md: beginnings of bad block management.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 #ifndef MODULE
61 static void autostart_arrays(int part);
62 #endif
63
64 static LIST_HEAD(pers_list);
65 static DEFINE_SPINLOCK(pers_lock);
66
67 static void md_print_devices(void);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /* bio_clone_mddev
153 * like bio_clone, but with a local bio set
154 */
155
156 static void mddev_bio_destructor(struct bio *bio)
157 {
158 mddev_t *mddev, **mddevp;
159
160 mddevp = (void*)bio;
161 mddev = mddevp[-1];
162
163 bio_free(bio, mddev->bio_set);
164 }
165
166 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
167 mddev_t *mddev)
168 {
169 struct bio *b;
170 mddev_t **mddevp;
171
172 if (!mddev || !mddev->bio_set)
173 return bio_alloc(gfp_mask, nr_iovecs);
174
175 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
176 mddev->bio_set);
177 if (!b)
178 return NULL;
179 mddevp = (void*)b;
180 mddevp[-1] = mddev;
181 b->bi_destructor = mddev_bio_destructor;
182 return b;
183 }
184 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
185
186 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
187 mddev_t *mddev)
188 {
189 struct bio *b;
190 mddev_t **mddevp;
191
192 if (!mddev || !mddev->bio_set)
193 return bio_clone(bio, gfp_mask);
194
195 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
196 mddev->bio_set);
197 if (!b)
198 return NULL;
199 mddevp = (void*)b;
200 mddevp[-1] = mddev;
201 b->bi_destructor = mddev_bio_destructor;
202 __bio_clone(b, bio);
203 if (bio_integrity(bio)) {
204 int ret;
205
206 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
207
208 if (ret < 0) {
209 bio_put(b);
210 return NULL;
211 }
212 }
213
214 return b;
215 }
216 EXPORT_SYMBOL_GPL(bio_clone_mddev);
217
218 /*
219 * We have a system wide 'event count' that is incremented
220 * on any 'interesting' event, and readers of /proc/mdstat
221 * can use 'poll' or 'select' to find out when the event
222 * count increases.
223 *
224 * Events are:
225 * start array, stop array, error, add device, remove device,
226 * start build, activate spare
227 */
228 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
229 static atomic_t md_event_count;
230 void md_new_event(mddev_t *mddev)
231 {
232 atomic_inc(&md_event_count);
233 wake_up(&md_event_waiters);
234 }
235 EXPORT_SYMBOL_GPL(md_new_event);
236
237 /* Alternate version that can be called from interrupts
238 * when calling sysfs_notify isn't needed.
239 */
240 static void md_new_event_inintr(mddev_t *mddev)
241 {
242 atomic_inc(&md_event_count);
243 wake_up(&md_event_waiters);
244 }
245
246 /*
247 * Enables to iterate over all existing md arrays
248 * all_mddevs_lock protects this list.
249 */
250 static LIST_HEAD(all_mddevs);
251 static DEFINE_SPINLOCK(all_mddevs_lock);
252
253
254 /*
255 * iterates through all used mddevs in the system.
256 * We take care to grab the all_mddevs_lock whenever navigating
257 * the list, and to always hold a refcount when unlocked.
258 * Any code which breaks out of this loop while own
259 * a reference to the current mddev and must mddev_put it.
260 */
261 #define for_each_mddev(mddev,tmp) \
262 \
263 for (({ spin_lock(&all_mddevs_lock); \
264 tmp = all_mddevs.next; \
265 mddev = NULL;}); \
266 ({ if (tmp != &all_mddevs) \
267 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
268 spin_unlock(&all_mddevs_lock); \
269 if (mddev) mddev_put(mddev); \
270 mddev = list_entry(tmp, mddev_t, all_mddevs); \
271 tmp != &all_mddevs;}); \
272 ({ spin_lock(&all_mddevs_lock); \
273 tmp = tmp->next;}) \
274 )
275
276
277 /* Rather than calling directly into the personality make_request function,
278 * IO requests come here first so that we can check if the device is
279 * being suspended pending a reconfiguration.
280 * We hold a refcount over the call to ->make_request. By the time that
281 * call has finished, the bio has been linked into some internal structure
282 * and so is visible to ->quiesce(), so we don't need the refcount any more.
283 */
284 static int md_make_request(struct request_queue *q, struct bio *bio)
285 {
286 const int rw = bio_data_dir(bio);
287 mddev_t *mddev = q->queuedata;
288 int rv;
289 int cpu;
290 unsigned int sectors;
291
292 if (mddev == NULL || mddev->pers == NULL
293 || !mddev->ready) {
294 bio_io_error(bio);
295 return 0;
296 }
297 smp_rmb(); /* Ensure implications of 'active' are visible */
298 rcu_read_lock();
299 if (mddev->suspended) {
300 DEFINE_WAIT(__wait);
301 for (;;) {
302 prepare_to_wait(&mddev->sb_wait, &__wait,
303 TASK_UNINTERRUPTIBLE);
304 if (!mddev->suspended)
305 break;
306 rcu_read_unlock();
307 schedule();
308 rcu_read_lock();
309 }
310 finish_wait(&mddev->sb_wait, &__wait);
311 }
312 atomic_inc(&mddev->active_io);
313 rcu_read_unlock();
314
315 /*
316 * save the sectors now since our bio can
317 * go away inside make_request
318 */
319 sectors = bio_sectors(bio);
320 rv = mddev->pers->make_request(mddev, bio);
321
322 cpu = part_stat_lock();
323 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
324 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
325 part_stat_unlock();
326
327 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
328 wake_up(&mddev->sb_wait);
329
330 return rv;
331 }
332
333 /* mddev_suspend makes sure no new requests are submitted
334 * to the device, and that any requests that have been submitted
335 * are completely handled.
336 * Once ->stop is called and completes, the module will be completely
337 * unused.
338 */
339 void mddev_suspend(mddev_t *mddev)
340 {
341 BUG_ON(mddev->suspended);
342 mddev->suspended = 1;
343 synchronize_rcu();
344 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
345 mddev->pers->quiesce(mddev, 1);
346 }
347 EXPORT_SYMBOL_GPL(mddev_suspend);
348
349 void mddev_resume(mddev_t *mddev)
350 {
351 mddev->suspended = 0;
352 wake_up(&mddev->sb_wait);
353 mddev->pers->quiesce(mddev, 0);
354
355 md_wakeup_thread(mddev->thread);
356 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
357 }
358 EXPORT_SYMBOL_GPL(mddev_resume);
359
360 int mddev_congested(mddev_t *mddev, int bits)
361 {
362 return mddev->suspended;
363 }
364 EXPORT_SYMBOL(mddev_congested);
365
366 /*
367 * Generic flush handling for md
368 */
369
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 mdk_rdev_t *rdev = bio->bi_private;
373 mddev_t *mddev = rdev->mddev;
374
375 rdev_dec_pending(rdev, mddev);
376
377 if (atomic_dec_and_test(&mddev->flush_pending)) {
378 /* The pre-request flush has finished */
379 queue_work(md_wq, &mddev->flush_work);
380 }
381 bio_put(bio);
382 }
383
384 static void md_submit_flush_data(struct work_struct *ws);
385
386 static void submit_flushes(struct work_struct *ws)
387 {
388 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
389 mdk_rdev_t *rdev;
390
391 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 atomic_set(&mddev->flush_pending, 1);
393 rcu_read_lock();
394 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
395 if (rdev->raid_disk >= 0 &&
396 !test_bit(Faulty, &rdev->flags)) {
397 /* Take two references, one is dropped
398 * when request finishes, one after
399 * we reclaim rcu_read_lock
400 */
401 struct bio *bi;
402 atomic_inc(&rdev->nr_pending);
403 atomic_inc(&rdev->nr_pending);
404 rcu_read_unlock();
405 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
406 bi->bi_end_io = md_end_flush;
407 bi->bi_private = rdev;
408 bi->bi_bdev = rdev->bdev;
409 atomic_inc(&mddev->flush_pending);
410 submit_bio(WRITE_FLUSH, bi);
411 rcu_read_lock();
412 rdev_dec_pending(rdev, mddev);
413 }
414 rcu_read_unlock();
415 if (atomic_dec_and_test(&mddev->flush_pending))
416 queue_work(md_wq, &mddev->flush_work);
417 }
418
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 mddev_t *mddev = container_of(ws, mddev_t, flush_work);
422 struct bio *bio = mddev->flush_bio;
423
424 if (bio->bi_size == 0)
425 /* an empty barrier - all done */
426 bio_endio(bio, 0);
427 else {
428 bio->bi_rw &= ~REQ_FLUSH;
429 if (mddev->pers->make_request(mddev, bio))
430 generic_make_request(bio);
431 }
432
433 mddev->flush_bio = NULL;
434 wake_up(&mddev->sb_wait);
435 }
436
437 void md_flush_request(mddev_t *mddev, struct bio *bio)
438 {
439 spin_lock_irq(&mddev->write_lock);
440 wait_event_lock_irq(mddev->sb_wait,
441 !mddev->flush_bio,
442 mddev->write_lock, /*nothing*/);
443 mddev->flush_bio = bio;
444 spin_unlock_irq(&mddev->write_lock);
445
446 INIT_WORK(&mddev->flush_work, submit_flushes);
447 queue_work(md_wq, &mddev->flush_work);
448 }
449 EXPORT_SYMBOL(md_flush_request);
450
451 /* Support for plugging.
452 * This mirrors the plugging support in request_queue, but does not
453 * require having a whole queue or request structures.
454 * We allocate an md_plug_cb for each md device and each thread it gets
455 * plugged on. This links tot the private plug_handle structure in the
456 * personality data where we keep a count of the number of outstanding
457 * plugs so other code can see if a plug is active.
458 */
459 struct md_plug_cb {
460 struct blk_plug_cb cb;
461 mddev_t *mddev;
462 };
463
464 static void plugger_unplug(struct blk_plug_cb *cb)
465 {
466 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
467 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
468 md_wakeup_thread(mdcb->mddev->thread);
469 kfree(mdcb);
470 }
471
472 /* Check that an unplug wakeup will come shortly.
473 * If not, wakeup the md thread immediately
474 */
475 int mddev_check_plugged(mddev_t *mddev)
476 {
477 struct blk_plug *plug = current->plug;
478 struct md_plug_cb *mdcb;
479
480 if (!plug)
481 return 0;
482
483 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
484 if (mdcb->cb.callback == plugger_unplug &&
485 mdcb->mddev == mddev) {
486 /* Already on the list, move to top */
487 if (mdcb != list_first_entry(&plug->cb_list,
488 struct md_plug_cb,
489 cb.list))
490 list_move(&mdcb->cb.list, &plug->cb_list);
491 return 1;
492 }
493 }
494 /* Not currently on the callback list */
495 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
496 if (!mdcb)
497 return 0;
498
499 mdcb->mddev = mddev;
500 mdcb->cb.callback = plugger_unplug;
501 atomic_inc(&mddev->plug_cnt);
502 list_add(&mdcb->cb.list, &plug->cb_list);
503 return 1;
504 }
505 EXPORT_SYMBOL_GPL(mddev_check_plugged);
506
507 static inline mddev_t *mddev_get(mddev_t *mddev)
508 {
509 atomic_inc(&mddev->active);
510 return mddev;
511 }
512
513 static void mddev_delayed_delete(struct work_struct *ws);
514
515 static void mddev_put(mddev_t *mddev)
516 {
517 struct bio_set *bs = NULL;
518
519 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
520 return;
521 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
522 mddev->ctime == 0 && !mddev->hold_active) {
523 /* Array is not configured at all, and not held active,
524 * so destroy it */
525 list_del(&mddev->all_mddevs);
526 bs = mddev->bio_set;
527 mddev->bio_set = NULL;
528 if (mddev->gendisk) {
529 /* We did a probe so need to clean up. Call
530 * queue_work inside the spinlock so that
531 * flush_workqueue() after mddev_find will
532 * succeed in waiting for the work to be done.
533 */
534 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
535 queue_work(md_misc_wq, &mddev->del_work);
536 } else
537 kfree(mddev);
538 }
539 spin_unlock(&all_mddevs_lock);
540 if (bs)
541 bioset_free(bs);
542 }
543
544 void mddev_init(mddev_t *mddev)
545 {
546 mutex_init(&mddev->open_mutex);
547 mutex_init(&mddev->reconfig_mutex);
548 mutex_init(&mddev->bitmap_info.mutex);
549 INIT_LIST_HEAD(&mddev->disks);
550 INIT_LIST_HEAD(&mddev->all_mddevs);
551 init_timer(&mddev->safemode_timer);
552 atomic_set(&mddev->active, 1);
553 atomic_set(&mddev->openers, 0);
554 atomic_set(&mddev->active_io, 0);
555 atomic_set(&mddev->plug_cnt, 0);
556 spin_lock_init(&mddev->write_lock);
557 atomic_set(&mddev->flush_pending, 0);
558 init_waitqueue_head(&mddev->sb_wait);
559 init_waitqueue_head(&mddev->recovery_wait);
560 mddev->reshape_position = MaxSector;
561 mddev->resync_min = 0;
562 mddev->resync_max = MaxSector;
563 mddev->level = LEVEL_NONE;
564 }
565 EXPORT_SYMBOL_GPL(mddev_init);
566
567 static mddev_t * mddev_find(dev_t unit)
568 {
569 mddev_t *mddev, *new = NULL;
570
571 if (unit && MAJOR(unit) != MD_MAJOR)
572 unit &= ~((1<<MdpMinorShift)-1);
573
574 retry:
575 spin_lock(&all_mddevs_lock);
576
577 if (unit) {
578 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
579 if (mddev->unit == unit) {
580 mddev_get(mddev);
581 spin_unlock(&all_mddevs_lock);
582 kfree(new);
583 return mddev;
584 }
585
586 if (new) {
587 list_add(&new->all_mddevs, &all_mddevs);
588 spin_unlock(&all_mddevs_lock);
589 new->hold_active = UNTIL_IOCTL;
590 return new;
591 }
592 } else if (new) {
593 /* find an unused unit number */
594 static int next_minor = 512;
595 int start = next_minor;
596 int is_free = 0;
597 int dev = 0;
598 while (!is_free) {
599 dev = MKDEV(MD_MAJOR, next_minor);
600 next_minor++;
601 if (next_minor > MINORMASK)
602 next_minor = 0;
603 if (next_minor == start) {
604 /* Oh dear, all in use. */
605 spin_unlock(&all_mddevs_lock);
606 kfree(new);
607 return NULL;
608 }
609
610 is_free = 1;
611 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
612 if (mddev->unit == dev) {
613 is_free = 0;
614 break;
615 }
616 }
617 new->unit = dev;
618 new->md_minor = MINOR(dev);
619 new->hold_active = UNTIL_STOP;
620 list_add(&new->all_mddevs, &all_mddevs);
621 spin_unlock(&all_mddevs_lock);
622 return new;
623 }
624 spin_unlock(&all_mddevs_lock);
625
626 new = kzalloc(sizeof(*new), GFP_KERNEL);
627 if (!new)
628 return NULL;
629
630 new->unit = unit;
631 if (MAJOR(unit) == MD_MAJOR)
632 new->md_minor = MINOR(unit);
633 else
634 new->md_minor = MINOR(unit) >> MdpMinorShift;
635
636 mddev_init(new);
637
638 goto retry;
639 }
640
641 static inline int mddev_lock(mddev_t * mddev)
642 {
643 return mutex_lock_interruptible(&mddev->reconfig_mutex);
644 }
645
646 static inline int mddev_is_locked(mddev_t *mddev)
647 {
648 return mutex_is_locked(&mddev->reconfig_mutex);
649 }
650
651 static inline int mddev_trylock(mddev_t * mddev)
652 {
653 return mutex_trylock(&mddev->reconfig_mutex);
654 }
655
656 static struct attribute_group md_redundancy_group;
657
658 static void mddev_unlock(mddev_t * mddev)
659 {
660 if (mddev->to_remove) {
661 /* These cannot be removed under reconfig_mutex as
662 * an access to the files will try to take reconfig_mutex
663 * while holding the file unremovable, which leads to
664 * a deadlock.
665 * So hold set sysfs_active while the remove in happeing,
666 * and anything else which might set ->to_remove or my
667 * otherwise change the sysfs namespace will fail with
668 * -EBUSY if sysfs_active is still set.
669 * We set sysfs_active under reconfig_mutex and elsewhere
670 * test it under the same mutex to ensure its correct value
671 * is seen.
672 */
673 struct attribute_group *to_remove = mddev->to_remove;
674 mddev->to_remove = NULL;
675 mddev->sysfs_active = 1;
676 mutex_unlock(&mddev->reconfig_mutex);
677
678 if (mddev->kobj.sd) {
679 if (to_remove != &md_redundancy_group)
680 sysfs_remove_group(&mddev->kobj, to_remove);
681 if (mddev->pers == NULL ||
682 mddev->pers->sync_request == NULL) {
683 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
684 if (mddev->sysfs_action)
685 sysfs_put(mddev->sysfs_action);
686 mddev->sysfs_action = NULL;
687 }
688 }
689 mddev->sysfs_active = 0;
690 } else
691 mutex_unlock(&mddev->reconfig_mutex);
692
693 md_wakeup_thread(mddev->thread);
694 }
695
696 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
697 {
698 mdk_rdev_t *rdev;
699
700 list_for_each_entry(rdev, &mddev->disks, same_set)
701 if (rdev->desc_nr == nr)
702 return rdev;
703
704 return NULL;
705 }
706
707 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
708 {
709 mdk_rdev_t *rdev;
710
711 list_for_each_entry(rdev, &mddev->disks, same_set)
712 if (rdev->bdev->bd_dev == dev)
713 return rdev;
714
715 return NULL;
716 }
717
718 static struct mdk_personality *find_pers(int level, char *clevel)
719 {
720 struct mdk_personality *pers;
721 list_for_each_entry(pers, &pers_list, list) {
722 if (level != LEVEL_NONE && pers->level == level)
723 return pers;
724 if (strcmp(pers->name, clevel)==0)
725 return pers;
726 }
727 return NULL;
728 }
729
730 /* return the offset of the super block in 512byte sectors */
731 static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
732 {
733 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
734 return MD_NEW_SIZE_SECTORS(num_sectors);
735 }
736
737 static int alloc_disk_sb(mdk_rdev_t * rdev)
738 {
739 if (rdev->sb_page)
740 MD_BUG();
741
742 rdev->sb_page = alloc_page(GFP_KERNEL);
743 if (!rdev->sb_page) {
744 printk(KERN_ALERT "md: out of memory.\n");
745 return -ENOMEM;
746 }
747
748 return 0;
749 }
750
751 static void free_disk_sb(mdk_rdev_t * rdev)
752 {
753 if (rdev->sb_page) {
754 put_page(rdev->sb_page);
755 rdev->sb_loaded = 0;
756 rdev->sb_page = NULL;
757 rdev->sb_start = 0;
758 rdev->sectors = 0;
759 }
760 }
761
762
763 static void super_written(struct bio *bio, int error)
764 {
765 mdk_rdev_t *rdev = bio->bi_private;
766 mddev_t *mddev = rdev->mddev;
767
768 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
769 printk("md: super_written gets error=%d, uptodate=%d\n",
770 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
771 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
772 md_error(mddev, rdev);
773 }
774
775 if (atomic_dec_and_test(&mddev->pending_writes))
776 wake_up(&mddev->sb_wait);
777 bio_put(bio);
778 }
779
780 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
781 sector_t sector, int size, struct page *page)
782 {
783 /* write first size bytes of page to sector of rdev
784 * Increment mddev->pending_writes before returning
785 * and decrement it on completion, waking up sb_wait
786 * if zero is reached.
787 * If an error occurred, call md_error
788 */
789 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
790
791 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
792 bio->bi_sector = sector;
793 bio_add_page(bio, page, size, 0);
794 bio->bi_private = rdev;
795 bio->bi_end_io = super_written;
796
797 atomic_inc(&mddev->pending_writes);
798 submit_bio(REQ_WRITE | REQ_SYNC | REQ_FLUSH | REQ_FUA, bio);
799 }
800
801 void md_super_wait(mddev_t *mddev)
802 {
803 /* wait for all superblock writes that were scheduled to complete */
804 DEFINE_WAIT(wq);
805 for(;;) {
806 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
807 if (atomic_read(&mddev->pending_writes)==0)
808 break;
809 schedule();
810 }
811 finish_wait(&mddev->sb_wait, &wq);
812 }
813
814 static void bi_complete(struct bio *bio, int error)
815 {
816 complete((struct completion*)bio->bi_private);
817 }
818
819 int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
820 struct page *page, int rw, bool metadata_op)
821 {
822 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
823 struct completion event;
824 int ret;
825
826 rw |= REQ_SYNC;
827
828 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
829 rdev->meta_bdev : rdev->bdev;
830 if (metadata_op)
831 bio->bi_sector = sector + rdev->sb_start;
832 else
833 bio->bi_sector = sector + rdev->data_offset;
834 bio_add_page(bio, page, size, 0);
835 init_completion(&event);
836 bio->bi_private = &event;
837 bio->bi_end_io = bi_complete;
838 submit_bio(rw, bio);
839 wait_for_completion(&event);
840
841 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
842 bio_put(bio);
843 return ret;
844 }
845 EXPORT_SYMBOL_GPL(sync_page_io);
846
847 static int read_disk_sb(mdk_rdev_t * rdev, int size)
848 {
849 char b[BDEVNAME_SIZE];
850 if (!rdev->sb_page) {
851 MD_BUG();
852 return -EINVAL;
853 }
854 if (rdev->sb_loaded)
855 return 0;
856
857
858 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
859 goto fail;
860 rdev->sb_loaded = 1;
861 return 0;
862
863 fail:
864 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
865 bdevname(rdev->bdev,b));
866 return -EINVAL;
867 }
868
869 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
870 {
871 return sb1->set_uuid0 == sb2->set_uuid0 &&
872 sb1->set_uuid1 == sb2->set_uuid1 &&
873 sb1->set_uuid2 == sb2->set_uuid2 &&
874 sb1->set_uuid3 == sb2->set_uuid3;
875 }
876
877 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
878 {
879 int ret;
880 mdp_super_t *tmp1, *tmp2;
881
882 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
883 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
884
885 if (!tmp1 || !tmp2) {
886 ret = 0;
887 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
888 goto abort;
889 }
890
891 *tmp1 = *sb1;
892 *tmp2 = *sb2;
893
894 /*
895 * nr_disks is not constant
896 */
897 tmp1->nr_disks = 0;
898 tmp2->nr_disks = 0;
899
900 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
901 abort:
902 kfree(tmp1);
903 kfree(tmp2);
904 return ret;
905 }
906
907
908 static u32 md_csum_fold(u32 csum)
909 {
910 csum = (csum & 0xffff) + (csum >> 16);
911 return (csum & 0xffff) + (csum >> 16);
912 }
913
914 static unsigned int calc_sb_csum(mdp_super_t * sb)
915 {
916 u64 newcsum = 0;
917 u32 *sb32 = (u32*)sb;
918 int i;
919 unsigned int disk_csum, csum;
920
921 disk_csum = sb->sb_csum;
922 sb->sb_csum = 0;
923
924 for (i = 0; i < MD_SB_BYTES/4 ; i++)
925 newcsum += sb32[i];
926 csum = (newcsum & 0xffffffff) + (newcsum>>32);
927
928
929 #ifdef CONFIG_ALPHA
930 /* This used to use csum_partial, which was wrong for several
931 * reasons including that different results are returned on
932 * different architectures. It isn't critical that we get exactly
933 * the same return value as before (we always csum_fold before
934 * testing, and that removes any differences). However as we
935 * know that csum_partial always returned a 16bit value on
936 * alphas, do a fold to maximise conformity to previous behaviour.
937 */
938 sb->sb_csum = md_csum_fold(disk_csum);
939 #else
940 sb->sb_csum = disk_csum;
941 #endif
942 return csum;
943 }
944
945
946 /*
947 * Handle superblock details.
948 * We want to be able to handle multiple superblock formats
949 * so we have a common interface to them all, and an array of
950 * different handlers.
951 * We rely on user-space to write the initial superblock, and support
952 * reading and updating of superblocks.
953 * Interface methods are:
954 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
955 * loads and validates a superblock on dev.
956 * if refdev != NULL, compare superblocks on both devices
957 * Return:
958 * 0 - dev has a superblock that is compatible with refdev
959 * 1 - dev has a superblock that is compatible and newer than refdev
960 * so dev should be used as the refdev in future
961 * -EINVAL superblock incompatible or invalid
962 * -othererror e.g. -EIO
963 *
964 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
965 * Verify that dev is acceptable into mddev.
966 * The first time, mddev->raid_disks will be 0, and data from
967 * dev should be merged in. Subsequent calls check that dev
968 * is new enough. Return 0 or -EINVAL
969 *
970 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
971 * Update the superblock for rdev with data in mddev
972 * This does not write to disc.
973 *
974 */
975
976 struct super_type {
977 char *name;
978 struct module *owner;
979 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
980 int minor_version);
981 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
982 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
983 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
984 sector_t num_sectors);
985 };
986
987 /*
988 * Check that the given mddev has no bitmap.
989 *
990 * This function is called from the run method of all personalities that do not
991 * support bitmaps. It prints an error message and returns non-zero if mddev
992 * has a bitmap. Otherwise, it returns 0.
993 *
994 */
995 int md_check_no_bitmap(mddev_t *mddev)
996 {
997 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
998 return 0;
999 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1000 mdname(mddev), mddev->pers->name);
1001 return 1;
1002 }
1003 EXPORT_SYMBOL(md_check_no_bitmap);
1004
1005 /*
1006 * load_super for 0.90.0
1007 */
1008 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1009 {
1010 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1011 mdp_super_t *sb;
1012 int ret;
1013
1014 /*
1015 * Calculate the position of the superblock (512byte sectors),
1016 * it's at the end of the disk.
1017 *
1018 * It also happens to be a multiple of 4Kb.
1019 */
1020 rdev->sb_start = calc_dev_sboffset(rdev);
1021
1022 ret = read_disk_sb(rdev, MD_SB_BYTES);
1023 if (ret) return ret;
1024
1025 ret = -EINVAL;
1026
1027 bdevname(rdev->bdev, b);
1028 sb = page_address(rdev->sb_page);
1029
1030 if (sb->md_magic != MD_SB_MAGIC) {
1031 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1032 b);
1033 goto abort;
1034 }
1035
1036 if (sb->major_version != 0 ||
1037 sb->minor_version < 90 ||
1038 sb->minor_version > 91) {
1039 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1040 sb->major_version, sb->minor_version,
1041 b);
1042 goto abort;
1043 }
1044
1045 if (sb->raid_disks <= 0)
1046 goto abort;
1047
1048 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1049 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1050 b);
1051 goto abort;
1052 }
1053
1054 rdev->preferred_minor = sb->md_minor;
1055 rdev->data_offset = 0;
1056 rdev->sb_size = MD_SB_BYTES;
1057
1058 if (sb->level == LEVEL_MULTIPATH)
1059 rdev->desc_nr = -1;
1060 else
1061 rdev->desc_nr = sb->this_disk.number;
1062
1063 if (!refdev) {
1064 ret = 1;
1065 } else {
1066 __u64 ev1, ev2;
1067 mdp_super_t *refsb = page_address(refdev->sb_page);
1068 if (!uuid_equal(refsb, sb)) {
1069 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1070 b, bdevname(refdev->bdev,b2));
1071 goto abort;
1072 }
1073 if (!sb_equal(refsb, sb)) {
1074 printk(KERN_WARNING "md: %s has same UUID"
1075 " but different superblock to %s\n",
1076 b, bdevname(refdev->bdev, b2));
1077 goto abort;
1078 }
1079 ev1 = md_event(sb);
1080 ev2 = md_event(refsb);
1081 if (ev1 > ev2)
1082 ret = 1;
1083 else
1084 ret = 0;
1085 }
1086 rdev->sectors = rdev->sb_start;
1087
1088 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1089 /* "this cannot possibly happen" ... */
1090 ret = -EINVAL;
1091
1092 abort:
1093 return ret;
1094 }
1095
1096 /*
1097 * validate_super for 0.90.0
1098 */
1099 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1100 {
1101 mdp_disk_t *desc;
1102 mdp_super_t *sb = page_address(rdev->sb_page);
1103 __u64 ev1 = md_event(sb);
1104
1105 rdev->raid_disk = -1;
1106 clear_bit(Faulty, &rdev->flags);
1107 clear_bit(In_sync, &rdev->flags);
1108 clear_bit(WriteMostly, &rdev->flags);
1109
1110 if (mddev->raid_disks == 0) {
1111 mddev->major_version = 0;
1112 mddev->minor_version = sb->minor_version;
1113 mddev->patch_version = sb->patch_version;
1114 mddev->external = 0;
1115 mddev->chunk_sectors = sb->chunk_size >> 9;
1116 mddev->ctime = sb->ctime;
1117 mddev->utime = sb->utime;
1118 mddev->level = sb->level;
1119 mddev->clevel[0] = 0;
1120 mddev->layout = sb->layout;
1121 mddev->raid_disks = sb->raid_disks;
1122 mddev->dev_sectors = sb->size * 2;
1123 mddev->events = ev1;
1124 mddev->bitmap_info.offset = 0;
1125 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1126
1127 if (mddev->minor_version >= 91) {
1128 mddev->reshape_position = sb->reshape_position;
1129 mddev->delta_disks = sb->delta_disks;
1130 mddev->new_level = sb->new_level;
1131 mddev->new_layout = sb->new_layout;
1132 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1133 } else {
1134 mddev->reshape_position = MaxSector;
1135 mddev->delta_disks = 0;
1136 mddev->new_level = mddev->level;
1137 mddev->new_layout = mddev->layout;
1138 mddev->new_chunk_sectors = mddev->chunk_sectors;
1139 }
1140
1141 if (sb->state & (1<<MD_SB_CLEAN))
1142 mddev->recovery_cp = MaxSector;
1143 else {
1144 if (sb->events_hi == sb->cp_events_hi &&
1145 sb->events_lo == sb->cp_events_lo) {
1146 mddev->recovery_cp = sb->recovery_cp;
1147 } else
1148 mddev->recovery_cp = 0;
1149 }
1150
1151 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1152 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1153 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1154 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1155
1156 mddev->max_disks = MD_SB_DISKS;
1157
1158 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1159 mddev->bitmap_info.file == NULL)
1160 mddev->bitmap_info.offset =
1161 mddev->bitmap_info.default_offset;
1162
1163 } else if (mddev->pers == NULL) {
1164 /* Insist on good event counter while assembling, except
1165 * for spares (which don't need an event count) */
1166 ++ev1;
1167 if (sb->disks[rdev->desc_nr].state & (
1168 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1169 if (ev1 < mddev->events)
1170 return -EINVAL;
1171 } else if (mddev->bitmap) {
1172 /* if adding to array with a bitmap, then we can accept an
1173 * older device ... but not too old.
