Merge tag 'mvebu-fixes-4.0-2' of git://git.infradead.org/linux-mvebu into next/dt
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75 static void mddev_detach(struct mddev *mddev);
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static struct ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static struct ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static struct ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
159 struct mddev *mddev)
160 {
161 struct bio *b;
162
163 if (!mddev || !mddev->bio_set)
164 return bio_alloc(gfp_mask, nr_iovecs);
165
166 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
167 if (!b)
168 return NULL;
169 return b;
170 }
171 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
172
173 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
174 struct mddev *mddev)
175 {
176 if (!mddev || !mddev->bio_set)
177 return bio_clone(bio, gfp_mask);
178
179 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
180 }
181 EXPORT_SYMBOL_GPL(bio_clone_mddev);
182
183 /*
184 * We have a system wide 'event count' that is incremented
185 * on any 'interesting' event, and readers of /proc/mdstat
186 * can use 'poll' or 'select' to find out when the event
187 * count increases.
188 *
189 * Events are:
190 * start array, stop array, error, add device, remove device,
191 * start build, activate spare
192 */
193 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
194 static atomic_t md_event_count;
195 void md_new_event(struct mddev *mddev)
196 {
197 atomic_inc(&md_event_count);
198 wake_up(&md_event_waiters);
199 }
200 EXPORT_SYMBOL_GPL(md_new_event);
201
202 /* Alternate version that can be called from interrupts
203 * when calling sysfs_notify isn't needed.
204 */
205 static void md_new_event_inintr(struct mddev *mddev)
206 {
207 atomic_inc(&md_event_count);
208 wake_up(&md_event_waiters);
209 }
210
211 /*
212 * Enables to iterate over all existing md arrays
213 * all_mddevs_lock protects this list.
214 */
215 static LIST_HEAD(all_mddevs);
216 static DEFINE_SPINLOCK(all_mddevs_lock);
217
218 /*
219 * iterates through all used mddevs in the system.
220 * We take care to grab the all_mddevs_lock whenever navigating
221 * the list, and to always hold a refcount when unlocked.
222 * Any code which breaks out of this loop while own
223 * a reference to the current mddev and must mddev_put it.
224 */
225 #define for_each_mddev(_mddev,_tmp) \
226 \
227 for (({ spin_lock(&all_mddevs_lock); \
228 _tmp = all_mddevs.next; \
229 _mddev = NULL;}); \
230 ({ if (_tmp != &all_mddevs) \
231 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
232 spin_unlock(&all_mddevs_lock); \
233 if (_mddev) mddev_put(_mddev); \
234 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
235 _tmp != &all_mddevs;}); \
236 ({ spin_lock(&all_mddevs_lock); \
237 _tmp = _tmp->next;}) \
238 )
239
240 /* Rather than calling directly into the personality make_request function,
241 * IO requests come here first so that we can check if the device is
242 * being suspended pending a reconfiguration.
243 * We hold a refcount over the call to ->make_request. By the time that
244 * call has finished, the bio has been linked into some internal structure
245 * and so is visible to ->quiesce(), so we don't need the refcount any more.
246 */
247 static void md_make_request(struct request_queue *q, struct bio *bio)
248 {
249 const int rw = bio_data_dir(bio);
250 struct mddev *mddev = q->queuedata;
251 unsigned int sectors;
252
253 if (mddev == NULL || mddev->pers == NULL
254 || !mddev->ready) {
255 bio_io_error(bio);
256 return;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 return;
261 }
262 smp_rmb(); /* Ensure implications of 'active' are visible */
263 rcu_read_lock();
264 if (mddev->suspended) {
265 DEFINE_WAIT(__wait);
266 for (;;) {
267 prepare_to_wait(&mddev->sb_wait, &__wait,
268 TASK_UNINTERRUPTIBLE);
269 if (!mddev->suspended)
270 break;
271 rcu_read_unlock();
272 schedule();
273 rcu_read_lock();
274 }
275 finish_wait(&mddev->sb_wait, &__wait);
276 }
277 atomic_inc(&mddev->active_io);
278 rcu_read_unlock();
279
280 /*
281 * save the sectors now since our bio can
282 * go away inside make_request
283 */
284 sectors = bio_sectors(bio);
285 mddev->pers->make_request(mddev, bio);
286
287 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
288
289 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
290 wake_up(&mddev->sb_wait);
291 }
292
293 /* mddev_suspend makes sure no new requests are submitted
294 * to the device, and that any requests that have been submitted
295 * are completely handled.
296 * Once mddev_detach() is called and completes, the module will be
297 * completely unused.
298 */
299 void mddev_suspend(struct mddev *mddev)
300 {
301 BUG_ON(mddev->suspended);
302 mddev->suspended = 1;
303 synchronize_rcu();
304 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
305 mddev->pers->quiesce(mddev, 1);
306
307 del_timer_sync(&mddev->safemode_timer);
308 }
309 EXPORT_SYMBOL_GPL(mddev_suspend);
310
311 void mddev_resume(struct mddev *mddev)
312 {
313 mddev->suspended = 0;
314 wake_up(&mddev->sb_wait);
315 mddev->pers->quiesce(mddev, 0);
316
317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
318 md_wakeup_thread(mddev->thread);
319 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
320 }
321 EXPORT_SYMBOL_GPL(mddev_resume);
322
323 int mddev_congested(struct mddev *mddev, int bits)
324 {
325 struct md_personality *pers = mddev->pers;
326 int ret = 0;
327
328 rcu_read_lock();
329 if (mddev->suspended)
330 ret = 1;
331 else if (pers && pers->congested)
332 ret = pers->congested(mddev, bits);
333 rcu_read_unlock();
334 return ret;
335 }
336 EXPORT_SYMBOL_GPL(mddev_congested);
337 static int md_congested(void *data, int bits)
338 {
339 struct mddev *mddev = data;
340 return mddev_congested(mddev, bits);
341 }
342
343 static int md_mergeable_bvec(struct request_queue *q,
344 struct bvec_merge_data *bvm,
345 struct bio_vec *biovec)
346 {
347 struct mddev *mddev = q->queuedata;
348 int ret;
349 rcu_read_lock();
350 if (mddev->suspended) {
351 /* Must always allow one vec */
352 if (bvm->bi_size == 0)
353 ret = biovec->bv_len;
354 else
355 ret = 0;
356 } else {
357 struct md_personality *pers = mddev->pers;
358 if (pers && pers->mergeable_bvec)
359 ret = pers->mergeable_bvec(mddev, bvm, biovec);
360 else
361 ret = biovec->bv_len;
362 }
363 rcu_read_unlock();
364 return ret;
365 }
366 /*
367 * Generic flush handling for md
368 */
369
370 static void md_end_flush(struct bio *bio, int err)
371 {
372 struct md_rdev *rdev = bio->bi_private;
373 struct mddev *mddev = rdev->mddev;
374
375 rdev_dec_pending(rdev, mddev);
376
377 if (atomic_dec_and_test(&mddev->flush_pending)) {
378 /* The pre-request flush has finished */
379 queue_work(md_wq, &mddev->flush_work);
380 }
381 bio_put(bio);
382 }
383
384 static void md_submit_flush_data(struct work_struct *ws);
385
386 static void submit_flushes(struct work_struct *ws)
387 {
388 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
389 struct md_rdev *rdev;
390
391 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
392 atomic_set(&mddev->flush_pending, 1);
393 rcu_read_lock();
394 rdev_for_each_rcu(rdev, mddev)
395 if (rdev->raid_disk >= 0 &&
396 !test_bit(Faulty, &rdev->flags)) {
397 /* Take two references, one is dropped
398 * when request finishes, one after
399 * we reclaim rcu_read_lock
400 */
401 struct bio *bi;
402 atomic_inc(&rdev->nr_pending);
403 atomic_inc(&rdev->nr_pending);
404 rcu_read_unlock();
405 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
406 bi->bi_end_io = md_end_flush;
407 bi->bi_private = rdev;
408 bi->bi_bdev = rdev->bdev;
409 atomic_inc(&mddev->flush_pending);
410 submit_bio(WRITE_FLUSH, bi);
411 rcu_read_lock();
412 rdev_dec_pending(rdev, mddev);
413 }
414 rcu_read_unlock();
415 if (atomic_dec_and_test(&mddev->flush_pending))
416 queue_work(md_wq, &mddev->flush_work);
417 }
418
419 static void md_submit_flush_data(struct work_struct *ws)
420 {
421 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
422 struct bio *bio = mddev->flush_bio;
423
424 if (bio->bi_iter.bi_size == 0)
425 /* an empty barrier - all done */
426 bio_endio(bio, 0);
427 else {
428 bio->bi_rw &= ~REQ_FLUSH;
429 mddev->pers->make_request(mddev, bio);
430 }
431
432 mddev->flush_bio = NULL;
433 wake_up(&mddev->sb_wait);
434 }
435
436 void md_flush_request(struct mddev *mddev, struct bio *bio)
437 {
438 spin_lock_irq(&mddev->lock);
439 wait_event_lock_irq(mddev->sb_wait,
440 !mddev->flush_bio,
441 mddev->lock);
442 mddev->flush_bio = bio;
443 spin_unlock_irq(&mddev->lock);
444
445 INIT_WORK(&mddev->flush_work, submit_flushes);
446 queue_work(md_wq, &mddev->flush_work);
447 }
448 EXPORT_SYMBOL(md_flush_request);
449
450 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
451 {
452 struct mddev *mddev = cb->data;
453 md_wakeup_thread(mddev->thread);
454 kfree(cb);
455 }
456 EXPORT_SYMBOL(md_unplug);
457
458 static inline struct mddev *mddev_get(struct mddev *mddev)
459 {
460 atomic_inc(&mddev->active);
461 return mddev;
462 }
463
464 static void mddev_delayed_delete(struct work_struct *ws);
465
466 static void mddev_put(struct mddev *mddev)
467 {
468 struct bio_set *bs = NULL;
469
470 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
471 return;
472 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
473 mddev->ctime == 0 && !mddev->hold_active) {
474 /* Array is not configured at all, and not held active,
475 * so destroy it */
476 list_del_init(&mddev->all_mddevs);
477 bs = mddev->bio_set;
478 mddev->bio_set = NULL;
479 if (mddev->gendisk) {
480 /* We did a probe so need to clean up. Call
481 * queue_work inside the spinlock so that
482 * flush_workqueue() after mddev_find will
483 * succeed in waiting for the work to be done.
484 */
485 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
486 queue_work(md_misc_wq, &mddev->del_work);
487 } else
488 kfree(mddev);
489 }
490 spin_unlock(&all_mddevs_lock);
491 if (bs)
492 bioset_free(bs);
493 }
494
495 void mddev_init(struct mddev *mddev)
496 {
497 mutex_init(&mddev->open_mutex);
498 mutex_init(&mddev->reconfig_mutex);
499 mutex_init(&mddev->bitmap_info.mutex);
500 INIT_LIST_HEAD(&mddev->disks);
501 INIT_LIST_HEAD(&mddev->all_mddevs);
502 init_timer(&mddev->safemode_timer);
503 atomic_set(&mddev->active, 1);
504 atomic_set(&mddev->openers, 0);
505 atomic_set(&mddev->active_io, 0);
506 spin_lock_init(&mddev->lock);
507 atomic_set(&mddev->flush_pending, 0);
508 init_waitqueue_head(&mddev->sb_wait);
509 init_waitqueue_head(&mddev->recovery_wait);
510 mddev->reshape_position = MaxSector;
511 mddev->reshape_backwards = 0;
512 mddev->last_sync_action = "none";
513 mddev->resync_min = 0;
514 mddev->resync_max = MaxSector;
515 mddev->level = LEVEL_NONE;
516 }
517 EXPORT_SYMBOL_GPL(mddev_init);
518
519 static struct mddev *mddev_find(dev_t unit)
520 {
521 struct mddev *mddev, *new = NULL;
522
523 if (unit && MAJOR(unit) != MD_MAJOR)
524 unit &= ~((1<<MdpMinorShift)-1);
525
526 retry:
527 spin_lock(&all_mddevs_lock);
528
529 if (unit) {
530 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 if (mddev->unit == unit) {
532 mddev_get(mddev);
533 spin_unlock(&all_mddevs_lock);
534 kfree(new);
535 return mddev;
536 }
537
538 if (new) {
539 list_add(&new->all_mddevs, &all_mddevs);
540 spin_unlock(&all_mddevs_lock);
541 new->hold_active = UNTIL_IOCTL;
542 return new;
543 }
544 } else if (new) {
545 /* find an unused unit number */
546 static int next_minor = 512;
547 int start = next_minor;
548 int is_free = 0;
549 int dev = 0;
550 while (!is_free) {
551 dev = MKDEV(MD_MAJOR, next_minor);
552 next_minor++;
553 if (next_minor > MINORMASK)
554 next_minor = 0;
555 if (next_minor == start) {
556 /* Oh dear, all in use. */
557 spin_unlock(&all_mddevs_lock);
558 kfree(new);
559 return NULL;
560 }
561
562 is_free = 1;
563 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
564 if (mddev->unit == dev) {
565 is_free = 0;
566 break;
567 }
568 }
569 new->unit = dev;
570 new->md_minor = MINOR(dev);
571 new->hold_active = UNTIL_STOP;
572 list_add(&new->all_mddevs, &all_mddevs);
573 spin_unlock(&all_mddevs_lock);
574 return new;
575 }
576 spin_unlock(&all_mddevs_lock);
577
578 new = kzalloc(sizeof(*new), GFP_KERNEL);
579 if (!new)
580 return NULL;
581
582 new->unit = unit;
583 if (MAJOR(unit) == MD_MAJOR)
584 new->md_minor = MINOR(unit);
585 else
586 new->md_minor = MINOR(unit) >> MdpMinorShift;
587
588 mddev_init(new);
589
590 goto retry;
591 }
592
593 static struct attribute_group md_redundancy_group;
594
595 void mddev_unlock(struct mddev *mddev)
596 {
597 if (mddev->to_remove) {
598 /* These cannot be removed under reconfig_mutex as
599 * an access to the files will try to take reconfig_mutex
600 * while holding the file unremovable, which leads to
601 * a deadlock.
602 * So hold set sysfs_active while the remove in happeing,
603 * and anything else which might set ->to_remove or my
604 * otherwise change the sysfs namespace will fail with
605 * -EBUSY if sysfs_active is still set.
606 * We set sysfs_active under reconfig_mutex and elsewhere
607 * test it under the same mutex to ensure its correct value
608 * is seen.
609 */
610 struct attribute_group *to_remove = mddev->to_remove;
611 mddev->to_remove = NULL;
612 mddev->sysfs_active = 1;
613 mutex_unlock(&mddev->reconfig_mutex);
614
615 if (mddev->kobj.sd) {
616 if (to_remove != &md_redundancy_group)
617 sysfs_remove_group(&mddev->kobj, to_remove);
618 if (mddev->pers == NULL ||
619 mddev->pers->sync_request == NULL) {
620 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
621 if (mddev->sysfs_action)
622 sysfs_put(mddev->sysfs_action);
623 mddev->sysfs_action = NULL;
624 }
625 }
626 mddev->sysfs_active = 0;
627 } else
628 mutex_unlock(&mddev->reconfig_mutex);
629
630 /* As we've dropped the mutex we need a spinlock to
631 * make sure the thread doesn't disappear
632 */
633 spin_lock(&pers_lock);
634 md_wakeup_thread(mddev->thread);
635 spin_unlock(&pers_lock);
636 }
637 EXPORT_SYMBOL_GPL(mddev_unlock);
638
639 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
640 {
641 struct md_rdev *rdev;
642
643 rdev_for_each_rcu(rdev, mddev)
644 if (rdev->desc_nr == nr)
645 return rdev;
646
647 return NULL;
648 }
649
650 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
651 {
652 struct md_rdev *rdev;
653
654 rdev_for_each(rdev, mddev)
655 if (rdev->bdev->bd_dev == dev)
656 return rdev;
657
658 return NULL;
659 }
660
661 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each_rcu(rdev, mddev)
666 if (rdev->bdev->bd_dev == dev)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_personality *find_pers(int level, char *clevel)
673 {
674 struct md_personality *pers;
675 list_for_each_entry(pers, &pers_list, list) {
676 if (level != LEVEL_NONE && pers->level == level)
677 return pers;
678 if (strcmp(pers->name, clevel)==0)
679 return pers;
680 }
681 return NULL;
682 }
683
684 /* return the offset of the super block in 512byte sectors */
685 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
686 {
687 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
688 return MD_NEW_SIZE_SECTORS(num_sectors);
689 }
690
691 static int alloc_disk_sb(struct md_rdev *rdev)
692 {
693 rdev->sb_page = alloc_page(GFP_KERNEL);
694 if (!rdev->sb_page) {
695 printk(KERN_ALERT "md: out of memory.\n");
696 return -ENOMEM;
697 }
698
699 return 0;
700 }
701
702 void md_rdev_clear(struct md_rdev *rdev)
703 {
704 if (rdev->sb_page) {
705 put_page(rdev->sb_page);
706 rdev->sb_loaded = 0;
707 rdev->sb_page = NULL;
708 rdev->sb_start = 0;
709 rdev->sectors = 0;
710 }
711 if (rdev->bb_page) {
712 put_page(rdev->bb_page);
713 rdev->bb_page = NULL;
714 }
715 kfree(rdev->badblocks.page);
716 rdev->badblocks.page = NULL;
717 }
718 EXPORT_SYMBOL_GPL(md_rdev_clear);
719
720 static void super_written(struct bio *bio, int error)
721 {
722 struct md_rdev *rdev = bio->bi_private;
723 struct mddev *mddev = rdev->mddev;
724
725 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
726 printk("md: super_written gets error=%d, uptodate=%d\n",
727 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
728 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
729 md_error(mddev, rdev);
730 }
731
732 if (atomic_dec_and_test(&mddev->pending_writes))
733 wake_up(&mddev->sb_wait);
734 bio_put(bio);
735 }
736
737 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
738 sector_t sector, int size, struct page *page)
739 {
740 /* write first size bytes of page to sector of rdev
741 * Increment mddev->pending_writes before returning
742 * and decrement it on completion, waking up sb_wait
743 * if zero is reached.
744 * If an error occurred, call md_error
745 */
746 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
747
748 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
749 bio->bi_iter.bi_sector = sector;
750 bio_add_page(bio, page, size, 0);
751 bio->bi_private = rdev;
752 bio->bi_end_io = super_written;
753
754 atomic_inc(&mddev->pending_writes);
755 submit_bio(WRITE_FLUSH_FUA, bio);
756 }
757
758 void md_super_wait(struct mddev *mddev)
759 {
760 /* wait for all superblock writes that were scheduled to complete */
761 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
762 }
763
764 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
765 struct page *page, int rw, bool metadata_op)
766 {
767 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
768 int ret;
769
770 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
771 rdev->meta_bdev : rdev->bdev;
772 if (metadata_op)
773 bio->bi_iter.bi_sector = sector + rdev->sb_start;
774 else if (rdev->mddev->reshape_position != MaxSector &&
775 (rdev->mddev->reshape_backwards ==
776 (sector >= rdev->mddev->reshape_position)))
777 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
778 else
779 bio->bi_iter.bi_sector = sector + rdev->data_offset;
780 bio_add_page(bio, page, size, 0);
781 submit_bio_wait(rw, bio);
782
783 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
784 bio_put(bio);
785 return ret;
786 }
787 EXPORT_SYMBOL_GPL(sync_page_io);
788
789 static int read_disk_sb(struct md_rdev *rdev, int size)
790 {
791 char b[BDEVNAME_SIZE];
792
793 if (rdev->sb_loaded)
794 return 0;
795
796 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
797 goto fail;
798 rdev->sb_loaded = 1;
799 return 0;
800
801 fail:
802 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
803 bdevname(rdev->bdev,b));
804 return -EINVAL;
805 }
806
807 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
808 {
809 return sb1->set_uuid0 == sb2->set_uuid0 &&
810 sb1->set_uuid1 == sb2->set_uuid1 &&
811 sb1->set_uuid2 == sb2->set_uuid2 &&
812 sb1->set_uuid3 == sb2->set_uuid3;
813 }
814
815 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
816 {
817 int ret;
818 mdp_super_t *tmp1, *tmp2;
819
820 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
821 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
822
823 if (!tmp1 || !tmp2) {
824 ret = 0;
825 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
826 goto abort;
827 }
828
829 *tmp1 = *sb1;
830 *tmp2 = *sb2;
831
832 /*
833 * nr_disks is not constant
834 */
835 tmp1->nr_disks = 0;
836 tmp2->nr_disks = 0;
837
838 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
839 abort:
840 kfree(tmp1);
841 kfree(tmp2);
842 return ret;
843 }
844
845 static u32 md_csum_fold(u32 csum)
846 {
847 csum = (csum & 0xffff) + (csum >> 16);
848 return (csum & 0xffff) + (csum >> 16);
849 }
850
851 static unsigned int calc_sb_csum(mdp_super_t *sb)
852 {
853 u64 newcsum = 0;
854 u32 *sb32 = (u32*)sb;
855 int i;
856 unsigned int disk_csum, csum;
857
858 disk_csum = sb->sb_csum;
859 sb->sb_csum = 0;
860
861 for (i = 0; i < MD_SB_BYTES/4 ; i++)
862 newcsum += sb32[i];
863 csum = (newcsum & 0xffffffff) + (newcsum>>32);
864
865 #ifdef CONFIG_ALPHA
866 /* This used to use csum_partial, which was wrong for several
867 * reasons including that different results are returned on
868 * different architectures. It isn't critical that we get exactly
869 * the same return value as before (we always csum_fold before
870 * testing, and that removes any differences). However as we
871 * know that csum_partial always returned a 16bit value on
872 * alphas, do a fold to maximise conformity to previous behaviour.
873 */
874 sb->sb_csum = md_csum_fold(disk_csum);
875 #else
876 sb->sb_csum = disk_csum;
877 #endif
878 return csum;
879 }
880
881 /*
882 * Handle superblock details.
883 * We want to be able to handle multiple superblock formats
884 * so we have a common interface to them all, and an array of
885 * different handlers.
886 * We rely on user-space to write the initial superblock, and support
887 * reading and updating of superblocks.
888 * Interface methods are:
889 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
890 * loads and validates a superblock on dev.
891 * if refdev != NULL, compare superblocks on both devices
892 * Return:
893 * 0 - dev has a superblock that is compatible with refdev
894 * 1 - dev has a superblock that is compatible and newer than refdev
895 * so dev should be used as the refdev in future
896 * -EINVAL superblock incompatible or invalid
897 * -othererror e.g. -EIO
898 *
899 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
900 * Verify that dev is acceptable into mddev.
901 * The first time, mddev->raid_disks will be 0, and data from
902 * dev should be merged in. Subsequent calls check that dev
903 * is new enough. Return 0 or -EINVAL
904 *
905 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
906 * Update the superblock for rdev with data in mddev
907 * This does not write to disc.
908 *
909 */
910
911 struct super_type {
912 char *name;
913 struct module *owner;
914 int (*load_super)(struct md_rdev *rdev,
915 struct md_rdev *refdev,
916 int minor_version);
917 int (*validate_super)(struct mddev *mddev,
918 struct md_rdev *rdev);
919 void (*sync_super)(struct mddev *mddev,
920 struct md_rdev *rdev);
921 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
922 sector_t num_sectors);
923 int (*allow_new_offset)(struct md_rdev *rdev,
924 unsigned long long new_offset);
925 };
926
927 /*
928 * Check that the given mddev has no bitmap.
929 *
930 * This function is called from the run method of all personalities that do not
931 * support bitmaps. It prints an error message and returns non-zero if mddev
932 * has a bitmap. Otherwise, it returns 0.
933 *
934 */
935 int md_check_no_bitmap(struct mddev *mddev)
936 {
937 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
938 return 0;
939 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
940 mdname(mddev), mddev->pers->name);
941 return 1;
942 }
943 EXPORT_SYMBOL(md_check_no_bitmap);
944
945 /*
946 * load_super for 0.90.0
947 */
948 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
949 {
950 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
951 mdp_super_t *sb;
952 int ret;
953
954 /*
955 * Calculate the position of the superblock (512byte sectors),
956 * it's at the end of the disk.
957 *
958 * It also happens to be a multiple of 4Kb.
959 */
960 rdev->sb_start = calc_dev_sboffset(rdev);
961
962 ret = read_disk_sb(rdev, MD_SB_BYTES);
963 if (ret) return ret;
964
965 ret = -EINVAL;
966
967 bdevname(rdev->bdev, b);
968 sb = page_address(rdev->sb_page);
969
970 if (sb->md_magic != MD_SB_MAGIC) {
971 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
972 b);
973 goto abort;
974 }
975
976 if (sb->major_version != 0 ||
977 sb->minor_version < 90 ||
978 sb->minor_version > 91) {
979 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
980 sb->major_version, sb->minor_version,
981 b);
982 goto abort;
983 }
984
985 if (sb->raid_disks <= 0)
986 goto abort;
987
988 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
989 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
990 b);
991 goto abort;
992 }
993
994 rdev->preferred_minor = sb->md_minor;
995 rdev->data_offset = 0;
996 rdev->new_data_offset = 0;
997 rdev->sb_size = MD_SB_BYTES;
998 rdev->badblocks.shift = -1;
999
1000 if (sb->level == LEVEL_MULTIPATH)
1001 rdev->desc_nr = -1;
1002 else
1003 rdev->desc_nr = sb->this_disk.number;
1004
1005 if (!refdev) {
1006 ret = 1;
1007 } else {
1008 __u64 ev1, ev2;
1009 mdp_super_t *refsb = page_address(refdev->sb_page);
1010 if (!uuid_equal(refsb, sb)) {
1011 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1012 b, bdevname(refdev->bdev,b2));
1013 goto abort;
1014 }
1015 if (!sb_equal(refsb, sb)) {
1016 printk(KERN_WARNING "md: %s has same UUID"
1017 " but different superblock to %s\n",
1018 b, bdevname(refdev->bdev, b2));
1019 goto abort;
1020 }
1021 ev1 = md_event(sb);
1022 ev2 = md_event(refsb);
1023 if (ev1 > ev2)
1024 ret = 1;
1025 else
1026 ret = 0;
1027 }
1028 rdev->sectors = rdev->sb_start;
1029 /* Limit to 4TB as metadata cannot record more than that.
1030 * (not needed for Linear and RAID0 as metadata doesn't
1031 * record this size)
1032 */
1033 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1034 rdev->sectors = (2ULL << 32) - 2;
1035
1036 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1037 /* "this cannot possibly happen" ... */
1038 ret = -EINVAL;
1039
1040 abort:
1041 return ret;
1042 }
1043
1044 /*
1045 * validate_super for 0.90.0
1046 */
1047 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1048 {
1049 mdp_disk_t *desc;
1050 mdp_super_t *sb = page_address(rdev->sb_page);
1051 __u64 ev1 = md_event(sb);
1052
1053 rdev->raid_disk = -1;
1054 clear_bit(Faulty, &rdev->flags);
1055 clear_bit(In_sync, &rdev->flags);
1056 clear_bit(Bitmap_sync, &rdev->flags);
1057 clear_bit(WriteMostly, &rdev->flags);
1058
1059 if (mddev->raid_disks == 0) {
1060 mddev->major_version = 0;
1061 mddev->minor_version = sb->minor_version;
1062 mddev->patch_version = sb->patch_version;
1063 mddev->external = 0;
1064 mddev->chunk_sectors = sb->chunk_size >> 9;
1065 mddev->ctime = sb->ctime;
1066 mddev->utime = sb->utime;
1067 mddev->level = sb->level;
1068 mddev->clevel[0] = 0;
1069 mddev->layout = sb->layout;
1070 mddev->raid_disks = sb->raid_disks;
1071 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1072 mddev->events = ev1;
1073 mddev->bitmap_info.offset = 0;
1074 mddev->bitmap_info.space = 0;
1075 /* bitmap can use 60 K after the 4K superblocks */
1076 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1077 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1078 mddev->reshape_backwards = 0;
1079
1080 if (mddev->minor_version >= 91) {
1081 mddev->reshape_position = sb->reshape_position;
1082 mddev->delta_disks = sb->delta_disks;
1083 mddev->new_level = sb->new_level;
1084 mddev->new_layout = sb->new_layout;
1085 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1086 if (mddev->delta_disks < 0)
1087 mddev->reshape_backwards = 1;
1088 } else {
1089 mddev->reshape_position = MaxSector;
1090 mddev->delta_disks = 0;
1091 mddev->new_level = mddev->level;
1092 mddev->new_layout = mddev->layout;
1093 mddev->new_chunk_sectors = mddev->chunk_sectors;
1094 }
1095
1096 if (sb->state & (1<<MD_SB_CLEAN))
1097 mddev->recovery_cp = MaxSector;
1098 else {
1099 if (sb->events_hi == sb->cp_events_hi &&
1100 sb->events_lo == sb->cp_events_lo) {
1101 mddev->recovery_cp = sb->recovery_cp;
1102 } else
1103 mddev->recovery_cp = 0;
1104 }
1105
1106 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1107 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1108 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1109 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1110
1111 mddev->max_disks = MD_SB_DISKS;
1112
1113 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1114 mddev->bitmap_info.file == NULL) {
1115 mddev->bitmap_info.offset =
1116 mddev->bitmap_info.default_offset;
1117 mddev->bitmap_info.space =
1118 mddev->bitmap_info.default_space;
1119 }
1120
1121 } else if (mddev->pers == NULL) {
1122 /* Insist on good event counter while assembling, except
1123 * for spares (which don't need an event count) */
1124 ++ev1;
1125 if (sb->disks[rdev->desc_nr].state & (
1126 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1127 if (ev1 < mddev->events)
1128 return -EINVAL;
1129 } else if (mddev->bitmap) {
1130 /* if adding to array with a bitmap, then we can accept an
1131 * older device ... but not too old.
1132 */
1133 if (ev1 < mddev->bitmap->events_cleared)
1134 return 0;
1135 if (ev1 < mddev->events)
1136 set_bit(Bitmap_sync, &rdev->flags);
1137 } else {
1138 if (ev1 < mddev->events)
1139 /* just a hot-add of a new device, leave raid_disk at -1 */
1140 return 0;
1141 }
1142
1143 if (mddev->level != LEVEL_MULTIPATH) {
1144 desc = sb->disks + rdev->desc_nr;
1145
1146 if (desc->state & (1<<MD_DISK_FAULTY))
1147 set_bit(Faulty, &rdev->flags);
1148 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1149 desc->raid_disk < mddev->raid_disks */) {
1150 set_bit(In_sync, &rdev->flags);
1151 rdev->raid_disk = desc->raid_disk;
1152 rdev->saved_raid_disk = desc->raid_disk;
1153 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1154 /* active but not in sync implies recovery up to
1155 * reshape position. We don't know exactly where
1156 * that is, so set to zero for now */
1157 if (mddev->minor_version >= 91) {
1158 rdev->recovery_offset = 0;
1159 rdev->raid_disk = desc->raid_disk;
1160 }
1161 }
1162 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1163 set_bit(WriteMostly, &rdev->flags);
1164 } else /* MULTIPATH are always insync */
1165 set_bit(In_sync, &rdev->flags);
1166 return 0;
1167 }
1168
1169 /*
1170 * sync_super for 0.90.0
1171 */
1172 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1173 {
1174 mdp_super_t *sb;
1175 struct md_rdev *rdev2;
1176 int next_spare = mddev->raid_disks;
1177
1178 /* make rdev->sb match mddev data..
1179 *
1180 * 1/ zero out disks
1181 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1182 * 3/ any empty disks < next_spare become removed
1183 *
1184 * disks[0] gets initialised to REMOVED because
1185 * we cannot be sure from other fields if it has
1186 * been initialised or not.
1187 */
1188 int i;
1189 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1190
1191 rdev->sb_size = MD_SB_BYTES;
1192
1193 sb = page_address(rdev->sb_page);
1194
1195 memset(sb, 0, sizeof(*sb));
1196
1197 sb->md_magic = MD_SB_MAGIC;
1198 sb->major_version = mddev->major_version;
1199 sb->patch_version = mddev->patch_version;
1200 sb->gvalid_words = 0; /* ignored */
1201 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1202 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1203 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1204 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1205
1206 sb->ctime = mddev->ctime;
1207 sb->level = mddev->level;
1208 sb->size = mddev->dev_sectors / 2;
1209 sb->raid_disks = mddev->raid_disks;
1210 sb->md_minor = mddev->md_minor;
1211 sb->not_persistent = 0;
1212 sb->utime = mddev->utime;
1213 sb->state = 0;
1214 sb->events_hi = (mddev->events>>32);
1215 sb->events_lo = (u32)mddev->events;
1216
1217 if (mddev->reshape_position == MaxSector)
1218 sb->minor_version = 90;
1219 else {
1220 sb->minor_version = 91;
1221 sb->reshape_position = mddev->reshape_position;
1222 sb->new_level = mddev->new_level;
1223 sb->delta_disks = mddev->delta_disks;
1224 sb->new_layout = mddev->new_layout;
1225 sb->new_chunk = mddev->new_chunk_sectors << 9;
1226 }
1227 mddev->minor_version = sb->minor_version;
1228 if (mddev->in_sync)
1229 {
1230 sb->recovery_cp = mddev->recovery_cp;
1231 sb->cp_events_hi = (mddev->events>>32);
1232 sb->cp_events_lo = (u32)mddev->events;
1233 if (mddev->recovery_cp == MaxSector)
1234 sb->state = (1<< MD_SB_CLEAN);
1235 } else
1236 sb->recovery_cp = 0;
1237
1238 sb->layout = mddev->layout;
1239 sb->chunk_size = mddev->chunk_sectors << 9;
1240
1241 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1242 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1243
1244 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1245 rdev_for_each(rdev2, mddev) {
1246 mdp_disk_t *d;
1247 int desc_nr;
1248 int is_active = test_bit(In_sync, &rdev2->flags);
1249
1250 if (rdev2->raid_disk >= 0 &&
1251 sb->minor_version >= 91)
1252 /* we have nowhere to store the recovery_offset,
1253 * but if it is not below the reshape_position,
1254 * we can piggy-back on that.
