Merge tag 'configfs-for-linus-2' of git://git.infradead.org/users/hch/configfs
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 /* pers_list is a list of registered personalities protected
64 * by pers_lock.
65 * pers_lock does extra service to protect accesses to
66 * mddev->thread when the mutex cannot be held.
67 */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79
80 static int remove_and_add_spares(struct mddev *mddev,
81 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83
84 /*
85 * Default number of read corrections we'll attempt on an rdev
86 * before ejecting it from the array. We divide the read error
87 * count by 2 for every hour elapsed between read errors.
88 */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92 * is 1000 KB/sec, so the extra system load does not show up that much.
93 * Increase it if you want to have more _guaranteed_ speed. Note that
94 * the RAID driver will use the maximum available bandwidth if the IO
95 * subsystem is idle. There is also an 'absolute maximum' reconstruction
96 * speed limit - in case reconstruction slows down your system despite
97 * idle IO detection.
98 *
99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100 * or /sys/block/mdX/md/sync_speed_{min,max}
101 */
102
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 return mddev->sync_speed_min ?
108 mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110
111 static inline int speed_max(struct mddev *mddev)
112 {
113 return mddev->sync_speed_max ?
114 mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116
117 static struct ctl_table_header *raid_table_header;
118
119 static struct ctl_table raid_table[] = {
120 {
121 .procname = "speed_limit_min",
122 .data = &sysctl_speed_limit_min,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 {
128 .procname = "speed_limit_max",
129 .data = &sysctl_speed_limit_max,
130 .maxlen = sizeof(int),
131 .mode = S_IRUGO|S_IWUSR,
132 .proc_handler = proc_dointvec,
133 },
134 { }
135 };
136
137 static struct ctl_table raid_dir_table[] = {
138 {
139 .procname = "raid",
140 .maxlen = 0,
141 .mode = S_IRUGO|S_IXUGO,
142 .child = raid_table,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_root_table[] = {
148 {
149 .procname = "dev",
150 .maxlen = 0,
151 .mode = 0555,
152 .child = raid_dir_table,
153 },
154 { }
155 };
156
157 static const struct block_device_operations md_fops;
158
159 static int start_readonly;
160
161 /* bio_clone_mddev
162 * like bio_clone, but with a local bio set
163 */
164
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 struct mddev *mddev)
167 {
168 struct bio *b;
169
170 if (!mddev || !mddev->bio_set)
171 return bio_alloc(gfp_mask, nr_iovecs);
172
173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 if (!b)
175 return NULL;
176 return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 struct mddev *mddev)
182 {
183 if (!mddev || !mddev->bio_set)
184 return bio_clone(bio, gfp_mask);
185
186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189
190 /*
191 * We have a system wide 'event count' that is incremented
192 * on any 'interesting' event, and readers of /proc/mdstat
193 * can use 'poll' or 'select' to find out when the event
194 * count increases.
195 *
196 * Events are:
197 * start array, stop array, error, add device, remove device,
198 * start build, activate spare
199 */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 atomic_inc(&md_event_count);
205 wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208
209 /*
210 * Enables to iterate over all existing md arrays
211 * all_mddevs_lock protects this list.
212 */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215
216 /*
217 * iterates through all used mddevs in the system.
218 * We take care to grab the all_mddevs_lock whenever navigating
219 * the list, and to always hold a refcount when unlocked.
220 * Any code which breaks out of this loop while own
221 * a reference to the current mddev and must mddev_put it.
222 */
223 #define for_each_mddev(_mddev,_tmp) \
224 \
225 for (({ spin_lock(&all_mddevs_lock); \
226 _tmp = all_mddevs.next; \
227 _mddev = NULL;}); \
228 ({ if (_tmp != &all_mddevs) \
229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 spin_unlock(&all_mddevs_lock); \
231 if (_mddev) mddev_put(_mddev); \
232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
233 _tmp != &all_mddevs;}); \
234 ({ spin_lock(&all_mddevs_lock); \
235 _tmp = _tmp->next;}) \
236 )
237
238 /* Rather than calling directly into the personality make_request function,
239 * IO requests come here first so that we can check if the device is
240 * being suspended pending a reconfiguration.
241 * We hold a refcount over the call to ->make_request. By the time that
242 * call has finished, the bio has been linked into some internal structure
243 * and so is visible to ->quiesce(), so we don't need the refcount any more.
244 */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 const int rw = bio_data_dir(bio);
248 struct mddev *mddev = q->queuedata;
249 unsigned int sectors;
250 int cpu;
251
252 blk_queue_split(q, &bio, q->bio_split);
253
254 if (mddev == NULL || mddev->pers == NULL) {
255 bio_io_error(bio);
256 return BLK_QC_T_NONE;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 if (bio_sectors(bio) != 0)
260 bio->bi_error = -EROFS;
261 bio_endio(bio);
262 return BLK_QC_T_NONE;
263 }
264 smp_rmb(); /* Ensure implications of 'active' are visible */
265 rcu_read_lock();
266 if (mddev->suspended) {
267 DEFINE_WAIT(__wait);
268 for (;;) {
269 prepare_to_wait(&mddev->sb_wait, &__wait,
270 TASK_UNINTERRUPTIBLE);
271 if (!mddev->suspended)
272 break;
273 rcu_read_unlock();
274 schedule();
275 rcu_read_lock();
276 }
277 finish_wait(&mddev->sb_wait, &__wait);
278 }
279 atomic_inc(&mddev->active_io);
280 rcu_read_unlock();
281
282 /*
283 * save the sectors now since our bio can
284 * go away inside make_request
285 */
286 sectors = bio_sectors(bio);
287 mddev->pers->make_request(mddev, bio);
288
289 cpu = part_stat_lock();
290 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
291 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
292 part_stat_unlock();
293
294 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
295 wake_up(&mddev->sb_wait);
296
297 return BLK_QC_T_NONE;
298 }
299
300 /* mddev_suspend makes sure no new requests are submitted
301 * to the device, and that any requests that have been submitted
302 * are completely handled.
303 * Once mddev_detach() is called and completes, the module will be
304 * completely unused.
305 */
306 void mddev_suspend(struct mddev *mddev)
307 {
308 WARN_ON_ONCE(current == mddev->thread->tsk);
309 if (mddev->suspended++)
310 return;
311 synchronize_rcu();
312 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
313 mddev->pers->quiesce(mddev, 1);
314
315 del_timer_sync(&mddev->safemode_timer);
316 }
317 EXPORT_SYMBOL_GPL(mddev_suspend);
318
319 void mddev_resume(struct mddev *mddev)
320 {
321 if (--mddev->suspended)
322 return;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
325
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 struct md_personality *pers = mddev->pers;
335 int ret = 0;
336
337 rcu_read_lock();
338 if (mddev->suspended)
339 ret = 1;
340 else if (pers && pers->congested)
341 ret = pers->congested(mddev, bits);
342 rcu_read_unlock();
343 return ret;
344 }
345 EXPORT_SYMBOL_GPL(mddev_congested);
346 static int md_congested(void *data, int bits)
347 {
348 struct mddev *mddev = data;
349 return mddev_congested(mddev, bits);
350 }
351
352 /*
353 * Generic flush handling for md
354 */
355
356 static void md_end_flush(struct bio *bio)
357 {
358 struct md_rdev *rdev = bio->bi_private;
359 struct mddev *mddev = rdev->mddev;
360
361 rdev_dec_pending(rdev, mddev);
362
363 if (atomic_dec_and_test(&mddev->flush_pending)) {
364 /* The pre-request flush has finished */
365 queue_work(md_wq, &mddev->flush_work);
366 }
367 bio_put(bio);
368 }
369
370 static void md_submit_flush_data(struct work_struct *ws);
371
372 static void submit_flushes(struct work_struct *ws)
373 {
374 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
375 struct md_rdev *rdev;
376
377 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
378 atomic_set(&mddev->flush_pending, 1);
379 rcu_read_lock();
380 rdev_for_each_rcu(rdev, mddev)
381 if (rdev->raid_disk >= 0 &&
382 !test_bit(Faulty, &rdev->flags)) {
383 /* Take two references, one is dropped
384 * when request finishes, one after
385 * we reclaim rcu_read_lock
386 */
387 struct bio *bi;
388 atomic_inc(&rdev->nr_pending);
389 atomic_inc(&rdev->nr_pending);
390 rcu_read_unlock();
391 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
392 bi->bi_end_io = md_end_flush;
393 bi->bi_private = rdev;
394 bi->bi_bdev = rdev->bdev;
395 atomic_inc(&mddev->flush_pending);
396 submit_bio(WRITE_FLUSH, bi);
397 rcu_read_lock();
398 rdev_dec_pending(rdev, mddev);
399 }
400 rcu_read_unlock();
401 if (atomic_dec_and_test(&mddev->flush_pending))
402 queue_work(md_wq, &mddev->flush_work);
403 }
404
405 static void md_submit_flush_data(struct work_struct *ws)
406 {
407 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
408 struct bio *bio = mddev->flush_bio;
409
410 if (bio->bi_iter.bi_size == 0)
411 /* an empty barrier - all done */
412 bio_endio(bio);
413 else {
414 bio->bi_rw &= ~REQ_FLUSH;
415 mddev->pers->make_request(mddev, bio);
416 }
417
418 mddev->flush_bio = NULL;
419 wake_up(&mddev->sb_wait);
420 }
421
422 void md_flush_request(struct mddev *mddev, struct bio *bio)
423 {
424 spin_lock_irq(&mddev->lock);
425 wait_event_lock_irq(mddev->sb_wait,
426 !mddev->flush_bio,
427 mddev->lock);
428 mddev->flush_bio = bio;
429 spin_unlock_irq(&mddev->lock);
430
431 INIT_WORK(&mddev->flush_work, submit_flushes);
432 queue_work(md_wq, &mddev->flush_work);
433 }
434 EXPORT_SYMBOL(md_flush_request);
435
436 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
437 {
438 struct mddev *mddev = cb->data;
439 md_wakeup_thread(mddev->thread);
440 kfree(cb);
441 }
442 EXPORT_SYMBOL(md_unplug);
443
444 static inline struct mddev *mddev_get(struct mddev *mddev)
445 {
446 atomic_inc(&mddev->active);
447 return mddev;
448 }
449
450 static void mddev_delayed_delete(struct work_struct *ws);
451
452 static void mddev_put(struct mddev *mddev)
453 {
454 struct bio_set *bs = NULL;
455
456 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
457 return;
458 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
459 mddev->ctime == 0 && !mddev->hold_active) {
460 /* Array is not configured at all, and not held active,
461 * so destroy it */
462 list_del_init(&mddev->all_mddevs);
463 bs = mddev->bio_set;
464 mddev->bio_set = NULL;
465 if (mddev->gendisk) {
466 /* We did a probe so need to clean up. Call
467 * queue_work inside the spinlock so that
468 * flush_workqueue() after mddev_find will
469 * succeed in waiting for the work to be done.
470 */
471 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
472 queue_work(md_misc_wq, &mddev->del_work);
473 } else
474 kfree(mddev);
475 }
476 spin_unlock(&all_mddevs_lock);
477 if (bs)
478 bioset_free(bs);
479 }
480
481 static void md_safemode_timeout(unsigned long data);
482
483 void mddev_init(struct mddev *mddev)
484 {
485 mutex_init(&mddev->open_mutex);
486 mutex_init(&mddev->reconfig_mutex);
487 mutex_init(&mddev->bitmap_info.mutex);
488 INIT_LIST_HEAD(&mddev->disks);
489 INIT_LIST_HEAD(&mddev->all_mddevs);
490 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
491 (unsigned long) mddev);
492 atomic_set(&mddev->active, 1);
493 atomic_set(&mddev->openers, 0);
494 atomic_set(&mddev->active_io, 0);
495 spin_lock_init(&mddev->lock);
496 atomic_set(&mddev->flush_pending, 0);
497 init_waitqueue_head(&mddev->sb_wait);
498 init_waitqueue_head(&mddev->recovery_wait);
499 mddev->reshape_position = MaxSector;
500 mddev->reshape_backwards = 0;
501 mddev->last_sync_action = "none";
502 mddev->resync_min = 0;
503 mddev->resync_max = MaxSector;
504 mddev->level = LEVEL_NONE;
505 }
506 EXPORT_SYMBOL_GPL(mddev_init);
507
508 static struct mddev *mddev_find(dev_t unit)
509 {
510 struct mddev *mddev, *new = NULL;
511
512 if (unit && MAJOR(unit) != MD_MAJOR)
513 unit &= ~((1<<MdpMinorShift)-1);
514
515 retry:
516 spin_lock(&all_mddevs_lock);
517
518 if (unit) {
519 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
520 if (mddev->unit == unit) {
521 mddev_get(mddev);
522 spin_unlock(&all_mddevs_lock);
523 kfree(new);
524 return mddev;
525 }
526
527 if (new) {
528 list_add(&new->all_mddevs, &all_mddevs);
529 spin_unlock(&all_mddevs_lock);
530 new->hold_active = UNTIL_IOCTL;
531 return new;
532 }
533 } else if (new) {
534 /* find an unused unit number */
535 static int next_minor = 512;
536 int start = next_minor;
537 int is_free = 0;
538 int dev = 0;
539 while (!is_free) {
540 dev = MKDEV(MD_MAJOR, next_minor);
541 next_minor++;
542 if (next_minor > MINORMASK)
543 next_minor = 0;
544 if (next_minor == start) {
545 /* Oh dear, all in use. */
546 spin_unlock(&all_mddevs_lock);
547 kfree(new);
548 return NULL;
549 }
550
551 is_free = 1;
552 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
553 if (mddev->unit == dev) {
554 is_free = 0;
555 break;
556 }
557 }
558 new->unit = dev;
559 new->md_minor = MINOR(dev);
560 new->hold_active = UNTIL_STOP;
561 list_add(&new->all_mddevs, &all_mddevs);
562 spin_unlock(&all_mddevs_lock);
563 return new;
564 }
565 spin_unlock(&all_mddevs_lock);
566
567 new = kzalloc(sizeof(*new), GFP_KERNEL);
568 if (!new)
569 return NULL;
570
571 new->unit = unit;
572 if (MAJOR(unit) == MD_MAJOR)
573 new->md_minor = MINOR(unit);
574 else
575 new->md_minor = MINOR(unit) >> MdpMinorShift;
576
577 mddev_init(new);
578
579 goto retry;
580 }
581
582 static struct attribute_group md_redundancy_group;
583
584 void mddev_unlock(struct mddev *mddev)
585 {
586 if (mddev->to_remove) {
587 /* These cannot be removed under reconfig_mutex as
588 * an access to the files will try to take reconfig_mutex
589 * while holding the file unremovable, which leads to
590 * a deadlock.
591 * So hold set sysfs_active while the remove in happeing,
592 * and anything else which might set ->to_remove or my
593 * otherwise change the sysfs namespace will fail with
594 * -EBUSY if sysfs_active is still set.
595 * We set sysfs_active under reconfig_mutex and elsewhere
596 * test it under the same mutex to ensure its correct value
597 * is seen.
598 */
599 struct attribute_group *to_remove = mddev->to_remove;
600 mddev->to_remove = NULL;
601 mddev->sysfs_active = 1;
602 mutex_unlock(&mddev->reconfig_mutex);
603
604 if (mddev->kobj.sd) {
605 if (to_remove != &md_redundancy_group)
606 sysfs_remove_group(&mddev->kobj, to_remove);
607 if (mddev->pers == NULL ||
608 mddev->pers->sync_request == NULL) {
609 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
610 if (mddev->sysfs_action)
611 sysfs_put(mddev->sysfs_action);
612 mddev->sysfs_action = NULL;
613 }
614 }
615 mddev->sysfs_active = 0;
616 } else
617 mutex_unlock(&mddev->reconfig_mutex);
618
619 /* As we've dropped the mutex we need a spinlock to
620 * make sure the thread doesn't disappear
621 */
622 spin_lock(&pers_lock);
623 md_wakeup_thread(mddev->thread);
624 spin_unlock(&pers_lock);
625 }
626 EXPORT_SYMBOL_GPL(mddev_unlock);
627
628 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
629 {
630 struct md_rdev *rdev;
631
632 rdev_for_each_rcu(rdev, mddev)
633 if (rdev->desc_nr == nr)
634 return rdev;
635
636 return NULL;
637 }
638 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
639
640 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
641 {
642 struct md_rdev *rdev;
643
644 rdev_for_each(rdev, mddev)
645 if (rdev->bdev->bd_dev == dev)
646 return rdev;
647
648 return NULL;
649 }
650
651 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
652 {
653 struct md_rdev *rdev;
654
655 rdev_for_each_rcu(rdev, mddev)
656 if (rdev->bdev->bd_dev == dev)
657 return rdev;
658
659 return NULL;
660 }
661
662 static struct md_personality *find_pers(int level, char *clevel)
663 {
664 struct md_personality *pers;
665 list_for_each_entry(pers, &pers_list, list) {
666 if (level != LEVEL_NONE && pers->level == level)
667 return pers;
668 if (strcmp(pers->name, clevel)==0)
669 return pers;
670 }
671 return NULL;
672 }
673
674 /* return the offset of the super block in 512byte sectors */
675 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
676 {
677 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
678 return MD_NEW_SIZE_SECTORS(num_sectors);
679 }
680
681 static int alloc_disk_sb(struct md_rdev *rdev)
682 {
683 rdev->sb_page = alloc_page(GFP_KERNEL);
684 if (!rdev->sb_page) {
685 printk(KERN_ALERT "md: out of memory.\n");
686 return -ENOMEM;
687 }
688
689 return 0;
690 }
691
692 void md_rdev_clear(struct md_rdev *rdev)
693 {
694 if (rdev->sb_page) {
695 put_page(rdev->sb_page);
696 rdev->sb_loaded = 0;
697 rdev->sb_page = NULL;
698 rdev->sb_start = 0;
699 rdev->sectors = 0;
700 }
701 if (rdev->bb_page) {
702 put_page(rdev->bb_page);
703 rdev->bb_page = NULL;
704 }
705 badblocks_exit(&rdev->badblocks);
706 }
707 EXPORT_SYMBOL_GPL(md_rdev_clear);
708
709 static void super_written(struct bio *bio)
710 {
711 struct md_rdev *rdev = bio->bi_private;
712 struct mddev *mddev = rdev->mddev;
713
714 if (bio->bi_error) {
715 printk("md: super_written gets error=%d\n", bio->bi_error);
716 md_error(mddev, rdev);
717 }
718
719 if (atomic_dec_and_test(&mddev->pending_writes))
720 wake_up(&mddev->sb_wait);
721 bio_put(bio);
722 }
723
724 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
725 sector_t sector, int size, struct page *page)
726 {
727 /* write first size bytes of page to sector of rdev
728 * Increment mddev->pending_writes before returning
729 * and decrement it on completion, waking up sb_wait
730 * if zero is reached.
731 * If an error occurred, call md_error
732 */
733 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
734
735 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
736 bio->bi_iter.bi_sector = sector;
737 bio_add_page(bio, page, size, 0);
738 bio->bi_private = rdev;
739 bio->bi_end_io = super_written;
740
741 atomic_inc(&mddev->pending_writes);
742 submit_bio(WRITE_FLUSH_FUA, bio);
743 }
744
745 void md_super_wait(struct mddev *mddev)
746 {
747 /* wait for all superblock writes that were scheduled to complete */
748 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
749 }
750
751 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
752 struct page *page, int rw, bool metadata_op)
753 {
754 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
755 int ret;
756
757 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
758 rdev->meta_bdev : rdev->bdev;
759 if (metadata_op)
760 bio->bi_iter.bi_sector = sector + rdev->sb_start;
761 else if (rdev->mddev->reshape_position != MaxSector &&
762 (rdev->mddev->reshape_backwards ==
763 (sector >= rdev->mddev->reshape_position)))
764 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
765 else
766 bio->bi_iter.bi_sector = sector + rdev->data_offset;
767 bio_add_page(bio, page, size, 0);
768 submit_bio_wait(rw, bio);
769
770 ret = !bio->bi_error;
771 bio_put(bio);
772 return ret;
773 }
774 EXPORT_SYMBOL_GPL(sync_page_io);
775
776 static int read_disk_sb(struct md_rdev *rdev, int size)
777 {
778 char b[BDEVNAME_SIZE];
779
780 if (rdev->sb_loaded)
781 return 0;
782
783 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
784 goto fail;
785 rdev->sb_loaded = 1;
786 return 0;
787
788 fail:
789 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
790 bdevname(rdev->bdev,b));
791 return -EINVAL;
792 }
793
794 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
795 {
796 return sb1->set_uuid0 == sb2->set_uuid0 &&
797 sb1->set_uuid1 == sb2->set_uuid1 &&
798 sb1->set_uuid2 == sb2->set_uuid2 &&
799 sb1->set_uuid3 == sb2->set_uuid3;
800 }
801
802 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
803 {
804 int ret;
805 mdp_super_t *tmp1, *tmp2;
806
807 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
808 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
809
810 if (!tmp1 || !tmp2) {
811 ret = 0;
812 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
813 goto abort;
814 }
815
816 *tmp1 = *sb1;
817 *tmp2 = *sb2;
818
819 /*
820 * nr_disks is not constant
821 */
822 tmp1->nr_disks = 0;
823 tmp2->nr_disks = 0;
824
825 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
826 abort:
827 kfree(tmp1);
828 kfree(tmp2);
829 return ret;
830 }
831
832 static u32 md_csum_fold(u32 csum)
833 {
834 csum = (csum & 0xffff) + (csum >> 16);
835 return (csum & 0xffff) + (csum >> 16);
836 }
837
838 static unsigned int calc_sb_csum(mdp_super_t *sb)
839 {
840 u64 newcsum = 0;
841 u32 *sb32 = (u32*)sb;
842 int i;
843 unsigned int disk_csum, csum;
844
845 disk_csum = sb->sb_csum;
846 sb->sb_csum = 0;
847
848 for (i = 0; i < MD_SB_BYTES/4 ; i++)
849 newcsum += sb32[i];
850 csum = (newcsum & 0xffffffff) + (newcsum>>32);
851
852 #ifdef CONFIG_ALPHA
853 /* This used to use csum_partial, which was wrong for several
854 * reasons including that different results are returned on
855 * different architectures. It isn't critical that we get exactly
856 * the same return value as before (we always csum_fold before
857 * testing, and that removes any differences). However as we
858 * know that csum_partial always returned a 16bit value on
859 * alphas, do a fold to maximise conformity to previous behaviour.
860 */
861 sb->sb_csum = md_csum_fold(disk_csum);
862 #else
863 sb->sb_csum = disk_csum;
864 #endif
865 return csum;
866 }
867
868 /*
869 * Handle superblock details.
870 * We want to be able to handle multiple superblock formats
871 * so we have a common interface to them all, and an array of
872 * different handlers.
873 * We rely on user-space to write the initial superblock, and support
874 * reading and updating of superblocks.
875 * Interface methods are:
876 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
877 * loads and validates a superblock on dev.
878 * if refdev != NULL, compare superblocks on both devices
879 * Return:
880 * 0 - dev has a superblock that is compatible with refdev
881 * 1 - dev has a superblock that is compatible and newer than refdev
882 * so dev should be used as the refdev in future
883 * -EINVAL superblock incompatible or invalid
884 * -othererror e.g. -EIO
885 *
886 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
887 * Verify that dev is acceptable into mddev.
888 * The first time, mddev->raid_disks will be 0, and data from
889 * dev should be merged in. Subsequent calls check that dev
890 * is new enough. Return 0 or -EINVAL
891 *
892 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
893 * Update the superblock for rdev with data in mddev
894 * This does not write to disc.
895 *
896 */
897
898 struct super_type {
899 char *name;
900 struct module *owner;
901 int (*load_super)(struct md_rdev *rdev,
902 struct md_rdev *refdev,
903 int minor_version);
904 int (*validate_super)(struct mddev *mddev,
905 struct md_rdev *rdev);
906 void (*sync_super)(struct mddev *mddev,
907 struct md_rdev *rdev);
908 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
909 sector_t num_sectors);
910 int (*allow_new_offset)(struct md_rdev *rdev,
911 unsigned long long new_offset);
912 };
913
914 /*
915 * Check that the given mddev has no bitmap.
916 *
917 * This function is called from the run method of all personalities that do not
918 * support bitmaps. It prints an error message and returns non-zero if mddev
919 * has a bitmap. Otherwise, it returns 0.
920 *
921 */
922 int md_check_no_bitmap(struct mddev *mddev)
923 {
924 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
925 return 0;
926 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
927 mdname(mddev), mddev->pers->name);
928 return 1;
929 }
930 EXPORT_SYMBOL(md_check_no_bitmap);
931
932 /*
933 * load_super for 0.90.0
934 */
935 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
936 {
937 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
938 mdp_super_t *sb;
939 int ret;
940
941 /*
942 * Calculate the position of the superblock (512byte sectors),
943 * it's at the end of the disk.
944 *
945 * It also happens to be a multiple of 4Kb.
946 */
947 rdev->sb_start = calc_dev_sboffset(rdev);
948
949 ret = read_disk_sb(rdev, MD_SB_BYTES);
950 if (ret) return ret;
951
952 ret = -EINVAL;
953
954 bdevname(rdev->bdev, b);
955 sb = page_address(rdev->sb_page);
956
957 if (sb->md_magic != MD_SB_MAGIC) {
958 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
959 b);
960 goto abort;
961 }
962
963 if (sb->major_version != 0 ||
964 sb->minor_version < 90 ||
965 sb->minor_version > 91) {
966 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
967 sb->major_version, sb->minor_version,
968 b);
969 goto abort;
970 }
971
972 if (sb->raid_disks <= 0)
973 goto abort;
974
975 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
976 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
977 b);
978 goto abort;
979 }
980
981 rdev->preferred_minor = sb->md_minor;
982 rdev->data_offset = 0;
983 rdev->new_data_offset = 0;
984 rdev->sb_size = MD_SB_BYTES;
985 rdev->badblocks.shift = -1;
986
987 if (sb->level == LEVEL_MULTIPATH)
988 rdev->desc_nr = -1;
989 else
990 rdev->desc_nr = sb->this_disk.number;
991
992 if (!refdev) {
993 ret = 1;
994 } else {
995 __u64 ev1, ev2;
996 mdp_super_t *refsb = page_address(refdev->sb_page);
997 if (!uuid_equal(refsb, sb)) {
998 printk(KERN_WARNING "md: %s has different UUID to %s\n",
999 b, bdevname(refdev->bdev,b2));
1000 goto abort;
1001 }
1002 if (!sb_equal(refsb, sb)) {
1003 printk(KERN_WARNING "md: %s has same UUID"
1004 " but different superblock to %s\n",
1005 b, bdevname(refdev->bdev, b2));
1006 goto abort;
1007 }
1008 ev1 = md_event(sb);
1009 ev2 = md_event(refsb);
1010 if (ev1 > ev2)
1011 ret = 1;
1012 else
1013 ret = 0;
1014 }
1015 rdev->sectors = rdev->sb_start;
1016 /* Limit to 4TB as metadata cannot record more than that.
1017 * (not needed for Linear and RAID0 as metadata doesn't
1018 * record this size)
1019 */
1020 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1021 sb->level >= 1)
1022 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1023
1024 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1025 /* "this cannot possibly happen" ... */
1026 ret = -EINVAL;
1027
1028 abort:
1029 return ret;
1030 }
1031
1032 /*
1033 * validate_super for 0.90.0
1034 */
1035 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1036 {
1037 mdp_disk_t *desc;
1038 mdp_super_t *sb = page_address(rdev->sb_page);
1039 __u64 ev1 = md_event(sb);
1040
1041 rdev->raid_disk = -1;
1042 clear_bit(Faulty, &rdev->flags);
1043 clear_bit(In_sync, &rdev->flags);
1044 clear_bit(Bitmap_sync, &rdev->flags);
1045 clear_bit(WriteMostly, &rdev->flags);
1046
1047 if (mddev->raid_disks == 0) {
1048 mddev->major_version = 0;
1049 mddev->minor_version = sb->minor_version;
1050 mddev->patch_version = sb->patch_version;
1051 mddev->external = 0;
1052 mddev->chunk_sectors = sb->chunk_size >> 9;
1053 mddev->ctime = sb->ctime;
1054 mddev->utime = sb->utime;
1055 mddev->level = sb->level;
1056 mddev->clevel[0] = 0;
1057 mddev->layout = sb->layout;
1058 mddev->raid_disks = sb->raid_disks;
1059 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1060 mddev->events = ev1;
1061 mddev->bitmap_info.offset = 0;
1062 mddev->bitmap_info.space = 0;
1063 /* bitmap can use 60 K after the 4K superblocks */
1064 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1065 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1066 mddev->reshape_backwards = 0;
1067
1068 if (mddev->minor_version >= 91) {
1069 mddev->reshape_position = sb->reshape_position;
1070 mddev->delta_disks = sb->delta_disks;
1071 mddev->new_level = sb->new_level;
1072 mddev->new_layout = sb->new_layout;
1073 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1074 if (mddev->delta_disks < 0)
1075 mddev->reshape_backwards = 1;
1076 } else {
1077 mddev->reshape_position = MaxSector;
1078 mddev->delta_disks = 0;
1079 mddev->new_level = mddev->level;
1080 mddev->new_layout = mddev->layout;
1081 mddev->new_chunk_sectors = mddev->chunk_sectors;
1082 }
1083
1084 if (sb->state & (1<<MD_SB_CLEAN))
1085 mddev->recovery_cp = MaxSector;
1086 else {
1087 if (sb->events_hi == sb->cp_events_hi &&
1088 sb->events_lo == sb->cp_events_lo) {
1089 mddev->recovery_cp = sb->recovery_cp;
1090 } else
1091 mddev->recovery_cp = 0;
1092 }
1093
1094 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1095 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1096 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1097 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1098
1099 mddev->max_disks = MD_SB_DISKS;
1100
1101 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1102 mddev->bitmap_info.file == NULL) {
1103 mddev->bitmap_info.offset =
1104 mddev->bitmap_info.default_offset;
1105 mddev->bitmap_info.space =
1106 mddev->bitmap_info.default_space;
1107 }
1108
1109 } else if (mddev->pers == NULL) {
1110 /* Insist on good event counter while assembling, except
1111 * for spares (which don't need an event count) */
1112 ++ev1;
1113 if (sb->disks[rdev->desc_nr].state & (
1114 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1115 if (ev1 < mddev->events)
1116 return -EINVAL;
1117 } else if (mddev->bitmap) {
1118 /* if adding to array with a bitmap, then we can accept an
1119 * older device ... but not too old.
1120 */
1121 if (ev1 < mddev->bitmap->events_cleared)
1122 return 0;
1123 if (ev1 < mddev->events)
1124 set_bit(Bitmap_sync, &rdev->flags);
1125 } else {
1126 if (ev1 < mddev->events)
1127 /* just a hot-add of a new device, leave raid_disk at -1 */
1128 return 0;
1129 }
1130
1131 if (mddev->level != LEVEL_MULTIPATH) {
1132 desc = sb->disks + rdev->desc_nr;
1133
1134 if (desc->state & (1<<MD_DISK_FAULTY))
1135 set_bit(Faulty, &rdev->flags);
1136 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1137 desc->raid_disk < mddev->raid_disks */) {
1138 set_bit(In_sync, &rdev->flags);
1139 rdev->raid_disk = desc->raid_disk;
1140 rdev->saved_raid_disk = desc->raid_disk;
1141 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1142 /* active but not in sync implies recovery up to
1143 * reshape position. We don't know exactly where
1144 * that is, so set to zero for now */
1145 if (mddev->minor_version >= 91) {
1146 rdev->recovery_offset = 0;
1147 rdev->raid_disk = desc->raid_disk;
1148 }
1149 }
1150 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1151 set_bit(WriteMostly, &rdev->flags);
1152 } else /* MULTIPATH are always insync */
1153 set_bit(In_sync, &rdev->flags);
1154 return 0;
1155 }
1156
1157 /*
1158 * sync_super for 0.90.0
1159 */
1160 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 mdp_super_t *sb;
1163 struct md_rdev *rdev2;
1164 int next_spare = mddev->raid_disks;
1165
1166 /* make rdev->sb match mddev data..
1167 *
1168 * 1/ zero out disks
1169 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1170 * 3/ any empty disks < next_spare become removed
1171 *
1172 * disks[0] gets initialised to REMOVED because
1173 * we cannot be sure from other fields if it has
1174 * been initialised or not.
1175 */
1176 int i;
1177 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1178
1179 rdev->sb_size = MD_SB_BYTES;
1180
1181 sb = page_address(rdev->sb_page);
1182
1183 memset(sb, 0, sizeof(*sb));
1184
1185 sb->md_magic = MD_SB_MAGIC;
1186 sb->major_version = mddev->major_version;
1187 sb->patch_version = mddev->patch_version;
1188 sb->gvalid_words = 0; /* ignored */
1189 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1190 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1191 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1192 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1193
1194 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1195 sb->level = mddev->level;
1196 sb->size = mddev->dev_sectors / 2;
1197 sb->raid_disks = mddev->raid_disks;
1198 sb->md_minor = mddev->md_minor;
1199 sb->not_persistent = 0;
1200 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1201 sb->state = 0;
1202 sb->events_hi = (mddev->events>>32);
1203 sb->events_lo = (u32)mddev->events;
1204
1205 if (mddev->reshape_position == MaxSector)
1206 sb->minor_version = 90;
1207 else {
1208 sb->minor_version = 91;
1209 sb->reshape_position = mddev->reshape_position;
1210 sb->new_level = mddev->new_level;
1211 sb->delta_disks = mddev->delta_disks;
1212 sb->new_layout = mddev->new_layout;
1213 sb->new_chunk = mddev->new_chunk_sectors << 9;
1214 }
1215 mddev->minor_version = sb->minor_version;
1216 if (mddev->in_sync)
1217 {
1218 sb->recovery_cp = mddev->recovery_cp;
1219 sb->cp_events_hi = (mddev->events>>32);
1220 sb->cp_events_lo = (u32)mddev->events;
1221 if (mddev->recovery_cp == MaxSector)
1222 sb->state = (1<< MD_SB_CLEAN);
1223 } else
1224 sb->recovery_cp = 0;
1225
1226 sb->layout = mddev->layout;
1227 sb->chunk_size = mddev->chunk_sectors << 9;
1228
1229 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1230 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1231
1232 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1233 rdev_for_each(rdev2, mddev) {
1234 mdp_disk_t *d;
1235 int desc_nr;
1236 int is_active = test_bit(In_sync, &rdev2->flags);
1237
1238 if (rdev2->raid_disk >= 0 &&
1239 sb->minor_version >= 91)
1240 /* we have nowhere to store the recovery_offset,
1241 * but if it is not below the reshape_position,
1242 * we can piggy-back on that.
