (slot >= rdev->mddev->raid_disks &&
2717 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2718 return -ENOSPC;
2719 rdev->raid_disk = slot;
2720 /* assume it is working */
2721 clear_bit(Faulty, &rdev->flags);
2722 clear_bit(WriteMostly, &rdev->flags);
2723 set_bit(In_sync, &rdev->flags);
2724 sysfs_notify_dirent_safe(rdev->sysfs_state);
2725 }
2726 return len;
2727 }
2728
2729 static struct rdev_sysfs_entry rdev_slot =
2730 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2731
2732 static ssize_t
2733 offset_show(struct md_rdev *rdev, char *page)
2734 {
2735 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2736 }
2737
2738 static ssize_t
2739 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2740 {
2741 unsigned long long offset;
2742 if (kstrtoull(buf, 10, &offset) < 0)
2743 return -EINVAL;
2744 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2745 return -EBUSY;
2746 if (rdev->sectors && rdev->mddev->external)
2747 /* Must set offset before size, so overlap checks
2748 * can be sane */
2749 return -EBUSY;
2750 rdev->data_offset = offset;
2751 rdev->new_data_offset = offset;
2752 return len;
2753 }
2754
2755 static struct rdev_sysfs_entry rdev_offset =
2756 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2757
2758 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2759 {
2760 return sprintf(page, "%llu\n",
2761 (unsigned long long)rdev->new_data_offset);
2762 }
2763
2764 static ssize_t new_offset_store(struct md_rdev *rdev,
2765 const char *buf, size_t len)
2766 {
2767 unsigned long long new_offset;
2768 struct mddev *mddev = rdev->mddev;
2769
2770 if (kstrtoull(buf, 10, &new_offset) < 0)
2771 return -EINVAL;
2772
2773 if (mddev->sync_thread ||
2774 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2775 return -EBUSY;
2776 if (new_offset == rdev->data_offset)
2777 /* reset is always permitted */
2778 ;
2779 else if (new_offset > rdev->data_offset) {
2780 /* must not push array size beyond rdev_sectors */
2781 if (new_offset - rdev->data_offset
2782 + mddev->dev_sectors > rdev->sectors)
2783 return -E2BIG;
2784 }
2785 /* Metadata worries about other space details. */
2786
2787 /* decreasing the offset is inconsistent with a backwards
2788 * reshape.
2789 */
2790 if (new_offset < rdev->data_offset &&
2791 mddev->reshape_backwards)
2792 return -EINVAL;
2793 /* Increasing offset is inconsistent with forwards
2794 * reshape. reshape_direction should be set to
2795 * 'backwards' first.
2796 */
2797 if (new_offset > rdev->data_offset &&
2798 !mddev->reshape_backwards)
2799 return -EINVAL;
2800
2801 if (mddev->pers && mddev->persistent &&
2802 !super_types[mddev->major_version]
2803 .allow_new_offset(rdev, new_offset))
2804 return -E2BIG;
2805 rdev->new_data_offset = new_offset;
2806 if (new_offset > rdev->data_offset)
2807 mddev->reshape_backwards = 1;
2808 else if (new_offset < rdev->data_offset)
2809 mddev->reshape_backwards = 0;
2810
2811 return len;
2812 }
2813 static struct rdev_sysfs_entry rdev_new_offset =
2814 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2815
2816 static ssize_t
2817 rdev_size_show(struct md_rdev *rdev, char *page)
2818 {
2819 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2820 }
2821
2822 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2823 {
2824 /* check if two start/length pairs overlap */
2825 if (s1+l1 <= s2)
2826 return 0;
2827 if (s2+l2 <= s1)
2828 return 0;
2829 return 1;
2830 }
2831
2832 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2833 {
2834 unsigned long long blocks;
2835 sector_t new;
2836
2837 if (kstrtoull(buf, 10, &blocks) < 0)
2838 return -EINVAL;
2839
2840 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2841 return -EINVAL; /* sector conversion overflow */
2842
2843 new = blocks * 2;
2844 if (new != blocks * 2)
2845 return -EINVAL; /* unsigned long long to sector_t overflow */
2846
2847 *sectors = new;
2848 return 0;
2849 }
2850
2851 static ssize_t
2852 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2853 {
2854 struct mddev *my_mddev = rdev->mddev;
2855 sector_t oldsectors = rdev->sectors;
2856 sector_t sectors;
2857
2858 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2859 return -EINVAL;
2860 if (rdev->data_offset != rdev->new_data_offset)
2861 return -EINVAL; /* too confusing */
2862 if (my_mddev->pers && rdev->raid_disk >= 0) {
2863 if (my_mddev->persistent) {
2864 sectors = super_types[my_mddev->major_version].
2865 rdev_size_change(rdev, sectors);
2866 if (!sectors)
2867 return -EBUSY;
2868 } else if (!sectors)
2869 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2870 rdev->data_offset;
2871 if (!my_mddev->pers->resize)
2872 /* Cannot change size for RAID0 or Linear etc */
2873 return -EINVAL;
2874 }
2875 if (sectors < my_mddev->dev_sectors)
2876 return -EINVAL; /* component must fit device */
2877
2878 rdev->sectors = sectors;
2879 if (sectors > oldsectors && my_mddev->external) {
2880 /* Need to check that all other rdevs with the same
2881 * ->bdev do not overlap. 'rcu' is sufficient to walk
2882 * the rdev lists safely.
2883 * This check does not provide a hard guarantee, it
2884 * just helps avoid dangerous mistakes.
2885 */
2886 struct mddev *mddev;
2887 int overlap = 0;
2888 struct list_head *tmp;
2889
2890 rcu_read_lock();
2891 for_each_mddev(mddev, tmp) {
2892 struct md_rdev *rdev2;
2893
2894 rdev_for_each(rdev2, mddev)
2895 if (rdev->bdev == rdev2->bdev &&
2896 rdev != rdev2 &&
2897 overlaps(rdev->data_offset, rdev->sectors,
2898 rdev2->data_offset,
2899 rdev2->sectors)) {
2900 overlap = 1;
2901 break;
2902 }
2903 if (overlap) {
2904 mddev_put(mddev);
2905 break;
2906 }
2907 }
2908 rcu_read_unlock();
2909 if (overlap) {
2910 /* Someone else could have slipped in a size
2911 * change here, but doing so is just silly.
2912 * We put oldsectors back because we *know* it is
2913 * safe, and trust userspace not to race with
2914 * itself
2915 */
2916 rdev->sectors = oldsectors;
2917 return -EBUSY;
2918 }
2919 }
2920 return len;
2921 }
2922
2923 static struct rdev_sysfs_entry rdev_size =
2924 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2925
2926 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2927 {
2928 unsigned long long recovery_start = rdev->recovery_offset;
2929
2930 if (test_bit(In_sync, &rdev->flags) ||
2931 recovery_start == MaxSector)
2932 return sprintf(page, "none\n");
2933
2934 return sprintf(page, "%llu\n", recovery_start);
2935 }
2936
2937 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2938 {
2939 unsigned long long recovery_start;
2940
2941 if (cmd_match(buf, "none"))
2942 recovery_start = MaxSector;
2943 else if (kstrtoull(buf, 10, &recovery_start))
2944 return -EINVAL;
2945
2946 if (rdev->mddev->pers &&
2947 rdev->raid_disk >= 0)
2948 return -EBUSY;
2949
2950 rdev->recovery_offset = recovery_start;
2951 if (recovery_start == MaxSector)
2952 set_bit(In_sync, &rdev->flags);
2953 else
2954 clear_bit(In_sync, &rdev->flags);
2955 return len;
2956 }
2957
2958 static struct rdev_sysfs_entry rdev_recovery_start =
2959 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2960
2961 static ssize_t
2962 badblocks_show(struct badblocks *bb, char *page, int unack);
2963 static ssize_t
2964 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2965
2966 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2967 {
2968 return badblocks_show(&rdev->badblocks, page, 0);
2969 }
2970 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2971 {
2972 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2973 /* Maybe that ack was all we needed */
2974 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2975 wake_up(&rdev->blocked_wait);
2976 return rv;
2977 }
2978 static struct rdev_sysfs_entry rdev_bad_blocks =
2979 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2980
2981 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2982 {
2983 return badblocks_show(&rdev->badblocks, page, 1);
2984 }
2985 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2986 {
2987 return badblocks_store(&rdev->badblocks, page, len, 1);
2988 }
2989 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2990 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2991
2992 static struct attribute *rdev_default_attrs[] = {
2993 &rdev_state.attr,
2994 &rdev_errors.attr,
2995 &rdev_slot.attr,
2996 &rdev_offset.attr,
2997 &rdev_new_offset.attr,
2998 &rdev_size.attr,
2999 &rdev_recovery_start.attr,
3000 &rdev_bad_blocks.attr,
3001 &rdev_unack_bad_blocks.attr,
3002 NULL,
3003 };
3004 static ssize_t
3005 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3006 {
3007 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3008 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3009
3010 if (!entry->show)
3011 return -EIO;
3012 if (!rdev->mddev)
3013 return -EBUSY;
3014 return entry->show(rdev, page);
3015 }
3016
3017 static ssize_t
3018 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3019 const char *page, size_t length)
3020 {
3021 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3022 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3023 ssize_t rv;
3024 struct mddev *mddev = rdev->mddev;
3025
3026 if (!entry->store)
3027 return -EIO;
3028 if (!capable(CAP_SYS_ADMIN))
3029 return -EACCES;
3030 rv = mddev ? mddev_lock(mddev): -EBUSY;
3031 if (!rv) {
3032 if (rdev->mddev == NULL)
3033 rv = -EBUSY;
3034 else
3035 rv = entry->store(rdev, page, length);
3036 mddev_unlock(mddev);
3037 }
3038 return rv;
3039 }
3040
3041 static void rdev_free(struct kobject *ko)
3042 {
3043 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3044 kfree(rdev);
3045 }
3046 static const struct sysfs_ops rdev_sysfs_ops = {
3047 .show = rdev_attr_show,
3048 .store = rdev_attr_store,
3049 };
3050 static struct kobj_type rdev_ktype = {
3051 .release = rdev_free,
3052 .sysfs_ops = &rdev_sysfs_ops,
3053 .default_attrs = rdev_default_attrs,
3054 };
3055
3056 int md_rdev_init(struct md_rdev *rdev)
3057 {
3058 rdev->desc_nr = -1;
3059 rdev->saved_raid_disk = -1;
3060 rdev->raid_disk = -1;
3061 rdev->flags = 0;
3062 rdev->data_offset = 0;
3063 rdev->new_data_offset = 0;
3064 rdev->sb_events = 0;
3065 rdev->last_read_error.tv_sec = 0;
3066 rdev->last_read_error.tv_nsec = 0;
3067 rdev->sb_loaded = 0;
3068 rdev->bb_page = NULL;
3069 atomic_set(&rdev->nr_pending, 0);
3070 atomic_set(&rdev->read_errors, 0);
3071 atomic_set(&rdev->corrected_errors, 0);
3072
3073 INIT_LIST_HEAD(&rdev->same_set);
3074 init_waitqueue_head(&rdev->blocked_wait);
3075
3076 /* Add space to store bad block list.
3077 * This reserves the space even on arrays where it cannot
3078 * be used - I wonder if that matters
3079 */
3080 rdev->badblocks.count = 0;
3081 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3082 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3083 seqlock_init(&rdev->badblocks.lock);
3084 if (rdev->badblocks.page == NULL)
3085 return -ENOMEM;
3086
3087 return 0;
3088 }
3089 EXPORT_SYMBOL_GPL(md_rdev_init);
3090 /*
3091 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3092 *
3093 * mark the device faulty if:
3094 *
3095 * - the device is nonexistent (zero size)
3096 * - the device has no valid superblock
3097 *
3098 * a faulty rdev _never_ has rdev->sb set.
3099 */
3100 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3101 {
3102 char b[BDEVNAME_SIZE];
3103 int err;
3104 struct md_rdev *rdev;
3105 sector_t size;
3106
3107 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3108 if (!rdev) {
3109 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3110 return ERR_PTR(-ENOMEM);
3111 }
3112
3113 err = md_rdev_init(rdev);
3114 if (err)
3115 goto abort_free;
3116 err = alloc_disk_sb(rdev);
3117 if (err)
3118 goto abort_free;
3119
3120 err = lock_rdev(rdev, newdev, super_format == -2);
3121 if (err)
3122 goto abort_free;
3123
3124 kobject_init(&rdev->kobj, &rdev_ktype);
3125
3126 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3127 if (!size) {
3128 printk(KERN_WARNING
3129 "md: %s has zero or unknown size, marking faulty!\n",
3130 bdevname(rdev->bdev,b));
3131 err = -EINVAL;
3132 goto abort_free;
3133 }
3134
3135 if (super_format >= 0) {
3136 err = super_types[super_format].
3137 load_super(rdev, NULL, super_minor);
3138 if (err == -EINVAL) {
3139 printk(KERN_WARNING
3140 "md: %s does not have a valid v%d.%d "
3141 "superblock, not importing!\n",
3142 bdevname(rdev->bdev,b),
3143 super_format, super_minor);
3144 goto abort_free;
3145 }
3146 if (err < 0) {
3147 printk(KERN_WARNING
3148 "md: could not read %s's sb, not importing!\n",
3149 bdevname(rdev->bdev,b));
3150 goto abort_free;
3151 }
3152 }
3153
3154 return rdev;
3155
3156 abort_free:
3157 if (rdev->bdev)
3158 unlock_rdev(rdev);
3159 md_rdev_clear(rdev);
3160 kfree(rdev);
3161 return ERR_PTR(err);
3162 }
3163
3164 /*
3165 * Check a full RAID array for plausibility
3166 */
3167
3168 static void analyze_sbs(struct mddev *mddev)
3169 {
3170 int i;
3171 struct md_rdev *rdev, *freshest, *tmp;
3172 char b[BDEVNAME_SIZE];
3173
3174 freshest = NULL;
3175 rdev_for_each_safe(rdev, tmp, mddev)
3176 switch (super_types[mddev->major_version].
3177 load_super(rdev, freshest, mddev->minor_version)) {
3178 case 1:
3179 freshest = rdev;
3180 break;
3181 case 0:
3182 break;
3183 default:
3184 printk( KERN_ERR \
3185 "md: fatal superblock inconsistency in %s"
3186 " -- removing from array\n",
3187 bdevname(rdev->bdev,b));
3188 md_kick_rdev_from_array(rdev);
3189 }
3190
3191 super_types[mddev->major_version].
3192 validate_super(mddev, freshest);
3193
3194 i = 0;
3195 rdev_for_each_safe(rdev, tmp, mddev) {
3196 if (mddev->max_disks &&
3197 (rdev->desc_nr >= mddev->max_disks ||
3198 i > mddev->max_disks)) {
3199 printk(KERN_WARNING
3200 "md: %s: %s: only %d devices permitted\n",
3201 mdname(mddev), bdevname(rdev->bdev, b),
3202 mddev->max_disks);
3203 md_kick_rdev_from_array(rdev);
3204 continue;
3205 }
3206 if (rdev != freshest) {
3207 if (super_types[mddev->major_version].
3208 validate_super(mddev, rdev)) {
3209 printk(KERN_WARNING "md: kicking non-fresh %s"
3210 " from array!\n",
3211 bdevname(rdev->bdev,b));
3212 md_kick_rdev_from_array(rdev);
3213 continue;
3214 }
3215 /* No device should have a Candidate flag
3216 * when reading devices
3217 */
3218 if (test_bit(Candidate, &rdev->flags)) {
3219 pr_info("md: kicking Cluster Candidate %s from array!\n",
3220 bdevname(rdev->bdev, b));
3221 md_kick_rdev_from_array(rdev);
3222 }
3223 }
3224 if (mddev->level == LEVEL_MULTIPATH) {
3225 rdev->desc_nr = i++;
3226 rdev->raid_disk = rdev->desc_nr;
3227 set_bit(In_sync, &rdev->flags);
3228 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3229 rdev->raid_disk = -1;
3230 clear_bit(In_sync, &rdev->flags);
3231 }
3232 }
3233 }
3234
3235 /* Read a fixed-point number.
3236 * Numbers in sysfs attributes should be in "standard" units where
3237 * possible, so time should be in seconds.
3238 * However we internally use a a much smaller unit such as
3239 * milliseconds or jiffies.
3240 * This function takes a decimal number with a possible fractional
3241 * component, and produces an integer which is the result of
3242 * multiplying that number by 10^'scale'.
3243 * all without any floating-point arithmetic.
3244 */
3245 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3246 {
3247 unsigned long result = 0;
3248 long decimals = -1;
3249 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3250 if (*cp == '.')
3251 decimals = 0;
3252 else if (decimals < scale) {
3253 unsigned int value;
3254 value = *cp - '0';
3255 result = result * 10 + value;
3256 if (decimals >= 0)
3257 decimals++;
3258 }
3259 cp++;
3260 }
3261 if (*cp == '\n')
3262 cp++;
3263 if (*cp)
3264 return -EINVAL;
3265 if (decimals < 0)
3266 decimals = 0;
3267 while (decimals < scale) {
3268 result *= 10;
3269 decimals ++;
3270 }
3271 *res = result;
3272 return 0;
3273 }
3274
3275 static void md_safemode_timeout(unsigned long data);
3276
3277 static ssize_t
3278 safe_delay_show(struct mddev *mddev, char *page)
3279 {
3280 int msec = (mddev->safemode_delay*1000)/HZ;
3281 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3282 }
3283 static ssize_t
3284 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3285 {
3286 unsigned long msec;
3287
3288 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3289 return -EINVAL;
3290 if (msec == 0)
3291 mddev->safemode_delay = 0;
3292 else {
3293 unsigned long old_delay = mddev->safemode_delay;
3294 unsigned long new_delay = (msec*HZ)/1000;
3295
3296 if (new_delay == 0)
3297 new_delay = 1;
3298 mddev->safemode_delay = new_delay;
3299 if (new_delay < old_delay || old_delay == 0)
3300 mod_timer(&mddev->safemode_timer, jiffies+1);
3301 }
3302 return len;
3303 }
3304 static struct md_sysfs_entry md_safe_delay =
3305 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3306
3307 static ssize_t
3308 level_show(struct mddev *mddev, char *page)
3309 {
3310 struct md_personality *p;
3311 int ret;
3312 spin_lock(&mddev->lock);
3313 p = mddev->pers;
3314 if (p)
3315 ret = sprintf(page, "%s\n", p->name);
3316 else if (mddev->clevel[0])
3317 ret = sprintf(page, "%s\n", mddev->clevel);
3318 else if (mddev->level != LEVEL_NONE)
3319 ret = sprintf(page, "%d\n", mddev->level);
3320 else
3321 ret = 0;
3322 spin_unlock(&mddev->lock);
3323 return ret;
3324 }
3325
3326 static ssize_t
3327 level_store(struct mddev *mddev, const char *buf, size_t len)
3328 {
3329 char clevel[16];
3330 ssize_t rv;
3331 size_t slen = len;
3332 struct md_personality *pers, *oldpers;
3333 long level;
3334 void *priv, *oldpriv;
3335 struct md_rdev *rdev;
3336
3337 if (slen == 0 || slen >= sizeof(clevel))
3338 return -EINVAL;
3339
3340 rv = mddev_lock(mddev);
3341 if (rv)
3342 return rv;
3343
3344 if (mddev->pers == NULL) {
3345 strncpy(mddev->clevel, buf, slen);
3346 if (mddev->clevel[slen-1] == '\n')
3347 slen--;
3348 mddev->clevel[slen] = 0;
3349 mddev->level = LEVEL_NONE;
3350 rv = len;
3351 goto out_unlock;
3352 }
3353 rv = -EROFS;
3354 if (mddev->ro)
3355 goto out_unlock;
3356
3357 /* request to change the personality. Need to ensure:
3358 * - array is not engaged in resync/recovery/reshape
3359 * - old personality can be suspended
3360 * - new personality will access other array.
3361 */
3362
3363 rv = -EBUSY;
3364 if (mddev->sync_thread ||
3365 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3366 mddev->reshape_position != MaxSector ||
3367 mddev->sysfs_active)
3368 goto out_unlock;
3369
3370 rv = -EINVAL;
3371 if (!mddev->pers->quiesce) {
3372 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3373 mdname(mddev), mddev->pers->name);
3374 goto out_unlock;
3375 }
3376
3377 /* Now find the new personality */
3378 strncpy(clevel, buf, slen);
3379 if (clevel[slen-1] == '\n')
3380 slen--;
3381 clevel[slen] = 0;
3382 if (kstrtol(clevel, 10, &level))
3383 level = LEVEL_NONE;
3384
3385 if (request_module("md-%s", clevel) != 0)
3386 request_module("md-level-%s", clevel);
3387 spin_lock(&pers_lock);
3388 pers = find_pers(level, clevel);
3389 if (!pers || !try_module_get(pers->owner)) {
3390 spin_unlock(&pers_lock);
3391 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3392 rv = -EINVAL;
3393 goto out_unlock;
3394 }
3395 spin_unlock(&pers_lock);
3396
3397 if (pers == mddev->pers) {
3398 /* Nothing to do! */
3399 module_put(pers->owner);
3400 rv = len;
3401 goto out_unlock;
3402 }
3403 if (!pers->takeover) {
3404 module_put(pers->owner);
3405 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3406 mdname(mddev), clevel);
3407 rv = -EINVAL;
3408 goto out_unlock;
3409 }
3410
3411 rdev_for_each(rdev, mddev)
3412 rdev->new_raid_disk = rdev->raid_disk;
3413
3414 /* ->takeover must set new_* and/or delta_disks
3415 * if it succeeds, and may set them when it fails.
3416 */
3417 priv = pers->takeover(mddev);
3418 if (IS_ERR(priv)) {
3419 mddev->new_level = mddev->level;
3420 mddev->new_layout = mddev->layout;
3421 mddev->new_chunk_sectors = mddev->chunk_sectors;
3422 mddev->raid_disks -= mddev->delta_disks;
3423 mddev->delta_disks = 0;
3424 mddev->reshape_backwards = 0;
3425 module_put(pers->owner);
3426 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3427 mdname(mddev), clevel);
3428 rv = PTR_ERR(priv);
3429 goto out_unlock;
3430 }
3431
3432 /* Looks like we have a winner */
3433 mddev_suspend(mddev);
3434 mddev_detach(mddev);
3435
3436 spin_lock(&mddev->lock);
3437 oldpers = mddev->pers;
3438 oldpriv = mddev->private;
3439 mddev->pers = pers;
3440 mddev->private = priv;
3441 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3442 mddev->level = mddev->new_level;
3443 mddev->layout = mddev->new_layout;
3444 mddev->chunk_sectors = mddev->new_chunk_sectors;
3445 mddev->delta_disks = 0;
3446 mddev->reshape_backwards = 0;
3447 mddev->degraded = 0;
3448 spin_unlock(&mddev->lock);
3449
3450 if (oldpers->sync_request == NULL &&
3451 mddev->external) {
3452 /* We are converting from a no-redundancy array
3453 * to a redundancy array and metadata is managed
3454 * externally so we need to be sure that writes
3455 * won't block due to a need to transition
3456 * clean->dirty
3457 * until external management is started.