1255 */
1256 is_active = 1;
1257 if (rdev2->raid_disk < 0 ||
1258 test_bit(Faulty, &rdev2->flags))
1259 is_active = 0;
1260 if (is_active)
1261 desc_nr = rdev2->raid_disk;
1262 else
1263 desc_nr = next_spare++;
1264 rdev2->desc_nr = desc_nr;
1265 d = &sb->disks[rdev2->desc_nr];
1266 nr_disks++;
1267 d->number = rdev2->desc_nr;
1268 d->major = MAJOR(rdev2->bdev->bd_dev);
1269 d->minor = MINOR(rdev2->bdev->bd_dev);
1270 if (is_active)
1271 d->raid_disk = rdev2->raid_disk;
1272 else
1273 d->raid_disk = rdev2->desc_nr; /* compatibility */
1274 if (test_bit(Faulty, &rdev2->flags))
1275 d->state = (1<<MD_DISK_FAULTY);
1276 else if (is_active) {
1277 d->state = (1<<MD_DISK_ACTIVE);
1278 if (test_bit(In_sync, &rdev2->flags))
1279 d->state |= (1<<MD_DISK_SYNC);
1280 active++;
1281 working++;
1282 } else {
1283 d->state = 0;
1284 spare++;
1285 working++;
1286 }
1287 if (test_bit(WriteMostly, &rdev2->flags))
1288 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1289 }
1290 /* now set the "removed" and "faulty" bits on any missing devices */
1291 for (i=0 ; i < mddev->raid_disks ; i++) {
1292 mdp_disk_t *d = &sb->disks[i];
1293 if (d->state == 0 && d->number == 0) {
1294 d->number = i;
1295 d->raid_disk = i;
1296 d->state = (1<<MD_DISK_REMOVED);
1297 d->state |= (1<<MD_DISK_FAULTY);
1298 failed++;
1299 }
1300 }
1301 sb->nr_disks = nr_disks;
1302 sb->active_disks = active;
1303 sb->working_disks = working;
1304 sb->failed_disks = failed;
1305 sb->spare_disks = spare;
1306
1307 sb->this_disk = sb->disks[rdev->desc_nr];
1308 sb->sb_csum = calc_sb_csum(sb);
1309 }
1310
1311 /*
1312 * rdev_size_change for 0.90.0
1313 */
1314 static unsigned long long
1315 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1316 {
1317 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1318 return 0; /* component must fit device */
1319 if (rdev->mddev->bitmap_info.offset)
1320 return 0; /* can't move bitmap */
1321 rdev->sb_start = calc_dev_sboffset(rdev);
1322 if (!num_sectors || num_sectors > rdev->sb_start)
1323 num_sectors = rdev->sb_start;
1324 /* Limit to 4TB as metadata cannot record more than that.
1325 * 4TB == 2^32 KB, or 2*2^32 sectors.
1326 */
1327 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1328 num_sectors = (2ULL << 32) - 2;
1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 rdev->sb_page);
1331 md_super_wait(rdev->mddev);
1332 return num_sectors;
1333 }
1334
1335 static int
1336 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1337 {
1338 /* non-zero offset changes not possible with v0.90 */
1339 return new_offset == 0;
1340 }
1341
1342 /*
1343 * version 1 superblock
1344 */
1345
1346 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1347 {
1348 __le32 disk_csum;
1349 u32 csum;
1350 unsigned long long newcsum;
1351 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1352 __le32 *isuper = (__le32*)sb;
1353
1354 disk_csum = sb->sb_csum;
1355 sb->sb_csum = 0;
1356 newcsum = 0;
1357 for (; size >= 4; size -= 4)
1358 newcsum += le32_to_cpu(*isuper++);
1359
1360 if (size == 2)
1361 newcsum += le16_to_cpu(*(__le16*) isuper);
1362
1363 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1364 sb->sb_csum = disk_csum;
1365 return cpu_to_le32(csum);
1366 }
1367
1368 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1369 int acknowledged);
1370 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1371 {
1372 struct mdp_superblock_1 *sb;
1373 int ret;
1374 sector_t sb_start;
1375 sector_t sectors;
1376 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1377 int bmask;
1378
1379 /*
1380 * Calculate the position of the superblock in 512byte sectors.
1381 * It is always aligned to a 4K boundary and
1382 * depeding on minor_version, it can be:
1383 * 0: At least 8K, but less than 12K, from end of device
1384 * 1: At start of device
1385 * 2: 4K from start of device.
1386 */
1387 switch(minor_version) {
1388 case 0:
1389 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1390 sb_start -= 8*2;
1391 sb_start &= ~(sector_t)(4*2-1);
1392 break;
1393 case 1:
1394 sb_start = 0;
1395 break;
1396 case 2:
1397 sb_start = 8;
1398 break;
1399 default:
1400 return -EINVAL;
1401 }
1402 rdev->sb_start = sb_start;
1403
1404 /* superblock is rarely larger than 1K, but it can be larger,
1405 * and it is safe to read 4k, so we do that
1406 */
1407 ret = read_disk_sb(rdev, 4096);
1408 if (ret) return ret;
1409
1410 sb = page_address(rdev->sb_page);
1411
1412 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1413 sb->major_version != cpu_to_le32(1) ||
1414 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1415 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1416 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1417 return -EINVAL;
1418
1419 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1420 printk("md: invalid superblock checksum on %s\n",
1421 bdevname(rdev->bdev,b));
1422 return -EINVAL;
1423 }
1424 if (le64_to_cpu(sb->data_size) < 10) {
1425 printk("md: data_size too small on %s\n",
1426 bdevname(rdev->bdev,b));
1427 return -EINVAL;
1428 }
1429 if (sb->pad0 ||
1430 sb->pad3[0] ||
1431 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1432 /* Some padding is non-zero, might be a new feature */
1433 return -EINVAL;
1434
1435 rdev->preferred_minor = 0xffff;
1436 rdev->data_offset = le64_to_cpu(sb->data_offset);
1437 rdev->new_data_offset = rdev->data_offset;
1438 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1439 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1440 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1441 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1442
1443 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1444 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1445 if (rdev->sb_size & bmask)
1446 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1447
1448 if (minor_version
1449 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1450 return -EINVAL;
1451 if (minor_version
1452 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1453 return -EINVAL;
1454
1455 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1456 rdev->desc_nr = -1;
1457 else
1458 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1459
1460 if (!rdev->bb_page) {
1461 rdev->bb_page = alloc_page(GFP_KERNEL);
1462 if (!rdev->bb_page)
1463 return -ENOMEM;
1464 }
1465 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1466 rdev->badblocks.count == 0) {
1467 /* need to load the bad block list.
1468 * Currently we limit it to one page.
1469 */
1470 s32 offset;
1471 sector_t bb_sector;
1472 u64 *bbp;
1473 int i;
1474 int sectors = le16_to_cpu(sb->bblog_size);
1475 if (sectors > (PAGE_SIZE / 512))
1476 return -EINVAL;
1477 offset = le32_to_cpu(sb->bblog_offset);
1478 if (offset == 0)
1479 return -EINVAL;
1480 bb_sector = (long long)offset;
1481 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1482 rdev->bb_page, READ, true))
1483 return -EIO;
1484 bbp = (u64 *)page_address(rdev->bb_page);
1485 rdev->badblocks.shift = sb->bblog_shift;
1486 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1487 u64 bb = le64_to_cpu(*bbp);
1488 int count = bb & (0x3ff);
1489 u64 sector = bb >> 10;
1490 sector <<= sb->bblog_shift;
1491 count <<= sb->bblog_shift;
1492 if (bb + 1 == 0)
1493 break;
1494 if (md_set_badblocks(&rdev->badblocks,
1495 sector, count, 1) == 0)
1496 return -EINVAL;
1497 }
1498 } else if (sb->bblog_offset != 0)
1499 rdev->badblocks.shift = 0;
1500
1501 if (!refdev) {
1502 ret = 1;
1503 } else {
1504 __u64 ev1, ev2;
1505 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1506
1507 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1508 sb->level != refsb->level ||
1509 sb->layout != refsb->layout ||
1510 sb->chunksize != refsb->chunksize) {
1511 printk(KERN_WARNING "md: %s has strangely different"
1512 " superblock to %s\n",
1513 bdevname(rdev->bdev,b),
1514 bdevname(refdev->bdev,b2));
1515 return -EINVAL;
1516 }
1517 ev1 = le64_to_cpu(sb->events);
1518 ev2 = le64_to_cpu(refsb->events);
1519
1520 if (ev1 > ev2)
1521 ret = 1;
1522 else
1523 ret = 0;
1524 }
1525 if (minor_version) {
1526 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1527 sectors -= rdev->data_offset;
1528 } else
1529 sectors = rdev->sb_start;
1530 if (sectors < le64_to_cpu(sb->data_size))
1531 return -EINVAL;
1532 rdev->sectors = le64_to_cpu(sb->data_size);
1533 return ret;
1534 }
1535
1536 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1537 {
1538 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1539 __u64 ev1 = le64_to_cpu(sb->events);
1540
1541 rdev->raid_disk = -1;
1542 clear_bit(Faulty, &rdev->flags);
1543 clear_bit(In_sync, &rdev->flags);
1544 clear_bit(Bitmap_sync, &rdev->flags);
1545 clear_bit(WriteMostly, &rdev->flags);
1546
1547 if (mddev->raid_disks == 0) {
1548 mddev->major_version = 1;
1549 mddev->patch_version = 0;
1550 mddev->external = 0;
1551 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1552 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1553 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1554 mddev->level = le32_to_cpu(sb->level);
1555 mddev->clevel[0] = 0;
1556 mddev->layout = le32_to_cpu(sb->layout);
1557 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1558 mddev->dev_sectors = le64_to_cpu(sb->size);
1559 mddev->events = ev1;
1560 mddev->bitmap_info.offset = 0;
1561 mddev->bitmap_info.space = 0;
1562 /* Default location for bitmap is 1K after superblock
1563 * using 3K - total of 4K
1564 */
1565 mddev->bitmap_info.default_offset = 1024 >> 9;
1566 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1567 mddev->reshape_backwards = 0;
1568
1569 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1570 memcpy(mddev->uuid, sb->set_uuid, 16);
1571
1572 mddev->max_disks = (4096-256)/2;
1573
1574 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1575 mddev->bitmap_info.file == NULL) {
1576 mddev->bitmap_info.offset =
1577 (__s32)le32_to_cpu(sb->bitmap_offset);
1578 /* Metadata doesn't record how much space is available.
1579 * For 1.0, we assume we can use up to the superblock
1580 * if before, else to 4K beyond superblock.
1581 * For others, assume no change is possible.
1582 */
1583 if (mddev->minor_version > 0)
1584 mddev->bitmap_info.space = 0;
1585 else if (mddev->bitmap_info.offset > 0)
1586 mddev->bitmap_info.space =
1587 8 - mddev->bitmap_info.offset;
1588 else
1589 mddev->bitmap_info.space =
1590 -mddev->bitmap_info.offset;
1591 }
1592
1593 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1594 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1595 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1596 mddev->new_level = le32_to_cpu(sb->new_level);
1597 mddev->new_layout = le32_to_cpu(sb->new_layout);
1598 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1599 if (mddev->delta_disks < 0 ||
1600 (mddev->delta_disks == 0 &&
1601 (le32_to_cpu(sb->feature_map)
1602 & MD_FEATURE_RESHAPE_BACKWARDS)))
1603 mddev->reshape_backwards = 1;
1604 } else {
1605 mddev->reshape_position = MaxSector;
1606 mddev->delta_disks = 0;
1607 mddev->new_level = mddev->level;
1608 mddev->new_layout = mddev->layout;
1609 mddev->new_chunk_sectors = mddev->chunk_sectors;
1610 }
1611
1612 } else if (mddev->pers == NULL) {
1613 /* Insist of good event counter while assembling, except for
1614 * spares (which don't need an event count) */
1615 ++ev1;
1616 if (rdev->desc_nr >= 0 &&
1617 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1619 if (ev1 < mddev->events)
1620 return -EINVAL;
1621 } else if (mddev->bitmap) {
1622 /* If adding to array with a bitmap, then we can accept an
1623 * older device, but not too old.
1624 */
1625 if (ev1 < mddev->bitmap->events_cleared)
1626 return 0;
1627 if (ev1 < mddev->events)
1628 set_bit(Bitmap_sync, &rdev->flags);
1629 } else {
1630 if (ev1 < mddev->events)
1631 /* just a hot-add of a new device, leave raid_disk at -1 */
1632 return 0;
1633 }
1634 if (mddev->level != LEVEL_MULTIPATH) {
1635 int role;
1636 if (rdev->desc_nr < 0 ||
1637 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1638 role = 0xffff;
1639 rdev->desc_nr = -1;
1640 } else
1641 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1642 switch(role) {
1643 case 0xffff: /* spare */
1644 break;
1645 case 0xfffe: /* faulty */
1646 set_bit(Faulty, &rdev->flags);
1647 break;
1648 default:
1649 rdev->saved_raid_disk = role;
1650 if ((le32_to_cpu(sb->feature_map) &
1651 MD_FEATURE_RECOVERY_OFFSET)) {
1652 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1653 if (!(le32_to_cpu(sb->feature_map) &
1654 MD_FEATURE_RECOVERY_BITMAP))
1655 rdev->saved_raid_disk = -1;
1656 } else
1657 set_bit(In_sync, &rdev->flags);
1658 rdev->raid_disk = role;
1659 break;
1660 }
1661 if (sb->devflags & WriteMostly1)
1662 set_bit(WriteMostly, &rdev->flags);
1663 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1664 set_bit(Replacement, &rdev->flags);
1665 } else /* MULTIPATH are always insync */
1666 set_bit(In_sync, &rdev->flags);
1667
1668 return 0;
1669 }
1670
1671 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1672 {
1673 struct mdp_superblock_1 *sb;
1674 struct md_rdev *rdev2;
1675 int max_dev, i;
1676 /* make rdev->sb match mddev and rdev data. */
1677
1678 sb = page_address(rdev->sb_page);
1679
1680 sb->feature_map = 0;
1681 sb->pad0 = 0;
1682 sb->recovery_offset = cpu_to_le64(0);
1683 memset(sb->pad3, 0, sizeof(sb->pad3));
1684
1685 sb->utime = cpu_to_le64((__u64)mddev->utime);
1686 sb->events = cpu_to_le64(mddev->events);
1687 if (mddev->in_sync)
1688 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1689 else
1690 sb->resync_offset = cpu_to_le64(0);
1691
1692 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1693
1694 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1695 sb->size = cpu_to_le64(mddev->dev_sectors);
1696 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1697 sb->level = cpu_to_le32(mddev->level);
1698 sb->layout = cpu_to_le32(mddev->layout);
1699
1700 if (test_bit(WriteMostly, &rdev->flags))
1701 sb->devflags |= WriteMostly1;
1702 else
1703 sb->devflags &= ~WriteMostly1;
1704 sb->data_offset = cpu_to_le64(rdev->data_offset);
1705 sb->data_size = cpu_to_le64(rdev->sectors);
1706
1707 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1708 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1709 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1710 }
1711
1712 if (rdev->raid_disk >= 0 &&
1713 !test_bit(In_sync, &rdev->flags)) {
1714 sb->feature_map |=
1715 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1716 sb->recovery_offset =
1717 cpu_to_le64(rdev->recovery_offset);
1718 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1719 sb->feature_map |=
1720 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1721 }
1722 if (test_bit(Replacement, &rdev->flags))
1723 sb->feature_map |=
1724 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1725
1726 if (mddev->reshape_position != MaxSector) {
1727 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1728 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1729 sb->new_layout = cpu_to_le32(mddev->new_layout);
1730 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1731 sb->new_level = cpu_to_le32(mddev->new_level);
1732 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1733 if (mddev->delta_disks == 0 &&
1734 mddev->reshape_backwards)
1735 sb->feature_map
1736 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1737 if (rdev->new_data_offset != rdev->data_offset) {
1738 sb->feature_map
1739 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1740 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1741 - rdev->data_offset));
1742 }
1743 }
1744
1745 if (rdev->badblocks.count == 0)
1746 /* Nothing to do for bad blocks*/ ;
1747 else if (sb->bblog_offset == 0)
1748 /* Cannot record bad blocks on this device */
1749 md_error(mddev, rdev);
1750 else {
1751 struct badblocks *bb = &rdev->badblocks;
1752 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1753 u64 *p = bb->page;
1754 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1755 if (bb->changed) {
1756 unsigned seq;
1757
1758 retry:
1759 seq = read_seqbegin(&bb->lock);
1760
1761 memset(bbp, 0xff, PAGE_SIZE);
1762
1763 for (i = 0 ; i < bb->count ; i++) {
1764 u64 internal_bb = p[i];
1765 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1766 | BB_LEN(internal_bb));
1767 bbp[i] = cpu_to_le64(store_bb);
1768 }
1769 bb->changed = 0;
1770 if (read_seqretry(&bb->lock, seq))
1771 goto retry;
1772
1773 bb->sector = (rdev->sb_start +
1774 (int)le32_to_cpu(sb->bblog_offset));
1775 bb->size = le16_to_cpu(sb->bblog_size);
1776 }
1777 }
1778
1779 max_dev = 0;
1780 rdev_for_each(rdev2, mddev)
1781 if (rdev2->desc_nr+1 > max_dev)
1782 max_dev = rdev2->desc_nr+1;
1783
1784 if (max_dev > le32_to_cpu(sb->max_dev)) {
1785 int bmask;
1786 sb->max_dev = cpu_to_le32(max_dev);
1787 rdev->sb_size = max_dev * 2 + 256;
1788 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1789 if (rdev->sb_size & bmask)
1790 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1791 } else
1792 max_dev = le32_to_cpu(sb->max_dev);
1793
1794 for (i=0; i<max_dev;i++)
1795 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1796
1797 rdev_for_each(rdev2, mddev) {
1798 i = rdev2->desc_nr;
1799 if (test_bit(Faulty, &rdev2->flags))
1800 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1801 else if (test_bit(In_sync, &rdev2->flags))
1802 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1803 else if (rdev2->raid_disk >= 0)
1804 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1805 else
1806 sb->dev_roles[i] = cpu_to_le16(0xffff);
1807 }
1808
1809 sb->sb_csum = calc_sb_1_csum(sb);
1810 }
1811
1812 static unsigned long long
1813 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1814 {
1815 struct mdp_superblock_1 *sb;
1816 sector_t max_sectors;
1817 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1818 return 0; /* component must fit device */
1819 if (rdev->data_offset != rdev->new_data_offset)
1820 return 0; /* too confusing */
1821 if (rdev->sb_start < rdev->data_offset) {
1822 /* minor versions 1 and 2; superblock before data */
1823 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1824 max_sectors -= rdev->data_offset;
1825 if (!num_sectors || num_sectors > max_sectors)
1826 num_sectors = max_sectors;
1827 } else if (rdev->mddev->bitmap_info.offset) {
1828 /* minor version 0 with bitmap we can't move */
1829 return 0;
1830 } else {
1831 /* minor version 0; superblock after data */
1832 sector_t sb_start;
1833 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1834 sb_start &= ~(sector_t)(4*2 - 1);
1835 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 rdev->sb_start = sb_start;
1839 }
1840 sb = page_address(rdev->sb_page);
1841 sb->data_size = cpu_to_le64(num_sectors);
1842 sb->super_offset = rdev->sb_start;
1843 sb->sb_csum = calc_sb_1_csum(sb);
1844 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1845 rdev->sb_page);
1846 md_super_wait(rdev->mddev);
1847 return num_sectors;
1848
1849 }
1850
1851 static int
1852 super_1_allow_new_offset(struct md_rdev *rdev,
1853 unsigned long long new_offset)
1854 {
1855 /* All necessary checks on new >= old have been done */
1856 struct bitmap *bitmap;
1857 if (new_offset >= rdev->data_offset)
1858 return 1;
1859
1860 /* with 1.0 metadata, there is no metadata to tread on
1861 * so we can always move back */
1862 if (rdev->mddev->minor_version == 0)
1863 return 1;
1864
1865 /* otherwise we must be sure not to step on
1866 * any metadata, so stay:
1867 * 36K beyond start of superblock
1868 * beyond end of badblocks
1869 * beyond write-intent bitmap
1870 */
1871 if (rdev->sb_start + (32+4)*2 > new_offset)
1872 return 0;
1873 bitmap = rdev->mddev->bitmap;
1874 if (bitmap && !rdev->mddev->bitmap_info.file &&
1875 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1876 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1877 return 0;
1878 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1879 return 0;
1880
1881 return 1;
1882 }
1883
1884 static struct super_type super_types[] = {
1885 [0] = {
1886 .name = "0.90.0",
1887 .owner = THIS_MODULE,
1888 .load_super = super_90_load,
1889 .validate_super = super_90_validate,
1890 .sync_super = super_90_sync,
1891 .rdev_size_change = super_90_rdev_size_change,
1892 .allow_new_offset = super_90_allow_new_offset,
1893 },
1894 [1] = {
1895 .name = "md-1",
1896 .owner = THIS_MODULE,
1897 .load_super = super_1_load,
1898 .validate_super = super_1_validate,
1899 .sync_super = super_1_sync,
1900 .rdev_size_change = super_1_rdev_size_change,
1901 .allow_new_offset = super_1_allow_new_offset,
1902 },
1903 };
1904
1905 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1906 {
1907 if (mddev->sync_super) {
1908 mddev->sync_super(mddev, rdev);
1909 return;
1910 }
1911
1912 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1913
1914 super_types[mddev->major_version].sync_super(mddev, rdev);
1915 }
1916
1917 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1918 {
1919 struct md_rdev *rdev, *rdev2;
1920
1921 rcu_read_lock();
1922 rdev_for_each_rcu(rdev, mddev1)
1923 rdev_for_each_rcu(rdev2, mddev2)
1924 if (rdev->bdev->bd_contains ==
1925 rdev2->bdev->bd_contains) {
1926 rcu_read_unlock();
1927 return 1;
1928 }
1929 rcu_read_unlock();
1930 return 0;
1931 }
1932
1933 static LIST_HEAD(pending_raid_disks);
1934
1935 /*
1936 * Try to register data integrity profile for an mddev
1937 *
1938 * This is called when an array is started and after a disk has been kicked
1939 * from the array. It only succeeds if all working and active component devices
1940 * are integrity capable with matching profiles.
1941 */
1942 int md_integrity_register(struct mddev *mddev)
1943 {
1944 struct md_rdev *rdev, *reference = NULL;
1945
1946 if (list_empty(&mddev->disks))
1947 return 0; /* nothing to do */
1948 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1949 return 0; /* shouldn't register, or already is */
1950 rdev_for_each(rdev, mddev) {
1951 /* skip spares and non-functional disks */
1952 if (test_bit(Faulty, &rdev->flags))
1953 continue;
1954 if (rdev->raid_disk < 0)
1955 continue;
1956 if (!reference) {
1957 /* Use the first rdev as the reference */
1958 reference = rdev;
1959 continue;
1960 }
1961 /* does this rdev's profile match the reference profile? */
1962 if (blk_integrity_compare(reference->bdev->bd_disk,
1963 rdev->bdev->bd_disk) < 0)
1964 return -EINVAL;
1965 }
1966 if (!reference || !bdev_get_integrity(reference->bdev))
1967 return 0;
1968 /*
1969 * All component devices are integrity capable and have matching
1970 * profiles, register the common profile for the md device.
1971 */
1972 if (blk_integrity_register(mddev->gendisk,
1973 bdev_get_integrity(reference->bdev)) != 0) {
1974 printk(KERN_ERR "md: failed to register integrity for %s\n",
1975 mdname(mddev));
1976 return -EINVAL;
1977 }
1978 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1979 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1980 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1983 }
1984 return 0;
1985 }
1986 EXPORT_SYMBOL(md_integrity_register);
1987
1988 /* Disable data integrity if non-capable/non-matching disk is being added */
1989 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1990 {
1991 struct blk_integrity *bi_rdev;
1992 struct blk_integrity *bi_mddev;
1993
1994 if (!mddev->gendisk)
1995 return;
1996
1997 bi_rdev = bdev_get_integrity(rdev->bdev);
1998 bi_mddev = blk_get_integrity(mddev->gendisk);
1999
2000 if (!bi_mddev) /* nothing to do */
2001 return;
2002 if (rdev->raid_disk < 0) /* skip spares */
2003 return;
2004 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2005 rdev->bdev->bd_disk) >= 0)
2006 return;
2007 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2008 blk_integrity_unregister(mddev->gendisk);
2009 }
2010 EXPORT_SYMBOL(md_integrity_add_rdev);
2011
2012 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2013 {
2014 char b[BDEVNAME_SIZE];
2015 struct kobject *ko;
2016 char *s;
2017 int err;
2018
2019 /* prevent duplicates */
2020 if (find_rdev(mddev, rdev->bdev->bd_dev))
2021 return -EEXIST;
2022
2023 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2024 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2025 rdev->sectors < mddev->dev_sectors)) {
2026 if (mddev->pers) {
2027 /* Cannot change size, so fail
2028 * If mddev->level <= 0, then we don't care
2029 * about aligning sizes (e.g. linear)
2030 */
2031 if (mddev->level > 0)
2032 return -ENOSPC;
2033 } else
2034 mddev->dev_sectors = rdev->sectors;
2035 }
2036
2037 /* Verify rdev->desc_nr is unique.
2038 * If it is -1, assign a free number, else
2039 * check number is not in use
2040 */
2041 rcu_read_lock();
2042 if (rdev->desc_nr < 0) {
2043 int choice = 0;
2044 if (mddev->pers)
2045 choice = mddev->raid_disks;
2046 while (find_rdev_nr_rcu(mddev, choice))
2047 choice++;
2048 rdev->desc_nr = choice;
2049 } else {
2050 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2051 rcu_read_unlock();
2052 return -EBUSY;
2053 }
2054 }
2055 rcu_read_unlock();
2056 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2057 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2058 mdname(mddev), mddev->max_disks);
2059 return -EBUSY;
2060 }
2061 bdevname(rdev->bdev,b);
2062 while ( (s=strchr(b, '/')) != NULL)
2063 *s = '!';
2064
2065 rdev->mddev = mddev;
2066 printk(KERN_INFO "md: bind<%s>\n", b);
2067
2068 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2069 goto fail;
2070
2071 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2072 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2073 /* failure here is OK */;
2074 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2075
2076 list_add_rcu(&rdev->same_set, &mddev->disks);
2077 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2078
2079 /* May as well allow recovery to be retried once */
2080 mddev->recovery_disabled++;
2081
2082 return 0;
2083
2084 fail:
2085 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2086 b, mdname(mddev));
2087 return err;
2088 }
2089
2090 static void md_delayed_delete(struct work_struct *ws)
2091 {
2092 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2093 kobject_del(&rdev->kobj);
2094 kobject_put(&rdev->kobj);
2095 }
2096
2097 static void unbind_rdev_from_array(struct md_rdev *rdev)
2098 {
2099 char b[BDEVNAME_SIZE];
2100
2101 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2102 list_del_rcu(&rdev->same_set);
2103 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2104 rdev->mddev = NULL;
2105 sysfs_remove_link(&rdev->kobj, "block");
2106 sysfs_put(rdev->sysfs_state);
2107 rdev->sysfs_state = NULL;
2108 rdev->badblocks.count = 0;
2109 /* We need to delay this, otherwise we can deadlock when
2110 * writing to 'remove' to "dev/state". We also need
2111 * to delay it due to rcu usage.
2112 */
2113 synchronize_rcu();
2114 INIT_WORK(&rdev->del_work, md_delayed_delete);
2115 kobject_get(&rdev->kobj);
2116 queue_work(md_misc_wq, &rdev->del_work);
2117 }
2118
2119 /*
2120 * prevent the device from being mounted, repartitioned or
2121 * otherwise reused by a RAID array (or any other kernel
2122 * subsystem), by bd_claiming the device.
2123 */
2124 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2125 {
2126 int err = 0;
2127 struct block_device *bdev;
2128 char b[BDEVNAME_SIZE];
2129
2130 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2131 shared ? (struct md_rdev *)lock_rdev : rdev);
2132 if (IS_ERR(bdev)) {
2133 printk(KERN_ERR "md: could not open %s.\n",
2134 __bdevname(dev, b));
2135 return PTR_ERR(bdev);
2136 }
2137 rdev->bdev = bdev;
2138 return err;
2139 }
2140
2141 static void unlock_rdev(struct md_rdev *rdev)
2142 {
2143 struct block_device *bdev = rdev->bdev;
2144 rdev->bdev = NULL;
2145 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 }
2147
2148 void md_autodetect_dev(dev_t dev);
2149
2150 static void export_rdev(struct md_rdev *rdev)
2151 {
2152 char b[BDEVNAME_SIZE];
2153
2154 printk(KERN_INFO "md: export_rdev(%s)\n",
2155 bdevname(rdev->bdev,b));
2156 md_rdev_clear(rdev);
2157 #ifndef MODULE
2158 if (test_bit(AutoDetected, &rdev->flags))
2159 md_autodetect_dev(rdev->bdev->bd_dev);
2160 #endif
2161 unlock_rdev(rdev);
2162 kobject_put(&rdev->kobj);
2163 }
2164
2165 static void kick_rdev_from_array(struct md_rdev *rdev)
2166 {
2167 unbind_rdev_from_array(rdev);
2168 export_rdev(rdev);
2169 }
2170
2171 static void export_array(struct mddev *mddev)
2172 {
2173 struct md_rdev *rdev;
2174
2175 while (!list_empty(&mddev->disks)) {
2176 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2177 same_set);
2178 kick_rdev_from_array(rdev);
2179 }
2180 mddev->raid_disks = 0;
2181 mddev->major_version = 0;
2182 }
2183
2184 static void sync_sbs(struct mddev *mddev, int nospares)
2185 {
2186 /* Update each superblock (in-memory image), but
2187 * if we are allowed to, skip spares which already
2188 * have the right event counter, or have one earlier
2189 * (which would mean they aren't being marked as dirty
2190 * with the rest of the array)
2191 */
2192 struct md_rdev *rdev;
2193 rdev_for_each(rdev, mddev) {
2194 if (rdev->sb_events == mddev->events ||
2195 (nospares &&
2196 rdev->raid_disk < 0 &&
2197 rdev->sb_events+1 == mddev->events)) {
2198 /* Don't update this superblock */
2199 rdev->sb_loaded = 2;
2200 } else {
2201 sync_super(mddev, rdev);
2202 rdev->sb_loaded = 1;
2203 }
2204 }
2205 }
2206
2207 static void md_update_sb(struct mddev *mddev, int force_change)
2208 {
2209 struct md_rdev *rdev;
2210 int sync_req;
2211 int nospares = 0;
2212 int any_badblocks_changed = 0;
2213
2214 if (mddev->ro) {
2215 if (force_change)
2216 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2217 return;
2218 }
2219 repeat:
2220 /* First make sure individual recovery_offsets are correct */
2221 rdev_for_each(rdev, mddev) {
2222 if (rdev->raid_disk >= 0 &&
2223 mddev->delta_disks >= 0 &&
2224 !test_bit(In_sync, &rdev->flags) &&
2225 mddev->curr_resync_completed > rdev->recovery_offset)
2226 rdev->recovery_offset = mddev->curr_resync_completed;
2227
2228 }
2229 if (!mddev->persistent) {
2230 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2231 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2232 if (!mddev->external) {
2233 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2234 rdev_for_each(rdev, mddev) {
2235 if (rdev->badblocks.changed) {
2236 rdev->badblocks.changed = 0;
2237 md_ack_all_badblocks(&rdev->badblocks);
2238 md_error(mddev, rdev);
2239 }
2240 clear_bit(Blocked, &rdev->flags);
2241 clear_bit(BlockedBadBlocks, &rdev->flags);
2242 wake_up(&rdev->blocked_wait);
2243 }
2244 }
2245 wake_up(&mddev->sb_wait);
2246 return;
2247 }
2248
2249 spin_lock(&mddev->lock);
2250
2251 mddev->utime = get_seconds();
2252
2253 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2254 force_change = 1;
2255 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2256 /* just a clean<-> dirty transition, possibly leave spares alone,
2257 * though if events isn't the right even/odd, we will have to do
2258 * spares after all
2259 */
2260 nospares = 1;
2261 if (force_change)
2262 nospares = 0;
2263 if (mddev->degraded)
2264 /* If the array is degraded, then skipping spares is both
2265 * dangerous and fairly pointless.