1243 */
1244 is_active = 1;
1245 if (rdev2->raid_disk < 0 ||
1246 test_bit(Faulty, &rdev2->flags))
1247 is_active = 0;
1248 if (is_active)
1249 desc_nr = rdev2->raid_disk;
1250 else
1251 desc_nr = next_spare++;
1252 rdev2->desc_nr = desc_nr;
1253 d = &sb->disks[rdev2->desc_nr];
1254 nr_disks++;
1255 d->number = rdev2->desc_nr;
1256 d->major = MAJOR(rdev2->bdev->bd_dev);
1257 d->minor = MINOR(rdev2->bdev->bd_dev);
1258 if (is_active)
1259 d->raid_disk = rdev2->raid_disk;
1260 else
1261 d->raid_disk = rdev2->desc_nr; /* compatibility */
1262 if (test_bit(Faulty, &rdev2->flags))
1263 d->state = (1<<MD_DISK_FAULTY);
1264 else if (is_active) {
1265 d->state = (1<<MD_DISK_ACTIVE);
1266 if (test_bit(In_sync, &rdev2->flags))
1267 d->state |= (1<<MD_DISK_SYNC);
1268 active++;
1269 working++;
1270 } else {
1271 d->state = 0;
1272 spare++;
1273 working++;
1274 }
1275 if (test_bit(WriteMostly, &rdev2->flags))
1276 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1277 }
1278 /* now set the "removed" and "faulty" bits on any missing devices */
1279 for (i=0 ; i < mddev->raid_disks ; i++) {
1280 mdp_disk_t *d = &sb->disks[i];
1281 if (d->state == 0 && d->number == 0) {
1282 d->number = i;
1283 d->raid_disk = i;
1284 d->state = (1<<MD_DISK_REMOVED);
1285 d->state |= (1<<MD_DISK_FAULTY);
1286 failed++;
1287 }
1288 }
1289 sb->nr_disks = nr_disks;
1290 sb->active_disks = active;
1291 sb->working_disks = working;
1292 sb->failed_disks = failed;
1293 sb->spare_disks = spare;
1294
1295 sb->this_disk = sb->disks[rdev->desc_nr];
1296 sb->sb_csum = calc_sb_csum(sb);
1297 }
1298
1299 /*
1300 * rdev_size_change for 0.90.0
1301 */
1302 static unsigned long long
1303 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1304 {
1305 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1306 return 0; /* component must fit device */
1307 if (rdev->mddev->bitmap_info.offset)
1308 return 0; /* can't move bitmap */
1309 rdev->sb_start = calc_dev_sboffset(rdev);
1310 if (!num_sectors || num_sectors > rdev->sb_start)
1311 num_sectors = rdev->sb_start;
1312 /* Limit to 4TB as metadata cannot record more than that.
1313 * 4TB == 2^32 KB, or 2*2^32 sectors.
1314 */
1315 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1316 rdev->mddev->level >= 1)
1317 num_sectors = (sector_t)(2ULL << 32) - 2;
1318 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1319 rdev->sb_page);
1320 md_super_wait(rdev->mddev);
1321 return num_sectors;
1322 }
1323
1324 static int
1325 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1326 {
1327 /* non-zero offset changes not possible with v0.90 */
1328 return new_offset == 0;
1329 }
1330
1331 /*
1332 * version 1 superblock
1333 */
1334
1335 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1336 {
1337 __le32 disk_csum;
1338 u32 csum;
1339 unsigned long long newcsum;
1340 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1341 __le32 *isuper = (__le32*)sb;
1342
1343 disk_csum = sb->sb_csum;
1344 sb->sb_csum = 0;
1345 newcsum = 0;
1346 for (; size >= 4; size -= 4)
1347 newcsum += le32_to_cpu(*isuper++);
1348
1349 if (size == 2)
1350 newcsum += le16_to_cpu(*(__le16*) isuper);
1351
1352 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1353 sb->sb_csum = disk_csum;
1354 return cpu_to_le32(csum);
1355 }
1356
1357 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1358 {
1359 struct mdp_superblock_1 *sb;
1360 int ret;
1361 sector_t sb_start;
1362 sector_t sectors;
1363 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1364 int bmask;
1365
1366 /*
1367 * Calculate the position of the superblock in 512byte sectors.
1368 * It is always aligned to a 4K boundary and
1369 * depeding on minor_version, it can be:
1370 * 0: At least 8K, but less than 12K, from end of device
1371 * 1: At start of device
1372 * 2: 4K from start of device.
1373 */
1374 switch(minor_version) {
1375 case 0:
1376 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1377 sb_start -= 8*2;
1378 sb_start &= ~(sector_t)(4*2-1);
1379 break;
1380 case 1:
1381 sb_start = 0;
1382 break;
1383 case 2:
1384 sb_start = 8;
1385 break;
1386 default:
1387 return -EINVAL;
1388 }
1389 rdev->sb_start = sb_start;
1390
1391 /* superblock is rarely larger than 1K, but it can be larger,
1392 * and it is safe to read 4k, so we do that
1393 */
1394 ret = read_disk_sb(rdev, 4096);
1395 if (ret) return ret;
1396
1397 sb = page_address(rdev->sb_page);
1398
1399 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1400 sb->major_version != cpu_to_le32(1) ||
1401 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1402 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1403 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1404 return -EINVAL;
1405
1406 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1407 printk("md: invalid superblock checksum on %s\n",
1408 bdevname(rdev->bdev,b));
1409 return -EINVAL;
1410 }
1411 if (le64_to_cpu(sb->data_size) < 10) {
1412 printk("md: data_size too small on %s\n",
1413 bdevname(rdev->bdev,b));
1414 return -EINVAL;
1415 }
1416 if (sb->pad0 ||
1417 sb->pad3[0] ||
1418 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1419 /* Some padding is non-zero, might be a new feature */
1420 return -EINVAL;
1421
1422 rdev->preferred_minor = 0xffff;
1423 rdev->data_offset = le64_to_cpu(sb->data_offset);
1424 rdev->new_data_offset = rdev->data_offset;
1425 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1426 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1427 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1428 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1429
1430 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1431 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1432 if (rdev->sb_size & bmask)
1433 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1434
1435 if (minor_version
1436 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1437 return -EINVAL;
1438 if (minor_version
1439 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1440 return -EINVAL;
1441
1442 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1443 rdev->desc_nr = -1;
1444 else
1445 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1446
1447 if (!rdev->bb_page) {
1448 rdev->bb_page = alloc_page(GFP_KERNEL);
1449 if (!rdev->bb_page)
1450 return -ENOMEM;
1451 }
1452 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1453 rdev->badblocks.count == 0) {
1454 /* need to load the bad block list.
1455 * Currently we limit it to one page.
1456 */
1457 s32 offset;
1458 sector_t bb_sector;
1459 u64 *bbp;
1460 int i;
1461 int sectors = le16_to_cpu(sb->bblog_size);
1462 if (sectors > (PAGE_SIZE / 512))
1463 return -EINVAL;
1464 offset = le32_to_cpu(sb->bblog_offset);
1465 if (offset == 0)
1466 return -EINVAL;
1467 bb_sector = (long long)offset;
1468 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1469 rdev->bb_page, READ, true))
1470 return -EIO;
1471 bbp = (u64 *)page_address(rdev->bb_page);
1472 rdev->badblocks.shift = sb->bblog_shift;
1473 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1474 u64 bb = le64_to_cpu(*bbp);
1475 int count = bb & (0x3ff);
1476 u64 sector = bb >> 10;
1477 sector <<= sb->bblog_shift;
1478 count <<= sb->bblog_shift;
1479 if (bb + 1 == 0)
1480 break;
1481 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1482 return -EINVAL;
1483 }
1484 } else if (sb->bblog_offset != 0)
1485 rdev->badblocks.shift = 0;
1486
1487 if (!refdev) {
1488 ret = 1;
1489 } else {
1490 __u64 ev1, ev2;
1491 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1492
1493 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1494 sb->level != refsb->level ||
1495 sb->layout != refsb->layout ||
1496 sb->chunksize != refsb->chunksize) {
1497 printk(KERN_WARNING "md: %s has strangely different"
1498 " superblock to %s\n",
1499 bdevname(rdev->bdev,b),
1500 bdevname(refdev->bdev,b2));
1501 return -EINVAL;
1502 }
1503 ev1 = le64_to_cpu(sb->events);
1504 ev2 = le64_to_cpu(refsb->events);
1505
1506 if (ev1 > ev2)
1507 ret = 1;
1508 else
1509 ret = 0;
1510 }
1511 if (minor_version) {
1512 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1513 sectors -= rdev->data_offset;
1514 } else
1515 sectors = rdev->sb_start;
1516 if (sectors < le64_to_cpu(sb->data_size))
1517 return -EINVAL;
1518 rdev->sectors = le64_to_cpu(sb->data_size);
1519 return ret;
1520 }
1521
1522 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1523 {
1524 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1525 __u64 ev1 = le64_to_cpu(sb->events);
1526
1527 rdev->raid_disk = -1;
1528 clear_bit(Faulty, &rdev->flags);
1529 clear_bit(In_sync, &rdev->flags);
1530 clear_bit(Bitmap_sync, &rdev->flags);
1531 clear_bit(WriteMostly, &rdev->flags);
1532
1533 if (mddev->raid_disks == 0) {
1534 mddev->major_version = 1;
1535 mddev->patch_version = 0;
1536 mddev->external = 0;
1537 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1538 mddev->ctime = le64_to_cpu(sb->ctime);
1539 mddev->utime = le64_to_cpu(sb->utime);
1540 mddev->level = le32_to_cpu(sb->level);
1541 mddev->clevel[0] = 0;
1542 mddev->layout = le32_to_cpu(sb->layout);
1543 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1544 mddev->dev_sectors = le64_to_cpu(sb->size);
1545 mddev->events = ev1;
1546 mddev->bitmap_info.offset = 0;
1547 mddev->bitmap_info.space = 0;
1548 /* Default location for bitmap is 1K after superblock
1549 * using 3K - total of 4K
1550 */
1551 mddev->bitmap_info.default_offset = 1024 >> 9;
1552 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1553 mddev->reshape_backwards = 0;
1554
1555 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1556 memcpy(mddev->uuid, sb->set_uuid, 16);
1557
1558 mddev->max_disks = (4096-256)/2;
1559
1560 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1561 mddev->bitmap_info.file == NULL) {
1562 mddev->bitmap_info.offset =
1563 (__s32)le32_to_cpu(sb->bitmap_offset);
1564 /* Metadata doesn't record how much space is available.
1565 * For 1.0, we assume we can use up to the superblock
1566 * if before, else to 4K beyond superblock.
1567 * For others, assume no change is possible.
1568 */
1569 if (mddev->minor_version > 0)
1570 mddev->bitmap_info.space = 0;
1571 else if (mddev->bitmap_info.offset > 0)
1572 mddev->bitmap_info.space =
1573 8 - mddev->bitmap_info.offset;
1574 else
1575 mddev->bitmap_info.space =
1576 -mddev->bitmap_info.offset;
1577 }
1578
1579 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1580 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1581 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1582 mddev->new_level = le32_to_cpu(sb->new_level);
1583 mddev->new_layout = le32_to_cpu(sb->new_layout);
1584 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1585 if (mddev->delta_disks < 0 ||
1586 (mddev->delta_disks == 0 &&
1587 (le32_to_cpu(sb->feature_map)
1588 & MD_FEATURE_RESHAPE_BACKWARDS)))
1589 mddev->reshape_backwards = 1;
1590 } else {
1591 mddev->reshape_position = MaxSector;
1592 mddev->delta_disks = 0;
1593 mddev->new_level = mddev->level;
1594 mddev->new_layout = mddev->layout;
1595 mddev->new_chunk_sectors = mddev->chunk_sectors;
1596 }
1597
1598 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1599 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1600 if (mddev->recovery_cp == MaxSector)
1601 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1602 }
1603 } else if (mddev->pers == NULL) {
1604 /* Insist of good event counter while assembling, except for
1605 * spares (which don't need an event count) */
1606 ++ev1;
1607 if (rdev->desc_nr >= 0 &&
1608 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1609 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1610 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1611 if (ev1 < mddev->events)
1612 return -EINVAL;
1613 } else if (mddev->bitmap) {
1614 /* If adding to array with a bitmap, then we can accept an
1615 * older device, but not too old.
1616 */
1617 if (ev1 < mddev->bitmap->events_cleared)
1618 return 0;
1619 if (ev1 < mddev->events)
1620 set_bit(Bitmap_sync, &rdev->flags);
1621 } else {
1622 if (ev1 < mddev->events)
1623 /* just a hot-add of a new device, leave raid_disk at -1 */
1624 return 0;
1625 }
1626 if (mddev->level != LEVEL_MULTIPATH) {
1627 int role;
1628 if (rdev->desc_nr < 0 ||
1629 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1630 role = MD_DISK_ROLE_SPARE;
1631 rdev->desc_nr = -1;
1632 } else
1633 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1634 switch(role) {
1635 case MD_DISK_ROLE_SPARE: /* spare */
1636 break;
1637 case MD_DISK_ROLE_FAULTY: /* faulty */
1638 set_bit(Faulty, &rdev->flags);
1639 break;
1640 case MD_DISK_ROLE_JOURNAL: /* journal device */
1641 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1642 /* journal device without journal feature */
1643 printk(KERN_WARNING
1644 "md: journal device provided without journal feature, ignoring the device\n");
1645 return -EINVAL;
1646 }
1647 set_bit(Journal, &rdev->flags);
1648 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1649 rdev->raid_disk = 0;
1650 break;
1651 default:
1652 rdev->saved_raid_disk = role;
1653 if ((le32_to_cpu(sb->feature_map) &
1654 MD_FEATURE_RECOVERY_OFFSET)) {
1655 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1656 if (!(le32_to_cpu(sb->feature_map) &
1657 MD_FEATURE_RECOVERY_BITMAP))
1658 rdev->saved_raid_disk = -1;
1659 } else
1660 set_bit(In_sync, &rdev->flags);
1661 rdev->raid_disk = role;
1662 break;
1663 }
1664 if (sb->devflags & WriteMostly1)
1665 set_bit(WriteMostly, &rdev->flags);
1666 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1667 set_bit(Replacement, &rdev->flags);
1668 } else /* MULTIPATH are always insync */
1669 set_bit(In_sync, &rdev->flags);
1670
1671 return 0;
1672 }
1673
1674 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1675 {
1676 struct mdp_superblock_1 *sb;
1677 struct md_rdev *rdev2;
1678 int max_dev, i;
1679 /* make rdev->sb match mddev and rdev data. */
1680
1681 sb = page_address(rdev->sb_page);
1682
1683 sb->feature_map = 0;
1684 sb->pad0 = 0;
1685 sb->recovery_offset = cpu_to_le64(0);
1686 memset(sb->pad3, 0, sizeof(sb->pad3));
1687
1688 sb->utime = cpu_to_le64((__u64)mddev->utime);
1689 sb->events = cpu_to_le64(mddev->events);
1690 if (mddev->in_sync)
1691 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1692 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1693 sb->resync_offset = cpu_to_le64(MaxSector);
1694 else
1695 sb->resync_offset = cpu_to_le64(0);
1696
1697 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1698
1699 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1700 sb->size = cpu_to_le64(mddev->dev_sectors);
1701 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1702 sb->level = cpu_to_le32(mddev->level);
1703 sb->layout = cpu_to_le32(mddev->layout);
1704
1705 if (test_bit(WriteMostly, &rdev->flags))
1706 sb->devflags |= WriteMostly1;
1707 else
1708 sb->devflags &= ~WriteMostly1;
1709 sb->data_offset = cpu_to_le64(rdev->data_offset);
1710 sb->data_size = cpu_to_le64(rdev->sectors);
1711
1712 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1713 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1714 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1715 }
1716
1717 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1718 !test_bit(In_sync, &rdev->flags)) {
1719 sb->feature_map |=
1720 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1721 sb->recovery_offset =
1722 cpu_to_le64(rdev->recovery_offset);
1723 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1724 sb->feature_map |=
1725 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1726 }
1727 /* Note: recovery_offset and journal_tail share space */
1728 if (test_bit(Journal, &rdev->flags))
1729 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1730 if (test_bit(Replacement, &rdev->flags))
1731 sb->feature_map |=
1732 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1733
1734 if (mddev->reshape_position != MaxSector) {
1735 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1736 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1737 sb->new_layout = cpu_to_le32(mddev->new_layout);
1738 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1739 sb->new_level = cpu_to_le32(mddev->new_level);
1740 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1741 if (mddev->delta_disks == 0 &&
1742 mddev->reshape_backwards)
1743 sb->feature_map
1744 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1745 if (rdev->new_data_offset != rdev->data_offset) {
1746 sb->feature_map
1747 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1748 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1749 - rdev->data_offset));
1750 }
1751 }
1752
1753 if (mddev_is_clustered(mddev))
1754 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1755
1756 if (rdev->badblocks.count == 0)
1757 /* Nothing to do for bad blocks*/ ;
1758 else if (sb->bblog_offset == 0)
1759 /* Cannot record bad blocks on this device */
1760 md_error(mddev, rdev);
1761 else {
1762 struct badblocks *bb = &rdev->badblocks;
1763 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 u64 *p = bb->page;
1765 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 if (bb->changed) {
1767 unsigned seq;
1768
1769 retry:
1770 seq = read_seqbegin(&bb->lock);
1771
1772 memset(bbp, 0xff, PAGE_SIZE);
1773
1774 for (i = 0 ; i < bb->count ; i++) {
1775 u64 internal_bb = p[i];
1776 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 | BB_LEN(internal_bb));
1778 bbp[i] = cpu_to_le64(store_bb);
1779 }
1780 bb->changed = 0;
1781 if (read_seqretry(&bb->lock, seq))
1782 goto retry;
1783
1784 bb->sector = (rdev->sb_start +
1785 (int)le32_to_cpu(sb->bblog_offset));
1786 bb->size = le16_to_cpu(sb->bblog_size);
1787 }
1788 }
1789
1790 max_dev = 0;
1791 rdev_for_each(rdev2, mddev)
1792 if (rdev2->desc_nr+1 > max_dev)
1793 max_dev = rdev2->desc_nr+1;
1794
1795 if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 int bmask;
1797 sb->max_dev = cpu_to_le32(max_dev);
1798 rdev->sb_size = max_dev * 2 + 256;
1799 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 if (rdev->sb_size & bmask)
1801 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 } else
1803 max_dev = le32_to_cpu(sb->max_dev);
1804
1805 for (i=0; i<max_dev;i++)
1806 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1807
1808 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1809 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1810
1811 rdev_for_each(rdev2, mddev) {
1812 i = rdev2->desc_nr;
1813 if (test_bit(Faulty, &rdev2->flags))
1814 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1815 else if (test_bit(In_sync, &rdev2->flags))
1816 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817 else if (test_bit(Journal, &rdev2->flags))
1818 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1819 else if (rdev2->raid_disk >= 0)
1820 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1821 else
1822 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1823 }
1824
1825 sb->sb_csum = calc_sb_1_csum(sb);
1826 }
1827
1828 static unsigned long long
1829 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1830 {
1831 struct mdp_superblock_1 *sb;
1832 sector_t max_sectors;
1833 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1834 return 0; /* component must fit device */
1835 if (rdev->data_offset != rdev->new_data_offset)
1836 return 0; /* too confusing */
1837 if (rdev->sb_start < rdev->data_offset) {
1838 /* minor versions 1 and 2; superblock before data */
1839 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1840 max_sectors -= rdev->data_offset;
1841 if (!num_sectors || num_sectors > max_sectors)
1842 num_sectors = max_sectors;
1843 } else if (rdev->mddev->bitmap_info.offset) {
1844 /* minor version 0 with bitmap we can't move */
1845 return 0;
1846 } else {
1847 /* minor version 0; superblock after data */
1848 sector_t sb_start;
1849 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1850 sb_start &= ~(sector_t)(4*2 - 1);
1851 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1852 if (!num_sectors || num_sectors > max_sectors)
1853 num_sectors = max_sectors;
1854 rdev->sb_start = sb_start;
1855 }
1856 sb = page_address(rdev->sb_page);
1857 sb->data_size = cpu_to_le64(num_sectors);
1858 sb->super_offset = rdev->sb_start;
1859 sb->sb_csum = calc_sb_1_csum(sb);
1860 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1861 rdev->sb_page);
1862 md_super_wait(rdev->mddev);
1863 return num_sectors;
1864
1865 }
1866
1867 static int
1868 super_1_allow_new_offset(struct md_rdev *rdev,
1869 unsigned long long new_offset)
1870 {
1871 /* All necessary checks on new >= old have been done */
1872 struct bitmap *bitmap;
1873 if (new_offset >= rdev->data_offset)
1874 return 1;
1875
1876 /* with 1.0 metadata, there is no metadata to tread on
1877 * so we can always move back */
1878 if (rdev->mddev->minor_version == 0)
1879 return 1;
1880
1881 /* otherwise we must be sure not to step on
1882 * any metadata, so stay:
1883 * 36K beyond start of superblock
1884 * beyond end of badblocks
1885 * beyond write-intent bitmap
1886 */
1887 if (rdev->sb_start + (32+4)*2 > new_offset)
1888 return 0;
1889 bitmap = rdev->mddev->bitmap;
1890 if (bitmap && !rdev->mddev->bitmap_info.file &&
1891 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1892 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1893 return 0;
1894 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1895 return 0;
1896
1897 return 1;
1898 }
1899
1900 static struct super_type super_types[] = {
1901 [0] = {
1902 .name = "0.90.0",
1903 .owner = THIS_MODULE,
1904 .load_super = super_90_load,
1905 .validate_super = super_90_validate,
1906 .sync_super = super_90_sync,
1907 .rdev_size_change = super_90_rdev_size_change,
1908 .allow_new_offset = super_90_allow_new_offset,
1909 },
1910 [1] = {
1911 .name = "md-1",
1912 .owner = THIS_MODULE,
1913 .load_super = super_1_load,
1914 .validate_super = super_1_validate,
1915 .sync_super = super_1_sync,
1916 .rdev_size_change = super_1_rdev_size_change,
1917 .allow_new_offset = super_1_allow_new_offset,
1918 },
1919 };
1920
1921 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1922 {
1923 if (mddev->sync_super) {
1924 mddev->sync_super(mddev, rdev);
1925 return;
1926 }
1927
1928 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1929
1930 super_types[mddev->major_version].sync_super(mddev, rdev);
1931 }
1932
1933 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1934 {
1935 struct md_rdev *rdev, *rdev2;
1936
1937 rcu_read_lock();
1938 rdev_for_each_rcu(rdev, mddev1) {
1939 if (test_bit(Faulty, &rdev->flags) ||
1940 test_bit(Journal, &rdev->flags) ||
1941 rdev->raid_disk == -1)
1942 continue;
1943 rdev_for_each_rcu(rdev2, mddev2) {
1944 if (test_bit(Faulty, &rdev2->flags) ||
1945 test_bit(Journal, &rdev2->flags) ||
1946 rdev2->raid_disk == -1)
1947 continue;
1948 if (rdev->bdev->bd_contains ==
1949 rdev2->bdev->bd_contains) {
1950 rcu_read_unlock();
1951 return 1;
1952 }
1953 }
1954 }
1955 rcu_read_unlock();
1956 return 0;
1957 }
1958
1959 static LIST_HEAD(pending_raid_disks);
1960
1961 /*
1962 * Try to register data integrity profile for an mddev
1963 *
1964 * This is called when an array is started and after a disk has been kicked
1965 * from the array. It only succeeds if all working and active component devices
1966 * are integrity capable with matching profiles.
1967 */
1968 int md_integrity_register(struct mddev *mddev)
1969 {
1970 struct md_rdev *rdev, *reference = NULL;
1971
1972 if (list_empty(&mddev->disks))
1973 return 0; /* nothing to do */
1974 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1975 return 0; /* shouldn't register, or already is */
1976 rdev_for_each(rdev, mddev) {
1977 /* skip spares and non-functional disks */
1978 if (test_bit(Faulty, &rdev->flags))
1979 continue;
1980 if (rdev->raid_disk < 0)
1981 continue;
1982 if (!reference) {
1983 /* Use the first rdev as the reference */
1984 reference = rdev;
1985 continue;
1986 }
1987 /* does this rdev's profile match the reference profile? */
1988 if (blk_integrity_compare(reference->bdev->bd_disk,
1989 rdev->bdev->bd_disk) < 0)
1990 return -EINVAL;
1991 }
1992 if (!reference || !bdev_get_integrity(reference->bdev))
1993 return 0;
1994 /*
1995 * All component devices are integrity capable and have matching
1996 * profiles, register the common profile for the md device.
1997 */
1998 blk_integrity_register(mddev->gendisk,
1999 bdev_get_integrity(reference->bdev));
2000
2001 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2002 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2003 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2004 mdname(mddev));
2005 return -EINVAL;
2006 }
2007 return 0;
2008 }
2009 EXPORT_SYMBOL(md_integrity_register);
2010
2011 /*
2012 * Attempt to add an rdev, but only if it is consistent with the current
2013 * integrity profile
2014 */
2015 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2016 {
2017 struct blk_integrity *bi_rdev;
2018 struct blk_integrity *bi_mddev;
2019 char name[BDEVNAME_SIZE];
2020
2021 if (!mddev->gendisk)
2022 return 0;
2023
2024 bi_rdev = bdev_get_integrity(rdev->bdev);
2025 bi_mddev = blk_get_integrity(mddev->gendisk);
2026
2027 if (!bi_mddev) /* nothing to do */
2028 return 0;
2029
2030 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2031 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2032 mdname(mddev), bdevname(rdev->bdev, name));
2033 return -ENXIO;
2034 }
2035
2036 return 0;
2037 }
2038 EXPORT_SYMBOL(md_integrity_add_rdev);
2039
2040 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2041 {
2042 char b[BDEVNAME_SIZE];
2043 struct kobject *ko;
2044 int err;
2045
2046 /* prevent duplicates */
2047 if (find_rdev(mddev, rdev->bdev->bd_dev))
2048 return -EEXIST;
2049
2050 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2051 if (!test_bit(Journal, &rdev->flags) &&
2052 rdev->sectors &&
2053 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2054 if (mddev->pers) {
2055 /* Cannot change size, so fail
2056 * If mddev->level <= 0, then we don't care
2057 * about aligning sizes (e.g. linear)
2058 */
2059 if (mddev->level > 0)
2060 return -ENOSPC;
2061 } else
2062 mddev->dev_sectors = rdev->sectors;
2063 }
2064
2065 /* Verify rdev->desc_nr is unique.
2066 * If it is -1, assign a free number, else
2067 * check number is not in use
2068 */
2069 rcu_read_lock();
2070 if (rdev->desc_nr < 0) {
2071 int choice = 0;
2072 if (mddev->pers)
2073 choice = mddev->raid_disks;
2074 while (md_find_rdev_nr_rcu(mddev, choice))
2075 choice++;
2076 rdev->desc_nr = choice;
2077 } else {
2078 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2079 rcu_read_unlock();
2080 return -EBUSY;
2081 }
2082 }
2083 rcu_read_unlock();
2084 if (!test_bit(Journal, &rdev->flags) &&
2085 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2086 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2087 mdname(mddev), mddev->max_disks);
2088 return -EBUSY;
2089 }
2090 bdevname(rdev->bdev,b);
2091 strreplace(b, '/', '!');
2092
2093 rdev->mddev = mddev;
2094 printk(KERN_INFO "md: bind<%s>\n", b);
2095
2096 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2097 goto fail;
2098
2099 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2100 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2101 /* failure here is OK */;
2102 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2103
2104 list_add_rcu(&rdev->same_set, &mddev->disks);
2105 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2106
2107 /* May as well allow recovery to be retried once */
2108 mddev->recovery_disabled++;
2109
2110 return 0;
2111
2112 fail:
2113 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2114 b, mdname(mddev));
2115 return err;
2116 }
2117
2118 static void md_delayed_delete(struct work_struct *ws)
2119 {
2120 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2121 kobject_del(&rdev->kobj);
2122 kobject_put(&rdev->kobj);
2123 }
2124
2125 static void unbind_rdev_from_array(struct md_rdev *rdev)
2126 {
2127 char b[BDEVNAME_SIZE];
2128
2129 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2130 list_del_rcu(&rdev->same_set);
2131 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2132 rdev->mddev = NULL;
2133 sysfs_remove_link(&rdev->kobj, "block");
2134 sysfs_put(rdev->sysfs_state);
2135 rdev->sysfs_state = NULL;
2136 rdev->badblocks.count = 0;
2137 /* We need to delay this, otherwise we can deadlock when
2138 * writing to 'remove' to "dev/state". We also need
2139 * to delay it due to rcu usage.
2140 */
2141 synchronize_rcu();
2142 INIT_WORK(&rdev->del_work, md_delayed_delete);
2143 kobject_get(&rdev->kobj);
2144 queue_work(md_misc_wq, &rdev->del_work);
2145 }
2146
2147 /*
2148 * prevent the device from being mounted, repartitioned or
2149 * otherwise reused by a RAID array (or any other kernel
2150 * subsystem), by bd_claiming the device.
2151 */
2152 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2153 {
2154 int err = 0;
2155 struct block_device *bdev;
2156 char b[BDEVNAME_SIZE];
2157
2158 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2159 shared ? (struct md_rdev *)lock_rdev : rdev);
2160 if (IS_ERR(bdev)) {
2161 printk(KERN_ERR "md: could not open %s.\n",
2162 __bdevname(dev, b));
2163 return PTR_ERR(bdev);
2164 }
2165 rdev->bdev = bdev;
2166 return err;
2167 }
2168
2169 static void unlock_rdev(struct md_rdev *rdev)
2170 {
2171 struct block_device *bdev = rdev->bdev;
2172 rdev->bdev = NULL;
2173 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2174 }
2175
2176 void md_autodetect_dev(dev_t dev);
2177
2178 static void export_rdev(struct md_rdev *rdev)
2179 {
2180 char b[BDEVNAME_SIZE];
2181
2182 printk(KERN_INFO "md: export_rdev(%s)\n",
2183 bdevname(rdev->bdev,b));
2184 md_rdev_clear(rdev);
2185 #ifndef MODULE
2186 if (test_bit(AutoDetected, &rdev->flags))
2187 md_autodetect_dev(rdev->bdev->bd_dev);
2188 #endif
2189 unlock_rdev(rdev);
2190 kobject_put(&rdev->kobj);
2191 }
2192
2193 void md_kick_rdev_from_array(struct md_rdev *rdev)
2194 {
2195 unbind_rdev_from_array(rdev);
2196 export_rdev(rdev);
2197 }
2198 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2199
2200 static void export_array(struct mddev *mddev)
2201 {
2202 struct md_rdev *rdev;
2203
2204 while (!list_empty(&mddev->disks)) {
2205 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2206 same_set);
2207 md_kick_rdev_from_array(rdev);
2208 }
2209 mddev->raid_disks = 0;
2210 mddev->major_version = 0;
2211 }
2212
2213 static void sync_sbs(struct mddev *mddev, int nospares)
2214 {
2215 /* Update each superblock (in-memory image), but
2216 * if we are allowed to, skip spares which already
2217 * have the right event counter, or have one earlier
2218 * (which would mean they aren't being marked as dirty
2219 * with the rest of the array)
2220 */
2221 struct md_rdev *rdev;
2222 rdev_for_each(rdev, mddev) {
2223 if (rdev->sb_events == mddev->events ||
2224 (nospares &&
2225 rdev->raid_disk < 0 &&
2226 rdev->sb_events+1 == mddev->events)) {
2227 /* Don't update this superblock */
2228 rdev->sb_loaded = 2;
2229 } else {
2230 sync_super(mddev, rdev);
2231 rdev->sb_loaded = 1;
2232 }
2233 }
2234 }
2235
2236 static bool does_sb_need_changing(struct mddev *mddev)
2237 {
2238 struct md_rdev *rdev;
2239 struct mdp_superblock_1 *sb;
2240 int role;
2241
2242 /* Find a good rdev */
2243 rdev_for_each(rdev, mddev)
2244 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2245 break;
2246
2247 /* No good device found. */
2248 if (!rdev)
2249 return false;
2250
2251 sb = page_address(rdev->sb_page);
2252 /* Check if a device has become faulty or a spare become active */
2253 rdev_for_each(rdev, mddev) {
2254 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2255 /* Device activated? */
2256 if (role == 0xffff && rdev->raid_disk >=0 &&
2257 !test_bit(Faulty, &rdev->flags))
2258 return true;
2259 /* Device turned faulty? */
2260 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2261 return true;
2262 }
2263
2264 /* Check if any mddev parameters have changed */
2265 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2266 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2267 (mddev->layout != le64_to_cpu(sb->layout)) ||
2268 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2269 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2270 return true;
2271
2272 return false;
2273 }
2274
2275 void md_update_sb(struct mddev *mddev, int force_change)
2276 {
2277 struct md_rdev *rdev;
2278 int sync_req;
2279 int nospares = 0;
2280 int any_badblocks_changed = 0;
2281 int ret = -1;
2282
2283 if (mddev->ro) {
2284 if (force_change)
2285 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2286 return;
2287 }
2288
2289 if (mddev_is_clustered(mddev)) {
2290 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2291 force_change = 1;
2292 ret = md_cluster_ops->metadata_update_start(mddev);
2293 /* Has someone else has updated the sb */
2294 if (!does_sb_need_changing(mddev)) {
2295 if (ret == 0)
2296 md_cluster_ops->metadata_update_cancel(mddev);
2297 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2298 return;
2299 }
2300 }
2301 repeat:
2302 /* First make sure individual recovery_offsets are correct */
2303 rdev_for_each(rdev, mddev) {
2304 if (rdev->raid_disk >= 0 &&
2305 mddev->delta_disks >= 0 &&
2306 !test_bit(Journal, &rdev->flags) &&
2307 !test_bit(In_sync, &rdev->flags) &&
2308 mddev->curr_resync_completed > rdev->recovery_offset)
2309 rdev->recovery_offset = mddev->curr_resync_completed;
2310
2311 }
2312 if (!mddev->persistent) {
2313 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2314 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2315 if (!mddev->external) {
2316 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2317 rdev_for_each(rdev, mddev) {
2318 if (rdev->badblocks.changed) {
2319 rdev->badblocks.changed = 0;
2320 ack_all_badblocks(&rdev->badblocks);
2321 md_error(mddev, rdev);
2322 }
2323 clear_bit(Blocked, &rdev->flags);
2324 clear_bit(BlockedBadBlocks, &rdev->flags);
2325 wake_up(&rdev->blocked_wait);
2326 }
2327 }
2328 wake_up(&mddev->sb_wait);
2329 return;
2330 }
2331
2332 spin_lock(&mddev->lock);
2333
2334 mddev->utime = ktime_get_real_seconds();
2335
2336 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2337 force_change = 1;
2338 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2339 /* just a clean<-> dirty transition, possibly leave spares alone,
2340 * though if events isn't the right even/odd, we will have to do
2341 * spares after all
2342 */
2343 nospares = 1;
2344 if (force_change)
2345 nospares = 0;
2346 if (mddev->degraded)
2347 /* If the array is degraded, then skipping spares is both
2348 * dangerous and fairly pointless.