1174 */
1175 if (ev1 < mddev->bitmap->events_cleared)
1176 return 0;
1177 } else {
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1180 return 0;
1181 }
1182
1183 if (mddev->level != LEVEL_MULTIPATH) {
1184 desc = sb->disks + rdev->desc_nr;
1185
1186 if (desc->state & (1<<MD_DISK_FAULTY))
1187 set_bit(Faulty, &rdev->flags);
1188 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1189 desc->raid_disk < mddev->raid_disks */) {
1190 set_bit(In_sync, &rdev->flags);
1191 rdev->raid_disk = desc->raid_disk;
1192 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1193 /* active but not in sync implies recovery up to
1194 * reshape position. We don't know exactly where
1195 * that is, so set to zero for now */
1196 if (mddev->minor_version >= 91) {
1197 rdev->recovery_offset = 0;
1198 rdev->raid_disk = desc->raid_disk;
1199 }
1200 }
1201 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1202 set_bit(WriteMostly, &rdev->flags);
1203 } else /* MULTIPATH are always insync */
1204 set_bit(In_sync, &rdev->flags);
1205 return 0;
1206 }
1207
1208 /*
1209 * sync_super for 0.90.0
1210 */
1211 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1212 {
1213 mdp_super_t *sb;
1214 mdk_rdev_t *rdev2;
1215 int next_spare = mddev->raid_disks;
1216
1217
1218 /* make rdev->sb match mddev data..
1219 *
1220 * 1/ zero out disks
1221 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1222 * 3/ any empty disks < next_spare become removed
1223 *
1224 * disks[0] gets initialised to REMOVED because
1225 * we cannot be sure from other fields if it has
1226 * been initialised or not.
1227 */
1228 int i;
1229 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1230
1231 rdev->sb_size = MD_SB_BYTES;
1232
1233 sb = page_address(rdev->sb_page);
1234
1235 memset(sb, 0, sizeof(*sb));
1236
1237 sb->md_magic = MD_SB_MAGIC;
1238 sb->major_version = mddev->major_version;
1239 sb->patch_version = mddev->patch_version;
1240 sb->gvalid_words = 0; /* ignored */
1241 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1242 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1243 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1244 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1245
1246 sb->ctime = mddev->ctime;
1247 sb->level = mddev->level;
1248 sb->size = mddev->dev_sectors / 2;
1249 sb->raid_disks = mddev->raid_disks;
1250 sb->md_minor = mddev->md_minor;
1251 sb->not_persistent = 0;
1252 sb->utime = mddev->utime;
1253 sb->state = 0;
1254 sb->events_hi = (mddev->events>>32);
1255 sb->events_lo = (u32)mddev->events;
1256
1257 if (mddev->reshape_position == MaxSector)
1258 sb->minor_version = 90;
1259 else {
1260 sb->minor_version = 91;
1261 sb->reshape_position = mddev->reshape_position;
1262 sb->new_level = mddev->new_level;
1263 sb->delta_disks = mddev->delta_disks;
1264 sb->new_layout = mddev->new_layout;
1265 sb->new_chunk = mddev->new_chunk_sectors << 9;
1266 }
1267 mddev->minor_version = sb->minor_version;
1268 if (mddev->in_sync)
1269 {
1270 sb->recovery_cp = mddev->recovery_cp;
1271 sb->cp_events_hi = (mddev->events>>32);
1272 sb->cp_events_lo = (u32)mddev->events;
1273 if (mddev->recovery_cp == MaxSector)
1274 sb->state = (1<< MD_SB_CLEAN);
1275 } else
1276 sb->recovery_cp = 0;
1277
1278 sb->layout = mddev->layout;
1279 sb->chunk_size = mddev->chunk_sectors << 9;
1280
1281 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1282 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1283
1284 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1285 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1286 mdp_disk_t *d;
1287 int desc_nr;
1288 int is_active = test_bit(In_sync, &rdev2->flags);
1289
1290 if (rdev2->raid_disk >= 0 &&
1291 sb->minor_version >= 91)
1292 /* we have nowhere to store the recovery_offset,
1293 * but if it is not below the reshape_position,
1294 * we can piggy-back on that.
1295 */
1296 is_active = 1;
1297 if (rdev2->raid_disk < 0 ||
1298 test_bit(Faulty, &rdev2->flags))
1299 is_active = 0;
1300 if (is_active)
1301 desc_nr = rdev2->raid_disk;
1302 else
1303 desc_nr = next_spare++;
1304 rdev2->desc_nr = desc_nr;
1305 d = &sb->disks[rdev2->desc_nr];
1306 nr_disks++;
1307 d->number = rdev2->desc_nr;
1308 d->major = MAJOR(rdev2->bdev->bd_dev);
1309 d->minor = MINOR(rdev2->bdev->bd_dev);
1310 if (is_active)
1311 d->raid_disk = rdev2->raid_disk;
1312 else
1313 d->raid_disk = rdev2->desc_nr; /* compatibility */
1314 if (test_bit(Faulty, &rdev2->flags))
1315 d->state = (1<<MD_DISK_FAULTY);
1316 else if (is_active) {
1317 d->state = (1<<MD_DISK_ACTIVE);
1318 if (test_bit(In_sync, &rdev2->flags))
1319 d->state |= (1<<MD_DISK_SYNC);
1320 active++;
1321 working++;
1322 } else {
1323 d->state = 0;
1324 spare++;
1325 working++;
1326 }
1327 if (test_bit(WriteMostly, &rdev2->flags))
1328 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1329 }
1330 /* now set the "removed" and "faulty" bits on any missing devices */
1331 for (i=0 ; i < mddev->raid_disks ; i++) {
1332 mdp_disk_t *d = &sb->disks[i];
1333 if (d->state == 0 && d->number == 0) {
1334 d->number = i;
1335 d->raid_disk = i;
1336 d->state = (1<<MD_DISK_REMOVED);
1337 d->state |= (1<<MD_DISK_FAULTY);
1338 failed++;
1339 }
1340 }
1341 sb->nr_disks = nr_disks;
1342 sb->active_disks = active;
1343 sb->working_disks = working;
1344 sb->failed_disks = failed;
1345 sb->spare_disks = spare;
1346
1347 sb->this_disk = sb->disks[rdev->desc_nr];
1348 sb->sb_csum = calc_sb_csum(sb);
1349 }
1350
1351 /*
1352 * rdev_size_change for 0.90.0
1353 */
1354 static unsigned long long
1355 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1356 {
1357 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1358 return 0; /* component must fit device */
1359 if (rdev->mddev->bitmap_info.offset)
1360 return 0; /* can't move bitmap */
1361 rdev->sb_start = calc_dev_sboffset(rdev);
1362 if (!num_sectors || num_sectors > rdev->sb_start)
1363 num_sectors = rdev->sb_start;
1364 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1365 rdev->sb_page);
1366 md_super_wait(rdev->mddev);
1367 return num_sectors;
1368 }
1369
1370
1371 /*
1372 * version 1 superblock
1373 */
1374
1375 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1376 {
1377 __le32 disk_csum;
1378 u32 csum;
1379 unsigned long long newcsum;
1380 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1381 __le32 *isuper = (__le32*)sb;
1382 int i;
1383
1384 disk_csum = sb->sb_csum;
1385 sb->sb_csum = 0;
1386 newcsum = 0;
1387 for (i=0; size>=4; size -= 4 )
1388 newcsum += le32_to_cpu(*isuper++);
1389
1390 if (size == 2)
1391 newcsum += le16_to_cpu(*(__le16*) isuper);
1392
1393 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1394 sb->sb_csum = disk_csum;
1395 return cpu_to_le32(csum);
1396 }
1397
1398 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1399 {
1400 struct mdp_superblock_1 *sb;
1401 int ret;
1402 sector_t sb_start;
1403 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1404 int bmask;
1405
1406 /*
1407 * Calculate the position of the superblock in 512byte sectors.
1408 * It is always aligned to a 4K boundary and
1409 * depeding on minor_version, it can be:
1410 * 0: At least 8K, but less than 12K, from end of device
1411 * 1: At start of device
1412 * 2: 4K from start of device.
1413 */
1414 switch(minor_version) {
1415 case 0:
1416 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1417 sb_start -= 8*2;
1418 sb_start &= ~(sector_t)(4*2-1);
1419 break;
1420 case 1:
1421 sb_start = 0;
1422 break;
1423 case 2:
1424 sb_start = 8;
1425 break;
1426 default:
1427 return -EINVAL;
1428 }
1429 rdev->sb_start = sb_start;
1430
1431 /* superblock is rarely larger than 1K, but it can be larger,
1432 * and it is safe to read 4k, so we do that
1433 */
1434 ret = read_disk_sb(rdev, 4096);
1435 if (ret) return ret;
1436
1437
1438 sb = page_address(rdev->sb_page);
1439
1440 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1441 sb->major_version != cpu_to_le32(1) ||
1442 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1443 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1444 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1445 return -EINVAL;
1446
1447 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1448 printk("md: invalid superblock checksum on %s\n",
1449 bdevname(rdev->bdev,b));
1450 return -EINVAL;
1451 }
1452 if (le64_to_cpu(sb->data_size) < 10) {
1453 printk("md: data_size too small on %s\n",
1454 bdevname(rdev->bdev,b));
1455 return -EINVAL;
1456 }
1457
1458 rdev->preferred_minor = 0xffff;
1459 rdev->data_offset = le64_to_cpu(sb->data_offset);
1460 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1461
1462 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1463 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1464 if (rdev->sb_size & bmask)
1465 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1466
1467 if (minor_version
1468 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1469 return -EINVAL;
1470
1471 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1472 rdev->desc_nr = -1;
1473 else
1474 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1475
1476 if (!refdev) {
1477 ret = 1;
1478 } else {
1479 __u64 ev1, ev2;
1480 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1481
1482 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1483 sb->level != refsb->level ||
1484 sb->layout != refsb->layout ||
1485 sb->chunksize != refsb->chunksize) {
1486 printk(KERN_WARNING "md: %s has strangely different"
1487 " superblock to %s\n",
1488 bdevname(rdev->bdev,b),
1489 bdevname(refdev->bdev,b2));
1490 return -EINVAL;
1491 }
1492 ev1 = le64_to_cpu(sb->events);
1493 ev2 = le64_to_cpu(refsb->events);
1494
1495 if (ev1 > ev2)
1496 ret = 1;
1497 else
1498 ret = 0;
1499 }
1500 if (minor_version)
1501 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1502 le64_to_cpu(sb->data_offset);
1503 else
1504 rdev->sectors = rdev->sb_start;
1505 if (rdev->sectors < le64_to_cpu(sb->data_size))
1506 return -EINVAL;
1507 rdev->sectors = le64_to_cpu(sb->data_size);
1508 if (le64_to_cpu(sb->size) > rdev->sectors)
1509 return -EINVAL;
1510 return ret;
1511 }
1512
1513 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1514 {
1515 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1516 __u64 ev1 = le64_to_cpu(sb->events);
1517
1518 rdev->raid_disk = -1;
1519 clear_bit(Faulty, &rdev->flags);
1520 clear_bit(In_sync, &rdev->flags);
1521 clear_bit(WriteMostly, &rdev->flags);
1522
1523 if (mddev->raid_disks == 0) {
1524 mddev->major_version = 1;
1525 mddev->patch_version = 0;
1526 mddev->external = 0;
1527 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1528 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1529 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1530 mddev->level = le32_to_cpu(sb->level);
1531 mddev->clevel[0] = 0;
1532 mddev->layout = le32_to_cpu(sb->layout);
1533 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1534 mddev->dev_sectors = le64_to_cpu(sb->size);
1535 mddev->events = ev1;
1536 mddev->bitmap_info.offset = 0;
1537 mddev->bitmap_info.default_offset = 1024 >> 9;
1538
1539 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1540 memcpy(mddev->uuid, sb->set_uuid, 16);
1541
1542 mddev->max_disks = (4096-256)/2;
1543
1544 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1545 mddev->bitmap_info.file == NULL )
1546 mddev->bitmap_info.offset =
1547 (__s32)le32_to_cpu(sb->bitmap_offset);
1548
1549 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1550 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1551 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1552 mddev->new_level = le32_to_cpu(sb->new_level);
1553 mddev->new_layout = le32_to_cpu(sb->new_layout);
1554 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1555 } else {
1556 mddev->reshape_position = MaxSector;
1557 mddev->delta_disks = 0;
1558 mddev->new_level = mddev->level;
1559 mddev->new_layout = mddev->layout;
1560 mddev->new_chunk_sectors = mddev->chunk_sectors;
1561 }
1562
1563 } else if (mddev->pers == NULL) {
1564 /* Insist of good event counter while assembling, except for
1565 * spares (which don't need an event count) */
1566 ++ev1;
1567 if (rdev->desc_nr >= 0 &&
1568 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1569 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1570 if (ev1 < mddev->events)
1571 return -EINVAL;
1572 } else if (mddev->bitmap) {
1573 /* If adding to array with a bitmap, then we can accept an
1574 * older device, but not too old.
1575 */
1576 if (ev1 < mddev->bitmap->events_cleared)
1577 return 0;
1578 } else {
1579 if (ev1 < mddev->events)
1580 /* just a hot-add of a new device, leave raid_disk at -1 */
1581 return 0;
1582 }
1583 if (mddev->level != LEVEL_MULTIPATH) {
1584 int role;
1585 if (rdev->desc_nr < 0 ||
1586 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1587 role = 0xffff;
1588 rdev->desc_nr = -1;
1589 } else
1590 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1591 switch(role) {
1592 case 0xffff: /* spare */
1593 break;
1594 case 0xfffe: /* faulty */
1595 set_bit(Faulty, &rdev->flags);
1596 break;
1597 default:
1598 if ((le32_to_cpu(sb->feature_map) &
1599 MD_FEATURE_RECOVERY_OFFSET))
1600 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1601 else
1602 set_bit(In_sync, &rdev->flags);
1603 rdev->raid_disk = role;
1604 break;
1605 }
1606 if (sb->devflags & WriteMostly1)
1607 set_bit(WriteMostly, &rdev->flags);
1608 } else /* MULTIPATH are always insync */
1609 set_bit(In_sync, &rdev->flags);
1610
1611 return 0;
1612 }
1613
1614 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1615 {
1616 struct mdp_superblock_1 *sb;
1617 mdk_rdev_t *rdev2;
1618 int max_dev, i;
1619 /* make rdev->sb match mddev and rdev data. */
1620
1621 sb = page_address(rdev->sb_page);
1622
1623 sb->feature_map = 0;
1624 sb->pad0 = 0;
1625 sb->recovery_offset = cpu_to_le64(0);
1626 memset(sb->pad1, 0, sizeof(sb->pad1));
1627 memset(sb->pad2, 0, sizeof(sb->pad2));
1628 memset(sb->pad3, 0, sizeof(sb->pad3));
1629
1630 sb->utime = cpu_to_le64((__u64)mddev->utime);
1631 sb->events = cpu_to_le64(mddev->events);
1632 if (mddev->in_sync)
1633 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1634 else
1635 sb->resync_offset = cpu_to_le64(0);
1636
1637 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1638
1639 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1640 sb->size = cpu_to_le64(mddev->dev_sectors);
1641 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1642 sb->level = cpu_to_le32(mddev->level);
1643 sb->layout = cpu_to_le32(mddev->layout);
1644
1645 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1646 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1647 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1648 }
1649
1650 if (rdev->raid_disk >= 0 &&
1651 !test_bit(In_sync, &rdev->flags)) {
1652 sb->feature_map |=
1653 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1654 sb->recovery_offset =
1655 cpu_to_le64(rdev->recovery_offset);
1656 }
1657
1658 if (mddev->reshape_position != MaxSector) {
1659 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1660 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1661 sb->new_layout = cpu_to_le32(mddev->new_layout);
1662 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1663 sb->new_level = cpu_to_le32(mddev->new_level);
1664 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1665 }
1666
1667 max_dev = 0;
1668 list_for_each_entry(rdev2, &mddev->disks, same_set)
1669 if (rdev2->desc_nr+1 > max_dev)
1670 max_dev = rdev2->desc_nr+1;
1671
1672 if (max_dev > le32_to_cpu(sb->max_dev)) {
1673 int bmask;
1674 sb->max_dev = cpu_to_le32(max_dev);
1675 rdev->sb_size = max_dev * 2 + 256;
1676 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1677 if (rdev->sb_size & bmask)
1678 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1679 } else
1680 max_dev = le32_to_cpu(sb->max_dev);
1681
1682 for (i=0; i<max_dev;i++)
1683 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1684
1685 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1686 i = rdev2->desc_nr;
1687 if (test_bit(Faulty, &rdev2->flags))
1688 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1689 else if (test_bit(In_sync, &rdev2->flags))
1690 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1691 else if (rdev2->raid_disk >= 0)
1692 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1693 else
1694 sb->dev_roles[i] = cpu_to_le16(0xffff);
1695 }
1696
1697 sb->sb_csum = calc_sb_1_csum(sb);
1698 }
1699
1700 static unsigned long long
1701 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1702 {
1703 struct mdp_superblock_1 *sb;
1704 sector_t max_sectors;
1705 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1706 return 0; /* component must fit device */
1707 if (rdev->sb_start < rdev->data_offset) {
1708 /* minor versions 1 and 2; superblock before data */
1709 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1710 max_sectors -= rdev->data_offset;
1711 if (!num_sectors || num_sectors > max_sectors)
1712 num_sectors = max_sectors;
1713 } else if (rdev->mddev->bitmap_info.offset) {
1714 /* minor version 0 with bitmap we can't move */
1715 return 0;
1716 } else {
1717 /* minor version 0; superblock after data */
1718 sector_t sb_start;
1719 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1720 sb_start &= ~(sector_t)(4*2 - 1);
1721 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1722 if (!num_sectors || num_sectors > max_sectors)
1723 num_sectors = max_sectors;
1724 rdev->sb_start = sb_start;
1725 }
1726 sb = page_address(rdev->sb_page);
1727 sb->data_size = cpu_to_le64(num_sectors);
1728 sb->super_offset = rdev->sb_start;
1729 sb->sb_csum = calc_sb_1_csum(sb);
1730 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1731 rdev->sb_page);
1732 md_super_wait(rdev->mddev);
1733 return num_sectors;
1734 }
1735
1736 static struct super_type super_types[] = {
1737 [0] = {
1738 .name = "0.90.0",
1739 .owner = THIS_MODULE,
1740 .load_super = super_90_load,
1741 .validate_super = super_90_validate,
1742 .sync_super = super_90_sync,
1743 .rdev_size_change = super_90_rdev_size_change,
1744 },
1745 [1] = {
1746 .name = "md-1",
1747 .owner = THIS_MODULE,
1748 .load_super = super_1_load,
1749 .validate_super = super_1_validate,
1750 .sync_super = super_1_sync,
1751 .rdev_size_change = super_1_rdev_size_change,
1752 },
1753 };
1754
1755 static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
1756 {
1757 if (mddev->sync_super) {
1758 mddev->sync_super(mddev, rdev);
1759 return;
1760 }
1761
1762 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1763
1764 super_types[mddev->major_version].sync_super(mddev, rdev);
1765 }
1766
1767 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1768 {
1769 mdk_rdev_t *rdev, *rdev2;
1770
1771 rcu_read_lock();
1772 rdev_for_each_rcu(rdev, mddev1)
1773 rdev_for_each_rcu(rdev2, mddev2)
1774 if (rdev->bdev->bd_contains ==
1775 rdev2->bdev->bd_contains) {
1776 rcu_read_unlock();
1777 return 1;
1778 }
1779 rcu_read_unlock();
1780 return 0;
1781 }
1782
1783 static LIST_HEAD(pending_raid_disks);
1784
1785 /*
1786 * Try to register data integrity profile for an mddev
1787 *
1788 * This is called when an array is started and after a disk has been kicked
1789 * from the array. It only succeeds if all working and active component devices
1790 * are integrity capable with matching profiles.
1791 */
1792 int md_integrity_register(mddev_t *mddev)
1793 {
1794 mdk_rdev_t *rdev, *reference = NULL;
1795
1796 if (list_empty(&mddev->disks))
1797 return 0; /* nothing to do */
1798 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1799 return 0; /* shouldn't register, or already is */
1800 list_for_each_entry(rdev, &mddev->disks, same_set) {
1801 /* skip spares and non-functional disks */
1802 if (test_bit(Faulty, &rdev->flags))
1803 continue;
1804 if (rdev->raid_disk < 0)
1805 continue;
1806 if (!reference) {
1807 /* Use the first rdev as the reference */
1808 reference = rdev;
1809 continue;
1810 }
1811 /* does this rdev's profile match the reference profile? */
1812 if (blk_integrity_compare(reference->bdev->bd_disk,
1813 rdev->bdev->bd_disk) < 0)
1814 return -EINVAL;
1815 }
1816 if (!reference || !bdev_get_integrity(reference->bdev))
1817 return 0;
1818 /*
1819 * All component devices are integrity capable and have matching
1820 * profiles, register the common profile for the md device.
1821 */
1822 if (blk_integrity_register(mddev->gendisk,
1823 bdev_get_integrity(reference->bdev)) != 0) {
1824 printk(KERN_ERR "md: failed to register integrity for %s\n",
1825 mdname(mddev));
1826 return -EINVAL;
1827 }
1828 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1829 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1830 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1831 mdname(mddev));
1832 return -EINVAL;
1833 }
1834 return 0;
1835 }
1836 EXPORT_SYMBOL(md_integrity_register);
1837
1838 /* Disable data integrity if non-capable/non-matching disk is being added */
1839 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1840 {
1841 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1842 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1843
1844 if (!bi_mddev) /* nothing to do */
1845 return;
1846 if (rdev->raid_disk < 0) /* skip spares */
1847 return;
1848 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1849 rdev->bdev->bd_disk) >= 0)
1850 return;
1851 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1852 blk_integrity_unregister(mddev->gendisk);
1853 }
1854 EXPORT_SYMBOL(md_integrity_add_rdev);
1855
1856 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1857 {
1858 char b[BDEVNAME_SIZE];
1859 struct kobject *ko;
1860 char *s;
1861 int err;
1862
1863 if (rdev->mddev) {
1864 MD_BUG();
1865 return -EINVAL;
1866 }
1867
1868 /* prevent duplicates */
1869 if (find_rdev(mddev, rdev->bdev->bd_dev))
1870 return -EEXIST;
1871
1872 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1873 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1874 rdev->sectors < mddev->dev_sectors)) {
1875 if (mddev->pers) {
1876 /* Cannot change size, so fail
1877 * If mddev->level <= 0, then we don't care
1878 * about aligning sizes (e.g. linear)
1879 */
1880 if (mddev->level > 0)
1881 return -ENOSPC;
1882 } else
1883 mddev->dev_sectors = rdev->sectors;
1884 }
1885
1886 /* Verify rdev->desc_nr is unique.
1887 * If it is -1, assign a free number, else
1888 * check number is not in use
1889 */
1890 if (rdev->desc_nr < 0) {
1891 int choice = 0;
1892 if (mddev->pers) choice = mddev->raid_disks;
1893 while (find_rdev_nr(mddev, choice))
1894 choice++;
1895 rdev->desc_nr = choice;
1896 } else {
1897 if (find_rdev_nr(mddev, rdev->desc_nr))
1898 return -EBUSY;
1899 }
1900 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1901 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1902 mdname(mddev), mddev->max_disks);
1903 return -EBUSY;
1904 }
1905 bdevname(rdev->bdev,b);
1906 while ( (s=strchr(b, '/')) != NULL)
1907 *s = '!';
1908
1909 rdev->mddev = mddev;
1910 printk(KERN_INFO "md: bind<%s>\n", b);
1911
1912 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1913 goto fail;
1914
1915 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1916 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1917 /* failure here is OK */;
1918 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1919
1920 list_add_rcu(&rdev->same_set, &mddev->disks);
1921 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
1922
1923 /* May as well allow recovery to be retried once */
1924 mddev->recovery_disabled++;
1925
1926 return 0;
1927
1928 fail:
1929 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1930 b, mdname(mddev));
1931 return err;
1932 }
1933
1934 static void md_delayed_delete(struct work_struct *ws)
1935 {
1936 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1937 kobject_del(&rdev->kobj);
1938 kobject_put(&rdev->kobj);
1939 }
1940
1941 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1942 {
1943 char b[BDEVNAME_SIZE];
1944 if (!rdev->mddev) {
1945 MD_BUG();
1946 return;
1947 }
1948 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
1949 list_del_rcu(&rdev->same_set);
1950 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1951 rdev->mddev = NULL;
1952 sysfs_remove_link(&rdev->kobj, "block");
1953 sysfs_put(rdev->sysfs_state);
1954 rdev->sysfs_state = NULL;
1955 kfree(rdev->badblocks.page);
1956 rdev->badblocks.count = 0;
1957 rdev->badblocks.page = NULL;
1958 /* We need to delay this, otherwise we can deadlock when
1959 * writing to 'remove' to "dev/state". We also need
1960 * to delay it due to rcu usage.
1961 */
1962 synchronize_rcu();
1963 INIT_WORK(&rdev->del_work, md_delayed_delete);
1964 kobject_get(&rdev->kobj);
1965 queue_work(md_misc_wq, &rdev->del_work);
1966 }
1967
1968 /*
1969 * prevent the device from being mounted, repartitioned or
1970 * otherwise reused by a RAID array (or any other kernel
1971 * subsystem), by bd_claiming the device.
1972 */
1973 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1974 {
1975 int err = 0;
1976 struct block_device *bdev;
1977 char b[BDEVNAME_SIZE];
1978
1979 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
1980 shared ? (mdk_rdev_t *)lock_rdev : rdev);
1981 if (IS_ERR(bdev)) {
1982 printk(KERN_ERR "md: could not open %s.\n",
1983 __bdevname(dev, b));
1984 return PTR_ERR(bdev);
1985 }
1986 rdev->bdev = bdev;
1987 return err;
1988 }
1989
1990 static void unlock_rdev(mdk_rdev_t *rdev)
1991 {
1992 struct block_device *bdev = rdev->bdev;
1993 rdev->bdev = NULL;
1994 if (!bdev)
1995 MD_BUG();
1996 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1997 }
1998
1999 void md_autodetect_dev(dev_t dev);
2000
2001 static void export_rdev(mdk_rdev_t * rdev)
2002 {
2003 char b[BDEVNAME_SIZE];
2004 printk(KERN_INFO "md: export_rdev(%s)\n",
2005 bdevname(rdev->bdev,b));
2006 if (rdev->mddev)
2007 MD_BUG();
2008 free_disk_sb(rdev);
2009 #ifndef MODULE
2010 if (test_bit(AutoDetected, &rdev->flags))
2011 md_autodetect_dev(rdev->bdev->bd_dev);
2012 #endif
2013 unlock_rdev(rdev);
2014 kobject_put(&rdev->kobj);
2015 }
2016
2017 static void kick_rdev_from_array(mdk_rdev_t * rdev)
2018 {
2019 unbind_rdev_from_array(rdev);
2020 export_rdev(rdev);
2021 }
2022
2023 static void export_array(mddev_t *mddev)
2024 {
2025 mdk_rdev_t *rdev, *tmp;
2026
2027 rdev_for_each(rdev, tmp, mddev) {
2028 if (!rdev->mddev) {
2029 MD_BUG();
2030 continue;
2031 }
2032 kick_rdev_from_array(rdev);
2033 }
2034 if (!list_empty(&mddev->disks))
2035 MD_BUG();
2036 mddev->raid_disks = 0;
2037 mddev->major_version = 0;
2038 }
2039
2040 static void print_desc(mdp_disk_t *desc)
2041 {
2042 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2043 desc->major,desc->minor,desc->raid_disk,desc->state);
2044 }
2045
2046 static void print_sb_90(mdp_super_t *sb)
2047 {
2048 int i;
2049
2050 printk(KERN_INFO
2051 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2052 sb->major_version, sb->minor_version, sb->patch_version,
2053 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2054 sb->ctime);
2055 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2056 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2057 sb->md_minor, sb->layout, sb->chunk_size);
2058 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2059 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2060 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2061 sb->failed_disks, sb->spare_disks,
2062 sb->sb_csum, (unsigned long)sb->events_lo);
2063
2064 printk(KERN_INFO);
2065 for (i = 0; i < MD_SB_DISKS; i++) {
2066 mdp_disk_t *desc;
2067
2068 desc = sb->disks + i;
2069 if (desc->number || desc->major || desc->minor ||
2070 desc->raid_disk || (desc->state && (desc->state != 4))) {
2071 printk(" D %2d: ", i);
2072 print_desc(desc);
2073 }
2074 }
2075 printk(KERN_INFO "md: THIS: ");
2076 print_desc(&sb->this_disk);
2077 }
2078
2079 static void print_sb_1(struct mdp_superblock_1 *sb)
2080 {
2081 __u8 *uuid;
2082
2083 uuid = sb->set_uuid;
2084 printk(KERN_INFO
2085 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2086 "md: Name: \"%s\" CT:%llu\n",
2087 le32_to_cpu(sb->major_version),
2088 le32_to_cpu(sb->feature_map),
2089 uuid,
2090 sb->set_name,
2091 (unsigned long long)le64_to_cpu(sb->ctime)
2092 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2093
2094 uuid = sb->device_uuid;
2095 printk(KERN_INFO
2096 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2097 " RO:%llu\n"
2098 "md: Dev:%08x UUID: %pU\n"
2099 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2100 "md: (MaxDev:%u) \n",
2101 le32_to_cpu(sb->level),
2102 (unsigned long long)le64_to_cpu(sb->size),
2103 le32_to_cpu(sb->raid_disks),
2104 le32_to_cpu(sb->layout),
2105 le32_to_cpu(sb->chunksize),
2106 (unsigned long long)le64_to_cpu(sb->data_offset),
2107 (unsigned long long)le64_to_cpu(sb->data_size),
2108 (unsigned long long)le64_to_cpu(sb->super_offset),
2109 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2110 le32_to_cpu(sb->dev_number),
2111 uuid,
2112 sb->devflags,
2113 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2114 (unsigned long long)le64_to_cpu(sb->events),
2115 (unsigned long long)le64_to_cpu(sb->resync_offset),
2116 le32_to_cpu(sb->sb_csum),
2117 le32_to_cpu(sb->max_dev)
2118 );
2119 }
2120
2121 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2122 {
2123 char b[BDEVNAME_SIZE];
2124 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2125 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2126 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2127 rdev->desc_nr);
2128 if (rdev->sb_loaded) {
2129 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2130 switch (major_version) {
2131 case 0:
2132 print_sb_90(page_address(rdev->sb_page));
2133 break;
2134 case 1:
2135 print_sb_1(page_address(rdev->sb_page));
2136 break;
2137 }
2138 } else
2139 printk(KERN_INFO "md: no rdev superblock!\n");
2140 }
2141
2142 static void md_print_devices(void)
2143 {
2144 struct list_head *tmp;
2145 mdk_rdev_t *rdev;
2146 mddev_t *mddev;
2147 char b[BDEVNAME_SIZE];
2148
2149 printk("\n");
2150 printk("md: **********************************\n");
2151 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2152 printk("md: **********************************\n");
2153 for_each_mddev(mddev, tmp) {
2154
2155 if (mddev->bitmap)
2156 bitmap_print_sb(mddev->bitmap);
2157 else
2158 printk("%s: ", mdname(mddev));
2159 list_for_each_entry(rdev, &mddev->disks, same_set)
2160 printk("<%s>", bdevname(rdev->bdev,b));
2161 printk("\n");
2162
2163 list_for_each_entry(rdev, &mddev->disks, same_set)
2164 print_rdev(rdev, mddev->major_version);
2165 }
2166 printk("md: **********************************\n");
2167 printk("\n");
2168 }
2169
2170
2171 static void sync_sbs(mddev_t * mddev, int nospares)
2172 {
2173 /* Update each superblock (in-memory image), but
2174 * if we are allowed to, skip spares which already
2175 * have the right event counter, or have one earlier
2176 * (which would mean they aren't being marked as dirty
2177 * with the rest of the array)
2178 */
2179 mdk_rdev_t *rdev;
2180 list_for_each_entry(rdev, &mddev->disks, same_set) {
2181 if (rdev->sb_events == mddev->events ||
2182 (nospares &&
2183 rdev->raid_disk < 0 &&
2184 rdev->sb_events+1 == mddev->events)) {
2185 /* Don't update this superblock */
2186 rdev->sb_loaded = 2;
2187 } else {
2188 sync_super(mddev, rdev);
2189 rdev->sb_loaded = 1;
2190 }
2191 }
2192 }
2193
2194 static void md_update_sb(mddev_t * mddev, int force_change)
2195 {
2196 mdk_rdev_t *rdev;
2197 int sync_req;
2198 int nospares = 0;
2199
2200 repeat:
2201 /* First make sure individual recovery_offsets are correct */
2202 list_for_each_entry(rdev, &mddev->disks, same_set) {
2203 if (rdev->raid_disk >= 0 &&
2204 mddev->delta_disks >= 0 &&
2205 !test_bit(In_sync, &rdev->flags) &&
2206 mddev->curr_resync_completed > rdev->recovery_offset)
2207 rdev->recovery_offset = mddev->curr_resync_completed;
2208
2209 }
2210 if (!mddev->persistent) {
2211 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2212 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2213 if (!mddev->external)
2214 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2215 wake_up(&mddev->sb_wait);
2216 return;
2217 }
2218
2219 spin_lock_irq(&mddev->write_lock);
2220
2221 mddev->utime = get_seconds();
2222
2223 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2224 force_change = 1;
2225 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2226 /* just a clean<-> dirty transition, possibly leave spares alone,
2227 * though if events isn't the right even/odd, we will have to do
2228 * spares after all
2229 */
2230 nospares = 1;
2231 if (force_change)
2232 nospares = 0;
2233 if (mddev->degraded)
2234 /* If the array is degraded, then skipping spares is both
2235 * dangerous and fairly pointless.