2266 * Dangerous because a device that was removed from the array
2267 * might have a event_count that still looks up-to-date,
2268 * so it can be re-added without a resync.
2269 * Pointless because if there are any spares to skip,
2270 * then a recovery will happen and soon that array won't
2271 * be degraded any more and the spare can go back to sleep then.
2272 */
2273 nospares = 0;
2274
2275 sync_req = mddev->in_sync;
2276
2277 /* If this is just a dirty<->clean transition, and the array is clean
2278 * and 'events' is odd, we can roll back to the previous clean state */
2279 if (nospares
2280 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2281 && mddev->can_decrease_events
2282 && mddev->events != 1) {
2283 mddev->events--;
2284 mddev->can_decrease_events = 0;
2285 } else {
2286 /* otherwise we have to go forward and ... */
2287 mddev->events ++;
2288 mddev->can_decrease_events = nospares;
2289 }
2290
2291 /*
2292 * This 64-bit counter should never wrap.
2293 * Either we are in around ~1 trillion A.C., assuming
2294 * 1 reboot per second, or we have a bug...
2295 */
2296 WARN_ON(mddev->events == 0);
2297
2298 rdev_for_each(rdev, mddev) {
2299 if (rdev->badblocks.changed)
2300 any_badblocks_changed++;
2301 if (test_bit(Faulty, &rdev->flags))
2302 set_bit(FaultRecorded, &rdev->flags);
2303 }
2304
2305 sync_sbs(mddev, nospares);
2306 spin_unlock(&mddev->lock);
2307
2308 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2309 mdname(mddev), mddev->in_sync);
2310
2311 bitmap_update_sb(mddev->bitmap);
2312 rdev_for_each(rdev, mddev) {
2313 char b[BDEVNAME_SIZE];
2314
2315 if (rdev->sb_loaded != 1)
2316 continue; /* no noise on spare devices */
2317
2318 if (!test_bit(Faulty, &rdev->flags)) {
2319 md_super_write(mddev,rdev,
2320 rdev->sb_start, rdev->sb_size,
2321 rdev->sb_page);
2322 pr_debug("md: (write) %s's sb offset: %llu\n",
2323 bdevname(rdev->bdev, b),
2324 (unsigned long long)rdev->sb_start);
2325 rdev->sb_events = mddev->events;
2326 if (rdev->badblocks.size) {
2327 md_super_write(mddev, rdev,
2328 rdev->badblocks.sector,
2329 rdev->badblocks.size << 9,
2330 rdev->bb_page);
2331 rdev->badblocks.size = 0;
2332 }
2333
2334 } else
2335 pr_debug("md: %s (skipping faulty)\n",
2336 bdevname(rdev->bdev, b));
2337
2338 if (mddev->level == LEVEL_MULTIPATH)
2339 /* only need to write one superblock... */
2340 break;
2341 }
2342 md_super_wait(mddev);
2343 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2344
2345 spin_lock(&mddev->lock);
2346 if (mddev->in_sync != sync_req ||
2347 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2348 /* have to write it out again */
2349 spin_unlock(&mddev->lock);
2350 goto repeat;
2351 }
2352 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2353 spin_unlock(&mddev->lock);
2354 wake_up(&mddev->sb_wait);
2355 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2356 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2357
2358 rdev_for_each(rdev, mddev) {
2359 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2360 clear_bit(Blocked, &rdev->flags);
2361
2362 if (any_badblocks_changed)
2363 md_ack_all_badblocks(&rdev->badblocks);
2364 clear_bit(BlockedBadBlocks, &rdev->flags);
2365 wake_up(&rdev->blocked_wait);
2366 }
2367 }
2368
2369 /* words written to sysfs files may, or may not, be \n terminated.
2370 * We want to accept with case. For this we use cmd_match.
2371 */
2372 static int cmd_match(const char *cmd, const char *str)
2373 {
2374 /* See if cmd, written into a sysfs file, matches
2375 * str. They must either be the same, or cmd can
2376 * have a trailing newline
2377 */
2378 while (*cmd && *str && *cmd == *str) {
2379 cmd++;
2380 str++;
2381 }
2382 if (*cmd == '\n')
2383 cmd++;
2384 if (*str || *cmd)
2385 return 0;
2386 return 1;
2387 }
2388
2389 struct rdev_sysfs_entry {
2390 struct attribute attr;
2391 ssize_t (*show)(struct md_rdev *, char *);
2392 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2393 };
2394
2395 static ssize_t
2396 state_show(struct md_rdev *rdev, char *page)
2397 {
2398 char *sep = "";
2399 size_t len = 0;
2400 unsigned long flags = ACCESS_ONCE(rdev->flags);
2401
2402 if (test_bit(Faulty, &flags) ||
2403 rdev->badblocks.unacked_exist) {
2404 len+= sprintf(page+len, "%sfaulty",sep);
2405 sep = ",";
2406 }
2407 if (test_bit(In_sync, &flags)) {
2408 len += sprintf(page+len, "%sin_sync",sep);
2409 sep = ",";
2410 }
2411 if (test_bit(WriteMostly, &flags)) {
2412 len += sprintf(page+len, "%swrite_mostly",sep);
2413 sep = ",";
2414 }
2415 if (test_bit(Blocked, &flags) ||
2416 (rdev->badblocks.unacked_exist
2417 && !test_bit(Faulty, &flags))) {
2418 len += sprintf(page+len, "%sblocked", sep);
2419 sep = ",";
2420 }
2421 if (!test_bit(Faulty, &flags) &&
2422 !test_bit(In_sync, &flags)) {
2423 len += sprintf(page+len, "%sspare", sep);
2424 sep = ",";
2425 }
2426 if (test_bit(WriteErrorSeen, &flags)) {
2427 len += sprintf(page+len, "%swrite_error", sep);
2428 sep = ",";
2429 }
2430 if (test_bit(WantReplacement, &flags)) {
2431 len += sprintf(page+len, "%swant_replacement", sep);
2432 sep = ",";
2433 }
2434 if (test_bit(Replacement, &flags)) {
2435 len += sprintf(page+len, "%sreplacement", sep);
2436 sep = ",";
2437 }
2438
2439 return len+sprintf(page+len, "\n");
2440 }
2441
2442 static ssize_t
2443 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2444 {
2445 /* can write
2446 * faulty - simulates an error
2447 * remove - disconnects the device
2448 * writemostly - sets write_mostly
2449 * -writemostly - clears write_mostly
2450 * blocked - sets the Blocked flags
2451 * -blocked - clears the Blocked and possibly simulates an error
2452 * insync - sets Insync providing device isn't active
2453 * -insync - clear Insync for a device with a slot assigned,
2454 * so that it gets rebuilt based on bitmap
2455 * write_error - sets WriteErrorSeen
2456 * -write_error - clears WriteErrorSeen
2457 */
2458 int err = -EINVAL;
2459 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2460 md_error(rdev->mddev, rdev);
2461 if (test_bit(Faulty, &rdev->flags))
2462 err = 0;
2463 else
2464 err = -EBUSY;
2465 } else if (cmd_match(buf, "remove")) {
2466 if (rdev->raid_disk >= 0)
2467 err = -EBUSY;
2468 else {
2469 struct mddev *mddev = rdev->mddev;
2470 kick_rdev_from_array(rdev);
2471 if (mddev->pers)
2472 md_update_sb(mddev, 1);
2473 md_new_event(mddev);
2474 err = 0;
2475 }
2476 } else if (cmd_match(buf, "writemostly")) {
2477 set_bit(WriteMostly, &rdev->flags);
2478 err = 0;
2479 } else if (cmd_match(buf, "-writemostly")) {
2480 clear_bit(WriteMostly, &rdev->flags);
2481 err = 0;
2482 } else if (cmd_match(buf, "blocked")) {
2483 set_bit(Blocked, &rdev->flags);
2484 err = 0;
2485 } else if (cmd_match(buf, "-blocked")) {
2486 if (!test_bit(Faulty, &rdev->flags) &&
2487 rdev->badblocks.unacked_exist) {
2488 /* metadata handler doesn't understand badblocks,
2489 * so we need to fail the device
2490 */
2491 md_error(rdev->mddev, rdev);
2492 }
2493 clear_bit(Blocked, &rdev->flags);
2494 clear_bit(BlockedBadBlocks, &rdev->flags);
2495 wake_up(&rdev->blocked_wait);
2496 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2497 md_wakeup_thread(rdev->mddev->thread);
2498
2499 err = 0;
2500 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2501 set_bit(In_sync, &rdev->flags);
2502 err = 0;
2503 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2504 if (rdev->mddev->pers == NULL) {
2505 clear_bit(In_sync, &rdev->flags);
2506 rdev->saved_raid_disk = rdev->raid_disk;
2507 rdev->raid_disk = -1;
2508 err = 0;
2509 }
2510 } else if (cmd_match(buf, "write_error")) {
2511 set_bit(WriteErrorSeen, &rdev->flags);
2512 err = 0;
2513 } else if (cmd_match(buf, "-write_error")) {
2514 clear_bit(WriteErrorSeen, &rdev->flags);
2515 err = 0;
2516 } else if (cmd_match(buf, "want_replacement")) {
2517 /* Any non-spare device that is not a replacement can
2518 * become want_replacement at any time, but we then need to
2519 * check if recovery is needed.
2520 */
2521 if (rdev->raid_disk >= 0 &&
2522 !test_bit(Replacement, &rdev->flags))
2523 set_bit(WantReplacement, &rdev->flags);
2524 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2525 md_wakeup_thread(rdev->mddev->thread);
2526 err = 0;
2527 } else if (cmd_match(buf, "-want_replacement")) {
2528 /* Clearing 'want_replacement' is always allowed.
2529 * Once replacements starts it is too late though.
2530 */
2531 err = 0;
2532 clear_bit(WantReplacement, &rdev->flags);
2533 } else if (cmd_match(buf, "replacement")) {
2534 /* Can only set a device as a replacement when array has not
2535 * yet been started. Once running, replacement is automatic
2536 * from spares, or by assigning 'slot'.
2537 */
2538 if (rdev->mddev->pers)
2539 err = -EBUSY;
2540 else {
2541 set_bit(Replacement, &rdev->flags);
2542 err = 0;
2543 }
2544 } else if (cmd_match(buf, "-replacement")) {
2545 /* Similarly, can only clear Replacement before start */
2546 if (rdev->mddev->pers)
2547 err = -EBUSY;
2548 else {
2549 clear_bit(Replacement, &rdev->flags);
2550 err = 0;
2551 }
2552 }
2553 if (!err)
2554 sysfs_notify_dirent_safe(rdev->sysfs_state);
2555 return err ? err : len;
2556 }
2557 static struct rdev_sysfs_entry rdev_state =
2558 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2559
2560 static ssize_t
2561 errors_show(struct md_rdev *rdev, char *page)
2562 {
2563 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2564 }
2565
2566 static ssize_t
2567 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2568 {
2569 char *e;
2570 unsigned long n = simple_strtoul(buf, &e, 10);
2571 if (*buf && (*e == 0 || *e == '\n')) {
2572 atomic_set(&rdev->corrected_errors, n);
2573 return len;
2574 }
2575 return -EINVAL;
2576 }
2577 static struct rdev_sysfs_entry rdev_errors =
2578 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2579
2580 static ssize_t
2581 slot_show(struct md_rdev *rdev, char *page)
2582 {
2583 if (rdev->raid_disk < 0)
2584 return sprintf(page, "none\n");
2585 else
2586 return sprintf(page, "%d\n", rdev->raid_disk);
2587 }
2588
2589 static ssize_t
2590 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2591 {
2592 char *e;
2593 int err;
2594 int slot = simple_strtoul(buf, &e, 10);
2595 if (strncmp(buf, "none", 4)==0)
2596 slot = -1;
2597 else if (e==buf || (*e && *e!= '\n'))
2598 return -EINVAL;
2599 if (rdev->mddev->pers && slot == -1) {
2600 /* Setting 'slot' on an active array requires also
2601 * updating the 'rd%d' link, and communicating
2602 * with the personality with ->hot_*_disk.
2603 * For now we only support removing
2604 * failed/spare devices. This normally happens automatically,
2605 * but not when the metadata is externally managed.
2606 */
2607 if (rdev->raid_disk == -1)
2608 return -EEXIST;
2609 /* personality does all needed checks */
2610 if (rdev->mddev->pers->hot_remove_disk == NULL)
2611 return -EINVAL;
2612 clear_bit(Blocked, &rdev->flags);
2613 remove_and_add_spares(rdev->mddev, rdev);
2614 if (rdev->raid_disk >= 0)
2615 return -EBUSY;
2616 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2617 md_wakeup_thread(rdev->mddev->thread);
2618 } else if (rdev->mddev->pers) {
2619 /* Activating a spare .. or possibly reactivating
2620 * if we ever get bitmaps working here.
2621 */
2622
2623 if (rdev->raid_disk != -1)
2624 return -EBUSY;
2625
2626 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2627 return -EBUSY;
2628
2629 if (rdev->mddev->pers->hot_add_disk == NULL)
2630 return -EINVAL;
2631
2632 if (slot >= rdev->mddev->raid_disks &&
2633 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2634 return -ENOSPC;
2635
2636 rdev->raid_disk = slot;
2637 if (test_bit(In_sync, &rdev->flags))
2638 rdev->saved_raid_disk = slot;
2639 else
2640 rdev->saved_raid_disk = -1;
2641 clear_bit(In_sync, &rdev->flags);
2642 clear_bit(Bitmap_sync, &rdev->flags);
2643 err = rdev->mddev->pers->
2644 hot_add_disk(rdev->mddev, rdev);
2645 if (err) {
2646 rdev->raid_disk = -1;
2647 return err;
2648 } else
2649 sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 if (sysfs_link_rdev(rdev->mddev, rdev))
2651 /* failure here is OK */;
2652 /* don't wakeup anyone, leave that to userspace. */
2653 } else {
2654 if (slot >= rdev->mddev->raid_disks &&
2655 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2656 return -ENOSPC;
2657 rdev->raid_disk = slot;
2658 /* assume it is working */
2659 clear_bit(Faulty, &rdev->flags);
2660 clear_bit(WriteMostly, &rdev->flags);
2661 set_bit(In_sync, &rdev->flags);
2662 sysfs_notify_dirent_safe(rdev->sysfs_state);
2663 }
2664 return len;
2665 }
2666
2667 static struct rdev_sysfs_entry rdev_slot =
2668 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2669
2670 static ssize_t
2671 offset_show(struct md_rdev *rdev, char *page)
2672 {
2673 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2674 }
2675
2676 static ssize_t
2677 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2678 {
2679 unsigned long long offset;
2680 if (kstrtoull(buf, 10, &offset) < 0)
2681 return -EINVAL;
2682 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2683 return -EBUSY;
2684 if (rdev->sectors && rdev->mddev->external)
2685 /* Must set offset before size, so overlap checks
2686 * can be sane */
2687 return -EBUSY;
2688 rdev->data_offset = offset;
2689 rdev->new_data_offset = offset;
2690 return len;
2691 }
2692
2693 static struct rdev_sysfs_entry rdev_offset =
2694 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2695
2696 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2697 {
2698 return sprintf(page, "%llu\n",
2699 (unsigned long long)rdev->new_data_offset);
2700 }
2701
2702 static ssize_t new_offset_store(struct md_rdev *rdev,
2703 const char *buf, size_t len)
2704 {
2705 unsigned long long new_offset;
2706 struct mddev *mddev = rdev->mddev;
2707
2708 if (kstrtoull(buf, 10, &new_offset) < 0)
2709 return -EINVAL;
2710
2711 if (mddev->sync_thread ||
2712 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2713 return -EBUSY;
2714 if (new_offset == rdev->data_offset)
2715 /* reset is always permitted */
2716 ;
2717 else if (new_offset > rdev->data_offset) {
2718 /* must not push array size beyond rdev_sectors */
2719 if (new_offset - rdev->data_offset
2720 + mddev->dev_sectors > rdev->sectors)
2721 return -E2BIG;
2722 }
2723 /* Metadata worries about other space details. */
2724
2725 /* decreasing the offset is inconsistent with a backwards
2726 * reshape.
2727 */
2728 if (new_offset < rdev->data_offset &&
2729 mddev->reshape_backwards)
2730 return -EINVAL;
2731 /* Increasing offset is inconsistent with forwards
2732 * reshape. reshape_direction should be set to
2733 * 'backwards' first.
2734 */
2735 if (new_offset > rdev->data_offset &&
2736 !mddev->reshape_backwards)
2737 return -EINVAL;
2738
2739 if (mddev->pers && mddev->persistent &&
2740 !super_types[mddev->major_version]
2741 .allow_new_offset(rdev, new_offset))
2742 return -E2BIG;
2743 rdev->new_data_offset = new_offset;
2744 if (new_offset > rdev->data_offset)
2745 mddev->reshape_backwards = 1;
2746 else if (new_offset < rdev->data_offset)
2747 mddev->reshape_backwards = 0;
2748
2749 return len;
2750 }
2751 static struct rdev_sysfs_entry rdev_new_offset =
2752 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2753
2754 static ssize_t
2755 rdev_size_show(struct md_rdev *rdev, char *page)
2756 {
2757 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2758 }
2759
2760 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2761 {
2762 /* check if two start/length pairs overlap */
2763 if (s1+l1 <= s2)
2764 return 0;
2765 if (s2+l2 <= s1)
2766 return 0;
2767 return 1;
2768 }
2769
2770 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2771 {
2772 unsigned long long blocks;
2773 sector_t new;
2774
2775 if (kstrtoull(buf, 10, &blocks) < 0)
2776 return -EINVAL;
2777
2778 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2779 return -EINVAL; /* sector conversion overflow */
2780
2781 new = blocks * 2;
2782 if (new != blocks * 2)
2783 return -EINVAL; /* unsigned long long to sector_t overflow */
2784
2785 *sectors = new;
2786 return 0;
2787 }
2788
2789 static ssize_t
2790 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2791 {
2792 struct mddev *my_mddev = rdev->mddev;
2793 sector_t oldsectors = rdev->sectors;
2794 sector_t sectors;
2795
2796 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2797 return -EINVAL;
2798 if (rdev->data_offset != rdev->new_data_offset)
2799 return -EINVAL; /* too confusing */
2800 if (my_mddev->pers && rdev->raid_disk >= 0) {
2801 if (my_mddev->persistent) {
2802 sectors = super_types[my_mddev->major_version].
2803 rdev_size_change(rdev, sectors);
2804 if (!sectors)
2805 return -EBUSY;
2806 } else if (!sectors)
2807 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2808 rdev->data_offset;
2809 if (!my_mddev->pers->resize)
2810 /* Cannot change size for RAID0 or Linear etc */
2811 return -EINVAL;
2812 }
2813 if (sectors < my_mddev->dev_sectors)
2814 return -EINVAL; /* component must fit device */
2815
2816 rdev->sectors = sectors;
2817 if (sectors > oldsectors && my_mddev->external) {
2818 /* Need to check that all other rdevs with the same
2819 * ->bdev do not overlap. 'rcu' is sufficient to walk
2820 * the rdev lists safely.
2821 * This check does not provide a hard guarantee, it
2822 * just helps avoid dangerous mistakes.
2823 */
2824 struct mddev *mddev;
2825 int overlap = 0;
2826 struct list_head *tmp;
2827
2828 rcu_read_lock();
2829 for_each_mddev(mddev, tmp) {
2830 struct md_rdev *rdev2;
2831
2832 rdev_for_each(rdev2, mddev)
2833 if (rdev->bdev == rdev2->bdev &&
2834 rdev != rdev2 &&
2835 overlaps(rdev->data_offset, rdev->sectors,
2836 rdev2->data_offset,
2837 rdev2->sectors)) {
2838 overlap = 1;
2839 break;
2840 }
2841 if (overlap) {
2842 mddev_put(mddev);
2843 break;
2844 }
2845 }
2846 rcu_read_unlock();
2847 if (overlap) {
2848 /* Someone else could have slipped in a size
2849 * change here, but doing so is just silly.
2850 * We put oldsectors back because we *know* it is
2851 * safe, and trust userspace not to race with
2852 * itself
2853 */
2854 rdev->sectors = oldsectors;
2855 return -EBUSY;
2856 }
2857 }
2858 return len;
2859 }
2860
2861 static struct rdev_sysfs_entry rdev_size =
2862 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2863
2864 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2865 {
2866 unsigned long long recovery_start = rdev->recovery_offset;
2867
2868 if (test_bit(In_sync, &rdev->flags) ||
2869 recovery_start == MaxSector)
2870 return sprintf(page, "none\n");
2871
2872 return sprintf(page, "%llu\n", recovery_start);
2873 }
2874
2875 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2876 {
2877 unsigned long long recovery_start;
2878
2879 if (cmd_match(buf, "none"))
2880 recovery_start = MaxSector;
2881 else if (kstrtoull(buf, 10, &recovery_start))
2882 return -EINVAL;
2883
2884 if (rdev->mddev->pers &&
2885 rdev->raid_disk >= 0)
2886 return -EBUSY;
2887
2888 rdev->recovery_offset = recovery_start;
2889 if (recovery_start == MaxSector)
2890 set_bit(In_sync, &rdev->flags);
2891 else
2892 clear_bit(In_sync, &rdev->flags);
2893 return len;
2894 }
2895
2896 static struct rdev_sysfs_entry rdev_recovery_start =
2897 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2898
2899 static ssize_t
2900 badblocks_show(struct badblocks *bb, char *page, int unack);
2901 static ssize_t
2902 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2903
2904 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2905 {
2906 return badblocks_show(&rdev->badblocks, page, 0);
2907 }
2908 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2909 {
2910 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2911 /* Maybe that ack was all we needed */
2912 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2913 wake_up(&rdev->blocked_wait);
2914 return rv;
2915 }
2916 static struct rdev_sysfs_entry rdev_bad_blocks =
2917 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2918
2919 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2920 {
2921 return badblocks_show(&rdev->badblocks, page, 1);
2922 }
2923 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2924 {
2925 return badblocks_store(&rdev->badblocks, page, len, 1);
2926 }
2927 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2928 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2929
2930 static struct attribute *rdev_default_attrs[] = {
2931 &rdev_state.attr,
2932 &rdev_errors.attr,
2933 &rdev_slot.attr,
2934 &rdev_offset.attr,
2935 &rdev_new_offset.attr,
2936 &rdev_size.attr,
2937 &rdev_recovery_start.attr,
2938 &rdev_bad_blocks.attr,
2939 &rdev_unack_bad_blocks.attr,
2940 NULL,
2941 };
2942 static ssize_t
2943 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2944 {
2945 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2946 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2947
2948 if (!entry->show)
2949 return -EIO;
2950 if (!rdev->mddev)
2951 return -EBUSY;
2952 return entry->show(rdev, page);
2953 }
2954
2955 static ssize_t
2956 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2957 const char *page, size_t length)
2958 {
2959 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2960 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2961 ssize_t rv;
2962 struct mddev *mddev = rdev->mddev;
2963
2964 if (!entry->store)
2965 return -EIO;
2966 if (!capable(CAP_SYS_ADMIN))
2967 return -EACCES;
2968 rv = mddev ? mddev_lock(mddev): -EBUSY;
2969 if (!rv) {
2970 if (rdev->mddev == NULL)
2971 rv = -EBUSY;
2972 else
2973 rv = entry->store(rdev, page, length);
2974 mddev_unlock(mddev);
2975 }
2976 return rv;
2977 }
2978
2979 static void rdev_free(struct kobject *ko)
2980 {
2981 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2982 kfree(rdev);
2983 }
2984 static const struct sysfs_ops rdev_sysfs_ops = {
2985 .show = rdev_attr_show,
2986 .store = rdev_attr_store,
2987 };
2988 static struct kobj_type rdev_ktype = {
2989 .release = rdev_free,
2990 .sysfs_ops = &rdev_sysfs_ops,
2991 .default_attrs = rdev_default_attrs,
2992 };
2993
2994 int md_rdev_init(struct md_rdev *rdev)
2995 {
2996 rdev->desc_nr = -1;
2997 rdev->saved_raid_disk = -1;
2998 rdev->raid_disk = -1;
2999 rdev->flags = 0;
3000 rdev->data_offset = 0;
3001 rdev->new_data_offset = 0;
3002 rdev->sb_events = 0;
3003 rdev->last_read_error.tv_sec = 0;
3004 rdev->last_read_error.tv_nsec = 0;
3005 rdev->sb_loaded = 0;
3006 rdev->bb_page = NULL;
3007 atomic_set(&rdev->nr_pending, 0);
3008 atomic_set(&rdev->read_errors, 0);
3009 atomic_set(&rdev->corrected_errors, 0);
3010
3011 INIT_LIST_HEAD(&rdev->same_set);
3012 init_waitqueue_head(&rdev->blocked_wait);
3013
3014 /* Add space to store bad block list.
3015 * This reserves the space even on arrays where it cannot
3016 * be used - I wonder if that matters
3017 */
3018 rdev->badblocks.count = 0;
3019 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3020 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3021 seqlock_init(&rdev->badblocks.lock);
3022 if (rdev->badblocks.page == NULL)
3023 return -ENOMEM;
3024
3025 return 0;
3026 }
3027 EXPORT_SYMBOL_GPL(md_rdev_init);
3028 /*
3029 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3030 *
3031 * mark the device faulty if:
3032 *
3033 * - the device is nonexistent (zero size)
3034 * - the device has no valid superblock
3035 *
3036 * a faulty rdev _never_ has rdev->sb set.
3037 */
3038 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3039 {
3040 char b[BDEVNAME_SIZE];
3041 int err;
3042 struct md_rdev *rdev;
3043 sector_t size;
3044
3045 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3046 if (!rdev) {
3047 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3048 return ERR_PTR(-ENOMEM);
3049 }
3050
3051 err = md_rdev_init(rdev);
3052 if (err)
3053 goto abort_free;
3054 err = alloc_disk_sb(rdev);
3055 if (err)
3056 goto abort_free;
3057
3058 err = lock_rdev(rdev, newdev, super_format == -2);
3059 if (err)
3060 goto abort_free;
3061
3062 kobject_init(&rdev->kobj, &rdev_ktype);
3063
3064 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3065 if (!size) {
3066 printk(KERN_WARNING
3067 "md: %s has zero or unknown size, marking faulty!\n",
3068 bdevname(rdev->bdev,b));
3069 err = -EINVAL;
3070 goto abort_free;
3071 }
3072
3073 if (super_format >= 0) {
3074 err = super_types[super_format].
3075 load_super(rdev, NULL, super_minor);
3076 if (err == -EINVAL) {
3077 printk(KERN_WARNING
3078 "md: %s does not have a valid v%d.%d "
3079 "superblock, not importing!\n",
3080 bdevname(rdev->bdev,b),
3081 super_format, super_minor);
3082 goto abort_free;
3083 }
3084 if (err < 0) {
3085 printk(KERN_WARNING
3086 "md: could not read %s's sb, not importing!\n",
3087 bdevname(rdev->bdev,b));
3088 goto abort_free;
3089 }
3090 }
3091
3092 return rdev;
3093
3094 abort_free:
3095 if (rdev->bdev)
3096 unlock_rdev(rdev);
3097 md_rdev_clear(rdev);
3098 kfree(rdev);
3099 return ERR_PTR(err);
3100 }
3101
3102 /*
3103 * Check a full RAID array for plausibility
3104 */
3105
3106 static void analyze_sbs(struct mddev *mddev)
3107 {
3108 int i;
3109 struct md_rdev *rdev, *freshest, *tmp;
3110 char b[BDEVNAME_SIZE];
3111
3112 freshest = NULL;
3113 rdev_for_each_safe(rdev, tmp, mddev)
3114 switch (super_types[mddev->major_version].
3115 load_super(rdev, freshest, mddev->minor_version)) {
3116 case 1:
3117 freshest = rdev;
3118 break;
3119 case 0:
3120 break;
3121 default:
3122 printk( KERN_ERR \
3123 "md: fatal superblock inconsistency in %s"
3124 " -- removing from array\n",
3125 bdevname(rdev->bdev,b));
3126 kick_rdev_from_array(rdev);
3127 }
3128
3129 super_types[mddev->major_version].
3130 validate_super(mddev, freshest);
3131
3132 i = 0;
3133 rdev_for_each_safe(rdev, tmp, mddev) {
3134 if (mddev->max_disks &&
3135 (rdev->desc_nr >= mddev->max_disks ||
3136 i > mddev->max_disks)) {
3137 printk(KERN_WARNING
3138 "md: %s: %s: only %d devices permitted\n",
3139 mdname(mddev), bdevname(rdev->bdev, b),
3140 mddev->max_disks);
3141 kick_rdev_from_array(rdev);
3142 continue;
3143 }
3144 if (rdev != freshest)
3145 if (super_types[mddev->major_version].
3146 validate_super(mddev, rdev)) {
3147 printk(KERN_WARNING "md: kicking non-fresh %s"
3148 " from array!\n",
3149 bdevname(rdev->bdev,b));
3150 kick_rdev_from_array(rdev);
3151 continue;
3152 }
3153 if (mddev->level == LEVEL_MULTIPATH) {
3154 rdev->desc_nr = i++;
3155 rdev->raid_disk = rdev->desc_nr;
3156 set_bit(In_sync, &rdev->flags);
3157 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3158 rdev->raid_disk = -1;
3159 clear_bit(In_sync, &rdev->flags);
3160 }
3161 }
3162 }
3163
3164 /* Read a fixed-point number.
3165 * Numbers in sysfs attributes should be in "standard" units where
3166 * possible, so time should be in seconds.
3167 * However we internally use a a much smaller unit such as
3168 * milliseconds or jiffies.
3169 * This function takes a decimal number with a possible fractional
3170 * component, and produces an integer which is the result of
3171 * multiplying that number by 10^'scale'.
3172 * all without any floating-point arithmetic.
3173 */
3174 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3175 {
3176 unsigned long result = 0;
3177 long decimals = -1;
3178 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3179 if (*cp == '.')
3180 decimals = 0;
3181 else if (decimals < scale) {
3182 unsigned int value;
3183 value = *cp - '0';
3184 result = result * 10 + value;
3185 if (decimals >= 0)
3186 decimals++;
3187 }
3188 cp++;
3189 }
3190 if (*cp == '\n')
3191 cp++;
3192 if (*cp)
3193 return -EINVAL;
3194 if (decimals < 0)
3195 decimals = 0;
3196 while (decimals < scale) {
3197 result *= 10;
3198 decimals ++;
3199 }
3200 *res = result;
3201 return 0;
3202 }
3203
3204 static void md_safemode_timeout(unsigned long data);
3205
3206 static ssize_t
3207 safe_delay_show(struct mddev *mddev, char *page)
3208 {
3209 int msec = (mddev->safemode_delay*1000)/HZ;
3210 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3211 }
3212 static ssize_t
3213 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3214 {
3215 unsigned long msec;
3216
3217 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3218 return -EINVAL;
3219 if (msec == 0)
3220 mddev->safemode_delay = 0;
3221 else {
3222 unsigned long old_delay = mddev->safemode_delay;
3223 unsigned long new_delay = (msec*HZ)/1000;
3224
3225 if (new_delay == 0)
3226 new_delay = 1;
3227 mddev->safemode_delay = new_delay;
3228 if (new_delay < old_delay || old_delay == 0)
3229 mod_timer(&mddev->safemode_timer, jiffies+1);
3230 }
3231 return len;
3232 }
3233 static struct md_sysfs_entry md_safe_delay =
3234 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3235
3236 static ssize_t
3237 level_show(struct mddev *mddev, char *page)
3238 {
3239 struct md_personality *p;
3240 int ret;
3241 spin_lock(&mddev->lock);
3242 p = mddev->pers;
3243 if (p)
3244 ret = sprintf(page, "%s\n", p->name);
3245 else if (mddev->clevel[0])
3246 ret = sprintf(page, "%s\n", mddev->clevel);
3247 else if (mddev->level != LEVEL_NONE)
3248 ret = sprintf(page, "%d\n", mddev->level);
3249 else
3250 ret = 0;
3251 spin_unlock(&mddev->lock);
3252 return ret;
3253 }
3254
3255 static ssize_t
3256 level_store(struct mddev *mddev, const char *buf, size_t len)
3257 {
3258 char clevel[16];
3259 ssize_t rv;
3260 size_t slen = len;
3261 struct md_personality *pers, *oldpers;
3262 long level;
3263 void *priv, *oldpriv;
3264 struct md_rdev *rdev;
3265
3266 if (slen == 0 || slen >= sizeof(clevel))
3267 return -EINVAL;
3268
3269 rv = mddev_lock(mddev);
3270 if (rv)
3271 return rv;
3272
3273 if (mddev->pers == NULL) {
3274 strncpy(mddev->clevel, buf, slen);
3275 if (mddev->clevel[slen-1] == '\n')
3276 slen--;
3277 mddev->clevel[slen] = 0;
3278 mddev->level = LEVEL_NONE;
3279 rv = len;
3280 goto out_unlock;
3281 }
3282 rv = -EROFS;
3283 if (mddev->ro)
3284 goto out_unlock;
3285
3286 /* request to change the personality. Need to ensure:
3287 * - array is not engaged in resync/recovery/reshape
3288 * - old personality can be suspended
3289 * - new personality will access other array.