2349 * Dangerous because a device that was removed from the array
2350 * might have a event_count that still looks up-to-date,
2351 * so it can be re-added without a resync.
2352 * Pointless because if there are any spares to skip,
2353 * then a recovery will happen and soon that array won't
2354 * be degraded any more and the spare can go back to sleep then.
2355 */
2356 nospares = 0;
2357
2358 sync_req = mddev->in_sync;
2359
2360 /* If this is just a dirty<->clean transition, and the array is clean
2361 * and 'events' is odd, we can roll back to the previous clean state */
2362 if (nospares
2363 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2364 && mddev->can_decrease_events
2365 && mddev->events != 1) {
2366 mddev->events--;
2367 mddev->can_decrease_events = 0;
2368 } else {
2369 /* otherwise we have to go forward and ... */
2370 mddev->events ++;
2371 mddev->can_decrease_events = nospares;
2372 }
2373
2374 /*
2375 * This 64-bit counter should never wrap.
2376 * Either we are in around ~1 trillion A.C., assuming
2377 * 1 reboot per second, or we have a bug...
2378 */
2379 WARN_ON(mddev->events == 0);
2380
2381 rdev_for_each(rdev, mddev) {
2382 if (rdev->badblocks.changed)
2383 any_badblocks_changed++;
2384 if (test_bit(Faulty, &rdev->flags))
2385 set_bit(FaultRecorded, &rdev->flags);
2386 }
2387
2388 sync_sbs(mddev, nospares);
2389 spin_unlock(&mddev->lock);
2390
2391 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2392 mdname(mddev), mddev->in_sync);
2393
2394 bitmap_update_sb(mddev->bitmap);
2395 rdev_for_each(rdev, mddev) {
2396 char b[BDEVNAME_SIZE];
2397
2398 if (rdev->sb_loaded != 1)
2399 continue; /* no noise on spare devices */
2400
2401 if (!test_bit(Faulty, &rdev->flags)) {
2402 md_super_write(mddev,rdev,
2403 rdev->sb_start, rdev->sb_size,
2404 rdev->sb_page);
2405 pr_debug("md: (write) %s's sb offset: %llu\n",
2406 bdevname(rdev->bdev, b),
2407 (unsigned long long)rdev->sb_start);
2408 rdev->sb_events = mddev->events;
2409 if (rdev->badblocks.size) {
2410 md_super_write(mddev, rdev,
2411 rdev->badblocks.sector,
2412 rdev->badblocks.size << 9,
2413 rdev->bb_page);
2414 rdev->badblocks.size = 0;
2415 }
2416
2417 } else
2418 pr_debug("md: %s (skipping faulty)\n",
2419 bdevname(rdev->bdev, b));
2420
2421 if (mddev->level == LEVEL_MULTIPATH)
2422 /* only need to write one superblock... */
2423 break;
2424 }
2425 md_super_wait(mddev);
2426 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2427
2428 spin_lock(&mddev->lock);
2429 if (mddev->in_sync != sync_req ||
2430 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2431 /* have to write it out again */
2432 spin_unlock(&mddev->lock);
2433 goto repeat;
2434 }
2435 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2436 spin_unlock(&mddev->lock);
2437 wake_up(&mddev->sb_wait);
2438 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2439 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2440
2441 rdev_for_each(rdev, mddev) {
2442 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2443 clear_bit(Blocked, &rdev->flags);
2444
2445 if (any_badblocks_changed)
2446 ack_all_badblocks(&rdev->badblocks);
2447 clear_bit(BlockedBadBlocks, &rdev->flags);
2448 wake_up(&rdev->blocked_wait);
2449 }
2450
2451 if (mddev_is_clustered(mddev) && ret == 0)
2452 md_cluster_ops->metadata_update_finish(mddev);
2453 }
2454 EXPORT_SYMBOL(md_update_sb);
2455
2456 static int add_bound_rdev(struct md_rdev *rdev)
2457 {
2458 struct mddev *mddev = rdev->mddev;
2459 int err = 0;
2460 bool add_journal = test_bit(Journal, &rdev->flags);
2461
2462 if (!mddev->pers->hot_remove_disk || add_journal) {
2463 /* If there is hot_add_disk but no hot_remove_disk
2464 * then added disks for geometry changes,
2465 * and should be added immediately.
2466 */
2467 super_types[mddev->major_version].
2468 validate_super(mddev, rdev);
2469 if (add_journal)
2470 mddev_suspend(mddev);
2471 err = mddev->pers->hot_add_disk(mddev, rdev);
2472 if (add_journal)
2473 mddev_resume(mddev);
2474 if (err) {
2475 unbind_rdev_from_array(rdev);
2476 export_rdev(rdev);
2477 return err;
2478 }
2479 }
2480 sysfs_notify_dirent_safe(rdev->sysfs_state);
2481
2482 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2483 if (mddev->degraded)
2484 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2485 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2486 md_new_event(mddev);
2487 md_wakeup_thread(mddev->thread);
2488 return 0;
2489 }
2490
2491 /* words written to sysfs files may, or may not, be \n terminated.
2492 * We want to accept with case. For this we use cmd_match.
2493 */
2494 static int cmd_match(const char *cmd, const char *str)
2495 {
2496 /* See if cmd, written into a sysfs file, matches
2497 * str. They must either be the same, or cmd can
2498 * have a trailing newline
2499 */
2500 while (*cmd && *str && *cmd == *str) {
2501 cmd++;
2502 str++;
2503 }
2504 if (*cmd == '\n')
2505 cmd++;
2506 if (*str || *cmd)
2507 return 0;
2508 return 1;
2509 }
2510
2511 struct rdev_sysfs_entry {
2512 struct attribute attr;
2513 ssize_t (*show)(struct md_rdev *, char *);
2514 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2515 };
2516
2517 static ssize_t
2518 state_show(struct md_rdev *rdev, char *page)
2519 {
2520 char *sep = "";
2521 size_t len = 0;
2522 unsigned long flags = ACCESS_ONCE(rdev->flags);
2523
2524 if (test_bit(Faulty, &flags) ||
2525 rdev->badblocks.unacked_exist) {
2526 len+= sprintf(page+len, "%sfaulty",sep);
2527 sep = ",";
2528 }
2529 if (test_bit(In_sync, &flags)) {
2530 len += sprintf(page+len, "%sin_sync",sep);
2531 sep = ",";
2532 }
2533 if (test_bit(Journal, &flags)) {
2534 len += sprintf(page+len, "%sjournal",sep);
2535 sep = ",";
2536 }
2537 if (test_bit(WriteMostly, &flags)) {
2538 len += sprintf(page+len, "%swrite_mostly",sep);
2539 sep = ",";
2540 }
2541 if (test_bit(Blocked, &flags) ||
2542 (rdev->badblocks.unacked_exist
2543 && !test_bit(Faulty, &flags))) {
2544 len += sprintf(page+len, "%sblocked", sep);
2545 sep = ",";
2546 }
2547 if (!test_bit(Faulty, &flags) &&
2548 !test_bit(Journal, &flags) &&
2549 !test_bit(In_sync, &flags)) {
2550 len += sprintf(page+len, "%sspare", sep);
2551 sep = ",";
2552 }
2553 if (test_bit(WriteErrorSeen, &flags)) {
2554 len += sprintf(page+len, "%swrite_error", sep);
2555 sep = ",";
2556 }
2557 if (test_bit(WantReplacement, &flags)) {
2558 len += sprintf(page+len, "%swant_replacement", sep);
2559 sep = ",";
2560 }
2561 if (test_bit(Replacement, &flags)) {
2562 len += sprintf(page+len, "%sreplacement", sep);
2563 sep = ",";
2564 }
2565
2566 return len+sprintf(page+len, "\n");
2567 }
2568
2569 static ssize_t
2570 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2571 {
2572 /* can write
2573 * faulty - simulates an error
2574 * remove - disconnects the device
2575 * writemostly - sets write_mostly
2576 * -writemostly - clears write_mostly
2577 * blocked - sets the Blocked flags
2578 * -blocked - clears the Blocked and possibly simulates an error
2579 * insync - sets Insync providing device isn't active
2580 * -insync - clear Insync for a device with a slot assigned,
2581 * so that it gets rebuilt based on bitmap
2582 * write_error - sets WriteErrorSeen
2583 * -write_error - clears WriteErrorSeen
2584 */
2585 int err = -EINVAL;
2586 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2587 md_error(rdev->mddev, rdev);
2588 if (test_bit(Faulty, &rdev->flags))
2589 err = 0;
2590 else
2591 err = -EBUSY;
2592 } else if (cmd_match(buf, "remove")) {
2593 if (rdev->raid_disk >= 0)
2594 err = -EBUSY;
2595 else {
2596 struct mddev *mddev = rdev->mddev;
2597 err = 0;
2598 if (mddev_is_clustered(mddev))
2599 err = md_cluster_ops->remove_disk(mddev, rdev);
2600
2601 if (err == 0) {
2602 md_kick_rdev_from_array(rdev);
2603 if (mddev->pers)
2604 md_update_sb(mddev, 1);
2605 md_new_event(mddev);
2606 }
2607 }
2608 } else if (cmd_match(buf, "writemostly")) {
2609 set_bit(WriteMostly, &rdev->flags);
2610 err = 0;
2611 } else if (cmd_match(buf, "-writemostly")) {
2612 clear_bit(WriteMostly, &rdev->flags);
2613 err = 0;
2614 } else if (cmd_match(buf, "blocked")) {
2615 set_bit(Blocked, &rdev->flags);
2616 err = 0;
2617 } else if (cmd_match(buf, "-blocked")) {
2618 if (!test_bit(Faulty, &rdev->flags) &&
2619 rdev->badblocks.unacked_exist) {
2620 /* metadata handler doesn't understand badblocks,
2621 * so we need to fail the device
2622 */
2623 md_error(rdev->mddev, rdev);
2624 }
2625 clear_bit(Blocked, &rdev->flags);
2626 clear_bit(BlockedBadBlocks, &rdev->flags);
2627 wake_up(&rdev->blocked_wait);
2628 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2629 md_wakeup_thread(rdev->mddev->thread);
2630
2631 err = 0;
2632 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2633 set_bit(In_sync, &rdev->flags);
2634 err = 0;
2635 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2636 !test_bit(Journal, &rdev->flags)) {
2637 if (rdev->mddev->pers == NULL) {
2638 clear_bit(In_sync, &rdev->flags);
2639 rdev->saved_raid_disk = rdev->raid_disk;
2640 rdev->raid_disk = -1;
2641 err = 0;
2642 }
2643 } else if (cmd_match(buf, "write_error")) {
2644 set_bit(WriteErrorSeen, &rdev->flags);
2645 err = 0;
2646 } else if (cmd_match(buf, "-write_error")) {
2647 clear_bit(WriteErrorSeen, &rdev->flags);
2648 err = 0;
2649 } else if (cmd_match(buf, "want_replacement")) {
2650 /* Any non-spare device that is not a replacement can
2651 * become want_replacement at any time, but we then need to
2652 * check if recovery is needed.
2653 */
2654 if (rdev->raid_disk >= 0 &&
2655 !test_bit(Journal, &rdev->flags) &&
2656 !test_bit(Replacement, &rdev->flags))
2657 set_bit(WantReplacement, &rdev->flags);
2658 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2659 md_wakeup_thread(rdev->mddev->thread);
2660 err = 0;
2661 } else if (cmd_match(buf, "-want_replacement")) {
2662 /* Clearing 'want_replacement' is always allowed.
2663 * Once replacements starts it is too late though.
2664 */
2665 err = 0;
2666 clear_bit(WantReplacement, &rdev->flags);
2667 } else if (cmd_match(buf, "replacement")) {
2668 /* Can only set a device as a replacement when array has not
2669 * yet been started. Once running, replacement is automatic
2670 * from spares, or by assigning 'slot'.
2671 */
2672 if (rdev->mddev->pers)
2673 err = -EBUSY;
2674 else {
2675 set_bit(Replacement, &rdev->flags);
2676 err = 0;
2677 }
2678 } else if (cmd_match(buf, "-replacement")) {
2679 /* Similarly, can only clear Replacement before start */
2680 if (rdev->mddev->pers)
2681 err = -EBUSY;
2682 else {
2683 clear_bit(Replacement, &rdev->flags);
2684 err = 0;
2685 }
2686 } else if (cmd_match(buf, "re-add")) {
2687 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2688 /* clear_bit is performed _after_ all the devices
2689 * have their local Faulty bit cleared. If any writes
2690 * happen in the meantime in the local node, they
2691 * will land in the local bitmap, which will be synced
2692 * by this node eventually
2693 */
2694 if (!mddev_is_clustered(rdev->mddev) ||
2695 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2696 clear_bit(Faulty, &rdev->flags);
2697 err = add_bound_rdev(rdev);
2698 }
2699 } else
2700 err = -EBUSY;
2701 }
2702 if (!err)
2703 sysfs_notify_dirent_safe(rdev->sysfs_state);
2704 return err ? err : len;
2705 }
2706 static struct rdev_sysfs_entry rdev_state =
2707 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2708
2709 static ssize_t
2710 errors_show(struct md_rdev *rdev, char *page)
2711 {
2712 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2713 }
2714
2715 static ssize_t
2716 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2717 {
2718 unsigned int n;
2719 int rv;
2720
2721 rv = kstrtouint(buf, 10, &n);
2722 if (rv < 0)
2723 return rv;
2724 atomic_set(&rdev->corrected_errors, n);
2725 return len;
2726 }
2727 static struct rdev_sysfs_entry rdev_errors =
2728 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2729
2730 static ssize_t
2731 slot_show(struct md_rdev *rdev, char *page)
2732 {
2733 if (test_bit(Journal, &rdev->flags))
2734 return sprintf(page, "journal\n");
2735 else if (rdev->raid_disk < 0)
2736 return sprintf(page, "none\n");
2737 else
2738 return sprintf(page, "%d\n", rdev->raid_disk);
2739 }
2740
2741 static ssize_t
2742 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2743 {
2744 int slot;
2745 int err;
2746
2747 if (test_bit(Journal, &rdev->flags))
2748 return -EBUSY;
2749 if (strncmp(buf, "none", 4)==0)
2750 slot = -1;
2751 else {
2752 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2753 if (err < 0)
2754 return err;
2755 }
2756 if (rdev->mddev->pers && slot == -1) {
2757 /* Setting 'slot' on an active array requires also
2758 * updating the 'rd%d' link, and communicating
2759 * with the personality with ->hot_*_disk.
2760 * For now we only support removing
2761 * failed/spare devices. This normally happens automatically,
2762 * but not when the metadata is externally managed.
2763 */
2764 if (rdev->raid_disk == -1)
2765 return -EEXIST;
2766 /* personality does all needed checks */
2767 if (rdev->mddev->pers->hot_remove_disk == NULL)
2768 return -EINVAL;
2769 clear_bit(Blocked, &rdev->flags);
2770 remove_and_add_spares(rdev->mddev, rdev);
2771 if (rdev->raid_disk >= 0)
2772 return -EBUSY;
2773 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2774 md_wakeup_thread(rdev->mddev->thread);
2775 } else if (rdev->mddev->pers) {
2776 /* Activating a spare .. or possibly reactivating
2777 * if we ever get bitmaps working here.
2778 */
2779 int err;
2780
2781 if (rdev->raid_disk != -1)
2782 return -EBUSY;
2783
2784 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2785 return -EBUSY;
2786
2787 if (rdev->mddev->pers->hot_add_disk == NULL)
2788 return -EINVAL;
2789
2790 if (slot >= rdev->mddev->raid_disks &&
2791 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2792 return -ENOSPC;
2793
2794 rdev->raid_disk = slot;
2795 if (test_bit(In_sync, &rdev->flags))
2796 rdev->saved_raid_disk = slot;
2797 else
2798 rdev->saved_raid_disk = -1;
2799 clear_bit(In_sync, &rdev->flags);
2800 clear_bit(Bitmap_sync, &rdev->flags);
2801 err = rdev->mddev->pers->
2802 hot_add_disk(rdev->mddev, rdev);
2803 if (err) {
2804 rdev->raid_disk = -1;
2805 return err;
2806 } else
2807 sysfs_notify_dirent_safe(rdev->sysfs_state);
2808 if (sysfs_link_rdev(rdev->mddev, rdev))
2809 /* failure here is OK */;
2810 /* don't wakeup anyone, leave that to userspace. */
2811 } else {
2812 if (slot >= rdev->mddev->raid_disks &&
2813 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2814 return -ENOSPC;
2815 rdev->raid_disk = slot;
2816 /* assume it is working */
2817 clear_bit(Faulty, &rdev->flags);
2818 clear_bit(WriteMostly, &rdev->flags);
2819 set_bit(In_sync, &rdev->flags);
2820 sysfs_notify_dirent_safe(rdev->sysfs_state);
2821 }
2822 return len;
2823 }
2824
2825 static struct rdev_sysfs_entry rdev_slot =
2826 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2827
2828 static ssize_t
2829 offset_show(struct md_rdev *rdev, char *page)
2830 {
2831 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2832 }
2833
2834 static ssize_t
2835 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2836 {
2837 unsigned long long offset;
2838 if (kstrtoull(buf, 10, &offset) < 0)
2839 return -EINVAL;
2840 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2841 return -EBUSY;
2842 if (rdev->sectors && rdev->mddev->external)
2843 /* Must set offset before size, so overlap checks
2844 * can be sane */
2845 return -EBUSY;
2846 rdev->data_offset = offset;
2847 rdev->new_data_offset = offset;
2848 return len;
2849 }
2850
2851 static struct rdev_sysfs_entry rdev_offset =
2852 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2853
2854 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2855 {
2856 return sprintf(page, "%llu\n",
2857 (unsigned long long)rdev->new_data_offset);
2858 }
2859
2860 static ssize_t new_offset_store(struct md_rdev *rdev,
2861 const char *buf, size_t len)
2862 {
2863 unsigned long long new_offset;
2864 struct mddev *mddev = rdev->mddev;
2865
2866 if (kstrtoull(buf, 10, &new_offset) < 0)
2867 return -EINVAL;
2868
2869 if (mddev->sync_thread ||
2870 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2871 return -EBUSY;
2872 if (new_offset == rdev->data_offset)
2873 /* reset is always permitted */
2874 ;
2875 else if (new_offset > rdev->data_offset) {
2876 /* must not push array size beyond rdev_sectors */
2877 if (new_offset - rdev->data_offset
2878 + mddev->dev_sectors > rdev->sectors)
2879 return -E2BIG;
2880 }
2881 /* Metadata worries about other space details. */
2882
2883 /* decreasing the offset is inconsistent with a backwards
2884 * reshape.
2885 */
2886 if (new_offset < rdev->data_offset &&
2887 mddev->reshape_backwards)
2888 return -EINVAL;
2889 /* Increasing offset is inconsistent with forwards
2890 * reshape. reshape_direction should be set to
2891 * 'backwards' first.
2892 */
2893 if (new_offset > rdev->data_offset &&
2894 !mddev->reshape_backwards)
2895 return -EINVAL;
2896
2897 if (mddev->pers && mddev->persistent &&
2898 !super_types[mddev->major_version]
2899 .allow_new_offset(rdev, new_offset))
2900 return -E2BIG;
2901 rdev->new_data_offset = new_offset;
2902 if (new_offset > rdev->data_offset)
2903 mddev->reshape_backwards = 1;
2904 else if (new_offset < rdev->data_offset)
2905 mddev->reshape_backwards = 0;
2906
2907 return len;
2908 }
2909 static struct rdev_sysfs_entry rdev_new_offset =
2910 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2911
2912 static ssize_t
2913 rdev_size_show(struct md_rdev *rdev, char *page)
2914 {
2915 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2916 }
2917
2918 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2919 {
2920 /* check if two start/length pairs overlap */
2921 if (s1+l1 <= s2)
2922 return 0;
2923 if (s2+l2 <= s1)
2924 return 0;
2925 return 1;
2926 }
2927
2928 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2929 {
2930 unsigned long long blocks;
2931 sector_t new;
2932
2933 if (kstrtoull(buf, 10, &blocks) < 0)
2934 return -EINVAL;
2935
2936 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2937 return -EINVAL; /* sector conversion overflow */
2938
2939 new = blocks * 2;
2940 if (new != blocks * 2)
2941 return -EINVAL; /* unsigned long long to sector_t overflow */
2942
2943 *sectors = new;
2944 return 0;
2945 }
2946
2947 static ssize_t
2948 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2949 {
2950 struct mddev *my_mddev = rdev->mddev;
2951 sector_t oldsectors = rdev->sectors;
2952 sector_t sectors;
2953
2954 if (test_bit(Journal, &rdev->flags))
2955 return -EBUSY;
2956 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2957 return -EINVAL;
2958 if (rdev->data_offset != rdev->new_data_offset)
2959 return -EINVAL; /* too confusing */
2960 if (my_mddev->pers && rdev->raid_disk >= 0) {
2961 if (my_mddev->persistent) {
2962 sectors = super_types[my_mddev->major_version].
2963 rdev_size_change(rdev, sectors);
2964 if (!sectors)
2965 return -EBUSY;
2966 } else if (!sectors)
2967 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2968 rdev->data_offset;
2969 if (!my_mddev->pers->resize)
2970 /* Cannot change size for RAID0 or Linear etc */
2971 return -EINVAL;
2972 }
2973 if (sectors < my_mddev->dev_sectors)
2974 return -EINVAL; /* component must fit device */
2975
2976 rdev->sectors = sectors;
2977 if (sectors > oldsectors && my_mddev->external) {
2978 /* Need to check that all other rdevs with the same
2979 * ->bdev do not overlap. 'rcu' is sufficient to walk
2980 * the rdev lists safely.
2981 * This check does not provide a hard guarantee, it
2982 * just helps avoid dangerous mistakes.
2983 */
2984 struct mddev *mddev;
2985 int overlap = 0;
2986 struct list_head *tmp;
2987
2988 rcu_read_lock();
2989 for_each_mddev(mddev, tmp) {
2990 struct md_rdev *rdev2;
2991
2992 rdev_for_each(rdev2, mddev)
2993 if (rdev->bdev == rdev2->bdev &&
2994 rdev != rdev2 &&
2995 overlaps(rdev->data_offset, rdev->sectors,
2996 rdev2->data_offset,
2997 rdev2->sectors)) {
2998 overlap = 1;
2999 break;
3000 }
3001 if (overlap) {
3002 mddev_put(mddev);
3003 break;
3004 }
3005 }
3006 rcu_read_unlock();
3007 if (overlap) {
3008 /* Someone else could have slipped in a size
3009 * change here, but doing so is just silly.
3010 * We put oldsectors back because we *know* it is
3011 * safe, and trust userspace not to race with
3012 * itself
3013 */
3014 rdev->sectors = oldsectors;
3015 return -EBUSY;
3016 }
3017 }
3018 return len;
3019 }
3020
3021 static struct rdev_sysfs_entry rdev_size =
3022 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3023
3024 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3025 {
3026 unsigned long long recovery_start = rdev->recovery_offset;
3027
3028 if (test_bit(In_sync, &rdev->flags) ||
3029 recovery_start == MaxSector)
3030 return sprintf(page, "none\n");
3031
3032 return sprintf(page, "%llu\n", recovery_start);
3033 }
3034
3035 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3036 {
3037 unsigned long long recovery_start;
3038
3039 if (cmd_match(buf, "none"))
3040 recovery_start = MaxSector;
3041 else if (kstrtoull(buf, 10, &recovery_start))
3042 return -EINVAL;
3043
3044 if (rdev->mddev->pers &&
3045 rdev->raid_disk >= 0)
3046 return -EBUSY;
3047
3048 rdev->recovery_offset = recovery_start;
3049 if (recovery_start == MaxSector)
3050 set_bit(In_sync, &rdev->flags);
3051 else
3052 clear_bit(In_sync, &rdev->flags);
3053 return len;
3054 }
3055
3056 static struct rdev_sysfs_entry rdev_recovery_start =
3057 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3058
3059 /* sysfs access to bad-blocks list.
3060 * We present two files.
3061 * 'bad-blocks' lists sector numbers and lengths of ranges that
3062 * are recorded as bad. The list is truncated to fit within
3063 * the one-page limit of sysfs.
3064 * Writing "sector length" to this file adds an acknowledged
3065 * bad block list.
3066 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3067 * been acknowledged. Writing to this file adds bad blocks
3068 * without acknowledging them. This is largely for testing.
3069 */
3070 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3071 {
3072 return badblocks_show(&rdev->badblocks, page, 0);
3073 }
3074 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3075 {
3076 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3077 /* Maybe that ack was all we needed */
3078 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3079 wake_up(&rdev->blocked_wait);
3080 return rv;
3081 }
3082 static struct rdev_sysfs_entry rdev_bad_blocks =
3083 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3084
3085 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3086 {
3087 return badblocks_show(&rdev->badblocks, page, 1);
3088 }
3089 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3090 {
3091 return badblocks_store(&rdev->badblocks, page, len, 1);
3092 }
3093 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3094 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3095
3096 static struct attribute *rdev_default_attrs[] = {
3097 &rdev_state.attr,
3098 &rdev_errors.attr,
3099 &rdev_slot.attr,
3100 &rdev_offset.attr,
3101 &rdev_new_offset.attr,
3102 &rdev_size.attr,
3103 &rdev_recovery_start.attr,
3104 &rdev_bad_blocks.attr,
3105 &rdev_unack_bad_blocks.attr,
3106 NULL,
3107 };
3108 static ssize_t
3109 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3110 {
3111 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3112 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3113
3114 if (!entry->show)
3115 return -EIO;
3116 if (!rdev->mddev)
3117 return -EBUSY;
3118 return entry->show(rdev, page);
3119 }
3120
3121 static ssize_t
3122 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3123 const char *page, size_t length)
3124 {
3125 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3126 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3127 ssize_t rv;
3128 struct mddev *mddev = rdev->mddev;
3129
3130 if (!entry->store)
3131 return -EIO;
3132 if (!capable(CAP_SYS_ADMIN))
3133 return -EACCES;
3134 rv = mddev ? mddev_lock(mddev): -EBUSY;
3135 if (!rv) {
3136 if (rdev->mddev == NULL)
3137 rv = -EBUSY;
3138 else
3139 rv = entry->store(rdev, page, length);
3140 mddev_unlock(mddev);
3141 }
3142 return rv;
3143 }
3144
3145 static void rdev_free(struct kobject *ko)
3146 {
3147 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3148 kfree(rdev);
3149 }
3150 static const struct sysfs_ops rdev_sysfs_ops = {
3151 .show = rdev_attr_show,
3152 .store = rdev_attr_store,
3153 };
3154 static struct kobj_type rdev_ktype = {
3155 .release = rdev_free,
3156 .sysfs_ops = &rdev_sysfs_ops,
3157 .default_attrs = rdev_default_attrs,
3158 };
3159
3160 int md_rdev_init(struct md_rdev *rdev)
3161 {
3162 rdev->desc_nr = -1;
3163 rdev->saved_raid_disk = -1;
3164 rdev->raid_disk = -1;
3165 rdev->flags = 0;
3166 rdev->data_offset = 0;
3167 rdev->new_data_offset = 0;
3168 rdev->sb_events = 0;
3169 rdev->last_read_error.tv_sec = 0;
3170 rdev->last_read_error.tv_nsec = 0;
3171 rdev->sb_loaded = 0;
3172 rdev->bb_page = NULL;
3173 atomic_set(&rdev->nr_pending, 0);
3174 atomic_set(&rdev->read_errors, 0);
3175 atomic_set(&rdev->corrected_errors, 0);
3176
3177 INIT_LIST_HEAD(&rdev->same_set);
3178 init_waitqueue_head(&rdev->blocked_wait);
3179
3180 /* Add space to store bad block list.
3181 * This reserves the space even on arrays where it cannot
3182 * be used - I wonder if that matters
3183 */
3184 return badblocks_init(&rdev->badblocks, 0);
3185 }
3186 EXPORT_SYMBOL_GPL(md_rdev_init);
3187 /*
3188 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3189 *
3190 * mark the device faulty if:
3191 *
3192 * - the device is nonexistent (zero size)
3193 * - the device has no valid superblock
3194 *
3195 * a faulty rdev _never_ has rdev->sb set.
3196 */
3197 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3198 {
3199 char b[BDEVNAME_SIZE];
3200 int err;
3201 struct md_rdev *rdev;
3202 sector_t size;
3203
3204 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3205 if (!rdev) {
3206 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3207 return ERR_PTR(-ENOMEM);
3208 }
3209
3210 err = md_rdev_init(rdev);
3211 if (err)
3212 goto abort_free;
3213 err = alloc_disk_sb(rdev);
3214 if (err)
3215 goto abort_free;
3216
3217 err = lock_rdev(rdev, newdev, super_format == -2);
3218 if (err)
3219 goto abort_free;
3220
3221 kobject_init(&rdev->kobj, &rdev_ktype);
3222
3223 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3224 if (!size) {
3225 printk(KERN_WARNING
3226 "md: %s has zero or unknown size, marking faulty!\n",
3227 bdevname(rdev->bdev,b));
3228 err = -EINVAL;
3229 goto abort_free;
3230 }
3231
3232 if (super_format >= 0) {
3233 err = super_types[super_format].
3234 load_super(rdev, NULL, super_minor);
3235 if (err == -EINVAL) {
3236 printk(KERN_WARNING
3237 "md: %s does not have a valid v%d.%d "
3238 "superblock, not importing!\n",
3239 bdevname(rdev->bdev,b),
3240 super_format, super_minor);
3241 goto abort_free;
3242 }
3243 if (err < 0) {
3244 printk(KERN_WARNING
3245 "md: could not read %s's sb, not importing!\n",
3246 bdevname(rdev->bdev,b));
3247 goto abort_free;
3248 }
3249 }
3250
3251 return rdev;
3252
3253 abort_free:
3254 if (rdev->bdev)
3255 unlock_rdev(rdev);
3256 md_rdev_clear(rdev);
3257 kfree(rdev);
3258 return ERR_PTR(err);
3259 }
3260
3261 /*
3262 * Check a full RAID array for plausibility
3263 */
3264
3265 static void analyze_sbs(struct mddev *mddev)
3266 {
3267 int i;
3268 struct md_rdev *rdev, *freshest, *tmp;
3269 char b[BDEVNAME_SIZE];
3270
3271 freshest = NULL;
3272 rdev_for_each_safe(rdev, tmp, mddev)
3273 switch (super_types[mddev->major_version].
3274 load_super(rdev, freshest, mddev->minor_version)) {
3275 case 1:
3276 freshest = rdev;
3277 break;
3278 case 0:
3279 break;
3280 default:
3281 printk( KERN_ERR \
3282 "md: fatal superblock inconsistency in %s"
3283 " -- removing from array\n",
3284 bdevname(rdev->bdev,b));
3285 md_kick_rdev_from_array(rdev);
3286 }
3287
3288 super_types[mddev->major_version].
3289 validate_super(mddev, freshest);
3290
3291 i = 0;
3292 rdev_for_each_safe(rdev, tmp, mddev) {
3293 if (mddev->max_disks &&
3294 (rdev->desc_nr >= mddev->max_disks ||
3295 i > mddev->max_disks)) {
3296 printk(KERN_WARNING
3297 "md: %s: %s: only %d devices permitted\n",
3298 mdname(mddev), bdevname(rdev->bdev, b),
3299 mddev->max_disks);
3300 md_kick_rdev_from_array(rdev);
3301 continue;
3302 }
3303 if (rdev != freshest) {
3304 if (super_types[mddev->major_version].
3305 validate_super(mddev, rdev)) {
3306 printk(KERN_WARNING "md: kicking non-fresh %s"
3307 " from array!\n",
3308 bdevname(rdev->bdev,b));
3309 md_kick_rdev_from_array(rdev);
3310 continue;
3311 }
3312 }
3313 if (mddev->level == LEVEL_MULTIPATH) {
3314 rdev->desc_nr = i++;
3315 rdev->raid_disk = rdev->desc_nr;
3316 set_bit(In_sync, &rdev->flags);
3317 } else if (rdev->raid_disk >=
3318 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3319 !test_bit(Journal, &rdev->flags)) {
3320 rdev->raid_disk = -1;
3321 clear_bit(In_sync, &rdev->flags);
3322 }
3323 }
3324 }
3325
3326 /* Read a fixed-point number.
3327 * Numbers in sysfs attributes should be in "standard" units where
3328 * possible, so time should be in seconds.
3329 * However we internally use a a much smaller unit such as
3330 * milliseconds or jiffies.
3331 * This function takes a decimal number with a possible fractional
3332 * component, and produces an integer which is the result of
3333 * multiplying that number by 10^'scale'.