2236 * Dangerous because a device that was removed from the array
2237 * might have a event_count that still looks up-to-date,
2238 * so it can be re-added without a resync.
2239 * Pointless because if there are any spares to skip,
2240 * then a recovery will happen and soon that array won't
2241 * be degraded any more and the spare can go back to sleep then.
2242 */
2243 nospares = 0;
2244
2245 sync_req = mddev->in_sync;
2246
2247 /* If this is just a dirty<->clean transition, and the array is clean
2248 * and 'events' is odd, we can roll back to the previous clean state */
2249 if (nospares
2250 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2251 && mddev->can_decrease_events
2252 && mddev->events != 1) {
2253 mddev->events--;
2254 mddev->can_decrease_events = 0;
2255 } else {
2256 /* otherwise we have to go forward and ... */
2257 mddev->events ++;
2258 mddev->can_decrease_events = nospares;
2259 }
2260
2261 if (!mddev->events) {
2262 /*
2263 * oops, this 64-bit counter should never wrap.
2264 * Either we are in around ~1 trillion A.C., assuming
2265 * 1 reboot per second, or we have a bug:
2266 */
2267 MD_BUG();
2268 mddev->events --;
2269 }
2270 sync_sbs(mddev, nospares);
2271 spin_unlock_irq(&mddev->write_lock);
2272
2273 dprintk(KERN_INFO
2274 "md: updating %s RAID superblock on device (in sync %d)\n",
2275 mdname(mddev),mddev->in_sync);
2276
2277 bitmap_update_sb(mddev->bitmap);
2278 list_for_each_entry(rdev, &mddev->disks, same_set) {
2279 char b[BDEVNAME_SIZE];
2280 dprintk(KERN_INFO "md: ");
2281 if (rdev->sb_loaded != 1)
2282 continue; /* no noise on spare devices */
2283 if (test_bit(Faulty, &rdev->flags))
2284 dprintk("(skipping faulty ");
2285
2286 dprintk("%s ", bdevname(rdev->bdev,b));
2287 if (!test_bit(Faulty, &rdev->flags)) {
2288 md_super_write(mddev,rdev,
2289 rdev->sb_start, rdev->sb_size,
2290 rdev->sb_page);
2291 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2292 bdevname(rdev->bdev,b),
2293 (unsigned long long)rdev->sb_start);
2294 rdev->sb_events = mddev->events;
2295
2296 } else
2297 dprintk(")\n");
2298 if (mddev->level == LEVEL_MULTIPATH)
2299 /* only need to write one superblock... */
2300 break;
2301 }
2302 md_super_wait(mddev);
2303 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2304
2305 spin_lock_irq(&mddev->write_lock);
2306 if (mddev->in_sync != sync_req ||
2307 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2308 /* have to write it out again */
2309 spin_unlock_irq(&mddev->write_lock);
2310 goto repeat;
2311 }
2312 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2313 spin_unlock_irq(&mddev->write_lock);
2314 wake_up(&mddev->sb_wait);
2315 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2316 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2317
2318 }
2319
2320 /* words written to sysfs files may, or may not, be \n terminated.
2321 * We want to accept with case. For this we use cmd_match.
2322 */
2323 static int cmd_match(const char *cmd, const char *str)
2324 {
2325 /* See if cmd, written into a sysfs file, matches
2326 * str. They must either be the same, or cmd can
2327 * have a trailing newline
2328 */
2329 while (*cmd && *str && *cmd == *str) {
2330 cmd++;
2331 str++;
2332 }
2333 if (*cmd == '\n')
2334 cmd++;
2335 if (*str || *cmd)
2336 return 0;
2337 return 1;
2338 }
2339
2340 struct rdev_sysfs_entry {
2341 struct attribute attr;
2342 ssize_t (*show)(mdk_rdev_t *, char *);
2343 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2344 };
2345
2346 static ssize_t
2347 state_show(mdk_rdev_t *rdev, char *page)
2348 {
2349 char *sep = "";
2350 size_t len = 0;
2351
2352 if (test_bit(Faulty, &rdev->flags)) {
2353 len+= sprintf(page+len, "%sfaulty",sep);
2354 sep = ",";
2355 }
2356 if (test_bit(In_sync, &rdev->flags)) {
2357 len += sprintf(page+len, "%sin_sync",sep);
2358 sep = ",";
2359 }
2360 if (test_bit(WriteMostly, &rdev->flags)) {
2361 len += sprintf(page+len, "%swrite_mostly",sep);
2362 sep = ",";
2363 }
2364 if (test_bit(Blocked, &rdev->flags)) {
2365 len += sprintf(page+len, "%sblocked", sep);
2366 sep = ",";
2367 }
2368 if (!test_bit(Faulty, &rdev->flags) &&
2369 !test_bit(In_sync, &rdev->flags)) {
2370 len += sprintf(page+len, "%sspare", sep);
2371 sep = ",";
2372 }
2373 return len+sprintf(page+len, "\n");
2374 }
2375
2376 static ssize_t
2377 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2378 {
2379 /* can write
2380 * faulty - simulates and error
2381 * remove - disconnects the device
2382 * writemostly - sets write_mostly
2383 * -writemostly - clears write_mostly
2384 * blocked - sets the Blocked flag
2385 * -blocked - clears the Blocked flag
2386 * insync - sets Insync providing device isn't active
2387 */
2388 int err = -EINVAL;
2389 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2390 md_error(rdev->mddev, rdev);
2391 err = 0;
2392 } else if (cmd_match(buf, "remove")) {
2393 if (rdev->raid_disk >= 0)
2394 err = -EBUSY;
2395 else {
2396 mddev_t *mddev = rdev->mddev;
2397 kick_rdev_from_array(rdev);
2398 if (mddev->pers)
2399 md_update_sb(mddev, 1);
2400 md_new_event(mddev);
2401 err = 0;
2402 }
2403 } else if (cmd_match(buf, "writemostly")) {
2404 set_bit(WriteMostly, &rdev->flags);
2405 err = 0;
2406 } else if (cmd_match(buf, "-writemostly")) {
2407 clear_bit(WriteMostly, &rdev->flags);
2408 err = 0;
2409 } else if (cmd_match(buf, "blocked")) {
2410 set_bit(Blocked, &rdev->flags);
2411 err = 0;
2412 } else if (cmd_match(buf, "-blocked")) {
2413 clear_bit(Blocked, &rdev->flags);
2414 wake_up(&rdev->blocked_wait);
2415 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2416 md_wakeup_thread(rdev->mddev->thread);
2417
2418 err = 0;
2419 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2420 set_bit(In_sync, &rdev->flags);
2421 err = 0;
2422 }
2423 if (!err)
2424 sysfs_notify_dirent_safe(rdev->sysfs_state);
2425 return err ? err : len;
2426 }
2427 static struct rdev_sysfs_entry rdev_state =
2428 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2429
2430 static ssize_t
2431 errors_show(mdk_rdev_t *rdev, char *page)
2432 {
2433 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2434 }
2435
2436 static ssize_t
2437 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2438 {
2439 char *e;
2440 unsigned long n = simple_strtoul(buf, &e, 10);
2441 if (*buf && (*e == 0 || *e == '\n')) {
2442 atomic_set(&rdev->corrected_errors, n);
2443 return len;
2444 }
2445 return -EINVAL;
2446 }
2447 static struct rdev_sysfs_entry rdev_errors =
2448 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2449
2450 static ssize_t
2451 slot_show(mdk_rdev_t *rdev, char *page)
2452 {
2453 if (rdev->raid_disk < 0)
2454 return sprintf(page, "none\n");
2455 else
2456 return sprintf(page, "%d\n", rdev->raid_disk);
2457 }
2458
2459 static ssize_t
2460 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2461 {
2462 char *e;
2463 int err;
2464 int slot = simple_strtoul(buf, &e, 10);
2465 if (strncmp(buf, "none", 4)==0)
2466 slot = -1;
2467 else if (e==buf || (*e && *e!= '\n'))
2468 return -EINVAL;
2469 if (rdev->mddev->pers && slot == -1) {
2470 /* Setting 'slot' on an active array requires also
2471 * updating the 'rd%d' link, and communicating
2472 * with the personality with ->hot_*_disk.
2473 * For now we only support removing
2474 * failed/spare devices. This normally happens automatically,
2475 * but not when the metadata is externally managed.
2476 */
2477 if (rdev->raid_disk == -1)
2478 return -EEXIST;
2479 /* personality does all needed checks */
2480 if (rdev->mddev->pers->hot_remove_disk == NULL)
2481 return -EINVAL;
2482 err = rdev->mddev->pers->
2483 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2484 if (err)
2485 return err;
2486 sysfs_unlink_rdev(rdev->mddev, rdev);
2487 rdev->raid_disk = -1;
2488 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2489 md_wakeup_thread(rdev->mddev->thread);
2490 } else if (rdev->mddev->pers) {
2491 mdk_rdev_t *rdev2;
2492 /* Activating a spare .. or possibly reactivating
2493 * if we ever get bitmaps working here.
2494 */
2495
2496 if (rdev->raid_disk != -1)
2497 return -EBUSY;
2498
2499 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2500 return -EBUSY;
2501
2502 if (rdev->mddev->pers->hot_add_disk == NULL)
2503 return -EINVAL;
2504
2505 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2506 if (rdev2->raid_disk == slot)
2507 return -EEXIST;
2508
2509 if (slot >= rdev->mddev->raid_disks &&
2510 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2511 return -ENOSPC;
2512
2513 rdev->raid_disk = slot;
2514 if (test_bit(In_sync, &rdev->flags))
2515 rdev->saved_raid_disk = slot;
2516 else
2517 rdev->saved_raid_disk = -1;
2518 err = rdev->mddev->pers->
2519 hot_add_disk(rdev->mddev, rdev);
2520 if (err) {
2521 rdev->raid_disk = -1;
2522 return err;
2523 } else
2524 sysfs_notify_dirent_safe(rdev->sysfs_state);
2525 if (sysfs_link_rdev(rdev->mddev, rdev))
2526 /* failure here is OK */;
2527 /* don't wakeup anyone, leave that to userspace. */
2528 } else {
2529 if (slot >= rdev->mddev->raid_disks &&
2530 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2531 return -ENOSPC;
2532 rdev->raid_disk = slot;
2533 /* assume it is working */
2534 clear_bit(Faulty, &rdev->flags);
2535 clear_bit(WriteMostly, &rdev->flags);
2536 set_bit(In_sync, &rdev->flags);
2537 sysfs_notify_dirent_safe(rdev->sysfs_state);
2538 }
2539 return len;
2540 }
2541
2542
2543 static struct rdev_sysfs_entry rdev_slot =
2544 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2545
2546 static ssize_t
2547 offset_show(mdk_rdev_t *rdev, char *page)
2548 {
2549 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2550 }
2551
2552 static ssize_t
2553 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2554 {
2555 char *e;
2556 unsigned long long offset = simple_strtoull(buf, &e, 10);
2557 if (e==buf || (*e && *e != '\n'))
2558 return -EINVAL;
2559 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2560 return -EBUSY;
2561 if (rdev->sectors && rdev->mddev->external)
2562 /* Must set offset before size, so overlap checks
2563 * can be sane */
2564 return -EBUSY;
2565 rdev->data_offset = offset;
2566 return len;
2567 }
2568
2569 static struct rdev_sysfs_entry rdev_offset =
2570 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2571
2572 static ssize_t
2573 rdev_size_show(mdk_rdev_t *rdev, char *page)
2574 {
2575 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2576 }
2577
2578 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2579 {
2580 /* check if two start/length pairs overlap */
2581 if (s1+l1 <= s2)
2582 return 0;
2583 if (s2+l2 <= s1)
2584 return 0;
2585 return 1;
2586 }
2587
2588 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2589 {
2590 unsigned long long blocks;
2591 sector_t new;
2592
2593 if (strict_strtoull(buf, 10, &blocks) < 0)
2594 return -EINVAL;
2595
2596 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2597 return -EINVAL; /* sector conversion overflow */
2598
2599 new = blocks * 2;
2600 if (new != blocks * 2)
2601 return -EINVAL; /* unsigned long long to sector_t overflow */
2602
2603 *sectors = new;
2604 return 0;
2605 }
2606
2607 static ssize_t
2608 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2609 {
2610 mddev_t *my_mddev = rdev->mddev;
2611 sector_t oldsectors = rdev->sectors;
2612 sector_t sectors;
2613
2614 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2615 return -EINVAL;
2616 if (my_mddev->pers && rdev->raid_disk >= 0) {
2617 if (my_mddev->persistent) {
2618 sectors = super_types[my_mddev->major_version].
2619 rdev_size_change(rdev, sectors);
2620 if (!sectors)
2621 return -EBUSY;
2622 } else if (!sectors)
2623 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2624 rdev->data_offset;
2625 }
2626 if (sectors < my_mddev->dev_sectors)
2627 return -EINVAL; /* component must fit device */
2628
2629 rdev->sectors = sectors;
2630 if (sectors > oldsectors && my_mddev->external) {
2631 /* need to check that all other rdevs with the same ->bdev
2632 * do not overlap. We need to unlock the mddev to avoid
2633 * a deadlock. We have already changed rdev->sectors, and if
2634 * we have to change it back, we will have the lock again.
2635 */
2636 mddev_t *mddev;
2637 int overlap = 0;
2638 struct list_head *tmp;
2639
2640 mddev_unlock(my_mddev);
2641 for_each_mddev(mddev, tmp) {
2642 mdk_rdev_t *rdev2;
2643
2644 mddev_lock(mddev);
2645 list_for_each_entry(rdev2, &mddev->disks, same_set)
2646 if (rdev->bdev == rdev2->bdev &&
2647 rdev != rdev2 &&
2648 overlaps(rdev->data_offset, rdev->sectors,
2649 rdev2->data_offset,
2650 rdev2->sectors)) {
2651 overlap = 1;
2652 break;
2653 }
2654 mddev_unlock(mddev);
2655 if (overlap) {
2656 mddev_put(mddev);
2657 break;
2658 }
2659 }
2660 mddev_lock(my_mddev);
2661 if (overlap) {
2662 /* Someone else could have slipped in a size
2663 * change here, but doing so is just silly.
2664 * We put oldsectors back because we *know* it is
2665 * safe, and trust userspace not to race with
2666 * itself
2667 */
2668 rdev->sectors = oldsectors;
2669 return -EBUSY;
2670 }
2671 }
2672 return len;
2673 }
2674
2675 static struct rdev_sysfs_entry rdev_size =
2676 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2677
2678
2679 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2680 {
2681 unsigned long long recovery_start = rdev->recovery_offset;
2682
2683 if (test_bit(In_sync, &rdev->flags) ||
2684 recovery_start == MaxSector)
2685 return sprintf(page, "none\n");
2686
2687 return sprintf(page, "%llu\n", recovery_start);
2688 }
2689
2690 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2691 {
2692 unsigned long long recovery_start;
2693
2694 if (cmd_match(buf, "none"))
2695 recovery_start = MaxSector;
2696 else if (strict_strtoull(buf, 10, &recovery_start))
2697 return -EINVAL;
2698
2699 if (rdev->mddev->pers &&
2700 rdev->raid_disk >= 0)
2701 return -EBUSY;
2702
2703 rdev->recovery_offset = recovery_start;
2704 if (recovery_start == MaxSector)
2705 set_bit(In_sync, &rdev->flags);
2706 else
2707 clear_bit(In_sync, &rdev->flags);
2708 return len;
2709 }
2710
2711 static struct rdev_sysfs_entry rdev_recovery_start =
2712 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2713
2714 static struct attribute *rdev_default_attrs[] = {
2715 &rdev_state.attr,
2716 &rdev_errors.attr,
2717 &rdev_slot.attr,
2718 &rdev_offset.attr,
2719 &rdev_size.attr,
2720 &rdev_recovery_start.attr,
2721 NULL,
2722 };
2723 static ssize_t
2724 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2725 {
2726 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2727 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2728 mddev_t *mddev = rdev->mddev;
2729 ssize_t rv;
2730
2731 if (!entry->show)
2732 return -EIO;
2733
2734 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2735 if (!rv) {
2736 if (rdev->mddev == NULL)
2737 rv = -EBUSY;
2738 else
2739 rv = entry->show(rdev, page);
2740 mddev_unlock(mddev);
2741 }
2742 return rv;
2743 }
2744
2745 static ssize_t
2746 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2747 const char *page, size_t length)
2748 {
2749 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2750 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2751 ssize_t rv;
2752 mddev_t *mddev = rdev->mddev;
2753
2754 if (!entry->store)
2755 return -EIO;
2756 if (!capable(CAP_SYS_ADMIN))
2757 return -EACCES;
2758 rv = mddev ? mddev_lock(mddev): -EBUSY;
2759 if (!rv) {
2760 if (rdev->mddev == NULL)
2761 rv = -EBUSY;
2762 else
2763 rv = entry->store(rdev, page, length);
2764 mddev_unlock(mddev);
2765 }
2766 return rv;
2767 }
2768
2769 static void rdev_free(struct kobject *ko)
2770 {
2771 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2772 kfree(rdev);
2773 }
2774 static const struct sysfs_ops rdev_sysfs_ops = {
2775 .show = rdev_attr_show,
2776 .store = rdev_attr_store,
2777 };
2778 static struct kobj_type rdev_ktype = {
2779 .release = rdev_free,
2780 .sysfs_ops = &rdev_sysfs_ops,
2781 .default_attrs = rdev_default_attrs,
2782 };
2783
2784 int md_rdev_init(mdk_rdev_t *rdev)
2785 {
2786 rdev->desc_nr = -1;
2787 rdev->saved_raid_disk = -1;
2788 rdev->raid_disk = -1;
2789 rdev->flags = 0;
2790 rdev->data_offset = 0;
2791 rdev->sb_events = 0;
2792 rdev->last_read_error.tv_sec = 0;
2793 rdev->last_read_error.tv_nsec = 0;
2794 atomic_set(&rdev->nr_pending, 0);
2795 atomic_set(&rdev->read_errors, 0);
2796 atomic_set(&rdev->corrected_errors, 0);
2797
2798 INIT_LIST_HEAD(&rdev->same_set);
2799 init_waitqueue_head(&rdev->blocked_wait);
2800
2801 /* Add space to store bad block list.
2802 * This reserves the space even on arrays where it cannot
2803 * be used - I wonder if that matters
2804 */
2805 rdev->badblocks.count = 0;
2806 rdev->badblocks.shift = 0;
2807 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
2808 seqlock_init(&rdev->badblocks.lock);
2809 if (rdev->badblocks.page == NULL)
2810 return -ENOMEM;
2811
2812 return 0;
2813 }
2814 EXPORT_SYMBOL_GPL(md_rdev_init);
2815 /*
2816 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2817 *
2818 * mark the device faulty if:
2819 *
2820 * - the device is nonexistent (zero size)
2821 * - the device has no valid superblock
2822 *
2823 * a faulty rdev _never_ has rdev->sb set.
2824 */
2825 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2826 {
2827 char b[BDEVNAME_SIZE];
2828 int err;
2829 mdk_rdev_t *rdev;
2830 sector_t size;
2831
2832 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2833 if (!rdev) {
2834 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2835 return ERR_PTR(-ENOMEM);
2836 }
2837
2838 err = md_rdev_init(rdev);
2839 if (err)
2840 goto abort_free;
2841 err = alloc_disk_sb(rdev);
2842 if (err)
2843 goto abort_free;
2844
2845 err = lock_rdev(rdev, newdev, super_format == -2);
2846 if (err)
2847 goto abort_free;
2848
2849 kobject_init(&rdev->kobj, &rdev_ktype);
2850
2851 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
2852 if (!size) {
2853 printk(KERN_WARNING
2854 "md: %s has zero or unknown size, marking faulty!\n",
2855 bdevname(rdev->bdev,b));
2856 err = -EINVAL;
2857 goto abort_free;
2858 }
2859
2860 if (super_format >= 0) {
2861 err = super_types[super_format].
2862 load_super(rdev, NULL, super_minor);
2863 if (err == -EINVAL) {
2864 printk(KERN_WARNING
2865 "md: %s does not have a valid v%d.%d "
2866 "superblock, not importing!\n",
2867 bdevname(rdev->bdev,b),
2868 super_format, super_minor);
2869 goto abort_free;
2870 }
2871 if (err < 0) {
2872 printk(KERN_WARNING
2873 "md: could not read %s's sb, not importing!\n",
2874 bdevname(rdev->bdev,b));
2875 goto abort_free;
2876 }
2877 }
2878
2879 return rdev;
2880
2881 abort_free:
2882 if (rdev->sb_page) {
2883 if (rdev->bdev)
2884 unlock_rdev(rdev);
2885 free_disk_sb(rdev);
2886 }
2887 kfree(rdev->badblocks.page);
2888 kfree(rdev);
2889 return ERR_PTR(err);
2890 }
2891
2892 /*
2893 * Check a full RAID array for plausibility
2894 */
2895
2896
2897 static void analyze_sbs(mddev_t * mddev)
2898 {
2899 int i;
2900 mdk_rdev_t *rdev, *freshest, *tmp;
2901 char b[BDEVNAME_SIZE];
2902
2903 freshest = NULL;
2904 rdev_for_each(rdev, tmp, mddev)
2905 switch (super_types[mddev->major_version].
2906 load_super(rdev, freshest, mddev->minor_version)) {
2907 case 1:
2908 freshest = rdev;
2909 break;
2910 case 0:
2911 break;
2912 default:
2913 printk( KERN_ERR \
2914 "md: fatal superblock inconsistency in %s"
2915 " -- removing from array\n",
2916 bdevname(rdev->bdev,b));
2917 kick_rdev_from_array(rdev);
2918 }
2919
2920
2921 super_types[mddev->major_version].
2922 validate_super(mddev, freshest);
2923
2924 i = 0;
2925 rdev_for_each(rdev, tmp, mddev) {
2926 if (mddev->max_disks &&
2927 (rdev->desc_nr >= mddev->max_disks ||
2928 i > mddev->max_disks)) {
2929 printk(KERN_WARNING
2930 "md: %s: %s: only %d devices permitted\n",
2931 mdname(mddev), bdevname(rdev->bdev, b),
2932 mddev->max_disks);
2933 kick_rdev_from_array(rdev);
2934 continue;
2935 }
2936 if (rdev != freshest)
2937 if (super_types[mddev->major_version].
2938 validate_super(mddev, rdev)) {
2939 printk(KERN_WARNING "md: kicking non-fresh %s"
2940 " from array!\n",
2941 bdevname(rdev->bdev,b));
2942 kick_rdev_from_array(rdev);
2943 continue;
2944 }
2945 if (mddev->level == LEVEL_MULTIPATH) {
2946 rdev->desc_nr = i++;
2947 rdev->raid_disk = rdev->desc_nr;
2948 set_bit(In_sync, &rdev->flags);
2949 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2950 rdev->raid_disk = -1;
2951 clear_bit(In_sync, &rdev->flags);
2952 }
2953 }
2954 }
2955
2956 /* Read a fixed-point number.
2957 * Numbers in sysfs attributes should be in "standard" units where
2958 * possible, so time should be in seconds.
2959 * However we internally use a a much smaller unit such as
2960 * milliseconds or jiffies.
2961 * This function takes a decimal number with a possible fractional
2962 * component, and produces an integer which is the result of
2963 * multiplying that number by 10^'scale'.
2964 * all without any floating-point arithmetic.
2965 */
2966 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2967 {
2968 unsigned long result = 0;
2969 long decimals = -1;
2970 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2971 if (*cp == '.')
2972 decimals = 0;
2973 else if (decimals < scale) {
2974 unsigned int value;
2975 value = *cp - '0';
2976 result = result * 10 + value;
2977 if (decimals >= 0)
2978 decimals++;
2979 }
2980 cp++;
2981 }
2982 if (*cp == '\n')
2983 cp++;
2984 if (*cp)
2985 return -EINVAL;
2986 if (decimals < 0)
2987 decimals = 0;
2988 while (decimals < scale) {
2989 result *= 10;
2990 decimals ++;
2991 }
2992 *res = result;
2993 return 0;
2994 }
2995
2996
2997 static void md_safemode_timeout(unsigned long data);
2998
2999 static ssize_t
3000 safe_delay_show(mddev_t *mddev, char *page)
3001 {
3002 int msec = (mddev->safemode_delay*1000)/HZ;
3003 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3004 }
3005 static ssize_t
3006 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
3007 {
3008 unsigned long msec;
3009
3010 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3011 return -EINVAL;
3012 if (msec == 0)
3013 mddev->safemode_delay = 0;
3014 else {
3015 unsigned long old_delay = mddev->safemode_delay;
3016 mddev->safemode_delay = (msec*HZ)/1000;
3017 if (mddev->safemode_delay == 0)
3018 mddev->safemode_delay = 1;
3019 if (mddev->safemode_delay < old_delay)
3020 md_safemode_timeout((unsigned long)mddev);
3021 }
3022 return len;
3023 }
3024 static struct md_sysfs_entry md_safe_delay =
3025 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3026
3027 static ssize_t
3028 level_show(mddev_t *mddev, char *page)
3029 {
3030 struct mdk_personality *p = mddev->pers;
3031 if (p)
3032 return sprintf(page, "%s\n", p->name);
3033 else if (mddev->clevel[0])
3034 return sprintf(page, "%s\n", mddev->clevel);
3035 else if (mddev->level != LEVEL_NONE)
3036 return sprintf(page, "%d\n", mddev->level);
3037 else
3038 return 0;
3039 }
3040
3041 static ssize_t
3042 level_store(mddev_t *mddev, const char *buf, size_t len)
3043 {
3044 char clevel[16];
3045 ssize_t rv = len;
3046 struct mdk_personality *pers;
3047 long level;
3048 void *priv;
3049 mdk_rdev_t *rdev;
3050
3051 if (mddev->pers == NULL) {
3052 if (len == 0)
3053 return 0;
3054 if (len >= sizeof(mddev->clevel))
3055 return -ENOSPC;
3056 strncpy(mddev->clevel, buf, len);
3057 if (mddev->clevel[len-1] == '\n')
3058 len--;
3059 mddev->clevel[len] = 0;
3060 mddev->level = LEVEL_NONE;
3061 return rv;
3062 }
3063
3064 /* request to change the personality. Need to ensure:
3065 * - array is not engaged in resync/recovery/reshape
3066 * - old personality can be suspended
3067 * - new personality will access other array.