3290 */
3291
3292 rv = -EBUSY;
3293 if (mddev->sync_thread ||
3294 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3295 mddev->reshape_position != MaxSector ||
3296 mddev->sysfs_active)
3297 goto out_unlock;
3298
3299 rv = -EINVAL;
3300 if (!mddev->pers->quiesce) {
3301 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3302 mdname(mddev), mddev->pers->name);
3303 goto out_unlock;
3304 }
3305
3306 /* Now find the new personality */
3307 strncpy(clevel, buf, slen);
3308 if (clevel[slen-1] == '\n')
3309 slen--;
3310 clevel[slen] = 0;
3311 if (kstrtol(clevel, 10, &level))
3312 level = LEVEL_NONE;
3313
3314 if (request_module("md-%s", clevel) != 0)
3315 request_module("md-level-%s", clevel);
3316 spin_lock(&pers_lock);
3317 pers = find_pers(level, clevel);
3318 if (!pers || !try_module_get(pers->owner)) {
3319 spin_unlock(&pers_lock);
3320 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3321 rv = -EINVAL;
3322 goto out_unlock;
3323 }
3324 spin_unlock(&pers_lock);
3325
3326 if (pers == mddev->pers) {
3327 /* Nothing to do! */
3328 module_put(pers->owner);
3329 rv = len;
3330 goto out_unlock;
3331 }
3332 if (!pers->takeover) {
3333 module_put(pers->owner);
3334 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3335 mdname(mddev), clevel);
3336 rv = -EINVAL;
3337 goto out_unlock;
3338 }
3339
3340 rdev_for_each(rdev, mddev)
3341 rdev->new_raid_disk = rdev->raid_disk;
3342
3343 /* ->takeover must set new_* and/or delta_disks
3344 * if it succeeds, and may set them when it fails.
3345 */
3346 priv = pers->takeover(mddev);
3347 if (IS_ERR(priv)) {
3348 mddev->new_level = mddev->level;
3349 mddev->new_layout = mddev->layout;
3350 mddev->new_chunk_sectors = mddev->chunk_sectors;
3351 mddev->raid_disks -= mddev->delta_disks;
3352 mddev->delta_disks = 0;
3353 mddev->reshape_backwards = 0;
3354 module_put(pers->owner);
3355 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3356 mdname(mddev), clevel);
3357 rv = PTR_ERR(priv);
3358 goto out_unlock;
3359 }
3360
3361 /* Looks like we have a winner */
3362 mddev_suspend(mddev);
3363 mddev_detach(mddev);
3364
3365 spin_lock(&mddev->lock);
3366 oldpers = mddev->pers;
3367 oldpriv = mddev->private;
3368 mddev->pers = pers;
3369 mddev->private = priv;
3370 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3371 mddev->level = mddev->new_level;
3372 mddev->layout = mddev->new_layout;
3373 mddev->chunk_sectors = mddev->new_chunk_sectors;
3374 mddev->delta_disks = 0;
3375 mddev->reshape_backwards = 0;
3376 mddev->degraded = 0;
3377 spin_unlock(&mddev->lock);
3378
3379 if (oldpers->sync_request == NULL &&
3380 mddev->external) {
3381 /* We are converting from a no-redundancy array
3382 * to a redundancy array and metadata is managed
3383 * externally so we need to be sure that writes
3384 * won't block due to a need to transition
3385 * clean->dirty
3386 * until external management is started.
3387 */
3388 mddev->in_sync = 0;
3389 mddev->safemode_delay = 0;
3390 mddev->safemode = 0;
3391 }
3392
3393 oldpers->free(mddev, oldpriv);
3394
3395 if (oldpers->sync_request == NULL &&
3396 pers->sync_request != NULL) {
3397 /* need to add the md_redundancy_group */
3398 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3399 printk(KERN_WARNING
3400 "md: cannot register extra attributes for %s\n",
3401 mdname(mddev));
3402 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3403 }
3404 if (oldpers->sync_request != NULL &&
3405 pers->sync_request == NULL) {
3406 /* need to remove the md_redundancy_group */
3407 if (mddev->to_remove == NULL)
3408 mddev->to_remove = &md_redundancy_group;
3409 }
3410
3411 rdev_for_each(rdev, mddev) {
3412 if (rdev->raid_disk < 0)
3413 continue;
3414 if (rdev->new_raid_disk >= mddev->raid_disks)
3415 rdev->new_raid_disk = -1;
3416 if (rdev->new_raid_disk == rdev->raid_disk)
3417 continue;
3418 sysfs_unlink_rdev(mddev, rdev);
3419 }
3420 rdev_for_each(rdev, mddev) {
3421 if (rdev->raid_disk < 0)
3422 continue;
3423 if (rdev->new_raid_disk == rdev->raid_disk)
3424 continue;
3425 rdev->raid_disk = rdev->new_raid_disk;
3426 if (rdev->raid_disk < 0)
3427 clear_bit(In_sync, &rdev->flags);
3428 else {
3429 if (sysfs_link_rdev(mddev, rdev))
3430 printk(KERN_WARNING "md: cannot register rd%d"
3431 " for %s after level change\n",
3432 rdev->raid_disk, mdname(mddev));
3433 }
3434 }
3435
3436 if (pers->sync_request == NULL) {
3437 /* this is now an array without redundancy, so
3438 * it must always be in_sync
3439 */
3440 mddev->in_sync = 1;
3441 del_timer_sync(&mddev->safemode_timer);
3442 }
3443 blk_set_stacking_limits(&mddev->queue->limits);
3444 pers->run(mddev);
3445 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3446 mddev_resume(mddev);
3447 if (!mddev->thread)
3448 md_update_sb(mddev, 1);
3449 sysfs_notify(&mddev->kobj, NULL, "level");
3450 md_new_event(mddev);
3451 rv = len;
3452 out_unlock:
3453 mddev_unlock(mddev);
3454 return rv;
3455 }
3456
3457 static struct md_sysfs_entry md_level =
3458 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3459
3460 static ssize_t
3461 layout_show(struct mddev *mddev, char *page)
3462 {
3463 /* just a number, not meaningful for all levels */
3464 if (mddev->reshape_position != MaxSector &&
3465 mddev->layout != mddev->new_layout)
3466 return sprintf(page, "%d (%d)\n",
3467 mddev->new_layout, mddev->layout);
3468 return sprintf(page, "%d\n", mddev->layout);
3469 }
3470
3471 static ssize_t
3472 layout_store(struct mddev *mddev, const char *buf, size_t len)
3473 {
3474 char *e;
3475 unsigned long n = simple_strtoul(buf, &e, 10);
3476 int err;
3477
3478 if (!*buf || (*e && *e != '\n'))
3479 return -EINVAL;
3480 err = mddev_lock(mddev);
3481 if (err)
3482 return err;
3483
3484 if (mddev->pers) {
3485 if (mddev->pers->check_reshape == NULL)
3486 err = -EBUSY;
3487 else if (mddev->ro)
3488 err = -EROFS;
3489 else {
3490 mddev->new_layout = n;
3491 err = mddev->pers->check_reshape(mddev);
3492 if (err)
3493 mddev->new_layout = mddev->layout;
3494 }
3495 } else {
3496 mddev->new_layout = n;
3497 if (mddev->reshape_position == MaxSector)
3498 mddev->layout = n;
3499 }
3500 mddev_unlock(mddev);
3501 return err ?: len;
3502 }
3503 static struct md_sysfs_entry md_layout =
3504 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3505
3506 static ssize_t
3507 raid_disks_show(struct mddev *mddev, char *page)
3508 {
3509 if (mddev->raid_disks == 0)
3510 return 0;
3511 if (mddev->reshape_position != MaxSector &&
3512 mddev->delta_disks != 0)
3513 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3514 mddev->raid_disks - mddev->delta_disks);
3515 return sprintf(page, "%d\n", mddev->raid_disks);
3516 }
3517
3518 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3519
3520 static ssize_t
3521 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3522 {
3523 char *e;
3524 int err;
3525 unsigned long n = simple_strtoul(buf, &e, 10);
3526
3527 if (!*buf || (*e && *e != '\n'))
3528 return -EINVAL;
3529
3530 err = mddev_lock(mddev);
3531 if (err)
3532 return err;
3533 if (mddev->pers)
3534 err = update_raid_disks(mddev, n);
3535 else if (mddev->reshape_position != MaxSector) {
3536 struct md_rdev *rdev;
3537 int olddisks = mddev->raid_disks - mddev->delta_disks;
3538
3539 err = -EINVAL;
3540 rdev_for_each(rdev, mddev) {
3541 if (olddisks < n &&
3542 rdev->data_offset < rdev->new_data_offset)
3543 goto out_unlock;
3544 if (olddisks > n &&
3545 rdev->data_offset > rdev->new_data_offset)
3546 goto out_unlock;
3547 }
3548 err = 0;
3549 mddev->delta_disks = n - olddisks;
3550 mddev->raid_disks = n;
3551 mddev->reshape_backwards = (mddev->delta_disks < 0);
3552 } else
3553 mddev->raid_disks = n;
3554 out_unlock:
3555 mddev_unlock(mddev);
3556 return err ? err : len;
3557 }
3558 static struct md_sysfs_entry md_raid_disks =
3559 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3560
3561 static ssize_t
3562 chunk_size_show(struct mddev *mddev, char *page)
3563 {
3564 if (mddev->reshape_position != MaxSector &&
3565 mddev->chunk_sectors != mddev->new_chunk_sectors)
3566 return sprintf(page, "%d (%d)\n",
3567 mddev->new_chunk_sectors << 9,
3568 mddev->chunk_sectors << 9);
3569 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3570 }
3571
3572 static ssize_t
3573 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3574 {
3575 int err;
3576 char *e;
3577 unsigned long n = simple_strtoul(buf, &e, 10);
3578
3579 if (!*buf || (*e && *e != '\n'))
3580 return -EINVAL;
3581
3582 err = mddev_lock(mddev);
3583 if (err)
3584 return err;
3585 if (mddev->pers) {
3586 if (mddev->pers->check_reshape == NULL)
3587 err = -EBUSY;
3588 else if (mddev->ro)
3589 err = -EROFS;
3590 else {
3591 mddev->new_chunk_sectors = n >> 9;
3592 err = mddev->pers->check_reshape(mddev);
3593 if (err)
3594 mddev->new_chunk_sectors = mddev->chunk_sectors;
3595 }
3596 } else {
3597 mddev->new_chunk_sectors = n >> 9;
3598 if (mddev->reshape_position == MaxSector)
3599 mddev->chunk_sectors = n >> 9;
3600 }
3601 mddev_unlock(mddev);
3602 return err ?: len;
3603 }
3604 static struct md_sysfs_entry md_chunk_size =
3605 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3606
3607 static ssize_t
3608 resync_start_show(struct mddev *mddev, char *page)
3609 {
3610 if (mddev->recovery_cp == MaxSector)
3611 return sprintf(page, "none\n");
3612 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3613 }
3614
3615 static ssize_t
3616 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3617 {
3618 int err;
3619 char *e;
3620 unsigned long long n = simple_strtoull(buf, &e, 10);
3621
3622 err = mddev_lock(mddev);
3623 if (err)
3624 return err;
3625 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3626 err = -EBUSY;
3627 else if (cmd_match(buf, "none"))
3628 n = MaxSector;
3629 else if (!*buf || (*e && *e != '\n'))
3630 err = -EINVAL;
3631
3632 if (!err) {
3633 mddev->recovery_cp = n;
3634 if (mddev->pers)
3635 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3636 }
3637 mddev_unlock(mddev);
3638 return err ?: len;
3639 }
3640 static struct md_sysfs_entry md_resync_start =
3641 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3642 resync_start_show, resync_start_store);
3643
3644 /*
3645 * The array state can be:
3646 *
3647 * clear
3648 * No devices, no size, no level
3649 * Equivalent to STOP_ARRAY ioctl
3650 * inactive
3651 * May have some settings, but array is not active
3652 * all IO results in error
3653 * When written, doesn't tear down array, but just stops it
3654 * suspended (not supported yet)
3655 * All IO requests will block. The array can be reconfigured.
3656 * Writing this, if accepted, will block until array is quiescent
3657 * readonly
3658 * no resync can happen. no superblocks get written.
3659 * write requests fail
3660 * read-auto
3661 * like readonly, but behaves like 'clean' on a write request.
3662 *
3663 * clean - no pending writes, but otherwise active.
3664 * When written to inactive array, starts without resync
3665 * If a write request arrives then
3666 * if metadata is known, mark 'dirty' and switch to 'active'.
3667 * if not known, block and switch to write-pending
3668 * If written to an active array that has pending writes, then fails.
3669 * active
3670 * fully active: IO and resync can be happening.
3671 * When written to inactive array, starts with resync
3672 *
3673 * write-pending
3674 * clean, but writes are blocked waiting for 'active' to be written.
3675 *
3676 * active-idle
3677 * like active, but no writes have been seen for a while (100msec).
3678 *
3679 */
3680 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3681 write_pending, active_idle, bad_word};
3682 static char *array_states[] = {
3683 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3684 "write-pending", "active-idle", NULL };
3685
3686 static int match_word(const char *word, char **list)
3687 {
3688 int n;
3689 for (n=0; list[n]; n++)
3690 if (cmd_match(word, list[n]))
3691 break;
3692 return n;
3693 }
3694
3695 static ssize_t
3696 array_state_show(struct mddev *mddev, char *page)
3697 {
3698 enum array_state st = inactive;
3699
3700 if (mddev->pers)
3701 switch(mddev->ro) {
3702 case 1:
3703 st = readonly;
3704 break;
3705 case 2:
3706 st = read_auto;
3707 break;
3708 case 0:
3709 if (mddev->in_sync)
3710 st = clean;
3711 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3712 st = write_pending;
3713 else if (mddev->safemode)
3714 st = active_idle;
3715 else
3716 st = active;
3717 }
3718 else {
3719 if (list_empty(&mddev->disks) &&
3720 mddev->raid_disks == 0 &&
3721 mddev->dev_sectors == 0)
3722 st = clear;
3723 else
3724 st = inactive;
3725 }
3726 return sprintf(page, "%s\n", array_states[st]);
3727 }
3728
3729 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3730 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3731 static int do_md_run(struct mddev *mddev);
3732 static int restart_array(struct mddev *mddev);
3733
3734 static ssize_t
3735 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3736 {
3737 int err;
3738 enum array_state st = match_word(buf, array_states);
3739
3740 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3741 /* don't take reconfig_mutex when toggling between
3742 * clean and active
3743 */
3744 spin_lock(&mddev->lock);
3745 if (st == active) {
3746 restart_array(mddev);
3747 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3748 wake_up(&mddev->sb_wait);
3749 err = 0;
3750 } else /* st == clean */ {
3751 restart_array(mddev);
3752 if (atomic_read(&mddev->writes_pending) == 0) {
3753 if (mddev->in_sync == 0) {
3754 mddev->in_sync = 1;
3755 if (mddev->safemode == 1)
3756 mddev->safemode = 0;
3757 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3758 }
3759 err = 0;
3760 } else
3761 err = -EBUSY;
3762 }
3763 spin_unlock(&mddev->lock);
3764 return err;
3765 }
3766 err = mddev_lock(mddev);
3767 if (err)
3768 return err;
3769 err = -EINVAL;
3770 switch(st) {
3771 case bad_word:
3772 break;
3773 case clear:
3774 /* stopping an active array */
3775 err = do_md_stop(mddev, 0, NULL);
3776 break;
3777 case inactive:
3778 /* stopping an active array */
3779 if (mddev->pers)
3780 err = do_md_stop(mddev, 2, NULL);
3781 else
3782 err = 0; /* already inactive */
3783 break;
3784 case suspended:
3785 break; /* not supported yet */
3786 case readonly:
3787 if (mddev->pers)
3788 err = md_set_readonly(mddev, NULL);
3789 else {
3790 mddev->ro = 1;
3791 set_disk_ro(mddev->gendisk, 1);
3792 err = do_md_run(mddev);
3793 }
3794 break;
3795 case read_auto:
3796 if (mddev->pers) {
3797 if (mddev->ro == 0)
3798 err = md_set_readonly(mddev, NULL);
3799 else if (mddev->ro == 1)
3800 err = restart_array(mddev);
3801 if (err == 0) {
3802 mddev->ro = 2;
3803 set_disk_ro(mddev->gendisk, 0);
3804 }
3805 } else {
3806 mddev->ro = 2;
3807 err = do_md_run(mddev);
3808 }
3809 break;
3810 case clean:
3811 if (mddev->pers) {
3812 restart_array(mddev);
3813 spin_lock(&mddev->lock);
3814 if (atomic_read(&mddev->writes_pending) == 0) {
3815 if (mddev->in_sync == 0) {
3816 mddev->in_sync = 1;
3817 if (mddev->safemode == 1)
3818 mddev->safemode = 0;
3819 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3820 }
3821 err = 0;
3822 } else
3823 err = -EBUSY;
3824 spin_unlock(&mddev->lock);
3825 } else
3826 err = -EINVAL;
3827 break;
3828 case active:
3829 if (mddev->pers) {
3830 restart_array(mddev);
3831 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3832 wake_up(&mddev->sb_wait);
3833 err = 0;
3834 } else {
3835 mddev->ro = 0;
3836 set_disk_ro(mddev->gendisk, 0);
3837 err = do_md_run(mddev);
3838 }
3839 break;
3840 case write_pending:
3841 case active_idle:
3842 /* these cannot be set */
3843 break;
3844 }
3845
3846 if (!err) {
3847 if (mddev->hold_active == UNTIL_IOCTL)
3848 mddev->hold_active = 0;
3849 sysfs_notify_dirent_safe(mddev->sysfs_state);
3850 }
3851 mddev_unlock(mddev);
3852 return err ?: len;
3853 }
3854 static struct md_sysfs_entry md_array_state =
3855 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3856
3857 static ssize_t
3858 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3859 return sprintf(page, "%d\n",
3860 atomic_read(&mddev->max_corr_read_errors));
3861 }
3862
3863 static ssize_t
3864 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3865 {
3866 char *e;
3867 unsigned long n = simple_strtoul(buf, &e, 10);
3868
3869 if (*buf && (*e == 0 || *e == '\n')) {
3870 atomic_set(&mddev->max_corr_read_errors, n);
3871 return len;
3872 }
3873 return -EINVAL;
3874 }
3875
3876 static struct md_sysfs_entry max_corr_read_errors =
3877 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3878 max_corrected_read_errors_store);
3879
3880 static ssize_t
3881 null_show(struct mddev *mddev, char *page)
3882 {
3883 return -EINVAL;
3884 }
3885
3886 static ssize_t
3887 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889 /* buf must be %d:%d\n? giving major and minor numbers */
3890 /* The new device is added to the array.
3891 * If the array has a persistent superblock, we read the
3892 * superblock to initialise info and check validity.
3893 * Otherwise, only checking done is that in bind_rdev_to_array,
3894 * which mainly checks size.
3895 */
3896 char *e;
3897 int major = simple_strtoul(buf, &e, 10);
3898 int minor;
3899 dev_t dev;
3900 struct md_rdev *rdev;
3901 int err;
3902
3903 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3904 return -EINVAL;
3905 minor = simple_strtoul(e+1, &e, 10);
3906 if (*e && *e != '\n')
3907 return -EINVAL;
3908 dev = MKDEV(major, minor);
3909 if (major != MAJOR(dev) ||
3910 minor != MINOR(dev))
3911 return -EOVERFLOW;
3912
3913 flush_workqueue(md_misc_wq);
3914
3915 err = mddev_lock(mddev);
3916 if (err)
3917 return err;
3918 if (mddev->persistent) {
3919 rdev = md_import_device(dev, mddev->major_version,
3920 mddev->minor_version);
3921 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3922 struct md_rdev *rdev0
3923 = list_entry(mddev->disks.next,
3924 struct md_rdev, same_set);
3925 err = super_types[mddev->major_version]
3926 .load_super(rdev, rdev0, mddev->minor_version);
3927 if (err < 0)
3928 goto out;
3929 }
3930 } else if (mddev->external)
3931 rdev = md_import_device(dev, -2, -1);
3932 else
3933 rdev = md_import_device(dev, -1, -1);
3934
3935 if (IS_ERR(rdev))
3936 return PTR_ERR(rdev);
3937 err = bind_rdev_to_array(rdev, mddev);
3938 out:
3939 if (err)
3940 export_rdev(rdev);
3941 mddev_unlock(mddev);
3942 return err ? err : len;
3943 }
3944
3945 static struct md_sysfs_entry md_new_device =
3946 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3947
3948 static ssize_t
3949 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3950 {
3951 char *end;
3952 unsigned long chunk, end_chunk;
3953 int err;
3954
3955 err = mddev_lock(mddev);
3956 if (err)
3957 return err;
3958 if (!mddev->bitmap)
3959 goto out;
3960 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3961 while (*buf) {
3962 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3963 if (buf == end) break;
3964 if (*end == '-') { /* range */
3965 buf = end + 1;
3966 end_chunk = simple_strtoul(buf, &end, 0);
3967 if (buf == end) break;
3968 }
3969 if (*end && !isspace(*end)) break;
3970 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3971 buf = skip_spaces(end);
3972 }
3973 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3974 out:
3975 mddev_unlock(mddev);
3976 return len;
3977 }
3978
3979 static struct md_sysfs_entry md_bitmap =
3980 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3981
3982 static ssize_t
3983 size_show(struct mddev *mddev, char *page)
3984 {
3985 return sprintf(page, "%llu\n",
3986 (unsigned long long)mddev->dev_sectors / 2);
3987 }
3988
3989 static int update_size(struct mddev *mddev, sector_t num_sectors);
3990
3991 static ssize_t
3992 size_store(struct mddev *mddev, const char *buf, size_t len)
3993 {
3994 /* If array is inactive, we can reduce the component size, but
3995 * not increase it (except from 0).
3996 * If array is active, we can try an on-line resize
3997 */
3998 sector_t sectors;
3999 int err = strict_blocks_to_sectors(buf, &sectors);
4000
4001 if (err < 0)
4002 return err;
4003 err = mddev_lock(mddev);
4004 if (err)
4005 return err;
4006 if (mddev->pers) {
4007 err = update_size(mddev, sectors);
4008 md_update_sb(mddev, 1);
4009 } else {
4010 if (mddev->dev_sectors == 0 ||
4011 mddev->dev_sectors > sectors)
4012 mddev->dev_sectors = sectors;
4013 else
4014 err = -ENOSPC;
4015 }
4016 mddev_unlock(mddev);
4017 return err ? err : len;
4018 }
4019
4020 static struct md_sysfs_entry md_size =
4021 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4022
4023 /* Metadata version.
4024 * This is one of
4025 * 'none' for arrays with no metadata (good luck...)
4026 * 'external' for arrays with externally managed metadata,
4027 * or N.M for internally known formats
4028 */
4029 static ssize_t
4030 metadata_show(struct mddev *mddev, char *page)
4031 {
4032 if (mddev->persistent)
4033 return sprintf(page, "%d.%d\n",
4034 mddev->major_version, mddev->minor_version);
4035 else if (mddev->external)
4036 return sprintf(page, "external:%s\n", mddev->metadata_type);
4037 else
4038 return sprintf(page, "none\n");
4039 }
4040
4041 static ssize_t
4042 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4043 {
4044 int major, minor;
4045 char *e;
4046 int err;
4047 /* Changing the details of 'external' metadata is
4048 * always permitted. Otherwise there must be
4049 * no devices attached to the array.
4050 */
4051
4052 err = mddev_lock(mddev);
4053 if (err)
4054 return err;
4055 err = -EBUSY;
4056 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4057 ;
4058 else if (!list_empty(&mddev->disks))
4059 goto out_unlock;
4060
4061 err = 0;
4062 if (cmd_match(buf, "none")) {
4063 mddev->persistent = 0;
4064 mddev->external = 0;
4065 mddev->major_version = 0;
4066 mddev->minor_version = 90;
4067 goto out_unlock;
4068 }
4069 if (strncmp(buf, "external:", 9) == 0) {
4070 size_t namelen = len-9;
4071 if (namelen >= sizeof(mddev->metadata_type))
4072 namelen = sizeof(mddev->metadata_type)-1;
4073 strncpy(mddev->metadata_type, buf+9, namelen);
4074 mddev->metadata_type[namelen] = 0;
4075 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4076 mddev->metadata_type[--namelen] = 0;
4077 mddev->persistent = 0;
4078 mddev->external = 1;
4079 mddev->major_version = 0;
4080 mddev->minor_version = 90;
4081 goto out_unlock;
4082 }
4083 major = simple_strtoul(buf, &e, 10);
4084 err = -EINVAL;
4085 if (e==buf || *e != '.')