3458 */
3459 mddev->in_sync = 0;
3460 mddev->safemode_delay = 0;
3461 mddev->safemode = 0;
3462 }
3463
3464 oldpers->free(mddev, oldpriv);
3465
3466 if (oldpers->sync_request == NULL &&
3467 pers->sync_request != NULL) {
3468 /* need to add the md_redundancy_group */
3469 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3470 printk(KERN_WARNING
3471 "md: cannot register extra attributes for %s\n",
3472 mdname(mddev));
3473 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3474 }
3475 if (oldpers->sync_request != NULL &&
3476 pers->sync_request == NULL) {
3477 /* need to remove the md_redundancy_group */
3478 if (mddev->to_remove == NULL)
3479 mddev->to_remove = &md_redundancy_group;
3480 }
3481
3482 rdev_for_each(rdev, mddev) {
3483 if (rdev->raid_disk < 0)
3484 continue;
3485 if (rdev->new_raid_disk >= mddev->raid_disks)
3486 rdev->new_raid_disk = -1;
3487 if (rdev->new_raid_disk == rdev->raid_disk)
3488 continue;
3489 sysfs_unlink_rdev(mddev, rdev);
3490 }
3491 rdev_for_each(rdev, mddev) {
3492 if (rdev->raid_disk < 0)
3493 continue;
3494 if (rdev->new_raid_disk == rdev->raid_disk)
3495 continue;
3496 rdev->raid_disk = rdev->new_raid_disk;
3497 if (rdev->raid_disk < 0)
3498 clear_bit(In_sync, &rdev->flags);
3499 else {
3500 if (sysfs_link_rdev(mddev, rdev))
3501 printk(KERN_WARNING "md: cannot register rd%d"
3502 " for %s after level change\n",
3503 rdev->raid_disk, mdname(mddev));
3504 }
3505 }
3506
3507 if (pers->sync_request == NULL) {
3508 /* this is now an array without redundancy, so
3509 * it must always be in_sync
3510 */
3511 mddev->in_sync = 1;
3512 del_timer_sync(&mddev->safemode_timer);
3513 }
3514 blk_set_stacking_limits(&mddev->queue->limits);
3515 pers->run(mddev);
3516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3517 mddev_resume(mddev);
3518 if (!mddev->thread)
3519 md_update_sb(mddev, 1);
3520 sysfs_notify(&mddev->kobj, NULL, "level");
3521 md_new_event(mddev);
3522 rv = len;
3523 out_unlock:
3524 mddev_unlock(mddev);
3525 return rv;
3526 }
3527
3528 static struct md_sysfs_entry md_level =
3529 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3530
3531 static ssize_t
3532 layout_show(struct mddev *mddev, char *page)
3533 {
3534 /* just a number, not meaningful for all levels */
3535 if (mddev->reshape_position != MaxSector &&
3536 mddev->layout != mddev->new_layout)
3537 return sprintf(page, "%d (%d)\n",
3538 mddev->new_layout, mddev->layout);
3539 return sprintf(page, "%d\n", mddev->layout);
3540 }
3541
3542 static ssize_t
3543 layout_store(struct mddev *mddev, const char *buf, size_t len)
3544 {
3545 char *e;
3546 unsigned long n = simple_strtoul(buf, &e, 10);
3547 int err;
3548
3549 if (!*buf || (*e && *e != '\n'))
3550 return -EINVAL;
3551 err = mddev_lock(mddev);
3552 if (err)
3553 return err;
3554
3555 if (mddev->pers) {
3556 if (mddev->pers->check_reshape == NULL)
3557 err = -EBUSY;
3558 else if (mddev->ro)
3559 err = -EROFS;
3560 else {
3561 mddev->new_layout = n;
3562 err = mddev->pers->check_reshape(mddev);
3563 if (err)
3564 mddev->new_layout = mddev->layout;
3565 }
3566 } else {
3567 mddev->new_layout = n;
3568 if (mddev->reshape_position == MaxSector)
3569 mddev->layout = n;
3570 }
3571 mddev_unlock(mddev);
3572 return err ?: len;
3573 }
3574 static struct md_sysfs_entry md_layout =
3575 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3576
3577 static ssize_t
3578 raid_disks_show(struct mddev *mddev, char *page)
3579 {
3580 if (mddev->raid_disks == 0)
3581 return 0;
3582 if (mddev->reshape_position != MaxSector &&
3583 mddev->delta_disks != 0)
3584 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3585 mddev->raid_disks - mddev->delta_disks);
3586 return sprintf(page, "%d\n", mddev->raid_disks);
3587 }
3588
3589 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3590
3591 static ssize_t
3592 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3593 {
3594 char *e;
3595 int err;
3596 unsigned long n = simple_strtoul(buf, &e, 10);
3597
3598 if (!*buf || (*e && *e != '\n'))
3599 return -EINVAL;
3600
3601 err = mddev_lock(mddev);
3602 if (err)
3603 return err;
3604 if (mddev->pers)
3605 err = update_raid_disks(mddev, n);
3606 else if (mddev->reshape_position != MaxSector) {
3607 struct md_rdev *rdev;
3608 int olddisks = mddev->raid_disks - mddev->delta_disks;
3609
3610 err = -EINVAL;
3611 rdev_for_each(rdev, mddev) {
3612 if (olddisks < n &&
3613 rdev->data_offset < rdev->new_data_offset)
3614 goto out_unlock;
3615 if (olddisks > n &&
3616 rdev->data_offset > rdev->new_data_offset)
3617 goto out_unlock;
3618 }
3619 err = 0;
3620 mddev->delta_disks = n - olddisks;
3621 mddev->raid_disks = n;
3622 mddev->reshape_backwards = (mddev->delta_disks < 0);
3623 } else
3624 mddev->raid_disks = n;
3625 out_unlock:
3626 mddev_unlock(mddev);
3627 return err ? err : len;
3628 }
3629 static struct md_sysfs_entry md_raid_disks =
3630 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3631
3632 static ssize_t
3633 chunk_size_show(struct mddev *mddev, char *page)
3634 {
3635 if (mddev->reshape_position != MaxSector &&
3636 mddev->chunk_sectors != mddev->new_chunk_sectors)
3637 return sprintf(page, "%d (%d)\n",
3638 mddev->new_chunk_sectors << 9,
3639 mddev->chunk_sectors << 9);
3640 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3641 }
3642
3643 static ssize_t
3644 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3645 {
3646 int err;
3647 char *e;
3648 unsigned long n = simple_strtoul(buf, &e, 10);
3649
3650 if (!*buf || (*e && *e != '\n'))
3651 return -EINVAL;
3652
3653 err = mddev_lock(mddev);
3654 if (err)
3655 return err;
3656 if (mddev->pers) {
3657 if (mddev->pers->check_reshape == NULL)
3658 err = -EBUSY;
3659 else if (mddev->ro)
3660 err = -EROFS;
3661 else {
3662 mddev->new_chunk_sectors = n >> 9;
3663 err = mddev->pers->check_reshape(mddev);
3664 if (err)
3665 mddev->new_chunk_sectors = mddev->chunk_sectors;
3666 }
3667 } else {
3668 mddev->new_chunk_sectors = n >> 9;
3669 if (mddev->reshape_position == MaxSector)
3670 mddev->chunk_sectors = n >> 9;
3671 }
3672 mddev_unlock(mddev);
3673 return err ?: len;
3674 }
3675 static struct md_sysfs_entry md_chunk_size =
3676 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3677
3678 static ssize_t
3679 resync_start_show(struct mddev *mddev, char *page)
3680 {
3681 if (mddev->recovery_cp == MaxSector)
3682 return sprintf(page, "none\n");
3683 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3684 }
3685
3686 static ssize_t
3687 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3688 {
3689 int err;
3690 char *e;
3691 unsigned long long n = simple_strtoull(buf, &e, 10);
3692
3693 err = mddev_lock(mddev);
3694 if (err)
3695 return err;
3696 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3697 err = -EBUSY;
3698 else if (cmd_match(buf, "none"))
3699 n = MaxSector;
3700 else if (!*buf || (*e && *e != '\n'))
3701 err = -EINVAL;
3702
3703 if (!err) {
3704 mddev->recovery_cp = n;
3705 if (mddev->pers)
3706 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3707 }
3708 mddev_unlock(mddev);
3709 return err ?: len;
3710 }
3711 static struct md_sysfs_entry md_resync_start =
3712 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3713 resync_start_show, resync_start_store);
3714
3715 /*
3716 * The array state can be:
3717 *
3718 * clear
3719 * No devices, no size, no level
3720 * Equivalent to STOP_ARRAY ioctl
3721 * inactive
3722 * May have some settings, but array is not active
3723 * all IO results in error
3724 * When written, doesn't tear down array, but just stops it
3725 * suspended (not supported yet)
3726 * All IO requests will block. The array can be reconfigured.
3727 * Writing this, if accepted, will block until array is quiescent
3728 * readonly
3729 * no resync can happen. no superblocks get written.
3730 * write requests fail
3731 * read-auto
3732 * like readonly, but behaves like 'clean' on a write request.
3733 *
3734 * clean - no pending writes, but otherwise active.
3735 * When written to inactive array, starts without resync
3736 * If a write request arrives then
3737 * if metadata is known, mark 'dirty' and switch to 'active'.
3738 * if not known, block and switch to write-pending
3739 * If written to an active array that has pending writes, then fails.
3740 * active
3741 * fully active: IO and resync can be happening.
3742 * When written to inactive array, starts with resync
3743 *
3744 * write-pending
3745 * clean, but writes are blocked waiting for 'active' to be written.
3746 *
3747 * active-idle
3748 * like active, but no writes have been seen for a while (100msec).
3749 *
3750 */
3751 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3752 write_pending, active_idle, bad_word};
3753 static char *array_states[] = {
3754 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3755 "write-pending", "active-idle", NULL };
3756
3757 static int match_word(const char *word, char **list)
3758 {
3759 int n;
3760 for (n=0; list[n]; n++)
3761 if (cmd_match(word, list[n]))
3762 break;
3763 return n;
3764 }
3765
3766 static ssize_t
3767 array_state_show(struct mddev *mddev, char *page)
3768 {
3769 enum array_state st = inactive;
3770
3771 if (mddev->pers)
3772 switch(mddev->ro) {
3773 case 1:
3774 st = readonly;
3775 break;
3776 case 2:
3777 st = read_auto;
3778 break;
3779 case 0:
3780 if (mddev->in_sync)
3781 st = clean;
3782 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3783 st = write_pending;
3784 else if (mddev->safemode)
3785 st = active_idle;
3786 else
3787 st = active;
3788 }
3789 else {
3790 if (list_empty(&mddev->disks) &&
3791 mddev->raid_disks == 0 &&
3792 mddev->dev_sectors == 0)
3793 st = clear;
3794 else
3795 st = inactive;
3796 }
3797 return sprintf(page, "%s\n", array_states[st]);
3798 }
3799
3800 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3801 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3802 static int do_md_run(struct mddev *mddev);
3803 static int restart_array(struct mddev *mddev);
3804
3805 static ssize_t
3806 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3807 {
3808 int err;
3809 enum array_state st = match_word(buf, array_states);
3810
3811 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3812 /* don't take reconfig_mutex when toggling between
3813 * clean and active
3814 */
3815 spin_lock(&mddev->lock);
3816 if (st == active) {
3817 restart_array(mddev);
3818 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3819 wake_up(&mddev->sb_wait);
3820 err = 0;
3821 } else /* st == clean */ {
3822 restart_array(mddev);
3823 if (atomic_read(&mddev->writes_pending) == 0) {
3824 if (mddev->in_sync == 0) {
3825 mddev->in_sync = 1;
3826 if (mddev->safemode == 1)
3827 mddev->safemode = 0;
3828 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3829 }
3830 err = 0;
3831 } else
3832 err = -EBUSY;
3833 }
3834 spin_unlock(&mddev->lock);
3835 return err ?: len;
3836 }
3837 err = mddev_lock(mddev);
3838 if (err)
3839 return err;
3840 err = -EINVAL;
3841 switch(st) {
3842 case bad_word:
3843 break;
3844 case clear:
3845 /* stopping an active array */
3846 err = do_md_stop(mddev, 0, NULL);
3847 break;
3848 case inactive:
3849 /* stopping an active array */
3850 if (mddev->pers)
3851 err = do_md_stop(mddev, 2, NULL);
3852 else
3853 err = 0; /* already inactive */
3854 break;
3855 case suspended:
3856 break; /* not supported yet */
3857 case readonly:
3858 if (mddev->pers)
3859 err = md_set_readonly(mddev, NULL);
3860 else {
3861 mddev->ro = 1;
3862 set_disk_ro(mddev->gendisk, 1);
3863 err = do_md_run(mddev);
3864 }
3865 break;
3866 case read_auto:
3867 if (mddev->pers) {
3868 if (mddev->ro == 0)
3869 err = md_set_readonly(mddev, NULL);
3870 else if (mddev->ro == 1)
3871 err = restart_array(mddev);
3872 if (err == 0) {
3873 mddev->ro = 2;
3874 set_disk_ro(mddev->gendisk, 0);
3875 }
3876 } else {
3877 mddev->ro = 2;
3878 err = do_md_run(mddev);
3879 }
3880 break;
3881 case clean:
3882 if (mddev->pers) {
3883 restart_array(mddev);
3884 spin_lock(&mddev->lock);
3885 if (atomic_read(&mddev->writes_pending) == 0) {
3886 if (mddev->in_sync == 0) {
3887 mddev->in_sync = 1;
3888 if (mddev->safemode == 1)
3889 mddev->safemode = 0;
3890 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3891 }
3892 err = 0;
3893 } else
3894 err = -EBUSY;
3895 spin_unlock(&mddev->lock);
3896 } else
3897 err = -EINVAL;
3898 break;
3899 case active:
3900 if (mddev->pers) {
3901 restart_array(mddev);
3902 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3903 wake_up(&mddev->sb_wait);
3904 err = 0;
3905 } else {
3906 mddev->ro = 0;
3907 set_disk_ro(mddev->gendisk, 0);
3908 err = do_md_run(mddev);
3909 }
3910 break;
3911 case write_pending:
3912 case active_idle:
3913 /* these cannot be set */
3914 break;
3915 }
3916
3917 if (!err) {
3918 if (mddev->hold_active == UNTIL_IOCTL)
3919 mddev->hold_active = 0;
3920 sysfs_notify_dirent_safe(mddev->sysfs_state);
3921 }
3922 mddev_unlock(mddev);
3923 return err ?: len;
3924 }
3925 static struct md_sysfs_entry md_array_state =
3926 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3927
3928 static ssize_t
3929 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3930 return sprintf(page, "%d\n",
3931 atomic_read(&mddev->max_corr_read_errors));
3932 }
3933
3934 static ssize_t
3935 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3936 {
3937 char *e;
3938 unsigned long n = simple_strtoul(buf, &e, 10);
3939
3940 if (*buf && (*e == 0 || *e == '\n')) {
3941 atomic_set(&mddev->max_corr_read_errors, n);
3942 return len;
3943 }
3944 return -EINVAL;
3945 }
3946
3947 static struct md_sysfs_entry max_corr_read_errors =
3948 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3949 max_corrected_read_errors_store);
3950
3951 static ssize_t
3952 null_show(struct mddev *mddev, char *page)
3953 {
3954 return -EINVAL;
3955 }
3956
3957 static ssize_t
3958 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3959 {
3960 /* buf must be %d:%d\n? giving major and minor numbers */
3961 /* The new device is added to the array.
3962 * If the array has a persistent superblock, we read the
3963 * superblock to initialise info and check validity.
3964 * Otherwise, only checking done is that in bind_rdev_to_array,
3965 * which mainly checks size.
3966 */
3967 char *e;
3968 int major = simple_strtoul(buf, &e, 10);
3969 int minor;
3970 dev_t dev;
3971 struct md_rdev *rdev;
3972 int err;
3973
3974 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3975 return -EINVAL;
3976 minor = simple_strtoul(e+1, &e, 10);
3977 if (*e && *e != '\n')
3978 return -EINVAL;
3979 dev = MKDEV(major, minor);
3980 if (major != MAJOR(dev) ||
3981 minor != MINOR(dev))
3982 return -EOVERFLOW;
3983
3984 flush_workqueue(md_misc_wq);
3985
3986 err = mddev_lock(mddev);
3987 if (err)
3988 return err;
3989 if (mddev->persistent) {
3990 rdev = md_import_device(dev, mddev->major_version,
3991 mddev->minor_version);
3992 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3993 struct md_rdev *rdev0
3994 = list_entry(mddev->disks.next,
3995 struct md_rdev, same_set);
3996 err = super_types[mddev->major_version]
3997 .load_super(rdev, rdev0, mddev->minor_version);
3998 if (err < 0)
3999 goto out;
4000 }
4001 } else if (mddev->external)
4002 rdev = md_import_device(dev, -2, -1);
4003 else
4004 rdev = md_import_device(dev, -1, -1);
4005
4006 if (IS_ERR(rdev))
4007 return PTR_ERR(rdev);
4008 err = bind_rdev_to_array(rdev, mddev);
4009 out:
4010 if (err)
4011 export_rdev(rdev);
4012 mddev_unlock(mddev);
4013 return err ? err : len;
4014 }
4015
4016 static struct md_sysfs_entry md_new_device =
4017 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4018
4019 static ssize_t
4020 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4021 {
4022 char *end;
4023 unsigned long chunk, end_chunk;
4024 int err;
4025
4026 err = mddev_lock(mddev);
4027 if (err)
4028 return err;
4029 if (!mddev->bitmap)
4030 goto out;
4031 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4032 while (*buf) {
4033 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4034 if (buf == end) break;
4035 if (*end == '-') { /* range */
4036 buf = end + 1;
4037 end_chunk = simple_strtoul(buf, &end, 0);
4038 if (buf == end) break;
4039 }
4040 if (*end && !isspace(*end)) break;
4041 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4042 buf = skip_spaces(end);
4043 }
4044 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4045 out:
4046 mddev_unlock(mddev);
4047 return len;
4048 }
4049
4050 static struct md_sysfs_entry md_bitmap =
4051 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4052
4053 static ssize_t
4054 size_show(struct mddev *mddev, char *page)
4055 {
4056 return sprintf(page, "%llu\n",
4057 (unsigned long long)mddev->dev_sectors / 2);
4058 }
4059
4060 static int update_size(struct mddev *mddev, sector_t num_sectors);
4061
4062 static ssize_t
4063 size_store(struct mddev *mddev, const char *buf, size_t len)
4064 {
4065 /* If array is inactive, we can reduce the component size, but
4066 * not increase it (except from 0).
4067 * If array is active, we can try an on-line resize
4068 */
4069 sector_t sectors;
4070 int err = strict_blocks_to_sectors(buf, &sectors);
4071
4072 if (err < 0)
4073 return err;
4074 err = mddev_lock(mddev);
4075 if (err)
4076 return err;
4077 if (mddev->pers) {
4078 if (mddev_is_clustered(mddev))
4079 md_cluster_ops->metadata_update_start(mddev);
4080 err = update_size(mddev, sectors);
4081 md_update_sb(mddev, 1);
4082 if (mddev_is_clustered(mddev))
4083 md_cluster_ops->metadata_update_finish(mddev);
4084 } else {
4085 if (mddev->dev_sectors == 0 ||
4086 mddev->dev_sectors > sectors)
4087 mddev->dev_sectors = sectors;
4088 else
4089 err = -ENOSPC;
4090 }
4091 mddev_unlock(mddev);
4092 return err ? err : len;
4093 }
4094
4095 static struct md_sysfs_entry md_size =
4096 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4097
4098 /* Metadata version.
4099 * This is one of
4100 * 'none' for arrays with no metadata (good luck...)
4101 * 'external' for arrays with externally managed metadata,
4102 * or N.M for internally known formats
4103 */
4104 static ssize_t
4105 metadata_show(struct mddev *mddev, char *page)
4106 {
4107 if (mddev->persistent)
4108 return sprintf(page, "%d.%d\n",
4109 mddev->major_version, mddev->minor_version);
4110 else if (mddev->external)
4111 return sprintf(page, "external:%s\n", mddev->metadata_type);
4112 else
4113 return sprintf(page, "none\n");
4114 }
4115
4116 static ssize_t
4117 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4118 {
4119 int major, minor;
4120 char *e;
4121 int err;
4122 /* Changing the details of 'external' metadata is
4123 * always permitted. Otherwise there must be
4124 * no devices attached to the array.
4125 */
4126
4127 err = mddev_lock(mddev);
4128 if (err)
4129 return err;
4130 err = -EBUSY;
4131 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4132 ;
4133 else if (!list_empty(&mddev->disks))
4134 goto out_unlock;
4135
4136 err = 0;
4137 if (cmd_match(buf, "none")) {
4138 mddev->persistent = 0;
4139 mddev->external = 0;
4140 mddev->major_version = 0;
4141 mddev->minor_version = 90;
4142 goto out_unlock;
4143 }
4144 if (strncmp(buf, "external:", 9) == 0) {
4145 size_t namelen = len-9;
4146 if (namelen >= sizeof(mddev->metadata_type))
4147 namelen = sizeof(mddev->metadata_type)-1;
4148 strncpy(mddev->metadata_type, buf+9, namelen);
4149 mddev->metadata_type[namelen] = 0;
4150 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4151 mddev->metadata_type[--namelen] = 0;
4152 mddev->persistent = 0;
4153 mddev->external = 1;
4154 mddev->major_version = 0;
4155 mddev->minor_version = 90;
4156 goto out_unlock;
4157 }
4158 major = simple_strtoul(buf, &e, 10);
4159 err = -EINVAL;
4160 if (e==buf || *e != '.')