3068 */
3069
3070 if (mddev->sync_thread ||
3071 mddev->reshape_position != MaxSector ||
3072 mddev->sysfs_active)
3073 return -EBUSY;
3074
3075 if (!mddev->pers->quiesce) {
3076 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3077 mdname(mddev), mddev->pers->name);
3078 return -EINVAL;
3079 }
3080
3081 /* Now find the new personality */
3082 if (len == 0 || len >= sizeof(clevel))
3083 return -EINVAL;
3084 strncpy(clevel, buf, len);
3085 if (clevel[len-1] == '\n')
3086 len--;
3087 clevel[len] = 0;
3088 if (strict_strtol(clevel, 10, &level))
3089 level = LEVEL_NONE;
3090
3091 if (request_module("md-%s", clevel) != 0)
3092 request_module("md-level-%s", clevel);
3093 spin_lock(&pers_lock);
3094 pers = find_pers(level, clevel);
3095 if (!pers || !try_module_get(pers->owner)) {
3096 spin_unlock(&pers_lock);
3097 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3098 return -EINVAL;
3099 }
3100 spin_unlock(&pers_lock);
3101
3102 if (pers == mddev->pers) {
3103 /* Nothing to do! */
3104 module_put(pers->owner);
3105 return rv;
3106 }
3107 if (!pers->takeover) {
3108 module_put(pers->owner);
3109 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3110 mdname(mddev), clevel);
3111 return -EINVAL;
3112 }
3113
3114 list_for_each_entry(rdev, &mddev->disks, same_set)
3115 rdev->new_raid_disk = rdev->raid_disk;
3116
3117 /* ->takeover must set new_* and/or delta_disks
3118 * if it succeeds, and may set them when it fails.
3119 */
3120 priv = pers->takeover(mddev);
3121 if (IS_ERR(priv)) {
3122 mddev->new_level = mddev->level;
3123 mddev->new_layout = mddev->layout;
3124 mddev->new_chunk_sectors = mddev->chunk_sectors;
3125 mddev->raid_disks -= mddev->delta_disks;
3126 mddev->delta_disks = 0;
3127 module_put(pers->owner);
3128 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3129 mdname(mddev), clevel);
3130 return PTR_ERR(priv);
3131 }
3132
3133 /* Looks like we have a winner */
3134 mddev_suspend(mddev);
3135 mddev->pers->stop(mddev);
3136
3137 if (mddev->pers->sync_request == NULL &&
3138 pers->sync_request != NULL) {
3139 /* need to add the md_redundancy_group */
3140 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3141 printk(KERN_WARNING
3142 "md: cannot register extra attributes for %s\n",
3143 mdname(mddev));
3144 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3145 }
3146 if (mddev->pers->sync_request != NULL &&
3147 pers->sync_request == NULL) {
3148 /* need to remove the md_redundancy_group */
3149 if (mddev->to_remove == NULL)
3150 mddev->to_remove = &md_redundancy_group;
3151 }
3152
3153 if (mddev->pers->sync_request == NULL &&
3154 mddev->external) {
3155 /* We are converting from a no-redundancy array
3156 * to a redundancy array and metadata is managed
3157 * externally so we need to be sure that writes
3158 * won't block due to a need to transition
3159 * clean->dirty
3160 * until external management is started.
3161 */
3162 mddev->in_sync = 0;
3163 mddev->safemode_delay = 0;
3164 mddev->safemode = 0;
3165 }
3166
3167 list_for_each_entry(rdev, &mddev->disks, same_set) {
3168 if (rdev->raid_disk < 0)
3169 continue;
3170 if (rdev->new_raid_disk >= mddev->raid_disks)
3171 rdev->new_raid_disk = -1;
3172 if (rdev->new_raid_disk == rdev->raid_disk)
3173 continue;
3174 sysfs_unlink_rdev(mddev, rdev);
3175 }
3176 list_for_each_entry(rdev, &mddev->disks, same_set) {
3177 if (rdev->raid_disk < 0)
3178 continue;
3179 if (rdev->new_raid_disk == rdev->raid_disk)
3180 continue;
3181 rdev->raid_disk = rdev->new_raid_disk;
3182 if (rdev->raid_disk < 0)
3183 clear_bit(In_sync, &rdev->flags);
3184 else {
3185 if (sysfs_link_rdev(mddev, rdev))
3186 printk(KERN_WARNING "md: cannot register rd%d"
3187 " for %s after level change\n",
3188 rdev->raid_disk, mdname(mddev));
3189 }
3190 }
3191
3192 module_put(mddev->pers->owner);
3193 mddev->pers = pers;
3194 mddev->private = priv;
3195 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3196 mddev->level = mddev->new_level;
3197 mddev->layout = mddev->new_layout;
3198 mddev->chunk_sectors = mddev->new_chunk_sectors;
3199 mddev->delta_disks = 0;
3200 mddev->degraded = 0;
3201 if (mddev->pers->sync_request == NULL) {
3202 /* this is now an array without redundancy, so
3203 * it must always be in_sync
3204 */
3205 mddev->in_sync = 1;
3206 del_timer_sync(&mddev->safemode_timer);
3207 }
3208 pers->run(mddev);
3209 mddev_resume(mddev);
3210 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3211 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3212 md_wakeup_thread(mddev->thread);
3213 sysfs_notify(&mddev->kobj, NULL, "level");
3214 md_new_event(mddev);
3215 return rv;
3216 }
3217
3218 static struct md_sysfs_entry md_level =
3219 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3220
3221
3222 static ssize_t
3223 layout_show(mddev_t *mddev, char *page)
3224 {
3225 /* just a number, not meaningful for all levels */
3226 if (mddev->reshape_position != MaxSector &&
3227 mddev->layout != mddev->new_layout)
3228 return sprintf(page, "%d (%d)\n",
3229 mddev->new_layout, mddev->layout);
3230 return sprintf(page, "%d\n", mddev->layout);
3231 }
3232
3233 static ssize_t
3234 layout_store(mddev_t *mddev, const char *buf, size_t len)
3235 {
3236 char *e;
3237 unsigned long n = simple_strtoul(buf, &e, 10);
3238
3239 if (!*buf || (*e && *e != '\n'))
3240 return -EINVAL;
3241
3242 if (mddev->pers) {
3243 int err;
3244 if (mddev->pers->check_reshape == NULL)
3245 return -EBUSY;
3246 mddev->new_layout = n;
3247 err = mddev->pers->check_reshape(mddev);
3248 if (err) {
3249 mddev->new_layout = mddev->layout;
3250 return err;
3251 }
3252 } else {
3253 mddev->new_layout = n;
3254 if (mddev->reshape_position == MaxSector)
3255 mddev->layout = n;
3256 }
3257 return len;
3258 }
3259 static struct md_sysfs_entry md_layout =
3260 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3261
3262
3263 static ssize_t
3264 raid_disks_show(mddev_t *mddev, char *page)
3265 {
3266 if (mddev->raid_disks == 0)
3267 return 0;
3268 if (mddev->reshape_position != MaxSector &&
3269 mddev->delta_disks != 0)
3270 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3271 mddev->raid_disks - mddev->delta_disks);
3272 return sprintf(page, "%d\n", mddev->raid_disks);
3273 }
3274
3275 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3276
3277 static ssize_t
3278 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3279 {
3280 char *e;
3281 int rv = 0;
3282 unsigned long n = simple_strtoul(buf, &e, 10);
3283
3284 if (!*buf || (*e && *e != '\n'))
3285 return -EINVAL;
3286
3287 if (mddev->pers)
3288 rv = update_raid_disks(mddev, n);
3289 else if (mddev->reshape_position != MaxSector) {
3290 int olddisks = mddev->raid_disks - mddev->delta_disks;
3291 mddev->delta_disks = n - olddisks;
3292 mddev->raid_disks = n;
3293 } else
3294 mddev->raid_disks = n;
3295 return rv ? rv : len;
3296 }
3297 static struct md_sysfs_entry md_raid_disks =
3298 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3299
3300 static ssize_t
3301 chunk_size_show(mddev_t *mddev, char *page)
3302 {
3303 if (mddev->reshape_position != MaxSector &&
3304 mddev->chunk_sectors != mddev->new_chunk_sectors)
3305 return sprintf(page, "%d (%d)\n",
3306 mddev->new_chunk_sectors << 9,
3307 mddev->chunk_sectors << 9);
3308 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3309 }
3310
3311 static ssize_t
3312 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3313 {
3314 char *e;
3315 unsigned long n = simple_strtoul(buf, &e, 10);
3316
3317 if (!*buf || (*e && *e != '\n'))
3318 return -EINVAL;
3319
3320 if (mddev->pers) {
3321 int err;
3322 if (mddev->pers->check_reshape == NULL)
3323 return -EBUSY;
3324 mddev->new_chunk_sectors = n >> 9;
3325 err = mddev->pers->check_reshape(mddev);
3326 if (err) {
3327 mddev->new_chunk_sectors = mddev->chunk_sectors;
3328 return err;
3329 }
3330 } else {
3331 mddev->new_chunk_sectors = n >> 9;
3332 if (mddev->reshape_position == MaxSector)
3333 mddev->chunk_sectors = n >> 9;
3334 }
3335 return len;
3336 }
3337 static struct md_sysfs_entry md_chunk_size =
3338 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3339
3340 static ssize_t
3341 resync_start_show(mddev_t *mddev, char *page)
3342 {
3343 if (mddev->recovery_cp == MaxSector)
3344 return sprintf(page, "none\n");
3345 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3346 }
3347
3348 static ssize_t
3349 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3350 {
3351 char *e;
3352 unsigned long long n = simple_strtoull(buf, &e, 10);
3353
3354 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3355 return -EBUSY;
3356 if (cmd_match(buf, "none"))
3357 n = MaxSector;
3358 else if (!*buf || (*e && *e != '\n'))
3359 return -EINVAL;
3360
3361 mddev->recovery_cp = n;
3362 return len;
3363 }
3364 static struct md_sysfs_entry md_resync_start =
3365 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3366
3367 /*
3368 * The array state can be:
3369 *
3370 * clear
3371 * No devices, no size, no level
3372 * Equivalent to STOP_ARRAY ioctl
3373 * inactive
3374 * May have some settings, but array is not active
3375 * all IO results in error
3376 * When written, doesn't tear down array, but just stops it
3377 * suspended (not supported yet)
3378 * All IO requests will block. The array can be reconfigured.
3379 * Writing this, if accepted, will block until array is quiescent
3380 * readonly
3381 * no resync can happen. no superblocks get written.
3382 * write requests fail
3383 * read-auto
3384 * like readonly, but behaves like 'clean' on a write request.
3385 *
3386 * clean - no pending writes, but otherwise active.
3387 * When written to inactive array, starts without resync
3388 * If a write request arrives then
3389 * if metadata is known, mark 'dirty' and switch to 'active'.
3390 * if not known, block and switch to write-pending
3391 * If written to an active array that has pending writes, then fails.
3392 * active
3393 * fully active: IO and resync can be happening.
3394 * When written to inactive array, starts with resync
3395 *
3396 * write-pending
3397 * clean, but writes are blocked waiting for 'active' to be written.
3398 *
3399 * active-idle
3400 * like active, but no writes have been seen for a while (100msec).
3401 *
3402 */
3403 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3404 write_pending, active_idle, bad_word};
3405 static char *array_states[] = {
3406 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3407 "write-pending", "active-idle", NULL };
3408
3409 static int match_word(const char *word, char **list)
3410 {
3411 int n;
3412 for (n=0; list[n]; n++)
3413 if (cmd_match(word, list[n]))
3414 break;
3415 return n;
3416 }
3417
3418 static ssize_t
3419 array_state_show(mddev_t *mddev, char *page)
3420 {
3421 enum array_state st = inactive;
3422
3423 if (mddev->pers)
3424 switch(mddev->ro) {
3425 case 1:
3426 st = readonly;
3427 break;
3428 case 2:
3429 st = read_auto;
3430 break;
3431 case 0:
3432 if (mddev->in_sync)
3433 st = clean;
3434 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3435 st = write_pending;
3436 else if (mddev->safemode)
3437 st = active_idle;
3438 else
3439 st = active;
3440 }
3441 else {
3442 if (list_empty(&mddev->disks) &&
3443 mddev->raid_disks == 0 &&
3444 mddev->dev_sectors == 0)
3445 st = clear;
3446 else
3447 st = inactive;
3448 }
3449 return sprintf(page, "%s\n", array_states[st]);
3450 }
3451
3452 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3453 static int md_set_readonly(mddev_t * mddev, int is_open);
3454 static int do_md_run(mddev_t * mddev);
3455 static int restart_array(mddev_t *mddev);
3456
3457 static ssize_t
3458 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3459 {
3460 int err = -EINVAL;
3461 enum array_state st = match_word(buf, array_states);
3462 switch(st) {
3463 case bad_word:
3464 break;
3465 case clear:
3466 /* stopping an active array */
3467 if (atomic_read(&mddev->openers) > 0)
3468 return -EBUSY;
3469 err = do_md_stop(mddev, 0, 0);
3470 break;
3471 case inactive:
3472 /* stopping an active array */
3473 if (mddev->pers) {
3474 if (atomic_read(&mddev->openers) > 0)
3475 return -EBUSY;
3476 err = do_md_stop(mddev, 2, 0);
3477 } else
3478 err = 0; /* already inactive */
3479 break;
3480 case suspended:
3481 break; /* not supported yet */
3482 case readonly:
3483 if (mddev->pers)
3484 err = md_set_readonly(mddev, 0);
3485 else {
3486 mddev->ro = 1;
3487 set_disk_ro(mddev->gendisk, 1);
3488 err = do_md_run(mddev);
3489 }
3490 break;
3491 case read_auto:
3492 if (mddev->pers) {
3493 if (mddev->ro == 0)
3494 err = md_set_readonly(mddev, 0);
3495 else if (mddev->ro == 1)
3496 err = restart_array(mddev);
3497 if (err == 0) {
3498 mddev->ro = 2;
3499 set_disk_ro(mddev->gendisk, 0);
3500 }
3501 } else {
3502 mddev->ro = 2;
3503 err = do_md_run(mddev);
3504 }
3505 break;
3506 case clean:
3507 if (mddev->pers) {
3508 restart_array(mddev);
3509 spin_lock_irq(&mddev->write_lock);
3510 if (atomic_read(&mddev->writes_pending) == 0) {
3511 if (mddev->in_sync == 0) {
3512 mddev->in_sync = 1;
3513 if (mddev->safemode == 1)
3514 mddev->safemode = 0;
3515 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3516 }
3517 err = 0;
3518 } else
3519 err = -EBUSY;
3520 spin_unlock_irq(&mddev->write_lock);
3521 } else
3522 err = -EINVAL;
3523 break;
3524 case active:
3525 if (mddev->pers) {
3526 restart_array(mddev);
3527 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3528 wake_up(&mddev->sb_wait);
3529 err = 0;
3530 } else {
3531 mddev->ro = 0;
3532 set_disk_ro(mddev->gendisk, 0);
3533 err = do_md_run(mddev);
3534 }
3535 break;
3536 case write_pending:
3537 case active_idle:
3538 /* these cannot be set */
3539 break;
3540 }
3541 if (err)
3542 return err;
3543 else {
3544 sysfs_notify_dirent_safe(mddev->sysfs_state);
3545 return len;
3546 }
3547 }
3548 static struct md_sysfs_entry md_array_state =
3549 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3550
3551 static ssize_t
3552 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3553 return sprintf(page, "%d\n",
3554 atomic_read(&mddev->max_corr_read_errors));
3555 }
3556
3557 static ssize_t
3558 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3559 {
3560 char *e;
3561 unsigned long n = simple_strtoul(buf, &e, 10);
3562
3563 if (*buf && (*e == 0 || *e == '\n')) {
3564 atomic_set(&mddev->max_corr_read_errors, n);
3565 return len;
3566 }
3567 return -EINVAL;
3568 }
3569
3570 static struct md_sysfs_entry max_corr_read_errors =
3571 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3572 max_corrected_read_errors_store);
3573
3574 static ssize_t
3575 null_show(mddev_t *mddev, char *page)
3576 {
3577 return -EINVAL;
3578 }
3579
3580 static ssize_t
3581 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3582 {
3583 /* buf must be %d:%d\n? giving major and minor numbers */
3584 /* The new device is added to the array.
3585 * If the array has a persistent superblock, we read the
3586 * superblock to initialise info and check validity.
3587 * Otherwise, only checking done is that in bind_rdev_to_array,
3588 * which mainly checks size.
3589 */
3590 char *e;
3591 int major = simple_strtoul(buf, &e, 10);
3592 int minor;
3593 dev_t dev;
3594 mdk_rdev_t *rdev;
3595 int err;
3596
3597 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3598 return -EINVAL;
3599 minor = simple_strtoul(e+1, &e, 10);
3600 if (*e && *e != '\n')
3601 return -EINVAL;
3602 dev = MKDEV(major, minor);
3603 if (major != MAJOR(dev) ||
3604 minor != MINOR(dev))
3605 return -EOVERFLOW;
3606
3607
3608 if (mddev->persistent) {
3609 rdev = md_import_device(dev, mddev->major_version,
3610 mddev->minor_version);
3611 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3612 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3613 mdk_rdev_t, same_set);
3614 err = super_types[mddev->major_version]
3615 .load_super(rdev, rdev0, mddev->minor_version);
3616 if (err < 0)
3617 goto out;
3618 }
3619 } else if (mddev->external)
3620 rdev = md_import_device(dev, -2, -1);
3621 else
3622 rdev = md_import_device(dev, -1, -1);
3623
3624 if (IS_ERR(rdev))
3625 return PTR_ERR(rdev);
3626 err = bind_rdev_to_array(rdev, mddev);
3627 out:
3628 if (err)
3629 export_rdev(rdev);
3630 return err ? err : len;
3631 }
3632
3633 static struct md_sysfs_entry md_new_device =
3634 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3635
3636 static ssize_t
3637 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3638 {
3639 char *end;
3640 unsigned long chunk, end_chunk;
3641
3642 if (!mddev->bitmap)
3643 goto out;
3644 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3645 while (*buf) {
3646 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3647 if (buf == end) break;
3648 if (*end == '-') { /* range */
3649 buf = end + 1;
3650 end_chunk = simple_strtoul(buf, &end, 0);
3651 if (buf == end) break;
3652 }
3653 if (*end && !isspace(*end)) break;
3654 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3655 buf = skip_spaces(end);
3656 }
3657 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3658 out:
3659 return len;
3660 }
3661
3662 static struct md_sysfs_entry md_bitmap =
3663 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3664
3665 static ssize_t
3666 size_show(mddev_t *mddev, char *page)
3667 {
3668 return sprintf(page, "%llu\n",
3669 (unsigned long long)mddev->dev_sectors / 2);
3670 }
3671
3672 static int update_size(mddev_t *mddev, sector_t num_sectors);
3673
3674 static ssize_t
3675 size_store(mddev_t *mddev, const char *buf, size_t len)
3676 {
3677 /* If array is inactive, we can reduce the component size, but
3678 * not increase it (except from 0).
3679 * If array is active, we can try an on-line resize
3680 */
3681 sector_t sectors;
3682 int err = strict_blocks_to_sectors(buf, &sectors);
3683
3684 if (err < 0)
3685 return err;
3686 if (mddev->pers) {
3687 err = update_size(mddev, sectors);
3688 md_update_sb(mddev, 1);
3689 } else {
3690 if (mddev->dev_sectors == 0 ||
3691 mddev->dev_sectors > sectors)
3692 mddev->dev_sectors = sectors;
3693 else
3694 err = -ENOSPC;
3695 }
3696 return err ? err : len;
3697 }
3698
3699 static struct md_sysfs_entry md_size =
3700 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3701
3702
3703 /* Metdata version.
3704 * This is one of
3705 * 'none' for arrays with no metadata (good luck...)
3706 * 'external' for arrays with externally managed metadata,
3707 * or N.M for internally known formats
3708 */
3709 static ssize_t
3710 metadata_show(mddev_t *mddev, char *page)
3711 {
3712 if (mddev->persistent)
3713 return sprintf(page, "%d.%d\n",
3714 mddev->major_version, mddev->minor_version);
3715 else if (mddev->external)
3716 return sprintf(page, "external:%s\n", mddev->metadata_type);
3717 else
3718 return sprintf(page, "none\n");
3719 }
3720
3721 static ssize_t
3722 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3723 {
3724 int major, minor;
3725 char *e;
3726 /* Changing the details of 'external' metadata is
3727 * always permitted. Otherwise there must be
3728 * no devices attached to the array.
3729 */
3730 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3731 ;
3732 else if (!list_empty(&mddev->disks))
3733 return -EBUSY;
3734
3735 if (cmd_match(buf, "none")) {
3736 mddev->persistent = 0;
3737 mddev->external = 0;
3738 mddev->major_version = 0;
3739 mddev->minor_version = 90;
3740 return len;
3741 }
3742 if (strncmp(buf, "external:", 9) == 0) {
3743 size_t namelen = len-9;
3744 if (namelen >= sizeof(mddev->metadata_type))
3745 namelen = sizeof(mddev->metadata_type)-1;
3746 strncpy(mddev->metadata_type, buf+9, namelen);
3747 mddev->metadata_type[namelen] = 0;
3748 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3749 mddev->metadata_type[--namelen] = 0;
3750 mddev->persistent = 0;
3751 mddev->external = 1;
3752 mddev->major_version = 0;
3753 mddev->minor_version = 90;
3754 return len;
3755 }
3756 major = simple_strtoul(buf, &e, 10);
3757 if (e==buf || *e != '.')
3758 return -EINVAL;
3759 buf = e+1;
3760 minor = simple_strtoul(buf, &e, 10);
3761 if (e==buf || (*e && *e != '\n') )
3762 return -EINVAL;
3763 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3764 return -ENOENT;
3765 mddev->major_version = major;
3766 mddev->minor_version = minor;
3767 mddev->persistent = 1;
3768 mddev->external = 0;
3769 return len;
3770 }
3771
3772 static struct md_sysfs_entry md_metadata =
3773 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3774
3775 static ssize_t
3776 action_show(mddev_t *mddev, char *page)
3777 {
3778 char *type = "idle";
3779 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3780 type = "frozen";
3781 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3782 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3783 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3784 type = "reshape";
3785 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3786 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3787 type = "resync";
3788 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3789 type = "check";
3790 else
3791 type = "repair";
3792 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3793 type = "recover";
3794 }
3795 return sprintf(page, "%s\n", type);
3796 }
3797
3798 static void reap_sync_thread(mddev_t *mddev);
3799
3800 static ssize_t
3801 action_store(mddev_t *mddev, const char *page, size_t len)
3802 {
3803 if (!mddev->pers || !mddev->pers->sync_request)
3804 return -EINVAL;
3805
3806 if (cmd_match(page, "frozen"))
3807 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3808 else
3809 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3810
3811 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3812 if (mddev->sync_thread) {
3813 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3814 reap_sync_thread(mddev);
3815 }
3816 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3817 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3818 return -EBUSY;
3819 else if (cmd_match(page, "resync"))
3820 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3821 else if (cmd_match(page, "recover")) {
3822 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3823 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3824 } else if (cmd_match(page, "reshape")) {
3825 int err;
3826 if (mddev->pers->start_reshape == NULL)
3827 return -EINVAL;
3828 err = mddev->pers->start_reshape(mddev);
3829 if (err)
3830 return err;
3831 sysfs_notify(&mddev->kobj, NULL, "degraded");
3832 } else {
3833 if (cmd_match(page, "check"))
3834 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3835 else if (!cmd_match(page, "repair"))
3836 return -EINVAL;
3837 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3838 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3839 }
3840 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3841 md_wakeup_thread(mddev->thread);
3842 sysfs_notify_dirent_safe(mddev->sysfs_action);
3843 return len;
3844 }
3845
3846 static ssize_t
3847 mismatch_cnt_show(mddev_t *mddev, char *page)
3848 {
3849 return sprintf(page, "%llu\n",
3850 (unsigned long long) mddev->resync_mismatches);
3851 }
3852
3853 static struct md_sysfs_entry md_scan_mode =
3854 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3855
3856
3857 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3858
3859 static ssize_t
3860 sync_min_show(mddev_t *mddev, char *page)
3861 {
3862 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3863 mddev->sync_speed_min ? "local": "system");
3864 }
3865
3866 static ssize_t
3867 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3868 {
3869 int min;
3870 char *e;
3871 if (strncmp(buf, "system", 6)==0) {
3872 mddev->sync_speed_min = 0;
3873 return len;
3874 }
3875 min = simple_strtoul(buf, &e, 10);
3876 if (buf == e || (*e && *e != '\n') || min <= 0)
3877 return -EINVAL;
3878 mddev->sync_speed_min = min;
3879 return len;
3880 }
3881
3882 static struct md_sysfs_entry md_sync_min =
3883 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3884
3885 static ssize_t
3886 sync_max_show(mddev_t *mddev, char *page)
3887 {
3888 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3889 mddev->sync_speed_max ? "local": "system");
3890 }
3891
3892 static ssize_t
3893 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3894 {
3895 int max;
3896 char *e;
3897 if (strncmp(buf, "system", 6)==0) {
3898 mddev->sync_speed_max = 0;
3899 return len;
3900 }
3901 max = simple_strtoul(buf, &e, 10);
3902 if (buf == e || (*e && *e != '\n') || max <= 0)
3903 return -EINVAL;
3904 mddev->sync_speed_max = max;
3905 return len;
3906 }
3907
3908 static struct md_sysfs_entry md_sync_max =
3909 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3910
3911 static ssize_t
3912 degraded_show(mddev_t *mddev, char *page)
3913 {
3914 return sprintf(page, "%d\n", mddev->degraded);
3915 }
3916 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3917
3918 static ssize_t
3919 sync_force_parallel_show(mddev_t *mddev, char *page)
3920 {
3921 return sprintf(page, "%d\n", mddev->parallel_resync);
3922 }
3923
3924 static ssize_t
3925 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3926 {
3927 long n;
3928
3929 if (strict_strtol(buf, 10, &n))
3930 return -EINVAL;
3931
3932 if (n != 0 && n != 1)
3933 return -EINVAL;
3934
3935 mddev->parallel_resync = n;
3936
3937 if (mddev->sync_thread)
3938 wake_up(&resync_wait);
3939
3940 return len;
3941 }
3942
3943 /* force parallel resync, even with shared block devices */
3944 static struct md_sysfs_entry md_sync_force_parallel =
3945 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3946 sync_force_parallel_show, sync_force_parallel_store);
3947
3948 static ssize_t
3949 sync_speed_show(mddev_t *mddev, char *page)
3950 {
3951 unsigned long resync, dt, db;
3952 if (mddev->curr_resync == 0)
3953 return sprintf(page, "none\n");
3954 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3955 dt = (jiffies - mddev->resync_mark) / HZ;
3956 if (!dt) dt++;
3957 db = resync - mddev->resync_mark_cnt;
3958 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3959 }
3960
3961 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3962
3963 static ssize_t
3964 sync_completed_show(mddev_t *mddev, char *page)
3965 {
3966 unsigned long long max_sectors, resync;
3967
3968 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3969 return sprintf(page, "none\n");
3970
3971 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3972 max_sectors = mddev->resync_max_sectors;
3973 else
3974 max_sectors = mddev->dev_sectors;
3975
3976 resync = mddev->curr_resync_completed;
3977 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
3978 }
3979
3980 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3981
3982 static ssize_t
3983 min_sync_show(mddev_t *mddev, char *page)
3984 {
3985 return sprintf(page, "%llu\n",
3986 (unsigned long long)mddev->resync_min);
3987 }
3988 static ssize_t
3989 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3990 {
3991 unsigned long long min;
3992 if (strict_strtoull(buf, 10, &min))
3993 return -EINVAL;
3994 if (min > mddev->resync_max)
3995 return -EINVAL;
3996 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3997 return -EBUSY;
3998
3999 /* Must be a multiple of chunk_size */
4000 if (mddev->chunk_sectors) {
4001 sector_t temp = min;
4002 if (sector_div(temp, mddev->chunk_sectors))
4003 return -EINVAL;
4004 }
4005 mddev->resync_min = min;
4006
4007 return len;
4008 }
4009
4010 static struct md_sysfs_entry md_min_sync =
4011 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4012
4013 static ssize_t
4014 max_sync_show(mddev_t *mddev, char *page)
4015 {
4016 if (mddev->resync_max == MaxSector)
4017 return sprintf(page, "max\n");
4018 else
4019 return sprintf(page, "%llu\n",
4020 (unsigned long long)mddev->resync_max);
4021 }
4022 static ssize_t
4023 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
4024 {
4025 if (strncmp(buf, "max", 3) == 0)
4026 mddev->resync_max = MaxSector;
4027 else {
4028 unsigned long long max;
4029 if (strict_strtoull(buf, 10, &max))
4030 return -EINVAL;
4031 if (max < mddev->resync_min)
4032 return -EINVAL;
4033 if (max < mddev->resync_max &&
4034 mddev->ro == 0 &&
4035 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4036 return -EBUSY;
4037
4038 /* Must be a multiple of chunk_size */
4039 if (mddev->chunk_sectors) {
4040 sector_t temp = max;
4041 if (sector_div(temp, mddev->chunk_sectors))
4042 return -EINVAL;
4043 }
4044 mddev->resync_max = max;
4045 }
4046 wake_up(&mddev->recovery_wait);
4047 return len;
4048 }
4049
4050 static struct md_sysfs_entry md_max_sync =
4051 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4052
4053 static ssize_t
4054 suspend_lo_show(mddev_t *mddev, char *page)
4055 {
4056 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4057 }
4058
4059 static ssize_t
4060 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4061 {
4062 char *e;
4063 unsigned long long new = simple_strtoull(buf, &e, 10);
4064 unsigned long long old = mddev->suspend_lo;
4065
4066 if (mddev->pers == NULL ||
4067 mddev->pers->quiesce == NULL)
4068 return -EINVAL;
4069 if (buf == e || (*e && *e != '\n'))
4070 return -EINVAL;
4071
4072 mddev->suspend_lo = new;
4073 if (new >= old)
4074 /* Shrinking suspended region */
4075 mddev->pers->quiesce(mddev, 2);
4076 else {
4077 /* Expanding suspended region - need to wait */
4078 mddev->pers->quiesce(mddev, 1);
4079 mddev->pers->quiesce(mddev, 0);
4080 }
4081 return len;
4082 }
4083 static struct md_sysfs_entry md_suspend_lo =
4084 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4085
4086
4087 static ssize_t
4088 suspend_hi_show(mddev_t *mddev, char *page)
4089 {
4090 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4091 }
4092
4093 static ssize_t
4094 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4095 {
4096 char *e;
4097 unsigned long long new = simple_strtoull(buf, &e, 10);
4098 unsigned long long old = mddev->suspend_hi;
4099
4100 if (mddev->pers == NULL ||
4101 mddev->pers->quiesce == NULL)
4102 return -EINVAL;
4103 if (buf == e || (*e && *e != '\n'))
4104 return -EINVAL;
4105
4106 mddev->suspend_hi = new;
4107 if (new <= old)
4108 /* Shrinking suspended region */
4109 mddev->pers->quiesce(mddev, 2);
4110 else {
4111 /* Expanding suspended region - need to wait */
4112 mddev->pers->quiesce(mddev, 1);
4113 mddev->pers->quiesce(mddev, 0);
4114 }
4115 return len;
4116 }
4117 static struct md_sysfs_entry md_suspend_hi =
4118 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4119
4120 static ssize_t
4121 reshape_position_show(mddev_t *mddev, char *page)
4122 {
4123 if (mddev->reshape_position != MaxSector)
4124 return sprintf(page, "%llu\n",
4125 (unsigned long long)mddev->reshape_position);
4126 strcpy(page, "none\n");
4127 return 5;
4128 }
4129
4130 static ssize_t
4131 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4132 {
4133 char *e;
4134 unsigned long long new = simple_strtoull(buf, &e, 10);
4135 if (mddev->pers)
4136 return -EBUSY;
4137 if (buf == e || (*e && *e != '\n'))
4138 return -EINVAL;
4139 mddev->reshape_position = new;
4140 mddev->delta_disks = 0;
4141 mddev->new_level = mddev->level;
4142 mddev->new_layout = mddev->layout;
4143 mddev->new_chunk_sectors = mddev->chunk_sectors;
4144 return len;
4145 }
4146
4147 static struct md_sysfs_entry md_reshape_position =
4148 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4149 reshape_position_store);
4150
4151 static ssize_t
4152 array_size_show(mddev_t *mddev, char *page)
4153 {
4154 if (mddev->external_size)
4155 return sprintf(page, "%llu\n",
4156 (unsigned long long)mddev->array_sectors/2);
4157 else
4158 return sprintf(page, "default\n");
4159 }
4160
4161 static ssize_t
4162 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4163 {
4164 sector_t sectors;
4165
4166 if (strncmp(buf, "default", 7) == 0) {
4167 if (mddev->pers)
4168 sectors = mddev->pers->size(mddev, 0, 0);
4169 else
4170 sectors = mddev->array_sectors;
4171
4172 mddev->external_size = 0;
4173 } else {
4174 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4175 return -EINVAL;
4176 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4177 return -E2BIG;
4178
4179 mddev->external_size = 1;
4180 }
4181
4182 mddev->array_sectors = sectors;
4183 if (mddev->pers) {
4184 set_capacity(mddev->gendisk, mddev->array_sectors);
4185 revalidate_disk(mddev->gendisk);
4186 }
4187 return len;
4188 }
4189
4190 static struct md_sysfs_entry md_array_size =
4191 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4192 array_size_store);
4193
4194 static struct attribute *md_default_attrs[] = {
4195 &md_level.attr,
4196 &md_layout.attr,
4197 &md_raid_disks.attr,
4198 &md_chunk_size.attr,
4199 &md_size.attr,
4200 &md_resync_start.attr,
4201 &md_metadata.attr,
4202 &md_new_device.attr,
4203 &md_safe_delay.attr,
4204 &md_array_state.attr,
4205 &md_reshape_position.attr,
4206 &md_array_size.attr,
4207 &max_corr_read_errors.attr,
4208 NULL,
4209 };
4210
4211 static struct attribute *md_redundancy_attrs[] = {
4212 &md_scan_mode.attr,
4213 &md_mismatches.attr,
4214 &md_sync_min.attr,
4215 &md_sync_max.attr,
4216 &md_sync_speed.attr,
4217 &md_sync_force_parallel.attr,
4218 &md_sync_completed.attr,
4219 &md_min_sync.attr,
4220 &md_max_sync.attr,
4221 &md_suspend_lo.attr,
4222 &md_suspend_hi.attr,
4223 &md_bitmap.attr,
4224 &md_degraded.attr,
4225 NULL,
4226 };
4227 static struct attribute_group md_redundancy_group = {
4228 .name = NULL,
4229 .attrs = md_redundancy_attrs,
4230 };
4231
4232
4233 static ssize_t
4234 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4235 {
4236 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4237 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4238 ssize_t rv;
4239
4240 if (!entry->show)
4241 return -EIO;
4242 rv = mddev_lock(mddev);
4243 if (!rv) {
4244 rv = entry->show(mddev, page);
4245 mddev_unlock(mddev);
4246 }
4247 return rv;
4248 }
4249
4250 static ssize_t
4251 md_attr_store(struct kobject *kobj, struct attribute *attr,
4252 const char *page, size_t length)
4253 {
4254 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4255 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4256 ssize_t rv;
4257
4258 if (!entry->store)
4259 return -EIO;
4260 if (!capable(CAP_SYS_ADMIN))
4261 return -EACCES;
4262 rv = mddev_lock(mddev);
4263 if (mddev->hold_active == UNTIL_IOCTL)
4264 mddev->hold_active = 0;
4265 if (!rv) {
4266 rv = entry->store(mddev, page, length);
4267 mddev_unlock(mddev);
4268 }
4269 return rv;
4270 }
4271
4272 static void md_free(struct kobject *ko)
4273 {
4274 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4275
4276 if (mddev->sysfs_state)
4277 sysfs_put(mddev->sysfs_state);
4278
4279 if (mddev->gendisk) {
4280 del_gendisk(mddev->gendisk);
4281 put_disk(mddev->gendisk);
4282 }
4283 if (mddev->queue)
4284 blk_cleanup_queue(mddev->queue);
4285
4286 kfree(mddev);
4287 }
4288
4289 static const struct sysfs_ops md_sysfs_ops = {
4290 .show = md_attr_show,
4291 .store = md_attr_store,
4292 };
4293 static struct kobj_type md_ktype = {
4294 .release = md_free,
4295 .sysfs_ops = &md_sysfs_ops,
4296 .default_attrs = md_default_attrs,
4297 };
4298
4299 int mdp_major = 0;
4300
4301 static void mddev_delayed_delete(struct work_struct *ws)
4302 {
4303 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4304
4305 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4306 kobject_del(&mddev->kobj);
4307 kobject_put(&mddev->kobj);
4308 }
4309
4310 static int md_alloc(dev_t dev, char *name)
4311 {
4312 static DEFINE_MUTEX(disks_mutex);
4313 mddev_t *mddev = mddev_find(dev);
4314 struct gendisk *disk;
4315 int partitioned;
4316 int shift;
4317 int unit;
4318 int error;
4319
4320 if (!mddev)
4321 return -ENODEV;
4322
4323 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4324 shift = partitioned ? MdpMinorShift : 0;
4325 unit = MINOR(mddev->unit) >> shift;
4326
4327 /* wait for any previous instance of this device to be
4328 * completely removed (mddev_delayed_delete).