3334 * all without any floating-point arithmetic.
3335 */
3336 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3337 {
3338 unsigned long result = 0;
3339 long decimals = -1;
3340 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3341 if (*cp == '.')
3342 decimals = 0;
3343 else if (decimals < scale) {
3344 unsigned int value;
3345 value = *cp - '0';
3346 result = result * 10 + value;
3347 if (decimals >= 0)
3348 decimals++;
3349 }
3350 cp++;
3351 }
3352 if (*cp == '\n')
3353 cp++;
3354 if (*cp)
3355 return -EINVAL;
3356 if (decimals < 0)
3357 decimals = 0;
3358 while (decimals < scale) {
3359 result *= 10;
3360 decimals ++;
3361 }
3362 *res = result;
3363 return 0;
3364 }
3365
3366 static ssize_t
3367 safe_delay_show(struct mddev *mddev, char *page)
3368 {
3369 int msec = (mddev->safemode_delay*1000)/HZ;
3370 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3371 }
3372 static ssize_t
3373 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3374 {
3375 unsigned long msec;
3376
3377 if (mddev_is_clustered(mddev)) {
3378 pr_info("md: Safemode is disabled for clustered mode\n");
3379 return -EINVAL;
3380 }
3381
3382 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3383 return -EINVAL;
3384 if (msec == 0)
3385 mddev->safemode_delay = 0;
3386 else {
3387 unsigned long old_delay = mddev->safemode_delay;
3388 unsigned long new_delay = (msec*HZ)/1000;
3389
3390 if (new_delay == 0)
3391 new_delay = 1;
3392 mddev->safemode_delay = new_delay;
3393 if (new_delay < old_delay || old_delay == 0)
3394 mod_timer(&mddev->safemode_timer, jiffies+1);
3395 }
3396 return len;
3397 }
3398 static struct md_sysfs_entry md_safe_delay =
3399 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3400
3401 static ssize_t
3402 level_show(struct mddev *mddev, char *page)
3403 {
3404 struct md_personality *p;
3405 int ret;
3406 spin_lock(&mddev->lock);
3407 p = mddev->pers;
3408 if (p)
3409 ret = sprintf(page, "%s\n", p->name);
3410 else if (mddev->clevel[0])
3411 ret = sprintf(page, "%s\n", mddev->clevel);
3412 else if (mddev->level != LEVEL_NONE)
3413 ret = sprintf(page, "%d\n", mddev->level);
3414 else
3415 ret = 0;
3416 spin_unlock(&mddev->lock);
3417 return ret;
3418 }
3419
3420 static ssize_t
3421 level_store(struct mddev *mddev, const char *buf, size_t len)
3422 {
3423 char clevel[16];
3424 ssize_t rv;
3425 size_t slen = len;
3426 struct md_personality *pers, *oldpers;
3427 long level;
3428 void *priv, *oldpriv;
3429 struct md_rdev *rdev;
3430
3431 if (slen == 0 || slen >= sizeof(clevel))
3432 return -EINVAL;
3433
3434 rv = mddev_lock(mddev);
3435 if (rv)
3436 return rv;
3437
3438 if (mddev->pers == NULL) {
3439 strncpy(mddev->clevel, buf, slen);
3440 if (mddev->clevel[slen-1] == '\n')
3441 slen--;
3442 mddev->clevel[slen] = 0;
3443 mddev->level = LEVEL_NONE;
3444 rv = len;
3445 goto out_unlock;
3446 }
3447 rv = -EROFS;
3448 if (mddev->ro)
3449 goto out_unlock;
3450
3451 /* request to change the personality. Need to ensure:
3452 * - array is not engaged in resync/recovery/reshape
3453 * - old personality can be suspended
3454 * - new personality will access other array.
3455 */
3456
3457 rv = -EBUSY;
3458 if (mddev->sync_thread ||
3459 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3460 mddev->reshape_position != MaxSector ||
3461 mddev->sysfs_active)
3462 goto out_unlock;
3463
3464 rv = -EINVAL;
3465 if (!mddev->pers->quiesce) {
3466 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3467 mdname(mddev), mddev->pers->name);
3468 goto out_unlock;
3469 }
3470
3471 /* Now find the new personality */
3472 strncpy(clevel, buf, slen);
3473 if (clevel[slen-1] == '\n')
3474 slen--;
3475 clevel[slen] = 0;
3476 if (kstrtol(clevel, 10, &level))
3477 level = LEVEL_NONE;
3478
3479 if (request_module("md-%s", clevel) != 0)
3480 request_module("md-level-%s", clevel);
3481 spin_lock(&pers_lock);
3482 pers = find_pers(level, clevel);
3483 if (!pers || !try_module_get(pers->owner)) {
3484 spin_unlock(&pers_lock);
3485 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3486 rv = -EINVAL;
3487 goto out_unlock;
3488 }
3489 spin_unlock(&pers_lock);
3490
3491 if (pers == mddev->pers) {
3492 /* Nothing to do! */
3493 module_put(pers->owner);
3494 rv = len;
3495 goto out_unlock;
3496 }
3497 if (!pers->takeover) {
3498 module_put(pers->owner);
3499 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3500 mdname(mddev), clevel);
3501 rv = -EINVAL;
3502 goto out_unlock;
3503 }
3504
3505 rdev_for_each(rdev, mddev)
3506 rdev->new_raid_disk = rdev->raid_disk;
3507
3508 /* ->takeover must set new_* and/or delta_disks
3509 * if it succeeds, and may set them when it fails.
3510 */
3511 priv = pers->takeover(mddev);
3512 if (IS_ERR(priv)) {
3513 mddev->new_level = mddev->level;
3514 mddev->new_layout = mddev->layout;
3515 mddev->new_chunk_sectors = mddev->chunk_sectors;
3516 mddev->raid_disks -= mddev->delta_disks;
3517 mddev->delta_disks = 0;
3518 mddev->reshape_backwards = 0;
3519 module_put(pers->owner);
3520 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3521 mdname(mddev), clevel);
3522 rv = PTR_ERR(priv);
3523 goto out_unlock;
3524 }
3525
3526 /* Looks like we have a winner */
3527 mddev_suspend(mddev);
3528 mddev_detach(mddev);
3529
3530 spin_lock(&mddev->lock);
3531 oldpers = mddev->pers;
3532 oldpriv = mddev->private;
3533 mddev->pers = pers;
3534 mddev->private = priv;
3535 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3536 mddev->level = mddev->new_level;
3537 mddev->layout = mddev->new_layout;
3538 mddev->chunk_sectors = mddev->new_chunk_sectors;
3539 mddev->delta_disks = 0;
3540 mddev->reshape_backwards = 0;
3541 mddev->degraded = 0;
3542 spin_unlock(&mddev->lock);
3543
3544 if (oldpers->sync_request == NULL &&
3545 mddev->external) {
3546 /* We are converting from a no-redundancy array
3547 * to a redundancy array and metadata is managed
3548 * externally so we need to be sure that writes
3549 * won't block due to a need to transition
3550 * clean->dirty
3551 * until external management is started.
3552 */
3553 mddev->in_sync = 0;
3554 mddev->safemode_delay = 0;
3555 mddev->safemode = 0;
3556 }
3557
3558 oldpers->free(mddev, oldpriv);
3559
3560 if (oldpers->sync_request == NULL &&
3561 pers->sync_request != NULL) {
3562 /* need to add the md_redundancy_group */
3563 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3564 printk(KERN_WARNING
3565 "md: cannot register extra attributes for %s\n",
3566 mdname(mddev));
3567 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3568 }
3569 if (oldpers->sync_request != NULL &&
3570 pers->sync_request == NULL) {
3571 /* need to remove the md_redundancy_group */
3572 if (mddev->to_remove == NULL)
3573 mddev->to_remove = &md_redundancy_group;
3574 }
3575
3576 rdev_for_each(rdev, mddev) {
3577 if (rdev->raid_disk < 0)
3578 continue;
3579 if (rdev->new_raid_disk >= mddev->raid_disks)
3580 rdev->new_raid_disk = -1;
3581 if (rdev->new_raid_disk == rdev->raid_disk)
3582 continue;
3583 sysfs_unlink_rdev(mddev, rdev);
3584 }
3585 rdev_for_each(rdev, mddev) {
3586 if (rdev->raid_disk < 0)
3587 continue;
3588 if (rdev->new_raid_disk == rdev->raid_disk)
3589 continue;
3590 rdev->raid_disk = rdev->new_raid_disk;
3591 if (rdev->raid_disk < 0)
3592 clear_bit(In_sync, &rdev->flags);
3593 else {
3594 if (sysfs_link_rdev(mddev, rdev))
3595 printk(KERN_WARNING "md: cannot register rd%d"
3596 " for %s after level change\n",
3597 rdev->raid_disk, mdname(mddev));
3598 }
3599 }
3600
3601 if (pers->sync_request == NULL) {
3602 /* this is now an array without redundancy, so
3603 * it must always be in_sync
3604 */
3605 mddev->in_sync = 1;
3606 del_timer_sync(&mddev->safemode_timer);
3607 }
3608 blk_set_stacking_limits(&mddev->queue->limits);
3609 pers->run(mddev);
3610 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3611 mddev_resume(mddev);
3612 if (!mddev->thread)
3613 md_update_sb(mddev, 1);
3614 sysfs_notify(&mddev->kobj, NULL, "level");
3615 md_new_event(mddev);
3616 rv = len;
3617 out_unlock:
3618 mddev_unlock(mddev);
3619 return rv;
3620 }
3621
3622 static struct md_sysfs_entry md_level =
3623 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3624
3625 static ssize_t
3626 layout_show(struct mddev *mddev, char *page)
3627 {
3628 /* just a number, not meaningful for all levels */
3629 if (mddev->reshape_position != MaxSector &&
3630 mddev->layout != mddev->new_layout)
3631 return sprintf(page, "%d (%d)\n",
3632 mddev->new_layout, mddev->layout);
3633 return sprintf(page, "%d\n", mddev->layout);
3634 }
3635
3636 static ssize_t
3637 layout_store(struct mddev *mddev, const char *buf, size_t len)
3638 {
3639 unsigned int n;
3640 int err;
3641
3642 err = kstrtouint(buf, 10, &n);
3643 if (err < 0)
3644 return err;
3645 err = mddev_lock(mddev);
3646 if (err)
3647 return err;
3648
3649 if (mddev->pers) {
3650 if (mddev->pers->check_reshape == NULL)
3651 err = -EBUSY;
3652 else if (mddev->ro)
3653 err = -EROFS;
3654 else {
3655 mddev->new_layout = n;
3656 err = mddev->pers->check_reshape(mddev);
3657 if (err)
3658 mddev->new_layout = mddev->layout;
3659 }
3660 } else {
3661 mddev->new_layout = n;
3662 if (mddev->reshape_position == MaxSector)
3663 mddev->layout = n;
3664 }
3665 mddev_unlock(mddev);
3666 return err ?: len;
3667 }
3668 static struct md_sysfs_entry md_layout =
3669 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3670
3671 static ssize_t
3672 raid_disks_show(struct mddev *mddev, char *page)
3673 {
3674 if (mddev->raid_disks == 0)
3675 return 0;
3676 if (mddev->reshape_position != MaxSector &&
3677 mddev->delta_disks != 0)
3678 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3679 mddev->raid_disks - mddev->delta_disks);
3680 return sprintf(page, "%d\n", mddev->raid_disks);
3681 }
3682
3683 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3684
3685 static ssize_t
3686 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3687 {
3688 unsigned int n;
3689 int err;
3690
3691 err = kstrtouint(buf, 10, &n);
3692 if (err < 0)
3693 return err;
3694
3695 err = mddev_lock(mddev);
3696 if (err)
3697 return err;
3698 if (mddev->pers)
3699 err = update_raid_disks(mddev, n);
3700 else if (mddev->reshape_position != MaxSector) {
3701 struct md_rdev *rdev;
3702 int olddisks = mddev->raid_disks - mddev->delta_disks;
3703
3704 err = -EINVAL;
3705 rdev_for_each(rdev, mddev) {
3706 if (olddisks < n &&
3707 rdev->data_offset < rdev->new_data_offset)
3708 goto out_unlock;
3709 if (olddisks > n &&
3710 rdev->data_offset > rdev->new_data_offset)
3711 goto out_unlock;
3712 }
3713 err = 0;
3714 mddev->delta_disks = n - olddisks;
3715 mddev->raid_disks = n;
3716 mddev->reshape_backwards = (mddev->delta_disks < 0);
3717 } else
3718 mddev->raid_disks = n;
3719 out_unlock:
3720 mddev_unlock(mddev);
3721 return err ? err : len;
3722 }
3723 static struct md_sysfs_entry md_raid_disks =
3724 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3725
3726 static ssize_t
3727 chunk_size_show(struct mddev *mddev, char *page)
3728 {
3729 if (mddev->reshape_position != MaxSector &&
3730 mddev->chunk_sectors != mddev->new_chunk_sectors)
3731 return sprintf(page, "%d (%d)\n",
3732 mddev->new_chunk_sectors << 9,
3733 mddev->chunk_sectors << 9);
3734 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3735 }
3736
3737 static ssize_t
3738 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3739 {
3740 unsigned long n;
3741 int err;
3742
3743 err = kstrtoul(buf, 10, &n);
3744 if (err < 0)
3745 return err;
3746
3747 err = mddev_lock(mddev);
3748 if (err)
3749 return err;
3750 if (mddev->pers) {
3751 if (mddev->pers->check_reshape == NULL)
3752 err = -EBUSY;
3753 else if (mddev->ro)
3754 err = -EROFS;
3755 else {
3756 mddev->new_chunk_sectors = n >> 9;
3757 err = mddev->pers->check_reshape(mddev);
3758 if (err)
3759 mddev->new_chunk_sectors = mddev->chunk_sectors;
3760 }
3761 } else {
3762 mddev->new_chunk_sectors = n >> 9;
3763 if (mddev->reshape_position == MaxSector)
3764 mddev->chunk_sectors = n >> 9;
3765 }
3766 mddev_unlock(mddev);
3767 return err ?: len;
3768 }
3769 static struct md_sysfs_entry md_chunk_size =
3770 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3771
3772 static ssize_t
3773 resync_start_show(struct mddev *mddev, char *page)
3774 {
3775 if (mddev->recovery_cp == MaxSector)
3776 return sprintf(page, "none\n");
3777 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3778 }
3779
3780 static ssize_t
3781 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3782 {
3783 unsigned long long n;
3784 int err;
3785
3786 if (cmd_match(buf, "none"))
3787 n = MaxSector;
3788 else {
3789 err = kstrtoull(buf, 10, &n);
3790 if (err < 0)
3791 return err;
3792 if (n != (sector_t)n)
3793 return -EINVAL;
3794 }
3795
3796 err = mddev_lock(mddev);
3797 if (err)
3798 return err;
3799 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3800 err = -EBUSY;
3801
3802 if (!err) {
3803 mddev->recovery_cp = n;
3804 if (mddev->pers)
3805 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3806 }
3807 mddev_unlock(mddev);
3808 return err ?: len;
3809 }
3810 static struct md_sysfs_entry md_resync_start =
3811 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3812 resync_start_show, resync_start_store);
3813
3814 /*
3815 * The array state can be:
3816 *
3817 * clear
3818 * No devices, no size, no level
3819 * Equivalent to STOP_ARRAY ioctl
3820 * inactive
3821 * May have some settings, but array is not active
3822 * all IO results in error
3823 * When written, doesn't tear down array, but just stops it
3824 * suspended (not supported yet)
3825 * All IO requests will block. The array can be reconfigured.
3826 * Writing this, if accepted, will block until array is quiescent
3827 * readonly
3828 * no resync can happen. no superblocks get written.
3829 * write requests fail
3830 * read-auto
3831 * like readonly, but behaves like 'clean' on a write request.
3832 *
3833 * clean - no pending writes, but otherwise active.
3834 * When written to inactive array, starts without resync
3835 * If a write request arrives then
3836 * if metadata is known, mark 'dirty' and switch to 'active'.
3837 * if not known, block and switch to write-pending
3838 * If written to an active array that has pending writes, then fails.
3839 * active
3840 * fully active: IO and resync can be happening.
3841 * When written to inactive array, starts with resync
3842 *
3843 * write-pending
3844 * clean, but writes are blocked waiting for 'active' to be written.
3845 *
3846 * active-idle
3847 * like active, but no writes have been seen for a while (100msec).
3848 *
3849 */
3850 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3851 write_pending, active_idle, bad_word};
3852 static char *array_states[] = {
3853 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3854 "write-pending", "active-idle", NULL };
3855
3856 static int match_word(const char *word, char **list)
3857 {
3858 int n;
3859 for (n=0; list[n]; n++)
3860 if (cmd_match(word, list[n]))
3861 break;
3862 return n;
3863 }
3864
3865 static ssize_t
3866 array_state_show(struct mddev *mddev, char *page)
3867 {
3868 enum array_state st = inactive;
3869
3870 if (mddev->pers)
3871 switch(mddev->ro) {
3872 case 1:
3873 st = readonly;
3874 break;
3875 case 2:
3876 st = read_auto;
3877 break;
3878 case 0:
3879 if (mddev->in_sync)
3880 st = clean;
3881 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3882 st = write_pending;
3883 else if (mddev->safemode)
3884 st = active_idle;
3885 else
3886 st = active;
3887 }
3888 else {
3889 if (list_empty(&mddev->disks) &&
3890 mddev->raid_disks == 0 &&
3891 mddev->dev_sectors == 0)
3892 st = clear;
3893 else
3894 st = inactive;
3895 }
3896 return sprintf(page, "%s\n", array_states[st]);
3897 }
3898
3899 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3900 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3901 static int do_md_run(struct mddev *mddev);
3902 static int restart_array(struct mddev *mddev);
3903
3904 static ssize_t
3905 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3906 {
3907 int err;
3908 enum array_state st = match_word(buf, array_states);
3909
3910 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3911 /* don't take reconfig_mutex when toggling between
3912 * clean and active
3913 */
3914 spin_lock(&mddev->lock);
3915 if (st == active) {
3916 restart_array(mddev);
3917 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3918 wake_up(&mddev->sb_wait);
3919 err = 0;
3920 } else /* st == clean */ {
3921 restart_array(mddev);
3922 if (atomic_read(&mddev->writes_pending) == 0) {
3923 if (mddev->in_sync == 0) {
3924 mddev->in_sync = 1;
3925 if (mddev->safemode == 1)
3926 mddev->safemode = 0;
3927 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3928 }
3929 err = 0;
3930 } else
3931 err = -EBUSY;
3932 }
3933 spin_unlock(&mddev->lock);
3934 return err ?: len;
3935 }
3936 err = mddev_lock(mddev);
3937 if (err)
3938 return err;
3939 err = -EINVAL;
3940 switch(st) {
3941 case bad_word:
3942 break;
3943 case clear:
3944 /* stopping an active array */
3945 err = do_md_stop(mddev, 0, NULL);
3946 break;
3947 case inactive:
3948 /* stopping an active array */
3949 if (mddev->pers)
3950 err = do_md_stop(mddev, 2, NULL);
3951 else
3952 err = 0; /* already inactive */
3953 break;
3954 case suspended:
3955 break; /* not supported yet */
3956 case readonly:
3957 if (mddev->pers)
3958 err = md_set_readonly(mddev, NULL);
3959 else {
3960 mddev->ro = 1;
3961 set_disk_ro(mddev->gendisk, 1);
3962 err = do_md_run(mddev);
3963 }
3964 break;
3965 case read_auto:
3966 if (mddev->pers) {
3967 if (mddev->ro == 0)
3968 err = md_set_readonly(mddev, NULL);
3969 else if (mddev->ro == 1)
3970 err = restart_array(mddev);
3971 if (err == 0) {
3972 mddev->ro = 2;
3973 set_disk_ro(mddev->gendisk, 0);
3974 }
3975 } else {
3976 mddev->ro = 2;
3977 err = do_md_run(mddev);
3978 }
3979 break;
3980 case clean:
3981 if (mddev->pers) {
3982 err = restart_array(mddev);
3983 if (err)
3984 break;
3985 spin_lock(&mddev->lock);
3986 if (atomic_read(&mddev->writes_pending) == 0) {
3987 if (mddev->in_sync == 0) {
3988 mddev->in_sync = 1;
3989 if (mddev->safemode == 1)
3990 mddev->safemode = 0;
3991 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3992 }
3993 err = 0;
3994 } else
3995 err = -EBUSY;
3996 spin_unlock(&mddev->lock);
3997 } else
3998 err = -EINVAL;
3999 break;
4000 case active:
4001 if (mddev->pers) {
4002 err = restart_array(mddev);
4003 if (err)
4004 break;
4005 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4006 wake_up(&mddev->sb_wait);
4007 err = 0;
4008 } else {
4009 mddev->ro = 0;
4010 set_disk_ro(mddev->gendisk, 0);
4011 err = do_md_run(mddev);
4012 }
4013 break;
4014 case write_pending:
4015 case active_idle:
4016 /* these cannot be set */
4017 break;
4018 }
4019
4020 if (!err) {
4021 if (mddev->hold_active == UNTIL_IOCTL)
4022 mddev->hold_active = 0;
4023 sysfs_notify_dirent_safe(mddev->sysfs_state);
4024 }
4025 mddev_unlock(mddev);
4026 return err ?: len;
4027 }
4028 static struct md_sysfs_entry md_array_state =
4029 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4030
4031 static ssize_t
4032 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4033 return sprintf(page, "%d\n",
4034 atomic_read(&mddev->max_corr_read_errors));
4035 }
4036
4037 static ssize_t
4038 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4039 {
4040 unsigned int n;
4041 int rv;
4042
4043 rv = kstrtouint(buf, 10, &n);
4044 if (rv < 0)
4045 return rv;
4046 atomic_set(&mddev->max_corr_read_errors, n);
4047 return len;
4048 }
4049
4050 static struct md_sysfs_entry max_corr_read_errors =
4051 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4052 max_corrected_read_errors_store);
4053
4054 static ssize_t
4055 null_show(struct mddev *mddev, char *page)
4056 {
4057 return -EINVAL;
4058 }
4059
4060 static ssize_t
4061 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4062 {
4063 /* buf must be %d:%d\n? giving major and minor numbers */
4064 /* The new device is added to the array.
4065 * If the array has a persistent superblock, we read the
4066 * superblock to initialise info and check validity.
4067 * Otherwise, only checking done is that in bind_rdev_to_array,
4068 * which mainly checks size.
4069 */
4070 char *e;
4071 int major = simple_strtoul(buf, &e, 10);
4072 int minor;
4073 dev_t dev;
4074 struct md_rdev *rdev;
4075 int err;
4076
4077 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4078 return -EINVAL;
4079 minor = simple_strtoul(e+1, &e, 10);
4080 if (*e && *e != '\n')
4081 return -EINVAL;
4082 dev = MKDEV(major, minor);
4083 if (major != MAJOR(dev) ||
4084 minor != MINOR(dev))
4085 return -EOVERFLOW;
4086
4087 flush_workqueue(md_misc_wq);
4088
4089 err = mddev_lock(mddev);
4090 if (err)
4091 return err;
4092 if (mddev->persistent) {
4093 rdev = md_import_device(dev, mddev->major_version,
4094 mddev->minor_version);
4095 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4096 struct md_rdev *rdev0
4097 = list_entry(mddev->disks.next,
4098 struct md_rdev, same_set);
4099 err = super_types[mddev->major_version]
4100 .load_super(rdev, rdev0, mddev->minor_version);
4101 if (err < 0)
4102 goto out;
4103 }
4104 } else if (mddev->external)
4105 rdev = md_import_device(dev, -2, -1);
4106 else
4107 rdev = md_import_device(dev, -1, -1);
4108
4109 if (IS_ERR(rdev)) {
4110 mddev_unlock(mddev);
4111 return PTR_ERR(rdev);
4112 }
4113 err = bind_rdev_to_array(rdev, mddev);
4114 out:
4115 if (err)
4116 export_rdev(rdev);
4117 mddev_unlock(mddev);
4118 return err ? err : len;
4119 }
4120
4121 static struct md_sysfs_entry md_new_device =
4122 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4123
4124 static ssize_t
4125 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 char *end;
4128 unsigned long chunk, end_chunk;
4129 int err;
4130
4131 err = mddev_lock(mddev);
4132 if (err)
4133 return err;
4134 if (!mddev->bitmap)
4135 goto out;
4136 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4137 while (*buf) {
4138 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4139 if (buf == end) break;
4140 if (*end == '-') { /* range */
4141 buf = end + 1;
4142 end_chunk = simple_strtoul(buf, &end, 0);
4143 if (buf == end) break;
4144 }
4145 if (*end && !isspace(*end)) break;
4146 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4147 buf = skip_spaces(end);
4148 }
4149 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4150 out:
4151 mddev_unlock(mddev);
4152 return len;
4153 }
4154
4155 static struct md_sysfs_entry md_bitmap =
4156 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4157
4158 static ssize_t
4159 size_show(struct mddev *mddev, char *page)
4160 {
4161 return sprintf(page, "%llu\n",
4162 (unsigned long long)mddev->dev_sectors / 2);
4163 }
4164
4165 static int update_size(struct mddev *mddev, sector_t num_sectors);
4166
4167 static ssize_t
4168 size_store(struct mddev *mddev, const char *buf, size_t len)
4169 {
4170 /* If array is inactive, we can reduce the component size, but
4171 * not increase it (except from 0).
4172 * If array is active, we can try an on-line resize
4173 */
4174 sector_t sectors;
4175 int err = strict_blocks_to_sectors(buf, &sectors);
4176
4177 if (err < 0)
4178 return err;
4179 err = mddev_lock(mddev);
4180 if (err)
4181 return err;
4182 if (mddev->pers) {
4183 err = update_size(mddev, sectors);
4184 md_update_sb(mddev, 1);
4185 } else {
4186 if (mddev->dev_sectors == 0 ||
4187 mddev->dev_sectors > sectors)
4188 mddev->dev_sectors = sectors;
4189 else
4190 err = -ENOSPC;
4191 }
4192 mddev_unlock(mddev);
4193 return err ? err : len;
4194 }
4195
4196 static struct md_sysfs_entry md_size =
4197 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4198
4199 /* Metadata version.
4200 * This is one of
4201 * 'none' for arrays with no metadata (good luck...)
4202 * 'external' for arrays with externally managed metadata,
4203 * or N.M for internally known formats
4204 */
4205 static ssize_t
4206 metadata_show(struct mddev *mddev, char *page)
4207 {
4208 if (mddev->persistent)
4209 return sprintf(page, "%d.%d\n",
4210 mddev->major_version, mddev->minor_version);
4211 else if (mddev->external)
4212 return sprintf(page, "external:%s\n", mddev->metadata_type);
4213 else
4214 return sprintf(page, "none\n");
4215 }
4216
4217 static ssize_t
4218 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4219 {
4220 int major, minor;
4221 char *e;
4222 int err;
4223 /* Changing the details of 'external' metadata is
4224 * always permitted. Otherwise there must be
4225 * no devices attached to the array.
4226 */
4227
4228 err = mddev_lock(mddev);
4229 if (err)
4230 return err;
4231 err = -EBUSY;
4232 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4233 ;
4234 else if (!list_empty(&mddev->disks))
4235 goto out_unlock;
4236
4237 err = 0;
4238 if (cmd_match(buf, "none")) {
4239 mddev->persistent = 0;
4240 mddev->external = 0;
4241 mddev->major_version = 0;
4242 mddev->minor_version = 90;
4243 goto out_unlock;
4244 }
4245 if (strncmp(buf, "external:", 9) == 0) {
4246 size_t namelen = len-9;
4247 if (namelen >= sizeof(mddev->metadata_type))
4248 namelen = sizeof(mddev->metadata_type)-1;
4249 strncpy(mddev->metadata_type, buf+9, namelen);
4250 mddev->metadata_type[namelen] = 0;
4251 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4252 mddev->metadata_type[--namelen] = 0;
4253 mddev->persistent = 0;
4254 mddev->external = 1;
4255 mddev->major_version = 0;
4256 mddev->minor_version = 90;
4257 goto out_unlock;
4258 }
4259 major = simple_strtoul(buf, &e, 10);
4260 err = -EINVAL;
4261 if (e==buf || *e != '.')