4161 goto out_unlock;
4162 buf = e+1;
4163 minor = simple_strtoul(buf, &e, 10);
4164 if (e==buf || (*e && *e != '\n') )
4165 goto out_unlock;
4166 err = -ENOENT;
4167 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4168 goto out_unlock;
4169 mddev->major_version = major;
4170 mddev->minor_version = minor;
4171 mddev->persistent = 1;
4172 mddev->external = 0;
4173 err = 0;
4174 out_unlock:
4175 mddev_unlock(mddev);
4176 return err ?: len;
4177 }
4178
4179 static struct md_sysfs_entry md_metadata =
4180 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4181
4182 static ssize_t
4183 action_show(struct mddev *mddev, char *page)
4184 {
4185 char *type = "idle";
4186 unsigned long recovery = mddev->recovery;
4187 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4188 type = "frozen";
4189 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4190 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4191 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4192 type = "reshape";
4193 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4194 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4195 type = "resync";
4196 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4197 type = "check";
4198 else
4199 type = "repair";
4200 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4201 type = "recover";
4202 }
4203 return sprintf(page, "%s\n", type);
4204 }
4205
4206 static ssize_t
4207 action_store(struct mddev *mddev, const char *page, size_t len)
4208 {
4209 if (!mddev->pers || !mddev->pers->sync_request)
4210 return -EINVAL;
4211
4212
4213 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4214 if (cmd_match(page, "frozen"))
4215 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4216 else
4217 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4218 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4219 mddev_lock(mddev) == 0) {
4220 flush_workqueue(md_misc_wq);
4221 if (mddev->sync_thread) {
4222 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4223 md_reap_sync_thread(mddev);
4224 }
4225 mddev_unlock(mddev);
4226 }
4227 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4228 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4229 return -EBUSY;
4230 else if (cmd_match(page, "resync"))
4231 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232 else if (cmd_match(page, "recover")) {
4233 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4234 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4235 } else if (cmd_match(page, "reshape")) {
4236 int err;
4237 if (mddev->pers->start_reshape == NULL)
4238 return -EINVAL;
4239 err = mddev_lock(mddev);
4240 if (!err) {
4241 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4242 err = mddev->pers->start_reshape(mddev);
4243 mddev_unlock(mddev);
4244 }
4245 if (err)
4246 return err;
4247 sysfs_notify(&mddev->kobj, NULL, "degraded");
4248 } else {
4249 if (cmd_match(page, "check"))
4250 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4251 else if (!cmd_match(page, "repair"))
4252 return -EINVAL;
4253 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4254 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4255 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4256 }
4257 if (mddev->ro == 2) {
4258 /* A write to sync_action is enough to justify
4259 * canceling read-auto mode
4260 */
4261 mddev->ro = 0;
4262 md_wakeup_thread(mddev->sync_thread);
4263 }
4264 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4265 md_wakeup_thread(mddev->thread);
4266 sysfs_notify_dirent_safe(mddev->sysfs_action);
4267 return len;
4268 }
4269
4270 static struct md_sysfs_entry md_scan_mode =
4271 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4272
4273 static ssize_t
4274 last_sync_action_show(struct mddev *mddev, char *page)
4275 {
4276 return sprintf(page, "%s\n", mddev->last_sync_action);
4277 }
4278
4279 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4280
4281 static ssize_t
4282 mismatch_cnt_show(struct mddev *mddev, char *page)
4283 {
4284 return sprintf(page, "%llu\n",
4285 (unsigned long long)
4286 atomic64_read(&mddev->resync_mismatches));
4287 }
4288
4289 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4290
4291 static ssize_t
4292 sync_min_show(struct mddev *mddev, char *page)
4293 {
4294 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4295 mddev->sync_speed_min ? "local": "system");
4296 }
4297
4298 static ssize_t
4299 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4300 {
4301 int min;
4302 char *e;
4303 if (strncmp(buf, "system", 6)==0) {
4304 mddev->sync_speed_min = 0;
4305 return len;
4306 }
4307 min = simple_strtoul(buf, &e, 10);
4308 if (buf == e || (*e && *e != '\n') || min <= 0)
4309 return -EINVAL;
4310 mddev->sync_speed_min = min;
4311 return len;
4312 }
4313
4314 static struct md_sysfs_entry md_sync_min =
4315 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4316
4317 static ssize_t
4318 sync_max_show(struct mddev *mddev, char *page)
4319 {
4320 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4321 mddev->sync_speed_max ? "local": "system");
4322 }
4323
4324 static ssize_t
4325 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4326 {
4327 int max;
4328 char *e;
4329 if (strncmp(buf, "system", 6)==0) {
4330 mddev->sync_speed_max = 0;
4331 return len;
4332 }
4333 max = simple_strtoul(buf, &e, 10);
4334 if (buf == e || (*e && *e != '\n') || max <= 0)
4335 return -EINVAL;
4336 mddev->sync_speed_max = max;
4337 return len;
4338 }
4339
4340 static struct md_sysfs_entry md_sync_max =
4341 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4342
4343 static ssize_t
4344 degraded_show(struct mddev *mddev, char *page)
4345 {
4346 return sprintf(page, "%d\n", mddev->degraded);
4347 }
4348 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4349
4350 static ssize_t
4351 sync_force_parallel_show(struct mddev *mddev, char *page)
4352 {
4353 return sprintf(page, "%d\n", mddev->parallel_resync);
4354 }
4355
4356 static ssize_t
4357 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4358 {
4359 long n;
4360
4361 if (kstrtol(buf, 10, &n))
4362 return -EINVAL;
4363
4364 if (n != 0 && n != 1)
4365 return -EINVAL;
4366
4367 mddev->parallel_resync = n;
4368
4369 if (mddev->sync_thread)
4370 wake_up(&resync_wait);
4371
4372 return len;
4373 }
4374
4375 /* force parallel resync, even with shared block devices */
4376 static struct md_sysfs_entry md_sync_force_parallel =
4377 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4378 sync_force_parallel_show, sync_force_parallel_store);
4379
4380 static ssize_t
4381 sync_speed_show(struct mddev *mddev, char *page)
4382 {
4383 unsigned long resync, dt, db;
4384 if (mddev->curr_resync == 0)
4385 return sprintf(page, "none\n");
4386 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4387 dt = (jiffies - mddev->resync_mark) / HZ;
4388 if (!dt) dt++;
4389 db = resync - mddev->resync_mark_cnt;
4390 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4391 }
4392
4393 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4394
4395 static ssize_t
4396 sync_completed_show(struct mddev *mddev, char *page)
4397 {
4398 unsigned long long max_sectors, resync;
4399
4400 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4401 return sprintf(page, "none\n");
4402
4403 if (mddev->curr_resync == 1 ||
4404 mddev->curr_resync == 2)
4405 return sprintf(page, "delayed\n");
4406
4407 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4408 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4409 max_sectors = mddev->resync_max_sectors;
4410 else
4411 max_sectors = mddev->dev_sectors;
4412
4413 resync = mddev->curr_resync_completed;
4414 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4415 }
4416
4417 static struct md_sysfs_entry md_sync_completed =
4418 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4419
4420 static ssize_t
4421 min_sync_show(struct mddev *mddev, char *page)
4422 {
4423 return sprintf(page, "%llu\n",
4424 (unsigned long long)mddev->resync_min);
4425 }
4426 static ssize_t
4427 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4428 {
4429 unsigned long long min;
4430 int err;
4431
4432 if (kstrtoull(buf, 10, &min))
4433 return -EINVAL;
4434
4435 spin_lock(&mddev->lock);
4436 err = -EINVAL;
4437 if (min > mddev->resync_max)
4438 goto out_unlock;
4439
4440 err = -EBUSY;
4441 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4442 goto out_unlock;
4443
4444 /* Round down to multiple of 4K for safety */
4445 mddev->resync_min = round_down(min, 8);
4446 err = 0;
4447
4448 out_unlock:
4449 spin_unlock(&mddev->lock);
4450 return err ?: len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459 if (mddev->resync_max == MaxSector)
4460 return sprintf(page, "max\n");
4461 else
4462 return sprintf(page, "%llu\n",
4463 (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468 int err;
4469 spin_lock(&mddev->lock);
4470 if (strncmp(buf, "max", 3) == 0)
4471 mddev->resync_max = MaxSector;
4472 else {
4473 unsigned long long max;
4474 int chunk;
4475
4476 err = -EINVAL;
4477 if (kstrtoull(buf, 10, &max))
4478 goto out_unlock;
4479 if (max < mddev->resync_min)
4480 goto out_unlock;
4481
4482 err = -EBUSY;
4483 if (max < mddev->resync_max &&
4484 mddev->ro == 0 &&
4485 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4486 goto out_unlock;
4487
4488 /* Must be a multiple of chunk_size */
4489 chunk = mddev->chunk_sectors;
4490 if (chunk) {
4491 sector_t temp = max;
4492
4493 err = -EINVAL;
4494 if (sector_div(temp, chunk))
4495 goto out_unlock;
4496 }
4497 mddev->resync_max = max;
4498 }
4499 wake_up(&mddev->recovery_wait);
4500 err = 0;
4501 out_unlock:
4502 spin_unlock(&mddev->lock);
4503 return err ?: len;
4504 }
4505
4506 static struct md_sysfs_entry md_max_sync =
4507 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4508
4509 static ssize_t
4510 suspend_lo_show(struct mddev *mddev, char *page)
4511 {
4512 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4513 }
4514
4515 static ssize_t
4516 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4517 {
4518 char *e;
4519 unsigned long long new = simple_strtoull(buf, &e, 10);
4520 unsigned long long old;
4521 int err;
4522
4523 if (buf == e || (*e && *e != '\n'))
4524 return -EINVAL;
4525
4526 err = mddev_lock(mddev);
4527 if (err)
4528 return err;
4529 err = -EINVAL;
4530 if (mddev->pers == NULL ||
4531 mddev->pers->quiesce == NULL)
4532 goto unlock;
4533 old = mddev->suspend_lo;
4534 mddev->suspend_lo = new;
4535 if (new >= old)
4536 /* Shrinking suspended region */
4537 mddev->pers->quiesce(mddev, 2);
4538 else {
4539 /* Expanding suspended region - need to wait */
4540 mddev->pers->quiesce(mddev, 1);
4541 mddev->pers->quiesce(mddev, 0);
4542 }
4543 err = 0;
4544 unlock:
4545 mddev_unlock(mddev);
4546 return err ?: len;
4547 }
4548 static struct md_sysfs_entry md_suspend_lo =
4549 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4550
4551 static ssize_t
4552 suspend_hi_show(struct mddev *mddev, char *page)
4553 {
4554 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4555 }
4556
4557 static ssize_t
4558 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 char *e;
4561 unsigned long long new = simple_strtoull(buf, &e, 10);
4562 unsigned long long old;
4563 int err;
4564
4565 if (buf == e || (*e && *e != '\n'))
4566 return -EINVAL;
4567
4568 err = mddev_lock(mddev);
4569 if (err)
4570 return err;
4571 err = -EINVAL;
4572 if (mddev->pers == NULL ||
4573 mddev->pers->quiesce == NULL)
4574 goto unlock;
4575 old = mddev->suspend_hi;
4576 mddev->suspend_hi = new;
4577 if (new <= old)
4578 /* Shrinking suspended region */
4579 mddev->pers->quiesce(mddev, 2);
4580 else {
4581 /* Expanding suspended region - need to wait */
4582 mddev->pers->quiesce(mddev, 1);
4583 mddev->pers->quiesce(mddev, 0);
4584 }
4585 err = 0;
4586 unlock:
4587 mddev_unlock(mddev);
4588 return err ?: len;
4589 }
4590 static struct md_sysfs_entry md_suspend_hi =
4591 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4592
4593 static ssize_t
4594 reshape_position_show(struct mddev *mddev, char *page)
4595 {
4596 if (mddev->reshape_position != MaxSector)
4597 return sprintf(page, "%llu\n",
4598 (unsigned long long)mddev->reshape_position);
4599 strcpy(page, "none\n");
4600 return 5;
4601 }
4602
4603 static ssize_t
4604 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4605 {
4606 struct md_rdev *rdev;
4607 char *e;
4608 int err;
4609 unsigned long long new = simple_strtoull(buf, &e, 10);
4610
4611 if (buf == e || (*e && *e != '\n'))
4612 return -EINVAL;
4613 err = mddev_lock(mddev);
4614 if (err)
4615 return err;
4616 err = -EBUSY;
4617 if (mddev->pers)
4618 goto unlock;
4619 mddev->reshape_position = new;
4620 mddev->delta_disks = 0;
4621 mddev->reshape_backwards = 0;
4622 mddev->new_level = mddev->level;
4623 mddev->new_layout = mddev->layout;
4624 mddev->new_chunk_sectors = mddev->chunk_sectors;
4625 rdev_for_each(rdev, mddev)
4626 rdev->new_data_offset = rdev->data_offset;
4627 err = 0;
4628 unlock:
4629 mddev_unlock(mddev);
4630 return err ?: len;
4631 }
4632
4633 static struct md_sysfs_entry md_reshape_position =
4634 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4635 reshape_position_store);
4636
4637 static ssize_t
4638 reshape_direction_show(struct mddev *mddev, char *page)
4639 {
4640 return sprintf(page, "%s\n",
4641 mddev->reshape_backwards ? "backwards" : "forwards");
4642 }
4643
4644 static ssize_t
4645 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 int backwards = 0;
4648 int err;
4649
4650 if (cmd_match(buf, "forwards"))
4651 backwards = 0;
4652 else if (cmd_match(buf, "backwards"))
4653 backwards = 1;
4654 else
4655 return -EINVAL;
4656 if (mddev->reshape_backwards == backwards)
4657 return len;
4658
4659 err = mddev_lock(mddev);
4660 if (err)
4661 return err;
4662 /* check if we are allowed to change */
4663 if (mddev->delta_disks)
4664 err = -EBUSY;
4665 else if (mddev->persistent &&
4666 mddev->major_version == 0)
4667 err = -EINVAL;
4668 else
4669 mddev->reshape_backwards = backwards;
4670 mddev_unlock(mddev);
4671 return err ?: len;
4672 }
4673
4674 static struct md_sysfs_entry md_reshape_direction =
4675 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4676 reshape_direction_store);
4677
4678 static ssize_t
4679 array_size_show(struct mddev *mddev, char *page)
4680 {
4681 if (mddev->external_size)
4682 return sprintf(page, "%llu\n",
4683 (unsigned long long)mddev->array_sectors/2);
4684 else
4685 return sprintf(page, "default\n");
4686 }
4687
4688 static ssize_t
4689 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4690 {
4691 sector_t sectors;
4692 int err;
4693
4694 err = mddev_lock(mddev);
4695 if (err)
4696 return err;
4697
4698 if (strncmp(buf, "default", 7) == 0) {
4699 if (mddev->pers)
4700 sectors = mddev->pers->size(mddev, 0, 0);
4701 else
4702 sectors = mddev->array_sectors;
4703
4704 mddev->external_size = 0;
4705 } else {
4706 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4707 err = -EINVAL;
4708 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4709 err = -E2BIG;
4710 else
4711 mddev->external_size = 1;
4712 }
4713
4714 if (!err) {
4715 mddev->array_sectors = sectors;
4716 if (mddev->pers) {
4717 set_capacity(mddev->gendisk, mddev->array_sectors);
4718 revalidate_disk(mddev->gendisk);
4719 }
4720 }
4721 mddev_unlock(mddev);
4722 return err ?: len;
4723 }
4724
4725 static struct md_sysfs_entry md_array_size =
4726 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4727 array_size_store);
4728
4729 static struct attribute *md_default_attrs[] = {
4730 &md_level.attr,
4731 &md_layout.attr,
4732 &md_raid_disks.attr,
4733 &md_chunk_size.attr,
4734 &md_size.attr,
4735 &md_resync_start.attr,
4736 &md_metadata.attr,
4737 &md_new_device.attr,
4738 &md_safe_delay.attr,
4739 &md_array_state.attr,
4740 &md_reshape_position.attr,
4741 &md_reshape_direction.attr,
4742 &md_array_size.attr,
4743 &max_corr_read_errors.attr,
4744 NULL,
4745 };
4746
4747 static struct attribute *md_redundancy_attrs[] = {
4748 &md_scan_mode.attr,
4749 &md_last_scan_mode.attr,
4750 &md_mismatches.attr,
4751 &md_sync_min.attr,
4752 &md_sync_max.attr,
4753 &md_sync_speed.attr,
4754 &md_sync_force_parallel.attr,
4755 &md_sync_completed.attr,
4756 &md_min_sync.attr,
4757 &md_max_sync.attr,
4758 &md_suspend_lo.attr,
4759 &md_suspend_hi.attr,
4760 &md_bitmap.attr,
4761 &md_degraded.attr,
4762 NULL,
4763 };
4764 static struct attribute_group md_redundancy_group = {
4765 .name = NULL,
4766 .attrs = md_redundancy_attrs,
4767 };
4768
4769 static ssize_t
4770 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4771 {
4772 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4773 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4774 ssize_t rv;
4775
4776 if (!entry->show)
4777 return -EIO;
4778 spin_lock(&all_mddevs_lock);
4779 if (list_empty(&mddev->all_mddevs)) {
4780 spin_unlock(&all_mddevs_lock);
4781 return -EBUSY;
4782 }
4783 mddev_get(mddev);
4784 spin_unlock(&all_mddevs_lock);
4785
4786 rv = entry->show(mddev, page);
4787 mddev_put(mddev);
4788 return rv;
4789 }
4790
4791 static ssize_t
4792 md_attr_store(struct kobject *kobj, struct attribute *attr,
4793 const char *page, size_t length)
4794 {
4795 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4796 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4797 ssize_t rv;
4798
4799 if (!entry->store)
4800 return -EIO;
4801 if (!capable(CAP_SYS_ADMIN))
4802 return -EACCES;
4803 spin_lock(&all_mddevs_lock);
4804 if (list_empty(&mddev->all_mddevs)) {
4805 spin_unlock(&all_mddevs_lock);
4806 return -EBUSY;
4807 }
4808 mddev_get(mddev);
4809 spin_unlock(&all_mddevs_lock);
4810 rv = entry->store(mddev, page, length);
4811 mddev_put(mddev);
4812 return rv;
4813 }
4814
4815 static void md_free(struct kobject *ko)
4816 {
4817 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4818
4819 if (mddev->sysfs_state)
4820 sysfs_put(mddev->sysfs_state);
4821
4822 if (mddev->queue)
4823 blk_cleanup_queue(mddev->queue);
4824 if (mddev->gendisk) {
4825 del_gendisk(mddev->gendisk);
4826 put_disk(mddev->gendisk);
4827 }
4828
4829 kfree(mddev);
4830 }
4831
4832 static const struct sysfs_ops md_sysfs_ops = {
4833 .show = md_attr_show,
4834 .store = md_attr_store,
4835 };
4836 static struct kobj_type md_ktype = {
4837 .release = md_free,
4838 .sysfs_ops = &md_sysfs_ops,
4839 .default_attrs = md_default_attrs,
4840 };
4841
4842 int mdp_major = 0;
4843
4844 static void mddev_delayed_delete(struct work_struct *ws)
4845 {
4846 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4847
4848 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4849 kobject_del(&mddev->kobj);
4850 kobject_put(&mddev->kobj);
4851 }
4852
4853 static int md_alloc(dev_t dev, char *name)
4854 {
4855 static DEFINE_MUTEX(disks_mutex);
4856 struct mddev *mddev = mddev_find(dev);
4857 struct gendisk *disk;
4858 int partitioned;
4859 int shift;
4860 int unit;
4861 int error;
4862
4863 if (!mddev)
4864 return -ENODEV;
4865
4866 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4867 shift = partitioned ? MdpMinorShift : 0;
4868 unit = MINOR(mddev->unit) >> shift;
4869
4870 /* wait for any previous instance of this device to be
4871 * completely removed (mddev_delayed_delete).
4872 */
4873 flush_workqueue(md_misc_wq);
4874
4875 mutex_lock(&disks_mutex);
4876 error = -EEXIST;
4877 if (mddev->gendisk)
4878 goto abort;
4879
4880 if (name) {
4881 /* Need to ensure that 'name' is not a duplicate.
4882 */
4883 struct mddev *mddev2;
4884 spin_lock(&all_mddevs_lock);
4885
4886 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4887 if (mddev2->gendisk &&
4888 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4889 spin_unlock(&all_mddevs_lock);
4890 goto abort;
4891 }
4892 spin_unlock(&all_mddevs_lock);
4893 }
4894
4895 error = -ENOMEM;
4896 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4897 if (!mddev->queue)
4898 goto abort;
4899 mddev->queue->queuedata = mddev;
4900
4901 blk_queue_make_request(mddev->queue, md_make_request);
4902 blk_set_stacking_limits(&mddev->queue->limits);
4903
4904 disk = alloc_disk(1 << shift);
4905 if (!disk) {
4906 blk_cleanup_queue(mddev->queue);
4907 mddev->queue = NULL;
4908 goto abort;
4909 }
4910 disk->major = MAJOR(mddev->unit);
4911 disk->first_minor = unit << shift;
4912 if (name)
4913 strcpy(disk->disk_name, name);
4914 else if (partitioned)
4915 sprintf(disk->disk_name, "md_d%d", unit);
4916 else
4917 sprintf(disk->disk_name, "md%d", unit);
4918 disk->fops = &md_fops;
4919 disk->private_data = mddev;
4920 disk->queue = mddev->queue;
4921 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4922 /* Allow extended partitions. This makes the
4923 * 'mdp' device redundant, but we can't really
4924 * remove it now.
4925 */
4926 disk->flags |= GENHD_FL_EXT_DEVT;
4927 mddev->gendisk = disk;
4928 /* As soon as we call add_disk(), another thread could get
4929 * through to md_open, so make sure it doesn't get too far
4930 */
4931 mutex_lock(&mddev->open_mutex);
4932 add_disk(disk);
4933
4934 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4935 &disk_to_dev(disk)->kobj, "%s", "md");
4936 if (error) {
4937 /* This isn't possible, but as kobject_init_and_add is marked
4938 * __must_check, we must do something with the result
4939 */
4940 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4941 disk->disk_name);
4942 error = 0;
4943 }
4944 if (mddev->kobj.sd &&
4945 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4946 printk(KERN_DEBUG "pointless warning\n");
4947 mutex_unlock(&mddev->open_mutex);
4948 abort:
4949 mutex_unlock(&disks_mutex);
4950 if (!error && mddev->kobj.sd) {
4951 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4952 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4953 }
4954 mddev_put(mddev);
4955 return error;
4956 }
4957
4958 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4959 {
4960 md_alloc(dev, NULL);
4961 return NULL;
4962 }
4963
4964 static int add_named_array(const char *val, struct kernel_param *kp)
4965 {
4966 /* val must be "md_*" where * is not all digits.
4967 * We allocate an array with a large free minor number, and
4968 * set the name to val. val must not already be an active name.
4969 */
4970 int len = strlen(val);
4971 char buf[DISK_NAME_LEN];
4972
4973 while (len && val[len-1] == '\n')
4974 len--;
4975 if (len >= DISK_NAME_LEN)
4976 return -E2BIG;
4977 strlcpy(buf, val, len+1);
4978 if (strncmp(buf, "md_", 3) != 0)
4979 return -EINVAL;
4980 return md_alloc(0, buf);
4981 }
4982
4983 static void md_safemode_timeout(unsigned long data)
4984 {
4985 struct mddev *mddev = (struct mddev *) data;
4986
4987 if (!atomic_read(&mddev->writes_pending)) {
4988 mddev->safemode = 1;
4989 if (mddev->external)
4990 sysfs_notify_dirent_safe(mddev->sysfs_state);
4991 }
4992 md_wakeup_thread(mddev->thread);
4993 }
4994
4995 static int start_dirty_degraded;
4996
4997 int md_run(struct mddev *mddev)
4998 {
4999 int err;
5000 struct md_rdev *rdev;
5001 struct md_personality *pers;
5002
5003 if (list_empty(&mddev->disks))
5004 /* cannot run an array with no devices.. */
5005 return -EINVAL;
5006
5007 if (mddev->pers)
5008 return -EBUSY;
5009 /* Cannot run until previous stop completes properly */
5010 if (mddev->sysfs_active)
5011 return -EBUSY;
5012
5013 /*
5014 * Analyze all RAID superblock(s)
5015 */
5016 if (!mddev->raid_disks) {
5017 if (!mddev->persistent)
5018 return -EINVAL;
5019 analyze_sbs(mddev);
5020 }
5021
5022 if (mddev->level != LEVEL_NONE)
5023 request_module("md-level-%d", mddev->level);
5024 else if (mddev->clevel[0])
5025 request_module("md-%s", mddev->clevel);
5026
5027 /*
5028 * Drop all container device buffers, from now on
5029 * the only valid external interface is through the md
5030 * device.
5031 */
5032 rdev_for_each(rdev, mddev) {
5033 if (test_bit(Faulty, &rdev->flags))
5034 continue;
5035 sync_blockdev(rdev->bdev);
5036 invalidate_bdev(rdev->bdev);
5037
5038 /* perform some consistency tests on the device.
5039 * We don't want the data to overlap the metadata,
5040 * Internal Bitmap issues have been handled elsewhere.
5041 */
5042 if (rdev->meta_bdev) {
5043 /* Nothing to check */;
5044 } else if (rdev->data_offset < rdev->sb_start) {
5045 if (mddev->dev_sectors &&
5046 rdev->data_offset + mddev->dev_sectors
5047 > rdev->sb_start) {
5048 printk("md: %s: data overlaps metadata\n",
5049 mdname(mddev));
5050 return -EINVAL;
5051 }
5052 } else {
5053 if (rdev->sb_start + rdev->sb_size/512
5054 > rdev->data_offset) {
5055 printk("md: %s: metadata overlaps data\n",
5056 mdname(mddev));
5057 return -EINVAL;
5058 }
5059 }
5060 sysfs_notify_dirent_safe(rdev->sysfs_state);
5061 }
5062
5063 if (mddev->bio_set == NULL)
5064 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5065
5066 spin_lock(&pers_lock);
5067 pers = find_pers(mddev->level, mddev->clevel);
5068 if (!pers || !try_module_get(pers->owner)) {
5069 spin_unlock(&pers_lock);
5070 if (mddev->level != LEVEL_NONE)
5071 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5072 mddev->level);
5073 else
5074 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5075 mddev->clevel);
5076 return -EINVAL;
5077 }
5078 spin_unlock(&pers_lock);
5079 if (mddev->level != pers->level) {
5080 mddev->level = pers->level;
5081 mddev->new_level = pers->level;
5082 }
5083 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5084
5085 if (mddev->reshape_position != MaxSector &&
5086 pers->start_reshape == NULL) {
5087 /* This personality cannot handle reshaping... */
5088 module_put(pers->owner);
5089 return -EINVAL;
5090 }
5091
5092 if (pers->sync_request) {
5093 /* Warn if this is a potentially silly
5094 * configuration.