4329 */
4330 flush_workqueue(md_misc_wq);
4331
4332 mutex_lock(&disks_mutex);
4333 error = -EEXIST;
4334 if (mddev->gendisk)
4335 goto abort;
4336
4337 if (name) {
4338 /* Need to ensure that 'name' is not a duplicate.
4339 */
4340 mddev_t *mddev2;
4341 spin_lock(&all_mddevs_lock);
4342
4343 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4344 if (mddev2->gendisk &&
4345 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4346 spin_unlock(&all_mddevs_lock);
4347 goto abort;
4348 }
4349 spin_unlock(&all_mddevs_lock);
4350 }
4351
4352 error = -ENOMEM;
4353 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4354 if (!mddev->queue)
4355 goto abort;
4356 mddev->queue->queuedata = mddev;
4357
4358 blk_queue_make_request(mddev->queue, md_make_request);
4359
4360 disk = alloc_disk(1 << shift);
4361 if (!disk) {
4362 blk_cleanup_queue(mddev->queue);
4363 mddev->queue = NULL;
4364 goto abort;
4365 }
4366 disk->major = MAJOR(mddev->unit);
4367 disk->first_minor = unit << shift;
4368 if (name)
4369 strcpy(disk->disk_name, name);
4370 else if (partitioned)
4371 sprintf(disk->disk_name, "md_d%d", unit);
4372 else
4373 sprintf(disk->disk_name, "md%d", unit);
4374 disk->fops = &md_fops;
4375 disk->private_data = mddev;
4376 disk->queue = mddev->queue;
4377 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4378 /* Allow extended partitions. This makes the
4379 * 'mdp' device redundant, but we can't really
4380 * remove it now.
4381 */
4382 disk->flags |= GENHD_FL_EXT_DEVT;
4383 mddev->gendisk = disk;
4384 /* As soon as we call add_disk(), another thread could get
4385 * through to md_open, so make sure it doesn't get too far
4386 */
4387 mutex_lock(&mddev->open_mutex);
4388 add_disk(disk);
4389
4390 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4391 &disk_to_dev(disk)->kobj, "%s", "md");
4392 if (error) {
4393 /* This isn't possible, but as kobject_init_and_add is marked
4394 * __must_check, we must do something with the result
4395 */
4396 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4397 disk->disk_name);
4398 error = 0;
4399 }
4400 if (mddev->kobj.sd &&
4401 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4402 printk(KERN_DEBUG "pointless warning\n");
4403 mutex_unlock(&mddev->open_mutex);
4404 abort:
4405 mutex_unlock(&disks_mutex);
4406 if (!error && mddev->kobj.sd) {
4407 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4408 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4409 }
4410 mddev_put(mddev);
4411 return error;
4412 }
4413
4414 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4415 {
4416 md_alloc(dev, NULL);
4417 return NULL;
4418 }
4419
4420 static int add_named_array(const char *val, struct kernel_param *kp)
4421 {
4422 /* val must be "md_*" where * is not all digits.
4423 * We allocate an array with a large free minor number, and
4424 * set the name to val. val must not already be an active name.
4425 */
4426 int len = strlen(val);
4427 char buf[DISK_NAME_LEN];
4428
4429 while (len && val[len-1] == '\n')
4430 len--;
4431 if (len >= DISK_NAME_LEN)
4432 return -E2BIG;
4433 strlcpy(buf, val, len+1);
4434 if (strncmp(buf, "md_", 3) != 0)
4435 return -EINVAL;
4436 return md_alloc(0, buf);
4437 }
4438
4439 static void md_safemode_timeout(unsigned long data)
4440 {
4441 mddev_t *mddev = (mddev_t *) data;
4442
4443 if (!atomic_read(&mddev->writes_pending)) {
4444 mddev->safemode = 1;
4445 if (mddev->external)
4446 sysfs_notify_dirent_safe(mddev->sysfs_state);
4447 }
4448 md_wakeup_thread(mddev->thread);
4449 }
4450
4451 static int start_dirty_degraded;
4452
4453 int md_run(mddev_t *mddev)
4454 {
4455 int err;
4456 mdk_rdev_t *rdev;
4457 struct mdk_personality *pers;
4458
4459 if (list_empty(&mddev->disks))
4460 /* cannot run an array with no devices.. */
4461 return -EINVAL;
4462
4463 if (mddev->pers)
4464 return -EBUSY;
4465 /* Cannot run until previous stop completes properly */
4466 if (mddev->sysfs_active)
4467 return -EBUSY;
4468
4469 /*
4470 * Analyze all RAID superblock(s)
4471 */
4472 if (!mddev->raid_disks) {
4473 if (!mddev->persistent)
4474 return -EINVAL;
4475 analyze_sbs(mddev);
4476 }
4477
4478 if (mddev->level != LEVEL_NONE)
4479 request_module("md-level-%d", mddev->level);
4480 else if (mddev->clevel[0])
4481 request_module("md-%s", mddev->clevel);
4482
4483 /*
4484 * Drop all container device buffers, from now on
4485 * the only valid external interface is through the md
4486 * device.
4487 */
4488 list_for_each_entry(rdev, &mddev->disks, same_set) {
4489 if (test_bit(Faulty, &rdev->flags))
4490 continue;
4491 sync_blockdev(rdev->bdev);
4492 invalidate_bdev(rdev->bdev);
4493
4494 /* perform some consistency tests on the device.
4495 * We don't want the data to overlap the metadata,
4496 * Internal Bitmap issues have been handled elsewhere.
4497 */
4498 if (rdev->meta_bdev) {
4499 /* Nothing to check */;
4500 } else if (rdev->data_offset < rdev->sb_start) {
4501 if (mddev->dev_sectors &&
4502 rdev->data_offset + mddev->dev_sectors
4503 > rdev->sb_start) {
4504 printk("md: %s: data overlaps metadata\n",
4505 mdname(mddev));
4506 return -EINVAL;
4507 }
4508 } else {
4509 if (rdev->sb_start + rdev->sb_size/512
4510 > rdev->data_offset) {
4511 printk("md: %s: metadata overlaps data\n",
4512 mdname(mddev));
4513 return -EINVAL;
4514 }
4515 }
4516 sysfs_notify_dirent_safe(rdev->sysfs_state);
4517 }
4518
4519 if (mddev->bio_set == NULL)
4520 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4521 sizeof(mddev_t *));
4522
4523 spin_lock(&pers_lock);
4524 pers = find_pers(mddev->level, mddev->clevel);
4525 if (!pers || !try_module_get(pers->owner)) {
4526 spin_unlock(&pers_lock);
4527 if (mddev->level != LEVEL_NONE)
4528 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4529 mddev->level);
4530 else
4531 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4532 mddev->clevel);
4533 return -EINVAL;
4534 }
4535 mddev->pers = pers;
4536 spin_unlock(&pers_lock);
4537 if (mddev->level != pers->level) {
4538 mddev->level = pers->level;
4539 mddev->new_level = pers->level;
4540 }
4541 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4542
4543 if (mddev->reshape_position != MaxSector &&
4544 pers->start_reshape == NULL) {
4545 /* This personality cannot handle reshaping... */
4546 mddev->pers = NULL;
4547 module_put(pers->owner);
4548 return -EINVAL;
4549 }
4550
4551 if (pers->sync_request) {
4552 /* Warn if this is a potentially silly
4553 * configuration.
4554 */
4555 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4556 mdk_rdev_t *rdev2;
4557 int warned = 0;
4558
4559 list_for_each_entry(rdev, &mddev->disks, same_set)
4560 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4561 if (rdev < rdev2 &&
4562 rdev->bdev->bd_contains ==
4563 rdev2->bdev->bd_contains) {
4564 printk(KERN_WARNING
4565 "%s: WARNING: %s appears to be"
4566 " on the same physical disk as"
4567 " %s.\n",
4568 mdname(mddev),
4569 bdevname(rdev->bdev,b),
4570 bdevname(rdev2->bdev,b2));
4571 warned = 1;
4572 }
4573 }
4574
4575 if (warned)
4576 printk(KERN_WARNING
4577 "True protection against single-disk"
4578 " failure might be compromised.\n");
4579 }
4580
4581 mddev->recovery = 0;
4582 /* may be over-ridden by personality */
4583 mddev->resync_max_sectors = mddev->dev_sectors;
4584
4585 mddev->ok_start_degraded = start_dirty_degraded;
4586
4587 if (start_readonly && mddev->ro == 0)
4588 mddev->ro = 2; /* read-only, but switch on first write */
4589
4590 err = mddev->pers->run(mddev);
4591 if (err)
4592 printk(KERN_ERR "md: pers->run() failed ...\n");
4593 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4594 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4595 " but 'external_size' not in effect?\n", __func__);
4596 printk(KERN_ERR
4597 "md: invalid array_size %llu > default size %llu\n",
4598 (unsigned long long)mddev->array_sectors / 2,
4599 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4600 err = -EINVAL;
4601 mddev->pers->stop(mddev);
4602 }
4603 if (err == 0 && mddev->pers->sync_request) {
4604 err = bitmap_create(mddev);
4605 if (err) {
4606 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4607 mdname(mddev), err);
4608 mddev->pers->stop(mddev);
4609 }
4610 }
4611 if (err) {
4612 module_put(mddev->pers->owner);
4613 mddev->pers = NULL;
4614 bitmap_destroy(mddev);
4615 return err;
4616 }
4617 if (mddev->pers->sync_request) {
4618 if (mddev->kobj.sd &&
4619 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4620 printk(KERN_WARNING
4621 "md: cannot register extra attributes for %s\n",
4622 mdname(mddev));
4623 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4624 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4625 mddev->ro = 0;
4626
4627 atomic_set(&mddev->writes_pending,0);
4628 atomic_set(&mddev->max_corr_read_errors,
4629 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4630 mddev->safemode = 0;
4631 mddev->safemode_timer.function = md_safemode_timeout;
4632 mddev->safemode_timer.data = (unsigned long) mddev;
4633 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4634 mddev->in_sync = 1;
4635 smp_wmb();
4636 mddev->ready = 1;
4637 list_for_each_entry(rdev, &mddev->disks, same_set)
4638 if (rdev->raid_disk >= 0)
4639 if (sysfs_link_rdev(mddev, rdev))
4640 /* failure here is OK */;
4641
4642 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4643
4644 if (mddev->flags)
4645 md_update_sb(mddev, 0);
4646
4647 md_new_event(mddev);
4648 sysfs_notify_dirent_safe(mddev->sysfs_state);
4649 sysfs_notify_dirent_safe(mddev->sysfs_action);
4650 sysfs_notify(&mddev->kobj, NULL, "degraded");
4651 return 0;
4652 }
4653 EXPORT_SYMBOL_GPL(md_run);
4654
4655 static int do_md_run(mddev_t *mddev)
4656 {
4657 int err;
4658
4659 err = md_run(mddev);
4660 if (err)
4661 goto out;
4662 err = bitmap_load(mddev);
4663 if (err) {
4664 bitmap_destroy(mddev);
4665 goto out;
4666 }
4667
4668 md_wakeup_thread(mddev->thread);
4669 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4670
4671 set_capacity(mddev->gendisk, mddev->array_sectors);
4672 revalidate_disk(mddev->gendisk);
4673 mddev->changed = 1;
4674 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4675 out:
4676 return err;
4677 }
4678
4679 static int restart_array(mddev_t *mddev)
4680 {
4681 struct gendisk *disk = mddev->gendisk;
4682
4683 /* Complain if it has no devices */
4684 if (list_empty(&mddev->disks))
4685 return -ENXIO;
4686 if (!mddev->pers)
4687 return -EINVAL;
4688 if (!mddev->ro)
4689 return -EBUSY;
4690 mddev->safemode = 0;
4691 mddev->ro = 0;
4692 set_disk_ro(disk, 0);
4693 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4694 mdname(mddev));
4695 /* Kick recovery or resync if necessary */
4696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4697 md_wakeup_thread(mddev->thread);
4698 md_wakeup_thread(mddev->sync_thread);
4699 sysfs_notify_dirent_safe(mddev->sysfs_state);
4700 return 0;
4701 }
4702
4703 /* similar to deny_write_access, but accounts for our holding a reference
4704 * to the file ourselves */
4705 static int deny_bitmap_write_access(struct file * file)
4706 {
4707 struct inode *inode = file->f_mapping->host;
4708
4709 spin_lock(&inode->i_lock);
4710 if (atomic_read(&inode->i_writecount) > 1) {
4711 spin_unlock(&inode->i_lock);
4712 return -ETXTBSY;
4713 }
4714 atomic_set(&inode->i_writecount, -1);
4715 spin_unlock(&inode->i_lock);
4716
4717 return 0;
4718 }
4719
4720 void restore_bitmap_write_access(struct file *file)
4721 {
4722 struct inode *inode = file->f_mapping->host;
4723
4724 spin_lock(&inode->i_lock);
4725 atomic_set(&inode->i_writecount, 1);
4726 spin_unlock(&inode->i_lock);
4727 }
4728
4729 static void md_clean(mddev_t *mddev)
4730 {
4731 mddev->array_sectors = 0;
4732 mddev->external_size = 0;
4733 mddev->dev_sectors = 0;
4734 mddev->raid_disks = 0;
4735 mddev->recovery_cp = 0;
4736 mddev->resync_min = 0;
4737 mddev->resync_max = MaxSector;
4738 mddev->reshape_position = MaxSector;
4739 mddev->external = 0;
4740 mddev->persistent = 0;
4741 mddev->level = LEVEL_NONE;
4742 mddev->clevel[0] = 0;
4743 mddev->flags = 0;
4744 mddev->ro = 0;
4745 mddev->metadata_type[0] = 0;
4746 mddev->chunk_sectors = 0;
4747 mddev->ctime = mddev->utime = 0;
4748 mddev->layout = 0;
4749 mddev->max_disks = 0;
4750 mddev->events = 0;
4751 mddev->can_decrease_events = 0;
4752 mddev->delta_disks = 0;
4753 mddev->new_level = LEVEL_NONE;
4754 mddev->new_layout = 0;
4755 mddev->new_chunk_sectors = 0;
4756 mddev->curr_resync = 0;
4757 mddev->resync_mismatches = 0;
4758 mddev->suspend_lo = mddev->suspend_hi = 0;
4759 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4760 mddev->recovery = 0;
4761 mddev->in_sync = 0;
4762 mddev->changed = 0;
4763 mddev->degraded = 0;
4764 mddev->safemode = 0;
4765 mddev->bitmap_info.offset = 0;
4766 mddev->bitmap_info.default_offset = 0;
4767 mddev->bitmap_info.chunksize = 0;
4768 mddev->bitmap_info.daemon_sleep = 0;
4769 mddev->bitmap_info.max_write_behind = 0;
4770 }
4771
4772 static void __md_stop_writes(mddev_t *mddev)
4773 {
4774 if (mddev->sync_thread) {
4775 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4776 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4777 reap_sync_thread(mddev);
4778 }
4779
4780 del_timer_sync(&mddev->safemode_timer);
4781
4782 bitmap_flush(mddev);
4783 md_super_wait(mddev);
4784
4785 if (!mddev->in_sync || mddev->flags) {
4786 /* mark array as shutdown cleanly */
4787 mddev->in_sync = 1;
4788 md_update_sb(mddev, 1);
4789 }
4790 }
4791
4792 void md_stop_writes(mddev_t *mddev)
4793 {
4794 mddev_lock(mddev);
4795 __md_stop_writes(mddev);
4796 mddev_unlock(mddev);
4797 }
4798 EXPORT_SYMBOL_GPL(md_stop_writes);
4799
4800 void md_stop(mddev_t *mddev)
4801 {
4802 mddev->ready = 0;
4803 mddev->pers->stop(mddev);
4804 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4805 mddev->to_remove = &md_redundancy_group;
4806 module_put(mddev->pers->owner);
4807 mddev->pers = NULL;
4808 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4809 }
4810 EXPORT_SYMBOL_GPL(md_stop);
4811
4812 static int md_set_readonly(mddev_t *mddev, int is_open)
4813 {
4814 int err = 0;
4815 mutex_lock(&mddev->open_mutex);
4816 if (atomic_read(&mddev->openers) > is_open) {
4817 printk("md: %s still in use.\n",mdname(mddev));
4818 err = -EBUSY;
4819 goto out;
4820 }
4821 if (mddev->pers) {
4822 __md_stop_writes(mddev);
4823
4824 err = -ENXIO;
4825 if (mddev->ro==1)
4826 goto out;
4827 mddev->ro = 1;
4828 set_disk_ro(mddev->gendisk, 1);
4829 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4830 sysfs_notify_dirent_safe(mddev->sysfs_state);
4831 err = 0;
4832 }
4833 out:
4834 mutex_unlock(&mddev->open_mutex);
4835 return err;
4836 }
4837
4838 /* mode:
4839 * 0 - completely stop and dis-assemble array
4840 * 2 - stop but do not disassemble array
4841 */
4842 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4843 {
4844 struct gendisk *disk = mddev->gendisk;
4845 mdk_rdev_t *rdev;
4846
4847 mutex_lock(&mddev->open_mutex);
4848 if (atomic_read(&mddev->openers) > is_open ||
4849 mddev->sysfs_active) {
4850 printk("md: %s still in use.\n",mdname(mddev));
4851 mutex_unlock(&mddev->open_mutex);
4852 return -EBUSY;
4853 }
4854
4855 if (mddev->pers) {
4856 if (mddev->ro)
4857 set_disk_ro(disk, 0);
4858
4859 __md_stop_writes(mddev);
4860 md_stop(mddev);
4861 mddev->queue->merge_bvec_fn = NULL;
4862 mddev->queue->backing_dev_info.congested_fn = NULL;
4863
4864 /* tell userspace to handle 'inactive' */
4865 sysfs_notify_dirent_safe(mddev->sysfs_state);
4866
4867 list_for_each_entry(rdev, &mddev->disks, same_set)
4868 if (rdev->raid_disk >= 0)
4869 sysfs_unlink_rdev(mddev, rdev);
4870
4871 set_capacity(disk, 0);
4872 mutex_unlock(&mddev->open_mutex);
4873 mddev->changed = 1;
4874 revalidate_disk(disk);
4875
4876 if (mddev->ro)
4877 mddev->ro = 0;
4878 } else
4879 mutex_unlock(&mddev->open_mutex);
4880 /*
4881 * Free resources if final stop
4882 */
4883 if (mode == 0) {
4884 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4885
4886 bitmap_destroy(mddev);
4887 if (mddev->bitmap_info.file) {
4888 restore_bitmap_write_access(mddev->bitmap_info.file);
4889 fput(mddev->bitmap_info.file);
4890 mddev->bitmap_info.file = NULL;
4891 }
4892 mddev->bitmap_info.offset = 0;
4893
4894 export_array(mddev);
4895
4896 md_clean(mddev);
4897 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4898 if (mddev->hold_active == UNTIL_STOP)
4899 mddev->hold_active = 0;
4900 }
4901 blk_integrity_unregister(disk);
4902 md_new_event(mddev);
4903 sysfs_notify_dirent_safe(mddev->sysfs_state);
4904 return 0;
4905 }
4906
4907 #ifndef MODULE
4908 static void autorun_array(mddev_t *mddev)
4909 {
4910 mdk_rdev_t *rdev;
4911 int err;
4912
4913 if (list_empty(&mddev->disks))
4914 return;
4915
4916 printk(KERN_INFO "md: running: ");
4917
4918 list_for_each_entry(rdev, &mddev->disks, same_set) {
4919 char b[BDEVNAME_SIZE];
4920 printk("<%s>", bdevname(rdev->bdev,b));
4921 }
4922 printk("\n");
4923
4924 err = do_md_run(mddev);
4925 if (err) {
4926 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4927 do_md_stop(mddev, 0, 0);
4928 }
4929 }
4930
4931 /*
4932 * lets try to run arrays based on all disks that have arrived
4933 * until now. (those are in pending_raid_disks)
4934 *
4935 * the method: pick the first pending disk, collect all disks with
4936 * the same UUID, remove all from the pending list and put them into
4937 * the 'same_array' list. Then order this list based on superblock
4938 * update time (freshest comes first), kick out 'old' disks and
4939 * compare superblocks. If everything's fine then run it.
4940 *
4941 * If "unit" is allocated, then bump its reference count
4942 */
4943 static void autorun_devices(int part)
4944 {
4945 mdk_rdev_t *rdev0, *rdev, *tmp;
4946 mddev_t *mddev;
4947 char b[BDEVNAME_SIZE];
4948
4949 printk(KERN_INFO "md: autorun ...\n");
4950 while (!list_empty(&pending_raid_disks)) {
4951 int unit;
4952 dev_t dev;
4953 LIST_HEAD(candidates);
4954 rdev0 = list_entry(pending_raid_disks.next,
4955 mdk_rdev_t, same_set);
4956
4957 printk(KERN_INFO "md: considering %s ...\n",
4958 bdevname(rdev0->bdev,b));
4959 INIT_LIST_HEAD(&candidates);
4960 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4961 if (super_90_load(rdev, rdev0, 0) >= 0) {
4962 printk(KERN_INFO "md: adding %s ...\n",
4963 bdevname(rdev->bdev,b));
4964 list_move(&rdev->same_set, &candidates);
4965 }
4966 /*
4967 * now we have a set of devices, with all of them having
4968 * mostly sane superblocks. It's time to allocate the
4969 * mddev.
4970 */
4971 if (part) {
4972 dev = MKDEV(mdp_major,
4973 rdev0->preferred_minor << MdpMinorShift);
4974 unit = MINOR(dev) >> MdpMinorShift;
4975 } else {
4976 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4977 unit = MINOR(dev);
4978 }
4979 if (rdev0->preferred_minor != unit) {
4980 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4981 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4982 break;
4983 }
4984
4985 md_probe(dev, NULL, NULL);
4986 mddev = mddev_find(dev);
4987 if (!mddev || !mddev->gendisk) {
4988 if (mddev)
4989 mddev_put(mddev);
4990 printk(KERN_ERR
4991 "md: cannot allocate memory for md drive.\n");
4992 break;
4993 }
4994 if (mddev_lock(mddev))
4995 printk(KERN_WARNING "md: %s locked, cannot run\n",
4996 mdname(mddev));
4997 else if (mddev->raid_disks || mddev->major_version
4998 || !list_empty(&mddev->disks)) {
4999 printk(KERN_WARNING
5000 "md: %s already running, cannot run %s\n",
5001 mdname(mddev), bdevname(rdev0->bdev,b));
5002 mddev_unlock(mddev);
5003 } else {
5004 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5005 mddev->persistent = 1;
5006 rdev_for_each_list(rdev, tmp, &candidates) {
5007 list_del_init(&rdev->same_set);
5008 if (bind_rdev_to_array(rdev, mddev))
5009 export_rdev(rdev);
5010 }
5011 autorun_array(mddev);
5012 mddev_unlock(mddev);
5013 }
5014 /* on success, candidates will be empty, on error
5015 * it won't...