4262 goto out_unlock;
4263 buf = e+1;
4264 minor = simple_strtoul(buf, &e, 10);
4265 if (e==buf || (*e && *e != '\n') )
4266 goto out_unlock;
4267 err = -ENOENT;
4268 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4269 goto out_unlock;
4270 mddev->major_version = major;
4271 mddev->minor_version = minor;
4272 mddev->persistent = 1;
4273 mddev->external = 0;
4274 err = 0;
4275 out_unlock:
4276 mddev_unlock(mddev);
4277 return err ?: len;
4278 }
4279
4280 static struct md_sysfs_entry md_metadata =
4281 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4282
4283 static ssize_t
4284 action_show(struct mddev *mddev, char *page)
4285 {
4286 char *type = "idle";
4287 unsigned long recovery = mddev->recovery;
4288 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4289 type = "frozen";
4290 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4291 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4292 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4293 type = "reshape";
4294 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4295 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4296 type = "resync";
4297 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4298 type = "check";
4299 else
4300 type = "repair";
4301 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4302 type = "recover";
4303 else if (mddev->reshape_position != MaxSector)
4304 type = "reshape";
4305 }
4306 return sprintf(page, "%s\n", type);
4307 }
4308
4309 static ssize_t
4310 action_store(struct mddev *mddev, const char *page, size_t len)
4311 {
4312 if (!mddev->pers || !mddev->pers->sync_request)
4313 return -EINVAL;
4314
4315
4316 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4317 if (cmd_match(page, "frozen"))
4318 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4319 else
4320 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4321 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4322 mddev_lock(mddev) == 0) {
4323 flush_workqueue(md_misc_wq);
4324 if (mddev->sync_thread) {
4325 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4326 md_reap_sync_thread(mddev);
4327 }
4328 mddev_unlock(mddev);
4329 }
4330 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4331 return -EBUSY;
4332 else if (cmd_match(page, "resync"))
4333 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4334 else if (cmd_match(page, "recover")) {
4335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4336 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4337 } else if (cmd_match(page, "reshape")) {
4338 int err;
4339 if (mddev->pers->start_reshape == NULL)
4340 return -EINVAL;
4341 err = mddev_lock(mddev);
4342 if (!err) {
4343 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4344 err = -EBUSY;
4345 else {
4346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4347 err = mddev->pers->start_reshape(mddev);
4348 }
4349 mddev_unlock(mddev);
4350 }
4351 if (err)
4352 return err;
4353 sysfs_notify(&mddev->kobj, NULL, "degraded");
4354 } else {
4355 if (cmd_match(page, "check"))
4356 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4357 else if (!cmd_match(page, "repair"))
4358 return -EINVAL;
4359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4360 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4361 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4362 }
4363 if (mddev->ro == 2) {
4364 /* A write to sync_action is enough to justify
4365 * canceling read-auto mode
4366 */
4367 mddev->ro = 0;
4368 md_wakeup_thread(mddev->sync_thread);
4369 }
4370 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4371 md_wakeup_thread(mddev->thread);
4372 sysfs_notify_dirent_safe(mddev->sysfs_action);
4373 return len;
4374 }
4375
4376 static struct md_sysfs_entry md_scan_mode =
4377 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4378
4379 static ssize_t
4380 last_sync_action_show(struct mddev *mddev, char *page)
4381 {
4382 return sprintf(page, "%s\n", mddev->last_sync_action);
4383 }
4384
4385 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4386
4387 static ssize_t
4388 mismatch_cnt_show(struct mddev *mddev, char *page)
4389 {
4390 return sprintf(page, "%llu\n",
4391 (unsigned long long)
4392 atomic64_read(&mddev->resync_mismatches));
4393 }
4394
4395 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4396
4397 static ssize_t
4398 sync_min_show(struct mddev *mddev, char *page)
4399 {
4400 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4401 mddev->sync_speed_min ? "local": "system");
4402 }
4403
4404 static ssize_t
4405 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4406 {
4407 unsigned int min;
4408 int rv;
4409
4410 if (strncmp(buf, "system", 6)==0) {
4411 min = 0;
4412 } else {
4413 rv = kstrtouint(buf, 10, &min);
4414 if (rv < 0)
4415 return rv;
4416 if (min == 0)
4417 return -EINVAL;
4418 }
4419 mddev->sync_speed_min = min;
4420 return len;
4421 }
4422
4423 static struct md_sysfs_entry md_sync_min =
4424 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4425
4426 static ssize_t
4427 sync_max_show(struct mddev *mddev, char *page)
4428 {
4429 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4430 mddev->sync_speed_max ? "local": "system");
4431 }
4432
4433 static ssize_t
4434 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4435 {
4436 unsigned int max;
4437 int rv;
4438
4439 if (strncmp(buf, "system", 6)==0) {
4440 max = 0;
4441 } else {
4442 rv = kstrtouint(buf, 10, &max);
4443 if (rv < 0)
4444 return rv;
4445 if (max == 0)
4446 return -EINVAL;
4447 }
4448 mddev->sync_speed_max = max;
4449 return len;
4450 }
4451
4452 static struct md_sysfs_entry md_sync_max =
4453 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4454
4455 static ssize_t
4456 degraded_show(struct mddev *mddev, char *page)
4457 {
4458 return sprintf(page, "%d\n", mddev->degraded);
4459 }
4460 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4461
4462 static ssize_t
4463 sync_force_parallel_show(struct mddev *mddev, char *page)
4464 {
4465 return sprintf(page, "%d\n", mddev->parallel_resync);
4466 }
4467
4468 static ssize_t
4469 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4470 {
4471 long n;
4472
4473 if (kstrtol(buf, 10, &n))
4474 return -EINVAL;
4475
4476 if (n != 0 && n != 1)
4477 return -EINVAL;
4478
4479 mddev->parallel_resync = n;
4480
4481 if (mddev->sync_thread)
4482 wake_up(&resync_wait);
4483
4484 return len;
4485 }
4486
4487 /* force parallel resync, even with shared block devices */
4488 static struct md_sysfs_entry md_sync_force_parallel =
4489 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4490 sync_force_parallel_show, sync_force_parallel_store);
4491
4492 static ssize_t
4493 sync_speed_show(struct mddev *mddev, char *page)
4494 {
4495 unsigned long resync, dt, db;
4496 if (mddev->curr_resync == 0)
4497 return sprintf(page, "none\n");
4498 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4499 dt = (jiffies - mddev->resync_mark) / HZ;
4500 if (!dt) dt++;
4501 db = resync - mddev->resync_mark_cnt;
4502 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4503 }
4504
4505 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4506
4507 static ssize_t
4508 sync_completed_show(struct mddev *mddev, char *page)
4509 {
4510 unsigned long long max_sectors, resync;
4511
4512 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4513 return sprintf(page, "none\n");
4514
4515 if (mddev->curr_resync == 1 ||
4516 mddev->curr_resync == 2)
4517 return sprintf(page, "delayed\n");
4518
4519 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4520 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4521 max_sectors = mddev->resync_max_sectors;
4522 else
4523 max_sectors = mddev->dev_sectors;
4524
4525 resync = mddev->curr_resync_completed;
4526 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4527 }
4528
4529 static struct md_sysfs_entry md_sync_completed =
4530 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4531
4532 static ssize_t
4533 min_sync_show(struct mddev *mddev, char *page)
4534 {
4535 return sprintf(page, "%llu\n",
4536 (unsigned long long)mddev->resync_min);
4537 }
4538 static ssize_t
4539 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4540 {
4541 unsigned long long min;
4542 int err;
4543
4544 if (kstrtoull(buf, 10, &min))
4545 return -EINVAL;
4546
4547 spin_lock(&mddev->lock);
4548 err = -EINVAL;
4549 if (min > mddev->resync_max)
4550 goto out_unlock;
4551
4552 err = -EBUSY;
4553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4554 goto out_unlock;
4555
4556 /* Round down to multiple of 4K for safety */
4557 mddev->resync_min = round_down(min, 8);
4558 err = 0;
4559
4560 out_unlock:
4561 spin_unlock(&mddev->lock);
4562 return err ?: len;
4563 }
4564
4565 static struct md_sysfs_entry md_min_sync =
4566 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4567
4568 static ssize_t
4569 max_sync_show(struct mddev *mddev, char *page)
4570 {
4571 if (mddev->resync_max == MaxSector)
4572 return sprintf(page, "max\n");
4573 else
4574 return sprintf(page, "%llu\n",
4575 (unsigned long long)mddev->resync_max);
4576 }
4577 static ssize_t
4578 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4579 {
4580 int err;
4581 spin_lock(&mddev->lock);
4582 if (strncmp(buf, "max", 3) == 0)
4583 mddev->resync_max = MaxSector;
4584 else {
4585 unsigned long long max;
4586 int chunk;
4587
4588 err = -EINVAL;
4589 if (kstrtoull(buf, 10, &max))
4590 goto out_unlock;
4591 if (max < mddev->resync_min)
4592 goto out_unlock;
4593
4594 err = -EBUSY;
4595 if (max < mddev->resync_max &&
4596 mddev->ro == 0 &&
4597 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4598 goto out_unlock;
4599
4600 /* Must be a multiple of chunk_size */
4601 chunk = mddev->chunk_sectors;
4602 if (chunk) {
4603 sector_t temp = max;
4604
4605 err = -EINVAL;
4606 if (sector_div(temp, chunk))
4607 goto out_unlock;
4608 }
4609 mddev->resync_max = max;
4610 }
4611 wake_up(&mddev->recovery_wait);
4612 err = 0;
4613 out_unlock:
4614 spin_unlock(&mddev->lock);
4615 return err ?: len;
4616 }
4617
4618 static struct md_sysfs_entry md_max_sync =
4619 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4620
4621 static ssize_t
4622 suspend_lo_show(struct mddev *mddev, char *page)
4623 {
4624 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4625 }
4626
4627 static ssize_t
4628 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4629 {
4630 unsigned long long old, new;
4631 int err;
4632
4633 err = kstrtoull(buf, 10, &new);
4634 if (err < 0)
4635 return err;
4636 if (new != (sector_t)new)
4637 return -EINVAL;
4638
4639 err = mddev_lock(mddev);
4640 if (err)
4641 return err;
4642 err = -EINVAL;
4643 if (mddev->pers == NULL ||
4644 mddev->pers->quiesce == NULL)
4645 goto unlock;
4646 old = mddev->suspend_lo;
4647 mddev->suspend_lo = new;
4648 if (new >= old)
4649 /* Shrinking suspended region */
4650 mddev->pers->quiesce(mddev, 2);
4651 else {
4652 /* Expanding suspended region - need to wait */
4653 mddev->pers->quiesce(mddev, 1);
4654 mddev->pers->quiesce(mddev, 0);
4655 }
4656 err = 0;
4657 unlock:
4658 mddev_unlock(mddev);
4659 return err ?: len;
4660 }
4661 static struct md_sysfs_entry md_suspend_lo =
4662 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4663
4664 static ssize_t
4665 suspend_hi_show(struct mddev *mddev, char *page)
4666 {
4667 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4668 }
4669
4670 static ssize_t
4671 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4672 {
4673 unsigned long long old, new;
4674 int err;
4675
4676 err = kstrtoull(buf, 10, &new);
4677 if (err < 0)
4678 return err;
4679 if (new != (sector_t)new)
4680 return -EINVAL;
4681
4682 err = mddev_lock(mddev);
4683 if (err)
4684 return err;
4685 err = -EINVAL;
4686 if (mddev->pers == NULL ||
4687 mddev->pers->quiesce == NULL)
4688 goto unlock;
4689 old = mddev->suspend_hi;
4690 mddev->suspend_hi = new;
4691 if (new <= old)
4692 /* Shrinking suspended region */
4693 mddev->pers->quiesce(mddev, 2);
4694 else {
4695 /* Expanding suspended region - need to wait */
4696 mddev->pers->quiesce(mddev, 1);
4697 mddev->pers->quiesce(mddev, 0);
4698 }
4699 err = 0;
4700 unlock:
4701 mddev_unlock(mddev);
4702 return err ?: len;
4703 }
4704 static struct md_sysfs_entry md_suspend_hi =
4705 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4706
4707 static ssize_t
4708 reshape_position_show(struct mddev *mddev, char *page)
4709 {
4710 if (mddev->reshape_position != MaxSector)
4711 return sprintf(page, "%llu\n",
4712 (unsigned long long)mddev->reshape_position);
4713 strcpy(page, "none\n");
4714 return 5;
4715 }
4716
4717 static ssize_t
4718 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4719 {
4720 struct md_rdev *rdev;
4721 unsigned long long new;
4722 int err;
4723
4724 err = kstrtoull(buf, 10, &new);
4725 if (err < 0)
4726 return err;
4727 if (new != (sector_t)new)
4728 return -EINVAL;
4729 err = mddev_lock(mddev);
4730 if (err)
4731 return err;
4732 err = -EBUSY;
4733 if (mddev->pers)
4734 goto unlock;
4735 mddev->reshape_position = new;
4736 mddev->delta_disks = 0;
4737 mddev->reshape_backwards = 0;
4738 mddev->new_level = mddev->level;
4739 mddev->new_layout = mddev->layout;
4740 mddev->new_chunk_sectors = mddev->chunk_sectors;
4741 rdev_for_each(rdev, mddev)
4742 rdev->new_data_offset = rdev->data_offset;
4743 err = 0;
4744 unlock:
4745 mddev_unlock(mddev);
4746 return err ?: len;
4747 }
4748
4749 static struct md_sysfs_entry md_reshape_position =
4750 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4751 reshape_position_store);
4752
4753 static ssize_t
4754 reshape_direction_show(struct mddev *mddev, char *page)
4755 {
4756 return sprintf(page, "%s\n",
4757 mddev->reshape_backwards ? "backwards" : "forwards");
4758 }
4759
4760 static ssize_t
4761 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4762 {
4763 int backwards = 0;
4764 int err;
4765
4766 if (cmd_match(buf, "forwards"))
4767 backwards = 0;
4768 else if (cmd_match(buf, "backwards"))
4769 backwards = 1;
4770 else
4771 return -EINVAL;
4772 if (mddev->reshape_backwards == backwards)
4773 return len;
4774
4775 err = mddev_lock(mddev);
4776 if (err)
4777 return err;
4778 /* check if we are allowed to change */
4779 if (mddev->delta_disks)
4780 err = -EBUSY;
4781 else if (mddev->persistent &&
4782 mddev->major_version == 0)
4783 err = -EINVAL;
4784 else
4785 mddev->reshape_backwards = backwards;
4786 mddev_unlock(mddev);
4787 return err ?: len;
4788 }
4789
4790 static struct md_sysfs_entry md_reshape_direction =
4791 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4792 reshape_direction_store);
4793
4794 static ssize_t
4795 array_size_show(struct mddev *mddev, char *page)
4796 {
4797 if (mddev->external_size)
4798 return sprintf(page, "%llu\n",
4799 (unsigned long long)mddev->array_sectors/2);
4800 else
4801 return sprintf(page, "default\n");
4802 }
4803
4804 static ssize_t
4805 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4806 {
4807 sector_t sectors;
4808 int err;
4809
4810 err = mddev_lock(mddev);
4811 if (err)
4812 return err;
4813
4814 if (strncmp(buf, "default", 7) == 0) {
4815 if (mddev->pers)
4816 sectors = mddev->pers->size(mddev, 0, 0);
4817 else
4818 sectors = mddev->array_sectors;
4819
4820 mddev->external_size = 0;
4821 } else {
4822 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4823 err = -EINVAL;
4824 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4825 err = -E2BIG;
4826 else
4827 mddev->external_size = 1;
4828 }
4829
4830 if (!err) {
4831 mddev->array_sectors = sectors;
4832 if (mddev->pers) {
4833 set_capacity(mddev->gendisk, mddev->array_sectors);
4834 revalidate_disk(mddev->gendisk);
4835 }
4836 }
4837 mddev_unlock(mddev);
4838 return err ?: len;
4839 }
4840
4841 static struct md_sysfs_entry md_array_size =
4842 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4843 array_size_store);
4844
4845 static struct attribute *md_default_attrs[] = {
4846 &md_level.attr,
4847 &md_layout.attr,
4848 &md_raid_disks.attr,
4849 &md_chunk_size.attr,
4850 &md_size.attr,
4851 &md_resync_start.attr,
4852 &md_metadata.attr,
4853 &md_new_device.attr,
4854 &md_safe_delay.attr,
4855 &md_array_state.attr,
4856 &md_reshape_position.attr,
4857 &md_reshape_direction.attr,
4858 &md_array_size.attr,
4859 &max_corr_read_errors.attr,
4860 NULL,
4861 };
4862
4863 static struct attribute *md_redundancy_attrs[] = {
4864 &md_scan_mode.attr,
4865 &md_last_scan_mode.attr,
4866 &md_mismatches.attr,
4867 &md_sync_min.attr,
4868 &md_sync_max.attr,
4869 &md_sync_speed.attr,
4870 &md_sync_force_parallel.attr,
4871 &md_sync_completed.attr,
4872 &md_min_sync.attr,
4873 &md_max_sync.attr,
4874 &md_suspend_lo.attr,
4875 &md_suspend_hi.attr,
4876 &md_bitmap.attr,
4877 &md_degraded.attr,
4878 NULL,
4879 };
4880 static struct attribute_group md_redundancy_group = {
4881 .name = NULL,
4882 .attrs = md_redundancy_attrs,
4883 };
4884
4885 static ssize_t
4886 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4887 {
4888 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4889 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4890 ssize_t rv;
4891
4892 if (!entry->show)
4893 return -EIO;
4894 spin_lock(&all_mddevs_lock);
4895 if (list_empty(&mddev->all_mddevs)) {
4896 spin_unlock(&all_mddevs_lock);
4897 return -EBUSY;
4898 }
4899 mddev_get(mddev);
4900 spin_unlock(&all_mddevs_lock);
4901
4902 rv = entry->show(mddev, page);
4903 mddev_put(mddev);
4904 return rv;
4905 }
4906
4907 static ssize_t
4908 md_attr_store(struct kobject *kobj, struct attribute *attr,
4909 const char *page, size_t length)
4910 {
4911 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4912 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4913 ssize_t rv;
4914
4915 if (!entry->store)
4916 return -EIO;
4917 if (!capable(CAP_SYS_ADMIN))
4918 return -EACCES;
4919 spin_lock(&all_mddevs_lock);
4920 if (list_empty(&mddev->all_mddevs)) {
4921 spin_unlock(&all_mddevs_lock);
4922 return -EBUSY;
4923 }
4924 mddev_get(mddev);
4925 spin_unlock(&all_mddevs_lock);
4926 rv = entry->store(mddev, page, length);
4927 mddev_put(mddev);
4928 return rv;
4929 }
4930
4931 static void md_free(struct kobject *ko)
4932 {
4933 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4934
4935 if (mddev->sysfs_state)
4936 sysfs_put(mddev->sysfs_state);
4937
4938 if (mddev->queue)
4939 blk_cleanup_queue(mddev->queue);
4940 if (mddev->gendisk) {
4941 del_gendisk(mddev->gendisk);
4942 put_disk(mddev->gendisk);
4943 }
4944
4945 kfree(mddev);
4946 }
4947
4948 static const struct sysfs_ops md_sysfs_ops = {
4949 .show = md_attr_show,
4950 .store = md_attr_store,
4951 };
4952 static struct kobj_type md_ktype = {
4953 .release = md_free,
4954 .sysfs_ops = &md_sysfs_ops,
4955 .default_attrs = md_default_attrs,
4956 };
4957
4958 int mdp_major = 0;
4959
4960 static void mddev_delayed_delete(struct work_struct *ws)
4961 {
4962 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4963
4964 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4965 kobject_del(&mddev->kobj);
4966 kobject_put(&mddev->kobj);
4967 }
4968
4969 static int md_alloc(dev_t dev, char *name)
4970 {
4971 static DEFINE_MUTEX(disks_mutex);
4972 struct mddev *mddev = mddev_find(dev);
4973 struct gendisk *disk;
4974 int partitioned;
4975 int shift;
4976 int unit;
4977 int error;
4978
4979 if (!mddev)
4980 return -ENODEV;
4981
4982 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4983 shift = partitioned ? MdpMinorShift : 0;
4984 unit = MINOR(mddev->unit) >> shift;
4985
4986 /* wait for any previous instance of this device to be
4987 * completely removed (mddev_delayed_delete).
4988 */
4989 flush_workqueue(md_misc_wq);
4990
4991 mutex_lock(&disks_mutex);
4992 error = -EEXIST;
4993 if (mddev->gendisk)
4994 goto abort;
4995
4996 if (name) {
4997 /* Need to ensure that 'name' is not a duplicate.
4998 */
4999 struct mddev *mddev2;
5000 spin_lock(&all_mddevs_lock);
5001
5002 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5003 if (mddev2->gendisk &&
5004 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5005 spin_unlock(&all_mddevs_lock);
5006 goto abort;
5007 }
5008 spin_unlock(&all_mddevs_lock);
5009 }
5010
5011 error = -ENOMEM;
5012 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5013 if (!mddev->queue)
5014 goto abort;
5015 mddev->queue->queuedata = mddev;
5016
5017 blk_queue_make_request(mddev->queue, md_make_request);
5018 blk_set_stacking_limits(&mddev->queue->limits);
5019
5020 disk = alloc_disk(1 << shift);
5021 if (!disk) {
5022 blk_cleanup_queue(mddev->queue);
5023 mddev->queue = NULL;
5024 goto abort;
5025 }
5026 disk->major = MAJOR(mddev->unit);
5027 disk->first_minor = unit << shift;
5028 if (name)
5029 strcpy(disk->disk_name, name);
5030 else if (partitioned)
5031 sprintf(disk->disk_name, "md_d%d", unit);
5032 else
5033 sprintf(disk->disk_name, "md%d", unit);
5034 disk->fops = &md_fops;
5035 disk->private_data = mddev;
5036 disk->queue = mddev->queue;
5037 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
5038 /* Allow extended partitions. This makes the
5039 * 'mdp' device redundant, but we can't really
5040 * remove it now.
5041 */
5042 disk->flags |= GENHD_FL_EXT_DEVT;
5043 mddev->gendisk = disk;
5044 /* As soon as we call add_disk(), another thread could get
5045 * through to md_open, so make sure it doesn't get too far
5046 */
5047 mutex_lock(&mddev->open_mutex);
5048 add_disk(disk);
5049
5050 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5051 &disk_to_dev(disk)->kobj, "%s", "md");
5052 if (error) {
5053 /* This isn't possible, but as kobject_init_and_add is marked
5054 * __must_check, we must do something with the result
5055 */
5056 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5057 disk->disk_name);
5058 error = 0;
5059 }
5060 if (mddev->kobj.sd &&
5061 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5062 printk(KERN_DEBUG "pointless warning\n");
5063 mutex_unlock(&mddev->open_mutex);
5064 abort:
5065 mutex_unlock(&disks_mutex);
5066 if (!error && mddev->kobj.sd) {
5067 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5068 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5069 }
5070 mddev_put(mddev);
5071 return error;
5072 }
5073
5074 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5075 {
5076 md_alloc(dev, NULL);
5077 return NULL;
5078 }
5079
5080 static int add_named_array(const char *val, struct kernel_param *kp)
5081 {
5082 /* val must be "md_*" where * is not all digits.
5083 * We allocate an array with a large free minor number, and
5084 * set the name to val. val must not already be an active name.
5085 */
5086 int len = strlen(val);
5087 char buf[DISK_NAME_LEN];
5088
5089 while (len && val[len-1] == '\n')
5090 len--;
5091 if (len >= DISK_NAME_LEN)
5092 return -E2BIG;
5093 strlcpy(buf, val, len+1);
5094 if (strncmp(buf, "md_", 3) != 0)
5095 return -EINVAL;
5096 return md_alloc(0, buf);
5097 }
5098
5099 static void md_safemode_timeout(unsigned long data)
5100 {
5101 struct mddev *mddev = (struct mddev *) data;
5102
5103 if (!atomic_read(&mddev->writes_pending)) {
5104 mddev->safemode = 1;
5105 if (mddev->external)
5106 sysfs_notify_dirent_safe(mddev->sysfs_state);
5107 }
5108 md_wakeup_thread(mddev->thread);
5109 }
5110
5111 static int start_dirty_degraded;
5112
5113 int md_run(struct mddev *mddev)
5114 {
5115 int err;
5116 struct md_rdev *rdev;
5117 struct md_personality *pers;
5118
5119 if (list_empty(&mddev->disks))
5120 /* cannot run an array with no devices.. */
5121 return -EINVAL;
5122
5123 if (mddev->pers)
5124 return -EBUSY;
5125 /* Cannot run until previous stop completes properly */
5126 if (mddev->sysfs_active)
5127 return -EBUSY;
5128
5129 /*
5130 * Analyze all RAID superblock(s)
5131 */
5132 if (!mddev->raid_disks) {
5133 if (!mddev->persistent)
5134 return -EINVAL;
5135 analyze_sbs(mddev);
5136 }
5137
5138 if (mddev->level != LEVEL_NONE)
5139 request_module("md-level-%d", mddev->level);
5140 else if (mddev->clevel[0])
5141 request_module("md-%s", mddev->clevel);
5142
5143 /*
5144 * Drop all container device buffers, from now on
5145 * the only valid external interface is through the md
5146 * device.
5147 */
5148 rdev_for_each(rdev, mddev) {
5149 if (test_bit(Faulty, &rdev->flags))
5150 continue;
5151 sync_blockdev(rdev->bdev);
5152 invalidate_bdev(rdev->bdev);
5153
5154 /* perform some consistency tests on the device.
5155 * We don't want the data to overlap the metadata,
5156 * Internal Bitmap issues have been handled elsewhere.
5157 */
5158 if (rdev->meta_bdev) {
5159 /* Nothing to check */;
5160 } else if (rdev->data_offset < rdev->sb_start) {
5161 if (mddev->dev_sectors &&
5162 rdev->data_offset + mddev->dev_sectors
5163 > rdev->sb_start) {
5164 printk("md: %s: data overlaps metadata\n",
5165 mdname(mddev));
5166 return -EINVAL;
5167 }
5168 } else {
5169 if (rdev->sb_start + rdev->sb_size/512
5170 > rdev->data_offset) {
5171 printk("md: %s: metadata overlaps data\n",
5172 mdname(mddev));
5173 return -EINVAL;
5174 }
5175 }
5176 sysfs_notify_dirent_safe(rdev->sysfs_state);
5177 }
5178
5179 if (mddev->bio_set == NULL)
5180 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5181
5182 spin_lock(&pers_lock);
5183 pers = find_pers(mddev->level, mddev->clevel);
5184 if (!pers || !try_module_get(pers->owner)) {
5185 spin_unlock(&pers_lock);
5186 if (mddev->level != LEVEL_NONE)
5187 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5188 mddev->level);
5189 else
5190 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5191 mddev->clevel);
5192 return -EINVAL;
5193 }
5194 spin_unlock(&pers_lock);
5195 if (mddev->level != pers->level) {
5196 mddev->level = pers->level;
5197 mddev->new_level = pers->level;
5198 }
5199 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5200
5201 if (mddev->reshape_position != MaxSector &&
5202 pers->start_reshape == NULL) {
5203 /* This personality cannot handle reshaping... */
5204 module_put(pers->owner);
5205 return -EINVAL;
5206 }
5207
5208 if (pers->sync_request) {
5209 /* Warn if this is a potentially silly
5210 * configuration.
5211 */
5212 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5213 struct md_rdev *rdev2;
5214 int warned = 0;
5215
5216 rdev_for_each(rdev, mddev)
5217 rdev_for_each(rdev2, mddev) {
5218 if (rdev < rdev2 &&
5219 rdev->bdev->bd_contains ==
5220 rdev2->bdev->bd_contains) {
5221 printk(KERN_WARNING
5222 "%s: WARNING: %s appears to be"
5223 " on the same physical disk as"
5224 " %s.\n",
5225 mdname(mddev),
5226 bdevname(rdev->bdev,b),
5227 bdevname(rdev2->bdev,b2));
5228 warned = 1;
5229 }
5230 }
5231
5232 if (warned)
5233 printk(KERN_WARNING
5234 "True protection against single-disk"
5235 " failure might be compromised.\n");
5236 }
5237
5238 mddev->recovery = 0;
5239 /* may be over-ridden by personality */
5240 mddev->resync_max_sectors = mddev->dev_sectors;
5241
5242 mddev->ok_start_degraded = start_dirty_degraded;
5243
5244 if (start_readonly && mddev->ro == 0)
5245 mddev->ro = 2; /* read-only, but switch on first write */
5246
5247 err = pers->run(mddev);
5248 if (err)
5249 printk(KERN_ERR "md: pers->run() failed ...\n");
5250 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5251 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5252 " but 'external_size' not in effect?\n", __func__);
5253 printk(KERN_ERR
5254 "md: invalid array_size %llu > default size %llu\n",
5255 (unsigned long long)mddev->array_sectors / 2,
5256 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5257 err = -EINVAL;
5258 }
5259 if (err == 0 && pers->sync_request &&
5260 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5261 struct bitmap *bitmap;
5262
5263 bitmap = bitmap_create(mddev, -1);
5264 if (IS_ERR(bitmap)) {
5265 err = PTR_ERR(bitmap);
5266 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5267 mdname(mddev), err);
5268 } else
5269 mddev->bitmap = bitmap;
5270
5271 }
5272 if (err) {
5273 mddev_detach(mddev);
5274 if (mddev->private)
5275 pers->free(mddev, mddev->private);
5276 mddev->private = NULL;
5277 module_put(pers->owner);
5278 bitmap_destroy(mddev);
5279 return err;
5280 }
5281 if (mddev->queue) {
5282 mddev->queue->backing_dev_info.congested_data = mddev;
5283 mddev->queue->backing_dev_info.congested_fn = md_congested;
5284 }
5285 if (pers->sync_request) {
5286 if (mddev->kobj.sd &&
5287 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5288 printk(KERN_WARNING
5289 "md: cannot register extra attributes for %s\n",
5290 mdname(mddev));
5291 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5292 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5293 mddev->ro = 0;
5294
5295 atomic_set(&mddev->writes_pending,0);
5296 atomic_set(&mddev->max_corr_read_errors,
5297 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5298 mddev->safemode = 0;
5299 if (mddev_is_clustered(mddev))
5300 mddev->safemode_delay = 0;
5301 else
5302 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5303 mddev->in_sync = 1;
5304 smp_wmb();
5305 spin_lock(&mddev->lock);
5306 mddev->pers = pers;
5307 spin_unlock(&mddev->lock);
5308 rdev_for_each(rdev, mddev)
5309 if (rdev->raid_disk >= 0)
5310 if (sysfs_link_rdev(mddev, rdev))
5311 /* failure here is OK */;
5312
5313 if (mddev->degraded && !mddev->ro)
5314 /* This ensures that recovering status is reported immediately
5315 * via sysfs - until a lack of spares is confirmed.
5316 */
5317 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5318 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5319
5320 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5321 md_update_sb(mddev, 0);
5322
5323 md_new_event(mddev);
5324 sysfs_notify_dirent_safe(mddev->sysfs_state);
5325 sysfs_notify_dirent_safe(mddev->sysfs_action);
5326 sysfs_notify(&mddev->kobj, NULL, "degraded");
5327 return 0;
5328 }
5329 EXPORT_SYMBOL_GPL(md_run);
5330
5331 static int do_md_run(struct mddev *mddev)
5332 {
5333 int err;
5334
5335 err = md_run(mddev);
5336 if (err)
5337 goto out;
5338 err = bitmap_load(mddev);
5339 if (err) {
5340 bitmap_destroy(mddev);
5341 goto out;
5342 }
5343
5344 if (mddev_is_clustered(mddev))
5345 md_allow_write(mddev);
5346
5347 md_wakeup_thread(mddev->thread);
5348 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5349
5350 set_capacity(mddev->gendisk, mddev->array_sectors);
5351 revalidate_disk(mddev->gendisk);
5352 mddev->changed = 1;
5353 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5354 out:
5355 return err;
5356 }
5357
5358 static int restart_array(struct mddev *mddev)
5359 {
5360 struct gendisk *disk = mddev->gendisk;
5361
5362 /* Complain if it has no devices */
5363 if (list_empty(&mddev->disks))
5364 return -ENXIO;
5365 if (!mddev->pers)
5366 return -EINVAL;
5367 if (!mddev->ro)
5368 return -EBUSY;
5369 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5370 struct md_rdev *rdev;
5371 bool has_journal = false;
5372
5373 rcu_read_lock();
5374 rdev_for_each_rcu(rdev, mddev) {
5375 if (test_bit(Journal, &rdev->flags) &&
5376 !test_bit(Faulty, &rdev->flags)) {
5377 has_journal = true;
5378 break;
5379 }
5380 }
5381 rcu_read_unlock();
5382
5383 /* Don't restart rw with journal missing/faulty */
5384 if (!has_journal)
5385 return -EINVAL;
5386 }
5387
5388 mddev->safemode = 0;
5389 mddev->ro = 0;
5390 set_disk_ro(disk, 0);
5391 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5392 mdname(mddev));
5393 /* Kick recovery or resync if necessary */
5394 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5395 md_wakeup_thread(mddev->thread);
5396 md_wakeup_thread(mddev->sync_thread);
5397 sysfs_notify_dirent_safe(mddev->sysfs_state);
5398 return 0;
5399 }
5400
5401 static void md_clean(struct mddev *mddev)
5402 {
5403 mddev->array_sectors = 0;
5404 mddev->external_size = 0;
5405 mddev->dev_sectors = 0;
5406 mddev->raid_disks = 0;
5407 mddev->recovery_cp = 0;
5408 mddev->resync_min = 0;
5409 mddev->resync_max = MaxSector;
5410 mddev->reshape_position = MaxSector;
5411 mddev->external = 0;
5412 mddev->persistent = 0;
5413 mddev->level = LEVEL_NONE;
5414 mddev->clevel[0] = 0;
5415 mddev->flags = 0;
5416 mddev->ro = 0;
5417 mddev->metadata_type[0] = 0;
5418 mddev->chunk_sectors = 0;
5419 mddev->ctime = mddev->utime = 0;
5420 mddev->layout = 0;
5421 mddev->max_disks = 0;
5422 mddev->events = 0;
5423 mddev->can_decrease_events = 0;
5424 mddev->delta_disks = 0;
5425 mddev->reshape_backwards = 0;
5426 mddev->new_level = LEVEL_NONE;
5427 mddev->new_layout = 0;
5428 mddev->new_chunk_sectors = 0;
5429 mddev->curr_resync = 0;
5430 atomic64_set(&mddev->resync_mismatches, 0);
5431 mddev->suspend_lo = mddev->suspend_hi = 0;
5432 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5433 mddev->recovery = 0;
5434 mddev->in_sync = 0;
5435 mddev->changed = 0;
5436 mddev->degraded = 0;
5437 mddev->safemode = 0;
5438 mddev->private = NULL;
5439 mddev->bitmap_info.offset = 0;
5440 mddev->bitmap_info.default_offset = 0;
5441 mddev->bitmap_info.default_space = 0;
5442 mddev->bitmap_info.chunksize = 0;
5443 mddev->bitmap_info.daemon_sleep = 0;
5444 mddev->bitmap_info.max_write_behind = 0;
5445 }
5446
5447 static void __md_stop_writes(struct mddev *mddev)
5448 {
5449 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5450 flush_workqueue(md_misc_wq);
5451 if (mddev->sync_thread) {
5452 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5453 md_reap_sync_thread(mddev);
5454 }
5455
5456 del_timer_sync(&mddev->safemode_timer);
5457
5458 bitmap_flush(mddev);
5459 md_super_wait(mddev);
5460
5461 if (mddev->ro == 0 &&
5462 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5463 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5464 /* mark array as shutdown cleanly */
5465 if (!mddev_is_clustered(mddev))
5466 mddev->in_sync = 1;
5467 md_update_sb(mddev, 1);
5468 }
5469 }
5470
5471 void md_stop_writes(struct mddev *mddev)
5472 {
5473 mddev_lock_nointr(mddev);
5474 __md_stop_writes(mddev);
5475 mddev_unlock(mddev);
5476 }
5477 EXPORT_SYMBOL_GPL(md_stop_writes);
5478
5479 static void mddev_detach(struct mddev *mddev)
5480 {
5481 struct bitmap *bitmap = mddev->bitmap;
5482 /* wait for behind writes to complete */
5483 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5484 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5485 mdname(mddev));
5486 /* need to kick something here to make sure I/O goes? */
5487 wait_event(bitmap->behind_wait,
5488 atomic_read(&bitmap->behind_writes) == 0);
5489 }
5490 if (mddev->pers && mddev->pers->quiesce) {
5491 mddev->pers->quiesce(mddev, 1);
5492 mddev->pers->quiesce(mddev, 0);
5493 }
5494 md_unregister_thread(&mddev->thread);
5495 if (mddev->queue)
5496 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5497 }
5498
5499 static void __md_stop(struct mddev *mddev)
5500 {
5501 struct md_personality *pers = mddev->pers;
5502 mddev_detach(mddev);
5503 /* Ensure ->event_work is done */
5504 flush_workqueue(md_misc_wq);
5505 spin_lock(&mddev->lock);
5506 mddev->pers = NULL;
5507 spin_unlock(&mddev->lock);
5508 pers->free(mddev, mddev->private);
5509 mddev->private = NULL;
5510 if (pers->sync_request && mddev->to_remove == NULL)
5511 mddev->to_remove = &md_redundancy_group;
5512 module_put(pers->owner);
5513 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5514 }
5515
5516 void md_stop(struct mddev *mddev)
5517 {
5518 /* stop the array and free an attached data structures.