5095 */
5096 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5097 struct md_rdev *rdev2;
5098 int warned = 0;
5099
5100 rdev_for_each(rdev, mddev)
5101 rdev_for_each(rdev2, mddev) {
5102 if (rdev < rdev2 &&
5103 rdev->bdev->bd_contains ==
5104 rdev2->bdev->bd_contains) {
5105 printk(KERN_WARNING
5106 "%s: WARNING: %s appears to be"
5107 " on the same physical disk as"
5108 " %s.\n",
5109 mdname(mddev),
5110 bdevname(rdev->bdev,b),
5111 bdevname(rdev2->bdev,b2));
5112 warned = 1;
5113 }
5114 }
5115
5116 if (warned)
5117 printk(KERN_WARNING
5118 "True protection against single-disk"
5119 " failure might be compromised.\n");
5120 }
5121
5122 mddev->recovery = 0;
5123 /* may be over-ridden by personality */
5124 mddev->resync_max_sectors = mddev->dev_sectors;
5125
5126 mddev->ok_start_degraded = start_dirty_degraded;
5127
5128 if (start_readonly && mddev->ro == 0)
5129 mddev->ro = 2; /* read-only, but switch on first write */
5130
5131 err = pers->run(mddev);
5132 if (err)
5133 printk(KERN_ERR "md: pers->run() failed ...\n");
5134 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5135 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5136 " but 'external_size' not in effect?\n", __func__);
5137 printk(KERN_ERR
5138 "md: invalid array_size %llu > default size %llu\n",
5139 (unsigned long long)mddev->array_sectors / 2,
5140 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5141 err = -EINVAL;
5142 }
5143 if (err == 0 && pers->sync_request &&
5144 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5145 struct bitmap *bitmap;
5146
5147 bitmap = bitmap_create(mddev, -1);
5148 if (IS_ERR(bitmap)) {
5149 err = PTR_ERR(bitmap);
5150 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5151 mdname(mddev), err);
5152 } else
5153 mddev->bitmap = bitmap;
5154
5155 }
5156 if (err) {
5157 mddev_detach(mddev);
5158 if (mddev->private)
5159 pers->free(mddev, mddev->private);
5160 module_put(pers->owner);
5161 bitmap_destroy(mddev);
5162 return err;
5163 }
5164 if (mddev->queue) {
5165 mddev->queue->backing_dev_info.congested_data = mddev;
5166 mddev->queue->backing_dev_info.congested_fn = md_congested;
5167 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5168 }
5169 if (pers->sync_request) {
5170 if (mddev->kobj.sd &&
5171 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5172 printk(KERN_WARNING
5173 "md: cannot register extra attributes for %s\n",
5174 mdname(mddev));
5175 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5176 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5177 mddev->ro = 0;
5178
5179 atomic_set(&mddev->writes_pending,0);
5180 atomic_set(&mddev->max_corr_read_errors,
5181 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5182 mddev->safemode = 0;
5183 mddev->safemode_timer.function = md_safemode_timeout;
5184 mddev->safemode_timer.data = (unsigned long) mddev;
5185 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5186 mddev->in_sync = 1;
5187 smp_wmb();
5188 spin_lock(&mddev->lock);
5189 mddev->pers = pers;
5190 mddev->ready = 1;
5191 spin_unlock(&mddev->lock);
5192 rdev_for_each(rdev, mddev)
5193 if (rdev->raid_disk >= 0)
5194 if (sysfs_link_rdev(mddev, rdev))
5195 /* failure here is OK */;
5196
5197 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5198
5199 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5200 md_update_sb(mddev, 0);
5201
5202 md_new_event(mddev);
5203 sysfs_notify_dirent_safe(mddev->sysfs_state);
5204 sysfs_notify_dirent_safe(mddev->sysfs_action);
5205 sysfs_notify(&mddev->kobj, NULL, "degraded");
5206 return 0;
5207 }
5208 EXPORT_SYMBOL_GPL(md_run);
5209
5210 static int do_md_run(struct mddev *mddev)
5211 {
5212 int err;
5213
5214 err = md_run(mddev);
5215 if (err)
5216 goto out;
5217 err = bitmap_load(mddev);
5218 if (err) {
5219 bitmap_destroy(mddev);
5220 goto out;
5221 }
5222
5223 md_wakeup_thread(mddev->thread);
5224 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5225
5226 set_capacity(mddev->gendisk, mddev->array_sectors);
5227 revalidate_disk(mddev->gendisk);
5228 mddev->changed = 1;
5229 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5230 out:
5231 return err;
5232 }
5233
5234 static int restart_array(struct mddev *mddev)
5235 {
5236 struct gendisk *disk = mddev->gendisk;
5237
5238 /* Complain if it has no devices */
5239 if (list_empty(&mddev->disks))
5240 return -ENXIO;
5241 if (!mddev->pers)
5242 return -EINVAL;
5243 if (!mddev->ro)
5244 return -EBUSY;
5245 mddev->safemode = 0;
5246 mddev->ro = 0;
5247 set_disk_ro(disk, 0);
5248 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5249 mdname(mddev));
5250 /* Kick recovery or resync if necessary */
5251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5252 md_wakeup_thread(mddev->thread);
5253 md_wakeup_thread(mddev->sync_thread);
5254 sysfs_notify_dirent_safe(mddev->sysfs_state);
5255 return 0;
5256 }
5257
5258 static void md_clean(struct mddev *mddev)
5259 {
5260 mddev->array_sectors = 0;
5261 mddev->external_size = 0;
5262 mddev->dev_sectors = 0;
5263 mddev->raid_disks = 0;
5264 mddev->recovery_cp = 0;
5265 mddev->resync_min = 0;
5266 mddev->resync_max = MaxSector;
5267 mddev->reshape_position = MaxSector;
5268 mddev->external = 0;
5269 mddev->persistent = 0;
5270 mddev->level = LEVEL_NONE;
5271 mddev->clevel[0] = 0;
5272 mddev->flags = 0;
5273 mddev->ro = 0;
5274 mddev->metadata_type[0] = 0;
5275 mddev->chunk_sectors = 0;
5276 mddev->ctime = mddev->utime = 0;
5277 mddev->layout = 0;
5278 mddev->max_disks = 0;
5279 mddev->events = 0;
5280 mddev->can_decrease_events = 0;
5281 mddev->delta_disks = 0;
5282 mddev->reshape_backwards = 0;
5283 mddev->new_level = LEVEL_NONE;
5284 mddev->new_layout = 0;
5285 mddev->new_chunk_sectors = 0;
5286 mddev->curr_resync = 0;
5287 atomic64_set(&mddev->resync_mismatches, 0);
5288 mddev->suspend_lo = mddev->suspend_hi = 0;
5289 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5290 mddev->recovery = 0;
5291 mddev->in_sync = 0;
5292 mddev->changed = 0;
5293 mddev->degraded = 0;
5294 mddev->safemode = 0;
5295 mddev->merge_check_needed = 0;
5296 mddev->bitmap_info.offset = 0;
5297 mddev->bitmap_info.default_offset = 0;
5298 mddev->bitmap_info.default_space = 0;
5299 mddev->bitmap_info.chunksize = 0;
5300 mddev->bitmap_info.daemon_sleep = 0;
5301 mddev->bitmap_info.max_write_behind = 0;
5302 }
5303
5304 static void __md_stop_writes(struct mddev *mddev)
5305 {
5306 if (mddev_is_clustered(mddev))
5307 md_cluster_ops->metadata_update_start(mddev);
5308 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5309 flush_workqueue(md_misc_wq);
5310 if (mddev->sync_thread) {
5311 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5312 md_reap_sync_thread(mddev);
5313 }
5314
5315 del_timer_sync(&mddev->safemode_timer);
5316
5317 bitmap_flush(mddev);
5318 md_super_wait(mddev);
5319
5320 if (mddev->ro == 0 &&
5321 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5322 /* mark array as shutdown cleanly */
5323 mddev->in_sync = 1;
5324 md_update_sb(mddev, 1);
5325 }
5326 if (mddev_is_clustered(mddev))
5327 md_cluster_ops->metadata_update_finish(mddev);
5328 }
5329
5330 void md_stop_writes(struct mddev *mddev)
5331 {
5332 mddev_lock_nointr(mddev);
5333 __md_stop_writes(mddev);
5334 mddev_unlock(mddev);
5335 }
5336 EXPORT_SYMBOL_GPL(md_stop_writes);
5337
5338 static void mddev_detach(struct mddev *mddev)
5339 {
5340 struct bitmap *bitmap = mddev->bitmap;
5341 /* wait for behind writes to complete */
5342 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5343 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5344 mdname(mddev));
5345 /* need to kick something here to make sure I/O goes? */
5346 wait_event(bitmap->behind_wait,
5347 atomic_read(&bitmap->behind_writes) == 0);
5348 }
5349 if (mddev->pers && mddev->pers->quiesce) {
5350 mddev->pers->quiesce(mddev, 1);
5351 mddev->pers->quiesce(mddev, 0);
5352 }
5353 md_unregister_thread(&mddev->thread);
5354 if (mddev->queue)
5355 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5356 }
5357
5358 static void __md_stop(struct mddev *mddev)
5359 {
5360 struct md_personality *pers = mddev->pers;
5361 mddev_detach(mddev);
5362 spin_lock(&mddev->lock);
5363 mddev->ready = 0;
5364 mddev->pers = NULL;
5365 spin_unlock(&mddev->lock);
5366 pers->free(mddev, mddev->private);
5367 if (pers->sync_request && mddev->to_remove == NULL)
5368 mddev->to_remove = &md_redundancy_group;
5369 module_put(pers->owner);
5370 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5371 }
5372
5373 void md_stop(struct mddev *mddev)
5374 {
5375 /* stop the array and free an attached data structures.
5376 * This is called from dm-raid
5377 */
5378 __md_stop(mddev);
5379 bitmap_destroy(mddev);
5380 if (mddev->bio_set)
5381 bioset_free(mddev->bio_set);
5382 }
5383
5384 EXPORT_SYMBOL_GPL(md_stop);
5385
5386 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5387 {
5388 int err = 0;
5389 int did_freeze = 0;
5390
5391 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5392 did_freeze = 1;
5393 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5394 md_wakeup_thread(mddev->thread);
5395 }
5396 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5397 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5398 if (mddev->sync_thread)
5399 /* Thread might be blocked waiting for metadata update
5400 * which will now never happen */
5401 wake_up_process(mddev->sync_thread->tsk);
5402
5403 mddev_unlock(mddev);
5404 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5405 &mddev->recovery));
5406 mddev_lock_nointr(mddev);
5407
5408 mutex_lock(&mddev->open_mutex);
5409 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5410 mddev->sync_thread ||
5411 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5412 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5413 printk("md: %s still in use.\n",mdname(mddev));
5414 if (did_freeze) {
5415 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5416 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5417 md_wakeup_thread(mddev->thread);
5418 }
5419 err = -EBUSY;
5420 goto out;
5421 }
5422 if (mddev->pers) {
5423 __md_stop_writes(mddev);
5424
5425 err = -ENXIO;
5426 if (mddev->ro==1)
5427 goto out;
5428 mddev->ro = 1;
5429 set_disk_ro(mddev->gendisk, 1);
5430 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5431 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5432 md_wakeup_thread(mddev->thread);
5433 sysfs_notify_dirent_safe(mddev->sysfs_state);
5434 err = 0;
5435 }
5436 out:
5437 mutex_unlock(&mddev->open_mutex);
5438 return err;
5439 }
5440
5441 /* mode:
5442 * 0 - completely stop and dis-assemble array
5443 * 2 - stop but do not disassemble array
5444 */
5445 static int do_md_stop(struct mddev *mddev, int mode,
5446 struct block_device *bdev)
5447 {
5448 struct gendisk *disk = mddev->gendisk;
5449 struct md_rdev *rdev;
5450 int did_freeze = 0;
5451
5452 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5453 did_freeze = 1;
5454 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5455 md_wakeup_thread(mddev->thread);
5456 }
5457 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5458 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5459 if (mddev->sync_thread)
5460 /* Thread might be blocked waiting for metadata update
5461 * which will now never happen */
5462 wake_up_process(mddev->sync_thread->tsk);
5463
5464 mddev_unlock(mddev);
5465 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5466 !test_bit(MD_RECOVERY_RUNNING,
5467 &mddev->recovery)));
5468 mddev_lock_nointr(mddev);
5469
5470 mutex_lock(&mddev->open_mutex);
5471 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5472 mddev->sysfs_active ||
5473 mddev->sync_thread ||
5474 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5475 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5476 printk("md: %s still in use.\n",mdname(mddev));
5477 mutex_unlock(&mddev->open_mutex);
5478 if (did_freeze) {
5479 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5480 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5481 md_wakeup_thread(mddev->thread);
5482 }
5483 return -EBUSY;
5484 }
5485 if (mddev->pers) {
5486 if (mddev->ro)
5487 set_disk_ro(disk, 0);
5488
5489 __md_stop_writes(mddev);
5490 __md_stop(mddev);
5491 mddev->queue->merge_bvec_fn = NULL;
5492 mddev->queue->backing_dev_info.congested_fn = NULL;
5493
5494 /* tell userspace to handle 'inactive' */
5495 sysfs_notify_dirent_safe(mddev->sysfs_state);
5496
5497 rdev_for_each(rdev, mddev)
5498 if (rdev->raid_disk >= 0)
5499 sysfs_unlink_rdev(mddev, rdev);
5500
5501 set_capacity(disk, 0);
5502 mutex_unlock(&mddev->open_mutex);
5503 mddev->changed = 1;
5504 revalidate_disk(disk);
5505
5506 if (mddev->ro)
5507 mddev->ro = 0;
5508 } else
5509 mutex_unlock(&mddev->open_mutex);
5510 /*
5511 * Free resources if final stop
5512 */
5513 if (mode == 0) {
5514 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5515
5516 bitmap_destroy(mddev);
5517 if (mddev->bitmap_info.file) {
5518 struct file *f = mddev->bitmap_info.file;
5519 spin_lock(&mddev->lock);
5520 mddev->bitmap_info.file = NULL;
5521 spin_unlock(&mddev->lock);
5522 fput(f);
5523 }
5524 mddev->bitmap_info.offset = 0;
5525
5526 export_array(mddev);
5527
5528 md_clean(mddev);
5529 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5530 if (mddev->hold_active == UNTIL_STOP)
5531 mddev->hold_active = 0;
5532 }
5533 blk_integrity_unregister(disk);
5534 md_new_event(mddev);
5535 sysfs_notify_dirent_safe(mddev->sysfs_state);
5536 return 0;
5537 }
5538
5539 #ifndef MODULE
5540 static void autorun_array(struct mddev *mddev)
5541 {
5542 struct md_rdev *rdev;
5543 int err;
5544
5545 if (list_empty(&mddev->disks))
5546 return;
5547
5548 printk(KERN_INFO "md: running: ");
5549
5550 rdev_for_each(rdev, mddev) {
5551 char b[BDEVNAME_SIZE];
5552 printk("<%s>", bdevname(rdev->bdev,b));
5553 }
5554 printk("\n");
5555
5556 err = do_md_run(mddev);
5557 if (err) {
5558 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5559 do_md_stop(mddev, 0, NULL);
5560 }
5561 }
5562
5563 /*
5564 * lets try to run arrays based on all disks that have arrived
5565 * until now. (those are in pending_raid_disks)
5566 *
5567 * the method: pick the first pending disk, collect all disks with
5568 * the same UUID, remove all from the pending list and put them into
5569 * the 'same_array' list. Then order this list based on superblock
5570 * update time (freshest comes first), kick out 'old' disks and
5571 * compare superblocks. If everything's fine then run it.
5572 *
5573 * If "unit" is allocated, then bump its reference count
5574 */
5575 static void autorun_devices(int part)
5576 {
5577 struct md_rdev *rdev0, *rdev, *tmp;
5578 struct mddev *mddev;
5579 char b[BDEVNAME_SIZE];
5580
5581 printk(KERN_INFO "md: autorun ...\n");
5582 while (!list_empty(&pending_raid_disks)) {
5583 int unit;
5584 dev_t dev;
5585 LIST_HEAD(candidates);
5586 rdev0 = list_entry(pending_raid_disks.next,
5587 struct md_rdev, same_set);
5588
5589 printk(KERN_INFO "md: considering %s ...\n",
5590 bdevname(rdev0->bdev,b));
5591 INIT_LIST_HEAD(&candidates);
5592 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5593 if (super_90_load(rdev, rdev0, 0) >= 0) {
5594 printk(KERN_INFO "md: adding %s ...\n",
5595 bdevname(rdev->bdev,b));
5596 list_move(&rdev->same_set, &candidates);
5597 }
5598 /*
5599 * now we have a set of devices, with all of them having
5600 * mostly sane superblocks. It's time to allocate the
5601 * mddev.
5602 */
5603 if (part) {
5604 dev = MKDEV(mdp_major,
5605 rdev0->preferred_minor << MdpMinorShift);
5606 unit = MINOR(dev) >> MdpMinorShift;
5607 } else {
5608 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5609 unit = MINOR(dev);
5610 }
5611 if (rdev0->preferred_minor != unit) {
5612 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5613 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5614 break;
5615 }
5616
5617 md_probe(dev, NULL, NULL);
5618 mddev = mddev_find(dev);
5619 if (!mddev || !mddev->gendisk) {
5620 if (mddev)
5621 mddev_put(mddev);
5622 printk(KERN_ERR
5623 "md: cannot allocate memory for md drive.\n");
5624 break;
5625 }
5626 if (mddev_lock(mddev))
5627 printk(KERN_WARNING "md: %s locked, cannot run\n",
5628 mdname(mddev));
5629 else if (mddev->raid_disks || mddev->major_version
5630 || !list_empty(&mddev->disks)) {
5631 printk(KERN_WARNING
5632 "md: %s already running, cannot run %s\n",
5633 mdname(mddev), bdevname(rdev0->bdev,b));
5634 mddev_unlock(mddev);
5635 } else {
5636 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5637 mddev->persistent = 1;
5638 rdev_for_each_list(rdev, tmp, &candidates) {
5639 list_del_init(&rdev->same_set);
5640 if (bind_rdev_to_array(rdev, mddev))
5641 export_rdev(rdev);
5642 }
5643 autorun_array(mddev);
5644 mddev_unlock(mddev);
5645 }
5646 /* on success, candidates will be empty, on error
5647 * it won't...
5648 */
5649 rdev_for_each_list(rdev, tmp, &candidates) {
5650 list_del_init(&rdev->same_set);
5651 export_rdev(rdev);
5652 }
5653 mddev_put(mddev);
5654 }
5655 printk(KERN_INFO "md: ... autorun DONE.\n");
5656 }
5657 #endif /* !MODULE */
5658
5659 static int get_version(void __user *arg)
5660 {
5661 mdu_version_t ver;
5662
5663 ver.major = MD_MAJOR_VERSION;
5664 ver.minor = MD_MINOR_VERSION;
5665 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5666
5667 if (copy_to_user(arg, &ver, sizeof(ver)))
5668 return -EFAULT;
5669
5670 return 0;
5671 }
5672
5673 static int get_array_info(struct mddev *mddev, void __user *arg)
5674 {
5675 mdu_array_info_t info;
5676 int nr,working,insync,failed,spare;
5677 struct md_rdev *rdev;
5678
5679 nr = working = insync = failed = spare = 0;
5680 rcu_read_lock();
5681 rdev_for_each_rcu(rdev, mddev) {
5682 nr++;
5683 if (test_bit(Faulty, &rdev->flags))
5684 failed++;
5685 else {
5686 working++;
5687 if (test_bit(In_sync, &rdev->flags))
5688 insync++;
5689 else
5690 spare++;
5691 }
5692 }
5693 rcu_read_unlock();
5694
5695 info.major_version = mddev->major_version;
5696 info.minor_version = mddev->minor_version;
5697 info.patch_version = MD_PATCHLEVEL_VERSION;
5698 info.ctime = mddev->ctime;
5699 info.level = mddev->level;
5700 info.size = mddev->dev_sectors / 2;
5701 if (info.size != mddev->dev_sectors / 2) /* overflow */
5702 info.size = -1;
5703 info.nr_disks = nr;
5704 info.raid_disks = mddev->raid_disks;
5705 info.md_minor = mddev->md_minor;
5706 info.not_persistent= !mddev->persistent;
5707
5708 info.utime = mddev->utime;
5709 info.state = 0;
5710 if (mddev->in_sync)
5711 info.state = (1<<MD_SB_CLEAN);
5712 if (mddev->bitmap && mddev->bitmap_info.offset)
5713 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5714 if (mddev_is_clustered(mddev))
5715 info.state |= (1<<MD_SB_CLUSTERED);
5716 info.active_disks = insync;
5717 info.working_disks = working;
5718 info.failed_disks = failed;
5719 info.spare_disks = spare;
5720
5721 info.layout = mddev->layout;
5722 info.chunk_size = mddev->chunk_sectors << 9;
5723
5724 if (copy_to_user(arg, &info, sizeof(info)))
5725 return -EFAULT;
5726
5727 return 0;
5728 }
5729
5730 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5731 {
5732 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5733 char *ptr;
5734 int err;
5735
5736 file = kmalloc(sizeof(*file), GFP_NOIO);
5737 if (!file)
5738 return -ENOMEM;
5739
5740 err = 0;
5741 spin_lock(&mddev->lock);
5742 /* bitmap disabled, zero the first byte and copy out */
5743 if (!mddev->bitmap_info.file)
5744 file->pathname[0] = '\0';
5745 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5746 file->pathname, sizeof(file->pathname))),
5747 IS_ERR(ptr))
5748 err = PTR_ERR(ptr);
5749 else
5750 memmove(file->pathname, ptr,
5751 sizeof(file->pathname)-(ptr-file->pathname));
5752 spin_unlock(&mddev->lock);
5753
5754 if (err == 0 &&
5755 copy_to_user(arg, file, sizeof(*file)))
5756 err = -EFAULT;
5757
5758 kfree(file);
5759 return err;
5760 }
5761
5762 static int get_disk_info(struct mddev *mddev, void __user * arg)
5763 {
5764 mdu_disk_info_t info;
5765 struct md_rdev *rdev;
5766
5767 if (copy_from_user(&info, arg, sizeof(info)))
5768 return -EFAULT;
5769
5770 rcu_read_lock();
5771 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5772 if (rdev) {
5773 info.major = MAJOR(rdev->bdev->bd_dev);
5774 info.minor = MINOR(rdev->bdev->bd_dev);
5775 info.raid_disk = rdev->raid_disk;
5776 info.state = 0;
5777 if (test_bit(Faulty, &rdev->flags))
5778 info.state |= (1<<MD_DISK_FAULTY);
5779 else if (test_bit(In_sync, &rdev->flags)) {
5780 info.state |= (1<<MD_DISK_ACTIVE);
5781 info.state |= (1<<MD_DISK_SYNC);
5782 }
5783 if (test_bit(WriteMostly, &rdev->flags))
5784 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5785 } else {
5786 info.major = info.minor = 0;
5787 info.raid_disk = -1;
5788 info.state = (1<<MD_DISK_REMOVED);
5789 }
5790 rcu_read_unlock();
5791
5792 if (copy_to_user(arg, &info, sizeof(info)))
5793 return -EFAULT;
5794
5795 return 0;
5796 }
5797
5798 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5799 {
5800 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5801 struct md_rdev *rdev;
5802 dev_t dev = MKDEV(info->major,info->minor);
5803
5804 if (mddev_is_clustered(mddev) &&
5805 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5806 pr_err("%s: Cannot add to clustered mddev.\n",
5807 mdname(mddev));
5808 return -EINVAL;
5809 }
5810
5811 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5812 return -EOVERFLOW;
5813
5814 if (!mddev->raid_disks) {
5815 int err;
5816 /* expecting a device which has a superblock */
5817 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5818 if (IS_ERR(rdev)) {
5819 printk(KERN_WARNING
5820 "md: md_import_device returned %ld\n",
5821 PTR_ERR(rdev));
5822 return PTR_ERR(rdev);
5823 }
5824 if (!list_empty(&mddev->disks)) {
5825 struct md_rdev *rdev0
5826 = list_entry(mddev->disks.next,
5827 struct md_rdev, same_set);
5828 err = super_types[mddev->major_version]
5829 .load_super(rdev, rdev0, mddev->minor_version);
5830 if (err < 0) {
5831 printk(KERN_WARNING
5832 "md: %s has different UUID to %s\n",
5833 bdevname(rdev->bdev,b),
5834 bdevname(rdev0->bdev,b2));
5835 export_rdev(rdev);
5836 return -EINVAL;
5837 }
5838 }
5839 err = bind_rdev_to_array(rdev, mddev);
5840 if (err)
5841 export_rdev(rdev);
5842 return err;
5843 }
5844
5845 /*
5846 * add_new_disk can be used once the array is assembled
5847 * to add "hot spares". They must already have a superblock
5848 * written
5849 */
5850 if (mddev->pers) {
5851 int err;
5852 if (!mddev->pers->hot_add_disk) {
5853 printk(KERN_WARNING
5854 "%s: personality does not support diskops!\n",
5855 mdname(mddev));
5856 return -EINVAL;
5857 }
5858 if (mddev->persistent)
5859 rdev = md_import_device(dev, mddev->major_version,
5860 mddev->minor_version);
5861 else
5862 rdev = md_import_device(dev, -1, -1);
5863 if (IS_ERR(rdev)) {
5864 printk(KERN_WARNING
5865 "md: md_import_device returned %ld\n",
5866 PTR_ERR(rdev));
5867 return PTR_ERR(rdev);
5868 }
5869 /* set saved_raid_disk if appropriate */
5870 if (!mddev->persistent) {
5871 if (info->state & (1<<MD_DISK_SYNC) &&
5872 info->raid_disk < mddev->raid_disks) {
5873 rdev->raid_disk = info->raid_disk;
5874 set_bit(In_sync, &rdev->flags);
5875 clear_bit(Bitmap_sync, &rdev->flags);
5876 } else
5877 rdev->raid_disk = -1;
5878 rdev->saved_raid_disk = rdev->raid_disk;
5879 } else
5880 super_types[mddev->major_version].
5881 validate_super(mddev, rdev);
5882 if ((info->state & (1<<MD_DISK_SYNC)) &&
5883 rdev->raid_disk != info->raid_disk) {
5884 /* This was a hot-add request, but events doesn't
5885 * match, so reject it.