5016 */
5017 rdev_for_each_list(rdev, tmp, &candidates) {
5018 list_del_init(&rdev->same_set);
5019 export_rdev(rdev);
5020 }
5021 mddev_put(mddev);
5022 }
5023 printk(KERN_INFO "md: ... autorun DONE.\n");
5024 }
5025 #endif /* !MODULE */
5026
5027 static int get_version(void __user * arg)
5028 {
5029 mdu_version_t ver;
5030
5031 ver.major = MD_MAJOR_VERSION;
5032 ver.minor = MD_MINOR_VERSION;
5033 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5034
5035 if (copy_to_user(arg, &ver, sizeof(ver)))
5036 return -EFAULT;
5037
5038 return 0;
5039 }
5040
5041 static int get_array_info(mddev_t * mddev, void __user * arg)
5042 {
5043 mdu_array_info_t info;
5044 int nr,working,insync,failed,spare;
5045 mdk_rdev_t *rdev;
5046
5047 nr=working=insync=failed=spare=0;
5048 list_for_each_entry(rdev, &mddev->disks, same_set) {
5049 nr++;
5050 if (test_bit(Faulty, &rdev->flags))
5051 failed++;
5052 else {
5053 working++;
5054 if (test_bit(In_sync, &rdev->flags))
5055 insync++;
5056 else
5057 spare++;
5058 }
5059 }
5060
5061 info.major_version = mddev->major_version;
5062 info.minor_version = mddev->minor_version;
5063 info.patch_version = MD_PATCHLEVEL_VERSION;
5064 info.ctime = mddev->ctime;
5065 info.level = mddev->level;
5066 info.size = mddev->dev_sectors / 2;
5067 if (info.size != mddev->dev_sectors / 2) /* overflow */
5068 info.size = -1;
5069 info.nr_disks = nr;
5070 info.raid_disks = mddev->raid_disks;
5071 info.md_minor = mddev->md_minor;
5072 info.not_persistent= !mddev->persistent;
5073
5074 info.utime = mddev->utime;
5075 info.state = 0;
5076 if (mddev->in_sync)
5077 info.state = (1<<MD_SB_CLEAN);
5078 if (mddev->bitmap && mddev->bitmap_info.offset)
5079 info.state = (1<<MD_SB_BITMAP_PRESENT);
5080 info.active_disks = insync;
5081 info.working_disks = working;
5082 info.failed_disks = failed;
5083 info.spare_disks = spare;
5084
5085 info.layout = mddev->layout;
5086 info.chunk_size = mddev->chunk_sectors << 9;
5087
5088 if (copy_to_user(arg, &info, sizeof(info)))
5089 return -EFAULT;
5090
5091 return 0;
5092 }
5093
5094 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5095 {
5096 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5097 char *ptr, *buf = NULL;
5098 int err = -ENOMEM;
5099
5100 if (md_allow_write(mddev))
5101 file = kmalloc(sizeof(*file), GFP_NOIO);
5102 else
5103 file = kmalloc(sizeof(*file), GFP_KERNEL);
5104
5105 if (!file)
5106 goto out;
5107
5108 /* bitmap disabled, zero the first byte and copy out */
5109 if (!mddev->bitmap || !mddev->bitmap->file) {
5110 file->pathname[0] = '\0';
5111 goto copy_out;
5112 }
5113
5114 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5115 if (!buf)
5116 goto out;
5117
5118 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5119 if (IS_ERR(ptr))
5120 goto out;
5121
5122 strcpy(file->pathname, ptr);
5123
5124 copy_out:
5125 err = 0;
5126 if (copy_to_user(arg, file, sizeof(*file)))
5127 err = -EFAULT;
5128 out:
5129 kfree(buf);
5130 kfree(file);
5131 return err;
5132 }
5133
5134 static int get_disk_info(mddev_t * mddev, void __user * arg)
5135 {
5136 mdu_disk_info_t info;
5137 mdk_rdev_t *rdev;
5138
5139 if (copy_from_user(&info, arg, sizeof(info)))
5140 return -EFAULT;
5141
5142 rdev = find_rdev_nr(mddev, info.number);
5143 if (rdev) {
5144 info.major = MAJOR(rdev->bdev->bd_dev);
5145 info.minor = MINOR(rdev->bdev->bd_dev);
5146 info.raid_disk = rdev->raid_disk;
5147 info.state = 0;
5148 if (test_bit(Faulty, &rdev->flags))
5149 info.state |= (1<<MD_DISK_FAULTY);
5150 else if (test_bit(In_sync, &rdev->flags)) {
5151 info.state |= (1<<MD_DISK_ACTIVE);
5152 info.state |= (1<<MD_DISK_SYNC);
5153 }
5154 if (test_bit(WriteMostly, &rdev->flags))
5155 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5156 } else {
5157 info.major = info.minor = 0;
5158 info.raid_disk = -1;
5159 info.state = (1<<MD_DISK_REMOVED);
5160 }
5161
5162 if (copy_to_user(arg, &info, sizeof(info)))
5163 return -EFAULT;
5164
5165 return 0;
5166 }
5167
5168 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5169 {
5170 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5171 mdk_rdev_t *rdev;
5172 dev_t dev = MKDEV(info->major,info->minor);
5173
5174 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5175 return -EOVERFLOW;
5176
5177 if (!mddev->raid_disks) {
5178 int err;
5179 /* expecting a device which has a superblock */
5180 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5181 if (IS_ERR(rdev)) {
5182 printk(KERN_WARNING
5183 "md: md_import_device returned %ld\n",
5184 PTR_ERR(rdev));
5185 return PTR_ERR(rdev);
5186 }
5187 if (!list_empty(&mddev->disks)) {
5188 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5189 mdk_rdev_t, same_set);
5190 err = super_types[mddev->major_version]
5191 .load_super(rdev, rdev0, mddev->minor_version);
5192 if (err < 0) {
5193 printk(KERN_WARNING
5194 "md: %s has different UUID to %s\n",
5195 bdevname(rdev->bdev,b),
5196 bdevname(rdev0->bdev,b2));
5197 export_rdev(rdev);
5198 return -EINVAL;
5199 }
5200 }
5201 err = bind_rdev_to_array(rdev, mddev);
5202 if (err)
5203 export_rdev(rdev);
5204 return err;
5205 }
5206
5207 /*
5208 * add_new_disk can be used once the array is assembled
5209 * to add "hot spares". They must already have a superblock
5210 * written
5211 */
5212 if (mddev->pers) {
5213 int err;
5214 if (!mddev->pers->hot_add_disk) {
5215 printk(KERN_WARNING
5216 "%s: personality does not support diskops!\n",
5217 mdname(mddev));
5218 return -EINVAL;
5219 }
5220 if (mddev->persistent)
5221 rdev = md_import_device(dev, mddev->major_version,
5222 mddev->minor_version);
5223 else
5224 rdev = md_import_device(dev, -1, -1);
5225 if (IS_ERR(rdev)) {
5226 printk(KERN_WARNING
5227 "md: md_import_device returned %ld\n",
5228 PTR_ERR(rdev));
5229 return PTR_ERR(rdev);
5230 }
5231 /* set saved_raid_disk if appropriate */
5232 if (!mddev->persistent) {
5233 if (info->state & (1<<MD_DISK_SYNC) &&
5234 info->raid_disk < mddev->raid_disks) {
5235 rdev->raid_disk = info->raid_disk;
5236 set_bit(In_sync, &rdev->flags);
5237 } else
5238 rdev->raid_disk = -1;
5239 } else
5240 super_types[mddev->major_version].
5241 validate_super(mddev, rdev);
5242 if ((info->state & (1<<MD_DISK_SYNC)) &&
5243 (!test_bit(In_sync, &rdev->flags) ||
5244 rdev->raid_disk != info->raid_disk)) {
5245 /* This was a hot-add request, but events doesn't
5246 * match, so reject it.
5247 */
5248 export_rdev(rdev);
5249 return -EINVAL;
5250 }
5251
5252 if (test_bit(In_sync, &rdev->flags))
5253 rdev->saved_raid_disk = rdev->raid_disk;
5254 else
5255 rdev->saved_raid_disk = -1;
5256
5257 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5258 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5259 set_bit(WriteMostly, &rdev->flags);
5260 else
5261 clear_bit(WriteMostly, &rdev->flags);
5262
5263 rdev->raid_disk = -1;
5264 err = bind_rdev_to_array(rdev, mddev);
5265 if (!err && !mddev->pers->hot_remove_disk) {
5266 /* If there is hot_add_disk but no hot_remove_disk
5267 * then added disks for geometry changes,
5268 * and should be added immediately.
5269 */
5270 super_types[mddev->major_version].
5271 validate_super(mddev, rdev);
5272 err = mddev->pers->hot_add_disk(mddev, rdev);
5273 if (err)
5274 unbind_rdev_from_array(rdev);
5275 }
5276 if (err)
5277 export_rdev(rdev);
5278 else
5279 sysfs_notify_dirent_safe(rdev->sysfs_state);
5280
5281 md_update_sb(mddev, 1);
5282 if (mddev->degraded)
5283 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5284 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5285 if (!err)
5286 md_new_event(mddev);
5287 md_wakeup_thread(mddev->thread);
5288 return err;
5289 }
5290
5291 /* otherwise, add_new_disk is only allowed
5292 * for major_version==0 superblocks
5293 */
5294 if (mddev->major_version != 0) {
5295 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5296 mdname(mddev));
5297 return -EINVAL;
5298 }
5299
5300 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5301 int err;
5302 rdev = md_import_device(dev, -1, 0);
5303 if (IS_ERR(rdev)) {
5304 printk(KERN_WARNING
5305 "md: error, md_import_device() returned %ld\n",
5306 PTR_ERR(rdev));
5307 return PTR_ERR(rdev);
5308 }
5309 rdev->desc_nr = info->number;
5310 if (info->raid_disk < mddev->raid_disks)
5311 rdev->raid_disk = info->raid_disk;
5312 else
5313 rdev->raid_disk = -1;
5314
5315 if (rdev->raid_disk < mddev->raid_disks)
5316 if (info->state & (1<<MD_DISK_SYNC))
5317 set_bit(In_sync, &rdev->flags);
5318
5319 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5320 set_bit(WriteMostly, &rdev->flags);
5321
5322 if (!mddev->persistent) {
5323 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5324 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5325 } else
5326 rdev->sb_start = calc_dev_sboffset(rdev);
5327 rdev->sectors = rdev->sb_start;
5328
5329 err = bind_rdev_to_array(rdev, mddev);
5330 if (err) {
5331 export_rdev(rdev);
5332 return err;
5333 }
5334 }
5335
5336 return 0;
5337 }
5338
5339 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5340 {
5341 char b[BDEVNAME_SIZE];
5342 mdk_rdev_t *rdev;
5343
5344 rdev = find_rdev(mddev, dev);
5345 if (!rdev)
5346 return -ENXIO;
5347
5348 if (rdev->raid_disk >= 0)
5349 goto busy;
5350
5351 kick_rdev_from_array(rdev);
5352 md_update_sb(mddev, 1);
5353 md_new_event(mddev);
5354
5355 return 0;
5356 busy:
5357 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5358 bdevname(rdev->bdev,b), mdname(mddev));
5359 return -EBUSY;
5360 }
5361
5362 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5363 {
5364 char b[BDEVNAME_SIZE];
5365 int err;
5366 mdk_rdev_t *rdev;
5367
5368 if (!mddev->pers)
5369 return -ENODEV;
5370
5371 if (mddev->major_version != 0) {
5372 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5373 " version-0 superblocks.\n",
5374 mdname(mddev));
5375 return -EINVAL;
5376 }
5377 if (!mddev->pers->hot_add_disk) {
5378 printk(KERN_WARNING
5379 "%s: personality does not support diskops!\n",
5380 mdname(mddev));
5381 return -EINVAL;
5382 }
5383
5384 rdev = md_import_device(dev, -1, 0);
5385 if (IS_ERR(rdev)) {
5386 printk(KERN_WARNING
5387 "md: error, md_import_device() returned %ld\n",
5388 PTR_ERR(rdev));
5389 return -EINVAL;
5390 }
5391
5392 if (mddev->persistent)
5393 rdev->sb_start = calc_dev_sboffset(rdev);
5394 else
5395 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5396
5397 rdev->sectors = rdev->sb_start;
5398
5399 if (test_bit(Faulty, &rdev->flags)) {
5400 printk(KERN_WARNING
5401 "md: can not hot-add faulty %s disk to %s!\n",
5402 bdevname(rdev->bdev,b), mdname(mddev));
5403 err = -EINVAL;
5404 goto abort_export;
5405 }
5406 clear_bit(In_sync, &rdev->flags);
5407 rdev->desc_nr = -1;
5408 rdev->saved_raid_disk = -1;
5409 err = bind_rdev_to_array(rdev, mddev);
5410 if (err)
5411 goto abort_export;
5412
5413 /*
5414 * The rest should better be atomic, we can have disk failures
5415 * noticed in interrupt contexts ...
5416 */
5417
5418 rdev->raid_disk = -1;
5419
5420 md_update_sb(mddev, 1);
5421
5422 /*
5423 * Kick recovery, maybe this spare has to be added to the
5424 * array immediately.
5425 */
5426 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5427 md_wakeup_thread(mddev->thread);
5428 md_new_event(mddev);
5429 return 0;
5430
5431 abort_export:
5432 export_rdev(rdev);
5433 return err;
5434 }
5435
5436 static int set_bitmap_file(mddev_t *mddev, int fd)
5437 {
5438 int err;
5439
5440 if (mddev->pers) {
5441 if (!mddev->pers->quiesce)
5442 return -EBUSY;
5443 if (mddev->recovery || mddev->sync_thread)
5444 return -EBUSY;
5445 /* we should be able to change the bitmap.. */
5446 }
5447
5448
5449 if (fd >= 0) {
5450 if (mddev->bitmap)
5451 return -EEXIST; /* cannot add when bitmap is present */
5452 mddev->bitmap_info.file = fget(fd);
5453
5454 if (mddev->bitmap_info.file == NULL) {
5455 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5456 mdname(mddev));
5457 return -EBADF;
5458 }
5459
5460 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5461 if (err) {
5462 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5463 mdname(mddev));
5464 fput(mddev->bitmap_info.file);
5465 mddev->bitmap_info.file = NULL;
5466 return err;
5467 }
5468 mddev->bitmap_info.offset = 0; /* file overrides offset */
5469 } else if (mddev->bitmap == NULL)
5470 return -ENOENT; /* cannot remove what isn't there */
5471 err = 0;
5472 if (mddev->pers) {
5473 mddev->pers->quiesce(mddev, 1);
5474 if (fd >= 0) {
5475 err = bitmap_create(mddev);
5476 if (!err)
5477 err = bitmap_load(mddev);
5478 }
5479 if (fd < 0 || err) {
5480 bitmap_destroy(mddev);
5481 fd = -1; /* make sure to put the file */
5482 }
5483 mddev->pers->quiesce(mddev, 0);
5484 }
5485 if (fd < 0) {
5486 if (mddev->bitmap_info.file) {
5487 restore_bitmap_write_access(mddev->bitmap_info.file);
5488 fput(mddev->bitmap_info.file);
5489 }
5490 mddev->bitmap_info.file = NULL;
5491 }
5492
5493 return err;
5494 }
5495
5496 /*
5497 * set_array_info is used two different ways
5498 * The original usage is when creating a new array.
5499 * In this usage, raid_disks is > 0 and it together with
5500 * level, size, not_persistent,layout,chunksize determine the
5501 * shape of the array.
5502 * This will always create an array with a type-0.90.0 superblock.
5503 * The newer usage is when assembling an array.
5504 * In this case raid_disks will be 0, and the major_version field is
5505 * use to determine which style super-blocks are to be found on the devices.
5506 * The minor and patch _version numbers are also kept incase the
5507 * super_block handler wishes to interpret them.
5508 */
5509 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5510 {
5511
5512 if (info->raid_disks == 0) {
5513 /* just setting version number for superblock loading */
5514 if (info->major_version < 0 ||
5515 info->major_version >= ARRAY_SIZE(super_types) ||
5516 super_types[info->major_version].name == NULL) {
5517 /* maybe try to auto-load a module? */
5518 printk(KERN_INFO
5519 "md: superblock version %d not known\n",
5520 info->major_version);
5521 return -EINVAL;
5522 }
5523 mddev->major_version = info->major_version;
5524 mddev->minor_version = info->minor_version;
5525 mddev->patch_version = info->patch_version;
5526 mddev->persistent = !info->not_persistent;
5527 /* ensure mddev_put doesn't delete this now that there
5528 * is some minimal configuration.
5529 */
5530 mddev->ctime = get_seconds();
5531 return 0;
5532 }
5533 mddev->major_version = MD_MAJOR_VERSION;
5534 mddev->minor_version = MD_MINOR_VERSION;
5535 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5536 mddev->ctime = get_seconds();
5537
5538 mddev->level = info->level;
5539 mddev->clevel[0] = 0;
5540 mddev->dev_sectors = 2 * (sector_t)info->size;
5541 mddev->raid_disks = info->raid_disks;
5542 /* don't set md_minor, it is determined by which /dev/md* was
5543 * openned
5544 */
5545 if (info->state & (1<<MD_SB_CLEAN))
5546 mddev->recovery_cp = MaxSector;
5547 else
5548 mddev->recovery_cp = 0;
5549 mddev->persistent = ! info->not_persistent;
5550 mddev->external = 0;
5551
5552 mddev->layout = info->layout;
5553 mddev->chunk_sectors = info->chunk_size >> 9;
5554
5555 mddev->max_disks = MD_SB_DISKS;
5556
5557 if (mddev->persistent)
5558 mddev->flags = 0;
5559 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5560
5561 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5562 mddev->bitmap_info.offset = 0;
5563
5564 mddev->reshape_position = MaxSector;
5565
5566 /*
5567 * Generate a 128 bit UUID
5568 */
5569 get_random_bytes(mddev->uuid, 16);
5570
5571 mddev->new_level = mddev->level;
5572 mddev->new_chunk_sectors = mddev->chunk_sectors;
5573 mddev->new_layout = mddev->layout;
5574 mddev->delta_disks = 0;
5575
5576 return 0;
5577 }
5578
5579 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5580 {
5581 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5582
5583 if (mddev->external_size)
5584 return;
5585
5586 mddev->array_sectors = array_sectors;
5587 }
5588 EXPORT_SYMBOL(md_set_array_sectors);
5589
5590 static int update_size(mddev_t *mddev, sector_t num_sectors)
5591 {
5592 mdk_rdev_t *rdev;
5593 int rv;
5594 int fit = (num_sectors == 0);
5595
5596 if (mddev->pers->resize == NULL)
5597 return -EINVAL;
5598 /* The "num_sectors" is the number of sectors of each device that
5599 * is used. This can only make sense for arrays with redundancy.
5600 * linear and raid0 always use whatever space is available. We can only
5601 * consider changing this number if no resync or reconstruction is
5602 * happening, and if the new size is acceptable. It must fit before the
5603 * sb_start or, if that is <data_offset, it must fit before the size
5604 * of each device. If num_sectors is zero, we find the largest size
5605 * that fits.
5606 */
5607 if (mddev->sync_thread)
5608 return -EBUSY;
5609 if (mddev->bitmap)
5610 /* Sorry, cannot grow a bitmap yet, just remove it,
5611 * grow, and re-add.
5612 */
5613 return -EBUSY;
5614 list_for_each_entry(rdev, &mddev->disks, same_set) {
5615 sector_t avail = rdev->sectors;
5616
5617 if (fit && (num_sectors == 0 || num_sectors > avail))
5618 num_sectors = avail;
5619 if (avail < num_sectors)
5620 return -ENOSPC;
5621 }
5622 rv = mddev->pers->resize(mddev, num_sectors);
5623 if (!rv)
5624 revalidate_disk(mddev->gendisk);
5625 return rv;
5626 }
5627
5628 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5629 {
5630 int rv;
5631 /* change the number of raid disks */
5632 if (mddev->pers->check_reshape == NULL)
5633 return -EINVAL;
5634 if (raid_disks <= 0 ||
5635 (mddev->max_disks && raid_disks >= mddev->max_disks))
5636 return -EINVAL;
5637 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5638 return -EBUSY;
5639 mddev->delta_disks = raid_disks - mddev->raid_disks;
5640
5641 rv = mddev->pers->check_reshape(mddev);
5642 if (rv < 0)
5643 mddev->delta_disks = 0;
5644 return rv;
5645 }
5646
5647
5648 /*
5649 * update_array_info is used to change the configuration of an
5650 * on-line array.
5651 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5652 * fields in the info are checked against the array.
5653 * Any differences that cannot be handled will cause an error.
5654 * Normally, only one change can be managed at a time.
5655 */
5656 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5657 {
5658 int rv = 0;
5659 int cnt = 0;
5660 int state = 0;
5661
5662 /* calculate expected state,ignoring low bits */
5663 if (mddev->bitmap && mddev->bitmap_info.offset)
5664 state |= (1 << MD_SB_BITMAP_PRESENT);
5665
5666 if (mddev->major_version != info->major_version ||
5667 mddev->minor_version != info->minor_version ||
5668 /* mddev->patch_version != info->patch_version || */
5669 mddev->ctime != info->ctime ||
5670 mddev->level != info->level ||
5671 /* mddev->layout != info->layout || */
5672 !mddev->persistent != info->not_persistent||
5673 mddev->chunk_sectors != info->chunk_size >> 9 ||
5674 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5675 ((state^info->state) & 0xfffffe00)
5676 )
5677 return -EINVAL;
5678 /* Check there is only one change */
5679 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5680 cnt++;
5681 if (mddev->raid_disks != info->raid_disks)
5682 cnt++;
5683 if (mddev->layout != info->layout)
5684 cnt++;
5685 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5686 cnt++;
5687 if (cnt == 0)
5688 return 0;
5689 if (cnt > 1)
5690 return -EINVAL;
5691
5692 if (mddev->layout != info->layout) {
5693 /* Change layout
5694 * we don't need to do anything at the md level, the
5695 * personality will take care of it all.
5696 */
5697 if (mddev->pers->check_reshape == NULL)
5698 return -EINVAL;
5699 else {
5700 mddev->new_layout = info->layout;
5701 rv = mddev->pers->check_reshape(mddev);
5702 if (rv)
5703 mddev->new_layout = mddev->layout;
5704 return rv;
5705 }
5706 }
5707 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5708 rv = update_size(mddev, (sector_t)info->size * 2);
5709
5710 if (mddev->raid_disks != info->raid_disks)
5711 rv = update_raid_disks(mddev, info->raid_disks);
5712
5713 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5714 if (mddev->pers->quiesce == NULL)
5715 return -EINVAL;
5716 if (mddev->recovery || mddev->sync_thread)
5717 return -EBUSY;
5718 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5719 /* add the bitmap */
5720 if (mddev->bitmap)
5721 return -EEXIST;
5722 if (mddev->bitmap_info.default_offset == 0)
5723 return -EINVAL;
5724 mddev->bitmap_info.offset =
5725 mddev->bitmap_info.default_offset;
5726 mddev->pers->quiesce(mddev, 1);
5727 rv = bitmap_create(mddev);
5728 if (!rv)
5729 rv = bitmap_load(mddev);
5730 if (rv)
5731 bitmap_destroy(mddev);
5732 mddev->pers->quiesce(mddev, 0);
5733 } else {
5734 /* remove the bitmap */
5735 if (!mddev->bitmap)
5736 return -ENOENT;
5737 if (mddev->bitmap->file)
5738 return -EINVAL;
5739 mddev->pers->quiesce(mddev, 1);
5740 bitmap_destroy(mddev);
5741 mddev->pers->quiesce(mddev, 0);
5742 mddev->bitmap_info.offset = 0;
5743 }
5744 }
5745 md_update_sb(mddev, 1);
5746 return rv;
5747 }
5748
5749 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5750 {
5751 mdk_rdev_t *rdev;
5752
5753 if (mddev->pers == NULL)
5754 return -ENODEV;
5755
5756 rdev = find_rdev(mddev, dev);
5757 if (!rdev)
5758 return -ENODEV;
5759
5760 md_error(mddev, rdev);
5761 return 0;
5762 }
5763
5764 /*
5765 * We have a problem here : there is no easy way to give a CHS
5766 * virtual geometry. We currently pretend that we have a 2 heads
5767 * 4 sectors (with a BIG number of cylinders...). This drives
5768 * dosfs just mad... ;-)
5769 */
5770 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5771 {
5772 mddev_t *mddev = bdev->bd_disk->private_data;
5773
5774 geo->heads = 2;
5775 geo->sectors = 4;
5776 geo->cylinders = mddev->array_sectors / 8;
5777 return 0;
5778 }
5779
5780 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5781 unsigned int cmd, unsigned long arg)
5782 {
5783 int err = 0;
5784 void __user *argp = (void __user *)arg;
5785 mddev_t *mddev = NULL;
5786 int ro;
5787
5788 if (!capable(CAP_SYS_ADMIN))
5789 return -EACCES;
5790
5791 /*
5792 * Commands dealing with the RAID driver but not any
5793 * particular array:
5794 */
5795 switch (cmd)
5796 {
5797 case RAID_VERSION:
5798 err = get_version(argp);
5799 goto done;
5800
5801 case PRINT_RAID_DEBUG:
5802 err = 0;
5803 md_print_devices();
5804 goto done;
5805
5806 #ifndef MODULE
5807 case RAID_AUTORUN:
5808 err = 0;
5809 autostart_arrays(arg);
5810 goto done;
5811 #endif
5812 default:;
5813 }
5814
5815 /*
5816 * Commands creating/starting a new array:
5817 */
5818
5819 mddev = bdev->bd_disk->private_data;
5820
5821 if (!mddev) {
5822 BUG();
5823 goto abort;
5824 }
5825
5826 err = mddev_lock(mddev);
5827 if (err) {
5828 printk(KERN_INFO
5829 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5830 err, cmd);
5831 goto abort;
5832 }
5833
5834 switch (cmd)
5835 {
5836 case SET_ARRAY_INFO:
5837 {
5838 mdu_array_info_t info;
5839 if (!arg)
5840 memset(&info, 0, sizeof(info));
5841 else if (copy_from_user(&info, argp, sizeof(info))) {
5842 err = -EFAULT;
5843 goto abort_unlock;
5844 }
5845 if (mddev->pers) {
5846 err = update_array_info(mddev, &info);
5847 if (err) {
5848 printk(KERN_WARNING "md: couldn't update"
5849 " array info. %d\n", err);
5850 goto abort_unlock;
5851 }
5852 goto done_unlock;
5853 }
5854 if (!list_empty(&mddev->disks)) {
5855 printk(KERN_WARNING
5856 "md: array %s already has disks!\n",
5857 mdname(mddev));
5858 err = -EBUSY;
5859 goto abort_unlock;
5860 }
5861 if (mddev->raid_disks) {
5862 printk(KERN_WARNING
5863 "md: array %s already initialised!\n",
5864 mdname(mddev));
5865 err = -EBUSY;
5866 goto abort_unlock;
5867 }
5868 err = set_array_info(mddev, &info);
5869 if (err) {
5870 printk(KERN_WARNING "md: couldn't set"
5871 " array info. %d\n", err);
5872 goto abort_unlock;
5873 }
5874 }
5875 goto done_unlock;
5876
5877 default:;
5878 }
5879
5880 /*
5881 * Commands querying/configuring an existing array:
5882 */
5883 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5884 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5885 if ((!mddev->raid_disks && !mddev->external)
5886 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5887 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5888 && cmd != GET_BITMAP_FILE) {
5889 err = -ENODEV;
5890 goto abort_unlock;
5891 }
5892
5893 /*
5894 * Commands even a read-only array can execute:
5895 */
5896 switch (cmd)
5897 {
5898 case GET_ARRAY_INFO:
5899 err = get_array_info(mddev, argp);
5900 goto done_unlock;
5901
5902 case GET_BITMAP_FILE:
5903 err = get_bitmap_file(mddev, argp);
5904 goto done_unlock;
5905
5906 case GET_DISK_INFO:
5907 err = get_disk_info(mddev, argp);
5908 goto done_unlock;
5909
5910 case RESTART_ARRAY_RW:
5911 err = restart_array(mddev);
5912 goto done_unlock;
5913
5914 case STOP_ARRAY:
5915 err = do_md_stop(mddev, 0, 1);
5916 goto done_unlock;
5917
5918 case STOP_ARRAY_RO:
5919 err = md_set_readonly(mddev, 1);
5920 goto done_unlock;
5921
5922 case BLKROSET:
5923 if (get_user(ro, (int __user *)(arg))) {
5924 err = -EFAULT;
5925 goto done_unlock;
5926 }
5927 err = -EINVAL;
5928
5929 /* if the bdev is going readonly the value of mddev->ro
5930 * does not matter, no writes are coming
5931 */
5932 if (ro)
5933 goto done_unlock;
5934
5935 /* are we are already prepared for writes? */
5936 if (mddev->ro != 1)
5937 goto done_unlock;
5938
5939 /* transitioning to readauto need only happen for
5940 * arrays that call md_write_start
5941 */
5942 if (mddev->pers) {
5943 err = restart_array(mddev);
5944 if (err == 0) {
5945 mddev->ro = 2;
5946 set_disk_ro(mddev->gendisk, 0);
5947 }
5948 }
5949 goto done_unlock;
5950 }
5951
5952 /*
5953 * The remaining ioctls are changing the state of the
5954 * superblock, so we do not allow them on read-only arrays.