4086 goto out_unlock;
4087 buf = e+1;
4088 minor = simple_strtoul(buf, &e, 10);
4089 if (e==buf || (*e && *e != '\n') )
4090 goto out_unlock;
4091 err = -ENOENT;
4092 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4093 goto out_unlock;
4094 mddev->major_version = major;
4095 mddev->minor_version = minor;
4096 mddev->persistent = 1;
4097 mddev->external = 0;
4098 err = 0;
4099 out_unlock:
4100 mddev_unlock(mddev);
4101 return err ?: len;
4102 }
4103
4104 static struct md_sysfs_entry md_metadata =
4105 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4106
4107 static ssize_t
4108 action_show(struct mddev *mddev, char *page)
4109 {
4110 char *type = "idle";
4111 unsigned long recovery = mddev->recovery;
4112 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4113 type = "frozen";
4114 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4115 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4116 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4117 type = "reshape";
4118 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4119 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4120 type = "resync";
4121 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4122 type = "check";
4123 else
4124 type = "repair";
4125 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4126 type = "recover";
4127 }
4128 return sprintf(page, "%s\n", type);
4129 }
4130
4131 static ssize_t
4132 action_store(struct mddev *mddev, const char *page, size_t len)
4133 {
4134 if (!mddev->pers || !mddev->pers->sync_request)
4135 return -EINVAL;
4136
4137 if (cmd_match(page, "frozen"))
4138 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4139 else
4140 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4141
4142 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4143 flush_workqueue(md_misc_wq);
4144 if (mddev->sync_thread) {
4145 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4146 if (mddev_lock(mddev) == 0) {
4147 md_reap_sync_thread(mddev);
4148 mddev_unlock(mddev);
4149 }
4150 }
4151 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4152 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4153 return -EBUSY;
4154 else if (cmd_match(page, "resync"))
4155 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4156 else if (cmd_match(page, "recover")) {
4157 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4158 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4159 } else if (cmd_match(page, "reshape")) {
4160 int err;
4161 if (mddev->pers->start_reshape == NULL)
4162 return -EINVAL;
4163 err = mddev_lock(mddev);
4164 if (!err) {
4165 err = mddev->pers->start_reshape(mddev);
4166 mddev_unlock(mddev);
4167 }
4168 if (err)
4169 return err;
4170 sysfs_notify(&mddev->kobj, NULL, "degraded");
4171 } else {
4172 if (cmd_match(page, "check"))
4173 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4174 else if (!cmd_match(page, "repair"))
4175 return -EINVAL;
4176 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4177 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4178 }
4179 if (mddev->ro == 2) {
4180 /* A write to sync_action is enough to justify
4181 * canceling read-auto mode
4182 */
4183 mddev->ro = 0;
4184 md_wakeup_thread(mddev->sync_thread);
4185 }
4186 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4187 md_wakeup_thread(mddev->thread);
4188 sysfs_notify_dirent_safe(mddev->sysfs_action);
4189 return len;
4190 }
4191
4192 static struct md_sysfs_entry md_scan_mode =
4193 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4194
4195 static ssize_t
4196 last_sync_action_show(struct mddev *mddev, char *page)
4197 {
4198 return sprintf(page, "%s\n", mddev->last_sync_action);
4199 }
4200
4201 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4202
4203 static ssize_t
4204 mismatch_cnt_show(struct mddev *mddev, char *page)
4205 {
4206 return sprintf(page, "%llu\n",
4207 (unsigned long long)
4208 atomic64_read(&mddev->resync_mismatches));
4209 }
4210
4211 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4212
4213 static ssize_t
4214 sync_min_show(struct mddev *mddev, char *page)
4215 {
4216 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4217 mddev->sync_speed_min ? "local": "system");
4218 }
4219
4220 static ssize_t
4221 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223 int min;
4224 char *e;
4225 if (strncmp(buf, "system", 6)==0) {
4226 mddev->sync_speed_min = 0;
4227 return len;
4228 }
4229 min = simple_strtoul(buf, &e, 10);
4230 if (buf == e || (*e && *e != '\n') || min <= 0)
4231 return -EINVAL;
4232 mddev->sync_speed_min = min;
4233 return len;
4234 }
4235
4236 static struct md_sysfs_entry md_sync_min =
4237 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4238
4239 static ssize_t
4240 sync_max_show(struct mddev *mddev, char *page)
4241 {
4242 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4243 mddev->sync_speed_max ? "local": "system");
4244 }
4245
4246 static ssize_t
4247 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4248 {
4249 int max;
4250 char *e;
4251 if (strncmp(buf, "system", 6)==0) {
4252 mddev->sync_speed_max = 0;
4253 return len;
4254 }
4255 max = simple_strtoul(buf, &e, 10);
4256 if (buf == e || (*e && *e != '\n') || max <= 0)
4257 return -EINVAL;
4258 mddev->sync_speed_max = max;
4259 return len;
4260 }
4261
4262 static struct md_sysfs_entry md_sync_max =
4263 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4264
4265 static ssize_t
4266 degraded_show(struct mddev *mddev, char *page)
4267 {
4268 return sprintf(page, "%d\n", mddev->degraded);
4269 }
4270 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4271
4272 static ssize_t
4273 sync_force_parallel_show(struct mddev *mddev, char *page)
4274 {
4275 return sprintf(page, "%d\n", mddev->parallel_resync);
4276 }
4277
4278 static ssize_t
4279 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4280 {
4281 long n;
4282
4283 if (kstrtol(buf, 10, &n))
4284 return -EINVAL;
4285
4286 if (n != 0 && n != 1)
4287 return -EINVAL;
4288
4289 mddev->parallel_resync = n;
4290
4291 if (mddev->sync_thread)
4292 wake_up(&resync_wait);
4293
4294 return len;
4295 }
4296
4297 /* force parallel resync, even with shared block devices */
4298 static struct md_sysfs_entry md_sync_force_parallel =
4299 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4300 sync_force_parallel_show, sync_force_parallel_store);
4301
4302 static ssize_t
4303 sync_speed_show(struct mddev *mddev, char *page)
4304 {
4305 unsigned long resync, dt, db;
4306 if (mddev->curr_resync == 0)
4307 return sprintf(page, "none\n");
4308 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4309 dt = (jiffies - mddev->resync_mark) / HZ;
4310 if (!dt) dt++;
4311 db = resync - mddev->resync_mark_cnt;
4312 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4313 }
4314
4315 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4316
4317 static ssize_t
4318 sync_completed_show(struct mddev *mddev, char *page)
4319 {
4320 unsigned long long max_sectors, resync;
4321
4322 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4323 return sprintf(page, "none\n");
4324
4325 if (mddev->curr_resync == 1 ||
4326 mddev->curr_resync == 2)
4327 return sprintf(page, "delayed\n");
4328
4329 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4330 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4331 max_sectors = mddev->resync_max_sectors;
4332 else
4333 max_sectors = mddev->dev_sectors;
4334
4335 resync = mddev->curr_resync_completed;
4336 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4337 }
4338
4339 static struct md_sysfs_entry md_sync_completed =
4340 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4341
4342 static ssize_t
4343 min_sync_show(struct mddev *mddev, char *page)
4344 {
4345 return sprintf(page, "%llu\n",
4346 (unsigned long long)mddev->resync_min);
4347 }
4348 static ssize_t
4349 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4350 {
4351 unsigned long long min;
4352 int err;
4353 int chunk;
4354
4355 if (kstrtoull(buf, 10, &min))
4356 return -EINVAL;
4357
4358 spin_lock(&mddev->lock);
4359 err = -EINVAL;
4360 if (min > mddev->resync_max)
4361 goto out_unlock;
4362
4363 err = -EBUSY;
4364 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4365 goto out_unlock;
4366
4367 /* Must be a multiple of chunk_size */
4368 chunk = mddev->chunk_sectors;
4369 if (chunk) {
4370 sector_t temp = min;
4371
4372 err = -EINVAL;
4373 if (sector_div(temp, chunk))
4374 goto out_unlock;
4375 }
4376 mddev->resync_min = min;
4377 err = 0;
4378
4379 out_unlock:
4380 spin_unlock(&mddev->lock);
4381 return err ?: len;
4382 }
4383
4384 static struct md_sysfs_entry md_min_sync =
4385 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4386
4387 static ssize_t
4388 max_sync_show(struct mddev *mddev, char *page)
4389 {
4390 if (mddev->resync_max == MaxSector)
4391 return sprintf(page, "max\n");
4392 else
4393 return sprintf(page, "%llu\n",
4394 (unsigned long long)mddev->resync_max);
4395 }
4396 static ssize_t
4397 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4398 {
4399 int err;
4400 spin_lock(&mddev->lock);
4401 if (strncmp(buf, "max", 3) == 0)
4402 mddev->resync_max = MaxSector;
4403 else {
4404 unsigned long long max;
4405 int chunk;
4406
4407 err = -EINVAL;
4408 if (kstrtoull(buf, 10, &max))
4409 goto out_unlock;
4410 if (max < mddev->resync_min)
4411 goto out_unlock;
4412
4413 err = -EBUSY;
4414 if (max < mddev->resync_max &&
4415 mddev->ro == 0 &&
4416 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4417 goto out_unlock;
4418
4419 /* Must be a multiple of chunk_size */
4420 chunk = mddev->chunk_sectors;
4421 if (chunk) {
4422 sector_t temp = max;
4423
4424 err = -EINVAL;
4425 if (sector_div(temp, chunk))
4426 goto out_unlock;
4427 }
4428 mddev->resync_max = max;
4429 }
4430 wake_up(&mddev->recovery_wait);
4431 err = 0;
4432 out_unlock:
4433 spin_unlock(&mddev->lock);
4434 return err ?: len;
4435 }
4436
4437 static struct md_sysfs_entry md_max_sync =
4438 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4439
4440 static ssize_t
4441 suspend_lo_show(struct mddev *mddev, char *page)
4442 {
4443 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4444 }
4445
4446 static ssize_t
4447 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4448 {
4449 char *e;
4450 unsigned long long new = simple_strtoull(buf, &e, 10);
4451 unsigned long long old;
4452 int err;
4453
4454 if (buf == e || (*e && *e != '\n'))
4455 return -EINVAL;
4456
4457 err = mddev_lock(mddev);
4458 if (err)
4459 return err;
4460 err = -EINVAL;
4461 if (mddev->pers == NULL ||
4462 mddev->pers->quiesce == NULL)
4463 goto unlock;
4464 old = mddev->suspend_lo;
4465 mddev->suspend_lo = new;
4466 if (new >= old)
4467 /* Shrinking suspended region */
4468 mddev->pers->quiesce(mddev, 2);
4469 else {
4470 /* Expanding suspended region - need to wait */
4471 mddev->pers->quiesce(mddev, 1);
4472 mddev->pers->quiesce(mddev, 0);
4473 }
4474 err = 0;
4475 unlock:
4476 mddev_unlock(mddev);
4477 return err ?: len;
4478 }
4479 static struct md_sysfs_entry md_suspend_lo =
4480 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4481
4482 static ssize_t
4483 suspend_hi_show(struct mddev *mddev, char *page)
4484 {
4485 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4486 }
4487
4488 static ssize_t
4489 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4490 {
4491 char *e;
4492 unsigned long long new = simple_strtoull(buf, &e, 10);
4493 unsigned long long old;
4494 int err;
4495
4496 if (buf == e || (*e && *e != '\n'))
4497 return -EINVAL;
4498
4499 err = mddev_lock(mddev);
4500 if (err)
4501 return err;
4502 err = -EINVAL;
4503 if (mddev->pers == NULL ||
4504 mddev->pers->quiesce == NULL)
4505 goto unlock;
4506 old = mddev->suspend_hi;
4507 mddev->suspend_hi = new;
4508 if (new <= old)
4509 /* Shrinking suspended region */
4510 mddev->pers->quiesce(mddev, 2);
4511 else {
4512 /* Expanding suspended region - need to wait */
4513 mddev->pers->quiesce(mddev, 1);
4514 mddev->pers->quiesce(mddev, 0);
4515 }
4516 err = 0;
4517 unlock:
4518 mddev_unlock(mddev);
4519 return err ?: len;
4520 }
4521 static struct md_sysfs_entry md_suspend_hi =
4522 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4523
4524 static ssize_t
4525 reshape_position_show(struct mddev *mddev, char *page)
4526 {
4527 if (mddev->reshape_position != MaxSector)
4528 return sprintf(page, "%llu\n",
4529 (unsigned long long)mddev->reshape_position);
4530 strcpy(page, "none\n");
4531 return 5;
4532 }
4533
4534 static ssize_t
4535 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4536 {
4537 struct md_rdev *rdev;
4538 char *e;
4539 int err;
4540 unsigned long long new = simple_strtoull(buf, &e, 10);
4541
4542 if (buf == e || (*e && *e != '\n'))
4543 return -EINVAL;
4544 err = mddev_lock(mddev);
4545 if (err)
4546 return err;
4547 err = -EBUSY;
4548 if (mddev->pers)
4549 goto unlock;
4550 mddev->reshape_position = new;
4551 mddev->delta_disks = 0;
4552 mddev->reshape_backwards = 0;
4553 mddev->new_level = mddev->level;
4554 mddev->new_layout = mddev->layout;
4555 mddev->new_chunk_sectors = mddev->chunk_sectors;
4556 rdev_for_each(rdev, mddev)
4557 rdev->new_data_offset = rdev->data_offset;
4558 err = 0;
4559 unlock:
4560 mddev_unlock(mddev);
4561 return err ?: len;
4562 }
4563
4564 static struct md_sysfs_entry md_reshape_position =
4565 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4566 reshape_position_store);
4567
4568 static ssize_t
4569 reshape_direction_show(struct mddev *mddev, char *page)
4570 {
4571 return sprintf(page, "%s\n",
4572 mddev->reshape_backwards ? "backwards" : "forwards");
4573 }
4574
4575 static ssize_t
4576 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 int backwards = 0;
4579 int err;
4580
4581 if (cmd_match(buf, "forwards"))
4582 backwards = 0;
4583 else if (cmd_match(buf, "backwards"))
4584 backwards = 1;
4585 else
4586 return -EINVAL;
4587 if (mddev->reshape_backwards == backwards)
4588 return len;
4589
4590 err = mddev_lock(mddev);
4591 if (err)
4592 return err;
4593 /* check if we are allowed to change */
4594 if (mddev->delta_disks)
4595 err = -EBUSY;
4596 else if (mddev->persistent &&
4597 mddev->major_version == 0)
4598 err = -EINVAL;
4599 else
4600 mddev->reshape_backwards = backwards;
4601 mddev_unlock(mddev);
4602 return err ?: len;
4603 }
4604
4605 static struct md_sysfs_entry md_reshape_direction =
4606 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4607 reshape_direction_store);
4608
4609 static ssize_t
4610 array_size_show(struct mddev *mddev, char *page)
4611 {
4612 if (mddev->external_size)
4613 return sprintf(page, "%llu\n",
4614 (unsigned long long)mddev->array_sectors/2);
4615 else
4616 return sprintf(page, "default\n");
4617 }
4618
4619 static ssize_t
4620 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4621 {
4622 sector_t sectors;
4623 int err;
4624
4625 err = mddev_lock(mddev);
4626 if (err)
4627 return err;
4628
4629 if (strncmp(buf, "default", 7) == 0) {
4630 if (mddev->pers)
4631 sectors = mddev->pers->size(mddev, 0, 0);
4632 else
4633 sectors = mddev->array_sectors;
4634
4635 mddev->external_size = 0;
4636 } else {
4637 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4638 err = -EINVAL;
4639 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4640 err = -E2BIG;
4641 else
4642 mddev->external_size = 1;
4643 }
4644
4645 if (!err) {
4646 mddev->array_sectors = sectors;
4647 if (mddev->pers) {
4648 set_capacity(mddev->gendisk, mddev->array_sectors);
4649 revalidate_disk(mddev->gendisk);
4650 }
4651 }
4652 mddev_unlock(mddev);
4653 return err ?: len;
4654 }
4655
4656 static struct md_sysfs_entry md_array_size =
4657 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4658 array_size_store);
4659
4660 static struct attribute *md_default_attrs[] = {
4661 &md_level.attr,
4662 &md_layout.attr,
4663 &md_raid_disks.attr,
4664 &md_chunk_size.attr,
4665 &md_size.attr,
4666 &md_resync_start.attr,
4667 &md_metadata.attr,
4668 &md_new_device.attr,
4669 &md_safe_delay.attr,
4670 &md_array_state.attr,
4671 &md_reshape_position.attr,
4672 &md_reshape_direction.attr,
4673 &md_array_size.attr,
4674 &max_corr_read_errors.attr,
4675 NULL,
4676 };
4677
4678 static struct attribute *md_redundancy_attrs[] = {
4679 &md_scan_mode.attr,
4680 &md_last_scan_mode.attr,
4681 &md_mismatches.attr,
4682 &md_sync_min.attr,
4683 &md_sync_max.attr,
4684 &md_sync_speed.attr,
4685 &md_sync_force_parallel.attr,
4686 &md_sync_completed.attr,
4687 &md_min_sync.attr,
4688 &md_max_sync.attr,
4689 &md_suspend_lo.attr,
4690 &md_suspend_hi.attr,
4691 &md_bitmap.attr,
4692 &md_degraded.attr,
4693 NULL,
4694 };
4695 static struct attribute_group md_redundancy_group = {
4696 .name = NULL,
4697 .attrs = md_redundancy_attrs,
4698 };
4699
4700 static ssize_t
4701 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4702 {
4703 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4704 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4705 ssize_t rv;
4706
4707 if (!entry->show)
4708 return -EIO;
4709 spin_lock(&all_mddevs_lock);
4710 if (list_empty(&mddev->all_mddevs)) {
4711 spin_unlock(&all_mddevs_lock);
4712 return -EBUSY;
4713 }
4714 mddev_get(mddev);
4715 spin_unlock(&all_mddevs_lock);
4716
4717 rv = entry->show(mddev, page);
4718 mddev_put(mddev);
4719 return rv;
4720 }
4721
4722 static ssize_t
4723 md_attr_store(struct kobject *kobj, struct attribute *attr,
4724 const char *page, size_t length)
4725 {
4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4728 ssize_t rv;
4729
4730 if (!entry->store)
4731 return -EIO;
4732 if (!capable(CAP_SYS_ADMIN))
4733 return -EACCES;
4734 spin_lock(&all_mddevs_lock);
4735 if (list_empty(&mddev->all_mddevs)) {
4736 spin_unlock(&all_mddevs_lock);
4737 return -EBUSY;
4738 }
4739 mddev_get(mddev);
4740 spin_unlock(&all_mddevs_lock);
4741 rv = entry->store(mddev, page, length);
4742 mddev_put(mddev);
4743 return rv;
4744 }
4745
4746 static void md_free(struct kobject *ko)
4747 {
4748 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4749
4750 if (mddev->sysfs_state)
4751 sysfs_put(mddev->sysfs_state);
4752
4753 if (mddev->gendisk) {
4754 del_gendisk(mddev->gendisk);
4755 put_disk(mddev->gendisk);
4756 }
4757 if (mddev->queue)
4758 blk_cleanup_queue(mddev->queue);
4759
4760 kfree(mddev);
4761 }
4762
4763 static const struct sysfs_ops md_sysfs_ops = {
4764 .show = md_attr_show,
4765 .store = md_attr_store,
4766 };
4767 static struct kobj_type md_ktype = {
4768 .release = md_free,
4769 .sysfs_ops = &md_sysfs_ops,
4770 .default_attrs = md_default_attrs,
4771 };
4772
4773 int mdp_major = 0;
4774
4775 static void mddev_delayed_delete(struct work_struct *ws)
4776 {
4777 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4778
4779 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4780 kobject_del(&mddev->kobj);
4781 kobject_put(&mddev->kobj);
4782 }
4783
4784 static int md_alloc(dev_t dev, char *name)
4785 {
4786 static DEFINE_MUTEX(disks_mutex);
4787 struct mddev *mddev = mddev_find(dev);
4788 struct gendisk *disk;
4789 int partitioned;
4790 int shift;
4791 int unit;
4792 int error;
4793
4794 if (!mddev)
4795 return -ENODEV;
4796
4797 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4798 shift = partitioned ? MdpMinorShift : 0;
4799 unit = MINOR(mddev->unit) >> shift;
4800
4801 /* wait for any previous instance of this device to be
4802 * completely removed (mddev_delayed_delete).
4803 */
4804 flush_workqueue(md_misc_wq);
4805
4806 mutex_lock(&disks_mutex);
4807 error = -EEXIST;
4808 if (mddev->gendisk)
4809 goto abort;
4810
4811 if (name) {
4812 /* Need to ensure that 'name' is not a duplicate.
4813 */
4814 struct mddev *mddev2;
4815 spin_lock(&all_mddevs_lock);
4816
4817 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4818 if (mddev2->gendisk &&
4819 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4820 spin_unlock(&all_mddevs_lock);
4821 goto abort;
4822 }
4823 spin_unlock(&all_mddevs_lock);
4824 }
4825
4826 error = -ENOMEM;
4827 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4828 if (!mddev->queue)
4829 goto abort;
4830 mddev->queue->queuedata = mddev;
4831
4832 blk_queue_make_request(mddev->queue, md_make_request);
4833 blk_set_stacking_limits(&mddev->queue->limits);
4834
4835 disk = alloc_disk(1 << shift);
4836 if (!disk) {
4837 blk_cleanup_queue(mddev->queue);
4838 mddev->queue = NULL;
4839 goto abort;
4840 }
4841 disk->major = MAJOR(mddev->unit);
4842 disk->first_minor = unit << shift;
4843 if (name)
4844 strcpy(disk->disk_name, name);
4845 else if (partitioned)
4846 sprintf(disk->disk_name, "md_d%d", unit);
4847 else
4848 sprintf(disk->disk_name, "md%d", unit);
4849 disk->fops = &md_fops;
4850 disk->private_data = mddev;
4851 disk->queue = mddev->queue;
4852 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4853 /* Allow extended partitions. This makes the
4854 * 'mdp' device redundant, but we can't really
4855 * remove it now.
4856 */
4857 disk->flags |= GENHD_FL_EXT_DEVT;
4858 mddev->gendisk = disk;
4859 /* As soon as we call add_disk(), another thread could get
4860 * through to md_open, so make sure it doesn't get too far
4861 */
4862 mutex_lock(&mddev->open_mutex);
4863 add_disk(disk);
4864
4865 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4866 &disk_to_dev(disk)->kobj, "%s", "md");
4867 if (error) {
4868 /* This isn't possible, but as kobject_init_and_add is marked
4869 * __must_check, we must do something with the result
4870 */
4871 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4872 disk->disk_name);
4873 error = 0;
4874 }
4875 if (mddev->kobj.sd &&
4876 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4877 printk(KERN_DEBUG "pointless warning\n");
4878 mutex_unlock(&mddev->open_mutex);
4879 abort:
4880 mutex_unlock(&disks_mutex);
4881 if (!error && mddev->kobj.sd) {
4882 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4883 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4884 }
4885 mddev_put(mddev);
4886 return error;
4887 }
4888
4889 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4890 {
4891 md_alloc(dev, NULL);
4892 return NULL;
4893 }
4894
4895 static int add_named_array(const char *val, struct kernel_param *kp)
4896 {
4897 /* val must be "md_*" where * is not all digits.
4898 * We allocate an array with a large free minor number, and
4899 * set the name to val. val must not already be an active name.
4900 */
4901 int len = strlen(val);
4902 char buf[DISK_NAME_LEN];
4903
4904 while (len && val[len-1] == '\n')
4905 len--;
4906 if (len >= DISK_NAME_LEN)
4907 return -E2BIG;
4908 strlcpy(buf, val, len+1);
4909 if (strncmp(buf, "md_", 3) != 0)
4910 return -EINVAL;
4911 return md_alloc(0, buf);
4912 }
4913
4914 static void md_safemode_timeout(unsigned long data)
4915 {
4916 struct mddev *mddev = (struct mddev *) data;
4917
4918 if (!atomic_read(&mddev->writes_pending)) {
4919 mddev->safemode = 1;
4920 if (mddev->external)
4921 sysfs_notify_dirent_safe(mddev->sysfs_state);
4922 }
4923 md_wakeup_thread(mddev->thread);
4924 }
4925
4926 static int start_dirty_degraded;
4927
4928 int md_run(struct mddev *mddev)
4929 {
4930 int err;
4931 struct md_rdev *rdev;
4932 struct md_personality *pers;
4933
4934 if (list_empty(&mddev->disks))
4935 /* cannot run an array with no devices.. */
4936 return -EINVAL;
4937
4938 if (mddev->pers)
4939 return -EBUSY;
4940 /* Cannot run until previous stop completes properly */
4941 if (mddev->sysfs_active)
4942 return -EBUSY;
4943
4944 /*
4945 * Analyze all RAID superblock(s)
4946 */
4947 if (!mddev->raid_disks) {
4948 if (!mddev->persistent)
4949 return -EINVAL;
4950 analyze_sbs(mddev);
4951 }
4952
4953 if (mddev->level != LEVEL_NONE)
4954 request_module("md-level-%d", mddev->level);
4955 else if (mddev->clevel[0])
4956 request_module("md-%s", mddev->clevel);
4957
4958 /*
4959 * Drop all container device buffers, from now on
4960 * the only valid external interface is through the md
4961 * device.
4962 */
4963 rdev_for_each(rdev, mddev) {
4964 if (test_bit(Faulty, &rdev->flags))
4965 continue;
4966 sync_blockdev(rdev->bdev);
4967 invalidate_bdev(rdev->bdev);
4968
4969 /* perform some consistency tests on the device.
4970 * We don't want the data to overlap the metadata,
4971 * Internal Bitmap issues have been handled elsewhere.
4972 */
4973 if (rdev->meta_bdev) {
4974 /* Nothing to check */;
4975 } else if (rdev->data_offset < rdev->sb_start) {
4976 if (mddev->dev_sectors &&
4977 rdev->data_offset + mddev->dev_sectors
4978 > rdev->sb_start) {
4979 printk("md: %s: data overlaps metadata\n",
4980 mdname(mddev));
4981 return -EINVAL;
4982 }
4983 } else {
4984 if (rdev->sb_start + rdev->sb_size/512
4985 > rdev->data_offset) {
4986 printk("md: %s: metadata overlaps data\n",
4987 mdname(mddev));
4988 return -EINVAL;
4989 }
4990 }
4991 sysfs_notify_dirent_safe(rdev->sysfs_state);
4992 }
4993
4994 if (mddev->bio_set == NULL)
4995 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4996
4997 spin_lock(&pers_lock);
4998 pers = find_pers(mddev->level, mddev->clevel);
4999 if (!pers || !try_module_get(pers->owner)) {
5000 spin_unlock(&pers_lock);
5001 if (mddev->level != LEVEL_NONE)
5002 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5003 mddev->level);
5004 else
5005 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5006 mddev->clevel);
5007 return -EINVAL;
5008 }
5009 spin_unlock(&pers_lock);
5010 if (mddev->level != pers->level) {
5011 mddev->level = pers->level;
5012 mddev->new_level = pers->level;
5013 }
5014 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5015
5016 if (mddev->reshape_position != MaxSector &&
5017 pers->start_reshape == NULL) {
5018 /* This personality cannot handle reshaping... */
5019 module_put(pers->owner);
5020 return -EINVAL;
5021 }
5022
5023 if (pers->sync_request) {
5024 /* Warn if this is a potentially silly
5025 * configuration.
5026 */
5027 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5028 struct md_rdev *rdev2;
5029 int warned = 0;
5030
5031 rdev_for_each(rdev, mddev)
5032 rdev_for_each(rdev2, mddev) {
5033 if (rdev < rdev2 &&
5034 rdev->bdev->bd_contains ==
5035 rdev2->bdev->bd_contains) {
5036 printk(KERN_WARNING
5037 "%s: WARNING: %s appears to be"
5038 " on the same physical disk as"
5039 " %s.\n",
5040 mdname(mddev),
5041 bdevname(rdev->bdev,b),
5042 bdevname(rdev2->bdev,b2));
5043 warned = 1;
5044 }
5045 }
5046
5047 if (warned)
5048 printk(KERN_WARNING
5049 "True protection against single-disk"
5050 " failure might be compromised.\n");
5051 }
5052
5053 mddev->recovery = 0;
5054 /* may be over-ridden by personality */
5055 mddev->resync_max_sectors = mddev->dev_sectors;
5056
5057 mddev->ok_start_degraded = start_dirty_degraded;
5058
5059 if (start_readonly && mddev->ro == 0)
5060 mddev->ro = 2; /* read-only, but switch on first write */
5061
5062 err = pers->run(mddev);
5063 if (err)
5064 printk(KERN_ERR "md: pers->run() failed ...\n");
5065 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5066 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5067 " but 'external_size' not in effect?\n", __func__);
5068 printk(KERN_ERR
5069 "md: invalid array_size %llu > default size %llu\n",
5070 (unsigned long long)mddev->array_sectors / 2,
5071 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5072 err = -EINVAL;
5073 }
5074 if (err == 0 && pers->sync_request &&
5075 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5076 err = bitmap_create(mddev);
5077 if (err)
5078 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5079 mdname(mddev), err);
5080 }
5081 if (err) {
5082 mddev_detach(mddev);
5083 pers->free(mddev, mddev->private);
5084 module_put(pers->owner);
5085 bitmap_destroy(mddev);
5086 return err;
5087 }
5088 if (mddev->queue) {
5089 mddev->queue->backing_dev_info.congested_data = mddev;
5090 mddev->queue->backing_dev_info.congested_fn = md_congested;
5091 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5092 }
5093 if (pers->sync_request) {
5094 if (mddev->kobj.sd &&
5095 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5096 printk(KERN_WARNING
5097 "md: cannot register extra attributes for %s\n",
5098 mdname(mddev));
5099 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5100 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5101 mddev->ro = 0;
5102
5103 atomic_set(&mddev->writes_pending,0);
5104 atomic_set(&mddev->max_corr_read_errors,
5105 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5106 mddev->safemode = 0;
5107 mddev->safemode_timer.function = md_safemode_timeout;
5108 mddev->safemode_timer.data = (unsigned long) mddev;
5109 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5110 mddev->in_sync = 1;
5111 smp_wmb();
5112 spin_lock(&mddev->lock);
5113 mddev->pers = pers;
5114 mddev->ready = 1;
5115 spin_unlock(&mddev->lock);
5116 rdev_for_each(rdev, mddev)
5117 if (rdev->raid_disk >= 0)
5118 if (sysfs_link_rdev(mddev, rdev))
5119 /* failure here is OK */;
5120
5121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5122
5123 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5124 md_update_sb(mddev, 0);
5125
5126 md_new_event(mddev);
5127 sysfs_notify_dirent_safe(mddev->sysfs_state);
5128 sysfs_notify_dirent_safe(mddev->sysfs_action);
5129 sysfs_notify(&mddev->kobj, NULL, "degraded");
5130 return 0;
5131 }
5132 EXPORT_SYMBOL_GPL(md_run);
5133
5134 static int do_md_run(struct mddev *mddev)
5135 {
5136 int err;
5137
5138 err = md_run(mddev);
5139 if (err)
5140 goto out;
5141 err = bitmap_load(mddev);
5142 if (err) {
5143 bitmap_destroy(mddev);
5144 goto out;
5145 }
5146
5147 md_wakeup_thread(mddev->thread);
5148 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5149
5150 set_capacity(mddev->gendisk, mddev->array_sectors);
5151 revalidate_disk(mddev->gendisk);
5152 mddev->changed = 1;
5153 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5154 out:
5155 return err;
5156 }
5157
5158 static int restart_array(struct mddev *mddev)
5159 {
5160 struct gendisk *disk = mddev->gendisk;
5161
5162 /* Complain if it has no devices */
5163 if (list_empty(&mddev->disks))
5164 return -ENXIO;
5165 if (!mddev->pers)
5166 return -EINVAL;
5167 if (!mddev->ro)
5168 return -EBUSY;
5169 mddev->safemode = 0;
5170 mddev->ro = 0;
5171 set_disk_ro(disk, 0);
5172 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5173 mdname(mddev));
5174 /* Kick recovery or resync if necessary */
5175 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5176 md_wakeup_thread(mddev->thread);
5177 md_wakeup_thread(mddev->sync_thread);
5178 sysfs_notify_dirent_safe(mddev->sysfs_state);
5179 return 0;
5180 }
5181
5182 static void md_clean(struct mddev *mddev)
5183 {
5184 mddev->array_sectors = 0;
5185 mddev->external_size = 0;
5186 mddev->dev_sectors = 0;
5187 mddev->raid_disks = 0;
5188 mddev->recovery_cp = 0;
5189 mddev->resync_min = 0;
5190 mddev->resync_max = MaxSector;
5191 mddev->reshape_position = MaxSector;
5192 mddev->external = 0;
5193 mddev->persistent = 0;
5194 mddev->level = LEVEL_NONE;
5195 mddev->clevel[0] = 0;
5196 mddev->flags = 0;
5197 mddev->ro = 0;
5198 mddev->metadata_type[0] = 0;
5199 mddev->chunk_sectors = 0;
5200 mddev->ctime = mddev->utime = 0;
5201 mddev->layout = 0;
5202 mddev->max_disks = 0;
5203 mddev->events = 0;
5204 mddev->can_decrease_events = 0;
5205 mddev->delta_disks = 0;
5206 mddev->reshape_backwards = 0;
5207 mddev->new_level = LEVEL_NONE;
5208 mddev->new_layout = 0;
5209 mddev->new_chunk_sectors = 0;
5210 mddev->curr_resync = 0;
5211 atomic64_set(&mddev->resync_mismatches, 0);
5212 mddev->suspend_lo = mddev->suspend_hi = 0;
5213 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5214 mddev->recovery = 0;
5215 mddev->in_sync = 0;
5216 mddev->changed = 0;
5217 mddev->degraded = 0;
5218 mddev->safemode = 0;
5219 mddev->merge_check_needed = 0;
5220 mddev->bitmap_info.offset = 0;
5221 mddev->bitmap_info.default_offset = 0;
5222 mddev->bitmap_info.default_space = 0;
5223 mddev->bitmap_info.chunksize = 0;
5224 mddev->bitmap_info.daemon_sleep = 0;
5225 mddev->bitmap_info.max_write_behind = 0;
5226 }
5227
5228 static void __md_stop_writes(struct mddev *mddev)
5229 {
5230 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5231 flush_workqueue(md_misc_wq);
5232 if (mddev->sync_thread) {
5233 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5234 md_reap_sync_thread(mddev);
5235 }
5236
5237 del_timer_sync(&mddev->safemode_timer);
5238
5239 bitmap_flush(mddev);
5240 md_super_wait(mddev);
5241
5242 if (mddev->ro == 0 &&
5243 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5244 /* mark array as shutdown cleanly */
5245 mddev->in_sync = 1;
5246 md_update_sb(mddev, 1);
5247 }
5248 }
5249
5250 void md_stop_writes(struct mddev *mddev)
5251 {
5252 mddev_lock_nointr(mddev);
5253 __md_stop_writes(mddev);
5254 mddev_unlock(mddev);
5255 }
5256 EXPORT_SYMBOL_GPL(md_stop_writes);
5257
5258 static void mddev_detach(struct mddev *mddev)
5259 {
5260 struct bitmap *bitmap = mddev->bitmap;
5261 /* wait for behind writes to complete */
5262 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5263 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5264 mdname(mddev));
5265 /* need to kick something here to make sure I/O goes? */
5266 wait_event(bitmap->behind_wait,
5267 atomic_read(&bitmap->behind_writes) == 0);
5268 }
5269 if (mddev->pers && mddev->pers->quiesce) {
5270 mddev->pers->quiesce(mddev, 1);
5271 mddev->pers->quiesce(mddev, 0);
5272 }
5273 md_unregister_thread(&mddev->thread);
5274 if (mddev->queue)
5275 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5276 }
5277
5278 static void __md_stop(struct mddev *mddev)
5279 {
5280 struct md_personality *pers = mddev->pers;
5281 mddev_detach(mddev);
5282 spin_lock(&mddev->lock);
5283 mddev->ready = 0;
5284 mddev->pers = NULL;
5285 spin_unlock(&mddev->lock);
5286 pers->free(mddev, mddev->private);
5287 if (pers->sync_request && mddev->to_remove == NULL)
5288 mddev->to_remove = &md_redundancy_group;
5289 module_put(pers->owner);
5290 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5291 }
5292
5293 void md_stop(struct mddev *mddev)
5294 {
5295 /* stop the array and free an attached data structures.
5296 * This is called from dm-raid
5297 */
5298 __md_stop(mddev);
5299 bitmap_destroy(mddev);
5300 if (mddev->bio_set)
5301 bioset_free(mddev->bio_set);
5302 }
5303
5304 EXPORT_SYMBOL_GPL(md_stop);
5305
5306 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5307 {
5308 int err = 0;
5309 int did_freeze = 0;
5310
5311 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5312 did_freeze = 1;
5313 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5314 md_wakeup_thread(mddev->thread);
5315 }
5316 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5317 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5318 if (mddev->sync_thread)
5319 /* Thread might be blocked waiting for metadata update
5320 * which will now never happen */
5321 wake_up_process(mddev->sync_thread->tsk);
5322
5323 mddev_unlock(mddev);
5324 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5325 &mddev->recovery));
5326 mddev_lock_nointr(mddev);
5327
5328 mutex_lock(&mddev->open_mutex);
5329 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5330 mddev->sync_thread ||
5331 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5332 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5333 printk("md: %s still in use.\n",mdname(mddev));
5334 if (did_freeze) {
5335 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5336 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5337 md_wakeup_thread(mddev->thread);
5338 }
5339 err = -EBUSY;
5340 goto out;
5341 }
5342 if (mddev->pers) {
5343 __md_stop_writes(mddev);
5344
5345 err = -ENXIO;
5346 if (mddev->ro==1)
5347 goto out;
5348 mddev->ro = 1;
5349 set_disk_ro(mddev->gendisk, 1);
5350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5352 md_wakeup_thread(mddev->thread);
5353 sysfs_notify_dirent_safe(mddev->sysfs_state);
5354 err = 0;
5355 }
5356 out:
5357 mutex_unlock(&mddev->open_mutex);
5358 return err;
5359 }
5360
5361 /* mode:
5362 * 0 - completely stop and dis-assemble array
5363 * 2 - stop but do not disassemble array
5364 */
5365 static int do_md_stop(struct mddev *mddev, int mode,
5366 struct block_device *bdev)
5367 {
5368 struct gendisk *disk = mddev->gendisk;
5369 struct md_rdev *rdev;
5370 int did_freeze = 0;
5371
5372 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5373 did_freeze = 1;
5374 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5375 md_wakeup_thread(mddev->thread);
5376 }
5377 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5378 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5379 if (mddev->sync_thread)
5380 /* Thread might be blocked waiting for metadata update
5381 * which will now never happen */
5382 wake_up_process(mddev->sync_thread->tsk);
5383
5384 mddev_unlock(mddev);
5385 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5386 !test_bit(MD_RECOVERY_RUNNING,
5387 &mddev->recovery)));
5388 mddev_lock_nointr(mddev);
5389
5390 mutex_lock(&mddev->open_mutex);
5391 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5392 mddev->sysfs_active ||
5393 mddev->sync_thread ||
5394 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5395 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5396 printk("md: %s still in use.\n",mdname(mddev));
5397 mutex_unlock(&mddev->open_mutex);
5398 if (did_freeze) {
5399 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5400 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5401 md_wakeup_thread(mddev->thread);
5402 }
5403 return -EBUSY;
5404 }
5405 if (mddev->pers) {
5406 if (mddev->ro)
5407 set_disk_ro(disk, 0);
5408
5409 __md_stop_writes(mddev);
5410 __md_stop(mddev);
5411 mddev->queue->merge_bvec_fn = NULL;
5412 mddev->queue->backing_dev_info.congested_fn = NULL;
5413
5414 /* tell userspace to handle 'inactive' */
5415 sysfs_notify_dirent_safe(mddev->sysfs_state);
5416
5417 rdev_for_each(rdev, mddev)
5418 if (rdev->raid_disk >= 0)
5419 sysfs_unlink_rdev(mddev, rdev);
5420
5421 set_capacity(disk, 0);
5422 mutex_unlock(&mddev->open_mutex);
5423 mddev->changed = 1;
5424 revalidate_disk(disk);
5425
5426 if (mddev->ro)
5427 mddev->ro = 0;
5428 } else
5429 mutex_unlock(&mddev->open_mutex);
5430 /*
5431 * Free resources if final stop
5432 */
5433 if (mode == 0) {
5434 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5435
5436 bitmap_destroy(mddev);
5437 if (mddev->bitmap_info.file) {
5438 struct file *f = mddev->bitmap_info.file;
5439 spin_lock(&mddev->lock);
5440 mddev->bitmap_info.file = NULL;
5441 spin_unlock(&mddev->lock);
5442 fput(f);
5443 }
5444 mddev->bitmap_info.offset = 0;
5445
5446 export_array(mddev);
5447
5448 md_clean(mddev);
5449 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5450 if (mddev->hold_active == UNTIL_STOP)
5451 mddev->hold_active = 0;
5452 }
5453 blk_integrity_unregister(disk);
5454 md_new_event(mddev);
5455 sysfs_notify_dirent_safe(mddev->sysfs_state);
5456 return 0;
5457 }
5458
5459 #ifndef MODULE
5460 static void autorun_array(struct mddev *mddev)
5461 {
5462 struct md_rdev *rdev;
5463 int err;
5464
5465 if (list_empty(&mddev->disks))
5466 return;
5467
5468 printk(KERN_INFO "md: running: ");
5469
5470 rdev_for_each(rdev, mddev) {
5471 char b[BDEVNAME_SIZE];
5472 printk("<%s>", bdevname(rdev->bdev,b));
5473 }
5474 printk("\n");
5475
5476 err = do_md_run(mddev);
5477 if (err) {
5478 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5479 do_md_stop(mddev, 0, NULL);
5480 }
5481 }
5482
5483 /*
5484 * lets try to run arrays based on all disks that have arrived
5485 * until now. (those are in pending_raid_disks)
5486 *
5487 * the method: pick the first pending disk, collect all disks with
5488 * the same UUID, remove all from the pending list and put them into
5489 * the 'same_array' list. Then order this list based on superblock
5490 * update time (freshest comes first), kick out 'old' disks and
5491 * compare superblocks. If everything's fine then run it.