5886 */
5887 export_rdev(rdev);
5888 return -EINVAL;
5889 }
5890
5891 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5892 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5893 set_bit(WriteMostly, &rdev->flags);
5894 else
5895 clear_bit(WriteMostly, &rdev->flags);
5896
5897 /*
5898 * check whether the device shows up in other nodes
5899 */
5900 if (mddev_is_clustered(mddev)) {
5901 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5902 /* Through --cluster-confirm */
5903 set_bit(Candidate, &rdev->flags);
5904 err = md_cluster_ops->new_disk_ack(mddev, true);
5905 if (err) {
5906 export_rdev(rdev);
5907 return err;
5908 }
5909 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5910 /* --add initiated by this node */
5911 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5912 if (err) {
5913 md_cluster_ops->add_new_disk_finish(mddev);
5914 export_rdev(rdev);
5915 return err;
5916 }
5917 }
5918 }
5919
5920 rdev->raid_disk = -1;
5921 err = bind_rdev_to_array(rdev, mddev);
5922 if (err)
5923 export_rdev(rdev);
5924 else
5925 err = add_bound_rdev(rdev);
5926 if (mddev_is_clustered(mddev) &&
5927 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5928 md_cluster_ops->add_new_disk_finish(mddev);
5929 return err;
5930 }
5931
5932 /* otherwise, add_new_disk is only allowed
5933 * for major_version==0 superblocks
5934 */
5935 if (mddev->major_version != 0) {
5936 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5937 mdname(mddev));
5938 return -EINVAL;
5939 }
5940
5941 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5942 int err;
5943 rdev = md_import_device(dev, -1, 0);
5944 if (IS_ERR(rdev)) {
5945 printk(KERN_WARNING
5946 "md: error, md_import_device() returned %ld\n",
5947 PTR_ERR(rdev));
5948 return PTR_ERR(rdev);
5949 }
5950 rdev->desc_nr = info->number;
5951 if (info->raid_disk < mddev->raid_disks)
5952 rdev->raid_disk = info->raid_disk;
5953 else
5954 rdev->raid_disk = -1;
5955
5956 if (rdev->raid_disk < mddev->raid_disks)
5957 if (info->state & (1<<MD_DISK_SYNC))
5958 set_bit(In_sync, &rdev->flags);
5959
5960 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5961 set_bit(WriteMostly, &rdev->flags);
5962
5963 if (!mddev->persistent) {
5964 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5965 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5966 } else
5967 rdev->sb_start = calc_dev_sboffset(rdev);
5968 rdev->sectors = rdev->sb_start;
5969
5970 err = bind_rdev_to_array(rdev, mddev);
5971 if (err) {
5972 export_rdev(rdev);
5973 return err;
5974 }
5975 }
5976
5977 return 0;
5978 }
5979
5980 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5981 {
5982 char b[BDEVNAME_SIZE];
5983 struct md_rdev *rdev;
5984
5985 rdev = find_rdev(mddev, dev);
5986 if (!rdev)
5987 return -ENXIO;
5988
5989 if (mddev_is_clustered(mddev))
5990 md_cluster_ops->metadata_update_start(mddev);
5991
5992 clear_bit(Blocked, &rdev->flags);
5993 remove_and_add_spares(mddev, rdev);
5994
5995 if (rdev->raid_disk >= 0)
5996 goto busy;
5997
5998 if (mddev_is_clustered(mddev))
5999 md_cluster_ops->remove_disk(mddev, rdev);
6000
6001 md_kick_rdev_from_array(rdev);
6002 md_update_sb(mddev, 1);
6003 md_new_event(mddev);
6004
6005 if (mddev_is_clustered(mddev))
6006 md_cluster_ops->metadata_update_finish(mddev);
6007
6008 return 0;
6009 busy:
6010 if (mddev_is_clustered(mddev))
6011 md_cluster_ops->metadata_update_cancel(mddev);
6012 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6013 bdevname(rdev->bdev,b), mdname(mddev));
6014 return -EBUSY;
6015 }
6016
6017 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6018 {
6019 char b[BDEVNAME_SIZE];
6020 int err;
6021 struct md_rdev *rdev;
6022
6023 if (!mddev->pers)
6024 return -ENODEV;
6025
6026 if (mddev->major_version != 0) {
6027 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6028 " version-0 superblocks.\n",
6029 mdname(mddev));
6030 return -EINVAL;
6031 }
6032 if (!mddev->pers->hot_add_disk) {
6033 printk(KERN_WARNING
6034 "%s: personality does not support diskops!\n",
6035 mdname(mddev));
6036 return -EINVAL;
6037 }
6038
6039 rdev = md_import_device(dev, -1, 0);
6040 if (IS_ERR(rdev)) {
6041 printk(KERN_WARNING
6042 "md: error, md_import_device() returned %ld\n",
6043 PTR_ERR(rdev));
6044 return -EINVAL;
6045 }
6046
6047 if (mddev->persistent)
6048 rdev->sb_start = calc_dev_sboffset(rdev);
6049 else
6050 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6051
6052 rdev->sectors = rdev->sb_start;
6053
6054 if (test_bit(Faulty, &rdev->flags)) {
6055 printk(KERN_WARNING
6056 "md: can not hot-add faulty %s disk to %s!\n",
6057 bdevname(rdev->bdev,b), mdname(mddev));
6058 err = -EINVAL;
6059 goto abort_export;
6060 }
6061
6062 if (mddev_is_clustered(mddev))
6063 md_cluster_ops->metadata_update_start(mddev);
6064 clear_bit(In_sync, &rdev->flags);
6065 rdev->desc_nr = -1;
6066 rdev->saved_raid_disk = -1;
6067 err = bind_rdev_to_array(rdev, mddev);
6068 if (err)
6069 goto abort_clustered;
6070
6071 /*
6072 * The rest should better be atomic, we can have disk failures
6073 * noticed in interrupt contexts ...
6074 */
6075
6076 rdev->raid_disk = -1;
6077
6078 md_update_sb(mddev, 1);
6079
6080 if (mddev_is_clustered(mddev))
6081 md_cluster_ops->metadata_update_finish(mddev);
6082 /*
6083 * Kick recovery, maybe this spare has to be added to the
6084 * array immediately.
6085 */
6086 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6087 md_wakeup_thread(mddev->thread);
6088 md_new_event(mddev);
6089 return 0;
6090
6091 abort_clustered:
6092 if (mddev_is_clustered(mddev))
6093 md_cluster_ops->metadata_update_cancel(mddev);
6094 abort_export:
6095 export_rdev(rdev);
6096 return err;
6097 }
6098
6099 static int set_bitmap_file(struct mddev *mddev, int fd)
6100 {
6101 int err = 0;
6102
6103 if (mddev->pers) {
6104 if (!mddev->pers->quiesce || !mddev->thread)
6105 return -EBUSY;
6106 if (mddev->recovery || mddev->sync_thread)
6107 return -EBUSY;
6108 /* we should be able to change the bitmap.. */
6109 }
6110
6111 if (fd >= 0) {
6112 struct inode *inode;
6113 struct file *f;
6114
6115 if (mddev->bitmap || mddev->bitmap_info.file)
6116 return -EEXIST; /* cannot add when bitmap is present */
6117 f = fget(fd);
6118
6119 if (f == NULL) {
6120 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6121 mdname(mddev));
6122 return -EBADF;
6123 }
6124
6125 inode = f->f_mapping->host;
6126 if (!S_ISREG(inode->i_mode)) {
6127 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6128 mdname(mddev));
6129 err = -EBADF;
6130 } else if (!(f->f_mode & FMODE_WRITE)) {
6131 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6132 mdname(mddev));
6133 err = -EBADF;
6134 } else if (atomic_read(&inode->i_writecount) != 1) {
6135 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6136 mdname(mddev));
6137 err = -EBUSY;
6138 }
6139 if (err) {
6140 fput(f);
6141 return err;
6142 }
6143 mddev->bitmap_info.file = f;
6144 mddev->bitmap_info.offset = 0; /* file overrides offset */
6145 } else if (mddev->bitmap == NULL)
6146 return -ENOENT; /* cannot remove what isn't there */
6147 err = 0;
6148 if (mddev->pers) {
6149 mddev->pers->quiesce(mddev, 1);
6150 if (fd >= 0) {
6151 struct bitmap *bitmap;
6152
6153 bitmap = bitmap_create(mddev, -1);
6154 if (!IS_ERR(bitmap)) {
6155 mddev->bitmap = bitmap;
6156 err = bitmap_load(mddev);
6157 } else
6158 err = PTR_ERR(bitmap);
6159 }
6160 if (fd < 0 || err) {
6161 bitmap_destroy(mddev);
6162 fd = -1; /* make sure to put the file */
6163 }
6164 mddev->pers->quiesce(mddev, 0);
6165 }
6166 if (fd < 0) {
6167 struct file *f = mddev->bitmap_info.file;
6168 if (f) {
6169 spin_lock(&mddev->lock);
6170 mddev->bitmap_info.file = NULL;
6171 spin_unlock(&mddev->lock);
6172 fput(f);
6173 }
6174 }
6175
6176 return err;
6177 }
6178
6179 /*
6180 * set_array_info is used two different ways
6181 * The original usage is when creating a new array.
6182 * In this usage, raid_disks is > 0 and it together with
6183 * level, size, not_persistent,layout,chunksize determine the
6184 * shape of the array.
6185 * This will always create an array with a type-0.90.0 superblock.
6186 * The newer usage is when assembling an array.
6187 * In this case raid_disks will be 0, and the major_version field is
6188 * use to determine which style super-blocks are to be found on the devices.
6189 * The minor and patch _version numbers are also kept incase the
6190 * super_block handler wishes to interpret them.
6191 */
6192 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6193 {
6194
6195 if (info->raid_disks == 0) {
6196 /* just setting version number for superblock loading */
6197 if (info->major_version < 0 ||
6198 info->major_version >= ARRAY_SIZE(super_types) ||
6199 super_types[info->major_version].name == NULL) {
6200 /* maybe try to auto-load a module? */
6201 printk(KERN_INFO
6202 "md: superblock version %d not known\n",
6203 info->major_version);
6204 return -EINVAL;
6205 }
6206 mddev->major_version = info->major_version;
6207 mddev->minor_version = info->minor_version;
6208 mddev->patch_version = info->patch_version;
6209 mddev->persistent = !info->not_persistent;
6210 /* ensure mddev_put doesn't delete this now that there
6211 * is some minimal configuration.
6212 */
6213 mddev->ctime = get_seconds();
6214 return 0;
6215 }
6216 mddev->major_version = MD_MAJOR_VERSION;
6217 mddev->minor_version = MD_MINOR_VERSION;
6218 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6219 mddev->ctime = get_seconds();
6220
6221 mddev->level = info->level;
6222 mddev->clevel[0] = 0;
6223 mddev->dev_sectors = 2 * (sector_t)info->size;
6224 mddev->raid_disks = info->raid_disks;
6225 /* don't set md_minor, it is determined by which /dev/md* was
6226 * openned
6227 */
6228 if (info->state & (1<<MD_SB_CLEAN))
6229 mddev->recovery_cp = MaxSector;
6230 else
6231 mddev->recovery_cp = 0;
6232 mddev->persistent = ! info->not_persistent;
6233 mddev->external = 0;
6234
6235 mddev->layout = info->layout;
6236 mddev->chunk_sectors = info->chunk_size >> 9;
6237
6238 mddev->max_disks = MD_SB_DISKS;
6239
6240 if (mddev->persistent)
6241 mddev->flags = 0;
6242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6243
6244 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6245 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6246 mddev->bitmap_info.offset = 0;
6247
6248 mddev->reshape_position = MaxSector;
6249
6250 /*
6251 * Generate a 128 bit UUID
6252 */
6253 get_random_bytes(mddev->uuid, 16);
6254
6255 mddev->new_level = mddev->level;
6256 mddev->new_chunk_sectors = mddev->chunk_sectors;
6257 mddev->new_layout = mddev->layout;
6258 mddev->delta_disks = 0;
6259 mddev->reshape_backwards = 0;
6260
6261 return 0;
6262 }
6263
6264 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6265 {
6266 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6267
6268 if (mddev->external_size)
6269 return;
6270
6271 mddev->array_sectors = array_sectors;
6272 }
6273 EXPORT_SYMBOL(md_set_array_sectors);
6274
6275 static int update_size(struct mddev *mddev, sector_t num_sectors)
6276 {
6277 struct md_rdev *rdev;
6278 int rv;
6279 int fit = (num_sectors == 0);
6280
6281 if (mddev->pers->resize == NULL)
6282 return -EINVAL;
6283 /* The "num_sectors" is the number of sectors of each device that
6284 * is used. This can only make sense for arrays with redundancy.
6285 * linear and raid0 always use whatever space is available. We can only
6286 * consider changing this number if no resync or reconstruction is
6287 * happening, and if the new size is acceptable. It must fit before the
6288 * sb_start or, if that is <data_offset, it must fit before the size
6289 * of each device. If num_sectors is zero, we find the largest size
6290 * that fits.
6291 */
6292 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6293 mddev->sync_thread)
6294 return -EBUSY;
6295 if (mddev->ro)
6296 return -EROFS;
6297
6298 rdev_for_each(rdev, mddev) {
6299 sector_t avail = rdev->sectors;
6300
6301 if (fit && (num_sectors == 0 || num_sectors > avail))
6302 num_sectors = avail;
6303 if (avail < num_sectors)
6304 return -ENOSPC;
6305 }
6306 rv = mddev->pers->resize(mddev, num_sectors);
6307 if (!rv)
6308 revalidate_disk(mddev->gendisk);
6309 return rv;
6310 }
6311
6312 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6313 {
6314 int rv;
6315 struct md_rdev *rdev;
6316 /* change the number of raid disks */
6317 if (mddev->pers->check_reshape == NULL)
6318 return -EINVAL;
6319 if (mddev->ro)
6320 return -EROFS;
6321 if (raid_disks <= 0 ||
6322 (mddev->max_disks && raid_disks >= mddev->max_disks))
6323 return -EINVAL;
6324 if (mddev->sync_thread ||
6325 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6326 mddev->reshape_position != MaxSector)
6327 return -EBUSY;
6328
6329 rdev_for_each(rdev, mddev) {
6330 if (mddev->raid_disks < raid_disks &&
6331 rdev->data_offset < rdev->new_data_offset)
6332 return -EINVAL;
6333 if (mddev->raid_disks > raid_disks &&
6334 rdev->data_offset > rdev->new_data_offset)
6335 return -EINVAL;
6336 }
6337
6338 mddev->delta_disks = raid_disks - mddev->raid_disks;
6339 if (mddev->delta_disks < 0)
6340 mddev->reshape_backwards = 1;
6341 else if (mddev->delta_disks > 0)
6342 mddev->reshape_backwards = 0;
6343
6344 rv = mddev->pers->check_reshape(mddev);
6345 if (rv < 0) {
6346 mddev->delta_disks = 0;
6347 mddev->reshape_backwards = 0;
6348 }
6349 return rv;
6350 }
6351
6352 /*
6353 * update_array_info is used to change the configuration of an
6354 * on-line array.
6355 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6356 * fields in the info are checked against the array.
6357 * Any differences that cannot be handled will cause an error.
6358 * Normally, only one change can be managed at a time.
6359 */
6360 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6361 {
6362 int rv = 0;
6363 int cnt = 0;
6364 int state = 0;
6365
6366 /* calculate expected state,ignoring low bits */
6367 if (mddev->bitmap && mddev->bitmap_info.offset)
6368 state |= (1 << MD_SB_BITMAP_PRESENT);
6369
6370 if (mddev->major_version != info->major_version ||
6371 mddev->minor_version != info->minor_version ||
6372 /* mddev->patch_version != info->patch_version || */
6373 mddev->ctime != info->ctime ||
6374 mddev->level != info->level ||
6375 /* mddev->layout != info->layout || */
6376 !mddev->persistent != info->not_persistent||
6377 mddev->chunk_sectors != info->chunk_size >> 9 ||
6378 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6379 ((state^info->state) & 0xfffffe00)
6380 )
6381 return -EINVAL;
6382 /* Check there is only one change */
6383 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6384 cnt++;
6385 if (mddev->raid_disks != info->raid_disks)
6386 cnt++;
6387 if (mddev->layout != info->layout)
6388 cnt++;
6389 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6390 cnt++;
6391 if (cnt == 0)
6392 return 0;
6393 if (cnt > 1)
6394 return -EINVAL;
6395
6396 if (mddev->layout != info->layout) {
6397 /* Change layout
6398 * we don't need to do anything at the md level, the
6399 * personality will take care of it all.
6400 */
6401 if (mddev->pers->check_reshape == NULL)
6402 return -EINVAL;
6403 else {
6404 mddev->new_layout = info->layout;
6405 rv = mddev->pers->check_reshape(mddev);
6406 if (rv)
6407 mddev->new_layout = mddev->layout;
6408 return rv;
6409 }
6410 }
6411 if (mddev_is_clustered(mddev))
6412 md_cluster_ops->metadata_update_start(mddev);
6413 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6414 rv = update_size(mddev, (sector_t)info->size * 2);
6415
6416 if (mddev->raid_disks != info->raid_disks)
6417 rv = update_raid_disks(mddev, info->raid_disks);
6418
6419 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6420 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6421 rv = -EINVAL;
6422 goto err;
6423 }
6424 if (mddev->recovery || mddev->sync_thread) {
6425 rv = -EBUSY;
6426 goto err;
6427 }
6428 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6429 struct bitmap *bitmap;
6430 /* add the bitmap */
6431 if (mddev->bitmap) {
6432 rv = -EEXIST;
6433 goto err;
6434 }
6435 if (mddev->bitmap_info.default_offset == 0) {
6436 rv = -EINVAL;
6437 goto err;
6438 }
6439 mddev->bitmap_info.offset =
6440 mddev->bitmap_info.default_offset;
6441 mddev->bitmap_info.space =
6442 mddev->bitmap_info.default_space;
6443 mddev->pers->quiesce(mddev, 1);
6444 bitmap = bitmap_create(mddev, -1);
6445 if (!IS_ERR(bitmap)) {
6446 mddev->bitmap = bitmap;
6447 rv = bitmap_load(mddev);
6448 } else
6449 rv = PTR_ERR(bitmap);
6450 if (rv)
6451 bitmap_destroy(mddev);
6452 mddev->pers->quiesce(mddev, 0);
6453 } else {
6454 /* remove the bitmap */
6455 if (!mddev->bitmap) {
6456 rv = -ENOENT;
6457 goto err;
6458 }
6459 if (mddev->bitmap->storage.file) {
6460 rv = -EINVAL;
6461 goto err;
6462 }
6463 mddev->pers->quiesce(mddev, 1);
6464 bitmap_destroy(mddev);
6465 mddev->pers->quiesce(mddev, 0);
6466 mddev->bitmap_info.offset = 0;
6467 }
6468 }
6469 md_update_sb(mddev, 1);
6470 if (mddev_is_clustered(mddev))
6471 md_cluster_ops->metadata_update_finish(mddev);
6472 return rv;
6473 err:
6474 if (mddev_is_clustered(mddev))
6475 md_cluster_ops->metadata_update_cancel(mddev);
6476 return rv;
6477 }
6478
6479 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6480 {
6481 struct md_rdev *rdev;
6482 int err = 0;
6483
6484 if (mddev->pers == NULL)
6485 return -ENODEV;
6486
6487 rcu_read_lock();
6488 rdev = find_rdev_rcu(mddev, dev);
6489 if (!rdev)
6490 err = -ENODEV;
6491 else {
6492 md_error(mddev, rdev);
6493 if (!test_bit(Faulty, &rdev->flags))
6494 err = -EBUSY;
6495 }
6496 rcu_read_unlock();
6497 return err;
6498 }
6499
6500 /*
6501 * We have a problem here : there is no easy way to give a CHS
6502 * virtual geometry. We currently pretend that we have a 2 heads
6503 * 4 sectors (with a BIG number of cylinders...). This drives
6504 * dosfs just mad... ;-)
6505 */
6506 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6507 {
6508 struct mddev *mddev = bdev->bd_disk->private_data;
6509
6510 geo->heads = 2;
6511 geo->sectors = 4;
6512 geo->cylinders = mddev->array_sectors / 8;
6513 return 0;
6514 }
6515
6516 static inline bool md_ioctl_valid(unsigned int cmd)
6517 {
6518 switch (cmd) {
6519 case ADD_NEW_DISK:
6520 case BLKROSET:
6521 case GET_ARRAY_INFO:
6522 case GET_BITMAP_FILE:
6523 case GET_DISK_INFO:
6524 case HOT_ADD_DISK:
6525 case HOT_REMOVE_DISK:
6526 case RAID_AUTORUN:
6527 case RAID_VERSION:
6528 case RESTART_ARRAY_RW:
6529 case RUN_ARRAY:
6530 case SET_ARRAY_INFO:
6531 case SET_BITMAP_FILE:
6532 case SET_DISK_FAULTY:
6533 case STOP_ARRAY:
6534 case STOP_ARRAY_RO:
6535 case CLUSTERED_DISK_NACK:
6536 return true;
6537 default:
6538 return false;
6539 }
6540 }
6541
6542 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6543 unsigned int cmd, unsigned long arg)
6544 {
6545 int err = 0;
6546 void __user *argp = (void __user *)arg;
6547 struct mddev *mddev = NULL;
6548 int ro;
6549
6550 if (!md_ioctl_valid(cmd))
6551 return -ENOTTY;
6552
6553 switch (cmd) {
6554 case RAID_VERSION:
6555 case GET_ARRAY_INFO:
6556 case GET_DISK_INFO:
6557 break;
6558 default:
6559 if (!capable(CAP_SYS_ADMIN))
6560 return -EACCES;
6561 }
6562
6563 /*
6564 * Commands dealing with the RAID driver but not any
6565 * particular array:
6566 */
6567 switch (cmd) {
6568 case RAID_VERSION:
6569 err = get_version(argp);
6570 goto out;
6571
6572 #ifndef MODULE
6573 case RAID_AUTORUN:
6574 err = 0;
6575 autostart_arrays(arg);
6576 goto out;
6577 #endif
6578 default:;
6579 }
6580
6581 /*
6582 * Commands creating/starting a new array:
6583 */
6584
6585 mddev = bdev->bd_disk->private_data;
6586
6587 if (!mddev) {
6588 BUG();
6589 goto out;
6590 }
6591
6592 /* Some actions do not requires the mutex */
6593 switch (cmd) {
6594 case GET_ARRAY_INFO:
6595 if (!mddev->raid_disks && !mddev->external)
6596 err = -ENODEV;
6597 else
6598 err = get_array_info(mddev, argp);
6599 goto out;
6600
6601 case GET_DISK_INFO:
6602 if (!mddev->raid_disks && !mddev->external)
6603 err = -ENODEV;
6604 else
6605 err = get_disk_info(mddev, argp);
6606 goto out;
6607
6608 case SET_DISK_FAULTY:
6609 err = set_disk_faulty(mddev, new_decode_dev(arg));
6610 goto out;
6611
6612 case GET_BITMAP_FILE:
6613 err = get_bitmap_file(mddev, argp);
6614 goto out;
6615
6616 }
6617
6618 if (cmd == ADD_NEW_DISK)
6619 /* need to ensure md_delayed_delete() has completed */
6620 flush_workqueue(md_misc_wq);
6621
6622 if (cmd == HOT_REMOVE_DISK)
6623 /* need to ensure recovery thread has run */
6624 wait_event_interruptible_timeout(mddev->sb_wait,
6625 !test_bit(MD_RECOVERY_NEEDED,
6626 &mddev->flags),
6627 msecs_to_jiffies(5000));
6628 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6629 /* Need to flush page cache, and ensure no-one else opens
6630 * and writes
6631 */
6632 mutex_lock(&mddev->open_mutex);
6633 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6634 mutex_unlock(&mddev->open_mutex);
6635 err = -EBUSY;
6636 goto out;
6637 }
6638 set_bit(MD_STILL_CLOSED, &mddev->flags);
6639 mutex_unlock(&mddev->open_mutex);
6640 sync_blockdev(bdev);
6641 }
6642 err = mddev_lock(mddev);
6643 if (err) {
6644 printk(KERN_INFO
6645 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6646 err, cmd);
6647 goto out;
6648 }
6649
6650 if (cmd == SET_ARRAY_INFO) {
6651 mdu_array_info_t info;
6652 if (!arg)
6653 memset(&info, 0, sizeof(info));
6654 else if (copy_from_user(&info, argp, sizeof(info))) {
6655 err = -EFAULT;
6656 goto unlock;
6657 }
6658 if (mddev->pers) {
6659 err = update_array_info(mddev, &info);
6660 if (err) {
6661 printk(KERN_WARNING "md: couldn't update"
6662 " array info. %d\n", err);
6663 goto unlock;
6664 }
6665 goto unlock;
6666 }
6667 if (!list_empty(&mddev->disks)) {
6668 printk(KERN_WARNING
6669 "md: array %s already has disks!\n",
6670 mdname(mddev));
6671 err = -EBUSY;
6672 goto unlock;
6673 }
6674 if (mddev->raid_disks) {
6675 printk(KERN_WARNING
6676 "md: array %s already initialised!\n",
6677 mdname(mddev));
6678 err = -EBUSY;
6679 goto unlock;
6680 }
6681 err = set_array_info(mddev, &info);
6682 if (err) {
6683 printk(KERN_WARNING "md: couldn't set"
6684 " array info. %d\n", err);
6685 goto unlock;
6686 }
6687 goto unlock;
6688 }
6689
6690 /*
6691 * Commands querying/configuring an existing array:
6692 */
6693 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6694 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6695 if ((!mddev->raid_disks && !mddev->external)
6696 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6697 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6698 && cmd != GET_BITMAP_FILE) {
6699 err = -ENODEV;
6700 goto unlock;
6701 }
6702
6703 /*
6704 * Commands even a read-only array can execute:
6705 */
6706 switch (cmd) {
6707 case RESTART_ARRAY_RW:
6708 err = restart_array(mddev);
6709 goto unlock;
6710
6711 case STOP_ARRAY:
6712 err = do_md_stop(mddev, 0, bdev);
6713 goto unlock;
6714
6715 case STOP_ARRAY_RO:
6716 err = md_set_readonly(mddev, bdev);
6717 goto unlock;
6718
6719 case HOT_REMOVE_DISK:
6720 err = hot_remove_disk(mddev, new_decode_dev(arg));
6721 goto unlock;
6722
6723 case ADD_NEW_DISK:
6724 /* We can support ADD_NEW_DISK on read-only arrays
6725 * on if we are re-adding a preexisting device.