5955 * However non-MD ioctls (e.g. get-size) will still come through
5956 * here and hit the 'default' below, so only disallow
5957 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5958 */
5959 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5960 if (mddev->ro == 2) {
5961 mddev->ro = 0;
5962 sysfs_notify_dirent_safe(mddev->sysfs_state);
5963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5964 md_wakeup_thread(mddev->thread);
5965 } else {
5966 err = -EROFS;
5967 goto abort_unlock;
5968 }
5969 }
5970
5971 switch (cmd)
5972 {
5973 case ADD_NEW_DISK:
5974 {
5975 mdu_disk_info_t info;
5976 if (copy_from_user(&info, argp, sizeof(info)))
5977 err = -EFAULT;
5978 else
5979 err = add_new_disk(mddev, &info);
5980 goto done_unlock;
5981 }
5982
5983 case HOT_REMOVE_DISK:
5984 err = hot_remove_disk(mddev, new_decode_dev(arg));
5985 goto done_unlock;
5986
5987 case HOT_ADD_DISK:
5988 err = hot_add_disk(mddev, new_decode_dev(arg));
5989 goto done_unlock;
5990
5991 case SET_DISK_FAULTY:
5992 err = set_disk_faulty(mddev, new_decode_dev(arg));
5993 goto done_unlock;
5994
5995 case RUN_ARRAY:
5996 err = do_md_run(mddev);
5997 goto done_unlock;
5998
5999 case SET_BITMAP_FILE:
6000 err = set_bitmap_file(mddev, (int)arg);
6001 goto done_unlock;
6002
6003 default:
6004 err = -EINVAL;
6005 goto abort_unlock;
6006 }
6007
6008 done_unlock:
6009 abort_unlock:
6010 if (mddev->hold_active == UNTIL_IOCTL &&
6011 err != -EINVAL)
6012 mddev->hold_active = 0;
6013 mddev_unlock(mddev);
6014
6015 return err;
6016 done:
6017 if (err)
6018 MD_BUG();
6019 abort:
6020 return err;
6021 }
6022 #ifdef CONFIG_COMPAT
6023 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6024 unsigned int cmd, unsigned long arg)
6025 {
6026 switch (cmd) {
6027 case HOT_REMOVE_DISK:
6028 case HOT_ADD_DISK:
6029 case SET_DISK_FAULTY:
6030 case SET_BITMAP_FILE:
6031 /* These take in integer arg, do not convert */
6032 break;
6033 default:
6034 arg = (unsigned long)compat_ptr(arg);
6035 break;
6036 }
6037
6038 return md_ioctl(bdev, mode, cmd, arg);
6039 }
6040 #endif /* CONFIG_COMPAT */
6041
6042 static int md_open(struct block_device *bdev, fmode_t mode)
6043 {
6044 /*
6045 * Succeed if we can lock the mddev, which confirms that
6046 * it isn't being stopped right now.
6047 */
6048 mddev_t *mddev = mddev_find(bdev->bd_dev);
6049 int err;
6050
6051 if (mddev->gendisk != bdev->bd_disk) {
6052 /* we are racing with mddev_put which is discarding this
6053 * bd_disk.
6054 */
6055 mddev_put(mddev);
6056 /* Wait until bdev->bd_disk is definitely gone */
6057 flush_workqueue(md_misc_wq);
6058 /* Then retry the open from the top */
6059 return -ERESTARTSYS;
6060 }
6061 BUG_ON(mddev != bdev->bd_disk->private_data);
6062
6063 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6064 goto out;
6065
6066 err = 0;
6067 atomic_inc(&mddev->openers);
6068 mutex_unlock(&mddev->open_mutex);
6069
6070 check_disk_change(bdev);
6071 out:
6072 return err;
6073 }
6074
6075 static int md_release(struct gendisk *disk, fmode_t mode)
6076 {
6077 mddev_t *mddev = disk->private_data;
6078
6079 BUG_ON(!mddev);
6080 atomic_dec(&mddev->openers);
6081 mddev_put(mddev);
6082
6083 return 0;
6084 }
6085
6086 static int md_media_changed(struct gendisk *disk)
6087 {
6088 mddev_t *mddev = disk->private_data;
6089
6090 return mddev->changed;
6091 }
6092
6093 static int md_revalidate(struct gendisk *disk)
6094 {
6095 mddev_t *mddev = disk->private_data;
6096
6097 mddev->changed = 0;
6098 return 0;
6099 }
6100 static const struct block_device_operations md_fops =
6101 {
6102 .owner = THIS_MODULE,
6103 .open = md_open,
6104 .release = md_release,
6105 .ioctl = md_ioctl,
6106 #ifdef CONFIG_COMPAT
6107 .compat_ioctl = md_compat_ioctl,
6108 #endif
6109 .getgeo = md_getgeo,
6110 .media_changed = md_media_changed,
6111 .revalidate_disk= md_revalidate,
6112 };
6113
6114 static int md_thread(void * arg)
6115 {
6116 mdk_thread_t *thread = arg;
6117
6118 /*
6119 * md_thread is a 'system-thread', it's priority should be very
6120 * high. We avoid resource deadlocks individually in each
6121 * raid personality. (RAID5 does preallocation) We also use RR and
6122 * the very same RT priority as kswapd, thus we will never get
6123 * into a priority inversion deadlock.
6124 *
6125 * we definitely have to have equal or higher priority than
6126 * bdflush, otherwise bdflush will deadlock if there are too
6127 * many dirty RAID5 blocks.
6128 */
6129
6130 allow_signal(SIGKILL);
6131 while (!kthread_should_stop()) {
6132
6133 /* We need to wait INTERRUPTIBLE so that
6134 * we don't add to the load-average.
6135 * That means we need to be sure no signals are
6136 * pending
6137 */
6138 if (signal_pending(current))
6139 flush_signals(current);
6140
6141 wait_event_interruptible_timeout
6142 (thread->wqueue,
6143 test_bit(THREAD_WAKEUP, &thread->flags)
6144 || kthread_should_stop(),
6145 thread->timeout);
6146
6147 clear_bit(THREAD_WAKEUP, &thread->flags);
6148 if (!kthread_should_stop())
6149 thread->run(thread->mddev);
6150 }
6151
6152 return 0;
6153 }
6154
6155 void md_wakeup_thread(mdk_thread_t *thread)
6156 {
6157 if (thread) {
6158 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6159 set_bit(THREAD_WAKEUP, &thread->flags);
6160 wake_up(&thread->wqueue);
6161 }
6162 }
6163
6164 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6165 const char *name)
6166 {
6167 mdk_thread_t *thread;
6168
6169 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6170 if (!thread)
6171 return NULL;
6172
6173 init_waitqueue_head(&thread->wqueue);
6174
6175 thread->run = run;
6176 thread->mddev = mddev;
6177 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6178 thread->tsk = kthread_run(md_thread, thread,
6179 "%s_%s",
6180 mdname(thread->mddev),
6181 name ?: mddev->pers->name);
6182 if (IS_ERR(thread->tsk)) {
6183 kfree(thread);
6184 return NULL;
6185 }
6186 return thread;
6187 }
6188
6189 void md_unregister_thread(mdk_thread_t *thread)
6190 {
6191 if (!thread)
6192 return;
6193 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6194
6195 kthread_stop(thread->tsk);
6196 kfree(thread);
6197 }
6198
6199 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6200 {
6201 if (!mddev) {
6202 MD_BUG();
6203 return;
6204 }
6205
6206 if (!rdev || test_bit(Faulty, &rdev->flags))
6207 return;
6208
6209 if (mddev->external)
6210 set_bit(Blocked, &rdev->flags);
6211 /*
6212 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6213 mdname(mddev),
6214 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6215 __builtin_return_address(0),__builtin_return_address(1),
6216 __builtin_return_address(2),__builtin_return_address(3));
6217 */
6218 if (!mddev->pers)
6219 return;
6220 if (!mddev->pers->error_handler)
6221 return;
6222 mddev->pers->error_handler(mddev,rdev);
6223 if (mddev->degraded)
6224 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6225 sysfs_notify_dirent_safe(rdev->sysfs_state);
6226 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6227 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6228 md_wakeup_thread(mddev->thread);
6229 if (mddev->event_work.func)
6230 queue_work(md_misc_wq, &mddev->event_work);
6231 md_new_event_inintr(mddev);
6232 }
6233
6234 /* seq_file implementation /proc/mdstat */
6235
6236 static void status_unused(struct seq_file *seq)
6237 {
6238 int i = 0;
6239 mdk_rdev_t *rdev;
6240
6241 seq_printf(seq, "unused devices: ");
6242
6243 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6244 char b[BDEVNAME_SIZE];
6245 i++;
6246 seq_printf(seq, "%s ",
6247 bdevname(rdev->bdev,b));
6248 }
6249 if (!i)
6250 seq_printf(seq, "<none>");
6251
6252 seq_printf(seq, "\n");
6253 }
6254
6255
6256 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6257 {
6258 sector_t max_sectors, resync, res;
6259 unsigned long dt, db;
6260 sector_t rt;
6261 int scale;
6262 unsigned int per_milli;
6263
6264 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6265
6266 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6267 max_sectors = mddev->resync_max_sectors;
6268 else
6269 max_sectors = mddev->dev_sectors;
6270
6271 /*
6272 * Should not happen.
6273 */
6274 if (!max_sectors) {
6275 MD_BUG();
6276 return;
6277 }
6278 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6279 * in a sector_t, and (max_sectors>>scale) will fit in a
6280 * u32, as those are the requirements for sector_div.
6281 * Thus 'scale' must be at least 10
6282 */
6283 scale = 10;
6284 if (sizeof(sector_t) > sizeof(unsigned long)) {
6285 while ( max_sectors/2 > (1ULL<<(scale+32)))
6286 scale++;
6287 }
6288 res = (resync>>scale)*1000;
6289 sector_div(res, (u32)((max_sectors>>scale)+1));
6290
6291 per_milli = res;
6292 {
6293 int i, x = per_milli/50, y = 20-x;
6294 seq_printf(seq, "[");
6295 for (i = 0; i < x; i++)
6296 seq_printf(seq, "=");
6297 seq_printf(seq, ">");
6298 for (i = 0; i < y; i++)
6299 seq_printf(seq, ".");
6300 seq_printf(seq, "] ");
6301 }
6302 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6303 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6304 "reshape" :
6305 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6306 "check" :
6307 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6308 "resync" : "recovery"))),
6309 per_milli/10, per_milli % 10,
6310 (unsigned long long) resync/2,
6311 (unsigned long long) max_sectors/2);
6312
6313 /*
6314 * dt: time from mark until now
6315 * db: blocks written from mark until now
6316 * rt: remaining time
6317 *
6318 * rt is a sector_t, so could be 32bit or 64bit.
6319 * So we divide before multiply in case it is 32bit and close
6320 * to the limit.
6321 * We scale the divisor (db) by 32 to avoid losing precision
6322 * near the end of resync when the number of remaining sectors
6323 * is close to 'db'.
6324 * We then divide rt by 32 after multiplying by db to compensate.
6325 * The '+1' avoids division by zero if db is very small.
6326 */
6327 dt = ((jiffies - mddev->resync_mark) / HZ);
6328 if (!dt) dt++;
6329 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6330 - mddev->resync_mark_cnt;
6331
6332 rt = max_sectors - resync; /* number of remaining sectors */
6333 sector_div(rt, db/32+1);
6334 rt *= dt;
6335 rt >>= 5;
6336
6337 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6338 ((unsigned long)rt % 60)/6);
6339
6340 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6341 }
6342
6343 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6344 {
6345 struct list_head *tmp;
6346 loff_t l = *pos;
6347 mddev_t *mddev;
6348
6349 if (l >= 0x10000)
6350 return NULL;
6351 if (!l--)
6352 /* header */
6353 return (void*)1;
6354
6355 spin_lock(&all_mddevs_lock);
6356 list_for_each(tmp,&all_mddevs)
6357 if (!l--) {
6358 mddev = list_entry(tmp, mddev_t, all_mddevs);
6359 mddev_get(mddev);
6360 spin_unlock(&all_mddevs_lock);
6361 return mddev;
6362 }
6363 spin_unlock(&all_mddevs_lock);
6364 if (!l--)
6365 return (void*)2;/* tail */
6366 return NULL;
6367 }
6368
6369 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6370 {
6371 struct list_head *tmp;
6372 mddev_t *next_mddev, *mddev = v;
6373
6374 ++*pos;
6375 if (v == (void*)2)
6376 return NULL;
6377
6378 spin_lock(&all_mddevs_lock);
6379 if (v == (void*)1)
6380 tmp = all_mddevs.next;
6381 else
6382 tmp = mddev->all_mddevs.next;
6383 if (tmp != &all_mddevs)
6384 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6385 else {
6386 next_mddev = (void*)2;
6387 *pos = 0x10000;
6388 }
6389 spin_unlock(&all_mddevs_lock);
6390
6391 if (v != (void*)1)
6392 mddev_put(mddev);
6393 return next_mddev;
6394
6395 }
6396
6397 static void md_seq_stop(struct seq_file *seq, void *v)
6398 {
6399 mddev_t *mddev = v;
6400
6401 if (mddev && v != (void*)1 && v != (void*)2)
6402 mddev_put(mddev);
6403 }
6404
6405 struct mdstat_info {
6406 int event;
6407 };
6408
6409 static int md_seq_show(struct seq_file *seq, void *v)
6410 {
6411 mddev_t *mddev = v;
6412 sector_t sectors;
6413 mdk_rdev_t *rdev;
6414 struct mdstat_info *mi = seq->private;
6415 struct bitmap *bitmap;
6416
6417 if (v == (void*)1) {
6418 struct mdk_personality *pers;
6419 seq_printf(seq, "Personalities : ");
6420 spin_lock(&pers_lock);
6421 list_for_each_entry(pers, &pers_list, list)
6422 seq_printf(seq, "[%s] ", pers->name);
6423
6424 spin_unlock(&pers_lock);
6425 seq_printf(seq, "\n");
6426 mi->event = atomic_read(&md_event_count);
6427 return 0;
6428 }
6429 if (v == (void*)2) {
6430 status_unused(seq);
6431 return 0;
6432 }
6433
6434 if (mddev_lock(mddev) < 0)
6435 return -EINTR;
6436
6437 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6438 seq_printf(seq, "%s : %sactive", mdname(mddev),
6439 mddev->pers ? "" : "in");
6440 if (mddev->pers) {
6441 if (mddev->ro==1)
6442 seq_printf(seq, " (read-only)");
6443 if (mddev->ro==2)
6444 seq_printf(seq, " (auto-read-only)");
6445 seq_printf(seq, " %s", mddev->pers->name);
6446 }
6447
6448 sectors = 0;
6449 list_for_each_entry(rdev, &mddev->disks, same_set) {
6450 char b[BDEVNAME_SIZE];
6451 seq_printf(seq, " %s[%d]",
6452 bdevname(rdev->bdev,b), rdev->desc_nr);
6453 if (test_bit(WriteMostly, &rdev->flags))
6454 seq_printf(seq, "(W)");
6455 if (test_bit(Faulty, &rdev->flags)) {
6456 seq_printf(seq, "(F)");
6457 continue;
6458 } else if (rdev->raid_disk < 0)
6459 seq_printf(seq, "(S)"); /* spare */
6460 sectors += rdev->sectors;
6461 }
6462
6463 if (!list_empty(&mddev->disks)) {
6464 if (mddev->pers)
6465 seq_printf(seq, "\n %llu blocks",
6466 (unsigned long long)
6467 mddev->array_sectors / 2);
6468 else
6469 seq_printf(seq, "\n %llu blocks",
6470 (unsigned long long)sectors / 2);
6471 }
6472 if (mddev->persistent) {
6473 if (mddev->major_version != 0 ||
6474 mddev->minor_version != 90) {
6475 seq_printf(seq," super %d.%d",
6476 mddev->major_version,
6477 mddev->minor_version);
6478 }
6479 } else if (mddev->external)
6480 seq_printf(seq, " super external:%s",
6481 mddev->metadata_type);
6482 else
6483 seq_printf(seq, " super non-persistent");
6484
6485 if (mddev->pers) {
6486 mddev->pers->status(seq, mddev);
6487 seq_printf(seq, "\n ");
6488 if (mddev->pers->sync_request) {
6489 if (mddev->curr_resync > 2) {
6490 status_resync(seq, mddev);
6491 seq_printf(seq, "\n ");
6492 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6493 seq_printf(seq, "\tresync=DELAYED\n ");
6494 else if (mddev->recovery_cp < MaxSector)
6495 seq_printf(seq, "\tresync=PENDING\n ");
6496 }
6497 } else
6498 seq_printf(seq, "\n ");
6499
6500 if ((bitmap = mddev->bitmap)) {
6501 unsigned long chunk_kb;
6502 unsigned long flags;
6503 spin_lock_irqsave(&bitmap->lock, flags);
6504 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6505 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6506 "%lu%s chunk",
6507 bitmap->pages - bitmap->missing_pages,
6508 bitmap->pages,
6509 (bitmap->pages - bitmap->missing_pages)
6510 << (PAGE_SHIFT - 10),
6511 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6512 chunk_kb ? "KB" : "B");
6513 if (bitmap->file) {
6514 seq_printf(seq, ", file: ");
6515 seq_path(seq, &bitmap->file->f_path, " \t\n");
6516 }
6517
6518 seq_printf(seq, "\n");
6519 spin_unlock_irqrestore(&bitmap->lock, flags);
6520 }
6521
6522 seq_printf(seq, "\n");
6523 }
6524 mddev_unlock(mddev);
6525
6526 return 0;
6527 }
6528
6529 static const struct seq_operations md_seq_ops = {
6530 .start = md_seq_start,
6531 .next = md_seq_next,
6532 .stop = md_seq_stop,
6533 .show = md_seq_show,
6534 };
6535
6536 static int md_seq_open(struct inode *inode, struct file *file)
6537 {
6538 int error;
6539 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6540 if (mi == NULL)
6541 return -ENOMEM;
6542
6543 error = seq_open(file, &md_seq_ops);
6544 if (error)
6545 kfree(mi);
6546 else {
6547 struct seq_file *p = file->private_data;
6548 p->private = mi;
6549 mi->event = atomic_read(&md_event_count);
6550 }
6551 return error;
6552 }
6553
6554 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6555 {
6556 struct seq_file *m = filp->private_data;
6557 struct mdstat_info *mi = m->private;
6558 int mask;
6559
6560 poll_wait(filp, &md_event_waiters, wait);
6561
6562 /* always allow read */
6563 mask = POLLIN | POLLRDNORM;
6564
6565 if (mi->event != atomic_read(&md_event_count))
6566 mask |= POLLERR | POLLPRI;
6567 return mask;
6568 }
6569
6570 static const struct file_operations md_seq_fops = {
6571 .owner = THIS_MODULE,
6572 .open = md_seq_open,
6573 .read = seq_read,
6574 .llseek = seq_lseek,
6575 .release = seq_release_private,
6576 .poll = mdstat_poll,
6577 };
6578
6579 int register_md_personality(struct mdk_personality *p)
6580 {
6581 spin_lock(&pers_lock);
6582 list_add_tail(&p->list, &pers_list);
6583 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6584 spin_unlock(&pers_lock);
6585 return 0;
6586 }
6587
6588 int unregister_md_personality(struct mdk_personality *p)
6589 {
6590 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6591 spin_lock(&pers_lock);
6592 list_del_init(&p->list);
6593 spin_unlock(&pers_lock);
6594 return 0;
6595 }
6596
6597 static int is_mddev_idle(mddev_t *mddev, int init)
6598 {
6599 mdk_rdev_t * rdev;
6600 int idle;
6601 int curr_events;
6602
6603 idle = 1;
6604 rcu_read_lock();
6605 rdev_for_each_rcu(rdev, mddev) {
6606 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6607 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6608 (int)part_stat_read(&disk->part0, sectors[1]) -
6609 atomic_read(&disk->sync_io);
6610 /* sync IO will cause sync_io to increase before the disk_stats
6611 * as sync_io is counted when a request starts, and
6612 * disk_stats is counted when it completes.
6613 * So resync activity will cause curr_events to be smaller than
6614 * when there was no such activity.
6615 * non-sync IO will cause disk_stat to increase without
6616 * increasing sync_io so curr_events will (eventually)
6617 * be larger than it was before. Once it becomes
6618 * substantially larger, the test below will cause
6619 * the array to appear non-idle, and resync will slow
6620 * down.
6621 * If there is a lot of outstanding resync activity when
6622 * we set last_event to curr_events, then all that activity
6623 * completing might cause the array to appear non-idle
6624 * and resync will be slowed down even though there might
6625 * not have been non-resync activity. This will only
6626 * happen once though. 'last_events' will soon reflect
6627 * the state where there is little or no outstanding
6628 * resync requests, and further resync activity will
6629 * always make curr_events less than last_events.
6630 *
6631 */
6632 if (init || curr_events - rdev->last_events > 64) {
6633 rdev->last_events = curr_events;
6634 idle = 0;
6635 }
6636 }
6637 rcu_read_unlock();
6638 return idle;
6639 }
6640
6641 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6642 {
6643 /* another "blocks" (512byte) blocks have been synced */
6644 atomic_sub(blocks, &mddev->recovery_active);
6645 wake_up(&mddev->recovery_wait);
6646 if (!ok) {
6647 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6648 md_wakeup_thread(mddev->thread);
6649 // stop recovery, signal do_sync ....
6650 }
6651 }
6652
6653
6654 /* md_write_start(mddev, bi)
6655 * If we need to update some array metadata (e.g. 'active' flag
6656 * in superblock) before writing, schedule a superblock update
6657 * and wait for it to complete.
6658 */
6659 void md_write_start(mddev_t *mddev, struct bio *bi)
6660 {
6661 int did_change = 0;
6662 if (bio_data_dir(bi) != WRITE)
6663 return;
6664
6665 BUG_ON(mddev->ro == 1);
6666 if (mddev->ro == 2) {
6667 /* need to switch to read/write */
6668 mddev->ro = 0;
6669 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6670 md_wakeup_thread(mddev->thread);
6671 md_wakeup_thread(mddev->sync_thread);
6672 did_change = 1;
6673 }
6674 atomic_inc(&mddev->writes_pending);
6675 if (mddev->safemode == 1)
6676 mddev->safemode = 0;
6677 if (mddev->in_sync) {
6678 spin_lock_irq(&mddev->write_lock);
6679 if (mddev->in_sync) {
6680 mddev->in_sync = 0;
6681 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6682 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6683 md_wakeup_thread(mddev->thread);
6684 did_change = 1;
6685 }
6686 spin_unlock_irq(&mddev->write_lock);
6687 }
6688 if (did_change)
6689 sysfs_notify_dirent_safe(mddev->sysfs_state);
6690 wait_event(mddev->sb_wait,
6691 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6692 }
6693
6694 void md_write_end(mddev_t *mddev)
6695 {
6696 if (atomic_dec_and_test(&mddev->writes_pending)) {
6697 if (mddev->safemode == 2)
6698 md_wakeup_thread(mddev->thread);
6699 else if (mddev->safemode_delay)
6700 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6701 }
6702 }
6703
6704 /* md_allow_write(mddev)
6705 * Calling this ensures that the array is marked 'active' so that writes
6706 * may proceed without blocking. It is important to call this before
6707 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6708 * Must be called with mddev_lock held.
6709 *
6710 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6711 * is dropped, so return -EAGAIN after notifying userspace.
6712 */
6713 int md_allow_write(mddev_t *mddev)
6714 {
6715 if (!mddev->pers)
6716 return 0;
6717 if (mddev->ro)
6718 return 0;
6719 if (!mddev->pers->sync_request)
6720 return 0;
6721
6722 spin_lock_irq(&mddev->write_lock);
6723 if (mddev->in_sync) {
6724 mddev->in_sync = 0;
6725 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6726 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6727 if (mddev->safemode_delay &&
6728 mddev->safemode == 0)
6729 mddev->safemode = 1;
6730 spin_unlock_irq(&mddev->write_lock);
6731 md_update_sb(mddev, 0);
6732 sysfs_notify_dirent_safe(mddev->sysfs_state);
6733 } else
6734 spin_unlock_irq(&mddev->write_lock);
6735
6736 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6737 return -EAGAIN;
6738 else
6739 return 0;
6740 }
6741 EXPORT_SYMBOL_GPL(md_allow_write);
6742
6743 #define SYNC_MARKS 10
6744 #define SYNC_MARK_STEP (3*HZ)
6745 void md_do_sync(mddev_t *mddev)
6746 {
6747 mddev_t *mddev2;
6748 unsigned int currspeed = 0,
6749 window;
6750 sector_t max_sectors,j, io_sectors;
6751 unsigned long mark[SYNC_MARKS];
6752 sector_t mark_cnt[SYNC_MARKS];
6753 int last_mark,m;
6754 struct list_head *tmp;
6755 sector_t last_check;
6756 int skipped = 0;
6757 mdk_rdev_t *rdev;
6758 char *desc;
6759
6760 /* just incase thread restarts... */
6761 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6762 return;
6763 if (mddev->ro) /* never try to sync a read-only array */
6764 return;
6765
6766 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6767 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6768 desc = "data-check";
6769 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6770 desc = "requested-resync";
6771 else
6772 desc = "resync";
6773 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6774 desc = "reshape";
6775 else
6776 desc = "recovery";
6777
6778 /* we overload curr_resync somewhat here.
6779 * 0 == not engaged in resync at all
6780 * 2 == checking that there is no conflict with another sync
6781 * 1 == like 2, but have yielded to allow conflicting resync to
6782 * commense
6783 * other == active in resync - this many blocks
6784 *
6785 * Before starting a resync we must have set curr_resync to
6786 * 2, and then checked that every "conflicting" array has curr_resync
6787 * less than ours. When we find one that is the same or higher
6788 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6789 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6790 * This will mean we have to start checking from the beginning again.
6791 *
6792 */
6793
6794 do {
6795 mddev->curr_resync = 2;
6796
6797 try_again:
6798 if (kthread_should_stop())
6799 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6800
6801 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6802 goto skip;
6803 for_each_mddev(mddev2, tmp) {
6804 if (mddev2 == mddev)
6805 continue;
6806 if (!mddev->parallel_resync
6807 && mddev2->curr_resync
6808 && match_mddev_units(mddev, mddev2)) {
6809 DEFINE_WAIT(wq);
6810 if (mddev < mddev2 && mddev->curr_resync == 2) {
6811 /* arbitrarily yield */
6812 mddev->curr_resync = 1;
6813 wake_up(&resync_wait);
6814 }
6815 if (mddev > mddev2 && mddev->curr_resync == 1)
6816 /* no need to wait here, we can wait the next
6817 * time 'round when curr_resync == 2
6818 */
6819 continue;
6820 /* We need to wait 'interruptible' so as not to
6821 * contribute to the load average, and not to
6822 * be caught by 'softlockup'
6823 */
6824 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6825 if (!kthread_should_stop() &&
6826 mddev2->curr_resync >= mddev->curr_resync) {
6827 printk(KERN_INFO "md: delaying %s of %s"
6828 " until %s has finished (they"
6829 " share one or more physical units)\n",
6830 desc, mdname(mddev), mdname(mddev2));
6831 mddev_put(mddev2);
6832 if (signal_pending(current))
6833 flush_signals(current);
6834 schedule();
6835 finish_wait(&resync_wait, &wq);
6836 goto try_again;
6837 }
6838 finish_wait(&resync_wait, &wq);
6839 }
6840 }
6841 } while (mddev->curr_resync < 2);
6842
6843 j = 0;
6844 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6845 /* resync follows the size requested by the personality,
6846 * which defaults to physical size, but can be virtual size
6847 */
6848 max_sectors = mddev->resync_max_sectors;
6849 mddev->resync_mismatches = 0;
6850 /* we don't use the checkpoint if there's a bitmap */
6851 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6852 j = mddev->resync_min;
6853 else if (!mddev->bitmap)
6854 j = mddev->recovery_cp;
6855
6856 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6857 max_sectors = mddev->dev_sectors;
6858 else {
6859 /* recovery follows the physical size of devices */
6860 max_sectors = mddev->dev_sectors;
6861 j = MaxSector;
6862 rcu_read_lock();
6863 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6864 if (rdev->raid_disk >= 0 &&
6865 !test_bit(Faulty, &rdev->flags) &&
6866 !test_bit(In_sync, &rdev->flags) &&
6867 rdev->recovery_offset < j)
6868 j = rdev->recovery_offset;
6869 rcu_read_unlock();
6870 }
6871
6872 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6873 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6874 " %d KB/sec/disk.\n", speed_min(mddev));
6875 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6876 "(but not more than %d KB/sec) for %s.\n",
6877 speed_max(mddev), desc);
6878
6879 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6880
6881 io_sectors = 0;
6882 for (m = 0; m < SYNC_MARKS; m++) {
6883 mark[m] = jiffies;
6884 mark_cnt[m] = io_sectors;
6885 }
6886 last_mark = 0;
6887 mddev->resync_mark = mark[last_mark];
6888 mddev->resync_mark_cnt = mark_cnt[last_mark];
6889
6890 /*
6891 * Tune reconstruction:
6892 */
6893 window = 32*(PAGE_SIZE/512);
6894 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
6895 window/2, (unsigned long long)max_sectors/2);
6896
6897 atomic_set(&mddev->recovery_active, 0);
6898 last_check = 0;
6899
6900 if (j>2) {
6901 printk(KERN_INFO
6902 "md: resuming %s of %s from checkpoint.\n",
6903 desc, mdname(mddev));
6904 mddev->curr_resync = j;
6905 }
6906 mddev->curr_resync_completed = j;
6907
6908 while (j < max_sectors) {
6909 sector_t sectors;
6910
6911 skipped = 0;
6912
6913 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6914 ((mddev->curr_resync > mddev->curr_resync_completed &&
6915 (mddev->curr_resync - mddev->curr_resync_completed)
6916 > (max_sectors >> 4)) ||
6917 (j - mddev->curr_resync_completed)*2
6918 >= mddev->resync_max - mddev->curr_resync_completed
6919 )) {
6920 /* time to update curr_resync_completed */
6921 wait_event(mddev->recovery_wait,
6922 atomic_read(&mddev->recovery_active) == 0);
6923 mddev->curr_resync_completed = j;
6924 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6925 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6926 }
6927
6928 while (j >= mddev->resync_max && !kthread_should_stop()) {
6929 /* As this condition is controlled by user-space,
6930 * we can block indefinitely, so use '_interruptible'
6931 * to avoid triggering warnings.
6932 */
6933 flush_signals(current); /* just in case */
6934 wait_event_interruptible(mddev->recovery_wait,
6935 mddev->resync_max > j
6936 || kthread_should_stop());
6937 }
6938
6939 if (kthread_should_stop())
6940 goto interrupted;
6941
6942 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6943 currspeed < speed_min(mddev));
6944 if (sectors == 0) {
6945 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6946 goto out;
6947 }
6948
6949 if (!skipped) { /* actual IO requested */
6950 io_sectors += sectors;
6951 atomic_add(sectors, &mddev->recovery_active);
6952 }
6953
6954 j += sectors;
6955 if (j>1) mddev->curr_resync = j;
6956 mddev->curr_mark_cnt = io_sectors;
6957 if (last_check == 0)
6958 /* this is the earliers that rebuilt will be
6959 * visible in /proc/mdstat
6960 */
6961 md_new_event(mddev);
6962
6963 if (last_check + window > io_sectors || j == max_sectors)
6964 continue;
6965
6966 last_check = io_sectors;
6967
6968 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6969 break;
6970
6971 repeat:
6972 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6973 /* step marks */
6974 int next = (last_mark+1) % SYNC_MARKS;
6975
6976 mddev->resync_mark = mark[next];
6977 mddev->resync_mark_cnt = mark_cnt[next];
6978 mark[next] = jiffies;
6979 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6980 last_mark = next;
6981 }
6982
6983
6984 if (kthread_should_stop())
6985 goto interrupted;
6986
6987
6988 /*
6989 * this loop exits only if either when we are slower than
6990 * the 'hard' speed limit, or the system was IO-idle for
6991 * a jiffy.