5492 *
5493 * If "unit" is allocated, then bump its reference count
5494 */
5495 static void autorun_devices(int part)
5496 {
5497 struct md_rdev *rdev0, *rdev, *tmp;
5498 struct mddev *mddev;
5499 char b[BDEVNAME_SIZE];
5500
5501 printk(KERN_INFO "md: autorun ...\n");
5502 while (!list_empty(&pending_raid_disks)) {
5503 int unit;
5504 dev_t dev;
5505 LIST_HEAD(candidates);
5506 rdev0 = list_entry(pending_raid_disks.next,
5507 struct md_rdev, same_set);
5508
5509 printk(KERN_INFO "md: considering %s ...\n",
5510 bdevname(rdev0->bdev,b));
5511 INIT_LIST_HEAD(&candidates);
5512 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5513 if (super_90_load(rdev, rdev0, 0) >= 0) {
5514 printk(KERN_INFO "md: adding %s ...\n",
5515 bdevname(rdev->bdev,b));
5516 list_move(&rdev->same_set, &candidates);
5517 }
5518 /*
5519 * now we have a set of devices, with all of them having
5520 * mostly sane superblocks. It's time to allocate the
5521 * mddev.
5522 */
5523 if (part) {
5524 dev = MKDEV(mdp_major,
5525 rdev0->preferred_minor << MdpMinorShift);
5526 unit = MINOR(dev) >> MdpMinorShift;
5527 } else {
5528 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5529 unit = MINOR(dev);
5530 }
5531 if (rdev0->preferred_minor != unit) {
5532 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5533 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5534 break;
5535 }
5536
5537 md_probe(dev, NULL, NULL);
5538 mddev = mddev_find(dev);
5539 if (!mddev || !mddev->gendisk) {
5540 if (mddev)
5541 mddev_put(mddev);
5542 printk(KERN_ERR
5543 "md: cannot allocate memory for md drive.\n");
5544 break;
5545 }
5546 if (mddev_lock(mddev))
5547 printk(KERN_WARNING "md: %s locked, cannot run\n",
5548 mdname(mddev));
5549 else if (mddev->raid_disks || mddev->major_version
5550 || !list_empty(&mddev->disks)) {
5551 printk(KERN_WARNING
5552 "md: %s already running, cannot run %s\n",
5553 mdname(mddev), bdevname(rdev0->bdev,b));
5554 mddev_unlock(mddev);
5555 } else {
5556 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5557 mddev->persistent = 1;
5558 rdev_for_each_list(rdev, tmp, &candidates) {
5559 list_del_init(&rdev->same_set);
5560 if (bind_rdev_to_array(rdev, mddev))
5561 export_rdev(rdev);
5562 }
5563 autorun_array(mddev);
5564 mddev_unlock(mddev);
5565 }
5566 /* on success, candidates will be empty, on error
5567 * it won't...
5568 */
5569 rdev_for_each_list(rdev, tmp, &candidates) {
5570 list_del_init(&rdev->same_set);
5571 export_rdev(rdev);
5572 }
5573 mddev_put(mddev);
5574 }
5575 printk(KERN_INFO "md: ... autorun DONE.\n");
5576 }
5577 #endif /* !MODULE */
5578
5579 static int get_version(void __user *arg)
5580 {
5581 mdu_version_t ver;
5582
5583 ver.major = MD_MAJOR_VERSION;
5584 ver.minor = MD_MINOR_VERSION;
5585 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5586
5587 if (copy_to_user(arg, &ver, sizeof(ver)))
5588 return -EFAULT;
5589
5590 return 0;
5591 }
5592
5593 static int get_array_info(struct mddev *mddev, void __user *arg)
5594 {
5595 mdu_array_info_t info;
5596 int nr,working,insync,failed,spare;
5597 struct md_rdev *rdev;
5598
5599 nr = working = insync = failed = spare = 0;
5600 rcu_read_lock();
5601 rdev_for_each_rcu(rdev, mddev) {
5602 nr++;
5603 if (test_bit(Faulty, &rdev->flags))
5604 failed++;
5605 else {
5606 working++;
5607 if (test_bit(In_sync, &rdev->flags))
5608 insync++;
5609 else
5610 spare++;
5611 }
5612 }
5613 rcu_read_unlock();
5614
5615 info.major_version = mddev->major_version;
5616 info.minor_version = mddev->minor_version;
5617 info.patch_version = MD_PATCHLEVEL_VERSION;
5618 info.ctime = mddev->ctime;
5619 info.level = mddev->level;
5620 info.size = mddev->dev_sectors / 2;
5621 if (info.size != mddev->dev_sectors / 2) /* overflow */
5622 info.size = -1;
5623 info.nr_disks = nr;
5624 info.raid_disks = mddev->raid_disks;
5625 info.md_minor = mddev->md_minor;
5626 info.not_persistent= !mddev->persistent;
5627
5628 info.utime = mddev->utime;
5629 info.state = 0;
5630 if (mddev->in_sync)
5631 info.state = (1<<MD_SB_CLEAN);
5632 if (mddev->bitmap && mddev->bitmap_info.offset)
5633 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5634 info.active_disks = insync;
5635 info.working_disks = working;
5636 info.failed_disks = failed;
5637 info.spare_disks = spare;
5638
5639 info.layout = mddev->layout;
5640 info.chunk_size = mddev->chunk_sectors << 9;
5641
5642 if (copy_to_user(arg, &info, sizeof(info)))
5643 return -EFAULT;
5644
5645 return 0;
5646 }
5647
5648 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5649 {
5650 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5651 char *ptr;
5652 int err;
5653
5654 file = kmalloc(sizeof(*file), GFP_NOIO);
5655 if (!file)
5656 return -ENOMEM;
5657
5658 err = 0;
5659 spin_lock(&mddev->lock);
5660 /* bitmap disabled, zero the first byte and copy out */
5661 if (!mddev->bitmap_info.file)
5662 file->pathname[0] = '\0';
5663 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5664 file->pathname, sizeof(file->pathname))),
5665 IS_ERR(ptr))
5666 err = PTR_ERR(ptr);
5667 else
5668 memmove(file->pathname, ptr,
5669 sizeof(file->pathname)-(ptr-file->pathname));
5670 spin_unlock(&mddev->lock);
5671
5672 if (err == 0 &&
5673 copy_to_user(arg, file, sizeof(*file)))
5674 err = -EFAULT;
5675
5676 kfree(file);
5677 return err;
5678 }
5679
5680 static int get_disk_info(struct mddev *mddev, void __user * arg)
5681 {
5682 mdu_disk_info_t info;
5683 struct md_rdev *rdev;
5684
5685 if (copy_from_user(&info, arg, sizeof(info)))
5686 return -EFAULT;
5687
5688 rcu_read_lock();
5689 rdev = find_rdev_nr_rcu(mddev, info.number);
5690 if (rdev) {
5691 info.major = MAJOR(rdev->bdev->bd_dev);
5692 info.minor = MINOR(rdev->bdev->bd_dev);
5693 info.raid_disk = rdev->raid_disk;
5694 info.state = 0;
5695 if (test_bit(Faulty, &rdev->flags))
5696 info.state |= (1<<MD_DISK_FAULTY);
5697 else if (test_bit(In_sync, &rdev->flags)) {
5698 info.state |= (1<<MD_DISK_ACTIVE);
5699 info.state |= (1<<MD_DISK_SYNC);
5700 }
5701 if (test_bit(WriteMostly, &rdev->flags))
5702 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5703 } else {
5704 info.major = info.minor = 0;
5705 info.raid_disk = -1;
5706 info.state = (1<<MD_DISK_REMOVED);
5707 }
5708 rcu_read_unlock();
5709
5710 if (copy_to_user(arg, &info, sizeof(info)))
5711 return -EFAULT;
5712
5713 return 0;
5714 }
5715
5716 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5717 {
5718 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5719 struct md_rdev *rdev;
5720 dev_t dev = MKDEV(info->major,info->minor);
5721
5722 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5723 return -EOVERFLOW;
5724
5725 if (!mddev->raid_disks) {
5726 int err;
5727 /* expecting a device which has a superblock */
5728 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5729 if (IS_ERR(rdev)) {
5730 printk(KERN_WARNING
5731 "md: md_import_device returned %ld\n",
5732 PTR_ERR(rdev));
5733 return PTR_ERR(rdev);
5734 }
5735 if (!list_empty(&mddev->disks)) {
5736 struct md_rdev *rdev0
5737 = list_entry(mddev->disks.next,
5738 struct md_rdev, same_set);
5739 err = super_types[mddev->major_version]
5740 .load_super(rdev, rdev0, mddev->minor_version);
5741 if (err < 0) {
5742 printk(KERN_WARNING
5743 "md: %s has different UUID to %s\n",
5744 bdevname(rdev->bdev,b),
5745 bdevname(rdev0->bdev,b2));
5746 export_rdev(rdev);
5747 return -EINVAL;
5748 }
5749 }
5750 err = bind_rdev_to_array(rdev, mddev);
5751 if (err)
5752 export_rdev(rdev);
5753 return err;
5754 }
5755
5756 /*
5757 * add_new_disk can be used once the array is assembled
5758 * to add "hot spares". They must already have a superblock
5759 * written
5760 */
5761 if (mddev->pers) {
5762 int err;
5763 if (!mddev->pers->hot_add_disk) {
5764 printk(KERN_WARNING
5765 "%s: personality does not support diskops!\n",
5766 mdname(mddev));
5767 return -EINVAL;
5768 }
5769 if (mddev->persistent)
5770 rdev = md_import_device(dev, mddev->major_version,
5771 mddev->minor_version);
5772 else
5773 rdev = md_import_device(dev, -1, -1);
5774 if (IS_ERR(rdev)) {
5775 printk(KERN_WARNING
5776 "md: md_import_device returned %ld\n",
5777 PTR_ERR(rdev));
5778 return PTR_ERR(rdev);
5779 }
5780 /* set saved_raid_disk if appropriate */
5781 if (!mddev->persistent) {
5782 if (info->state & (1<<MD_DISK_SYNC) &&
5783 info->raid_disk < mddev->raid_disks) {
5784 rdev->raid_disk = info->raid_disk;
5785 set_bit(In_sync, &rdev->flags);
5786 clear_bit(Bitmap_sync, &rdev->flags);
5787 } else
5788 rdev->raid_disk = -1;
5789 rdev->saved_raid_disk = rdev->raid_disk;
5790 } else
5791 super_types[mddev->major_version].
5792 validate_super(mddev, rdev);
5793 if ((info->state & (1<<MD_DISK_SYNC)) &&
5794 rdev->raid_disk != info->raid_disk) {
5795 /* This was a hot-add request, but events doesn't
5796 * match, so reject it.
5797 */
5798 export_rdev(rdev);
5799 return -EINVAL;
5800 }
5801
5802 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5803 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5804 set_bit(WriteMostly, &rdev->flags);
5805 else
5806 clear_bit(WriteMostly, &rdev->flags);
5807
5808 rdev->raid_disk = -1;
5809 err = bind_rdev_to_array(rdev, mddev);
5810 if (!err && !mddev->pers->hot_remove_disk) {
5811 /* If there is hot_add_disk but no hot_remove_disk
5812 * then added disks for geometry changes,
5813 * and should be added immediately.
5814 */
5815 super_types[mddev->major_version].
5816 validate_super(mddev, rdev);
5817 err = mddev->pers->hot_add_disk(mddev, rdev);
5818 if (err)
5819 unbind_rdev_from_array(rdev);
5820 }
5821 if (err)
5822 export_rdev(rdev);
5823 else
5824 sysfs_notify_dirent_safe(rdev->sysfs_state);
5825
5826 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5827 if (mddev->degraded)
5828 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5829 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5830 if (!err)
5831 md_new_event(mddev);
5832 md_wakeup_thread(mddev->thread);
5833 return err;
5834 }
5835
5836 /* otherwise, add_new_disk is only allowed
5837 * for major_version==0 superblocks
5838 */
5839 if (mddev->major_version != 0) {
5840 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5841 mdname(mddev));
5842 return -EINVAL;
5843 }
5844
5845 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5846 int err;
5847 rdev = md_import_device(dev, -1, 0);
5848 if (IS_ERR(rdev)) {
5849 printk(KERN_WARNING
5850 "md: error, md_import_device() returned %ld\n",
5851 PTR_ERR(rdev));
5852 return PTR_ERR(rdev);
5853 }
5854 rdev->desc_nr = info->number;
5855 if (info->raid_disk < mddev->raid_disks)
5856 rdev->raid_disk = info->raid_disk;
5857 else
5858 rdev->raid_disk = -1;
5859
5860 if (rdev->raid_disk < mddev->raid_disks)
5861 if (info->state & (1<<MD_DISK_SYNC))
5862 set_bit(In_sync, &rdev->flags);
5863
5864 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5865 set_bit(WriteMostly, &rdev->flags);
5866
5867 if (!mddev->persistent) {
5868 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5869 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5870 } else
5871 rdev->sb_start = calc_dev_sboffset(rdev);
5872 rdev->sectors = rdev->sb_start;
5873
5874 err = bind_rdev_to_array(rdev, mddev);
5875 if (err) {
5876 export_rdev(rdev);
5877 return err;
5878 }
5879 }
5880
5881 return 0;
5882 }
5883
5884 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5885 {
5886 char b[BDEVNAME_SIZE];
5887 struct md_rdev *rdev;
5888
5889 rdev = find_rdev(mddev, dev);
5890 if (!rdev)
5891 return -ENXIO;
5892
5893 clear_bit(Blocked, &rdev->flags);
5894 remove_and_add_spares(mddev, rdev);
5895
5896 if (rdev->raid_disk >= 0)
5897 goto busy;
5898
5899 kick_rdev_from_array(rdev);
5900 md_update_sb(mddev, 1);
5901 md_new_event(mddev);
5902
5903 return 0;
5904 busy:
5905 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5906 bdevname(rdev->bdev,b), mdname(mddev));
5907 return -EBUSY;
5908 }
5909
5910 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5911 {
5912 char b[BDEVNAME_SIZE];
5913 int err;
5914 struct md_rdev *rdev;
5915
5916 if (!mddev->pers)
5917 return -ENODEV;
5918
5919 if (mddev->major_version != 0) {
5920 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5921 " version-0 superblocks.\n",
5922 mdname(mddev));
5923 return -EINVAL;
5924 }
5925 if (!mddev->pers->hot_add_disk) {
5926 printk(KERN_WARNING
5927 "%s: personality does not support diskops!\n",
5928 mdname(mddev));
5929 return -EINVAL;
5930 }
5931
5932 rdev = md_import_device(dev, -1, 0);
5933 if (IS_ERR(rdev)) {
5934 printk(KERN_WARNING
5935 "md: error, md_import_device() returned %ld\n",
5936 PTR_ERR(rdev));
5937 return -EINVAL;
5938 }
5939
5940 if (mddev->persistent)
5941 rdev->sb_start = calc_dev_sboffset(rdev);
5942 else
5943 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5944
5945 rdev->sectors = rdev->sb_start;
5946
5947 if (test_bit(Faulty, &rdev->flags)) {
5948 printk(KERN_WARNING
5949 "md: can not hot-add faulty %s disk to %s!\n",
5950 bdevname(rdev->bdev,b), mdname(mddev));
5951 err = -EINVAL;
5952 goto abort_export;
5953 }
5954 clear_bit(In_sync, &rdev->flags);
5955 rdev->desc_nr = -1;
5956 rdev->saved_raid_disk = -1;
5957 err = bind_rdev_to_array(rdev, mddev);
5958 if (err)
5959 goto abort_export;
5960
5961 /*
5962 * The rest should better be atomic, we can have disk failures
5963 * noticed in interrupt contexts ...
5964 */
5965
5966 rdev->raid_disk = -1;
5967
5968 md_update_sb(mddev, 1);
5969
5970 /*
5971 * Kick recovery, maybe this spare has to be added to the
5972 * array immediately.
5973 */
5974 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5975 md_wakeup_thread(mddev->thread);
5976 md_new_event(mddev);
5977 return 0;
5978
5979 abort_export:
5980 export_rdev(rdev);
5981 return err;
5982 }
5983
5984 static int set_bitmap_file(struct mddev *mddev, int fd)
5985 {
5986 int err = 0;
5987
5988 if (mddev->pers) {
5989 if (!mddev->pers->quiesce || !mddev->thread)
5990 return -EBUSY;
5991 if (mddev->recovery || mddev->sync_thread)
5992 return -EBUSY;
5993 /* we should be able to change the bitmap.. */
5994 }
5995
5996 if (fd >= 0) {
5997 struct inode *inode;
5998 struct file *f;
5999
6000 if (mddev->bitmap || mddev->bitmap_info.file)
6001 return -EEXIST; /* cannot add when bitmap is present */
6002 f = fget(fd);
6003
6004 if (f == NULL) {
6005 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6006 mdname(mddev));
6007 return -EBADF;
6008 }
6009
6010 inode = f->f_mapping->host;
6011 if (!S_ISREG(inode->i_mode)) {
6012 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6013 mdname(mddev));
6014 err = -EBADF;
6015 } else if (!(f->f_mode & FMODE_WRITE)) {
6016 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6017 mdname(mddev));
6018 err = -EBADF;
6019 } else if (atomic_read(&inode->i_writecount) != 1) {
6020 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6021 mdname(mddev));
6022 err = -EBUSY;
6023 }
6024 if (err) {
6025 fput(f);
6026 return err;
6027 }
6028 mddev->bitmap_info.file = f;
6029 mddev->bitmap_info.offset = 0; /* file overrides offset */
6030 } else if (mddev->bitmap == NULL)
6031 return -ENOENT; /* cannot remove what isn't there */
6032 err = 0;
6033 if (mddev->pers) {
6034 mddev->pers->quiesce(mddev, 1);
6035 if (fd >= 0) {
6036 err = bitmap_create(mddev);
6037 if (!err)
6038 err = bitmap_load(mddev);
6039 }
6040 if (fd < 0 || err) {
6041 bitmap_destroy(mddev);
6042 fd = -1; /* make sure to put the file */
6043 }
6044 mddev->pers->quiesce(mddev, 0);
6045 }
6046 if (fd < 0) {
6047 struct file *f = mddev->bitmap_info.file;
6048 if (f) {
6049 spin_lock(&mddev->lock);
6050 mddev->bitmap_info.file = NULL;
6051 spin_unlock(&mddev->lock);
6052 fput(f);
6053 }
6054 }
6055
6056 return err;
6057 }
6058
6059 /*
6060 * set_array_info is used two different ways
6061 * The original usage is when creating a new array.
6062 * In this usage, raid_disks is > 0 and it together with
6063 * level, size, not_persistent,layout,chunksize determine the
6064 * shape of the array.
6065 * This will always create an array with a type-0.90.0 superblock.
6066 * The newer usage is when assembling an array.
6067 * In this case raid_disks will be 0, and the major_version field is
6068 * use to determine which style super-blocks are to be found on the devices.
6069 * The minor and patch _version numbers are also kept incase the
6070 * super_block handler wishes to interpret them.
6071 */
6072 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6073 {
6074
6075 if (info->raid_disks == 0) {
6076 /* just setting version number for superblock loading */
6077 if (info->major_version < 0 ||
6078 info->major_version >= ARRAY_SIZE(super_types) ||
6079 super_types[info->major_version].name == NULL) {
6080 /* maybe try to auto-load a module? */
6081 printk(KERN_INFO
6082 "md: superblock version %d not known\n",
6083 info->major_version);
6084 return -EINVAL;
6085 }
6086 mddev->major_version = info->major_version;
6087 mddev->minor_version = info->minor_version;
6088 mddev->patch_version = info->patch_version;
6089 mddev->persistent = !info->not_persistent;
6090 /* ensure mddev_put doesn't delete this now that there
6091 * is some minimal configuration.
6092 */
6093 mddev->ctime = get_seconds();
6094 return 0;
6095 }
6096 mddev->major_version = MD_MAJOR_VERSION;
6097 mddev->minor_version = MD_MINOR_VERSION;
6098 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6099 mddev->ctime = get_seconds();
6100
6101 mddev->level = info->level;
6102 mddev->clevel[0] = 0;
6103 mddev->dev_sectors = 2 * (sector_t)info->size;
6104 mddev->raid_disks = info->raid_disks;
6105 /* don't set md_minor, it is determined by which /dev/md* was
6106 * openned
6107 */
6108 if (info->state & (1<<MD_SB_CLEAN))
6109 mddev->recovery_cp = MaxSector;
6110 else
6111 mddev->recovery_cp = 0;
6112 mddev->persistent = ! info->not_persistent;
6113 mddev->external = 0;
6114
6115 mddev->layout = info->layout;
6116 mddev->chunk_sectors = info->chunk_size >> 9;
6117
6118 mddev->max_disks = MD_SB_DISKS;
6119
6120 if (mddev->persistent)
6121 mddev->flags = 0;
6122 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6123
6124 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6125 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6126 mddev->bitmap_info.offset = 0;
6127
6128 mddev->reshape_position = MaxSector;
6129
6130 /*
6131 * Generate a 128 bit UUID
6132 */
6133 get_random_bytes(mddev->uuid, 16);
6134
6135 mddev->new_level = mddev->level;
6136 mddev->new_chunk_sectors = mddev->chunk_sectors;
6137 mddev->new_layout = mddev->layout;
6138 mddev->delta_disks = 0;
6139 mddev->reshape_backwards = 0;
6140
6141 return 0;
6142 }
6143
6144 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6145 {
6146 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6147
6148 if (mddev->external_size)
6149 return;
6150
6151 mddev->array_sectors = array_sectors;
6152 }
6153 EXPORT_SYMBOL(md_set_array_sectors);
6154
6155 static int update_size(struct mddev *mddev, sector_t num_sectors)
6156 {
6157 struct md_rdev *rdev;
6158 int rv;
6159 int fit = (num_sectors == 0);
6160
6161 if (mddev->pers->resize == NULL)
6162 return -EINVAL;
6163 /* The "num_sectors" is the number of sectors of each device that
6164 * is used. This can only make sense for arrays with redundancy.
6165 * linear and raid0 always use whatever space is available. We can only
6166 * consider changing this number if no resync or reconstruction is
6167 * happening, and if the new size is acceptable. It must fit before the
6168 * sb_start or, if that is <data_offset, it must fit before the size
6169 * of each device. If num_sectors is zero, we find the largest size
6170 * that fits.
6171 */
6172 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6173 mddev->sync_thread)
6174 return -EBUSY;
6175 if (mddev->ro)
6176 return -EROFS;
6177
6178 rdev_for_each(rdev, mddev) {
6179 sector_t avail = rdev->sectors;
6180
6181 if (fit && (num_sectors == 0 || num_sectors > avail))
6182 num_sectors = avail;
6183 if (avail < num_sectors)
6184 return -ENOSPC;
6185 }
6186 rv = mddev->pers->resize(mddev, num_sectors);
6187 if (!rv)
6188 revalidate_disk(mddev->gendisk);
6189 return rv;
6190 }
6191
6192 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6193 {
6194 int rv;
6195 struct md_rdev *rdev;
6196 /* change the number of raid disks */
6197 if (mddev->pers->check_reshape == NULL)
6198 return -EINVAL;
6199 if (mddev->ro)
6200 return -EROFS;
6201 if (raid_disks <= 0 ||
6202 (mddev->max_disks && raid_disks >= mddev->max_disks))
6203 return -EINVAL;
6204 if (mddev->sync_thread ||
6205 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6206 mddev->reshape_position != MaxSector)
6207 return -EBUSY;
6208
6209 rdev_for_each(rdev, mddev) {
6210 if (mddev->raid_disks < raid_disks &&
6211 rdev->data_offset < rdev->new_data_offset)
6212 return -EINVAL;
6213 if (mddev->raid_disks > raid_disks &&
6214 rdev->data_offset > rdev->new_data_offset)
6215 return -EINVAL;
6216 }
6217
6218 mddev->delta_disks = raid_disks - mddev->raid_disks;
6219 if (mddev->delta_disks < 0)
6220 mddev->reshape_backwards = 1;
6221 else if (mddev->delta_disks > 0)
6222 mddev->reshape_backwards = 0;
6223
6224 rv = mddev->pers->check_reshape(mddev);
6225 if (rv < 0) {
6226 mddev->delta_disks = 0;
6227 mddev->reshape_backwards = 0;
6228 }
6229 return rv;
6230 }
6231
6232 /*
6233 * update_array_info is used to change the configuration of an
6234 * on-line array.
6235 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6236 * fields in the info are checked against the array.
6237 * Any differences that cannot be handled will cause an error.
6238 * Normally, only one change can be managed at a time.
6239 */
6240 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6241 {
6242 int rv = 0;
6243 int cnt = 0;
6244 int state = 0;
6245
6246 /* calculate expected state,ignoring low bits */
6247 if (mddev->bitmap && mddev->bitmap_info.offset)
6248 state |= (1 << MD_SB_BITMAP_PRESENT);
6249
6250 if (mddev->major_version != info->major_version ||
6251 mddev->minor_version != info->minor_version ||
6252 /* mddev->patch_version != info->patch_version || */
6253 mddev->ctime != info->ctime ||
6254 mddev->level != info->level ||
6255 /* mddev->layout != info->layout || */
6256 !mddev->persistent != info->not_persistent||
6257 mddev->chunk_sectors != info->chunk_size >> 9 ||
6258 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6259 ((state^info->state) & 0xfffffe00)
6260 )
6261 return -EINVAL;
6262 /* Check there is only one change */
6263 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6264 cnt++;
6265 if (mddev->raid_disks != info->raid_disks)
6266 cnt++;
6267 if (mddev->layout != info->layout)
6268 cnt++;
6269 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6270 cnt++;
6271 if (cnt == 0)
6272 return 0;
6273 if (cnt > 1)
6274 return -EINVAL;
6275
6276 if (mddev->layout != info->layout) {
6277 /* Change layout
6278 * we don't need to do anything at the md level, the
6279 * personality will take care of it all.
6280 */
6281 if (mddev->pers->check_reshape == NULL)
6282 return -EINVAL;
6283 else {
6284 mddev->new_layout = info->layout;
6285 rv = mddev->pers->check_reshape(mddev);
6286 if (rv)
6287 mddev->new_layout = mddev->layout;
6288 return rv;
6289 }
6290 }
6291 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6292 rv = update_size(mddev, (sector_t)info->size * 2);
6293
6294 if (mddev->raid_disks != info->raid_disks)
6295 rv = update_raid_disks(mddev, info->raid_disks);
6296
6297 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6298 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6299 return -EINVAL;
6300 if (mddev->recovery || mddev->sync_thread)
6301 return -EBUSY;
6302 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6303 /* add the bitmap */
6304 if (mddev->bitmap)
6305 return -EEXIST;
6306 if (mddev->bitmap_info.default_offset == 0)
6307 return -EINVAL;
6308 mddev->bitmap_info.offset =
6309 mddev->bitmap_info.default_offset;
6310 mddev->bitmap_info.space =
6311 mddev->bitmap_info.default_space;
6312 mddev->pers->quiesce(mddev, 1);
6313 rv = bitmap_create(mddev);
6314 if (!rv)
6315 rv = bitmap_load(mddev);
6316 if (rv)
6317 bitmap_destroy(mddev);
6318 mddev->pers->quiesce(mddev, 0);
6319 } else {
6320 /* remove the bitmap */
6321 if (!mddev->bitmap)
6322 return -ENOENT;
6323 if (mddev->bitmap->storage.file)
6324 return -EINVAL;
6325 mddev->pers->quiesce(mddev, 1);
6326 bitmap_destroy(mddev);
6327 mddev->pers->quiesce(mddev, 0);
6328 mddev->bitmap_info.offset = 0;
6329 }
6330 }
6331 md_update_sb(mddev, 1);
6332 return rv;
6333 }
6334
6335 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6336 {
6337 struct md_rdev *rdev;
6338 int err = 0;
6339
6340 if (mddev->pers == NULL)
6341 return -ENODEV;
6342
6343 rcu_read_lock();
6344 rdev = find_rdev_rcu(mddev, dev);
6345 if (!rdev)
6346 err = -ENODEV;
6347 else {
6348 md_error(mddev, rdev);
6349 if (!test_bit(Faulty, &rdev->flags))
6350 err = -EBUSY;
6351 }
6352 rcu_read_unlock();
6353 return err;
6354 }
6355
6356 /*
6357 * We have a problem here : there is no easy way to give a CHS
6358 * virtual geometry. We currently pretend that we have a 2 heads
6359 * 4 sectors (with a BIG number of cylinders...). This drives
6360 * dosfs just mad... ;-)
6361 */
6362 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6363 {
6364 struct mddev *mddev = bdev->bd_disk->private_data;
6365
6366 geo->heads = 2;
6367 geo->sectors = 4;
6368 geo->cylinders = mddev->array_sectors / 8;
6369 return 0;
6370 }
6371
6372 static inline bool md_ioctl_valid(unsigned int cmd)
6373 {
6374 switch (cmd) {
6375 case ADD_NEW_DISK:
6376 case BLKROSET:
6377 case GET_ARRAY_INFO:
6378 case GET_BITMAP_FILE:
6379 case GET_DISK_INFO:
6380 case HOT_ADD_DISK:
6381 case HOT_REMOVE_DISK:
6382 case RAID_AUTORUN:
6383 case RAID_VERSION:
6384 case RESTART_ARRAY_RW:
6385 case RUN_ARRAY:
6386 case SET_ARRAY_INFO:
6387 case SET_BITMAP_FILE:
6388 case SET_DISK_FAULTY:
6389 case STOP_ARRAY:
6390 case STOP_ARRAY_RO:
6391 return true;
6392 default:
6393 return false;
6394 }
6395 }
6396
6397 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6398 unsigned int cmd, unsigned long arg)
6399 {
6400 int err = 0;
6401 void __user *argp = (void __user *)arg;
6402 struct mddev *mddev = NULL;
6403 int ro;
6404
6405 if (!md_ioctl_valid(cmd))
6406 return -ENOTTY;
6407
6408 switch (cmd) {
6409 case RAID_VERSION:
6410 case GET_ARRAY_INFO:
6411 case GET_DISK_INFO:
6412 break;
6413 default:
6414 if (!capable(CAP_SYS_ADMIN))
6415 return -EACCES;
6416 }
6417
6418 /*
6419 * Commands dealing with the RAID driver but not any
6420 * particular array:
6421 */
6422 switch (cmd) {
6423 case RAID_VERSION:
6424 err = get_version(argp);
6425 goto out;
6426
6427 #ifndef MODULE
6428 case RAID_AUTORUN:
6429 err = 0;
6430 autostart_arrays(arg);
6431 goto out;
6432 #endif
6433 default:;
6434 }
6435
6436 /*
6437 * Commands creating/starting a new array:
6438 */
6439
6440 mddev = bdev->bd_disk->private_data;
6441
6442 if (!mddev) {
6443 BUG();
6444 goto out;
6445 }
6446
6447 /* Some actions do not requires the mutex */
6448 switch (cmd) {
6449 case GET_ARRAY_INFO:
6450 if (!mddev->raid_disks && !mddev->external)
6451 err = -ENODEV;
6452 else
6453 err = get_array_info(mddev, argp);
6454 goto out;
6455
6456 case GET_DISK_INFO:
6457 if (!mddev->raid_disks && !mddev->external)
6458 err = -ENODEV;
6459 else
6460 err = get_disk_info(mddev, argp);
6461 goto out;
6462
6463 case SET_DISK_FAULTY:
6464 err = set_disk_faulty(mddev, new_decode_dev(arg));
6465 goto out;
6466
6467 case GET_BITMAP_FILE:
6468 err = get_bitmap_file(mddev, argp);
6469 goto out;
6470
6471 }
6472
6473 if (cmd == ADD_NEW_DISK)
6474 /* need to ensure md_delayed_delete() has completed */
6475 flush_workqueue(md_misc_wq);
6476
6477 if (cmd == HOT_REMOVE_DISK)
6478 /* need to ensure recovery thread has run */
6479 wait_event_interruptible_timeout(mddev->sb_wait,
6480 !test_bit(MD_RECOVERY_NEEDED,
6481 &mddev->flags),
6482 msecs_to_jiffies(5000));
6483 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6484 /* Need to flush page cache, and ensure no-one else opens
6485 * and writes
6486 */
6487 mutex_lock(&mddev->open_mutex);
6488 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6489 mutex_unlock(&mddev->open_mutex);
6490 err = -EBUSY;
6491 goto out;
6492 }
6493 set_bit(MD_STILL_CLOSED, &mddev->flags);
6494 mutex_unlock(&mddev->open_mutex);
6495 sync_blockdev(bdev);
6496 }
6497 err = mddev_lock(mddev);
6498 if (err) {
6499 printk(KERN_INFO
6500 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6501 err, cmd);
6502 goto out;
6503 }
6504
6505 if (cmd == SET_ARRAY_INFO) {
6506 mdu_array_info_t info;
6507 if (!arg)
6508 memset(&info, 0, sizeof(info));
6509 else if (copy_from_user(&info, argp, sizeof(info))) {
6510 err = -EFAULT;
6511 goto unlock;
6512 }
6513 if (mddev->pers) {
6514 err = update_array_info(mddev, &info);
6515 if (err) {
6516 printk(KERN_WARNING "md: couldn't update"
6517 " array info. %d\n", err);
6518 goto unlock;
6519 }
6520 goto unlock;
6521 }
6522 if (!list_empty(&mddev->disks)) {
6523 printk(KERN_WARNING
6524 "md: array %s already has disks!\n",
6525 mdname(mddev));
6526 err = -EBUSY;
6527 goto unlock;
6528 }
6529 if (mddev->raid_disks) {
6530 printk(KERN_WARNING
6531 "md: array %s already initialised!\n",
6532 mdname(mddev));
6533 err = -EBUSY;
6534 goto unlock;
6535 }
6536 err = set_array_info(mddev, &info);
6537 if (err) {
6538 printk(KERN_WARNING "md: couldn't set"
6539 " array info. %d\n", err);
6540 goto unlock;
6541 }
6542 goto unlock;
6543 }
6544
6545 /*
6546 * Commands querying/configuring an existing array:
6547 */
6548 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6549 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6550 if ((!mddev->raid_disks && !mddev->external)
6551 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6552 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6553 && cmd != GET_BITMAP_FILE) {
6554 err = -ENODEV;
6555 goto unlock;
6556 }
6557
6558 /*
6559 * Commands even a read-only array can execute:
6560 */
6561 switch (cmd) {
6562 case RESTART_ARRAY_RW:
6563 err = restart_array(mddev);
6564 goto unlock;
6565
6566 case STOP_ARRAY:
6567 err = do_md_stop(mddev, 0, bdev);
6568 goto unlock;
6569
6570 case STOP_ARRAY_RO:
6571 err = md_set_readonly(mddev, bdev);
6572 goto unlock;
6573
6574 case HOT_REMOVE_DISK:
6575 err = hot_remove_disk(mddev, new_decode_dev(arg));
6576 goto unlock;
6577
6578 case ADD_NEW_DISK:
6579 /* We can support ADD_NEW_DISK on read-only arrays
6580 * on if we are re-adding a preexisting device.