5519 * This is called from dm-raid
5520 */
5521 __md_stop(mddev);
5522 bitmap_destroy(mddev);
5523 if (mddev->bio_set)
5524 bioset_free(mddev->bio_set);
5525 }
5526
5527 EXPORT_SYMBOL_GPL(md_stop);
5528
5529 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5530 {
5531 int err = 0;
5532 int did_freeze = 0;
5533
5534 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5535 did_freeze = 1;
5536 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5537 md_wakeup_thread(mddev->thread);
5538 }
5539 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5540 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5541 if (mddev->sync_thread)
5542 /* Thread might be blocked waiting for metadata update
5543 * which will now never happen */
5544 wake_up_process(mddev->sync_thread->tsk);
5545
5546 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5547 return -EBUSY;
5548 mddev_unlock(mddev);
5549 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5550 &mddev->recovery));
5551 wait_event(mddev->sb_wait,
5552 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5553 mddev_lock_nointr(mddev);
5554
5555 mutex_lock(&mddev->open_mutex);
5556 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5557 mddev->sync_thread ||
5558 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5559 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5560 printk("md: %s still in use.\n",mdname(mddev));
5561 if (did_freeze) {
5562 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5563 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5564 md_wakeup_thread(mddev->thread);
5565 }
5566 err = -EBUSY;
5567 goto out;
5568 }
5569 if (mddev->pers) {
5570 __md_stop_writes(mddev);
5571
5572 err = -ENXIO;
5573 if (mddev->ro==1)
5574 goto out;
5575 mddev->ro = 1;
5576 set_disk_ro(mddev->gendisk, 1);
5577 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5578 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5579 md_wakeup_thread(mddev->thread);
5580 sysfs_notify_dirent_safe(mddev->sysfs_state);
5581 err = 0;
5582 }
5583 out:
5584 mutex_unlock(&mddev->open_mutex);
5585 return err;
5586 }
5587
5588 /* mode:
5589 * 0 - completely stop and dis-assemble array
5590 * 2 - stop but do not disassemble array
5591 */
5592 static int do_md_stop(struct mddev *mddev, int mode,
5593 struct block_device *bdev)
5594 {
5595 struct gendisk *disk = mddev->gendisk;
5596 struct md_rdev *rdev;
5597 int did_freeze = 0;
5598
5599 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5600 did_freeze = 1;
5601 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5602 md_wakeup_thread(mddev->thread);
5603 }
5604 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5605 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5606 if (mddev->sync_thread)
5607 /* Thread might be blocked waiting for metadata update
5608 * which will now never happen */
5609 wake_up_process(mddev->sync_thread->tsk);
5610
5611 mddev_unlock(mddev);
5612 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5613 !test_bit(MD_RECOVERY_RUNNING,
5614 &mddev->recovery)));
5615 mddev_lock_nointr(mddev);
5616
5617 mutex_lock(&mddev->open_mutex);
5618 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5619 mddev->sysfs_active ||
5620 mddev->sync_thread ||
5621 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5622 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5623 printk("md: %s still in use.\n",mdname(mddev));
5624 mutex_unlock(&mddev->open_mutex);
5625 if (did_freeze) {
5626 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5627 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5628 md_wakeup_thread(mddev->thread);
5629 }
5630 return -EBUSY;
5631 }
5632 if (mddev->pers) {
5633 if (mddev->ro)
5634 set_disk_ro(disk, 0);
5635
5636 __md_stop_writes(mddev);
5637 __md_stop(mddev);
5638 mddev->queue->backing_dev_info.congested_fn = NULL;
5639
5640 /* tell userspace to handle 'inactive' */
5641 sysfs_notify_dirent_safe(mddev->sysfs_state);
5642
5643 rdev_for_each(rdev, mddev)
5644 if (rdev->raid_disk >= 0)
5645 sysfs_unlink_rdev(mddev, rdev);
5646
5647 set_capacity(disk, 0);
5648 mutex_unlock(&mddev->open_mutex);
5649 mddev->changed = 1;
5650 revalidate_disk(disk);
5651
5652 if (mddev->ro)
5653 mddev->ro = 0;
5654 } else
5655 mutex_unlock(&mddev->open_mutex);
5656 /*
5657 * Free resources if final stop
5658 */
5659 if (mode == 0) {
5660 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5661
5662 bitmap_destroy(mddev);
5663 if (mddev->bitmap_info.file) {
5664 struct file *f = mddev->bitmap_info.file;
5665 spin_lock(&mddev->lock);
5666 mddev->bitmap_info.file = NULL;
5667 spin_unlock(&mddev->lock);
5668 fput(f);
5669 }
5670 mddev->bitmap_info.offset = 0;
5671
5672 export_array(mddev);
5673
5674 md_clean(mddev);
5675 if (mddev->hold_active == UNTIL_STOP)
5676 mddev->hold_active = 0;
5677 }
5678 md_new_event(mddev);
5679 sysfs_notify_dirent_safe(mddev->sysfs_state);
5680 return 0;
5681 }
5682
5683 #ifndef MODULE
5684 static void autorun_array(struct mddev *mddev)
5685 {
5686 struct md_rdev *rdev;
5687 int err;
5688
5689 if (list_empty(&mddev->disks))
5690 return;
5691
5692 printk(KERN_INFO "md: running: ");
5693
5694 rdev_for_each(rdev, mddev) {
5695 char b[BDEVNAME_SIZE];
5696 printk("<%s>", bdevname(rdev->bdev,b));
5697 }
5698 printk("\n");
5699
5700 err = do_md_run(mddev);
5701 if (err) {
5702 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5703 do_md_stop(mddev, 0, NULL);
5704 }
5705 }
5706
5707 /*
5708 * lets try to run arrays based on all disks that have arrived
5709 * until now. (those are in pending_raid_disks)
5710 *
5711 * the method: pick the first pending disk, collect all disks with
5712 * the same UUID, remove all from the pending list and put them into
5713 * the 'same_array' list. Then order this list based on superblock
5714 * update time (freshest comes first), kick out 'old' disks and
5715 * compare superblocks. If everything's fine then run it.
5716 *
5717 * If "unit" is allocated, then bump its reference count
5718 */
5719 static void autorun_devices(int part)
5720 {
5721 struct md_rdev *rdev0, *rdev, *tmp;
5722 struct mddev *mddev;
5723 char b[BDEVNAME_SIZE];
5724
5725 printk(KERN_INFO "md: autorun ...\n");
5726 while (!list_empty(&pending_raid_disks)) {
5727 int unit;
5728 dev_t dev;
5729 LIST_HEAD(candidates);
5730 rdev0 = list_entry(pending_raid_disks.next,
5731 struct md_rdev, same_set);
5732
5733 printk(KERN_INFO "md: considering %s ...\n",
5734 bdevname(rdev0->bdev,b));
5735 INIT_LIST_HEAD(&candidates);
5736 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5737 if (super_90_load(rdev, rdev0, 0) >= 0) {
5738 printk(KERN_INFO "md: adding %s ...\n",
5739 bdevname(rdev->bdev,b));
5740 list_move(&rdev->same_set, &candidates);
5741 }
5742 /*
5743 * now we have a set of devices, with all of them having
5744 * mostly sane superblocks. It's time to allocate the
5745 * mddev.
5746 */
5747 if (part) {
5748 dev = MKDEV(mdp_major,
5749 rdev0->preferred_minor << MdpMinorShift);
5750 unit = MINOR(dev) >> MdpMinorShift;
5751 } else {
5752 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5753 unit = MINOR(dev);
5754 }
5755 if (rdev0->preferred_minor != unit) {
5756 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5757 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5758 break;
5759 }
5760
5761 md_probe(dev, NULL, NULL);
5762 mddev = mddev_find(dev);
5763 if (!mddev || !mddev->gendisk) {
5764 if (mddev)
5765 mddev_put(mddev);
5766 printk(KERN_ERR
5767 "md: cannot allocate memory for md drive.\n");
5768 break;
5769 }
5770 if (mddev_lock(mddev))
5771 printk(KERN_WARNING "md: %s locked, cannot run\n",
5772 mdname(mddev));
5773 else if (mddev->raid_disks || mddev->major_version
5774 || !list_empty(&mddev->disks)) {
5775 printk(KERN_WARNING
5776 "md: %s already running, cannot run %s\n",
5777 mdname(mddev), bdevname(rdev0->bdev,b));
5778 mddev_unlock(mddev);
5779 } else {
5780 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5781 mddev->persistent = 1;
5782 rdev_for_each_list(rdev, tmp, &candidates) {
5783 list_del_init(&rdev->same_set);
5784 if (bind_rdev_to_array(rdev, mddev))
5785 export_rdev(rdev);
5786 }
5787 autorun_array(mddev);
5788 mddev_unlock(mddev);
5789 }
5790 /* on success, candidates will be empty, on error
5791 * it won't...
5792 */
5793 rdev_for_each_list(rdev, tmp, &candidates) {
5794 list_del_init(&rdev->same_set);
5795 export_rdev(rdev);
5796 }
5797 mddev_put(mddev);
5798 }
5799 printk(KERN_INFO "md: ... autorun DONE.\n");
5800 }
5801 #endif /* !MODULE */
5802
5803 static int get_version(void __user *arg)
5804 {
5805 mdu_version_t ver;
5806
5807 ver.major = MD_MAJOR_VERSION;
5808 ver.minor = MD_MINOR_VERSION;
5809 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5810
5811 if (copy_to_user(arg, &ver, sizeof(ver)))
5812 return -EFAULT;
5813
5814 return 0;
5815 }
5816
5817 static int get_array_info(struct mddev *mddev, void __user *arg)
5818 {
5819 mdu_array_info_t info;
5820 int nr,working,insync,failed,spare;
5821 struct md_rdev *rdev;
5822
5823 nr = working = insync = failed = spare = 0;
5824 rcu_read_lock();
5825 rdev_for_each_rcu(rdev, mddev) {
5826 nr++;
5827 if (test_bit(Faulty, &rdev->flags))
5828 failed++;
5829 else {
5830 working++;
5831 if (test_bit(In_sync, &rdev->flags))
5832 insync++;
5833 else
5834 spare++;
5835 }
5836 }
5837 rcu_read_unlock();
5838
5839 info.major_version = mddev->major_version;
5840 info.minor_version = mddev->minor_version;
5841 info.patch_version = MD_PATCHLEVEL_VERSION;
5842 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5843 info.level = mddev->level;
5844 info.size = mddev->dev_sectors / 2;
5845 if (info.size != mddev->dev_sectors / 2) /* overflow */
5846 info.size = -1;
5847 info.nr_disks = nr;
5848 info.raid_disks = mddev->raid_disks;
5849 info.md_minor = mddev->md_minor;
5850 info.not_persistent= !mddev->persistent;
5851
5852 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5853 info.state = 0;
5854 if (mddev->in_sync)
5855 info.state = (1<<MD_SB_CLEAN);
5856 if (mddev->bitmap && mddev->bitmap_info.offset)
5857 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5858 if (mddev_is_clustered(mddev))
5859 info.state |= (1<<MD_SB_CLUSTERED);
5860 info.active_disks = insync;
5861 info.working_disks = working;
5862 info.failed_disks = failed;
5863 info.spare_disks = spare;
5864
5865 info.layout = mddev->layout;
5866 info.chunk_size = mddev->chunk_sectors << 9;
5867
5868 if (copy_to_user(arg, &info, sizeof(info)))
5869 return -EFAULT;
5870
5871 return 0;
5872 }
5873
5874 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5875 {
5876 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5877 char *ptr;
5878 int err;
5879
5880 file = kzalloc(sizeof(*file), GFP_NOIO);
5881 if (!file)
5882 return -ENOMEM;
5883
5884 err = 0;
5885 spin_lock(&mddev->lock);
5886 /* bitmap enabled */
5887 if (mddev->bitmap_info.file) {
5888 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5889 sizeof(file->pathname));
5890 if (IS_ERR(ptr))
5891 err = PTR_ERR(ptr);
5892 else
5893 memmove(file->pathname, ptr,
5894 sizeof(file->pathname)-(ptr-file->pathname));
5895 }
5896 spin_unlock(&mddev->lock);
5897
5898 if (err == 0 &&
5899 copy_to_user(arg, file, sizeof(*file)))
5900 err = -EFAULT;
5901
5902 kfree(file);
5903 return err;
5904 }
5905
5906 static int get_disk_info(struct mddev *mddev, void __user * arg)
5907 {
5908 mdu_disk_info_t info;
5909 struct md_rdev *rdev;
5910
5911 if (copy_from_user(&info, arg, sizeof(info)))
5912 return -EFAULT;
5913
5914 rcu_read_lock();
5915 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5916 if (rdev) {
5917 info.major = MAJOR(rdev->bdev->bd_dev);
5918 info.minor = MINOR(rdev->bdev->bd_dev);
5919 info.raid_disk = rdev->raid_disk;
5920 info.state = 0;
5921 if (test_bit(Faulty, &rdev->flags))
5922 info.state |= (1<<MD_DISK_FAULTY);
5923 else if (test_bit(In_sync, &rdev->flags)) {
5924 info.state |= (1<<MD_DISK_ACTIVE);
5925 info.state |= (1<<MD_DISK_SYNC);
5926 }
5927 if (test_bit(Journal, &rdev->flags))
5928 info.state |= (1<<MD_DISK_JOURNAL);
5929 if (test_bit(WriteMostly, &rdev->flags))
5930 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5931 } else {
5932 info.major = info.minor = 0;
5933 info.raid_disk = -1;
5934 info.state = (1<<MD_DISK_REMOVED);
5935 }
5936 rcu_read_unlock();
5937
5938 if (copy_to_user(arg, &info, sizeof(info)))
5939 return -EFAULT;
5940
5941 return 0;
5942 }
5943
5944 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5945 {
5946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5947 struct md_rdev *rdev;
5948 dev_t dev = MKDEV(info->major,info->minor);
5949
5950 if (mddev_is_clustered(mddev) &&
5951 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5952 pr_err("%s: Cannot add to clustered mddev.\n",
5953 mdname(mddev));
5954 return -EINVAL;
5955 }
5956
5957 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5958 return -EOVERFLOW;
5959
5960 if (!mddev->raid_disks) {
5961 int err;
5962 /* expecting a device which has a superblock */
5963 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5964 if (IS_ERR(rdev)) {
5965 printk(KERN_WARNING
5966 "md: md_import_device returned %ld\n",
5967 PTR_ERR(rdev));
5968 return PTR_ERR(rdev);
5969 }
5970 if (!list_empty(&mddev->disks)) {
5971 struct md_rdev *rdev0
5972 = list_entry(mddev->disks.next,
5973 struct md_rdev, same_set);
5974 err = super_types[mddev->major_version]
5975 .load_super(rdev, rdev0, mddev->minor_version);
5976 if (err < 0) {
5977 printk(KERN_WARNING
5978 "md: %s has different UUID to %s\n",
5979 bdevname(rdev->bdev,b),
5980 bdevname(rdev0->bdev,b2));
5981 export_rdev(rdev);
5982 return -EINVAL;
5983 }
5984 }
5985 err = bind_rdev_to_array(rdev, mddev);
5986 if (err)
5987 export_rdev(rdev);
5988 return err;
5989 }
5990
5991 /*
5992 * add_new_disk can be used once the array is assembled
5993 * to add "hot spares". They must already have a superblock
5994 * written
5995 */
5996 if (mddev->pers) {
5997 int err;
5998 if (!mddev->pers->hot_add_disk) {
5999 printk(KERN_WARNING
6000 "%s: personality does not support diskops!\n",
6001 mdname(mddev));
6002 return -EINVAL;
6003 }
6004 if (mddev->persistent)
6005 rdev = md_import_device(dev, mddev->major_version,
6006 mddev->minor_version);
6007 else
6008 rdev = md_import_device(dev, -1, -1);
6009 if (IS_ERR(rdev)) {
6010 printk(KERN_WARNING
6011 "md: md_import_device returned %ld\n",
6012 PTR_ERR(rdev));
6013 return PTR_ERR(rdev);
6014 }
6015 /* set saved_raid_disk if appropriate */
6016 if (!mddev->persistent) {
6017 if (info->state & (1<<MD_DISK_SYNC) &&
6018 info->raid_disk < mddev->raid_disks) {
6019 rdev->raid_disk = info->raid_disk;
6020 set_bit(In_sync, &rdev->flags);
6021 clear_bit(Bitmap_sync, &rdev->flags);
6022 } else
6023 rdev->raid_disk = -1;
6024 rdev->saved_raid_disk = rdev->raid_disk;
6025 } else
6026 super_types[mddev->major_version].
6027 validate_super(mddev, rdev);
6028 if ((info->state & (1<<MD_DISK_SYNC)) &&
6029 rdev->raid_disk != info->raid_disk) {
6030 /* This was a hot-add request, but events doesn't
6031 * match, so reject it.
6032 */
6033 export_rdev(rdev);
6034 return -EINVAL;
6035 }
6036
6037 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6038 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6039 set_bit(WriteMostly, &rdev->flags);
6040 else
6041 clear_bit(WriteMostly, &rdev->flags);
6042
6043 if (info->state & (1<<MD_DISK_JOURNAL)) {
6044 struct md_rdev *rdev2;
6045 bool has_journal = false;
6046
6047 /* make sure no existing journal disk */
6048 rdev_for_each(rdev2, mddev) {
6049 if (test_bit(Journal, &rdev2->flags)) {
6050 has_journal = true;
6051 break;
6052 }
6053 }
6054 if (has_journal) {
6055 export_rdev(rdev);
6056 return -EBUSY;
6057 }
6058 set_bit(Journal, &rdev->flags);
6059 }
6060 /*
6061 * check whether the device shows up in other nodes
6062 */
6063 if (mddev_is_clustered(mddev)) {
6064 if (info->state & (1 << MD_DISK_CANDIDATE))
6065 set_bit(Candidate, &rdev->flags);
6066 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6067 /* --add initiated by this node */
6068 err = md_cluster_ops->add_new_disk(mddev, rdev);
6069 if (err) {
6070 export_rdev(rdev);
6071 return err;
6072 }
6073 }
6074 }
6075
6076 rdev->raid_disk = -1;
6077 err = bind_rdev_to_array(rdev, mddev);
6078
6079 if (err)
6080 export_rdev(rdev);
6081
6082 if (mddev_is_clustered(mddev)) {
6083 if (info->state & (1 << MD_DISK_CANDIDATE))
6084 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6085 else {
6086 if (err)
6087 md_cluster_ops->add_new_disk_cancel(mddev);
6088 else
6089 err = add_bound_rdev(rdev);
6090 }
6091
6092 } else if (!err)
6093 err = add_bound_rdev(rdev);
6094
6095 return err;
6096 }
6097
6098 /* otherwise, add_new_disk is only allowed
6099 * for major_version==0 superblocks
6100 */
6101 if (mddev->major_version != 0) {
6102 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6103 mdname(mddev));
6104 return -EINVAL;
6105 }
6106
6107 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6108 int err;
6109 rdev = md_import_device(dev, -1, 0);
6110 if (IS_ERR(rdev)) {
6111 printk(KERN_WARNING
6112 "md: error, md_import_device() returned %ld\n",
6113 PTR_ERR(rdev));
6114 return PTR_ERR(rdev);
6115 }
6116 rdev->desc_nr = info->number;
6117 if (info->raid_disk < mddev->raid_disks)
6118 rdev->raid_disk = info->raid_disk;
6119 else
6120 rdev->raid_disk = -1;
6121
6122 if (rdev->raid_disk < mddev->raid_disks)
6123 if (info->state & (1<<MD_DISK_SYNC))
6124 set_bit(In_sync, &rdev->flags);
6125
6126 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6127 set_bit(WriteMostly, &rdev->flags);
6128
6129 if (!mddev->persistent) {
6130 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6131 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6132 } else
6133 rdev->sb_start = calc_dev_sboffset(rdev);
6134 rdev->sectors = rdev->sb_start;
6135
6136 err = bind_rdev_to_array(rdev, mddev);
6137 if (err) {
6138 export_rdev(rdev);
6139 return err;
6140 }
6141 }
6142
6143 return 0;
6144 }
6145
6146 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6147 {
6148 char b[BDEVNAME_SIZE];
6149 struct md_rdev *rdev;
6150
6151 rdev = find_rdev(mddev, dev);
6152 if (!rdev)
6153 return -ENXIO;
6154
6155 if (rdev->raid_disk < 0)
6156 goto kick_rdev;
6157
6158 clear_bit(Blocked, &rdev->flags);
6159 remove_and_add_spares(mddev, rdev);
6160
6161 if (rdev->raid_disk >= 0)
6162 goto busy;
6163
6164 kick_rdev:
6165 if (mddev_is_clustered(mddev))
6166 md_cluster_ops->remove_disk(mddev, rdev);
6167
6168 md_kick_rdev_from_array(rdev);
6169 md_update_sb(mddev, 1);
6170 md_new_event(mddev);
6171
6172 return 0;
6173 busy:
6174 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6175 bdevname(rdev->bdev,b), mdname(mddev));
6176 return -EBUSY;
6177 }
6178
6179 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6180 {
6181 char b[BDEVNAME_SIZE];
6182 int err;
6183 struct md_rdev *rdev;
6184
6185 if (!mddev->pers)
6186 return -ENODEV;
6187
6188 if (mddev->major_version != 0) {
6189 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6190 " version-0 superblocks.\n",
6191 mdname(mddev));
6192 return -EINVAL;
6193 }
6194 if (!mddev->pers->hot_add_disk) {
6195 printk(KERN_WARNING
6196 "%s: personality does not support diskops!\n",
6197 mdname(mddev));
6198 return -EINVAL;
6199 }
6200
6201 rdev = md_import_device(dev, -1, 0);
6202 if (IS_ERR(rdev)) {
6203 printk(KERN_WARNING
6204 "md: error, md_import_device() returned %ld\n",
6205 PTR_ERR(rdev));
6206 return -EINVAL;
6207 }
6208
6209 if (mddev->persistent)
6210 rdev->sb_start = calc_dev_sboffset(rdev);
6211 else
6212 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6213
6214 rdev->sectors = rdev->sb_start;
6215
6216 if (test_bit(Faulty, &rdev->flags)) {
6217 printk(KERN_WARNING
6218 "md: can not hot-add faulty %s disk to %s!\n",
6219 bdevname(rdev->bdev,b), mdname(mddev));
6220 err = -EINVAL;
6221 goto abort_export;
6222 }
6223
6224 clear_bit(In_sync, &rdev->flags);
6225 rdev->desc_nr = -1;
6226 rdev->saved_raid_disk = -1;
6227 err = bind_rdev_to_array(rdev, mddev);
6228 if (err)
6229 goto abort_export;
6230
6231 /*
6232 * The rest should better be atomic, we can have disk failures
6233 * noticed in interrupt contexts ...
6234 */
6235
6236 rdev->raid_disk = -1;
6237
6238 md_update_sb(mddev, 1);
6239 /*
6240 * Kick recovery, maybe this spare has to be added to the
6241 * array immediately.
6242 */
6243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6244 md_wakeup_thread(mddev->thread);
6245 md_new_event(mddev);
6246 return 0;
6247
6248 abort_export:
6249 export_rdev(rdev);
6250 return err;
6251 }
6252
6253 static int set_bitmap_file(struct mddev *mddev, int fd)
6254 {
6255 int err = 0;
6256
6257 if (mddev->pers) {
6258 if (!mddev->pers->quiesce || !mddev->thread)
6259 return -EBUSY;
6260 if (mddev->recovery || mddev->sync_thread)
6261 return -EBUSY;
6262 /* we should be able to change the bitmap.. */
6263 }
6264
6265 if (fd >= 0) {
6266 struct inode *inode;
6267 struct file *f;
6268
6269 if (mddev->bitmap || mddev->bitmap_info.file)
6270 return -EEXIST; /* cannot add when bitmap is present */
6271 f = fget(fd);
6272
6273 if (f == NULL) {
6274 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6275 mdname(mddev));
6276 return -EBADF;
6277 }
6278
6279 inode = f->f_mapping->host;
6280 if (!S_ISREG(inode->i_mode)) {
6281 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6282 mdname(mddev));
6283 err = -EBADF;
6284 } else if (!(f->f_mode & FMODE_WRITE)) {
6285 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6286 mdname(mddev));
6287 err = -EBADF;
6288 } else if (atomic_read(&inode->i_writecount) != 1) {
6289 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6290 mdname(mddev));
6291 err = -EBUSY;
6292 }
6293 if (err) {
6294 fput(f);
6295 return err;
6296 }
6297 mddev->bitmap_info.file = f;
6298 mddev->bitmap_info.offset = 0; /* file overrides offset */
6299 } else if (mddev->bitmap == NULL)
6300 return -ENOENT; /* cannot remove what isn't there */
6301 err = 0;
6302 if (mddev->pers) {
6303 mddev->pers->quiesce(mddev, 1);
6304 if (fd >= 0) {
6305 struct bitmap *bitmap;
6306
6307 bitmap = bitmap_create(mddev, -1);
6308 if (!IS_ERR(bitmap)) {
6309 mddev->bitmap = bitmap;
6310 err = bitmap_load(mddev);
6311 } else
6312 err = PTR_ERR(bitmap);
6313 }
6314 if (fd < 0 || err) {
6315 bitmap_destroy(mddev);
6316 fd = -1; /* make sure to put the file */
6317 }
6318 mddev->pers->quiesce(mddev, 0);
6319 }
6320 if (fd < 0) {
6321 struct file *f = mddev->bitmap_info.file;
6322 if (f) {
6323 spin_lock(&mddev->lock);
6324 mddev->bitmap_info.file = NULL;
6325 spin_unlock(&mddev->lock);
6326 fput(f);
6327 }
6328 }
6329
6330 return err;
6331 }
6332
6333 /*
6334 * set_array_info is used two different ways
6335 * The original usage is when creating a new array.
6336 * In this usage, raid_disks is > 0 and it together with
6337 * level, size, not_persistent,layout,chunksize determine the
6338 * shape of the array.
6339 * This will always create an array with a type-0.90.0 superblock.
6340 * The newer usage is when assembling an array.
6341 * In this case raid_disks will be 0, and the major_version field is
6342 * use to determine which style super-blocks are to be found on the devices.
6343 * The minor and patch _version numbers are also kept incase the
6344 * super_block handler wishes to interpret them.
6345 */
6346 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6347 {
6348
6349 if (info->raid_disks == 0) {
6350 /* just setting version number for superblock loading */
6351 if (info->major_version < 0 ||
6352 info->major_version >= ARRAY_SIZE(super_types) ||
6353 super_types[info->major_version].name == NULL) {
6354 /* maybe try to auto-load a module? */
6355 printk(KERN_INFO
6356 "md: superblock version %d not known\n",
6357 info->major_version);
6358 return -EINVAL;
6359 }
6360 mddev->major_version = info->major_version;
6361 mddev->minor_version = info->minor_version;
6362 mddev->patch_version = info->patch_version;
6363 mddev->persistent = !info->not_persistent;
6364 /* ensure mddev_put doesn't delete this now that there
6365 * is some minimal configuration.
6366 */
6367 mddev->ctime = ktime_get_real_seconds();
6368 return 0;
6369 }
6370 mddev->major_version = MD_MAJOR_VERSION;
6371 mddev->minor_version = MD_MINOR_VERSION;
6372 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6373 mddev->ctime = ktime_get_real_seconds();
6374
6375 mddev->level = info->level;
6376 mddev->clevel[0] = 0;
6377 mddev->dev_sectors = 2 * (sector_t)info->size;
6378 mddev->raid_disks = info->raid_disks;
6379 /* don't set md_minor, it is determined by which /dev/md* was
6380 * openned
6381 */
6382 if (info->state & (1<<MD_SB_CLEAN))
6383 mddev->recovery_cp = MaxSector;
6384 else
6385 mddev->recovery_cp = 0;
6386 mddev->persistent = ! info->not_persistent;
6387 mddev->external = 0;
6388
6389 mddev->layout = info->layout;
6390 mddev->chunk_sectors = info->chunk_size >> 9;
6391
6392 mddev->max_disks = MD_SB_DISKS;
6393
6394 if (mddev->persistent)
6395 mddev->flags = 0;
6396 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6397
6398 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6399 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6400 mddev->bitmap_info.offset = 0;
6401
6402 mddev->reshape_position = MaxSector;
6403
6404 /*
6405 * Generate a 128 bit UUID
6406 */
6407 get_random_bytes(mddev->uuid, 16);
6408
6409 mddev->new_level = mddev->level;
6410 mddev->new_chunk_sectors = mddev->chunk_sectors;
6411 mddev->new_layout = mddev->layout;
6412 mddev->delta_disks = 0;
6413 mddev->reshape_backwards = 0;
6414
6415 return 0;
6416 }
6417
6418 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6419 {
6420 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6421
6422 if (mddev->external_size)
6423 return;
6424
6425 mddev->array_sectors = array_sectors;
6426 }
6427 EXPORT_SYMBOL(md_set_array_sectors);
6428
6429 static int update_size(struct mddev *mddev, sector_t num_sectors)
6430 {
6431 struct md_rdev *rdev;
6432 int rv;
6433 int fit = (num_sectors == 0);
6434
6435 if (mddev->pers->resize == NULL)
6436 return -EINVAL;
6437 /* The "num_sectors" is the number of sectors of each device that
6438 * is used. This can only make sense for arrays with redundancy.
6439 * linear and raid0 always use whatever space is available. We can only
6440 * consider changing this number if no resync or reconstruction is
6441 * happening, and if the new size is acceptable. It must fit before the
6442 * sb_start or, if that is <data_offset, it must fit before the size
6443 * of each device. If num_sectors is zero, we find the largest size
6444 * that fits.
6445 */
6446 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6447 mddev->sync_thread)
6448 return -EBUSY;
6449 if (mddev->ro)
6450 return -EROFS;
6451
6452 rdev_for_each(rdev, mddev) {
6453 sector_t avail = rdev->sectors;
6454
6455 if (fit && (num_sectors == 0 || num_sectors > avail))
6456 num_sectors = avail;
6457 if (avail < num_sectors)
6458 return -ENOSPC;
6459 }
6460 rv = mddev->pers->resize(mddev, num_sectors);
6461 if (!rv)
6462 revalidate_disk(mddev->gendisk);
6463 return rv;
6464 }
6465
6466 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6467 {
6468 int rv;
6469 struct md_rdev *rdev;
6470 /* change the number of raid disks */
6471 if (mddev->pers->check_reshape == NULL)
6472 return -EINVAL;
6473 if (mddev->ro)
6474 return -EROFS;
6475 if (raid_disks <= 0 ||
6476 (mddev->max_disks && raid_disks >= mddev->max_disks))
6477 return -EINVAL;
6478 if (mddev->sync_thread ||
6479 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6480 mddev->reshape_position != MaxSector)
6481 return -EBUSY;
6482
6483 rdev_for_each(rdev, mddev) {
6484 if (mddev->raid_disks < raid_disks &&
6485 rdev->data_offset < rdev->new_data_offset)
6486 return -EINVAL;
6487 if (mddev->raid_disks > raid_disks &&
6488 rdev->data_offset > rdev->new_data_offset)
6489 return -EINVAL;
6490 }
6491
6492 mddev->delta_disks = raid_disks - mddev->raid_disks;
6493 if (mddev->delta_disks < 0)
6494 mddev->reshape_backwards = 1;
6495 else if (mddev->delta_disks > 0)
6496 mddev->reshape_backwards = 0;
6497
6498 rv = mddev->pers->check_reshape(mddev);
6499 if (rv < 0) {
6500 mddev->delta_disks = 0;
6501 mddev->reshape_backwards = 0;
6502 }
6503 return rv;
6504 }
6505
6506 /*
6507 * update_array_info is used to change the configuration of an
6508 * on-line array.
6509 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6510 * fields in the info are checked against the array.
6511 * Any differences that cannot be handled will cause an error.
6512 * Normally, only one change can be managed at a time.
6513 */
6514 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6515 {
6516 int rv = 0;
6517 int cnt = 0;
6518 int state = 0;
6519
6520 /* calculate expected state,ignoring low bits */
6521 if (mddev->bitmap && mddev->bitmap_info.offset)
6522 state |= (1 << MD_SB_BITMAP_PRESENT);
6523
6524 if (mddev->major_version != info->major_version ||
6525 mddev->minor_version != info->minor_version ||
6526 /* mddev->patch_version != info->patch_version || */
6527 mddev->ctime != info->ctime ||
6528 mddev->level != info->level ||
6529 /* mddev->layout != info->layout || */
6530 mddev->persistent != !info->not_persistent ||
6531 mddev->chunk_sectors != info->chunk_size >> 9 ||
6532 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6533 ((state^info->state) & 0xfffffe00)
6534 )
6535 return -EINVAL;
6536 /* Check there is only one change */
6537 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6538 cnt++;
6539 if (mddev->raid_disks != info->raid_disks)
6540 cnt++;
6541 if (mddev->layout != info->layout)
6542 cnt++;
6543 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6544 cnt++;
6545 if (cnt == 0)
6546 return 0;
6547 if (cnt > 1)
6548 return -EINVAL;
6549
6550 if (mddev->layout != info->layout) {
6551 /* Change layout
6552 * we don't need to do anything at the md level, the
6553 * personality will take care of it all.