6726 * So require mddev->pers and MD_DISK_SYNC.
6727 */
6728 if (mddev->pers) {
6729 mdu_disk_info_t info;
6730 if (copy_from_user(&info, argp, sizeof(info)))
6731 err = -EFAULT;
6732 else if (!(info.state & (1<<MD_DISK_SYNC)))
6733 /* Need to clear read-only for this */
6734 break;
6735 else
6736 err = add_new_disk(mddev, &info);
6737 goto unlock;
6738 }
6739 break;
6740
6741 case BLKROSET:
6742 if (get_user(ro, (int __user *)(arg))) {
6743 err = -EFAULT;
6744 goto unlock;
6745 }
6746 err = -EINVAL;
6747
6748 /* if the bdev is going readonly the value of mddev->ro
6749 * does not matter, no writes are coming
6750 */
6751 if (ro)
6752 goto unlock;
6753
6754 /* are we are already prepared for writes? */
6755 if (mddev->ro != 1)
6756 goto unlock;
6757
6758 /* transitioning to readauto need only happen for
6759 * arrays that call md_write_start
6760 */
6761 if (mddev->pers) {
6762 err = restart_array(mddev);
6763 if (err == 0) {
6764 mddev->ro = 2;
6765 set_disk_ro(mddev->gendisk, 0);
6766 }
6767 }
6768 goto unlock;
6769 }
6770
6771 /*
6772 * The remaining ioctls are changing the state of the
6773 * superblock, so we do not allow them on read-only arrays.
6774 */
6775 if (mddev->ro && mddev->pers) {
6776 if (mddev->ro == 2) {
6777 mddev->ro = 0;
6778 sysfs_notify_dirent_safe(mddev->sysfs_state);
6779 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6780 /* mddev_unlock will wake thread */
6781 /* If a device failed while we were read-only, we
6782 * need to make sure the metadata is updated now.
6783 */
6784 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6785 mddev_unlock(mddev);
6786 wait_event(mddev->sb_wait,
6787 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6788 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6789 mddev_lock_nointr(mddev);
6790 }
6791 } else {
6792 err = -EROFS;
6793 goto unlock;
6794 }
6795 }
6796
6797 switch (cmd) {
6798 case ADD_NEW_DISK:
6799 {
6800 mdu_disk_info_t info;
6801 if (copy_from_user(&info, argp, sizeof(info)))
6802 err = -EFAULT;
6803 else
6804 err = add_new_disk(mddev, &info);
6805 goto unlock;
6806 }
6807
6808 case CLUSTERED_DISK_NACK:
6809 if (mddev_is_clustered(mddev))
6810 md_cluster_ops->new_disk_ack(mddev, false);
6811 else
6812 err = -EINVAL;
6813 goto unlock;
6814
6815 case HOT_ADD_DISK:
6816 err = hot_add_disk(mddev, new_decode_dev(arg));
6817 goto unlock;
6818
6819 case RUN_ARRAY:
6820 err = do_md_run(mddev);
6821 goto unlock;
6822
6823 case SET_BITMAP_FILE:
6824 err = set_bitmap_file(mddev, (int)arg);
6825 goto unlock;
6826
6827 default:
6828 err = -EINVAL;
6829 goto unlock;
6830 }
6831
6832 unlock:
6833 if (mddev->hold_active == UNTIL_IOCTL &&
6834 err != -EINVAL)
6835 mddev->hold_active = 0;
6836 mddev_unlock(mddev);
6837 out:
6838 return err;
6839 }
6840 #ifdef CONFIG_COMPAT
6841 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6842 unsigned int cmd, unsigned long arg)
6843 {
6844 switch (cmd) {
6845 case HOT_REMOVE_DISK:
6846 case HOT_ADD_DISK:
6847 case SET_DISK_FAULTY:
6848 case SET_BITMAP_FILE:
6849 /* These take in integer arg, do not convert */
6850 break;
6851 default:
6852 arg = (unsigned long)compat_ptr(arg);
6853 break;
6854 }
6855
6856 return md_ioctl(bdev, mode, cmd, arg);
6857 }
6858 #endif /* CONFIG_COMPAT */
6859
6860 static int md_open(struct block_device *bdev, fmode_t mode)
6861 {
6862 /*
6863 * Succeed if we can lock the mddev, which confirms that
6864 * it isn't being stopped right now.
6865 */
6866 struct mddev *mddev = mddev_find(bdev->bd_dev);
6867 int err;
6868
6869 if (!mddev)
6870 return -ENODEV;
6871
6872 if (mddev->gendisk != bdev->bd_disk) {
6873 /* we are racing with mddev_put which is discarding this
6874 * bd_disk.
6875 */
6876 mddev_put(mddev);
6877 /* Wait until bdev->bd_disk is definitely gone */
6878 flush_workqueue(md_misc_wq);
6879 /* Then retry the open from the top */
6880 return -ERESTARTSYS;
6881 }
6882 BUG_ON(mddev != bdev->bd_disk->private_data);
6883
6884 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6885 goto out;
6886
6887 err = 0;
6888 atomic_inc(&mddev->openers);
6889 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6890 mutex_unlock(&mddev->open_mutex);
6891
6892 check_disk_change(bdev);
6893 out:
6894 return err;
6895 }
6896
6897 static void md_release(struct gendisk *disk, fmode_t mode)
6898 {
6899 struct mddev *mddev = disk->private_data;
6900
6901 BUG_ON(!mddev);
6902 atomic_dec(&mddev->openers);
6903 mddev_put(mddev);
6904 }
6905
6906 static int md_media_changed(struct gendisk *disk)
6907 {
6908 struct mddev *mddev = disk->private_data;
6909
6910 return mddev->changed;
6911 }
6912
6913 static int md_revalidate(struct gendisk *disk)
6914 {
6915 struct mddev *mddev = disk->private_data;
6916
6917 mddev->changed = 0;
6918 return 0;
6919 }
6920 static const struct block_device_operations md_fops =
6921 {
6922 .owner = THIS_MODULE,
6923 .open = md_open,
6924 .release = md_release,
6925 .ioctl = md_ioctl,
6926 #ifdef CONFIG_COMPAT
6927 .compat_ioctl = md_compat_ioctl,
6928 #endif
6929 .getgeo = md_getgeo,
6930 .media_changed = md_media_changed,
6931 .revalidate_disk= md_revalidate,
6932 };
6933
6934 static int md_thread(void *arg)
6935 {
6936 struct md_thread *thread = arg;
6937
6938 /*
6939 * md_thread is a 'system-thread', it's priority should be very
6940 * high. We avoid resource deadlocks individually in each
6941 * raid personality. (RAID5 does preallocation) We also use RR and
6942 * the very same RT priority as kswapd, thus we will never get
6943 * into a priority inversion deadlock.
6944 *
6945 * we definitely have to have equal or higher priority than
6946 * bdflush, otherwise bdflush will deadlock if there are too
6947 * many dirty RAID5 blocks.
6948 */
6949
6950 allow_signal(SIGKILL);
6951 while (!kthread_should_stop()) {
6952
6953 /* We need to wait INTERRUPTIBLE so that
6954 * we don't add to the load-average.
6955 * That means we need to be sure no signals are
6956 * pending
6957 */
6958 if (signal_pending(current))
6959 flush_signals(current);
6960
6961 wait_event_interruptible_timeout
6962 (thread->wqueue,
6963 test_bit(THREAD_WAKEUP, &thread->flags)
6964 || kthread_should_stop(),
6965 thread->timeout);
6966
6967 clear_bit(THREAD_WAKEUP, &thread->flags);
6968 if (!kthread_should_stop())
6969 thread->run(thread);
6970 }
6971
6972 return 0;
6973 }
6974
6975 void md_wakeup_thread(struct md_thread *thread)
6976 {
6977 if (thread) {
6978 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6979 set_bit(THREAD_WAKEUP, &thread->flags);
6980 wake_up(&thread->wqueue);
6981 }
6982 }
6983 EXPORT_SYMBOL(md_wakeup_thread);
6984
6985 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6986 struct mddev *mddev, const char *name)
6987 {
6988 struct md_thread *thread;
6989
6990 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6991 if (!thread)
6992 return NULL;
6993
6994 init_waitqueue_head(&thread->wqueue);
6995
6996 thread->run = run;
6997 thread->mddev = mddev;
6998 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6999 thread->tsk = kthread_run(md_thread, thread,
7000 "%s_%s",
7001 mdname(thread->mddev),
7002 name);
7003 if (IS_ERR(thread->tsk)) {
7004 kfree(thread);
7005 return NULL;
7006 }
7007 return thread;
7008 }
7009 EXPORT_SYMBOL(md_register_thread);
7010
7011 void md_unregister_thread(struct md_thread **threadp)
7012 {
7013 struct md_thread *thread = *threadp;
7014 if (!thread)
7015 return;
7016 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7017 /* Locking ensures that mddev_unlock does not wake_up a
7018 * non-existent thread
7019 */
7020 spin_lock(&pers_lock);
7021 *threadp = NULL;
7022 spin_unlock(&pers_lock);
7023
7024 kthread_stop(thread->tsk);
7025 kfree(thread);
7026 }
7027 EXPORT_SYMBOL(md_unregister_thread);
7028
7029 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7030 {
7031 if (!rdev || test_bit(Faulty, &rdev->flags))
7032 return;
7033
7034 if (!mddev->pers || !mddev->pers->error_handler)
7035 return;
7036 mddev->pers->error_handler(mddev,rdev);
7037 if (mddev->degraded)
7038 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7039 sysfs_notify_dirent_safe(rdev->sysfs_state);
7040 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7041 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7042 md_wakeup_thread(mddev->thread);
7043 if (mddev->event_work.func)
7044 queue_work(md_misc_wq, &mddev->event_work);
7045 md_new_event_inintr(mddev);
7046 }
7047 EXPORT_SYMBOL(md_error);
7048
7049 /* seq_file implementation /proc/mdstat */
7050
7051 static void status_unused(struct seq_file *seq)
7052 {
7053 int i = 0;
7054 struct md_rdev *rdev;
7055
7056 seq_printf(seq, "unused devices: ");
7057
7058 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7059 char b[BDEVNAME_SIZE];
7060 i++;
7061 seq_printf(seq, "%s ",
7062 bdevname(rdev->bdev,b));
7063 }
7064 if (!i)
7065 seq_printf(seq, "<none>");
7066
7067 seq_printf(seq, "\n");
7068 }
7069
7070 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7071 {
7072 sector_t max_sectors, resync, res;
7073 unsigned long dt, db;
7074 sector_t rt;
7075 int scale;
7076 unsigned int per_milli;
7077
7078 if (mddev->curr_resync <= 3)
7079 resync = 0;
7080 else
7081 resync = mddev->curr_resync
7082 - atomic_read(&mddev->recovery_active);
7083
7084 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7085 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7086 max_sectors = mddev->resync_max_sectors;
7087 else
7088 max_sectors = mddev->dev_sectors;
7089
7090 WARN_ON(max_sectors == 0);
7091 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7092 * in a sector_t, and (max_sectors>>scale) will fit in a
7093 * u32, as those are the requirements for sector_div.
7094 * Thus 'scale' must be at least 10
7095 */
7096 scale = 10;
7097 if (sizeof(sector_t) > sizeof(unsigned long)) {
7098 while ( max_sectors/2 > (1ULL<<(scale+32)))
7099 scale++;
7100 }
7101 res = (resync>>scale)*1000;
7102 sector_div(res, (u32)((max_sectors>>scale)+1));
7103
7104 per_milli = res;
7105 {
7106 int i, x = per_milli/50, y = 20-x;
7107 seq_printf(seq, "[");
7108 for (i = 0; i < x; i++)
7109 seq_printf(seq, "=");
7110 seq_printf(seq, ">");
7111 for (i = 0; i < y; i++)
7112 seq_printf(seq, ".");
7113 seq_printf(seq, "] ");
7114 }
7115 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7116 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7117 "reshape" :
7118 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7119 "check" :
7120 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7121 "resync" : "recovery"))),
7122 per_milli/10, per_milli % 10,
7123 (unsigned long long) resync/2,
7124 (unsigned long long) max_sectors/2);
7125
7126 /*
7127 * dt: time from mark until now
7128 * db: blocks written from mark until now
7129 * rt: remaining time
7130 *
7131 * rt is a sector_t, so could be 32bit or 64bit.
7132 * So we divide before multiply in case it is 32bit and close
7133 * to the limit.
7134 * We scale the divisor (db) by 32 to avoid losing precision
7135 * near the end of resync when the number of remaining sectors
7136 * is close to 'db'.
7137 * We then divide rt by 32 after multiplying by db to compensate.
7138 * The '+1' avoids division by zero if db is very small.
7139 */
7140 dt = ((jiffies - mddev->resync_mark) / HZ);
7141 if (!dt) dt++;
7142 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7143 - mddev->resync_mark_cnt;
7144
7145 rt = max_sectors - resync; /* number of remaining sectors */
7146 sector_div(rt, db/32+1);
7147 rt *= dt;
7148 rt >>= 5;
7149
7150 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7151 ((unsigned long)rt % 60)/6);
7152
7153 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7154 }
7155
7156 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7157 {
7158 struct list_head *tmp;
7159 loff_t l = *pos;
7160 struct mddev *mddev;
7161
7162 if (l >= 0x10000)
7163 return NULL;
7164 if (!l--)
7165 /* header */
7166 return (void*)1;
7167
7168 spin_lock(&all_mddevs_lock);
7169 list_for_each(tmp,&all_mddevs)
7170 if (!l--) {
7171 mddev = list_entry(tmp, struct mddev, all_mddevs);
7172 mddev_get(mddev);
7173 spin_unlock(&all_mddevs_lock);
7174 return mddev;
7175 }
7176 spin_unlock(&all_mddevs_lock);
7177 if (!l--)
7178 return (void*)2;/* tail */
7179 return NULL;
7180 }
7181
7182 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7183 {
7184 struct list_head *tmp;
7185 struct mddev *next_mddev, *mddev = v;
7186
7187 ++*pos;
7188 if (v == (void*)2)
7189 return NULL;
7190
7191 spin_lock(&all_mddevs_lock);
7192 if (v == (void*)1)
7193 tmp = all_mddevs.next;
7194 else
7195 tmp = mddev->all_mddevs.next;
7196 if (tmp != &all_mddevs)
7197 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7198 else {
7199 next_mddev = (void*)2;
7200 *pos = 0x10000;
7201 }
7202 spin_unlock(&all_mddevs_lock);
7203
7204 if (v != (void*)1)
7205 mddev_put(mddev);
7206 return next_mddev;
7207
7208 }
7209
7210 static void md_seq_stop(struct seq_file *seq, void *v)
7211 {
7212 struct mddev *mddev = v;
7213
7214 if (mddev && v != (void*)1 && v != (void*)2)
7215 mddev_put(mddev);
7216 }
7217
7218 static int md_seq_show(struct seq_file *seq, void *v)
7219 {
7220 struct mddev *mddev = v;
7221 sector_t sectors;
7222 struct md_rdev *rdev;
7223
7224 if (v == (void*)1) {
7225 struct md_personality *pers;
7226 seq_printf(seq, "Personalities : ");
7227 spin_lock(&pers_lock);
7228 list_for_each_entry(pers, &pers_list, list)
7229 seq_printf(seq, "[%s] ", pers->name);
7230
7231 spin_unlock(&pers_lock);
7232 seq_printf(seq, "\n");
7233 seq->poll_event = atomic_read(&md_event_count);
7234 return 0;
7235 }
7236 if (v == (void*)2) {
7237 status_unused(seq);
7238 return 0;
7239 }
7240
7241 spin_lock(&mddev->lock);
7242 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7243 seq_printf(seq, "%s : %sactive", mdname(mddev),
7244 mddev->pers ? "" : "in");
7245 if (mddev->pers) {
7246 if (mddev->ro==1)
7247 seq_printf(seq, " (read-only)");
7248 if (mddev->ro==2)
7249 seq_printf(seq, " (auto-read-only)");
7250 seq_printf(seq, " %s", mddev->pers->name);
7251 }
7252
7253 sectors = 0;
7254 rcu_read_lock();
7255 rdev_for_each_rcu(rdev, mddev) {
7256 char b[BDEVNAME_SIZE];
7257 seq_printf(seq, " %s[%d]",
7258 bdevname(rdev->bdev,b), rdev->desc_nr);
7259 if (test_bit(WriteMostly, &rdev->flags))
7260 seq_printf(seq, "(W)");
7261 if (test_bit(Faulty, &rdev->flags)) {
7262 seq_printf(seq, "(F)");
7263 continue;
7264 }
7265 if (rdev->raid_disk < 0)
7266 seq_printf(seq, "(S)"); /* spare */
7267 if (test_bit(Replacement, &rdev->flags))
7268 seq_printf(seq, "(R)");
7269 sectors += rdev->sectors;
7270 }
7271 rcu_read_unlock();
7272
7273 if (!list_empty(&mddev->disks)) {
7274 if (mddev->pers)
7275 seq_printf(seq, "\n %llu blocks",
7276 (unsigned long long)
7277 mddev->array_sectors / 2);
7278 else
7279 seq_printf(seq, "\n %llu blocks",
7280 (unsigned long long)sectors / 2);
7281 }
7282 if (mddev->persistent) {
7283 if (mddev->major_version != 0 ||
7284 mddev->minor_version != 90) {
7285 seq_printf(seq," super %d.%d",
7286 mddev->major_version,
7287 mddev->minor_version);
7288 }
7289 } else if (mddev->external)
7290 seq_printf(seq, " super external:%s",
7291 mddev->metadata_type);
7292 else
7293 seq_printf(seq, " super non-persistent");
7294
7295 if (mddev->pers) {
7296 mddev->pers->status(seq, mddev);
7297 seq_printf(seq, "\n ");
7298 if (mddev->pers->sync_request) {
7299 if (mddev->curr_resync > 2) {
7300 status_resync(seq, mddev);
7301 seq_printf(seq, "\n ");
7302 } else if (mddev->curr_resync >= 1)
7303 seq_printf(seq, "\tresync=DELAYED\n ");
7304 else if (mddev->recovery_cp < MaxSector)
7305 seq_printf(seq, "\tresync=PENDING\n ");
7306 }
7307 } else
7308 seq_printf(seq, "\n ");
7309
7310 bitmap_status(seq, mddev->bitmap);
7311
7312 seq_printf(seq, "\n");
7313 }
7314 spin_unlock(&mddev->lock);
7315
7316 return 0;
7317 }
7318
7319 static const struct seq_operations md_seq_ops = {
7320 .start = md_seq_start,
7321 .next = md_seq_next,
7322 .stop = md_seq_stop,
7323 .show = md_seq_show,
7324 };
7325
7326 static int md_seq_open(struct inode *inode, struct file *file)
7327 {
7328 struct seq_file *seq;
7329 int error;
7330
7331 error = seq_open(file, &md_seq_ops);
7332 if (error)
7333 return error;
7334
7335 seq = file->private_data;
7336 seq->poll_event = atomic_read(&md_event_count);
7337 return error;
7338 }
7339
7340 static int md_unloading;
7341 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7342 {
7343 struct seq_file *seq = filp->private_data;
7344 int mask;
7345
7346 if (md_unloading)
7347 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7348 poll_wait(filp, &md_event_waiters, wait);
7349
7350 /* always allow read */
7351 mask = POLLIN | POLLRDNORM;
7352
7353 if (seq->poll_event != atomic_read(&md_event_count))
7354 mask |= POLLERR | POLLPRI;
7355 return mask;
7356 }
7357
7358 static const struct file_operations md_seq_fops = {
7359 .owner = THIS_MODULE,
7360 .open = md_seq_open,
7361 .read = seq_read,
7362 .llseek = seq_lseek,
7363 .release = seq_release_private,
7364 .poll = mdstat_poll,
7365 };
7366
7367 int register_md_personality(struct md_personality *p)
7368 {
7369 printk(KERN_INFO "md: %s personality registered for level %d\n",
7370 p->name, p->level);
7371 spin_lock(&pers_lock);
7372 list_add_tail(&p->list, &pers_list);
7373 spin_unlock(&pers_lock);
7374 return 0;
7375 }
7376 EXPORT_SYMBOL(register_md_personality);
7377
7378 int unregister_md_personality(struct md_personality *p)
7379 {
7380 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7381 spin_lock(&pers_lock);
7382 list_del_init(&p->list);
7383 spin_unlock(&pers_lock);
7384 return 0;
7385 }
7386 EXPORT_SYMBOL(unregister_md_personality);
7387
7388 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7389 {
7390 if (md_cluster_ops != NULL)
7391 return -EALREADY;
7392 spin_lock(&pers_lock);
7393 md_cluster_ops = ops;
7394 md_cluster_mod = module;
7395 spin_unlock(&pers_lock);
7396 return 0;
7397 }
7398 EXPORT_SYMBOL(register_md_cluster_operations);
7399
7400 int unregister_md_cluster_operations(void)
7401 {
7402 spin_lock(&pers_lock);
7403 md_cluster_ops = NULL;
7404 spin_unlock(&pers_lock);
7405 return 0;
7406 }
7407 EXPORT_SYMBOL(unregister_md_cluster_operations);
7408
7409 int md_setup_cluster(struct mddev *mddev, int nodes)
7410 {
7411 int err;
7412
7413 err = request_module("md-cluster");
7414 if (err) {
7415 pr_err("md-cluster module not found.\n");
7416 return err;
7417 }
7418
7419 spin_lock(&pers_lock);
7420 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7421 spin_unlock(&pers_lock);
7422 return -ENOENT;
7423 }
7424 spin_unlock(&pers_lock);
7425
7426 return md_cluster_ops->join(mddev, nodes);
7427 }
7428
7429 void md_cluster_stop(struct mddev *mddev)
7430 {
7431 if (!md_cluster_ops)
7432 return;
7433 md_cluster_ops->leave(mddev);
7434 module_put(md_cluster_mod);
7435 }
7436
7437 static int is_mddev_idle(struct mddev *mddev, int init)
7438 {
7439 struct md_rdev *rdev;
7440 int idle;
7441 int curr_events;
7442
7443 idle = 1;
7444 rcu_read_lock();
7445 rdev_for_each_rcu(rdev, mddev) {
7446 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7447 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7448 (int)part_stat_read(&disk->part0, sectors[1]) -
7449 atomic_read(&disk->sync_io);
7450 /* sync IO will cause sync_io to increase before the disk_stats
7451 * as sync_io is counted when a request starts, and
7452 * disk_stats is counted when it completes.
7453 * So resync activity will cause curr_events to be smaller than
7454 * when there was no such activity.