6581 * So require mddev->pers and MD_DISK_SYNC.
6582 */
6583 if (mddev->pers) {
6584 mdu_disk_info_t info;
6585 if (copy_from_user(&info, argp, sizeof(info)))
6586 err = -EFAULT;
6587 else if (!(info.state & (1<<MD_DISK_SYNC)))
6588 /* Need to clear read-only for this */
6589 break;
6590 else
6591 err = add_new_disk(mddev, &info);
6592 goto unlock;
6593 }
6594 break;
6595
6596 case BLKROSET:
6597 if (get_user(ro, (int __user *)(arg))) {
6598 err = -EFAULT;
6599 goto unlock;
6600 }
6601 err = -EINVAL;
6602
6603 /* if the bdev is going readonly the value of mddev->ro
6604 * does not matter, no writes are coming
6605 */
6606 if (ro)
6607 goto unlock;
6608
6609 /* are we are already prepared for writes? */
6610 if (mddev->ro != 1)
6611 goto unlock;
6612
6613 /* transitioning to readauto need only happen for
6614 * arrays that call md_write_start
6615 */
6616 if (mddev->pers) {
6617 err = restart_array(mddev);
6618 if (err == 0) {
6619 mddev->ro = 2;
6620 set_disk_ro(mddev->gendisk, 0);
6621 }
6622 }
6623 goto unlock;
6624 }
6625
6626 /*
6627 * The remaining ioctls are changing the state of the
6628 * superblock, so we do not allow them on read-only arrays.
6629 */
6630 if (mddev->ro && mddev->pers) {
6631 if (mddev->ro == 2) {
6632 mddev->ro = 0;
6633 sysfs_notify_dirent_safe(mddev->sysfs_state);
6634 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6635 /* mddev_unlock will wake thread */
6636 /* If a device failed while we were read-only, we
6637 * need to make sure the metadata is updated now.
6638 */
6639 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6640 mddev_unlock(mddev);
6641 wait_event(mddev->sb_wait,
6642 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6643 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6644 mddev_lock_nointr(mddev);
6645 }
6646 } else {
6647 err = -EROFS;
6648 goto unlock;
6649 }
6650 }
6651
6652 switch (cmd) {
6653 case ADD_NEW_DISK:
6654 {
6655 mdu_disk_info_t info;
6656 if (copy_from_user(&info, argp, sizeof(info)))
6657 err = -EFAULT;
6658 else
6659 err = add_new_disk(mddev, &info);
6660 goto unlock;
6661 }
6662
6663 case HOT_ADD_DISK:
6664 err = hot_add_disk(mddev, new_decode_dev(arg));
6665 goto unlock;
6666
6667 case RUN_ARRAY:
6668 err = do_md_run(mddev);
6669 goto unlock;
6670
6671 case SET_BITMAP_FILE:
6672 err = set_bitmap_file(mddev, (int)arg);
6673 goto unlock;
6674
6675 default:
6676 err = -EINVAL;
6677 goto unlock;
6678 }
6679
6680 unlock:
6681 if (mddev->hold_active == UNTIL_IOCTL &&
6682 err != -EINVAL)
6683 mddev->hold_active = 0;
6684 mddev_unlock(mddev);
6685 out:
6686 return err;
6687 }
6688 #ifdef CONFIG_COMPAT
6689 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6690 unsigned int cmd, unsigned long arg)
6691 {
6692 switch (cmd) {
6693 case HOT_REMOVE_DISK:
6694 case HOT_ADD_DISK:
6695 case SET_DISK_FAULTY:
6696 case SET_BITMAP_FILE:
6697 /* These take in integer arg, do not convert */
6698 break;
6699 default:
6700 arg = (unsigned long)compat_ptr(arg);
6701 break;
6702 }
6703
6704 return md_ioctl(bdev, mode, cmd, arg);
6705 }
6706 #endif /* CONFIG_COMPAT */
6707
6708 static int md_open(struct block_device *bdev, fmode_t mode)
6709 {
6710 /*
6711 * Succeed if we can lock the mddev, which confirms that
6712 * it isn't being stopped right now.
6713 */
6714 struct mddev *mddev = mddev_find(bdev->bd_dev);
6715 int err;
6716
6717 if (!mddev)
6718 return -ENODEV;
6719
6720 if (mddev->gendisk != bdev->bd_disk) {
6721 /* we are racing with mddev_put which is discarding this
6722 * bd_disk.
6723 */
6724 mddev_put(mddev);
6725 /* Wait until bdev->bd_disk is definitely gone */
6726 flush_workqueue(md_misc_wq);
6727 /* Then retry the open from the top */
6728 return -ERESTARTSYS;
6729 }
6730 BUG_ON(mddev != bdev->bd_disk->private_data);
6731
6732 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6733 goto out;
6734
6735 err = 0;
6736 atomic_inc(&mddev->openers);
6737 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6738 mutex_unlock(&mddev->open_mutex);
6739
6740 check_disk_change(bdev);
6741 out:
6742 return err;
6743 }
6744
6745 static void md_release(struct gendisk *disk, fmode_t mode)
6746 {
6747 struct mddev *mddev = disk->private_data;
6748
6749 BUG_ON(!mddev);
6750 atomic_dec(&mddev->openers);
6751 mddev_put(mddev);
6752 }
6753
6754 static int md_media_changed(struct gendisk *disk)
6755 {
6756 struct mddev *mddev = disk->private_data;
6757
6758 return mddev->changed;
6759 }
6760
6761 static int md_revalidate(struct gendisk *disk)
6762 {
6763 struct mddev *mddev = disk->private_data;
6764
6765 mddev->changed = 0;
6766 return 0;
6767 }
6768 static const struct block_device_operations md_fops =
6769 {
6770 .owner = THIS_MODULE,
6771 .open = md_open,
6772 .release = md_release,
6773 .ioctl = md_ioctl,
6774 #ifdef CONFIG_COMPAT
6775 .compat_ioctl = md_compat_ioctl,
6776 #endif
6777 .getgeo = md_getgeo,
6778 .media_changed = md_media_changed,
6779 .revalidate_disk= md_revalidate,
6780 };
6781
6782 static int md_thread(void *arg)
6783 {
6784 struct md_thread *thread = arg;
6785
6786 /*
6787 * md_thread is a 'system-thread', it's priority should be very
6788 * high. We avoid resource deadlocks individually in each
6789 * raid personality. (RAID5 does preallocation) We also use RR and
6790 * the very same RT priority as kswapd, thus we will never get
6791 * into a priority inversion deadlock.
6792 *
6793 * we definitely have to have equal or higher priority than
6794 * bdflush, otherwise bdflush will deadlock if there are too
6795 * many dirty RAID5 blocks.
6796 */
6797
6798 allow_signal(SIGKILL);
6799 while (!kthread_should_stop()) {
6800
6801 /* We need to wait INTERRUPTIBLE so that
6802 * we don't add to the load-average.
6803 * That means we need to be sure no signals are
6804 * pending
6805 */
6806 if (signal_pending(current))
6807 flush_signals(current);
6808
6809 wait_event_interruptible_timeout
6810 (thread->wqueue,
6811 test_bit(THREAD_WAKEUP, &thread->flags)
6812 || kthread_should_stop(),
6813 thread->timeout);
6814
6815 clear_bit(THREAD_WAKEUP, &thread->flags);
6816 if (!kthread_should_stop())
6817 thread->run(thread);
6818 }
6819
6820 return 0;
6821 }
6822
6823 void md_wakeup_thread(struct md_thread *thread)
6824 {
6825 if (thread) {
6826 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6827 set_bit(THREAD_WAKEUP, &thread->flags);
6828 wake_up(&thread->wqueue);
6829 }
6830 }
6831 EXPORT_SYMBOL(md_wakeup_thread);
6832
6833 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6834 struct mddev *mddev, const char *name)
6835 {
6836 struct md_thread *thread;
6837
6838 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6839 if (!thread)
6840 return NULL;
6841
6842 init_waitqueue_head(&thread->wqueue);
6843
6844 thread->run = run;
6845 thread->mddev = mddev;
6846 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6847 thread->tsk = kthread_run(md_thread, thread,
6848 "%s_%s",
6849 mdname(thread->mddev),
6850 name);
6851 if (IS_ERR(thread->tsk)) {
6852 kfree(thread);
6853 return NULL;
6854 }
6855 return thread;
6856 }
6857 EXPORT_SYMBOL(md_register_thread);
6858
6859 void md_unregister_thread(struct md_thread **threadp)
6860 {
6861 struct md_thread *thread = *threadp;
6862 if (!thread)
6863 return;
6864 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6865 /* Locking ensures that mddev_unlock does not wake_up a
6866 * non-existent thread
6867 */
6868 spin_lock(&pers_lock);
6869 *threadp = NULL;
6870 spin_unlock(&pers_lock);
6871
6872 kthread_stop(thread->tsk);
6873 kfree(thread);
6874 }
6875 EXPORT_SYMBOL(md_unregister_thread);
6876
6877 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6878 {
6879 if (!rdev || test_bit(Faulty, &rdev->flags))
6880 return;
6881
6882 if (!mddev->pers || !mddev->pers->error_handler)
6883 return;
6884 mddev->pers->error_handler(mddev,rdev);
6885 if (mddev->degraded)
6886 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6887 sysfs_notify_dirent_safe(rdev->sysfs_state);
6888 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6889 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6890 md_wakeup_thread(mddev->thread);
6891 if (mddev->event_work.func)
6892 queue_work(md_misc_wq, &mddev->event_work);
6893 md_new_event_inintr(mddev);
6894 }
6895 EXPORT_SYMBOL(md_error);
6896
6897 /* seq_file implementation /proc/mdstat */
6898
6899 static void status_unused(struct seq_file *seq)
6900 {
6901 int i = 0;
6902 struct md_rdev *rdev;
6903
6904 seq_printf(seq, "unused devices: ");
6905
6906 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6907 char b[BDEVNAME_SIZE];
6908 i++;
6909 seq_printf(seq, "%s ",
6910 bdevname(rdev->bdev,b));
6911 }
6912 if (!i)
6913 seq_printf(seq, "<none>");
6914
6915 seq_printf(seq, "\n");
6916 }
6917
6918 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6919 {
6920 sector_t max_sectors, resync, res;
6921 unsigned long dt, db;
6922 sector_t rt;
6923 int scale;
6924 unsigned int per_milli;
6925
6926 if (mddev->curr_resync <= 3)
6927 resync = 0;
6928 else
6929 resync = mddev->curr_resync
6930 - atomic_read(&mddev->recovery_active);
6931
6932 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6933 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6934 max_sectors = mddev->resync_max_sectors;
6935 else
6936 max_sectors = mddev->dev_sectors;
6937
6938 WARN_ON(max_sectors == 0);
6939 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6940 * in a sector_t, and (max_sectors>>scale) will fit in a
6941 * u32, as those are the requirements for sector_div.
6942 * Thus 'scale' must be at least 10
6943 */
6944 scale = 10;
6945 if (sizeof(sector_t) > sizeof(unsigned long)) {
6946 while ( max_sectors/2 > (1ULL<<(scale+32)))
6947 scale++;
6948 }
6949 res = (resync>>scale)*1000;
6950 sector_div(res, (u32)((max_sectors>>scale)+1));
6951
6952 per_milli = res;
6953 {
6954 int i, x = per_milli/50, y = 20-x;
6955 seq_printf(seq, "[");
6956 for (i = 0; i < x; i++)
6957 seq_printf(seq, "=");
6958 seq_printf(seq, ">");
6959 for (i = 0; i < y; i++)
6960 seq_printf(seq, ".");
6961 seq_printf(seq, "] ");
6962 }
6963 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6964 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6965 "reshape" :
6966 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6967 "check" :
6968 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6969 "resync" : "recovery"))),
6970 per_milli/10, per_milli % 10,
6971 (unsigned long long) resync/2,
6972 (unsigned long long) max_sectors/2);
6973
6974 /*
6975 * dt: time from mark until now
6976 * db: blocks written from mark until now
6977 * rt: remaining time
6978 *
6979 * rt is a sector_t, so could be 32bit or 64bit.
6980 * So we divide before multiply in case it is 32bit and close
6981 * to the limit.
6982 * We scale the divisor (db) by 32 to avoid losing precision
6983 * near the end of resync when the number of remaining sectors
6984 * is close to 'db'.
6985 * We then divide rt by 32 after multiplying by db to compensate.
6986 * The '+1' avoids division by zero if db is very small.
6987 */
6988 dt = ((jiffies - mddev->resync_mark) / HZ);
6989 if (!dt) dt++;
6990 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6991 - mddev->resync_mark_cnt;
6992
6993 rt = max_sectors - resync; /* number of remaining sectors */
6994 sector_div(rt, db/32+1);
6995 rt *= dt;
6996 rt >>= 5;
6997
6998 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6999 ((unsigned long)rt % 60)/6);
7000
7001 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7002 }
7003
7004 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7005 {
7006 struct list_head *tmp;
7007 loff_t l = *pos;
7008 struct mddev *mddev;
7009
7010 if (l >= 0x10000)
7011 return NULL;
7012 if (!l--)
7013 /* header */
7014 return (void*)1;
7015
7016 spin_lock(&all_mddevs_lock);
7017 list_for_each(tmp,&all_mddevs)
7018 if (!l--) {
7019 mddev = list_entry(tmp, struct mddev, all_mddevs);
7020 mddev_get(mddev);
7021 spin_unlock(&all_mddevs_lock);
7022 return mddev;
7023 }
7024 spin_unlock(&all_mddevs_lock);
7025 if (!l--)
7026 return (void*)2;/* tail */
7027 return NULL;
7028 }
7029
7030 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7031 {
7032 struct list_head *tmp;
7033 struct mddev *next_mddev, *mddev = v;
7034
7035 ++*pos;
7036 if (v == (void*)2)
7037 return NULL;
7038
7039 spin_lock(&all_mddevs_lock);
7040 if (v == (void*)1)
7041 tmp = all_mddevs.next;
7042 else
7043 tmp = mddev->all_mddevs.next;
7044 if (tmp != &all_mddevs)
7045 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7046 else {
7047 next_mddev = (void*)2;
7048 *pos = 0x10000;
7049 }
7050 spin_unlock(&all_mddevs_lock);
7051
7052 if (v != (void*)1)
7053 mddev_put(mddev);
7054 return next_mddev;
7055
7056 }
7057
7058 static void md_seq_stop(struct seq_file *seq, void *v)
7059 {
7060 struct mddev *mddev = v;
7061
7062 if (mddev && v != (void*)1 && v != (void*)2)
7063 mddev_put(mddev);
7064 }
7065
7066 static int md_seq_show(struct seq_file *seq, void *v)
7067 {
7068 struct mddev *mddev = v;
7069 sector_t sectors;
7070 struct md_rdev *rdev;
7071
7072 if (v == (void*)1) {
7073 struct md_personality *pers;
7074 seq_printf(seq, "Personalities : ");
7075 spin_lock(&pers_lock);
7076 list_for_each_entry(pers, &pers_list, list)
7077 seq_printf(seq, "[%s] ", pers->name);
7078
7079 spin_unlock(&pers_lock);
7080 seq_printf(seq, "\n");
7081 seq->poll_event = atomic_read(&md_event_count);
7082 return 0;
7083 }
7084 if (v == (void*)2) {
7085 status_unused(seq);
7086 return 0;
7087 }
7088
7089 spin_lock(&mddev->lock);
7090 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7091 seq_printf(seq, "%s : %sactive", mdname(mddev),
7092 mddev->pers ? "" : "in");
7093 if (mddev->pers) {
7094 if (mddev->ro==1)
7095 seq_printf(seq, " (read-only)");
7096 if (mddev->ro==2)
7097 seq_printf(seq, " (auto-read-only)");
7098 seq_printf(seq, " %s", mddev->pers->name);
7099 }
7100
7101 sectors = 0;
7102 rcu_read_lock();
7103 rdev_for_each_rcu(rdev, mddev) {
7104 char b[BDEVNAME_SIZE];
7105 seq_printf(seq, " %s[%d]",
7106 bdevname(rdev->bdev,b), rdev->desc_nr);
7107 if (test_bit(WriteMostly, &rdev->flags))
7108 seq_printf(seq, "(W)");
7109 if (test_bit(Faulty, &rdev->flags)) {
7110 seq_printf(seq, "(F)");
7111 continue;
7112 }
7113 if (rdev->raid_disk < 0)
7114 seq_printf(seq, "(S)"); /* spare */
7115 if (test_bit(Replacement, &rdev->flags))
7116 seq_printf(seq, "(R)");
7117 sectors += rdev->sectors;
7118 }
7119 rcu_read_unlock();
7120
7121 if (!list_empty(&mddev->disks)) {
7122 if (mddev->pers)
7123 seq_printf(seq, "\n %llu blocks",
7124 (unsigned long long)
7125 mddev->array_sectors / 2);
7126 else
7127 seq_printf(seq, "\n %llu blocks",
7128 (unsigned long long)sectors / 2);
7129 }
7130 if (mddev->persistent) {
7131 if (mddev->major_version != 0 ||
7132 mddev->minor_version != 90) {
7133 seq_printf(seq," super %d.%d",
7134 mddev->major_version,
7135 mddev->minor_version);
7136 }
7137 } else if (mddev->external)
7138 seq_printf(seq, " super external:%s",
7139 mddev->metadata_type);
7140 else
7141 seq_printf(seq, " super non-persistent");
7142
7143 if (mddev->pers) {
7144 mddev->pers->status(seq, mddev);
7145 seq_printf(seq, "\n ");
7146 if (mddev->pers->sync_request) {
7147 if (mddev->curr_resync > 2) {
7148 status_resync(seq, mddev);
7149 seq_printf(seq, "\n ");
7150 } else if (mddev->curr_resync >= 1)
7151 seq_printf(seq, "\tresync=DELAYED\n ");
7152 else if (mddev->recovery_cp < MaxSector)
7153 seq_printf(seq, "\tresync=PENDING\n ");
7154 }
7155 } else
7156 seq_printf(seq, "\n ");
7157
7158 bitmap_status(seq, mddev->bitmap);
7159
7160 seq_printf(seq, "\n");
7161 }
7162 spin_unlock(&mddev->lock);
7163
7164 return 0;
7165 }
7166
7167 static const struct seq_operations md_seq_ops = {
7168 .start = md_seq_start,
7169 .next = md_seq_next,
7170 .stop = md_seq_stop,
7171 .show = md_seq_show,
7172 };
7173
7174 static int md_seq_open(struct inode *inode, struct file *file)
7175 {
7176 struct seq_file *seq;
7177 int error;
7178
7179 error = seq_open(file, &md_seq_ops);
7180 if (error)
7181 return error;
7182
7183 seq = file->private_data;
7184 seq->poll_event = atomic_read(&md_event_count);
7185 return error;
7186 }
7187
7188 static int md_unloading;
7189 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7190 {
7191 struct seq_file *seq = filp->private_data;
7192 int mask;
7193
7194 if (md_unloading)
7195 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7196 poll_wait(filp, &md_event_waiters, wait);
7197
7198 /* always allow read */
7199 mask = POLLIN | POLLRDNORM;
7200
7201 if (seq->poll_event != atomic_read(&md_event_count))
7202 mask |= POLLERR | POLLPRI;
7203 return mask;
7204 }
7205
7206 static const struct file_operations md_seq_fops = {
7207 .owner = THIS_MODULE,
7208 .open = md_seq_open,
7209 .read = seq_read,
7210 .llseek = seq_lseek,
7211 .release = seq_release_private,
7212 .poll = mdstat_poll,
7213 };
7214
7215 int register_md_personality(struct md_personality *p)
7216 {
7217 printk(KERN_INFO "md: %s personality registered for level %d\n",
7218 p->name, p->level);
7219 spin_lock(&pers_lock);
7220 list_add_tail(&p->list, &pers_list);
7221 spin_unlock(&pers_lock);
7222 return 0;
7223 }
7224 EXPORT_SYMBOL(register_md_personality);
7225
7226 int unregister_md_personality(struct md_personality *p)
7227 {
7228 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7229 spin_lock(&pers_lock);
7230 list_del_init(&p->list);
7231 spin_unlock(&pers_lock);
7232 return 0;
7233 }
7234 EXPORT_SYMBOL(unregister_md_personality);
7235
7236 static int is_mddev_idle(struct mddev *mddev, int init)
7237 {
7238 struct md_rdev *rdev;
7239 int idle;
7240 int curr_events;
7241
7242 idle = 1;
7243 rcu_read_lock();
7244 rdev_for_each_rcu(rdev, mddev) {
7245 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7246 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7247 (int)part_stat_read(&disk->part0, sectors[1]) -
7248 atomic_read(&disk->sync_io);
7249 /* sync IO will cause sync_io to increase before the disk_stats
7250 * as sync_io is counted when a request starts, and
7251 * disk_stats is counted when it completes.
7252 * So resync activity will cause curr_events to be smaller than
7253 * when there was no such activity.
7254 * non-sync IO will cause disk_stat to increase without
7255 * increasing sync_io so curr_events will (eventually)
7256 * be larger than it was before. Once it becomes
7257 * substantially larger, the test below will cause
7258 * the array to appear non-idle, and resync will slow
7259 * down.
7260 * If there is a lot of outstanding resync activity when
7261 * we set last_event to curr_events, then all that activity
7262 * completing might cause the array to appear non-idle
7263 * and resync will be slowed down even though there might
7264 * not have been non-resync activity. This will only
7265 * happen once though. 'last_events' will soon reflect
7266 * the state where there is little or no outstanding
7267 * resync requests, and further resync activity will
7268 * always make curr_events less than last_events.
7269 *
7270 */
7271 if (init || curr_events - rdev->last_events > 64) {
7272 rdev->last_events = curr_events;
7273 idle = 0;
7274 }
7275 }
7276 rcu_read_unlock();
7277 return idle;
7278 }
7279
7280 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7281 {
7282 /* another "blocks" (512byte) blocks have been synced */
7283 atomic_sub(blocks, &mddev->recovery_active);
7284 wake_up(&mddev->recovery_wait);
7285 if (!ok) {
7286 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7287 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7288 md_wakeup_thread(mddev->thread);
7289 // stop recovery, signal do_sync ....
7290 }
7291 }
7292 EXPORT_SYMBOL(md_done_sync);
7293
7294 /* md_write_start(mddev, bi)
7295 * If we need to update some array metadata (e.g. 'active' flag
7296 * in superblock) before writing, schedule a superblock update
7297 * and wait for it to complete.
7298 */
7299 void md_write_start(struct mddev *mddev, struct bio *bi)
7300 {
7301 int did_change = 0;
7302 if (bio_data_dir(bi) != WRITE)
7303 return;
7304
7305 BUG_ON(mddev->ro == 1);
7306 if (mddev->ro == 2) {
7307 /* need to switch to read/write */
7308 mddev->ro = 0;
7309 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7310 md_wakeup_thread(mddev->thread);
7311 md_wakeup_thread(mddev->sync_thread);
7312 did_change = 1;
7313 }
7314 atomic_inc(&mddev->writes_pending);
7315 if (mddev->safemode == 1)
7316 mddev->safemode = 0;
7317 if (mddev->in_sync) {
7318 spin_lock(&mddev->lock);
7319 if (mddev->in_sync) {
7320 mddev->in_sync = 0;
7321 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7322 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7323 md_wakeup_thread(mddev->thread);
7324 did_change = 1;
7325 }
7326 spin_unlock(&mddev->lock);
7327 }
7328 if (did_change)
7329 sysfs_notify_dirent_safe(mddev->sysfs_state);
7330 wait_event(mddev->sb_wait,
7331 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7332 }
7333 EXPORT_SYMBOL(md_write_start);
7334
7335 void md_write_end(struct mddev *mddev)
7336 {
7337 if (atomic_dec_and_test(&mddev->writes_pending)) {
7338 if (mddev->safemode == 2)
7339 md_wakeup_thread(mddev->thread);
7340 else if (mddev->safemode_delay)
7341 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7342 }
7343 }
7344 EXPORT_SYMBOL(md_write_end);
7345
7346 /* md_allow_write(mddev)
7347 * Calling this ensures that the array is marked 'active' so that writes
7348 * may proceed without blocking. It is important to call this before
7349 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7350 * Must be called with mddev_lock held.
7351 *
7352 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7353 * is dropped, so return -EAGAIN after notifying userspace.
7354 */
7355 int md_allow_write(struct mddev *mddev)
7356 {
7357 if (!mddev->pers)
7358 return 0;
7359 if (mddev->ro)
7360 return 0;
7361 if (!mddev->pers->sync_request)
7362 return 0;
7363
7364 spin_lock(&mddev->lock);
7365 if (mddev->in_sync) {
7366 mddev->in_sync = 0;
7367 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7368 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7369 if (mddev->safemode_delay &&
7370 mddev->safemode == 0)
7371 mddev->safemode = 1;
7372 spin_unlock(&mddev->lock);
7373 md_update_sb(mddev, 0);
7374 sysfs_notify_dirent_safe(mddev->sysfs_state);
7375 } else
7376 spin_unlock(&mddev->lock);
7377
7378 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7379 return -EAGAIN;
7380 else
7381 return 0;
7382 }
7383 EXPORT_SYMBOL_GPL(md_allow_write);
7384
7385 #define SYNC_MARKS 10
7386 #define SYNC_MARK_STEP (3*HZ)
7387 #define UPDATE_FREQUENCY (5*60*HZ)
7388 void md_do_sync(struct md_thread *thread)
7389 {
7390 struct mddev *mddev = thread->mddev;
7391 struct mddev *mddev2;
7392 unsigned int currspeed = 0,
7393 window;
7394 sector_t max_sectors,j, io_sectors, recovery_done;
7395 unsigned long mark[SYNC_MARKS];
7396 unsigned long update_time;
7397 sector_t mark_cnt[SYNC_MARKS];
7398 int last_mark,m;
7399 struct list_head *tmp;
7400 sector_t last_check;
7401 int skipped = 0;
7402 struct md_rdev *rdev;
7403 char *desc, *action = NULL;
7404 struct blk_plug plug;
7405
7406 /* just incase thread restarts... */
7407 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7408 return;
7409 if (mddev->ro) {/* never try to sync a read-only array */
7410 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7411 return;
7412 }
7413
7414 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7415 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7416 desc = "data-check";
7417 action = "check";
7418 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7419 desc = "requested-resync";
7420 action = "repair";
7421 } else
7422 desc = "resync";
7423 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7424 desc = "reshape";
7425 else
7426 desc = "recovery";
7427
7428 mddev->last_sync_action = action ?: desc;
7429
7430 /* we overload curr_resync somewhat here.
7431 * 0 == not engaged in resync at all
7432 * 2 == checking that there is no conflict with another sync
7433 * 1 == like 2, but have yielded to allow conflicting resync to
7434 * commense
7435 * other == active in resync - this many blocks
7436 *
7437 * Before starting a resync we must have set curr_resync to
7438 * 2, and then checked that every "conflicting" array has curr_resync
7439 * less than ours. When we find one that is the same or higher
7440 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7441 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7442 * This will mean we have to start checking from the beginning again.
7443 *
7444 */
7445
7446 do {
7447 mddev->curr_resync = 2;
7448
7449 try_again:
7450 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7451 goto skip;
7452 for_each_mddev(mddev2, tmp) {
7453 if (mddev2 == mddev)
7454 continue;
7455 if (!mddev->parallel_resync
7456 && mddev2->curr_resync
7457 && match_mddev_units(mddev, mddev2)) {
7458 DEFINE_WAIT(wq);
7459 if (mddev < mddev2 && mddev->curr_resync == 2) {
7460 /* arbitrarily yield */
7461 mddev->curr_resync = 1;
7462 wake_up(&resync_wait);
7463 }
7464 if (mddev > mddev2 && mddev->curr_resync == 1)
7465 /* no need to wait here, we can wait the next
7466 * time 'round when curr_resync == 2
7467 */
7468 continue;
7469 /* We need to wait 'interruptible' so as not to
7470 * contribute to the load average, and not to
7471 * be caught by 'softlockup'
7472 */
7473 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7474 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7475 mddev2->curr_resync >= mddev->curr_resync) {
7476 printk(KERN_INFO "md: delaying %s of %s"
7477 " until %s has finished (they"
7478 " share one or more physical units)\n",
7479 desc, mdname(mddev), mdname(mddev2));
7480 mddev_put(mddev2);
7481 if (signal_pending(current))
7482 flush_signals(current);
7483 schedule();
7484 finish_wait(&resync_wait, &wq);
7485 goto try_again;
7486 }
7487 finish_wait(&resync_wait, &wq);
7488 }
7489 }
7490 } while (mddev->curr_resync < 2);
7491
7492 j = 0;
7493 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7494 /* resync follows the size requested by the personality,
7495 * which defaults to physical size, but can be virtual size
7496 */
7497 max_sectors = mddev->resync_max_sectors;
7498 atomic64_set(&mddev->resync_mismatches, 0);
7499 /* we don't use the checkpoint if there's a bitmap */
7500 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7501 j = mddev->resync_min;
7502 else if (!mddev->bitmap)
7503 j = mddev->recovery_cp;
7504
7505 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7506 max_sectors = mddev->resync_max_sectors;
7507 else {
7508 /* recovery follows the physical size of devices */
7509 max_sectors = mddev->dev_sectors;
7510 j = MaxSector;
7511 rcu_read_lock();
7512 rdev_for_each_rcu(rdev, mddev)
7513 if (rdev->raid_disk >= 0 &&
7514 !test_bit(Faulty, &rdev->flags) &&
7515 !test_bit(In_sync, &rdev->flags) &&
7516 rdev->recovery_offset < j)
7517 j = rdev->recovery_offset;
7518 rcu_read_unlock();
7519
7520 /* If there is a bitmap, we need to make sure all
7521 * writes that started before we added a spare
7522 * complete before we start doing a recovery.
7523 * Otherwise the write might complete and (via
7524 * bitmap_endwrite) set a bit in the bitmap after the
7525 * recovery has checked that bit and skipped that
7526 * region.