6992 * the system might be non-idle CPU-wise, but we only care
6993 * about not overloading the IO subsystem. (things like an
6994 * e2fsck being done on the RAID array should execute fast)
6995 */
6996 cond_resched();
6997
6998 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6999 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7000
7001 if (currspeed > speed_min(mddev)) {
7002 if ((currspeed > speed_max(mddev)) ||
7003 !is_mddev_idle(mddev, 0)) {
7004 msleep(500);
7005 goto repeat;
7006 }
7007 }
7008 }
7009 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7010 /*
7011 * this also signals 'finished resyncing' to md_stop
7012 */
7013 out:
7014 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7015
7016 /* tell personality that we are finished */
7017 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7018
7019 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7020 mddev->curr_resync > 2) {
7021 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7022 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7023 if (mddev->curr_resync >= mddev->recovery_cp) {
7024 printk(KERN_INFO
7025 "md: checkpointing %s of %s.\n",
7026 desc, mdname(mddev));
7027 mddev->recovery_cp = mddev->curr_resync;
7028 }
7029 } else
7030 mddev->recovery_cp = MaxSector;
7031 } else {
7032 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7033 mddev->curr_resync = MaxSector;
7034 rcu_read_lock();
7035 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7036 if (rdev->raid_disk >= 0 &&
7037 mddev->delta_disks >= 0 &&
7038 !test_bit(Faulty, &rdev->flags) &&
7039 !test_bit(In_sync, &rdev->flags) &&
7040 rdev->recovery_offset < mddev->curr_resync)
7041 rdev->recovery_offset = mddev->curr_resync;
7042 rcu_read_unlock();
7043 }
7044 }
7045 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7046
7047 skip:
7048 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7049 /* We completed so min/max setting can be forgotten if used. */
7050 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7051 mddev->resync_min = 0;
7052 mddev->resync_max = MaxSector;
7053 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7054 mddev->resync_min = mddev->curr_resync_completed;
7055 mddev->curr_resync = 0;
7056 wake_up(&resync_wait);
7057 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7058 md_wakeup_thread(mddev->thread);
7059 return;
7060
7061 interrupted:
7062 /*
7063 * got a signal, exit.
7064 */
7065 printk(KERN_INFO
7066 "md: md_do_sync() got signal ... exiting\n");
7067 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7068 goto out;
7069
7070 }
7071 EXPORT_SYMBOL_GPL(md_do_sync);
7072
7073 static int remove_and_add_spares(mddev_t *mddev)
7074 {
7075 mdk_rdev_t *rdev;
7076 int spares = 0;
7077
7078 mddev->curr_resync_completed = 0;
7079
7080 list_for_each_entry(rdev, &mddev->disks, same_set)
7081 if (rdev->raid_disk >= 0 &&
7082 !test_bit(Blocked, &rdev->flags) &&
7083 (test_bit(Faulty, &rdev->flags) ||
7084 ! test_bit(In_sync, &rdev->flags)) &&
7085 atomic_read(&rdev->nr_pending)==0) {
7086 if (mddev->pers->hot_remove_disk(
7087 mddev, rdev->raid_disk)==0) {
7088 sysfs_unlink_rdev(mddev, rdev);
7089 rdev->raid_disk = -1;
7090 }
7091 }
7092
7093 if (mddev->degraded) {
7094 list_for_each_entry(rdev, &mddev->disks, same_set) {
7095 if (rdev->raid_disk >= 0 &&
7096 !test_bit(In_sync, &rdev->flags) &&
7097 !test_bit(Faulty, &rdev->flags) &&
7098 !test_bit(Blocked, &rdev->flags))
7099 spares++;
7100 if (rdev->raid_disk < 0
7101 && !test_bit(Faulty, &rdev->flags)) {
7102 rdev->recovery_offset = 0;
7103 if (mddev->pers->
7104 hot_add_disk(mddev, rdev) == 0) {
7105 if (sysfs_link_rdev(mddev, rdev))
7106 /* failure here is OK */;
7107 spares++;
7108 md_new_event(mddev);
7109 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7110 } else
7111 break;
7112 }
7113 }
7114 }
7115 return spares;
7116 }
7117
7118 static void reap_sync_thread(mddev_t *mddev)
7119 {
7120 mdk_rdev_t *rdev;
7121
7122 /* resync has finished, collect result */
7123 md_unregister_thread(mddev->sync_thread);
7124 mddev->sync_thread = NULL;
7125 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7126 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7127 /* success...*/
7128 /* activate any spares */
7129 if (mddev->pers->spare_active(mddev))
7130 sysfs_notify(&mddev->kobj, NULL,
7131 "degraded");
7132 }
7133 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7134 mddev->pers->finish_reshape)
7135 mddev->pers->finish_reshape(mddev);
7136 md_update_sb(mddev, 1);
7137
7138 /* if array is no-longer degraded, then any saved_raid_disk
7139 * information must be scrapped
7140 */
7141 if (!mddev->degraded)
7142 list_for_each_entry(rdev, &mddev->disks, same_set)
7143 rdev->saved_raid_disk = -1;
7144
7145 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7146 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7147 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7148 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7149 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7150 /* flag recovery needed just to double check */
7151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7152 sysfs_notify_dirent_safe(mddev->sysfs_action);
7153 md_new_event(mddev);
7154 if (mddev->event_work.func)
7155 queue_work(md_misc_wq, &mddev->event_work);
7156 }
7157
7158 /*
7159 * This routine is regularly called by all per-raid-array threads to
7160 * deal with generic issues like resync and super-block update.
7161 * Raid personalities that don't have a thread (linear/raid0) do not
7162 * need this as they never do any recovery or update the superblock.
7163 *
7164 * It does not do any resync itself, but rather "forks" off other threads
7165 * to do that as needed.
7166 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7167 * "->recovery" and create a thread at ->sync_thread.
7168 * When the thread finishes it sets MD_RECOVERY_DONE
7169 * and wakeups up this thread which will reap the thread and finish up.
7170 * This thread also removes any faulty devices (with nr_pending == 0).
7171 *
7172 * The overall approach is:
7173 * 1/ if the superblock needs updating, update it.
7174 * 2/ If a recovery thread is running, don't do anything else.
7175 * 3/ If recovery has finished, clean up, possibly marking spares active.
7176 * 4/ If there are any faulty devices, remove them.
7177 * 5/ If array is degraded, try to add spares devices
7178 * 6/ If array has spares or is not in-sync, start a resync thread.
7179 */
7180 void md_check_recovery(mddev_t *mddev)
7181 {
7182 if (mddev->suspended)
7183 return;
7184
7185 if (mddev->bitmap)
7186 bitmap_daemon_work(mddev);
7187
7188 if (signal_pending(current)) {
7189 if (mddev->pers->sync_request && !mddev->external) {
7190 printk(KERN_INFO "md: %s in immediate safe mode\n",
7191 mdname(mddev));
7192 mddev->safemode = 2;
7193 }
7194 flush_signals(current);
7195 }
7196
7197 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7198 return;
7199 if ( ! (
7200 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7201 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7202 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7203 (mddev->external == 0 && mddev->safemode == 1) ||
7204 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7205 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7206 ))
7207 return;
7208
7209 if (mddev_trylock(mddev)) {
7210 int spares = 0;
7211
7212 if (mddev->ro) {
7213 /* Only thing we do on a ro array is remove
7214 * failed devices.
7215 */
7216 mdk_rdev_t *rdev;
7217 list_for_each_entry(rdev, &mddev->disks, same_set)
7218 if (rdev->raid_disk >= 0 &&
7219 !test_bit(Blocked, &rdev->flags) &&
7220 test_bit(Faulty, &rdev->flags) &&
7221 atomic_read(&rdev->nr_pending)==0) {
7222 if (mddev->pers->hot_remove_disk(
7223 mddev, rdev->raid_disk)==0) {
7224 sysfs_unlink_rdev(mddev, rdev);
7225 rdev->raid_disk = -1;
7226 }
7227 }
7228 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7229 goto unlock;
7230 }
7231
7232 if (!mddev->external) {
7233 int did_change = 0;
7234 spin_lock_irq(&mddev->write_lock);
7235 if (mddev->safemode &&
7236 !atomic_read(&mddev->writes_pending) &&
7237 !mddev->in_sync &&
7238 mddev->recovery_cp == MaxSector) {
7239 mddev->in_sync = 1;
7240 did_change = 1;
7241 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7242 }
7243 if (mddev->safemode == 1)
7244 mddev->safemode = 0;
7245 spin_unlock_irq(&mddev->write_lock);
7246 if (did_change)
7247 sysfs_notify_dirent_safe(mddev->sysfs_state);
7248 }
7249
7250 if (mddev->flags)
7251 md_update_sb(mddev, 0);
7252
7253 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7254 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7255 /* resync/recovery still happening */
7256 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7257 goto unlock;
7258 }
7259 if (mddev->sync_thread) {
7260 reap_sync_thread(mddev);
7261 goto unlock;
7262 }
7263 /* Set RUNNING before clearing NEEDED to avoid
7264 * any transients in the value of "sync_action".
7265 */
7266 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7267 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7268 /* Clear some bits that don't mean anything, but
7269 * might be left set
7270 */
7271 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7272 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7273
7274 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7275 goto unlock;
7276 /* no recovery is running.
7277 * remove any failed drives, then
7278 * add spares if possible.
7279 * Spare are also removed and re-added, to allow
7280 * the personality to fail the re-add.
7281 */
7282
7283 if (mddev->reshape_position != MaxSector) {
7284 if (mddev->pers->check_reshape == NULL ||
7285 mddev->pers->check_reshape(mddev) != 0)
7286 /* Cannot proceed */
7287 goto unlock;
7288 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7289 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7290 } else if ((spares = remove_and_add_spares(mddev))) {
7291 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7292 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7293 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7294 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7295 } else if (mddev->recovery_cp < MaxSector) {
7296 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7297 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7298 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7299 /* nothing to be done ... */
7300 goto unlock;
7301
7302 if (mddev->pers->sync_request) {
7303 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7304 /* We are adding a device or devices to an array
7305 * which has the bitmap stored on all devices.
7306 * So make sure all bitmap pages get written
7307 */
7308 bitmap_write_all(mddev->bitmap);
7309 }
7310 mddev->sync_thread = md_register_thread(md_do_sync,
7311 mddev,
7312 "resync");
7313 if (!mddev->sync_thread) {
7314 printk(KERN_ERR "%s: could not start resync"
7315 " thread...\n",
7316 mdname(mddev));
7317 /* leave the spares where they are, it shouldn't hurt */
7318 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7319 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7320 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7321 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7322 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7323 } else
7324 md_wakeup_thread(mddev->sync_thread);
7325 sysfs_notify_dirent_safe(mddev->sysfs_action);
7326 md_new_event(mddev);
7327 }
7328 unlock:
7329 if (!mddev->sync_thread) {
7330 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7331 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7332 &mddev->recovery))
7333 if (mddev->sysfs_action)
7334 sysfs_notify_dirent_safe(mddev->sysfs_action);
7335 }
7336 mddev_unlock(mddev);
7337 }
7338 }
7339
7340 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7341 {
7342 sysfs_notify_dirent_safe(rdev->sysfs_state);
7343 wait_event_timeout(rdev->blocked_wait,
7344 !test_bit(Blocked, &rdev->flags),
7345 msecs_to_jiffies(5000));
7346 rdev_dec_pending(rdev, mddev);
7347 }
7348 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7349
7350
7351 /* Bad block management.
7352 * We can record which blocks on each device are 'bad' and so just
7353 * fail those blocks, or that stripe, rather than the whole device.
7354 * Entries in the bad-block table are 64bits wide. This comprises:
7355 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7356 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7357 * A 'shift' can be set so that larger blocks are tracked and
7358 * consequently larger devices can be covered.
7359 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7360 *
7361 * Locking of the bad-block table uses a seqlock so md_is_badblock
7362 * might need to retry if it is very unlucky.
7363 * We will sometimes want to check for bad blocks in a bi_end_io function,
7364 * so we use the write_seqlock_irq variant.
7365 *
7366 * When looking for a bad block we specify a range and want to
7367 * know if any block in the range is bad. So we binary-search
7368 * to the last range that starts at-or-before the given endpoint,
7369 * (or "before the sector after the target range")
7370 * then see if it ends after the given start.
7371 * We return
7372 * 0 if there are no known bad blocks in the range
7373 * 1 if there are known bad block which are all acknowledged
7374 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7375 * plus the start/length of the first bad section we overlap.
7376 */
7377 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7378 sector_t *first_bad, int *bad_sectors)
7379 {
7380 int hi;
7381 int lo = 0;
7382 u64 *p = bb->page;
7383 int rv = 0;
7384 sector_t target = s + sectors;
7385 unsigned seq;
7386
7387 if (bb->shift > 0) {
7388 /* round the start down, and the end up */
7389 s >>= bb->shift;
7390 target += (1<<bb->shift) - 1;
7391 target >>= bb->shift;
7392 sectors = target - s;
7393 }
7394 /* 'target' is now the first block after the bad range */
7395
7396 retry:
7397 seq = read_seqbegin(&bb->lock);
7398
7399 hi = bb->count;
7400
7401 /* Binary search between lo and hi for 'target'
7402 * i.e. for the last range that starts before 'target'
7403 */
7404 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7405 * are known not to be the last range before target.
7406 * VARIANT: hi-lo is the number of possible
7407 * ranges, and decreases until it reaches 1
7408 */
7409 while (hi - lo > 1) {
7410 int mid = (lo + hi) / 2;
7411 sector_t a = BB_OFFSET(p[mid]);
7412 if (a < target)
7413 /* This could still be the one, earlier ranges
7414 * could not. */
7415 lo = mid;
7416 else
7417 /* This and later ranges are definitely out. */
7418 hi = mid;
7419 }
7420 /* 'lo' might be the last that started before target, but 'hi' isn't */
7421 if (hi > lo) {
7422 /* need to check all range that end after 's' to see if
7423 * any are unacknowledged.
7424 */
7425 while (lo >= 0 &&
7426 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7427 if (BB_OFFSET(p[lo]) < target) {
7428 /* starts before the end, and finishes after
7429 * the start, so they must overlap
7430 */
7431 if (rv != -1 && BB_ACK(p[lo]))
7432 rv = 1;
7433 else
7434 rv = -1;
7435 *first_bad = BB_OFFSET(p[lo]);
7436 *bad_sectors = BB_LEN(p[lo]);
7437 }
7438 lo--;
7439 }
7440 }
7441
7442 if (read_seqretry(&bb->lock, seq))
7443 goto retry;
7444
7445 return rv;
7446 }
7447 EXPORT_SYMBOL_GPL(md_is_badblock);
7448
7449 /*
7450 * Add a range of bad blocks to the table.
7451 * This might extend the table, or might contract it
7452 * if two adjacent ranges can be merged.
7453 * We binary-search to find the 'insertion' point, then
7454 * decide how best to handle it.
7455 */
7456 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7457 int acknowledged)
7458 {
7459 u64 *p;
7460 int lo, hi;
7461 int rv = 1;
7462
7463 if (bb->shift < 0)
7464 /* badblocks are disabled */
7465 return 0;
7466
7467 if (bb->shift) {
7468 /* round the start down, and the end up */
7469 sector_t next = s + sectors;
7470 s >>= bb->shift;
7471 next += (1<<bb->shift) - 1;
7472 next >>= bb->shift;
7473 sectors = next - s;
7474 }
7475
7476 write_seqlock_irq(&bb->lock);
7477
7478 p = bb->page;
7479 lo = 0;
7480 hi = bb->count;
7481 /* Find the last range that starts at-or-before 's' */
7482 while (hi - lo > 1) {
7483 int mid = (lo + hi) / 2;
7484 sector_t a = BB_OFFSET(p[mid]);
7485 if (a <= s)
7486 lo = mid;
7487 else
7488 hi = mid;
7489 }
7490 if (hi > lo && BB_OFFSET(p[lo]) > s)
7491 hi = lo;
7492
7493 if (hi > lo) {
7494 /* we found a range that might merge with the start
7495 * of our new range
7496 */
7497 sector_t a = BB_OFFSET(p[lo]);
7498 sector_t e = a + BB_LEN(p[lo]);
7499 int ack = BB_ACK(p[lo]);
7500 if (e >= s) {
7501 /* Yes, we can merge with a previous range */
7502 if (s == a && s + sectors >= e)
7503 /* new range covers old */
7504 ack = acknowledged;
7505 else
7506 ack = ack && acknowledged;
7507
7508 if (e < s + sectors)
7509 e = s + sectors;
7510 if (e - a <= BB_MAX_LEN) {
7511 p[lo] = BB_MAKE(a, e-a, ack);
7512 s = e;
7513 } else {
7514 /* does not all fit in one range,
7515 * make p[lo] maximal
7516 */
7517 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7518 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7519 s = a + BB_MAX_LEN;
7520 }
7521 sectors = e - s;
7522 }
7523 }
7524 if (sectors && hi < bb->count) {
7525 /* 'hi' points to the first range that starts after 's'.
7526 * Maybe we can merge with the start of that range */
7527 sector_t a = BB_OFFSET(p[hi]);
7528 sector_t e = a + BB_LEN(p[hi]);
7529 int ack = BB_ACK(p[hi]);
7530 if (a <= s + sectors) {
7531 /* merging is possible */
7532 if (e <= s + sectors) {
7533 /* full overlap */
7534 e = s + sectors;
7535 ack = acknowledged;
7536 } else
7537 ack = ack && acknowledged;
7538
7539 a = s;
7540 if (e - a <= BB_MAX_LEN) {
7541 p[hi] = BB_MAKE(a, e-a, ack);
7542 s = e;
7543 } else {
7544 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7545 s = a + BB_MAX_LEN;
7546 }
7547 sectors = e - s;
7548 lo = hi;
7549 hi++;
7550 }
7551 }
7552 if (sectors == 0 && hi < bb->count) {
7553 /* we might be able to combine lo and hi */
7554 /* Note: 's' is at the end of 'lo' */
7555 sector_t a = BB_OFFSET(p[hi]);
7556 int lolen = BB_LEN(p[lo]);
7557 int hilen = BB_LEN(p[hi]);
7558 int newlen = lolen + hilen - (s - a);
7559 if (s >= a && newlen < BB_MAX_LEN) {
7560 /* yes, we can combine them */
7561 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7562 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7563 memmove(p + hi, p + hi + 1,
7564 (bb->count - hi - 1) * 8);
7565 bb->count--;
7566 }
7567 }
7568 while (sectors) {
7569 /* didn't merge (it all).
7570 * Need to add a range just before 'hi' */
7571 if (bb->count >= MD_MAX_BADBLOCKS) {
7572 /* No room for more */
7573 rv = 0;
7574 break;
7575 } else {
7576 int this_sectors = sectors;
7577 memmove(p + hi + 1, p + hi,
7578 (bb->count - hi) * 8);
7579 bb->count++;
7580
7581 if (this_sectors > BB_MAX_LEN)
7582 this_sectors = BB_MAX_LEN;
7583 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7584 sectors -= this_sectors;
7585 s += this_sectors;
7586 }
7587 }
7588
7589 bb->changed = 1;
7590 write_sequnlock_irq(&bb->lock);
7591
7592 return rv;
7593 }
7594
7595 int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
7596 int acknowledged)
7597 {
7598 int rv = md_set_badblocks(&rdev->badblocks,
7599 s + rdev->data_offset, sectors, acknowledged);
7600 if (rv) {
7601 /* Make sure they get written out promptly */
7602 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7603 md_wakeup_thread(rdev->mddev->thread);
7604 }
7605 return rv;
7606 }
7607 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7608
7609 /*
7610 * Remove a range of bad blocks from the table.
7611 * This may involve extending the table if we spilt a region,
7612 * but it must not fail. So if the table becomes full, we just
7613 * drop the remove request.
7614 */
7615 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7616 {
7617 u64 *p;
7618 int lo, hi;
7619 sector_t target = s + sectors;
7620 int rv = 0;
7621
7622 if (bb->shift > 0) {
7623 /* When clearing we round the start up and the end down.
7624 * This should not matter as the shift should align with
7625 * the block size and no rounding should ever be needed.
7626 * However it is better the think a block is bad when it
7627 * isn't than to think a block is not bad when it is.
7628 */
7629 s += (1<<bb->shift) - 1;
7630 s >>= bb->shift;
7631 target >>= bb->shift;
7632 sectors = target - s;
7633 }
7634
7635 write_seqlock_irq(&bb->lock);
7636
7637 p = bb->page;
7638 lo = 0;
7639 hi = bb->count;
7640 /* Find the last range that starts before 'target' */
7641 while (hi - lo > 1) {
7642 int mid = (lo + hi) / 2;
7643 sector_t a = BB_OFFSET(p[mid]);
7644 if (a < target)
7645 lo = mid;
7646 else
7647 hi = mid;
7648 }
7649 if (hi > lo) {
7650 /* p[lo] is the last range that could overlap the
7651 * current range. Earlier ranges could also overlap,
7652 * but only this one can overlap the end of the range.
7653 */
7654 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7655 /* Partial overlap, leave the tail of this range */
7656 int ack = BB_ACK(p[lo]);
7657 sector_t a = BB_OFFSET(p[lo]);
7658 sector_t end = a + BB_LEN(p[lo]);
7659
7660 if (a < s) {
7661 /* we need to split this range */
7662 if (bb->count >= MD_MAX_BADBLOCKS) {
7663 rv = 0;
7664 goto out;
7665 }
7666 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7667 bb->count++;
7668 p[lo] = BB_MAKE(a, s-a, ack);
7669 lo++;
7670 }
7671 p[lo] = BB_MAKE(target, end - target, ack);
7672 /* there is no longer an overlap */
7673 hi = lo;
7674 lo--;
7675 }
7676 while (lo >= 0 &&
7677 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7678 /* This range does overlap */
7679 if (BB_OFFSET(p[lo]) < s) {
7680 /* Keep the early parts of this range. */
7681 int ack = BB_ACK(p[lo]);
7682 sector_t start = BB_OFFSET(p[lo]);
7683 p[lo] = BB_MAKE(start, s - start, ack);
7684 /* now low doesn't overlap, so.. */
7685 break;
7686 }
7687 lo--;
7688 }
7689 /* 'lo' is strictly before, 'hi' is strictly after,
7690 * anything between needs to be discarded
7691 */
7692 if (hi - lo > 1) {
7693 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7694 bb->count -= (hi - lo - 1);
7695 }
7696 }
7697
7698 bb->changed = 1;
7699 out:
7700 write_sequnlock_irq(&bb->lock);
7701 return rv;
7702 }
7703
7704 int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
7705 {
7706 return md_clear_badblocks(&rdev->badblocks,
7707 s + rdev->data_offset,
7708 sectors);
7709 }
7710 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7711
7712 /*
7713 * Acknowledge all bad blocks in a list.
7714 * This only succeeds if ->changed is clear. It is used by
7715 * in-kernel metadata updates
7716 */
7717 void md_ack_all_badblocks(struct badblocks *bb)
7718 {
7719 if (bb->page == NULL || bb->changed)
7720 /* no point even trying */
7721 return;
7722 write_seqlock_irq(&bb->lock);
7723
7724 if (bb->changed == 0) {
7725 u64 *p = bb->page;
7726 int i;
7727 for (i = 0; i < bb->count ; i++) {
7728 if (!BB_ACK(p[i])) {
7729 sector_t start = BB_OFFSET(p[i]);
7730 int len = BB_LEN(p[i]);
7731 p[i] = BB_MAKE(start, len, 1);
7732 }
7733 }
7734 }
7735 write_sequnlock_irq(&bb->lock);
7736 }
7737 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7738
7739 static int md_notify_reboot(struct notifier_block *this,
7740 unsigned long code, void *x)
7741 {
7742 struct list_head *tmp;
7743 mddev_t *mddev;
7744
7745 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7746
7747 printk(KERN_INFO "md: stopping all md devices.\n");
7748
7749 for_each_mddev(mddev, tmp)
7750 if (mddev_trylock(mddev)) {
7751 /* Force a switch to readonly even array
7752 * appears to still be in use. Hence
7753 * the '100'.
7754 */
7755 md_set_readonly(mddev, 100);
7756 mddev_unlock(mddev);
7757 }
7758 /*
7759 * certain more exotic SCSI devices are known to be
7760 * volatile wrt too early system reboots. While the
7761 * right place to handle this issue is the given
7762 * driver, we do want to have a safe RAID driver ...
7763 */
7764 mdelay(1000*1);
7765 }
7766 return NOTIFY_DONE;
7767 }
7768
7769 static struct notifier_block md_notifier = {
7770 .notifier_call = md_notify_reboot,
7771 .next = NULL,
7772 .priority = INT_MAX, /* before any real devices */
7773 };
7774
7775 static void md_geninit(void)
7776 {
7777 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7778
7779 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7780 }
7781
7782 static int __init md_init(void)
7783 {
7784 int ret = -ENOMEM;
7785
7786 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
7787 if (!md_wq)
7788 goto err_wq;
7789
7790 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
7791 if (!md_misc_wq)
7792 goto err_misc_wq;
7793
7794 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
7795 goto err_md;
7796
7797 if ((ret = register_blkdev(0, "mdp")) < 0)
7798 goto err_mdp;
7799 mdp_major = ret;
7800
7801 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7802 md_probe, NULL, NULL);
7803 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7804 md_probe, NULL, NULL);
7805
7806 register_reboot_notifier(&md_notifier);
7807 raid_table_header = register_sysctl_table(raid_root_table);
7808
7809 md_geninit();
7810 return 0;
7811
7812 err_mdp:
7813 unregister_blkdev(MD_MAJOR, "md");
7814 err_md:
7815 destroy_workqueue(md_misc_wq);
7816 err_misc_wq:
7817 destroy_workqueue(md_wq);
7818 err_wq:
7819 return ret;
7820 }
7821
7822 #ifndef MODULE
7823
7824 /*
7825 * Searches all registered partitions for autorun RAID arrays
7826 * at boot time.
7827 */
7828
7829 static LIST_HEAD(all_detected_devices);
7830 struct detected_devices_node {
7831 struct list_head list;
7832 dev_t dev;
7833 };
7834
7835 void md_autodetect_dev(dev_t dev)
7836 {
7837 struct detected_devices_node *node_detected_dev;
7838
7839 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7840 if (node_detected_dev) {
7841 node_detected_dev->dev = dev;
7842 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7843 } else {
7844 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7845 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7846 }
7847 }
7848
7849
7850 static void autostart_arrays(int part)
7851 {
7852 mdk_rdev_t *rdev;
7853 struct detected_devices_node *node_detected_dev;
7854 dev_t dev;
7855 int i_scanned, i_passed;
7856
7857 i_scanned = 0;
7858 i_passed = 0;
7859
7860 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7861
7862 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7863 i_scanned++;
7864 node_detected_dev = list_entry(all_detected_devices.next,
7865 struct detected_devices_node, list);
7866 list_del(&node_detected_dev->list);
7867 dev = node_detected_dev->dev;
7868 kfree(node_detected_dev);
7869 rdev = md_import_device(dev,0, 90);
7870 if (IS_ERR(rdev))
7871 continue;
7872
7873 if (test_bit(Faulty, &rdev->flags)) {
7874 MD_BUG();
7875 continue;
7876 }
7877 set_bit(AutoDetected, &rdev->flags);
7878 list_add(&rdev->same_set, &pending_raid_disks);
7879 i_passed++;
7880 }
7881
7882 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7883 i_scanned, i_passed);
7884
7885 autorun_devices(part);
7886 }
7887
7888 #endif /* !MODULE */
7889
7890 static __exit void md_exit(void)
7891 {
7892 mddev_t *mddev;
7893 struct list_head *tmp;
7894
7895 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7896 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7897
7898 unregister_blkdev(MD_MAJOR,"md");
7899 unregister_blkdev(mdp_major, "mdp");
7900 unregister_reboot_notifier(&md_notifier);
7901 unregister_sysctl_table(raid_table_header);
7902 remove_proc_entry("mdstat", NULL);
7903 for_each_mddev(mddev, tmp) {
7904 export_array(mddev);
7905 mddev->hold_active = 0;
7906 }
7907 destroy_workqueue(md_misc_wq);
7908 destroy_workqueue(md_wq);
7909 }
7910
7911 subsys_initcall(md_init);
7912 module_exit(md_exit)
7913
7914 static int get_ro(char *buffer, struct kernel_param *kp)
7915 {
7916 return sprintf(buffer, "%d", start_readonly);
7917 }
7918 static int set_ro(const char *val, struct kernel_param *kp)
7919 {
7920 char *e;
7921 int num = simple_strtoul(val, &e, 10);
7922 if (*val && (*e == '\0' || *e == '\n')) {
7923 start_readonly = num;
7924 return 0;
7925 }
7926 return -EINVAL;
7927 }
7928
7929 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7930 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7931
7932 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7933
7934 EXPORT_SYMBOL(register_md_personality);
7935 EXPORT_SYMBOL(unregister_md_personality);
7936 EXPORT_SYMBOL(md_error);
7937 EXPORT_SYMBOL(md_done_sync);
7938 EXPORT_SYMBOL(md_write_start);
7939 EXPORT_SYMBOL(md_write_end);
7940 EXPORT_SYMBOL(md_register_thread);
7941 EXPORT_SYMBOL(md_unregister_thread);
7942 EXPORT_SYMBOL(md_wakeup_thread);
7943 EXPORT_SYMBOL(md_check_recovery);
7944 MODULE_LICENSE("GPL");
7945 MODULE_DESCRIPTION("MD RAID framework");
7946 MODULE_ALIAS("md");
7947 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.18825 seconds and 6 git commands to generate.