7455 * non-sync IO will cause disk_stat to increase without
7456 * increasing sync_io so curr_events will (eventually)
7457 * be larger than it was before. Once it becomes
7458 * substantially larger, the test below will cause
7459 * the array to appear non-idle, and resync will slow
7460 * down.
7461 * If there is a lot of outstanding resync activity when
7462 * we set last_event to curr_events, then all that activity
7463 * completing might cause the array to appear non-idle
7464 * and resync will be slowed down even though there might
7465 * not have been non-resync activity. This will only
7466 * happen once though. 'last_events' will soon reflect
7467 * the state where there is little or no outstanding
7468 * resync requests, and further resync activity will
7469 * always make curr_events less than last_events.
7470 *
7471 */
7472 if (init || curr_events - rdev->last_events > 64) {
7473 rdev->last_events = curr_events;
7474 idle = 0;
7475 }
7476 }
7477 rcu_read_unlock();
7478 return idle;
7479 }
7480
7481 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7482 {
7483 /* another "blocks" (512byte) blocks have been synced */
7484 atomic_sub(blocks, &mddev->recovery_active);
7485 wake_up(&mddev->recovery_wait);
7486 if (!ok) {
7487 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7488 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7489 md_wakeup_thread(mddev->thread);
7490 // stop recovery, signal do_sync ....
7491 }
7492 }
7493 EXPORT_SYMBOL(md_done_sync);
7494
7495 /* md_write_start(mddev, bi)
7496 * If we need to update some array metadata (e.g. 'active' flag
7497 * in superblock) before writing, schedule a superblock update
7498 * and wait for it to complete.
7499 */
7500 void md_write_start(struct mddev *mddev, struct bio *bi)
7501 {
7502 int did_change = 0;
7503 if (bio_data_dir(bi) != WRITE)
7504 return;
7505
7506 BUG_ON(mddev->ro == 1);
7507 if (mddev->ro == 2) {
7508 /* need to switch to read/write */
7509 mddev->ro = 0;
7510 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7511 md_wakeup_thread(mddev->thread);
7512 md_wakeup_thread(mddev->sync_thread);
7513 did_change = 1;
7514 }
7515 atomic_inc(&mddev->writes_pending);
7516 if (mddev->safemode == 1)
7517 mddev->safemode = 0;
7518 if (mddev->in_sync) {
7519 spin_lock(&mddev->lock);
7520 if (mddev->in_sync) {
7521 mddev->in_sync = 0;
7522 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7523 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7524 md_wakeup_thread(mddev->thread);
7525 did_change = 1;
7526 }
7527 spin_unlock(&mddev->lock);
7528 }
7529 if (did_change)
7530 sysfs_notify_dirent_safe(mddev->sysfs_state);
7531 wait_event(mddev->sb_wait,
7532 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7533 }
7534 EXPORT_SYMBOL(md_write_start);
7535
7536 void md_write_end(struct mddev *mddev)
7537 {
7538 if (atomic_dec_and_test(&mddev->writes_pending)) {
7539 if (mddev->safemode == 2)
7540 md_wakeup_thread(mddev->thread);
7541 else if (mddev->safemode_delay)
7542 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7543 }
7544 }
7545 EXPORT_SYMBOL(md_write_end);
7546
7547 /* md_allow_write(mddev)
7548 * Calling this ensures that the array is marked 'active' so that writes
7549 * may proceed without blocking. It is important to call this before
7550 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7551 * Must be called with mddev_lock held.
7552 *
7553 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7554 * is dropped, so return -EAGAIN after notifying userspace.
7555 */
7556 int md_allow_write(struct mddev *mddev)
7557 {
7558 if (!mddev->pers)
7559 return 0;
7560 if (mddev->ro)
7561 return 0;
7562 if (!mddev->pers->sync_request)
7563 return 0;
7564
7565 spin_lock(&mddev->lock);
7566 if (mddev->in_sync) {
7567 mddev->in_sync = 0;
7568 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7569 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7570 if (mddev->safemode_delay &&
7571 mddev->safemode == 0)
7572 mddev->safemode = 1;
7573 spin_unlock(&mddev->lock);
7574 if (mddev_is_clustered(mddev))
7575 md_cluster_ops->metadata_update_start(mddev);
7576 md_update_sb(mddev, 0);
7577 if (mddev_is_clustered(mddev))
7578 md_cluster_ops->metadata_update_finish(mddev);
7579 sysfs_notify_dirent_safe(mddev->sysfs_state);
7580 } else
7581 spin_unlock(&mddev->lock);
7582
7583 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7584 return -EAGAIN;
7585 else
7586 return 0;
7587 }
7588 EXPORT_SYMBOL_GPL(md_allow_write);
7589
7590 #define SYNC_MARKS 10
7591 #define SYNC_MARK_STEP (3*HZ)
7592 #define UPDATE_FREQUENCY (5*60*HZ)
7593 void md_do_sync(struct md_thread *thread)
7594 {
7595 struct mddev *mddev = thread->mddev;
7596 struct mddev *mddev2;
7597 unsigned int currspeed = 0,
7598 window;
7599 sector_t max_sectors,j, io_sectors, recovery_done;
7600 unsigned long mark[SYNC_MARKS];
7601 unsigned long update_time;
7602 sector_t mark_cnt[SYNC_MARKS];
7603 int last_mark,m;
7604 struct list_head *tmp;
7605 sector_t last_check;
7606 int skipped = 0;
7607 struct md_rdev *rdev;
7608 char *desc, *action = NULL;
7609 struct blk_plug plug;
7610
7611 /* just incase thread restarts... */
7612 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7613 return;
7614 if (mddev->ro) {/* never try to sync a read-only array */
7615 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7616 return;
7617 }
7618
7619 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7620 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7621 desc = "data-check";
7622 action = "check";
7623 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7624 desc = "requested-resync";
7625 action = "repair";
7626 } else
7627 desc = "resync";
7628 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7629 desc = "reshape";
7630 else
7631 desc = "recovery";
7632
7633 mddev->last_sync_action = action ?: desc;
7634
7635 /* we overload curr_resync somewhat here.
7636 * 0 == not engaged in resync at all
7637 * 2 == checking that there is no conflict with another sync
7638 * 1 == like 2, but have yielded to allow conflicting resync to
7639 * commense
7640 * other == active in resync - this many blocks
7641 *
7642 * Before starting a resync we must have set curr_resync to
7643 * 2, and then checked that every "conflicting" array has curr_resync
7644 * less than ours. When we find one that is the same or higher
7645 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7646 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7647 * This will mean we have to start checking from the beginning again.
7648 *
7649 */
7650
7651 do {
7652 mddev->curr_resync = 2;
7653
7654 try_again:
7655 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7656 goto skip;
7657 for_each_mddev(mddev2, tmp) {
7658 if (mddev2 == mddev)
7659 continue;
7660 if (!mddev->parallel_resync
7661 && mddev2->curr_resync
7662 && match_mddev_units(mddev, mddev2)) {
7663 DEFINE_WAIT(wq);
7664 if (mddev < mddev2 && mddev->curr_resync == 2) {
7665 /* arbitrarily yield */
7666 mddev->curr_resync = 1;
7667 wake_up(&resync_wait);
7668 }
7669 if (mddev > mddev2 && mddev->curr_resync == 1)
7670 /* no need to wait here, we can wait the next
7671 * time 'round when curr_resync == 2
7672 */
7673 continue;
7674 /* We need to wait 'interruptible' so as not to
7675 * contribute to the load average, and not to
7676 * be caught by 'softlockup'
7677 */
7678 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7679 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7680 mddev2->curr_resync >= mddev->curr_resync) {
7681 printk(KERN_INFO "md: delaying %s of %s"
7682 " until %s has finished (they"
7683 " share one or more physical units)\n",
7684 desc, mdname(mddev), mdname(mddev2));
7685 mddev_put(mddev2);
7686 if (signal_pending(current))
7687 flush_signals(current);
7688 schedule();
7689 finish_wait(&resync_wait, &wq);
7690 goto try_again;
7691 }
7692 finish_wait(&resync_wait, &wq);
7693 }
7694 }
7695 } while (mddev->curr_resync < 2);
7696
7697 j = 0;
7698 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7699 /* resync follows the size requested by the personality,
7700 * which defaults to physical size, but can be virtual size
7701 */
7702 max_sectors = mddev->resync_max_sectors;
7703 atomic64_set(&mddev->resync_mismatches, 0);
7704 /* we don't use the checkpoint if there's a bitmap */
7705 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7706 j = mddev->resync_min;
7707 else if (!mddev->bitmap)
7708 j = mddev->recovery_cp;
7709
7710 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7711 max_sectors = mddev->resync_max_sectors;
7712 else {
7713 /* recovery follows the physical size of devices */
7714 max_sectors = mddev->dev_sectors;
7715 j = MaxSector;
7716 rcu_read_lock();
7717 rdev_for_each_rcu(rdev, mddev)
7718 if (rdev->raid_disk >= 0 &&
7719 !test_bit(Faulty, &rdev->flags) &&
7720 !test_bit(In_sync, &rdev->flags) &&
7721 rdev->recovery_offset < j)
7722 j = rdev->recovery_offset;
7723 rcu_read_unlock();
7724
7725 /* If there is a bitmap, we need to make sure all
7726 * writes that started before we added a spare
7727 * complete before we start doing a recovery.
7728 * Otherwise the write might complete and (via
7729 * bitmap_endwrite) set a bit in the bitmap after the
7730 * recovery has checked that bit and skipped that
7731 * region.
7732 */
7733 if (mddev->bitmap) {
7734 mddev->pers->quiesce(mddev, 1);
7735 mddev->pers->quiesce(mddev, 0);
7736 }
7737 }
7738
7739 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7740 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7741 " %d KB/sec/disk.\n", speed_min(mddev));
7742 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7743 "(but not more than %d KB/sec) for %s.\n",
7744 speed_max(mddev), desc);
7745
7746 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7747
7748 io_sectors = 0;
7749 for (m = 0; m < SYNC_MARKS; m++) {
7750 mark[m] = jiffies;
7751 mark_cnt[m] = io_sectors;
7752 }
7753 last_mark = 0;
7754 mddev->resync_mark = mark[last_mark];
7755 mddev->resync_mark_cnt = mark_cnt[last_mark];
7756
7757 /*
7758 * Tune reconstruction:
7759 */
7760 window = 32*(PAGE_SIZE/512);
7761 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7762 window/2, (unsigned long long)max_sectors/2);
7763
7764 atomic_set(&mddev->recovery_active, 0);
7765 last_check = 0;
7766
7767 if (j>2) {
7768 printk(KERN_INFO
7769 "md: resuming %s of %s from checkpoint.\n",
7770 desc, mdname(mddev));
7771 mddev->curr_resync = j;
7772 } else
7773 mddev->curr_resync = 3; /* no longer delayed */
7774 mddev->curr_resync_completed = j;
7775 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7776 md_new_event(mddev);
7777 update_time = jiffies;
7778
7779 if (mddev_is_clustered(mddev))
7780 md_cluster_ops->resync_start(mddev, j, max_sectors);
7781
7782 blk_start_plug(&plug);
7783 while (j < max_sectors) {
7784 sector_t sectors;
7785
7786 skipped = 0;
7787
7788 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7789 ((mddev->curr_resync > mddev->curr_resync_completed &&
7790 (mddev->curr_resync - mddev->curr_resync_completed)
7791 > (max_sectors >> 4)) ||
7792 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7793 (j - mddev->curr_resync_completed)*2
7794 >= mddev->resync_max - mddev->curr_resync_completed
7795 )) {
7796 /* time to update curr_resync_completed */
7797 wait_event(mddev->recovery_wait,
7798 atomic_read(&mddev->recovery_active) == 0);
7799 mddev->curr_resync_completed = j;
7800 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7801 j > mddev->recovery_cp)
7802 mddev->recovery_cp = j;
7803 update_time = jiffies;
7804 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7805 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7806 }
7807
7808 while (j >= mddev->resync_max &&
7809 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7810 /* As this condition is controlled by user-space,
7811 * we can block indefinitely, so use '_interruptible'
7812 * to avoid triggering warnings.
7813 */
7814 flush_signals(current); /* just in case */
7815 wait_event_interruptible(mddev->recovery_wait,
7816 mddev->resync_max > j
7817 || test_bit(MD_RECOVERY_INTR,
7818 &mddev->recovery));
7819 }
7820
7821 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7822 break;
7823
7824 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7825 if (sectors == 0) {
7826 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7827 break;
7828 }
7829
7830 if (!skipped) { /* actual IO requested */
7831 io_sectors += sectors;
7832 atomic_add(sectors, &mddev->recovery_active);
7833 }
7834
7835 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7836 break;
7837
7838 j += sectors;
7839 if (j > 2)
7840 mddev->curr_resync = j;
7841 if (mddev_is_clustered(mddev))
7842 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7843 mddev->curr_mark_cnt = io_sectors;
7844 if (last_check == 0)
7845 /* this is the earliest that rebuild will be
7846 * visible in /proc/mdstat
7847 */
7848 md_new_event(mddev);
7849
7850 if (last_check + window > io_sectors || j == max_sectors)
7851 continue;
7852
7853 last_check = io_sectors;
7854 repeat:
7855 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7856 /* step marks */
7857 int next = (last_mark+1) % SYNC_MARKS;
7858
7859 mddev->resync_mark = mark[next];
7860 mddev->resync_mark_cnt = mark_cnt[next];
7861 mark[next] = jiffies;
7862 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7863 last_mark = next;
7864 }
7865
7866 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7867 break;
7868
7869 /*
7870 * this loop exits only if either when we are slower than
7871 * the 'hard' speed limit, or the system was IO-idle for
7872 * a jiffy.
7873 * the system might be non-idle CPU-wise, but we only care
7874 * about not overloading the IO subsystem. (things like an
7875 * e2fsck being done on the RAID array should execute fast)
7876 */
7877 cond_resched();
7878
7879 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7880 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7881 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7882
7883 if (currspeed > speed_min(mddev)) {
7884 if (currspeed > speed_max(mddev)) {
7885 msleep(500);
7886 goto repeat;
7887 }
7888 if (!is_mddev_idle(mddev, 0)) {
7889 /*
7890 * Give other IO more of a chance.
7891 * The faster the devices, the less we wait.
7892 */
7893 wait_event(mddev->recovery_wait,
7894 !atomic_read(&mddev->recovery_active));
7895 }
7896 }
7897 }
7898 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7899 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7900 ? "interrupted" : "done");
7901 /*
7902 * this also signals 'finished resyncing' to md_stop
7903 */
7904 blk_finish_plug(&plug);
7905 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7906
7907 /* tell personality that we are finished */
7908 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7909
7910 if (mddev_is_clustered(mddev))
7911 md_cluster_ops->resync_finish(mddev);
7912
7913 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7914 mddev->curr_resync > 2) {
7915 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7916 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7917 if (mddev->curr_resync >= mddev->recovery_cp) {
7918 printk(KERN_INFO
7919 "md: checkpointing %s of %s.\n",
7920 desc, mdname(mddev));
7921 if (test_bit(MD_RECOVERY_ERROR,
7922 &mddev->recovery))
7923 mddev->recovery_cp =
7924 mddev->curr_resync_completed;
7925 else
7926 mddev->recovery_cp =
7927 mddev->curr_resync;
7928 }
7929 } else
7930 mddev->recovery_cp = MaxSector;
7931 } else {
7932 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7933 mddev->curr_resync = MaxSector;
7934 rcu_read_lock();
7935 rdev_for_each_rcu(rdev, mddev)
7936 if (rdev->raid_disk >= 0 &&
7937 mddev->delta_disks >= 0 &&
7938 !test_bit(Faulty, &rdev->flags) &&
7939 !test_bit(In_sync, &rdev->flags) &&
7940 rdev->recovery_offset < mddev->curr_resync)
7941 rdev->recovery_offset = mddev->curr_resync;
7942 rcu_read_unlock();
7943 }
7944 }
7945 skip:
7946 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7947
7948 spin_lock(&mddev->lock);
7949 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7950 /* We completed so min/max setting can be forgotten if used. */
7951 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7952 mddev->resync_min = 0;
7953 mddev->resync_max = MaxSector;
7954 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7955 mddev->resync_min = mddev->curr_resync_completed;
7956 mddev->curr_resync = 0;
7957 spin_unlock(&mddev->lock);
7958
7959 wake_up(&resync_wait);
7960 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7961 md_wakeup_thread(mddev->thread);
7962 return;
7963 }
7964 EXPORT_SYMBOL_GPL(md_do_sync);
7965
7966 static int remove_and_add_spares(struct mddev *mddev,
7967 struct md_rdev *this)
7968 {
7969 struct md_rdev *rdev;
7970 int spares = 0;
7971 int removed = 0;
7972
7973 rdev_for_each(rdev, mddev)
7974 if ((this == NULL || rdev == this) &&
7975 rdev->raid_disk >= 0 &&
7976 !test_bit(Blocked, &rdev->flags) &&
7977 (test_bit(Faulty, &rdev->flags) ||
7978 ! test_bit(In_sync, &rdev->flags)) &&
7979 atomic_read(&rdev->nr_pending)==0) {
7980 if (mddev->pers->hot_remove_disk(
7981 mddev, rdev) == 0) {
7982 sysfs_unlink_rdev(mddev, rdev);
7983 rdev->raid_disk = -1;
7984 removed++;
7985 }
7986 }
7987 if (removed && mddev->kobj.sd)
7988 sysfs_notify(&mddev->kobj, NULL, "degraded");
7989
7990 if (this)
7991 goto no_add;
7992
7993 rdev_for_each(rdev, mddev) {
7994 if (rdev->raid_disk >= 0 &&
7995 !test_bit(In_sync, &rdev->flags) &&
7996 !test_bit(Faulty, &rdev->flags))
7997 spares++;
7998 if (rdev->raid_disk >= 0)
7999 continue;
8000 if (test_bit(Faulty, &rdev->flags))
8001 continue;
8002 if (mddev->ro &&
8003 ! (rdev->saved_raid_disk >= 0 &&
8004 !test_bit(Bitmap_sync, &rdev->flags)))
8005 continue;
8006
8007 if (rdev->saved_raid_disk < 0)
8008 rdev->recovery_offset = 0;
8009 if (mddev->pers->
8010 hot_add_disk(mddev, rdev) == 0) {
8011 if (sysfs_link_rdev(mddev, rdev))
8012 /* failure here is OK */;
8013 spares++;
8014 md_new_event(mddev);
8015 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8016 }
8017 }
8018 no_add:
8019 if (removed)
8020 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8021 return spares;
8022 }
8023
8024 static void md_start_sync(struct work_struct *ws)
8025 {
8026 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8027
8028 mddev->sync_thread = md_register_thread(md_do_sync,
8029 mddev,
8030 "resync");
8031 if (!mddev->sync_thread) {
8032 printk(KERN_ERR "%s: could not start resync"
8033 " thread...\n",
8034 mdname(mddev));
8035 /* leave the spares where they are, it shouldn't hurt */
8036 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8037 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8038 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8039 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8040 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8041 wake_up(&resync_wait);
8042 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8043 &mddev->recovery))
8044 if (mddev->sysfs_action)
8045 sysfs_notify_dirent_safe(mddev->sysfs_action);
8046 } else
8047 md_wakeup_thread(mddev->sync_thread);
8048 sysfs_notify_dirent_safe(mddev->sysfs_action);
8049 md_new_event(mddev);
8050 }
8051
8052 /*
8053 * This routine is regularly called by all per-raid-array threads to
8054 * deal with generic issues like resync and super-block update.
8055 * Raid personalities that don't have a thread (linear/raid0) do not
8056 * need this as they never do any recovery or update the superblock.
8057 *
8058 * It does not do any resync itself, but rather "forks" off other threads
8059 * to do that as needed.
8060 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8061 * "->recovery" and create a thread at ->sync_thread.
8062 * When the thread finishes it sets MD_RECOVERY_DONE
8063 * and wakeups up this thread which will reap the thread and finish up.
8064 * This thread also removes any faulty devices (with nr_pending == 0).
8065 *
8066 * The overall approach is:
8067 * 1/ if the superblock needs updating, update it.
8068 * 2/ If a recovery thread is running, don't do anything else.
8069 * 3/ If recovery has finished, clean up, possibly marking spares active.
8070 * 4/ If there are any faulty devices, remove them.
8071 * 5/ If array is degraded, try to add spares devices
8072 * 6/ If array has spares or is not in-sync, start a resync thread.
8073 */
8074 void md_check_recovery(struct mddev *mddev)
8075 {
8076 if (mddev->suspended)
8077 return;
8078
8079 if (mddev->bitmap)
8080 bitmap_daemon_work(mddev);
8081
8082 if (signal_pending(current)) {
8083 if (mddev->pers->sync_request && !mddev->external) {
8084 printk(KERN_INFO "md: %s in immediate safe mode\n",
8085 mdname(mddev));
8086 mddev->safemode = 2;
8087 }
8088 flush_signals(current);
8089 }
8090
8091 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8092 return;
8093 if ( ! (
8094 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8095 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8096 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8097 (mddev->external == 0 && mddev->safemode == 1) ||
8098 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8099 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8100 ))
8101 return;
8102
8103 if (mddev_trylock(mddev)) {
8104 int spares = 0;
8105
8106 if (mddev->ro) {
8107 /* On a read-only array we can:
8108 * - remove failed devices
8109 * - add already-in_sync devices if the array itself
8110 * is in-sync.
8111 * As we only add devices that are already in-sync,
8112 * we can activate the spares immediately.
8113 */
8114 remove_and_add_spares(mddev, NULL);
8115 /* There is no thread, but we need to call
8116 * ->spare_active and clear saved_raid_disk
8117 */
8118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8119 md_reap_sync_thread(mddev);
8120 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8121 goto unlock;
8122 }
8123
8124 if (!mddev->external) {
8125 int did_change = 0;
8126 spin_lock(&mddev->lock);
8127 if (mddev->safemode &&
8128 !atomic_read(&mddev->writes_pending) &&
8129 !mddev->in_sync &&
8130 mddev->recovery_cp == MaxSector) {
8131 mddev->in_sync = 1;
8132 did_change = 1;
8133 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8134 }
8135 if (mddev->safemode == 1)
8136 mddev->safemode = 0;
8137 spin_unlock(&mddev->lock);
8138 if (did_change)
8139 sysfs_notify_dirent_safe(mddev->sysfs_state);
8140 }
8141
8142 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8143 if (mddev_is_clustered(mddev))
8144 md_cluster_ops->metadata_update_start(mddev);
8145 md_update_sb(mddev, 0);
8146 if (mddev_is_clustered(mddev))
8147 md_cluster_ops->metadata_update_finish(mddev);
8148 }
8149
8150 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8151 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8152 /* resync/recovery still happening */
8153 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8154 goto unlock;
8155 }
8156 if (mddev->sync_thread) {
8157 md_reap_sync_thread(mddev);
8158 goto unlock;
8159 }
8160 /* Set RUNNING before clearing NEEDED to avoid
8161 * any transients in the value of "sync_action".
8162 */
8163 mddev->curr_resync_completed = 0;
8164 spin_lock(&mddev->lock);
8165 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8166 spin_unlock(&mddev->lock);
8167 /* Clear some bits that don't mean anything, but
8168 * might be left set
8169 */
8170 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8171 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8172
8173 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8174 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8175 goto not_running;
8176 /* no recovery is running.
8177 * remove any failed drives, then
8178 * add spares if possible.
8179 * Spares are also removed and re-added, to allow
8180 * the personality to fail the re-add.
8181 */
8182
8183 if (mddev->reshape_position != MaxSector) {
8184 if (mddev->pers->check_reshape == NULL ||
8185 mddev->pers->check_reshape(mddev) != 0)
8186 /* Cannot proceed */
8187 goto not_running;
8188 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8189 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8190 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8191 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8192 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8193 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8194 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8195 } else if (mddev->recovery_cp < MaxSector) {
8196 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8197 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8198 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8199 /* nothing to be done ... */
8200 goto not_running;
8201
8202 if (mddev->pers->sync_request) {
8203 if (spares) {
8204 /* We are adding a device or devices to an array
8205 * which has the bitmap stored on all devices.