6554 */
6555 if (mddev->pers->check_reshape == NULL)
6556 return -EINVAL;
6557 else {
6558 mddev->new_layout = info->layout;
6559 rv = mddev->pers->check_reshape(mddev);
6560 if (rv)
6561 mddev->new_layout = mddev->layout;
6562 return rv;
6563 }
6564 }
6565 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6566 rv = update_size(mddev, (sector_t)info->size * 2);
6567
6568 if (mddev->raid_disks != info->raid_disks)
6569 rv = update_raid_disks(mddev, info->raid_disks);
6570
6571 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6572 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6573 rv = -EINVAL;
6574 goto err;
6575 }
6576 if (mddev->recovery || mddev->sync_thread) {
6577 rv = -EBUSY;
6578 goto err;
6579 }
6580 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6581 struct bitmap *bitmap;
6582 /* add the bitmap */
6583 if (mddev->bitmap) {
6584 rv = -EEXIST;
6585 goto err;
6586 }
6587 if (mddev->bitmap_info.default_offset == 0) {
6588 rv = -EINVAL;
6589 goto err;
6590 }
6591 mddev->bitmap_info.offset =
6592 mddev->bitmap_info.default_offset;
6593 mddev->bitmap_info.space =
6594 mddev->bitmap_info.default_space;
6595 mddev->pers->quiesce(mddev, 1);
6596 bitmap = bitmap_create(mddev, -1);
6597 if (!IS_ERR(bitmap)) {
6598 mddev->bitmap = bitmap;
6599 rv = bitmap_load(mddev);
6600 } else
6601 rv = PTR_ERR(bitmap);
6602 if (rv)
6603 bitmap_destroy(mddev);
6604 mddev->pers->quiesce(mddev, 0);
6605 } else {
6606 /* remove the bitmap */
6607 if (!mddev->bitmap) {
6608 rv = -ENOENT;
6609 goto err;
6610 }
6611 if (mddev->bitmap->storage.file) {
6612 rv = -EINVAL;
6613 goto err;
6614 }
6615 if (mddev->bitmap_info.nodes) {
6616 /* hold PW on all the bitmap lock */
6617 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6618 printk("md: can't change bitmap to none since the"
6619 " array is in use by more than one node\n");
6620 rv = -EPERM;
6621 md_cluster_ops->unlock_all_bitmaps(mddev);
6622 goto err;
6623 }
6624
6625 mddev->bitmap_info.nodes = 0;
6626 md_cluster_ops->leave(mddev);
6627 }
6628 mddev->pers->quiesce(mddev, 1);
6629 bitmap_destroy(mddev);
6630 mddev->pers->quiesce(mddev, 0);
6631 mddev->bitmap_info.offset = 0;
6632 }
6633 }
6634 md_update_sb(mddev, 1);
6635 return rv;
6636 err:
6637 return rv;
6638 }
6639
6640 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6641 {
6642 struct md_rdev *rdev;
6643 int err = 0;
6644
6645 if (mddev->pers == NULL)
6646 return -ENODEV;
6647
6648 rcu_read_lock();
6649 rdev = find_rdev_rcu(mddev, dev);
6650 if (!rdev)
6651 err = -ENODEV;
6652 else {
6653 md_error(mddev, rdev);
6654 if (!test_bit(Faulty, &rdev->flags))
6655 err = -EBUSY;
6656 }
6657 rcu_read_unlock();
6658 return err;
6659 }
6660
6661 /*
6662 * We have a problem here : there is no easy way to give a CHS
6663 * virtual geometry. We currently pretend that we have a 2 heads
6664 * 4 sectors (with a BIG number of cylinders...). This drives
6665 * dosfs just mad... ;-)
6666 */
6667 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6668 {
6669 struct mddev *mddev = bdev->bd_disk->private_data;
6670
6671 geo->heads = 2;
6672 geo->sectors = 4;
6673 geo->cylinders = mddev->array_sectors / 8;
6674 return 0;
6675 }
6676
6677 static inline bool md_ioctl_valid(unsigned int cmd)
6678 {
6679 switch (cmd) {
6680 case ADD_NEW_DISK:
6681 case BLKROSET:
6682 case GET_ARRAY_INFO:
6683 case GET_BITMAP_FILE:
6684 case GET_DISK_INFO:
6685 case HOT_ADD_DISK:
6686 case HOT_REMOVE_DISK:
6687 case RAID_AUTORUN:
6688 case RAID_VERSION:
6689 case RESTART_ARRAY_RW:
6690 case RUN_ARRAY:
6691 case SET_ARRAY_INFO:
6692 case SET_BITMAP_FILE:
6693 case SET_DISK_FAULTY:
6694 case STOP_ARRAY:
6695 case STOP_ARRAY_RO:
6696 case CLUSTERED_DISK_NACK:
6697 return true;
6698 default:
6699 return false;
6700 }
6701 }
6702
6703 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6704 unsigned int cmd, unsigned long arg)
6705 {
6706 int err = 0;
6707 void __user *argp = (void __user *)arg;
6708 struct mddev *mddev = NULL;
6709 int ro;
6710
6711 if (!md_ioctl_valid(cmd))
6712 return -ENOTTY;
6713
6714 switch (cmd) {
6715 case RAID_VERSION:
6716 case GET_ARRAY_INFO:
6717 case GET_DISK_INFO:
6718 break;
6719 default:
6720 if (!capable(CAP_SYS_ADMIN))
6721 return -EACCES;
6722 }
6723
6724 /*
6725 * Commands dealing with the RAID driver but not any
6726 * particular array:
6727 */
6728 switch (cmd) {
6729 case RAID_VERSION:
6730 err = get_version(argp);
6731 goto out;
6732
6733 #ifndef MODULE
6734 case RAID_AUTORUN:
6735 err = 0;
6736 autostart_arrays(arg);
6737 goto out;
6738 #endif
6739 default:;
6740 }
6741
6742 /*
6743 * Commands creating/starting a new array:
6744 */
6745
6746 mddev = bdev->bd_disk->private_data;
6747
6748 if (!mddev) {
6749 BUG();
6750 goto out;
6751 }
6752
6753 /* Some actions do not requires the mutex */
6754 switch (cmd) {
6755 case GET_ARRAY_INFO:
6756 if (!mddev->raid_disks && !mddev->external)
6757 err = -ENODEV;
6758 else
6759 err = get_array_info(mddev, argp);
6760 goto out;
6761
6762 case GET_DISK_INFO:
6763 if (!mddev->raid_disks && !mddev->external)
6764 err = -ENODEV;
6765 else
6766 err = get_disk_info(mddev, argp);
6767 goto out;
6768
6769 case SET_DISK_FAULTY:
6770 err = set_disk_faulty(mddev, new_decode_dev(arg));
6771 goto out;
6772
6773 case GET_BITMAP_FILE:
6774 err = get_bitmap_file(mddev, argp);
6775 goto out;
6776
6777 }
6778
6779 if (cmd == ADD_NEW_DISK)
6780 /* need to ensure md_delayed_delete() has completed */
6781 flush_workqueue(md_misc_wq);
6782
6783 if (cmd == HOT_REMOVE_DISK)
6784 /* need to ensure recovery thread has run */
6785 wait_event_interruptible_timeout(mddev->sb_wait,
6786 !test_bit(MD_RECOVERY_NEEDED,
6787 &mddev->flags),
6788 msecs_to_jiffies(5000));
6789 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6790 /* Need to flush page cache, and ensure no-one else opens
6791 * and writes
6792 */
6793 mutex_lock(&mddev->open_mutex);
6794 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6795 mutex_unlock(&mddev->open_mutex);
6796 err = -EBUSY;
6797 goto out;
6798 }
6799 set_bit(MD_STILL_CLOSED, &mddev->flags);
6800 mutex_unlock(&mddev->open_mutex);
6801 sync_blockdev(bdev);
6802 }
6803 err = mddev_lock(mddev);
6804 if (err) {
6805 printk(KERN_INFO
6806 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6807 err, cmd);
6808 goto out;
6809 }
6810
6811 if (cmd == SET_ARRAY_INFO) {
6812 mdu_array_info_t info;
6813 if (!arg)
6814 memset(&info, 0, sizeof(info));
6815 else if (copy_from_user(&info, argp, sizeof(info))) {
6816 err = -EFAULT;
6817 goto unlock;
6818 }
6819 if (mddev->pers) {
6820 err = update_array_info(mddev, &info);
6821 if (err) {
6822 printk(KERN_WARNING "md: couldn't update"
6823 " array info. %d\n", err);
6824 goto unlock;
6825 }
6826 goto unlock;
6827 }
6828 if (!list_empty(&mddev->disks)) {
6829 printk(KERN_WARNING
6830 "md: array %s already has disks!\n",
6831 mdname(mddev));
6832 err = -EBUSY;
6833 goto unlock;
6834 }
6835 if (mddev->raid_disks) {
6836 printk(KERN_WARNING
6837 "md: array %s already initialised!\n",
6838 mdname(mddev));
6839 err = -EBUSY;
6840 goto unlock;
6841 }
6842 err = set_array_info(mddev, &info);
6843 if (err) {
6844 printk(KERN_WARNING "md: couldn't set"
6845 " array info. %d\n", err);
6846 goto unlock;
6847 }
6848 goto unlock;
6849 }
6850
6851 /*
6852 * Commands querying/configuring an existing array:
6853 */
6854 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6855 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6856 if ((!mddev->raid_disks && !mddev->external)
6857 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6858 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6859 && cmd != GET_BITMAP_FILE) {
6860 err = -ENODEV;
6861 goto unlock;
6862 }
6863
6864 /*
6865 * Commands even a read-only array can execute:
6866 */
6867 switch (cmd) {
6868 case RESTART_ARRAY_RW:
6869 err = restart_array(mddev);
6870 goto unlock;
6871
6872 case STOP_ARRAY:
6873 err = do_md_stop(mddev, 0, bdev);
6874 goto unlock;
6875
6876 case STOP_ARRAY_RO:
6877 err = md_set_readonly(mddev, bdev);
6878 goto unlock;
6879
6880 case HOT_REMOVE_DISK:
6881 err = hot_remove_disk(mddev, new_decode_dev(arg));
6882 goto unlock;
6883
6884 case ADD_NEW_DISK:
6885 /* We can support ADD_NEW_DISK on read-only arrays
6886 * on if we are re-adding a preexisting device.
6887 * So require mddev->pers and MD_DISK_SYNC.
6888 */
6889 if (mddev->pers) {
6890 mdu_disk_info_t info;
6891 if (copy_from_user(&info, argp, sizeof(info)))
6892 err = -EFAULT;
6893 else if (!(info.state & (1<<MD_DISK_SYNC)))
6894 /* Need to clear read-only for this */
6895 break;
6896 else
6897 err = add_new_disk(mddev, &info);
6898 goto unlock;
6899 }
6900 break;
6901
6902 case BLKROSET:
6903 if (get_user(ro, (int __user *)(arg))) {
6904 err = -EFAULT;
6905 goto unlock;
6906 }
6907 err = -EINVAL;
6908
6909 /* if the bdev is going readonly the value of mddev->ro
6910 * does not matter, no writes are coming
6911 */
6912 if (ro)
6913 goto unlock;
6914
6915 /* are we are already prepared for writes? */
6916 if (mddev->ro != 1)
6917 goto unlock;
6918
6919 /* transitioning to readauto need only happen for
6920 * arrays that call md_write_start
6921 */
6922 if (mddev->pers) {
6923 err = restart_array(mddev);
6924 if (err == 0) {
6925 mddev->ro = 2;
6926 set_disk_ro(mddev->gendisk, 0);
6927 }
6928 }
6929 goto unlock;
6930 }
6931
6932 /*
6933 * The remaining ioctls are changing the state of the
6934 * superblock, so we do not allow them on read-only arrays.
6935 */
6936 if (mddev->ro && mddev->pers) {
6937 if (mddev->ro == 2) {
6938 mddev->ro = 0;
6939 sysfs_notify_dirent_safe(mddev->sysfs_state);
6940 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6941 /* mddev_unlock will wake thread */
6942 /* If a device failed while we were read-only, we
6943 * need to make sure the metadata is updated now.
6944 */
6945 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6946 mddev_unlock(mddev);
6947 wait_event(mddev->sb_wait,
6948 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6949 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6950 mddev_lock_nointr(mddev);
6951 }
6952 } else {
6953 err = -EROFS;
6954 goto unlock;
6955 }
6956 }
6957
6958 switch (cmd) {
6959 case ADD_NEW_DISK:
6960 {
6961 mdu_disk_info_t info;
6962 if (copy_from_user(&info, argp, sizeof(info)))
6963 err = -EFAULT;
6964 else
6965 err = add_new_disk(mddev, &info);
6966 goto unlock;
6967 }
6968
6969 case CLUSTERED_DISK_NACK:
6970 if (mddev_is_clustered(mddev))
6971 md_cluster_ops->new_disk_ack(mddev, false);
6972 else
6973 err = -EINVAL;
6974 goto unlock;
6975
6976 case HOT_ADD_DISK:
6977 err = hot_add_disk(mddev, new_decode_dev(arg));
6978 goto unlock;
6979
6980 case RUN_ARRAY:
6981 err = do_md_run(mddev);
6982 goto unlock;
6983
6984 case SET_BITMAP_FILE:
6985 err = set_bitmap_file(mddev, (int)arg);
6986 goto unlock;
6987
6988 default:
6989 err = -EINVAL;
6990 goto unlock;
6991 }
6992
6993 unlock:
6994 if (mddev->hold_active == UNTIL_IOCTL &&
6995 err != -EINVAL)
6996 mddev->hold_active = 0;
6997 mddev_unlock(mddev);
6998 out:
6999 return err;
7000 }
7001 #ifdef CONFIG_COMPAT
7002 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7003 unsigned int cmd, unsigned long arg)
7004 {
7005 switch (cmd) {
7006 case HOT_REMOVE_DISK:
7007 case HOT_ADD_DISK:
7008 case SET_DISK_FAULTY:
7009 case SET_BITMAP_FILE:
7010 /* These take in integer arg, do not convert */
7011 break;
7012 default:
7013 arg = (unsigned long)compat_ptr(arg);
7014 break;
7015 }
7016
7017 return md_ioctl(bdev, mode, cmd, arg);
7018 }
7019 #endif /* CONFIG_COMPAT */
7020
7021 static int md_open(struct block_device *bdev, fmode_t mode)
7022 {
7023 /*
7024 * Succeed if we can lock the mddev, which confirms that
7025 * it isn't being stopped right now.
7026 */
7027 struct mddev *mddev = mddev_find(bdev->bd_dev);
7028 int err;
7029
7030 if (!mddev)
7031 return -ENODEV;
7032
7033 if (mddev->gendisk != bdev->bd_disk) {
7034 /* we are racing with mddev_put which is discarding this
7035 * bd_disk.
7036 */
7037 mddev_put(mddev);
7038 /* Wait until bdev->bd_disk is definitely gone */
7039 flush_workqueue(md_misc_wq);
7040 /* Then retry the open from the top */
7041 return -ERESTARTSYS;
7042 }
7043 BUG_ON(mddev != bdev->bd_disk->private_data);
7044
7045 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7046 goto out;
7047
7048 err = 0;
7049 atomic_inc(&mddev->openers);
7050 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7051 mutex_unlock(&mddev->open_mutex);
7052
7053 check_disk_change(bdev);
7054 out:
7055 return err;
7056 }
7057
7058 static void md_release(struct gendisk *disk, fmode_t mode)
7059 {
7060 struct mddev *mddev = disk->private_data;
7061
7062 BUG_ON(!mddev);
7063 atomic_dec(&mddev->openers);
7064 mddev_put(mddev);
7065 }
7066
7067 static int md_media_changed(struct gendisk *disk)
7068 {
7069 struct mddev *mddev = disk->private_data;
7070
7071 return mddev->changed;
7072 }
7073
7074 static int md_revalidate(struct gendisk *disk)
7075 {
7076 struct mddev *mddev = disk->private_data;
7077
7078 mddev->changed = 0;
7079 return 0;
7080 }
7081 static const struct block_device_operations md_fops =
7082 {
7083 .owner = THIS_MODULE,
7084 .open = md_open,
7085 .release = md_release,
7086 .ioctl = md_ioctl,
7087 #ifdef CONFIG_COMPAT
7088 .compat_ioctl = md_compat_ioctl,
7089 #endif
7090 .getgeo = md_getgeo,
7091 .media_changed = md_media_changed,
7092 .revalidate_disk= md_revalidate,
7093 };
7094
7095 static int md_thread(void *arg)
7096 {
7097 struct md_thread *thread = arg;
7098
7099 /*
7100 * md_thread is a 'system-thread', it's priority should be very
7101 * high. We avoid resource deadlocks individually in each
7102 * raid personality. (RAID5 does preallocation) We also use RR and
7103 * the very same RT priority as kswapd, thus we will never get
7104 * into a priority inversion deadlock.
7105 *
7106 * we definitely have to have equal or higher priority than
7107 * bdflush, otherwise bdflush will deadlock if there are too
7108 * many dirty RAID5 blocks.
7109 */
7110
7111 allow_signal(SIGKILL);
7112 while (!kthread_should_stop()) {
7113
7114 /* We need to wait INTERRUPTIBLE so that
7115 * we don't add to the load-average.
7116 * That means we need to be sure no signals are
7117 * pending
7118 */
7119 if (signal_pending(current))
7120 flush_signals(current);
7121
7122 wait_event_interruptible_timeout
7123 (thread->wqueue,
7124 test_bit(THREAD_WAKEUP, &thread->flags)
7125 || kthread_should_stop(),
7126 thread->timeout);
7127
7128 clear_bit(THREAD_WAKEUP, &thread->flags);
7129 if (!kthread_should_stop())
7130 thread->run(thread);
7131 }
7132
7133 return 0;
7134 }
7135
7136 void md_wakeup_thread(struct md_thread *thread)
7137 {
7138 if (thread) {
7139 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7140 set_bit(THREAD_WAKEUP, &thread->flags);
7141 wake_up(&thread->wqueue);
7142 }
7143 }
7144 EXPORT_SYMBOL(md_wakeup_thread);
7145
7146 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7147 struct mddev *mddev, const char *name)
7148 {
7149 struct md_thread *thread;
7150
7151 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7152 if (!thread)
7153 return NULL;
7154
7155 init_waitqueue_head(&thread->wqueue);
7156
7157 thread->run = run;
7158 thread->mddev = mddev;
7159 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7160 thread->tsk = kthread_run(md_thread, thread,
7161 "%s_%s",
7162 mdname(thread->mddev),
7163 name);
7164 if (IS_ERR(thread->tsk)) {
7165 kfree(thread);
7166 return NULL;
7167 }
7168 return thread;
7169 }
7170 EXPORT_SYMBOL(md_register_thread);
7171
7172 void md_unregister_thread(struct md_thread **threadp)
7173 {
7174 struct md_thread *thread = *threadp;
7175 if (!thread)
7176 return;
7177 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7178 /* Locking ensures that mddev_unlock does not wake_up a
7179 * non-existent thread
7180 */
7181 spin_lock(&pers_lock);
7182 *threadp = NULL;
7183 spin_unlock(&pers_lock);
7184
7185 kthread_stop(thread->tsk);
7186 kfree(thread);
7187 }
7188 EXPORT_SYMBOL(md_unregister_thread);
7189
7190 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7191 {
7192 if (!rdev || test_bit(Faulty, &rdev->flags))
7193 return;
7194
7195 if (!mddev->pers || !mddev->pers->error_handler)
7196 return;
7197 mddev->pers->error_handler(mddev,rdev);
7198 if (mddev->degraded)
7199 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7200 sysfs_notify_dirent_safe(rdev->sysfs_state);
7201 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7202 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7203 md_wakeup_thread(mddev->thread);
7204 if (mddev->event_work.func)
7205 queue_work(md_misc_wq, &mddev->event_work);
7206 md_new_event(mddev);
7207 }
7208 EXPORT_SYMBOL(md_error);
7209
7210 /* seq_file implementation /proc/mdstat */
7211
7212 static void status_unused(struct seq_file *seq)
7213 {
7214 int i = 0;
7215 struct md_rdev *rdev;
7216
7217 seq_printf(seq, "unused devices: ");
7218
7219 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7220 char b[BDEVNAME_SIZE];
7221 i++;
7222 seq_printf(seq, "%s ",
7223 bdevname(rdev->bdev,b));
7224 }
7225 if (!i)
7226 seq_printf(seq, "<none>");
7227
7228 seq_printf(seq, "\n");
7229 }
7230
7231 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7232 {
7233 sector_t max_sectors, resync, res;
7234 unsigned long dt, db;
7235 sector_t rt;
7236 int scale;
7237 unsigned int per_milli;
7238
7239 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7240 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7241 max_sectors = mddev->resync_max_sectors;
7242 else
7243 max_sectors = mddev->dev_sectors;
7244
7245 resync = mddev->curr_resync;
7246 if (resync <= 3) {
7247 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7248 /* Still cleaning up */
7249 resync = max_sectors;
7250 } else
7251 resync -= atomic_read(&mddev->recovery_active);
7252
7253 if (resync == 0) {
7254 if (mddev->recovery_cp < MaxSector) {
7255 seq_printf(seq, "\tresync=PENDING");
7256 return 1;
7257 }
7258 return 0;
7259 }
7260 if (resync < 3) {
7261 seq_printf(seq, "\tresync=DELAYED");
7262 return 1;
7263 }
7264
7265 WARN_ON(max_sectors == 0);
7266 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7267 * in a sector_t, and (max_sectors>>scale) will fit in a
7268 * u32, as those are the requirements for sector_div.
7269 * Thus 'scale' must be at least 10
7270 */
7271 scale = 10;
7272 if (sizeof(sector_t) > sizeof(unsigned long)) {
7273 while ( max_sectors/2 > (1ULL<<(scale+32)))
7274 scale++;
7275 }
7276 res = (resync>>scale)*1000;
7277 sector_div(res, (u32)((max_sectors>>scale)+1));
7278
7279 per_milli = res;
7280 {
7281 int i, x = per_milli/50, y = 20-x;
7282 seq_printf(seq, "[");
7283 for (i = 0; i < x; i++)
7284 seq_printf(seq, "=");
7285 seq_printf(seq, ">");
7286 for (i = 0; i < y; i++)
7287 seq_printf(seq, ".");
7288 seq_printf(seq, "] ");
7289 }
7290 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7291 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7292 "reshape" :
7293 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7294 "check" :
7295 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7296 "resync" : "recovery"))),
7297 per_milli/10, per_milli % 10,
7298 (unsigned long long) resync/2,
7299 (unsigned long long) max_sectors/2);
7300
7301 /*
7302 * dt: time from mark until now
7303 * db: blocks written from mark until now
7304 * rt: remaining time
7305 *
7306 * rt is a sector_t, so could be 32bit or 64bit.
7307 * So we divide before multiply in case it is 32bit and close
7308 * to the limit.
7309 * We scale the divisor (db) by 32 to avoid losing precision
7310 * near the end of resync when the number of remaining sectors
7311 * is close to 'db'.
7312 * We then divide rt by 32 after multiplying by db to compensate.
7313 * The '+1' avoids division by zero if db is very small.
7314 */
7315 dt = ((jiffies - mddev->resync_mark) / HZ);
7316 if (!dt) dt++;
7317 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7318 - mddev->resync_mark_cnt;
7319
7320 rt = max_sectors - resync; /* number of remaining sectors */
7321 sector_div(rt, db/32+1);
7322 rt *= dt;
7323 rt >>= 5;
7324
7325 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7326 ((unsigned long)rt % 60)/6);
7327
7328 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7329 return 1;
7330 }
7331
7332 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7333 {
7334 struct list_head *tmp;
7335 loff_t l = *pos;
7336 struct mddev *mddev;
7337
7338 if (l >= 0x10000)
7339 return NULL;
7340 if (!l--)
7341 /* header */
7342 return (void*)1;
7343
7344 spin_lock(&all_mddevs_lock);
7345 list_for_each(tmp,&all_mddevs)
7346 if (!l--) {
7347 mddev = list_entry(tmp, struct mddev, all_mddevs);
7348 mddev_get(mddev);
7349 spin_unlock(&all_mddevs_lock);
7350 return mddev;
7351 }
7352 spin_unlock(&all_mddevs_lock);
7353 if (!l--)
7354 return (void*)2;/* tail */
7355 return NULL;
7356 }
7357
7358 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7359 {
7360 struct list_head *tmp;
7361 struct mddev *next_mddev, *mddev = v;
7362
7363 ++*pos;
7364 if (v == (void*)2)
7365 return NULL;
7366
7367 spin_lock(&all_mddevs_lock);
7368 if (v == (void*)1)
7369 tmp = all_mddevs.next;
7370 else
7371 tmp = mddev->all_mddevs.next;
7372 if (tmp != &all_mddevs)
7373 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7374 else {
7375 next_mddev = (void*)2;
7376 *pos = 0x10000;
7377 }
7378 spin_unlock(&all_mddevs_lock);
7379
7380 if (v != (void*)1)
7381 mddev_put(mddev);
7382 return next_mddev;
7383
7384 }
7385
7386 static void md_seq_stop(struct seq_file *seq, void *v)
7387 {
7388 struct mddev *mddev = v;
7389
7390 if (mddev && v != (void*)1 && v != (void*)2)
7391 mddev_put(mddev);
7392 }
7393
7394 static int md_seq_show(struct seq_file *seq, void *v)
7395 {
7396 struct mddev *mddev = v;
7397 sector_t sectors;
7398 struct md_rdev *rdev;
7399
7400 if (v == (void*)1) {
7401 struct md_personality *pers;
7402 seq_printf(seq, "Personalities : ");
7403 spin_lock(&pers_lock);
7404 list_for_each_entry(pers, &pers_list, list)
7405 seq_printf(seq, "[%s] ", pers->name);
7406
7407 spin_unlock(&pers_lock);
7408 seq_printf(seq, "\n");
7409 seq->poll_event = atomic_read(&md_event_count);
7410 return 0;
7411 }
7412 if (v == (void*)2) {
7413 status_unused(seq);
7414 return 0;
7415 }
7416
7417 spin_lock(&mddev->lock);
7418 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7419 seq_printf(seq, "%s : %sactive", mdname(mddev),
7420 mddev->pers ? "" : "in");
7421 if (mddev->pers) {
7422 if (mddev->ro==1)
7423 seq_printf(seq, " (read-only)");
7424 if (mddev->ro==2)
7425 seq_printf(seq, " (auto-read-only)");
7426 seq_printf(seq, " %s", mddev->pers->name);
7427 }
7428
7429 sectors = 0;
7430 rcu_read_lock();
7431 rdev_for_each_rcu(rdev, mddev) {
7432 char b[BDEVNAME_SIZE];
7433 seq_printf(seq, " %s[%d]",
7434 bdevname(rdev->bdev,b), rdev->desc_nr);
7435 if (test_bit(WriteMostly, &rdev->flags))
7436 seq_printf(seq, "(W)");
7437 if (test_bit(Journal, &rdev->flags))
7438 seq_printf(seq, "(J)");
7439 if (test_bit(Faulty, &rdev->flags)) {
7440 seq_printf(seq, "(F)");
7441 continue;
7442 }
7443 if (rdev->raid_disk < 0)
7444 seq_printf(seq, "(S)"); /* spare */
7445 if (test_bit(Replacement, &rdev->flags))
7446 seq_printf(seq, "(R)");
7447 sectors += rdev->sectors;
7448 }
7449 rcu_read_unlock();
7450
7451 if (!list_empty(&mddev->disks)) {
7452 if (mddev->pers)
7453 seq_printf(seq, "\n %llu blocks",
7454 (unsigned long long)
7455 mddev->array_sectors / 2);
7456 else
7457 seq_printf(seq, "\n %llu blocks",
7458 (unsigned long long)sectors / 2);
7459 }
7460 if (mddev->persistent) {
7461 if (mddev->major_version != 0 ||
7462 mddev->minor_version != 90) {
7463 seq_printf(seq," super %d.%d",
7464 mddev->major_version,
7465 mddev->minor_version);
7466 }
7467 } else if (mddev->external)
7468 seq_printf(seq, " super external:%s",
7469 mddev->metadata_type);
7470 else
7471 seq_printf(seq, " super non-persistent");
7472
7473 if (mddev->pers) {
7474 mddev->pers->status(seq, mddev);
7475 seq_printf(seq, "\n ");
7476 if (mddev->pers->sync_request) {
7477 if (status_resync(seq, mddev))
7478 seq_printf(seq, "\n ");
7479 }
7480 } else
7481 seq_printf(seq, "\n ");
7482
7483 bitmap_status(seq, mddev->bitmap);
7484
7485 seq_printf(seq, "\n");
7486 }
7487 spin_unlock(&mddev->lock);
7488
7489 return 0;
7490 }
7491
7492 static const struct seq_operations md_seq_ops = {
7493 .start = md_seq_start,
7494 .next = md_seq_next,
7495 .stop = md_seq_stop,
7496 .show = md_seq_show,
7497 };
7498
7499 static int md_seq_open(struct inode *inode, struct file *file)
7500 {
7501 struct seq_file *seq;
7502 int error;
7503
7504 error = seq_open(file, &md_seq_ops);
7505 if (error)
7506 return error;
7507
7508 seq = file->private_data;
7509 seq->poll_event = atomic_read(&md_event_count);
7510 return error;
7511 }
7512
7513 static int md_unloading;
7514 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7515 {
7516 struct seq_file *seq = filp->private_data;
7517 int mask;
7518
7519 if (md_unloading)
7520 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7521 poll_wait(filp, &md_event_waiters, wait);
7522
7523 /* always allow read */
7524 mask = POLLIN | POLLRDNORM;
7525
7526 if (seq->poll_event != atomic_read(&md_event_count))
7527 mask |= POLLERR | POLLPRI;
7528 return mask;
7529 }
7530
7531 static const struct file_operations md_seq_fops = {
7532 .owner = THIS_MODULE,
7533 .open = md_seq_open,
7534 .read = seq_read,
7535 .llseek = seq_lseek,
7536 .release = seq_release_private,
7537 .poll = mdstat_poll,
7538 };
7539
7540 int register_md_personality(struct md_personality *p)
7541 {
7542 printk(KERN_INFO "md: %s personality registered for level %d\n",
7543 p->name, p->level);
7544 spin_lock(&pers_lock);
7545 list_add_tail(&p->list, &pers_list);
7546 spin_unlock(&pers_lock);
7547 return 0;
7548 }
7549 EXPORT_SYMBOL(register_md_personality);
7550
7551 int unregister_md_personality(struct md_personality *p)
7552 {
7553 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7554 spin_lock(&pers_lock);
7555 list_del_init(&p->list);
7556 spin_unlock(&pers_lock);
7557 return 0;
7558 }
7559 EXPORT_SYMBOL(unregister_md_personality);
7560
7561 int register_md_cluster_operations(struct md_cluster_operations *ops,
7562 struct module *module)
7563 {
7564 int ret = 0;
7565 spin_lock(&pers_lock);
7566 if (md_cluster_ops != NULL)
7567 ret = -EALREADY;
7568 else {
7569 md_cluster_ops = ops;
7570 md_cluster_mod = module;
7571 }
7572 spin_unlock(&pers_lock);
7573 return ret;
7574 }
7575 EXPORT_SYMBOL(register_md_cluster_operations);
7576
7577 int unregister_md_cluster_operations(void)
7578 {
7579 spin_lock(&pers_lock);
7580 md_cluster_ops = NULL;
7581 spin_unlock(&pers_lock);
7582 return 0;
7583 }
7584 EXPORT_SYMBOL(unregister_md_cluster_operations);
7585
7586 int md_setup_cluster(struct mddev *mddev, int nodes)
7587 {
7588 int err;
7589
7590 err = request_module("md-cluster");
7591 if (err) {
7592 pr_err("md-cluster module not found.\n");
7593 return -ENOENT;
7594 }
7595
7596 spin_lock(&pers_lock);
7597 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7598 spin_unlock(&pers_lock);
7599 return -ENOENT;
7600 }
7601 spin_unlock(&pers_lock);
7602
7603 return md_cluster_ops->join(mddev, nodes);
7604 }
7605
7606 void md_cluster_stop(struct mddev *mddev)
7607 {
7608 if (!md_cluster_ops)
7609 return;
7610 md_cluster_ops->leave(mddev);
7611 module_put(md_cluster_mod);
7612 }
7613
7614 static int is_mddev_idle(struct mddev *mddev, int init)
7615 {
7616 struct md_rdev *rdev;
7617 int idle;
7618 int curr_events;
7619
7620 idle = 1;
7621 rcu_read_lock();
7622 rdev_for_each_rcu(rdev, mddev) {
7623 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7624 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7625 (int)part_stat_read(&disk->part0, sectors[1]) -
7626 atomic_read(&disk->sync_io);
7627 /* sync IO will cause sync_io to increase before the disk_stats
7628 * as sync_io is counted when a request starts, and
7629 * disk_stats is counted when it completes.
7630 * So resync activity will cause curr_events to be smaller than
7631 * when there was no such activity.
7632 * non-sync IO will cause disk_stat to increase without
7633 * increasing sync_io so curr_events will (eventually)
7634 * be larger than it was before. Once it becomes
7635 * substantially larger, the test below will cause
7636 * the array to appear non-idle, and resync will slow
7637 * down.
7638 * If there is a lot of outstanding resync activity when
7639 * we set last_event to curr_events, then all that activity
7640 * completing might cause the array to appear non-idle
7641 * and resync will be slowed down even though there might
7642 * not have been non-resync activity. This will only
7643 * happen once though. 'last_events' will soon reflect
7644 * the state where there is little or no outstanding
7645 * resync requests, and further resync activity will
7646 * always make curr_events less than last_events.
7647 *
7648 */
7649 if (init || curr_events - rdev->last_events > 64) {
7650 rdev->last_events = curr_events;
7651 idle = 0;
7652 }
7653 }
7654 rcu_read_unlock();
7655 return idle;
7656 }
7657
7658 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7659 {
7660 /* another "blocks" (512byte) blocks have been synced */
7661 atomic_sub(blocks, &mddev->recovery_active);
7662 wake_up(&mddev->recovery_wait);
7663 if (!ok) {
7664 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7665 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7666 md_wakeup_thread(mddev->thread);
7667 // stop recovery, signal do_sync ....
7668 }
7669 }
7670 EXPORT_SYMBOL(md_done_sync);
7671
7672 /* md_write_start(mddev, bi)
7673 * If we need to update some array metadata (e.g. 'active' flag
7674 * in superblock) before writing, schedule a superblock update
7675 * and wait for it to complete.
7676 */
7677 void md_write_start(struct mddev *mddev, struct bio *bi)
7678 {
7679 int did_change = 0;
7680 if (bio_data_dir(bi) != WRITE)
7681 return;
7682
7683 BUG_ON(mddev->ro == 1);
7684 if (mddev->ro == 2) {
7685 /* need to switch to read/write */
7686 mddev->ro = 0;
7687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7688 md_wakeup_thread(mddev->thread);
7689 md_wakeup_thread(mddev->sync_thread);
7690 did_change = 1;
7691 }
7692 atomic_inc(&mddev->writes_pending);
7693 if (mddev->safemode == 1)
7694 mddev->safemode = 0;
7695 if (mddev->in_sync) {
7696 spin_lock(&mddev->lock);
7697 if (mddev->in_sync) {
7698 mddev->in_sync = 0;
7699 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7700 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7701 md_wakeup_thread(mddev->thread);
7702 did_change = 1;
7703 }
7704 spin_unlock(&mddev->lock);
7705 }
7706 if (did_change)
7707 sysfs_notify_dirent_safe(mddev->sysfs_state);
7708 wait_event(mddev->sb_wait,
7709 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7710 }
7711 EXPORT_SYMBOL(md_write_start);
7712
7713 void md_write_end(struct mddev *mddev)
7714 {
7715 if (atomic_dec_and_test(&mddev->writes_pending)) {
7716 if (mddev->safemode == 2)
7717 md_wakeup_thread(mddev->thread);
7718 else if (mddev->safemode_delay)
7719 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7720 }
7721 }
7722 EXPORT_SYMBOL(md_write_end);
7723
7724 /* md_allow_write(mddev)
7725 * Calling this ensures that the array is marked 'active' so that writes
7726 * may proceed without blocking. It is important to call this before
7727 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7728 * Must be called with mddev_lock held.
7729 *
7730 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7731 * is dropped, so return -EAGAIN after notifying userspace.