8206 * So make sure all bitmap pages get written
8207 */
8208 bitmap_write_all(mddev->bitmap);
8209 }
8210 INIT_WORK(&mddev->del_work, md_start_sync);
8211 queue_work(md_misc_wq, &mddev->del_work);
8212 goto unlock;
8213 }
8214 not_running:
8215 if (!mddev->sync_thread) {
8216 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8217 wake_up(&resync_wait);
8218 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8219 &mddev->recovery))
8220 if (mddev->sysfs_action)
8221 sysfs_notify_dirent_safe(mddev->sysfs_action);
8222 }
8223 unlock:
8224 wake_up(&mddev->sb_wait);
8225 mddev_unlock(mddev);
8226 }
8227 }
8228 EXPORT_SYMBOL(md_check_recovery);
8229
8230 void md_reap_sync_thread(struct mddev *mddev)
8231 {
8232 struct md_rdev *rdev;
8233
8234 /* resync has finished, collect result */
8235 md_unregister_thread(&mddev->sync_thread);
8236 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8237 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8238 /* success...*/
8239 /* activate any spares */
8240 if (mddev->pers->spare_active(mddev)) {
8241 sysfs_notify(&mddev->kobj, NULL,
8242 "degraded");
8243 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8244 }
8245 }
8246 if (mddev_is_clustered(mddev))
8247 md_cluster_ops->metadata_update_start(mddev);
8248 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8249 mddev->pers->finish_reshape)
8250 mddev->pers->finish_reshape(mddev);
8251
8252 /* If array is no-longer degraded, then any saved_raid_disk
8253 * information must be scrapped.
8254 */
8255 if (!mddev->degraded)
8256 rdev_for_each(rdev, mddev)
8257 rdev->saved_raid_disk = -1;
8258
8259 md_update_sb(mddev, 1);
8260 if (mddev_is_clustered(mddev))
8261 md_cluster_ops->metadata_update_finish(mddev);
8262 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8263 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8264 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8265 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8266 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8267 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8268 wake_up(&resync_wait);
8269 /* flag recovery needed just to double check */
8270 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8271 sysfs_notify_dirent_safe(mddev->sysfs_action);
8272 md_new_event(mddev);
8273 if (mddev->event_work.func)
8274 queue_work(md_misc_wq, &mddev->event_work);
8275 }
8276 EXPORT_SYMBOL(md_reap_sync_thread);
8277
8278 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8279 {
8280 sysfs_notify_dirent_safe(rdev->sysfs_state);
8281 wait_event_timeout(rdev->blocked_wait,
8282 !test_bit(Blocked, &rdev->flags) &&
8283 !test_bit(BlockedBadBlocks, &rdev->flags),
8284 msecs_to_jiffies(5000));
8285 rdev_dec_pending(rdev, mddev);
8286 }
8287 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8288
8289 void md_finish_reshape(struct mddev *mddev)
8290 {
8291 /* called be personality module when reshape completes. */
8292 struct md_rdev *rdev;
8293
8294 rdev_for_each(rdev, mddev) {
8295 if (rdev->data_offset > rdev->new_data_offset)
8296 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8297 else
8298 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8299 rdev->data_offset = rdev->new_data_offset;
8300 }
8301 }
8302 EXPORT_SYMBOL(md_finish_reshape);
8303
8304 /* Bad block management.
8305 * We can record which blocks on each device are 'bad' and so just
8306 * fail those blocks, or that stripe, rather than the whole device.
8307 * Entries in the bad-block table are 64bits wide. This comprises:
8308 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8309 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8310 * A 'shift' can be set so that larger blocks are tracked and
8311 * consequently larger devices can be covered.
8312 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8313 *
8314 * Locking of the bad-block table uses a seqlock so md_is_badblock
8315 * might need to retry if it is very unlucky.
8316 * We will sometimes want to check for bad blocks in a bi_end_io function,
8317 * so we use the write_seqlock_irq variant.
8318 *
8319 * When looking for a bad block we specify a range and want to
8320 * know if any block in the range is bad. So we binary-search
8321 * to the last range that starts at-or-before the given endpoint,
8322 * (or "before the sector after the target range")
8323 * then see if it ends after the given start.
8324 * We return
8325 * 0 if there are no known bad blocks in the range
8326 * 1 if there are known bad block which are all acknowledged
8327 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8328 * plus the start/length of the first bad section we overlap.
8329 */
8330 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8331 sector_t *first_bad, int *bad_sectors)
8332 {
8333 int hi;
8334 int lo;
8335 u64 *p = bb->page;
8336 int rv;
8337 sector_t target = s + sectors;
8338 unsigned seq;
8339
8340 if (bb->shift > 0) {
8341 /* round the start down, and the end up */
8342 s >>= bb->shift;
8343 target += (1<<bb->shift) - 1;
8344 target >>= bb->shift;
8345 sectors = target - s;
8346 }
8347 /* 'target' is now the first block after the bad range */
8348
8349 retry:
8350 seq = read_seqbegin(&bb->lock);
8351 lo = 0;
8352 rv = 0;
8353 hi = bb->count;
8354
8355 /* Binary search between lo and hi for 'target'
8356 * i.e. for the last range that starts before 'target'
8357 */
8358 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8359 * are known not to be the last range before target.
8360 * VARIANT: hi-lo is the number of possible
8361 * ranges, and decreases until it reaches 1
8362 */
8363 while (hi - lo > 1) {
8364 int mid = (lo + hi) / 2;
8365 sector_t a = BB_OFFSET(p[mid]);
8366 if (a < target)
8367 /* This could still be the one, earlier ranges
8368 * could not. */
8369 lo = mid;
8370 else
8371 /* This and later ranges are definitely out. */
8372 hi = mid;
8373 }
8374 /* 'lo' might be the last that started before target, but 'hi' isn't */
8375 if (hi > lo) {
8376 /* need to check all range that end after 's' to see if
8377 * any are unacknowledged.
8378 */
8379 while (lo >= 0 &&
8380 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8381 if (BB_OFFSET(p[lo]) < target) {
8382 /* starts before the end, and finishes after
8383 * the start, so they must overlap
8384 */
8385 if (rv != -1 && BB_ACK(p[lo]))
8386 rv = 1;
8387 else
8388 rv = -1;
8389 *first_bad = BB_OFFSET(p[lo]);
8390 *bad_sectors = BB_LEN(p[lo]);
8391 }
8392 lo--;
8393 }
8394 }
8395
8396 if (read_seqretry(&bb->lock, seq))
8397 goto retry;
8398
8399 return rv;
8400 }
8401 EXPORT_SYMBOL_GPL(md_is_badblock);
8402
8403 /*
8404 * Add a range of bad blocks to the table.
8405 * This might extend the table, or might contract it
8406 * if two adjacent ranges can be merged.
8407 * We binary-search to find the 'insertion' point, then
8408 * decide how best to handle it.
8409 */
8410 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8411 int acknowledged)
8412 {
8413 u64 *p;
8414 int lo, hi;
8415 int rv = 1;
8416 unsigned long flags;
8417
8418 if (bb->shift < 0)
8419 /* badblocks are disabled */
8420 return 0;
8421
8422 if (bb->shift) {
8423 /* round the start down, and the end up */
8424 sector_t next = s + sectors;
8425 s >>= bb->shift;
8426 next += (1<<bb->shift) - 1;
8427 next >>= bb->shift;
8428 sectors = next - s;
8429 }
8430
8431 write_seqlock_irqsave(&bb->lock, flags);
8432
8433 p = bb->page;
8434 lo = 0;
8435 hi = bb->count;
8436 /* Find the last range that starts at-or-before 's' */
8437 while (hi - lo > 1) {
8438 int mid = (lo + hi) / 2;
8439 sector_t a = BB_OFFSET(p[mid]);
8440 if (a <= s)
8441 lo = mid;
8442 else
8443 hi = mid;
8444 }
8445 if (hi > lo && BB_OFFSET(p[lo]) > s)
8446 hi = lo;
8447
8448 if (hi > lo) {
8449 /* we found a range that might merge with the start
8450 * of our new range
8451 */
8452 sector_t a = BB_OFFSET(p[lo]);
8453 sector_t e = a + BB_LEN(p[lo]);
8454 int ack = BB_ACK(p[lo]);
8455 if (e >= s) {
8456 /* Yes, we can merge with a previous range */
8457 if (s == a && s + sectors >= e)
8458 /* new range covers old */
8459 ack = acknowledged;
8460 else
8461 ack = ack && acknowledged;
8462
8463 if (e < s + sectors)
8464 e = s + sectors;
8465 if (e - a <= BB_MAX_LEN) {
8466 p[lo] = BB_MAKE(a, e-a, ack);
8467 s = e;
8468 } else {
8469 /* does not all fit in one range,
8470 * make p[lo] maximal
8471 */
8472 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8473 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8474 s = a + BB_MAX_LEN;
8475 }
8476 sectors = e - s;
8477 }
8478 }
8479 if (sectors && hi < bb->count) {
8480 /* 'hi' points to the first range that starts after 's'.
8481 * Maybe we can merge with the start of that range */
8482 sector_t a = BB_OFFSET(p[hi]);
8483 sector_t e = a + BB_LEN(p[hi]);
8484 int ack = BB_ACK(p[hi]);
8485 if (a <= s + sectors) {
8486 /* merging is possible */
8487 if (e <= s + sectors) {
8488 /* full overlap */
8489 e = s + sectors;
8490 ack = acknowledged;
8491 } else
8492 ack = ack && acknowledged;
8493
8494 a = s;
8495 if (e - a <= BB_MAX_LEN) {
8496 p[hi] = BB_MAKE(a, e-a, ack);
8497 s = e;
8498 } else {
8499 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8500 s = a + BB_MAX_LEN;
8501 }
8502 sectors = e - s;
8503 lo = hi;
8504 hi++;
8505 }
8506 }
8507 if (sectors == 0 && hi < bb->count) {
8508 /* we might be able to combine lo and hi */
8509 /* Note: 's' is at the end of 'lo' */
8510 sector_t a = BB_OFFSET(p[hi]);
8511 int lolen = BB_LEN(p[lo]);
8512 int hilen = BB_LEN(p[hi]);
8513 int newlen = lolen + hilen - (s - a);
8514 if (s >= a && newlen < BB_MAX_LEN) {
8515 /* yes, we can combine them */
8516 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8517 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8518 memmove(p + hi, p + hi + 1,
8519 (bb->count - hi - 1) * 8);
8520 bb->count--;
8521 }
8522 }
8523 while (sectors) {
8524 /* didn't merge (it all).
8525 * Need to add a range just before 'hi' */
8526 if (bb->count >= MD_MAX_BADBLOCKS) {
8527 /* No room for more */
8528 rv = 0;
8529 break;
8530 } else {
8531 int this_sectors = sectors;
8532 memmove(p + hi + 1, p + hi,
8533 (bb->count - hi) * 8);
8534 bb->count++;
8535
8536 if (this_sectors > BB_MAX_LEN)
8537 this_sectors = BB_MAX_LEN;
8538 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8539 sectors -= this_sectors;
8540 s += this_sectors;
8541 }
8542 }
8543
8544 bb->changed = 1;
8545 if (!acknowledged)
8546 bb->unacked_exist = 1;
8547 write_sequnlock_irqrestore(&bb->lock, flags);
8548
8549 return rv;
8550 }
8551
8552 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8553 int is_new)
8554 {
8555 int rv;
8556 if (is_new)
8557 s += rdev->new_data_offset;
8558 else
8559 s += rdev->data_offset;
8560 rv = md_set_badblocks(&rdev->badblocks,
8561 s, sectors, 0);
8562 if (rv) {
8563 /* Make sure they get written out promptly */
8564 sysfs_notify_dirent_safe(rdev->sysfs_state);
8565 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8566 md_wakeup_thread(rdev->mddev->thread);
8567 }
8568 return rv;
8569 }
8570 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8571
8572 /*
8573 * Remove a range of bad blocks from the table.
8574 * This may involve extending the table if we spilt a region,
8575 * but it must not fail. So if the table becomes full, we just
8576 * drop the remove request.
8577 */
8578 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8579 {
8580 u64 *p;
8581 int lo, hi;
8582 sector_t target = s + sectors;
8583 int rv = 0;
8584
8585 if (bb->shift > 0) {
8586 /* When clearing we round the start up and the end down.
8587 * This should not matter as the shift should align with
8588 * the block size and no rounding should ever be needed.
8589 * However it is better the think a block is bad when it
8590 * isn't than to think a block is not bad when it is.
8591 */
8592 s += (1<<bb->shift) - 1;
8593 s >>= bb->shift;
8594 target >>= bb->shift;
8595 sectors = target - s;
8596 }
8597
8598 write_seqlock_irq(&bb->lock);
8599
8600 p = bb->page;
8601 lo = 0;
8602 hi = bb->count;
8603 /* Find the last range that starts before 'target' */
8604 while (hi - lo > 1) {
8605 int mid = (lo + hi) / 2;
8606 sector_t a = BB_OFFSET(p[mid]);
8607 if (a < target)
8608 lo = mid;
8609 else
8610 hi = mid;
8611 }
8612 if (hi > lo) {
8613 /* p[lo] is the last range that could overlap the
8614 * current range. Earlier ranges could also overlap,
8615 * but only this one can overlap the end of the range.
8616 */
8617 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8618 /* Partial overlap, leave the tail of this range */
8619 int ack = BB_ACK(p[lo]);
8620 sector_t a = BB_OFFSET(p[lo]);
8621 sector_t end = a + BB_LEN(p[lo]);
8622
8623 if (a < s) {
8624 /* we need to split this range */
8625 if (bb->count >= MD_MAX_BADBLOCKS) {
8626 rv = -ENOSPC;
8627 goto out;
8628 }
8629 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8630 bb->count++;
8631 p[lo] = BB_MAKE(a, s-a, ack);
8632 lo++;
8633 }
8634 p[lo] = BB_MAKE(target, end - target, ack);
8635 /* there is no longer an overlap */
8636 hi = lo;
8637 lo--;
8638 }
8639 while (lo >= 0 &&
8640 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8641 /* This range does overlap */
8642 if (BB_OFFSET(p[lo]) < s) {
8643 /* Keep the early parts of this range. */
8644 int ack = BB_ACK(p[lo]);
8645 sector_t start = BB_OFFSET(p[lo]);
8646 p[lo] = BB_MAKE(start, s - start, ack);
8647 /* now low doesn't overlap, so.. */
8648 break;
8649 }
8650 lo--;
8651 }
8652 /* 'lo' is strictly before, 'hi' is strictly after,
8653 * anything between needs to be discarded
8654 */
8655 if (hi - lo > 1) {
8656 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8657 bb->count -= (hi - lo - 1);
8658 }
8659 }
8660
8661 bb->changed = 1;
8662 out:
8663 write_sequnlock_irq(&bb->lock);
8664 return rv;
8665 }
8666
8667 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8668 int is_new)
8669 {
8670 if (is_new)
8671 s += rdev->new_data_offset;
8672 else
8673 s += rdev->data_offset;
8674 return md_clear_badblocks(&rdev->badblocks,
8675 s, sectors);
8676 }
8677 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8678
8679 /*
8680 * Acknowledge all bad blocks in a list.
8681 * This only succeeds if ->changed is clear. It is used by
8682 * in-kernel metadata updates
8683 */
8684 void md_ack_all_badblocks(struct badblocks *bb)
8685 {
8686 if (bb->page == NULL || bb->changed)
8687 /* no point even trying */
8688 return;
8689 write_seqlock_irq(&bb->lock);
8690
8691 if (bb->changed == 0 && bb->unacked_exist) {
8692 u64 *p = bb->page;
8693 int i;
8694 for (i = 0; i < bb->count ; i++) {
8695 if (!BB_ACK(p[i])) {
8696 sector_t start = BB_OFFSET(p[i]);
8697 int len = BB_LEN(p[i]);
8698 p[i] = BB_MAKE(start, len, 1);
8699 }
8700 }
8701 bb->unacked_exist = 0;
8702 }
8703 write_sequnlock_irq(&bb->lock);
8704 }
8705 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8706
8707 /* sysfs access to bad-blocks list.
8708 * We present two files.
8709 * 'bad-blocks' lists sector numbers and lengths of ranges that
8710 * are recorded as bad. The list is truncated to fit within
8711 * the one-page limit of sysfs.
8712 * Writing "sector length" to this file adds an acknowledged
8713 * bad block list.
8714 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8715 * been acknowledged. Writing to this file adds bad blocks
8716 * without acknowledging them. This is largely for testing.
8717 */
8718
8719 static ssize_t
8720 badblocks_show(struct badblocks *bb, char *page, int unack)
8721 {
8722 size_t len;
8723 int i;
8724 u64 *p = bb->page;
8725 unsigned seq;
8726
8727 if (bb->shift < 0)
8728 return 0;
8729
8730 retry:
8731 seq = read_seqbegin(&bb->lock);
8732
8733 len = 0;
8734 i = 0;
8735
8736 while (len < PAGE_SIZE && i < bb->count) {
8737 sector_t s = BB_OFFSET(p[i]);
8738 unsigned int length = BB_LEN(p[i]);
8739 int ack = BB_ACK(p[i]);
8740 i++;
8741
8742 if (unack && ack)
8743 continue;
8744
8745 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8746 (unsigned long long)s << bb->shift,
8747 length << bb->shift);
8748 }
8749 if (unack && len == 0)
8750 bb->unacked_exist = 0;
8751
8752 if (read_seqretry(&bb->lock, seq))
8753 goto retry;
8754
8755 return len;
8756 }
8757
8758 #define DO_DEBUG 1
8759
8760 static ssize_t
8761 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8762 {
8763 unsigned long long sector;
8764 int length;
8765 char newline;
8766 #ifdef DO_DEBUG
8767 /* Allow clearing via sysfs *only* for testing/debugging.
8768 * Normally only a successful write may clear a badblock
8769 */
8770 int clear = 0;
8771 if (page[0] == '-') {
8772 clear = 1;
8773 page++;
8774 }
8775 #endif /* DO_DEBUG */
8776
8777 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8778 case 3:
8779 if (newline != '\n')
8780 return -EINVAL;
8781 case 2:
8782 if (length <= 0)
8783 return -EINVAL;
8784 break;
8785 default:
8786 return -EINVAL;
8787 }
8788
8789 #ifdef DO_DEBUG
8790 if (clear) {
8791 md_clear_badblocks(bb, sector, length);
8792 return len;
8793 }
8794 #endif /* DO_DEBUG */
8795 if (md_set_badblocks(bb, sector, length, !unack))
8796 return len;
8797 else
8798 return -ENOSPC;
8799 }
8800
8801 static int md_notify_reboot(struct notifier_block *this,
8802 unsigned long code, void *x)
8803 {
8804 struct list_head *tmp;
8805 struct mddev *mddev;
8806 int need_delay = 0;
8807
8808 for_each_mddev(mddev, tmp) {
8809 if (mddev_trylock(mddev)) {
8810 if (mddev->pers)
8811 __md_stop_writes(mddev);
8812 if (mddev->persistent)
8813 mddev->safemode = 2;
8814 mddev_unlock(mddev);
8815 }
8816 need_delay = 1;
8817 }
8818 /*
8819 * certain more exotic SCSI devices are known to be
8820 * volatile wrt too early system reboots. While the
8821 * right place to handle this issue is the given
8822 * driver, we do want to have a safe RAID driver ...
8823 */
8824 if (need_delay)
8825 mdelay(1000*1);
8826
8827 return NOTIFY_DONE;
8828 }
8829
8830 static struct notifier_block md_notifier = {
8831 .notifier_call = md_notify_reboot,
8832 .next = NULL,
8833 .priority = INT_MAX, /* before any real devices */
8834 };
8835
8836 static void md_geninit(void)
8837 {
8838 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8839
8840 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8841 }
8842
8843 static int __init md_init(void)
8844 {
8845 int ret = -ENOMEM;
8846
8847 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8848 if (!md_wq)
8849 goto err_wq;
8850
8851 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8852 if (!md_misc_wq)
8853 goto err_misc_wq;
8854
8855 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8856 goto err_md;
8857
8858 if ((ret = register_blkdev(0, "mdp")) < 0)
8859 goto err_mdp;
8860 mdp_major = ret;
8861
8862 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8863 md_probe, NULL, NULL);
8864 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8865 md_probe, NULL, NULL);
8866
8867 register_reboot_notifier(&md_notifier);
8868 raid_table_header = register_sysctl_table(raid_root_table);
8869
8870 md_geninit();
8871 return 0;
8872
8873 err_mdp:
8874 unregister_blkdev(MD_MAJOR, "md");
8875 err_md:
8876 destroy_workqueue(md_misc_wq);
8877 err_misc_wq:
8878 destroy_workqueue(md_wq);
8879 err_wq:
8880 return ret;
8881 }
8882
8883 void md_reload_sb(struct mddev *mddev)
8884 {
8885 struct md_rdev *rdev, *tmp;
8886
8887 rdev_for_each_safe(rdev, tmp, mddev) {
8888 rdev->sb_loaded = 0;
8889 ClearPageUptodate(rdev->sb_page);
8890 }
8891 mddev->raid_disks = 0;
8892 analyze_sbs(mddev);
8893 rdev_for_each_safe(rdev, tmp, mddev) {
8894 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8895 /* since we don't write to faulty devices, we figure out if the
8896 * disk is faulty by comparing events
8897 */
8898 if (mddev->events > sb->events)
8899 set_bit(Faulty, &rdev->flags);
8900 }
8901
8902 }
8903 EXPORT_SYMBOL(md_reload_sb);
8904
8905 #ifndef MODULE
8906
8907 /*
8908 * Searches all registered partitions for autorun RAID arrays
8909 * at boot time.
8910 */
8911
8912 static LIST_HEAD(all_detected_devices);
8913 struct detected_devices_node {
8914 struct list_head list;
8915 dev_t dev;
8916 };
8917
8918 void md_autodetect_dev(dev_t dev)
8919 {
8920 struct detected_devices_node *node_detected_dev;
8921
8922 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8923 if (node_detected_dev) {
8924 node_detected_dev->dev = dev;
8925 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8926 } else {
8927 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8928 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8929 }
8930 }
8931
8932 static void autostart_arrays(int part)
8933 {
8934 struct md_rdev *rdev;
8935 struct detected_devices_node *node_detected_dev;
8936 dev_t dev;
8937 int i_scanned, i_passed;
8938
8939 i_scanned = 0;
8940 i_passed = 0;
8941
8942 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8943
8944 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8945 i_scanned++;
8946 node_detected_dev = list_entry(all_detected_devices.next,
8947 struct detected_devices_node, list);
8948 list_del(&node_detected_dev->list);
8949 dev = node_detected_dev->dev;
8950 kfree(node_detected_dev);
8951 rdev = md_import_device(dev,0, 90);
8952 if (IS_ERR(rdev))
8953 continue;
8954
8955 if (test_bit(Faulty, &rdev->flags))
8956 continue;
8957
8958 set_bit(AutoDetected, &rdev->flags);
8959 list_add(&rdev->same_set, &pending_raid_disks);
8960 i_passed++;
8961 }
8962
8963 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8964 i_scanned, i_passed);
8965
8966 autorun_devices(part);
8967 }
8968
8969 #endif /* !MODULE */
8970
8971 static __exit void md_exit(void)
8972 {
8973 struct mddev *mddev;
8974 struct list_head *tmp;
8975 int delay = 1;
8976
8977 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8978 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8979
8980 unregister_blkdev(MD_MAJOR,"md");
8981 unregister_blkdev(mdp_major, "mdp");
8982 unregister_reboot_notifier(&md_notifier);
8983 unregister_sysctl_table(raid_table_header);
8984
8985 /* We cannot unload the modules while some process is
8986 * waiting for us in select() or poll() - wake them up
8987 */
8988 md_unloading = 1;
8989 while (waitqueue_active(&md_event_waiters)) {
8990 /* not safe to leave yet */
8991 wake_up(&md_event_waiters);
8992 msleep(delay);
8993 delay += delay;
8994 }
8995 remove_proc_entry("mdstat", NULL);
8996
8997 for_each_mddev(mddev, tmp) {
8998 export_array(mddev);
8999 mddev->hold_active = 0;
9000 }
9001 destroy_workqueue(md_misc_wq);
9002 destroy_workqueue(md_wq);
9003 }
9004
9005 subsys_initcall(md_init);
9006 module_exit(md_exit)
9007
9008 static int get_ro(char *buffer, struct kernel_param *kp)
9009 {
9010 return sprintf(buffer, "%d", start_readonly);
9011 }
9012 static int set_ro(const char *val, struct kernel_param *kp)
9013 {
9014 char *e;
9015 int num = simple_strtoul(val, &e, 10);
9016 if (*val && (*e == '\0' || *e == '\n')) {
9017 start_readonly = num;
9018 return 0;
9019 }
9020 return -EINVAL;
9021 }
9022
9023 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9024 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9025 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9026
9027 MODULE_LICENSE("GPL");
9028 MODULE_DESCRIPTION("MD RAID framework");
9029 MODULE_ALIAS("md");
9030 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.35986 seconds and 6 git commands to generate.