7732 */
7733 int md_allow_write(struct mddev *mddev)
7734 {
7735 if (!mddev->pers)
7736 return 0;
7737 if (mddev->ro)
7738 return 0;
7739 if (!mddev->pers->sync_request)
7740 return 0;
7741
7742 spin_lock(&mddev->lock);
7743 if (mddev->in_sync) {
7744 mddev->in_sync = 0;
7745 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7746 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7747 if (mddev->safemode_delay &&
7748 mddev->safemode == 0)
7749 mddev->safemode = 1;
7750 spin_unlock(&mddev->lock);
7751 md_update_sb(mddev, 0);
7752 sysfs_notify_dirent_safe(mddev->sysfs_state);
7753 } else
7754 spin_unlock(&mddev->lock);
7755
7756 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7757 return -EAGAIN;
7758 else
7759 return 0;
7760 }
7761 EXPORT_SYMBOL_GPL(md_allow_write);
7762
7763 #define SYNC_MARKS 10
7764 #define SYNC_MARK_STEP (3*HZ)
7765 #define UPDATE_FREQUENCY (5*60*HZ)
7766 void md_do_sync(struct md_thread *thread)
7767 {
7768 struct mddev *mddev = thread->mddev;
7769 struct mddev *mddev2;
7770 unsigned int currspeed = 0,
7771 window;
7772 sector_t max_sectors,j, io_sectors, recovery_done;
7773 unsigned long mark[SYNC_MARKS];
7774 unsigned long update_time;
7775 sector_t mark_cnt[SYNC_MARKS];
7776 int last_mark,m;
7777 struct list_head *tmp;
7778 sector_t last_check;
7779 int skipped = 0;
7780 struct md_rdev *rdev;
7781 char *desc, *action = NULL;
7782 struct blk_plug plug;
7783 bool cluster_resync_finished = false;
7784
7785 /* just incase thread restarts... */
7786 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7787 return;
7788 if (mddev->ro) {/* never try to sync a read-only array */
7789 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7790 return;
7791 }
7792
7793 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7794 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7795 desc = "data-check";
7796 action = "check";
7797 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7798 desc = "requested-resync";
7799 action = "repair";
7800 } else
7801 desc = "resync";
7802 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7803 desc = "reshape";
7804 else
7805 desc = "recovery";
7806
7807 mddev->last_sync_action = action ?: desc;
7808
7809 /* we overload curr_resync somewhat here.
7810 * 0 == not engaged in resync at all
7811 * 2 == checking that there is no conflict with another sync
7812 * 1 == like 2, but have yielded to allow conflicting resync to
7813 * commense
7814 * other == active in resync - this many blocks
7815 *
7816 * Before starting a resync we must have set curr_resync to
7817 * 2, and then checked that every "conflicting" array has curr_resync
7818 * less than ours. When we find one that is the same or higher
7819 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7820 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7821 * This will mean we have to start checking from the beginning again.
7822 *
7823 */
7824
7825 do {
7826 mddev->curr_resync = 2;
7827
7828 try_again:
7829 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7830 goto skip;
7831 for_each_mddev(mddev2, tmp) {
7832 if (mddev2 == mddev)
7833 continue;
7834 if (!mddev->parallel_resync
7835 && mddev2->curr_resync
7836 && match_mddev_units(mddev, mddev2)) {
7837 DEFINE_WAIT(wq);
7838 if (mddev < mddev2 && mddev->curr_resync == 2) {
7839 /* arbitrarily yield */
7840 mddev->curr_resync = 1;
7841 wake_up(&resync_wait);
7842 }
7843 if (mddev > mddev2 && mddev->curr_resync == 1)
7844 /* no need to wait here, we can wait the next
7845 * time 'round when curr_resync == 2
7846 */
7847 continue;
7848 /* We need to wait 'interruptible' so as not to
7849 * contribute to the load average, and not to
7850 * be caught by 'softlockup'
7851 */
7852 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7853 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7854 mddev2->curr_resync >= mddev->curr_resync) {
7855 printk(KERN_INFO "md: delaying %s of %s"
7856 " until %s has finished (they"
7857 " share one or more physical units)\n",
7858 desc, mdname(mddev), mdname(mddev2));
7859 mddev_put(mddev2);
7860 if (signal_pending(current))
7861 flush_signals(current);
7862 schedule();
7863 finish_wait(&resync_wait, &wq);
7864 goto try_again;
7865 }
7866 finish_wait(&resync_wait, &wq);
7867 }
7868 }
7869 } while (mddev->curr_resync < 2);
7870
7871 j = 0;
7872 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7873 /* resync follows the size requested by the personality,
7874 * which defaults to physical size, but can be virtual size
7875 */
7876 max_sectors = mddev->resync_max_sectors;
7877 atomic64_set(&mddev->resync_mismatches, 0);
7878 /* we don't use the checkpoint if there's a bitmap */
7879 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7880 j = mddev->resync_min;
7881 else if (!mddev->bitmap)
7882 j = mddev->recovery_cp;
7883
7884 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7885 max_sectors = mddev->resync_max_sectors;
7886 else {
7887 /* recovery follows the physical size of devices */
7888 max_sectors = mddev->dev_sectors;
7889 j = MaxSector;
7890 rcu_read_lock();
7891 rdev_for_each_rcu(rdev, mddev)
7892 if (rdev->raid_disk >= 0 &&
7893 !test_bit(Journal, &rdev->flags) &&
7894 !test_bit(Faulty, &rdev->flags) &&
7895 !test_bit(In_sync, &rdev->flags) &&
7896 rdev->recovery_offset < j)
7897 j = rdev->recovery_offset;
7898 rcu_read_unlock();
7899
7900 /* If there is a bitmap, we need to make sure all
7901 * writes that started before we added a spare
7902 * complete before we start doing a recovery.
7903 * Otherwise the write might complete and (via
7904 * bitmap_endwrite) set a bit in the bitmap after the
7905 * recovery has checked that bit and skipped that
7906 * region.
7907 */
7908 if (mddev->bitmap) {
7909 mddev->pers->quiesce(mddev, 1);
7910 mddev->pers->quiesce(mddev, 0);
7911 }
7912 }
7913
7914 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7915 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7916 " %d KB/sec/disk.\n", speed_min(mddev));
7917 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7918 "(but not more than %d KB/sec) for %s.\n",
7919 speed_max(mddev), desc);
7920
7921 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7922
7923 io_sectors = 0;
7924 for (m = 0; m < SYNC_MARKS; m++) {
7925 mark[m] = jiffies;
7926 mark_cnt[m] = io_sectors;
7927 }
7928 last_mark = 0;
7929 mddev->resync_mark = mark[last_mark];
7930 mddev->resync_mark_cnt = mark_cnt[last_mark];
7931
7932 /*
7933 * Tune reconstruction:
7934 */
7935 window = 32*(PAGE_SIZE/512);
7936 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7937 window/2, (unsigned long long)max_sectors/2);
7938
7939 atomic_set(&mddev->recovery_active, 0);
7940 last_check = 0;
7941
7942 if (j>2) {
7943 printk(KERN_INFO
7944 "md: resuming %s of %s from checkpoint.\n",
7945 desc, mdname(mddev));
7946 mddev->curr_resync = j;
7947 } else
7948 mddev->curr_resync = 3; /* no longer delayed */
7949 mddev->curr_resync_completed = j;
7950 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7951 md_new_event(mddev);
7952 update_time = jiffies;
7953
7954 blk_start_plug(&plug);
7955 while (j < max_sectors) {
7956 sector_t sectors;
7957
7958 skipped = 0;
7959
7960 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7961 ((mddev->curr_resync > mddev->curr_resync_completed &&
7962 (mddev->curr_resync - mddev->curr_resync_completed)
7963 > (max_sectors >> 4)) ||
7964 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7965 (j - mddev->curr_resync_completed)*2
7966 >= mddev->resync_max - mddev->curr_resync_completed ||
7967 mddev->curr_resync_completed > mddev->resync_max
7968 )) {
7969 /* time to update curr_resync_completed */
7970 wait_event(mddev->recovery_wait,
7971 atomic_read(&mddev->recovery_active) == 0);
7972 mddev->curr_resync_completed = j;
7973 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7974 j > mddev->recovery_cp)
7975 mddev->recovery_cp = j;
7976 update_time = jiffies;
7977 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7978 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7979 }
7980
7981 while (j >= mddev->resync_max &&
7982 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7983 /* As this condition is controlled by user-space,
7984 * we can block indefinitely, so use '_interruptible'
7985 * to avoid triggering warnings.
7986 */
7987 flush_signals(current); /* just in case */
7988 wait_event_interruptible(mddev->recovery_wait,
7989 mddev->resync_max > j
7990 || test_bit(MD_RECOVERY_INTR,
7991 &mddev->recovery));
7992 }
7993
7994 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7995 break;
7996
7997 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7998 if (sectors == 0) {
7999 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8000 break;
8001 }
8002
8003 if (!skipped) { /* actual IO requested */
8004 io_sectors += sectors;
8005 atomic_add(sectors, &mddev->recovery_active);
8006 }
8007
8008 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8009 break;
8010
8011 j += sectors;
8012 if (j > max_sectors)
8013 /* when skipping, extra large numbers can be returned. */
8014 j = max_sectors;
8015 if (j > 2)
8016 mddev->curr_resync = j;
8017 mddev->curr_mark_cnt = io_sectors;
8018 if (last_check == 0)
8019 /* this is the earliest that rebuild will be
8020 * visible in /proc/mdstat
8021 */
8022 md_new_event(mddev);
8023
8024 if (last_check + window > io_sectors || j == max_sectors)
8025 continue;
8026
8027 last_check = io_sectors;
8028 repeat:
8029 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8030 /* step marks */
8031 int next = (last_mark+1) % SYNC_MARKS;
8032
8033 mddev->resync_mark = mark[next];
8034 mddev->resync_mark_cnt = mark_cnt[next];
8035 mark[next] = jiffies;
8036 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8037 last_mark = next;
8038 }
8039
8040 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8041 break;
8042
8043 /*
8044 * this loop exits only if either when we are slower than
8045 * the 'hard' speed limit, or the system was IO-idle for
8046 * a jiffy.
8047 * the system might be non-idle CPU-wise, but we only care
8048 * about not overloading the IO subsystem. (things like an
8049 * e2fsck being done on the RAID array should execute fast)
8050 */
8051 cond_resched();
8052
8053 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8054 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8055 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8056
8057 if (currspeed > speed_min(mddev)) {
8058 if (currspeed > speed_max(mddev)) {
8059 msleep(500);
8060 goto repeat;
8061 }
8062 if (!is_mddev_idle(mddev, 0)) {
8063 /*
8064 * Give other IO more of a chance.
8065 * The faster the devices, the less we wait.
8066 */
8067 wait_event(mddev->recovery_wait,
8068 !atomic_read(&mddev->recovery_active));
8069 }
8070 }
8071 }
8072 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8073 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8074 ? "interrupted" : "done");
8075 /*
8076 * this also signals 'finished resyncing' to md_stop
8077 */
8078 blk_finish_plug(&plug);
8079 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8080
8081 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8082 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8083 mddev->curr_resync > 2) {
8084 mddev->curr_resync_completed = mddev->curr_resync;
8085 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8086 }
8087 /* tell personality and other nodes that we are finished */
8088 if (mddev_is_clustered(mddev)) {
8089 md_cluster_ops->resync_finish(mddev);
8090 cluster_resync_finished = true;
8091 }
8092 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8093
8094 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8095 mddev->curr_resync > 2) {
8096 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8097 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8098 if (mddev->curr_resync >= mddev->recovery_cp) {
8099 printk(KERN_INFO
8100 "md: checkpointing %s of %s.\n",
8101 desc, mdname(mddev));
8102 if (test_bit(MD_RECOVERY_ERROR,
8103 &mddev->recovery))
8104 mddev->recovery_cp =
8105 mddev->curr_resync_completed;
8106 else
8107 mddev->recovery_cp =
8108 mddev->curr_resync;
8109 }
8110 } else
8111 mddev->recovery_cp = MaxSector;
8112 } else {
8113 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8114 mddev->curr_resync = MaxSector;
8115 rcu_read_lock();
8116 rdev_for_each_rcu(rdev, mddev)
8117 if (rdev->raid_disk >= 0 &&
8118 mddev->delta_disks >= 0 &&
8119 !test_bit(Journal, &rdev->flags) &&
8120 !test_bit(Faulty, &rdev->flags) &&
8121 !test_bit(In_sync, &rdev->flags) &&
8122 rdev->recovery_offset < mddev->curr_resync)
8123 rdev->recovery_offset = mddev->curr_resync;
8124 rcu_read_unlock();
8125 }
8126 }
8127 skip:
8128 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8129
8130 if (mddev_is_clustered(mddev) &&
8131 test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8132 !cluster_resync_finished)
8133 md_cluster_ops->resync_finish(mddev);
8134
8135 spin_lock(&mddev->lock);
8136 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8137 /* We completed so min/max setting can be forgotten if used. */
8138 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8139 mddev->resync_min = 0;
8140 mddev->resync_max = MaxSector;
8141 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8142 mddev->resync_min = mddev->curr_resync_completed;
8143 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8144 mddev->curr_resync = 0;
8145 spin_unlock(&mddev->lock);
8146
8147 wake_up(&resync_wait);
8148 md_wakeup_thread(mddev->thread);
8149 return;
8150 }
8151 EXPORT_SYMBOL_GPL(md_do_sync);
8152
8153 static int remove_and_add_spares(struct mddev *mddev,
8154 struct md_rdev *this)
8155 {
8156 struct md_rdev *rdev;
8157 int spares = 0;
8158 int removed = 0;
8159
8160 rdev_for_each(rdev, mddev)
8161 if ((this == NULL || rdev == this) &&
8162 rdev->raid_disk >= 0 &&
8163 !test_bit(Blocked, &rdev->flags) &&
8164 (test_bit(Faulty, &rdev->flags) ||
8165 (!test_bit(In_sync, &rdev->flags) &&
8166 !test_bit(Journal, &rdev->flags))) &&
8167 atomic_read(&rdev->nr_pending)==0) {
8168 if (mddev->pers->hot_remove_disk(
8169 mddev, rdev) == 0) {
8170 sysfs_unlink_rdev(mddev, rdev);
8171 rdev->raid_disk = -1;
8172 removed++;
8173 }
8174 }
8175 if (removed && mddev->kobj.sd)
8176 sysfs_notify(&mddev->kobj, NULL, "degraded");
8177
8178 if (this && removed)
8179 goto no_add;
8180
8181 rdev_for_each(rdev, mddev) {
8182 if (this && this != rdev)
8183 continue;
8184 if (test_bit(Candidate, &rdev->flags))
8185 continue;
8186 if (rdev->raid_disk >= 0 &&
8187 !test_bit(In_sync, &rdev->flags) &&
8188 !test_bit(Journal, &rdev->flags) &&
8189 !test_bit(Faulty, &rdev->flags))
8190 spares++;
8191 if (rdev->raid_disk >= 0)
8192 continue;
8193 if (test_bit(Faulty, &rdev->flags))
8194 continue;
8195 if (!test_bit(Journal, &rdev->flags)) {
8196 if (mddev->ro &&
8197 ! (rdev->saved_raid_disk >= 0 &&
8198 !test_bit(Bitmap_sync, &rdev->flags)))
8199 continue;
8200
8201 rdev->recovery_offset = 0;
8202 }
8203 if (mddev->pers->
8204 hot_add_disk(mddev, rdev) == 0) {
8205 if (sysfs_link_rdev(mddev, rdev))
8206 /* failure here is OK */;
8207 if (!test_bit(Journal, &rdev->flags))
8208 spares++;
8209 md_new_event(mddev);
8210 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8211 }
8212 }
8213 no_add:
8214 if (removed)
8215 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8216 return spares;
8217 }
8218
8219 static void md_start_sync(struct work_struct *ws)
8220 {
8221 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8222 int ret = 0;
8223
8224 if (mddev_is_clustered(mddev)) {
8225 ret = md_cluster_ops->resync_start(mddev);
8226 if (ret) {
8227 mddev->sync_thread = NULL;
8228 goto out;
8229 }
8230 }
8231
8232 mddev->sync_thread = md_register_thread(md_do_sync,
8233 mddev,
8234 "resync");
8235 out:
8236 if (!mddev->sync_thread) {
8237 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8238 printk(KERN_ERR "%s: could not start resync"
8239 " thread...\n",
8240 mdname(mddev));
8241 /* leave the spares where they are, it shouldn't hurt */
8242 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8243 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8244 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8245 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8246 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8247 wake_up(&resync_wait);
8248 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8249 &mddev->recovery))
8250 if (mddev->sysfs_action)
8251 sysfs_notify_dirent_safe(mddev->sysfs_action);
8252 } else
8253 md_wakeup_thread(mddev->sync_thread);
8254 sysfs_notify_dirent_safe(mddev->sysfs_action);
8255 md_new_event(mddev);
8256 }
8257
8258 /*
8259 * This routine is regularly called by all per-raid-array threads to
8260 * deal with generic issues like resync and super-block update.
8261 * Raid personalities that don't have a thread (linear/raid0) do not
8262 * need this as they never do any recovery or update the superblock.
8263 *
8264 * It does not do any resync itself, but rather "forks" off other threads
8265 * to do that as needed.
8266 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8267 * "->recovery" and create a thread at ->sync_thread.
8268 * When the thread finishes it sets MD_RECOVERY_DONE
8269 * and wakeups up this thread which will reap the thread and finish up.
8270 * This thread also removes any faulty devices (with nr_pending == 0).
8271 *
8272 * The overall approach is:
8273 * 1/ if the superblock needs updating, update it.
8274 * 2/ If a recovery thread is running, don't do anything else.
8275 * 3/ If recovery has finished, clean up, possibly marking spares active.
8276 * 4/ If there are any faulty devices, remove them.
8277 * 5/ If array is degraded, try to add spares devices
8278 * 6/ If array has spares or is not in-sync, start a resync thread.
8279 */
8280 void md_check_recovery(struct mddev *mddev)
8281 {
8282 if (mddev->suspended)
8283 return;
8284
8285 if (mddev->bitmap)
8286 bitmap_daemon_work(mddev);
8287
8288 if (signal_pending(current)) {
8289 if (mddev->pers->sync_request && !mddev->external) {
8290 printk(KERN_INFO "md: %s in immediate safe mode\n",
8291 mdname(mddev));
8292 mddev->safemode = 2;
8293 }
8294 flush_signals(current);
8295 }
8296
8297 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8298 return;
8299 if ( ! (
8300 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8301 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8302 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8303 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8304 (mddev->external == 0 && mddev->safemode == 1) ||
8305 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8306 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8307 ))
8308 return;
8309
8310 if (mddev_trylock(mddev)) {
8311 int spares = 0;
8312
8313 if (mddev->ro) {
8314 struct md_rdev *rdev;
8315 if (!mddev->external && mddev->in_sync)
8316 /* 'Blocked' flag not needed as failed devices
8317 * will be recorded if array switched to read/write.
8318 * Leaving it set will prevent the device
8319 * from being removed.
8320 */
8321 rdev_for_each(rdev, mddev)
8322 clear_bit(Blocked, &rdev->flags);
8323 /* On a read-only array we can:
8324 * - remove failed devices
8325 * - add already-in_sync devices if the array itself
8326 * is in-sync.
8327 * As we only add devices that are already in-sync,
8328 * we can activate the spares immediately.
8329 */
8330 remove_and_add_spares(mddev, NULL);
8331 /* There is no thread, but we need to call
8332 * ->spare_active and clear saved_raid_disk
8333 */
8334 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8335 md_reap_sync_thread(mddev);
8336 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8337 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8338 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8339 goto unlock;
8340 }
8341
8342 if (mddev_is_clustered(mddev)) {
8343 struct md_rdev *rdev;
8344 /* kick the device if another node issued a
8345 * remove disk.
8346 */
8347 rdev_for_each(rdev, mddev) {
8348 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8349 rdev->raid_disk < 0)
8350 md_kick_rdev_from_array(rdev);
8351 }
8352
8353 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8354 md_reload_sb(mddev, mddev->good_device_nr);
8355 }
8356
8357 if (!mddev->external) {
8358 int did_change = 0;
8359 spin_lock(&mddev->lock);
8360 if (mddev->safemode &&
8361 !atomic_read(&mddev->writes_pending) &&
8362 !mddev->in_sync &&
8363 mddev->recovery_cp == MaxSector) {
8364 mddev->in_sync = 1;
8365 did_change = 1;
8366 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8367 }
8368 if (mddev->safemode == 1)
8369 mddev->safemode = 0;
8370 spin_unlock(&mddev->lock);
8371 if (did_change)
8372 sysfs_notify_dirent_safe(mddev->sysfs_state);
8373 }
8374
8375 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8376 md_update_sb(mddev, 0);
8377
8378 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8379 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8380 /* resync/recovery still happening */
8381 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8382 goto unlock;
8383 }
8384 if (mddev->sync_thread) {
8385 md_reap_sync_thread(mddev);
8386 goto unlock;
8387 }
8388 /* Set RUNNING before clearing NEEDED to avoid
8389 * any transients in the value of "sync_action".
8390 */
8391 mddev->curr_resync_completed = 0;
8392 spin_lock(&mddev->lock);
8393 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8394 spin_unlock(&mddev->lock);
8395 /* Clear some bits that don't mean anything, but
8396 * might be left set
8397 */
8398 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8399 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8400
8401 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8402 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8403 goto not_running;
8404 /* no recovery is running.
8405 * remove any failed drives, then
8406 * add spares if possible.
8407 * Spares are also removed and re-added, to allow
8408 * the personality to fail the re-add.
8409 */
8410
8411 if (mddev->reshape_position != MaxSector) {
8412 if (mddev->pers->check_reshape == NULL ||
8413 mddev->pers->check_reshape(mddev) != 0)
8414 /* Cannot proceed */
8415 goto not_running;
8416 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8417 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8418 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8419 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8420 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8421 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8422 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8423 } else if (mddev->recovery_cp < MaxSector) {
8424 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8425 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8426 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8427 /* nothing to be done ... */
8428 goto not_running;
8429
8430 if (mddev->pers->sync_request) {
8431 if (spares) {
8432 /* We are adding a device or devices to an array
8433 * which has the bitmap stored on all devices.
8434 * So make sure all bitmap pages get written
8435 */
8436 bitmap_write_all(mddev->bitmap);
8437 }
8438 INIT_WORK(&mddev->del_work, md_start_sync);
8439 queue_work(md_misc_wq, &mddev->del_work);
8440 goto unlock;
8441 }
8442 not_running:
8443 if (!mddev->sync_thread) {
8444 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8445 wake_up(&resync_wait);
8446 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8447 &mddev->recovery))
8448 if (mddev->sysfs_action)
8449 sysfs_notify_dirent_safe(mddev->sysfs_action);
8450 }
8451 unlock:
8452 wake_up(&mddev->sb_wait);
8453 mddev_unlock(mddev);
8454 }
8455 }
8456 EXPORT_SYMBOL(md_check_recovery);
8457
8458 void md_reap_sync_thread(struct mddev *mddev)
8459 {
8460 struct md_rdev *rdev;
8461
8462 /* resync has finished, collect result */
8463 md_unregister_thread(&mddev->sync_thread);
8464 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8465 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8466 /* success...*/
8467 /* activate any spares */
8468 if (mddev->pers->spare_active(mddev)) {
8469 sysfs_notify(&mddev->kobj, NULL,
8470 "degraded");
8471 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8472 }
8473 }
8474 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8475 mddev->pers->finish_reshape)
8476 mddev->pers->finish_reshape(mddev);
8477
8478 /* If array is no-longer degraded, then any saved_raid_disk
8479 * information must be scrapped.
8480 */
8481 if (!mddev->degraded)
8482 rdev_for_each(rdev, mddev)
8483 rdev->saved_raid_disk = -1;
8484
8485 md_update_sb(mddev, 1);
8486 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8487 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8488 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8489 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8490 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8491 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8492 wake_up(&resync_wait);
8493 /* flag recovery needed just to double check */
8494 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8495 sysfs_notify_dirent_safe(mddev->sysfs_action);
8496 md_new_event(mddev);
8497 if (mddev->event_work.func)
8498 queue_work(md_misc_wq, &mddev->event_work);
8499 }
8500 EXPORT_SYMBOL(md_reap_sync_thread);
8501
8502 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8503 {
8504 sysfs_notify_dirent_safe(rdev->sysfs_state);
8505 wait_event_timeout(rdev->blocked_wait,
8506 !test_bit(Blocked, &rdev->flags) &&
8507 !test_bit(BlockedBadBlocks, &rdev->flags),
8508 msecs_to_jiffies(5000));
8509 rdev_dec_pending(rdev, mddev);
8510 }
8511 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8512
8513 void md_finish_reshape(struct mddev *mddev)
8514 {
8515 /* called be personality module when reshape completes. */
8516 struct md_rdev *rdev;
8517
8518 rdev_for_each(rdev, mddev) {
8519 if (rdev->data_offset > rdev->new_data_offset)
8520 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8521 else
8522 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8523 rdev->data_offset = rdev->new_data_offset;
8524 }
8525 }
8526 EXPORT_SYMBOL(md_finish_reshape);
8527
8528 /* Bad block management */
8529
8530 /* Returns 1 on success, 0 on failure */
8531 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8532 int is_new)
8533 {
8534 int rv;
8535 if (is_new)
8536 s += rdev->new_data_offset;
8537 else
8538 s += rdev->data_offset;
8539 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8540 if (rv == 0) {
8541 /* Make sure they get written out promptly */
8542 sysfs_notify_dirent_safe(rdev->sysfs_state);
8543 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8544 set_bit(MD_CHANGE_PENDING, &rdev->mddev->flags);
8545 md_wakeup_thread(rdev->mddev->thread);
8546 return 1;
8547 } else
8548 return 0;
8549 }
8550 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8551
8552 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8553 int is_new)
8554 {
8555 if (is_new)
8556 s += rdev->new_data_offset;
8557 else
8558 s += rdev->data_offset;
8559 return badblocks_clear(&rdev->badblocks,
8560 s, sectors);
8561 }
8562 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8563
8564 static int md_notify_reboot(struct notifier_block *this,
8565 unsigned long code, void *x)
8566 {
8567 struct list_head *tmp;
8568 struct mddev *mddev;
8569 int need_delay = 0;
8570
8571 for_each_mddev(mddev, tmp) {
8572 if (mddev_trylock(mddev)) {
8573 if (mddev->pers)
8574 __md_stop_writes(mddev);
8575 if (mddev->persistent)
8576 mddev->safemode = 2;
8577 mddev_unlock(mddev);
8578 }
8579 need_delay = 1;
8580 }
8581 /*
8582 * certain more exotic SCSI devices are known to be
8583 * volatile wrt too early system reboots. While the
8584 * right place to handle this issue is the given
8585 * driver, we do want to have a safe RAID driver ...
8586 */
8587 if (need_delay)
8588 mdelay(1000*1);
8589
8590 return NOTIFY_DONE;
8591 }
8592
8593 static struct notifier_block md_notifier = {
8594 .notifier_call = md_notify_reboot,
8595 .next = NULL,
8596 .priority = INT_MAX, /* before any real devices */
8597 };
8598
8599 static void md_geninit(void)
8600 {
8601 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8602
8603 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8604 }
8605
8606 static int __init md_init(void)
8607 {
8608 int ret = -ENOMEM;
8609
8610 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8611 if (!md_wq)
8612 goto err_wq;
8613
8614 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8615 if (!md_misc_wq)
8616 goto err_misc_wq;
8617
8618 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8619 goto err_md;
8620
8621 if ((ret = register_blkdev(0, "mdp")) < 0)
8622 goto err_mdp;
8623 mdp_major = ret;
8624
8625 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8626 md_probe, NULL, NULL);
8627 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8628 md_probe, NULL, NULL);
8629
8630 register_reboot_notifier(&md_notifier);
8631 raid_table_header = register_sysctl_table(raid_root_table);
8632
8633 md_geninit();
8634 return 0;
8635
8636 err_mdp:
8637 unregister_blkdev(MD_MAJOR, "md");
8638 err_md:
8639 destroy_workqueue(md_misc_wq);
8640 err_misc_wq:
8641 destroy_workqueue(md_wq);
8642 err_wq:
8643 return ret;
8644 }
8645
8646 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8647 {
8648 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8649 struct md_rdev *rdev2;
8650 int role, ret;
8651 char b[BDEVNAME_SIZE];
8652
8653 /* Check for change of roles in the active devices */
8654 rdev_for_each(rdev2, mddev) {
8655 if (test_bit(Faulty, &rdev2->flags))
8656 continue;
8657
8658 /* Check if the roles changed */
8659 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8660
8661 if (test_bit(Candidate, &rdev2->flags)) {
8662 if (role == 0xfffe) {
8663 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8664 md_kick_rdev_from_array(rdev2);
8665 continue;
8666 }
8667 else
8668 clear_bit(Candidate, &rdev2->flags);
8669 }
8670
8671 if (role != rdev2->raid_disk) {
8672 /* got activated */
8673 if (rdev2->raid_disk == -1 && role != 0xffff) {
8674 rdev2->saved_raid_disk = role;
8675 ret = remove_and_add_spares(mddev, rdev2);
8676 pr_info("Activated spare: %s\n",
8677 bdevname(rdev2->bdev,b));
8678 }
8679 /* device faulty
8680 * We just want to do the minimum to mark the disk
8681 * as faulty. The recovery is performed by the
8682 * one who initiated the error.
8683 */
8684 if ((role == 0xfffe) || (role == 0xfffd)) {
8685 md_error(mddev, rdev2);
8686 clear_bit(Blocked, &rdev2->flags);
8687 }
8688 }
8689 }
8690
8691 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8692 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8693
8694 /* Finally set the event to be up to date */
8695 mddev->events = le64_to_cpu(sb->events);
8696 }
8697
8698 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8699 {
8700 int err;
8701 struct page *swapout = rdev->sb_page;
8702 struct mdp_superblock_1 *sb;
8703
8704 /* Store the sb page of the rdev in the swapout temporary
8705 * variable in case we err in the future
8706 */
8707 rdev->sb_page = NULL;
8708 alloc_disk_sb(rdev);
8709 ClearPageUptodate(rdev->sb_page);
8710 rdev->sb_loaded = 0;
8711 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8712
8713 if (err < 0) {
8714 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8715 __func__, __LINE__, rdev->desc_nr, err);
8716 put_page(rdev->sb_page);
8717 rdev->sb_page = swapout;
8718 rdev->sb_loaded = 1;
8719 return err;
8720 }
8721
8722 sb = page_address(rdev->sb_page);
8723 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8724 * is not set
8725 */
8726
8727 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8728 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8729
8730 /* The other node finished recovery, call spare_active to set
8731 * device In_sync and mddev->degraded
8732 */
8733 if (rdev->recovery_offset == MaxSector &&
8734 !test_bit(In_sync, &rdev->flags) &&
8735 mddev->pers->spare_active(mddev))
8736 sysfs_notify(&mddev->kobj, NULL, "degraded");
8737
8738 put_page(swapout);
8739 return 0;
8740 }
8741
8742 void md_reload_sb(struct mddev *mddev, int nr)
8743 {
8744 struct md_rdev *rdev;
8745 int err;
8746
8747 /* Find the rdev */
8748 rdev_for_each_rcu(rdev, mddev) {
8749 if (rdev->desc_nr == nr)
8750 break;
8751 }
8752
8753 if (!rdev || rdev->desc_nr != nr) {
8754 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8755 return;
8756 }
8757
8758 err = read_rdev(mddev, rdev);
8759 if (err < 0)
8760 return;
8761
8762 check_sb_changes(mddev, rdev);
8763
8764 /* Read all rdev's to update recovery_offset */
8765 rdev_for_each_rcu(rdev, mddev)
8766 read_rdev(mddev, rdev);
8767 }
8768 EXPORT_SYMBOL(md_reload_sb);
8769
8770 #ifndef MODULE
8771
8772 /*
8773 * Searches all registered partitions for autorun RAID arrays
8774 * at boot time.
8775 */
8776
8777 static LIST_HEAD(all_detected_devices);
8778 struct detected_devices_node {
8779 struct list_head list;
8780 dev_t dev;
8781 };
8782
8783 void md_autodetect_dev(dev_t dev)
8784 {
8785 struct detected_devices_node *node_detected_dev;
8786
8787 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8788 if (node_detected_dev) {
8789 node_detected_dev->dev = dev;
8790 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8791 } else {
8792 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8793 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8794 }
8795 }
8796
8797 static void autostart_arrays(int part)
8798 {
8799 struct md_rdev *rdev;
8800 struct detected_devices_node *node_detected_dev;
8801 dev_t dev;
8802 int i_scanned, i_passed;
8803
8804 i_scanned = 0;
8805 i_passed = 0;
8806
8807 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8808
8809 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8810 i_scanned++;
8811 node_detected_dev = list_entry(all_detected_devices.next,
8812 struct detected_devices_node, list);
8813 list_del(&node_detected_dev->list);
8814 dev = node_detected_dev->dev;
8815 kfree(node_detected_dev);
8816 rdev = md_import_device(dev,0, 90);
8817 if (IS_ERR(rdev))
8818 continue;
8819
8820 if (test_bit(Faulty, &rdev->flags))
8821 continue;
8822
8823 set_bit(AutoDetected, &rdev->flags);
8824 list_add(&rdev->same_set, &pending_raid_disks);
8825 i_passed++;
8826 }
8827
8828 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8829 i_scanned, i_passed);
8830
8831 autorun_devices(part);
8832 }
8833
8834 #endif /* !MODULE */
8835
8836 static __exit void md_exit(void)
8837 {
8838 struct mddev *mddev;
8839 struct list_head *tmp;
8840 int delay = 1;
8841
8842 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8843 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8844
8845 unregister_blkdev(MD_MAJOR,"md");
8846 unregister_blkdev(mdp_major, "mdp");
8847 unregister_reboot_notifier(&md_notifier);
8848 unregister_sysctl_table(raid_table_header);
8849
8850 /* We cannot unload the modules while some process is
8851 * waiting for us in select() or poll() - wake them up
8852 */
8853 md_unloading = 1;
8854 while (waitqueue_active(&md_event_waiters)) {
8855 /* not safe to leave yet */
8856 wake_up(&md_event_waiters);
8857 msleep(delay);
8858 delay += delay;
8859 }
8860 remove_proc_entry("mdstat", NULL);
8861
8862 for_each_mddev(mddev, tmp) {
8863 export_array(mddev);
8864 mddev->hold_active = 0;
8865 }
8866 destroy_workqueue(md_misc_wq);
8867 destroy_workqueue(md_wq);
8868 }
8869
8870 subsys_initcall(md_init);
8871 module_exit(md_exit)
8872
8873 static int get_ro(char *buffer, struct kernel_param *kp)
8874 {
8875 return sprintf(buffer, "%d", start_readonly);
8876 }
8877 static int set_ro(const char *val, struct kernel_param *kp)
8878 {
8879 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8880 }
8881
8882 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8883 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8884 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8885
8886 MODULE_LICENSE("GPL");
8887 MODULE_DESCRIPTION("MD RAID framework");
8888 MODULE_ALIAS("md");
8889 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.302819 seconds and 6 git commands to generate.