7527 */
7528 if (mddev->bitmap) {
7529 mddev->pers->quiesce(mddev, 1);
7530 mddev->pers->quiesce(mddev, 0);
7531 }
7532 }
7533
7534 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7535 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7536 " %d KB/sec/disk.\n", speed_min(mddev));
7537 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7538 "(but not more than %d KB/sec) for %s.\n",
7539 speed_max(mddev), desc);
7540
7541 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7542
7543 io_sectors = 0;
7544 for (m = 0; m < SYNC_MARKS; m++) {
7545 mark[m] = jiffies;
7546 mark_cnt[m] = io_sectors;
7547 }
7548 last_mark = 0;
7549 mddev->resync_mark = mark[last_mark];
7550 mddev->resync_mark_cnt = mark_cnt[last_mark];
7551
7552 /*
7553 * Tune reconstruction:
7554 */
7555 window = 32*(PAGE_SIZE/512);
7556 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7557 window/2, (unsigned long long)max_sectors/2);
7558
7559 atomic_set(&mddev->recovery_active, 0);
7560 last_check = 0;
7561
7562 if (j>2) {
7563 printk(KERN_INFO
7564 "md: resuming %s of %s from checkpoint.\n",
7565 desc, mdname(mddev));
7566 mddev->curr_resync = j;
7567 } else
7568 mddev->curr_resync = 3; /* no longer delayed */
7569 mddev->curr_resync_completed = j;
7570 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7571 md_new_event(mddev);
7572 update_time = jiffies;
7573
7574 blk_start_plug(&plug);
7575 while (j < max_sectors) {
7576 sector_t sectors;
7577
7578 skipped = 0;
7579
7580 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7581 ((mddev->curr_resync > mddev->curr_resync_completed &&
7582 (mddev->curr_resync - mddev->curr_resync_completed)
7583 > (max_sectors >> 4)) ||
7584 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7585 (j - mddev->curr_resync_completed)*2
7586 >= mddev->resync_max - mddev->curr_resync_completed
7587 )) {
7588 /* time to update curr_resync_completed */
7589 wait_event(mddev->recovery_wait,
7590 atomic_read(&mddev->recovery_active) == 0);
7591 mddev->curr_resync_completed = j;
7592 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7593 j > mddev->recovery_cp)
7594 mddev->recovery_cp = j;
7595 update_time = jiffies;
7596 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7597 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7598 }
7599
7600 while (j >= mddev->resync_max &&
7601 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7602 /* As this condition is controlled by user-space,
7603 * we can block indefinitely, so use '_interruptible'
7604 * to avoid triggering warnings.
7605 */
7606 flush_signals(current); /* just in case */
7607 wait_event_interruptible(mddev->recovery_wait,
7608 mddev->resync_max > j
7609 || test_bit(MD_RECOVERY_INTR,
7610 &mddev->recovery));
7611 }
7612
7613 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7614 break;
7615
7616 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7617 currspeed < speed_min(mddev));
7618 if (sectors == 0) {
7619 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7620 break;
7621 }
7622
7623 if (!skipped) { /* actual IO requested */
7624 io_sectors += sectors;
7625 atomic_add(sectors, &mddev->recovery_active);
7626 }
7627
7628 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7629 break;
7630
7631 j += sectors;
7632 if (j > 2)
7633 mddev->curr_resync = j;
7634 mddev->curr_mark_cnt = io_sectors;
7635 if (last_check == 0)
7636 /* this is the earliest that rebuild will be
7637 * visible in /proc/mdstat
7638 */
7639 md_new_event(mddev);
7640
7641 if (last_check + window > io_sectors || j == max_sectors)
7642 continue;
7643
7644 last_check = io_sectors;
7645 repeat:
7646 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7647 /* step marks */
7648 int next = (last_mark+1) % SYNC_MARKS;
7649
7650 mddev->resync_mark = mark[next];
7651 mddev->resync_mark_cnt = mark_cnt[next];
7652 mark[next] = jiffies;
7653 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7654 last_mark = next;
7655 }
7656
7657 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7658 break;
7659
7660 /*
7661 * this loop exits only if either when we are slower than
7662 * the 'hard' speed limit, or the system was IO-idle for
7663 * a jiffy.
7664 * the system might be non-idle CPU-wise, but we only care
7665 * about not overloading the IO subsystem. (things like an
7666 * e2fsck being done on the RAID array should execute fast)
7667 */
7668 cond_resched();
7669
7670 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7671 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7672 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7673
7674 if (currspeed > speed_min(mddev)) {
7675 if ((currspeed > speed_max(mddev)) ||
7676 !is_mddev_idle(mddev, 0)) {
7677 msleep(500);
7678 goto repeat;
7679 }
7680 }
7681 }
7682 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7683 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7684 ? "interrupted" : "done");
7685 /*
7686 * this also signals 'finished resyncing' to md_stop
7687 */
7688 blk_finish_plug(&plug);
7689 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7690
7691 /* tell personality that we are finished */
7692 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7693
7694 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7695 mddev->curr_resync > 2) {
7696 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7697 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7698 if (mddev->curr_resync >= mddev->recovery_cp) {
7699 printk(KERN_INFO
7700 "md: checkpointing %s of %s.\n",
7701 desc, mdname(mddev));
7702 if (test_bit(MD_RECOVERY_ERROR,
7703 &mddev->recovery))
7704 mddev->recovery_cp =
7705 mddev->curr_resync_completed;
7706 else
7707 mddev->recovery_cp =
7708 mddev->curr_resync;
7709 }
7710 } else
7711 mddev->recovery_cp = MaxSector;
7712 } else {
7713 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7714 mddev->curr_resync = MaxSector;
7715 rcu_read_lock();
7716 rdev_for_each_rcu(rdev, mddev)
7717 if (rdev->raid_disk >= 0 &&
7718 mddev->delta_disks >= 0 &&
7719 !test_bit(Faulty, &rdev->flags) &&
7720 !test_bit(In_sync, &rdev->flags) &&
7721 rdev->recovery_offset < mddev->curr_resync)
7722 rdev->recovery_offset = mddev->curr_resync;
7723 rcu_read_unlock();
7724 }
7725 }
7726 skip:
7727 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7728
7729 spin_lock(&mddev->lock);
7730 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7731 /* We completed so min/max setting can be forgotten if used. */
7732 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7733 mddev->resync_min = 0;
7734 mddev->resync_max = MaxSector;
7735 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7736 mddev->resync_min = mddev->curr_resync_completed;
7737 mddev->curr_resync = 0;
7738 spin_unlock(&mddev->lock);
7739
7740 wake_up(&resync_wait);
7741 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7742 md_wakeup_thread(mddev->thread);
7743 return;
7744 }
7745 EXPORT_SYMBOL_GPL(md_do_sync);
7746
7747 static int remove_and_add_spares(struct mddev *mddev,
7748 struct md_rdev *this)
7749 {
7750 struct md_rdev *rdev;
7751 int spares = 0;
7752 int removed = 0;
7753
7754 rdev_for_each(rdev, mddev)
7755 if ((this == NULL || rdev == this) &&
7756 rdev->raid_disk >= 0 &&
7757 !test_bit(Blocked, &rdev->flags) &&
7758 (test_bit(Faulty, &rdev->flags) ||
7759 ! test_bit(In_sync, &rdev->flags)) &&
7760 atomic_read(&rdev->nr_pending)==0) {
7761 if (mddev->pers->hot_remove_disk(
7762 mddev, rdev) == 0) {
7763 sysfs_unlink_rdev(mddev, rdev);
7764 rdev->raid_disk = -1;
7765 removed++;
7766 }
7767 }
7768 if (removed && mddev->kobj.sd)
7769 sysfs_notify(&mddev->kobj, NULL, "degraded");
7770
7771 if (this)
7772 goto no_add;
7773
7774 rdev_for_each(rdev, mddev) {
7775 if (rdev->raid_disk >= 0 &&
7776 !test_bit(In_sync, &rdev->flags) &&
7777 !test_bit(Faulty, &rdev->flags))
7778 spares++;
7779 if (rdev->raid_disk >= 0)
7780 continue;
7781 if (test_bit(Faulty, &rdev->flags))
7782 continue;
7783 if (mddev->ro &&
7784 ! (rdev->saved_raid_disk >= 0 &&
7785 !test_bit(Bitmap_sync, &rdev->flags)))
7786 continue;
7787
7788 if (rdev->saved_raid_disk < 0)
7789 rdev->recovery_offset = 0;
7790 if (mddev->pers->
7791 hot_add_disk(mddev, rdev) == 0) {
7792 if (sysfs_link_rdev(mddev, rdev))
7793 /* failure here is OK */;
7794 spares++;
7795 md_new_event(mddev);
7796 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7797 }
7798 }
7799 no_add:
7800 if (removed)
7801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 return spares;
7803 }
7804
7805 static void md_start_sync(struct work_struct *ws)
7806 {
7807 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7808
7809 mddev->sync_thread = md_register_thread(md_do_sync,
7810 mddev,
7811 "resync");
7812 if (!mddev->sync_thread) {
7813 printk(KERN_ERR "%s: could not start resync"
7814 " thread...\n",
7815 mdname(mddev));
7816 /* leave the spares where they are, it shouldn't hurt */
7817 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7822 wake_up(&resync_wait);
7823 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7824 &mddev->recovery))
7825 if (mddev->sysfs_action)
7826 sysfs_notify_dirent_safe(mddev->sysfs_action);
7827 } else
7828 md_wakeup_thread(mddev->sync_thread);
7829 sysfs_notify_dirent_safe(mddev->sysfs_action);
7830 md_new_event(mddev);
7831 }
7832
7833 /*
7834 * This routine is regularly called by all per-raid-array threads to
7835 * deal with generic issues like resync and super-block update.
7836 * Raid personalities that don't have a thread (linear/raid0) do not
7837 * need this as they never do any recovery or update the superblock.
7838 *
7839 * It does not do any resync itself, but rather "forks" off other threads
7840 * to do that as needed.
7841 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7842 * "->recovery" and create a thread at ->sync_thread.
7843 * When the thread finishes it sets MD_RECOVERY_DONE
7844 * and wakeups up this thread which will reap the thread and finish up.
7845 * This thread also removes any faulty devices (with nr_pending == 0).
7846 *
7847 * The overall approach is:
7848 * 1/ if the superblock needs updating, update it.
7849 * 2/ If a recovery thread is running, don't do anything else.
7850 * 3/ If recovery has finished, clean up, possibly marking spares active.
7851 * 4/ If there are any faulty devices, remove them.
7852 * 5/ If array is degraded, try to add spares devices
7853 * 6/ If array has spares or is not in-sync, start a resync thread.
7854 */
7855 void md_check_recovery(struct mddev *mddev)
7856 {
7857 if (mddev->suspended)
7858 return;
7859
7860 if (mddev->bitmap)
7861 bitmap_daemon_work(mddev);
7862
7863 if (signal_pending(current)) {
7864 if (mddev->pers->sync_request && !mddev->external) {
7865 printk(KERN_INFO "md: %s in immediate safe mode\n",
7866 mdname(mddev));
7867 mddev->safemode = 2;
7868 }
7869 flush_signals(current);
7870 }
7871
7872 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7873 return;
7874 if ( ! (
7875 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7876 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7877 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7878 (mddev->external == 0 && mddev->safemode == 1) ||
7879 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7880 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7881 ))
7882 return;
7883
7884 if (mddev_trylock(mddev)) {
7885 int spares = 0;
7886
7887 if (mddev->ro) {
7888 /* On a read-only array we can:
7889 * - remove failed devices
7890 * - add already-in_sync devices if the array itself
7891 * is in-sync.
7892 * As we only add devices that are already in-sync,
7893 * we can activate the spares immediately.
7894 */
7895 remove_and_add_spares(mddev, NULL);
7896 /* There is no thread, but we need to call
7897 * ->spare_active and clear saved_raid_disk
7898 */
7899 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7900 md_reap_sync_thread(mddev);
7901 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7902 goto unlock;
7903 }
7904
7905 if (!mddev->external) {
7906 int did_change = 0;
7907 spin_lock(&mddev->lock);
7908 if (mddev->safemode &&
7909 !atomic_read(&mddev->writes_pending) &&
7910 !mddev->in_sync &&
7911 mddev->recovery_cp == MaxSector) {
7912 mddev->in_sync = 1;
7913 did_change = 1;
7914 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7915 }
7916 if (mddev->safemode == 1)
7917 mddev->safemode = 0;
7918 spin_unlock(&mddev->lock);
7919 if (did_change)
7920 sysfs_notify_dirent_safe(mddev->sysfs_state);
7921 }
7922
7923 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7924 md_update_sb(mddev, 0);
7925
7926 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7927 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7928 /* resync/recovery still happening */
7929 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7930 goto unlock;
7931 }
7932 if (mddev->sync_thread) {
7933 md_reap_sync_thread(mddev);
7934 goto unlock;
7935 }
7936 /* Set RUNNING before clearing NEEDED to avoid
7937 * any transients in the value of "sync_action".
7938 */
7939 mddev->curr_resync_completed = 0;
7940 spin_lock(&mddev->lock);
7941 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7942 spin_unlock(&mddev->lock);
7943 /* Clear some bits that don't mean anything, but
7944 * might be left set
7945 */
7946 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7947 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7948
7949 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7950 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7951 goto not_running;
7952 /* no recovery is running.
7953 * remove any failed drives, then
7954 * add spares if possible.
7955 * Spares are also removed and re-added, to allow
7956 * the personality to fail the re-add.
7957 */
7958
7959 if (mddev->reshape_position != MaxSector) {
7960 if (mddev->pers->check_reshape == NULL ||
7961 mddev->pers->check_reshape(mddev) != 0)
7962 /* Cannot proceed */
7963 goto not_running;
7964 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7965 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7966 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7967 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7968 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7969 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7970 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7971 } else if (mddev->recovery_cp < MaxSector) {
7972 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7973 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7974 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7975 /* nothing to be done ... */
7976 goto not_running;
7977
7978 if (mddev->pers->sync_request) {
7979 if (spares) {
7980 /* We are adding a device or devices to an array
7981 * which has the bitmap stored on all devices.
7982 * So make sure all bitmap pages get written
7983 */
7984 bitmap_write_all(mddev->bitmap);
7985 }
7986 INIT_WORK(&mddev->del_work, md_start_sync);
7987 queue_work(md_misc_wq, &mddev->del_work);
7988 goto unlock;
7989 }
7990 not_running:
7991 if (!mddev->sync_thread) {
7992 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7993 wake_up(&resync_wait);
7994 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7995 &mddev->recovery))
7996 if (mddev->sysfs_action)
7997 sysfs_notify_dirent_safe(mddev->sysfs_action);
7998 }
7999 unlock:
8000 wake_up(&mddev->sb_wait);
8001 mddev_unlock(mddev);
8002 }
8003 }
8004 EXPORT_SYMBOL(md_check_recovery);
8005
8006 void md_reap_sync_thread(struct mddev *mddev)
8007 {
8008 struct md_rdev *rdev;
8009
8010 /* resync has finished, collect result */
8011 md_unregister_thread(&mddev->sync_thread);
8012 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8013 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8014 /* success...*/
8015 /* activate any spares */
8016 if (mddev->pers->spare_active(mddev)) {
8017 sysfs_notify(&mddev->kobj, NULL,
8018 "degraded");
8019 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8020 }
8021 }
8022 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8023 mddev->pers->finish_reshape)
8024 mddev->pers->finish_reshape(mddev);
8025
8026 /* If array is no-longer degraded, then any saved_raid_disk
8027 * information must be scrapped.
8028 */
8029 if (!mddev->degraded)
8030 rdev_for_each(rdev, mddev)
8031 rdev->saved_raid_disk = -1;
8032
8033 md_update_sb(mddev, 1);
8034 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8035 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8036 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8037 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8038 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8039 wake_up(&resync_wait);
8040 /* flag recovery needed just to double check */
8041 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8042 sysfs_notify_dirent_safe(mddev->sysfs_action);
8043 md_new_event(mddev);
8044 if (mddev->event_work.func)
8045 queue_work(md_misc_wq, &mddev->event_work);
8046 }
8047 EXPORT_SYMBOL(md_reap_sync_thread);
8048
8049 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8050 {
8051 sysfs_notify_dirent_safe(rdev->sysfs_state);
8052 wait_event_timeout(rdev->blocked_wait,
8053 !test_bit(Blocked, &rdev->flags) &&
8054 !test_bit(BlockedBadBlocks, &rdev->flags),
8055 msecs_to_jiffies(5000));
8056 rdev_dec_pending(rdev, mddev);
8057 }
8058 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8059
8060 void md_finish_reshape(struct mddev *mddev)
8061 {
8062 /* called be personality module when reshape completes. */
8063 struct md_rdev *rdev;
8064
8065 rdev_for_each(rdev, mddev) {
8066 if (rdev->data_offset > rdev->new_data_offset)
8067 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8068 else
8069 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8070 rdev->data_offset = rdev->new_data_offset;
8071 }
8072 }
8073 EXPORT_SYMBOL(md_finish_reshape);
8074
8075 /* Bad block management.
8076 * We can record which blocks on each device are 'bad' and so just
8077 * fail those blocks, or that stripe, rather than the whole device.
8078 * Entries in the bad-block table are 64bits wide. This comprises:
8079 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8080 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8081 * A 'shift' can be set so that larger blocks are tracked and
8082 * consequently larger devices can be covered.
8083 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8084 *
8085 * Locking of the bad-block table uses a seqlock so md_is_badblock
8086 * might need to retry if it is very unlucky.
8087 * We will sometimes want to check for bad blocks in a bi_end_io function,
8088 * so we use the write_seqlock_irq variant.
8089 *
8090 * When looking for a bad block we specify a range and want to
8091 * know if any block in the range is bad. So we binary-search
8092 * to the last range that starts at-or-before the given endpoint,
8093 * (or "before the sector after the target range")
8094 * then see if it ends after the given start.
8095 * We return
8096 * 0 if there are no known bad blocks in the range
8097 * 1 if there are known bad block which are all acknowledged
8098 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8099 * plus the start/length of the first bad section we overlap.
8100 */
8101 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8102 sector_t *first_bad, int *bad_sectors)
8103 {
8104 int hi;
8105 int lo;
8106 u64 *p = bb->page;
8107 int rv;
8108 sector_t target = s + sectors;
8109 unsigned seq;
8110
8111 if (bb->shift > 0) {
8112 /* round the start down, and the end up */
8113 s >>= bb->shift;
8114 target += (1<<bb->shift) - 1;
8115 target >>= bb->shift;
8116 sectors = target - s;
8117 }
8118 /* 'target' is now the first block after the bad range */
8119
8120 retry:
8121 seq = read_seqbegin(&bb->lock);
8122 lo = 0;
8123 rv = 0;
8124 hi = bb->count;
8125
8126 /* Binary search between lo and hi for 'target'
8127 * i.e. for the last range that starts before 'target'
8128 */
8129 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8130 * are known not to be the last range before target.
8131 * VARIANT: hi-lo is the number of possible
8132 * ranges, and decreases until it reaches 1
8133 */
8134 while (hi - lo > 1) {
8135 int mid = (lo + hi) / 2;
8136 sector_t a = BB_OFFSET(p[mid]);
8137 if (a < target)
8138 /* This could still be the one, earlier ranges
8139 * could not. */
8140 lo = mid;
8141 else
8142 /* This and later ranges are definitely out. */
8143 hi = mid;
8144 }
8145 /* 'lo' might be the last that started before target, but 'hi' isn't */
8146 if (hi > lo) {
8147 /* need to check all range that end after 's' to see if
8148 * any are unacknowledged.
8149 */
8150 while (lo >= 0 &&
8151 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8152 if (BB_OFFSET(p[lo]) < target) {
8153 /* starts before the end, and finishes after
8154 * the start, so they must overlap
8155 */
8156 if (rv != -1 && BB_ACK(p[lo]))
8157 rv = 1;
8158 else
8159 rv = -1;
8160 *first_bad = BB_OFFSET(p[lo]);
8161 *bad_sectors = BB_LEN(p[lo]);
8162 }
8163 lo--;
8164 }
8165 }
8166
8167 if (read_seqretry(&bb->lock, seq))
8168 goto retry;
8169
8170 return rv;
8171 }
8172 EXPORT_SYMBOL_GPL(md_is_badblock);
8173
8174 /*
8175 * Add a range of bad blocks to the table.
8176 * This might extend the table, or might contract it
8177 * if two adjacent ranges can be merged.
8178 * We binary-search to find the 'insertion' point, then
8179 * decide how best to handle it.
8180 */
8181 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8182 int acknowledged)
8183 {
8184 u64 *p;
8185 int lo, hi;
8186 int rv = 1;
8187 unsigned long flags;
8188
8189 if (bb->shift < 0)
8190 /* badblocks are disabled */
8191 return 0;
8192
8193 if (bb->shift) {
8194 /* round the start down, and the end up */
8195 sector_t next = s + sectors;
8196 s >>= bb->shift;
8197 next += (1<<bb->shift) - 1;
8198 next >>= bb->shift;
8199 sectors = next - s;
8200 }
8201
8202 write_seqlock_irqsave(&bb->lock, flags);
8203
8204 p = bb->page;
8205 lo = 0;
8206 hi = bb->count;
8207 /* Find the last range that starts at-or-before 's' */
8208 while (hi - lo > 1) {
8209 int mid = (lo + hi) / 2;
8210 sector_t a = BB_OFFSET(p[mid]);
8211 if (a <= s)
8212 lo = mid;
8213 else
8214 hi = mid;
8215 }
8216 if (hi > lo && BB_OFFSET(p[lo]) > s)
8217 hi = lo;
8218
8219 if (hi > lo) {
8220 /* we found a range that might merge with the start
8221 * of our new range
8222 */
8223 sector_t a = BB_OFFSET(p[lo]);
8224 sector_t e = a + BB_LEN(p[lo]);
8225 int ack = BB_ACK(p[lo]);
8226 if (e >= s) {
8227 /* Yes, we can merge with a previous range */
8228 if (s == a && s + sectors >= e)
8229 /* new range covers old */
8230 ack = acknowledged;
8231 else
8232 ack = ack && acknowledged;
8233
8234 if (e < s + sectors)
8235 e = s + sectors;
8236 if (e - a <= BB_MAX_LEN) {
8237 p[lo] = BB_MAKE(a, e-a, ack);
8238 s = e;
8239 } else {
8240 /* does not all fit in one range,
8241 * make p[lo] maximal
8242 */
8243 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8244 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8245 s = a + BB_MAX_LEN;
8246 }
8247 sectors = e - s;
8248 }
8249 }
8250 if (sectors && hi < bb->count) {
8251 /* 'hi' points to the first range that starts after 's'.
8252 * Maybe we can merge with the start of that range */
8253 sector_t a = BB_OFFSET(p[hi]);
8254 sector_t e = a + BB_LEN(p[hi]);
8255 int ack = BB_ACK(p[hi]);
8256 if (a <= s + sectors) {
8257 /* merging is possible */
8258 if (e <= s + sectors) {
8259 /* full overlap */
8260 e = s + sectors;
8261 ack = acknowledged;
8262 } else
8263 ack = ack && acknowledged;
8264
8265 a = s;
8266 if (e - a <= BB_MAX_LEN) {
8267 p[hi] = BB_MAKE(a, e-a, ack);
8268 s = e;
8269 } else {
8270 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8271 s = a + BB_MAX_LEN;
8272 }
8273 sectors = e - s;
8274 lo = hi;
8275 hi++;
8276 }
8277 }
8278 if (sectors == 0 && hi < bb->count) {
8279 /* we might be able to combine lo and hi */
8280 /* Note: 's' is at the end of 'lo' */
8281 sector_t a = BB_OFFSET(p[hi]);
8282 int lolen = BB_LEN(p[lo]);
8283 int hilen = BB_LEN(p[hi]);
8284 int newlen = lolen + hilen - (s - a);
8285 if (s >= a && newlen < BB_MAX_LEN) {
8286 /* yes, we can combine them */
8287 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8288 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8289 memmove(p + hi, p + hi + 1,
8290 (bb->count - hi - 1) * 8);
8291 bb->count--;
8292 }
8293 }
8294 while (sectors) {
8295 /* didn't merge (it all).
8296 * Need to add a range just before 'hi' */
8297 if (bb->count >= MD_MAX_BADBLOCKS) {
8298 /* No room for more */
8299 rv = 0;
8300 break;
8301 } else {
8302 int this_sectors = sectors;
8303 memmove(p + hi + 1, p + hi,
8304 (bb->count - hi) * 8);
8305 bb->count++;
8306
8307 if (this_sectors > BB_MAX_LEN)
8308 this_sectors = BB_MAX_LEN;
8309 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8310 sectors -= this_sectors;
8311 s += this_sectors;
8312 }
8313 }
8314
8315 bb->changed = 1;
8316 if (!acknowledged)
8317 bb->unacked_exist = 1;
8318 write_sequnlock_irqrestore(&bb->lock, flags);
8319
8320 return rv;
8321 }
8322
8323 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8324 int is_new)
8325 {
8326 int rv;
8327 if (is_new)
8328 s += rdev->new_data_offset;
8329 else
8330 s += rdev->data_offset;
8331 rv = md_set_badblocks(&rdev->badblocks,
8332 s, sectors, 0);
8333 if (rv) {
8334 /* Make sure they get written out promptly */
8335 sysfs_notify_dirent_safe(rdev->sysfs_state);
8336 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8337 md_wakeup_thread(rdev->mddev->thread);
8338 }
8339 return rv;
8340 }
8341 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8342
8343 /*
8344 * Remove a range of bad blocks from the table.
8345 * This may involve extending the table if we spilt a region,
8346 * but it must not fail. So if the table becomes full, we just
8347 * drop the remove request.
8348 */
8349 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8350 {
8351 u64 *p;
8352 int lo, hi;
8353 sector_t target = s + sectors;
8354 int rv = 0;
8355
8356 if (bb->shift > 0) {
8357 /* When clearing we round the start up and the end down.
8358 * This should not matter as the shift should align with
8359 * the block size and no rounding should ever be needed.
8360 * However it is better the think a block is bad when it
8361 * isn't than to think a block is not bad when it is.
8362 */
8363 s += (1<<bb->shift) - 1;
8364 s >>= bb->shift;
8365 target >>= bb->shift;
8366 sectors = target - s;
8367 }
8368
8369 write_seqlock_irq(&bb->lock);
8370
8371 p = bb->page;
8372 lo = 0;
8373 hi = bb->count;
8374 /* Find the last range that starts before 'target' */
8375 while (hi - lo > 1) {
8376 int mid = (lo + hi) / 2;
8377 sector_t a = BB_OFFSET(p[mid]);
8378 if (a < target)
8379 lo = mid;
8380 else
8381 hi = mid;
8382 }
8383 if (hi > lo) {
8384 /* p[lo] is the last range that could overlap the
8385 * current range. Earlier ranges could also overlap,
8386 * but only this one can overlap the end of the range.
8387 */
8388 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8389 /* Partial overlap, leave the tail of this range */
8390 int ack = BB_ACK(p[lo]);
8391 sector_t a = BB_OFFSET(p[lo]);
8392 sector_t end = a + BB_LEN(p[lo]);
8393
8394 if (a < s) {
8395 /* we need to split this range */
8396 if (bb->count >= MD_MAX_BADBLOCKS) {
8397 rv = -ENOSPC;
8398 goto out;
8399 }
8400 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8401 bb->count++;
8402 p[lo] = BB_MAKE(a, s-a, ack);
8403 lo++;
8404 }
8405 p[lo] = BB_MAKE(target, end - target, ack);
8406 /* there is no longer an overlap */
8407 hi = lo;
8408 lo--;
8409 }
8410 while (lo >= 0 &&
8411 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8412 /* This range does overlap */
8413 if (BB_OFFSET(p[lo]) < s) {
8414 /* Keep the early parts of this range. */
8415 int ack = BB_ACK(p[lo]);
8416 sector_t start = BB_OFFSET(p[lo]);
8417 p[lo] = BB_MAKE(start, s - start, ack);
8418 /* now low doesn't overlap, so.. */
8419 break;
8420 }
8421 lo--;
8422 }
8423 /* 'lo' is strictly before, 'hi' is strictly after,
8424 * anything between needs to be discarded
8425 */
8426 if (hi - lo > 1) {
8427 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8428 bb->count -= (hi - lo - 1);
8429 }
8430 }
8431
8432 bb->changed = 1;
8433 out:
8434 write_sequnlock_irq(&bb->lock);
8435 return rv;
8436 }
8437
8438 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8439 int is_new)
8440 {
8441 if (is_new)
8442 s += rdev->new_data_offset;
8443 else
8444 s += rdev->data_offset;
8445 return md_clear_badblocks(&rdev->badblocks,
8446 s, sectors);
8447 }
8448 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8449
8450 /*
8451 * Acknowledge all bad blocks in a list.
8452 * This only succeeds if ->changed is clear. It is used by
8453 * in-kernel metadata updates
8454 */
8455 void md_ack_all_badblocks(struct badblocks *bb)
8456 {
8457 if (bb->page == NULL || bb->changed)
8458 /* no point even trying */
8459 return;
8460 write_seqlock_irq(&bb->lock);
8461
8462 if (bb->changed == 0 && bb->unacked_exist) {
8463 u64 *p = bb->page;
8464 int i;
8465 for (i = 0; i < bb->count ; i++) {
8466 if (!BB_ACK(p[i])) {
8467 sector_t start = BB_OFFSET(p[i]);
8468 int len = BB_LEN(p[i]);
8469 p[i] = BB_MAKE(start, len, 1);
8470 }
8471 }
8472 bb->unacked_exist = 0;
8473 }
8474 write_sequnlock_irq(&bb->lock);
8475 }
8476 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8477
8478 /* sysfs access to bad-blocks list.
8479 * We present two files.
8480 * 'bad-blocks' lists sector numbers and lengths of ranges that
8481 * are recorded as bad. The list is truncated to fit within
8482 * the one-page limit of sysfs.
8483 * Writing "sector length" to this file adds an acknowledged
8484 * bad block list.
8485 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8486 * been acknowledged. Writing to this file adds bad blocks
8487 * without acknowledging them. This is largely for testing.
8488 */
8489
8490 static ssize_t
8491 badblocks_show(struct badblocks *bb, char *page, int unack)
8492 {
8493 size_t len;
8494 int i;
8495 u64 *p = bb->page;
8496 unsigned seq;
8497
8498 if (bb->shift < 0)
8499 return 0;
8500
8501 retry:
8502 seq = read_seqbegin(&bb->lock);
8503
8504 len = 0;
8505 i = 0;
8506
8507 while (len < PAGE_SIZE && i < bb->count) {
8508 sector_t s = BB_OFFSET(p[i]);
8509 unsigned int length = BB_LEN(p[i]);
8510 int ack = BB_ACK(p[i]);
8511 i++;
8512
8513 if (unack && ack)
8514 continue;
8515
8516 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8517 (unsigned long long)s << bb->shift,
8518 length << bb->shift);
8519 }
8520 if (unack && len == 0)
8521 bb->unacked_exist = 0;
8522
8523 if (read_seqretry(&bb->lock, seq))
8524 goto retry;
8525
8526 return len;
8527 }
8528
8529 #define DO_DEBUG 1
8530
8531 static ssize_t
8532 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8533 {
8534 unsigned long long sector;
8535 int length;
8536 char newline;
8537 #ifdef DO_DEBUG
8538 /* Allow clearing via sysfs *only* for testing/debugging.
8539 * Normally only a successful write may clear a badblock
8540 */
8541 int clear = 0;
8542 if (page[0] == '-') {
8543 clear = 1;
8544 page++;
8545 }
8546 #endif /* DO_DEBUG */
8547
8548 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8549 case 3:
8550 if (newline != '\n')
8551 return -EINVAL;
8552 case 2:
8553 if (length <= 0)
8554 return -EINVAL;
8555 break;
8556 default:
8557 return -EINVAL;
8558 }
8559
8560 #ifdef DO_DEBUG
8561 if (clear) {
8562 md_clear_badblocks(bb, sector, length);
8563 return len;
8564 }
8565 #endif /* DO_DEBUG */
8566 if (md_set_badblocks(bb, sector, length, !unack))
8567 return len;
8568 else
8569 return -ENOSPC;
8570 }
8571
8572 static int md_notify_reboot(struct notifier_block *this,
8573 unsigned long code, void *x)
8574 {
8575 struct list_head *tmp;
8576 struct mddev *mddev;
8577 int need_delay = 0;
8578
8579 for_each_mddev(mddev, tmp) {
8580 if (mddev_trylock(mddev)) {
8581 if (mddev->pers)
8582 __md_stop_writes(mddev);
8583 if (mddev->persistent)
8584 mddev->safemode = 2;
8585 mddev_unlock(mddev);
8586 }
8587 need_delay = 1;
8588 }
8589 /*
8590 * certain more exotic SCSI devices are known to be
8591 * volatile wrt too early system reboots. While the
8592 * right place to handle this issue is the given
8593 * driver, we do want to have a safe RAID driver ...
8594 */
8595 if (need_delay)
8596 mdelay(1000*1);
8597
8598 return NOTIFY_DONE;
8599 }
8600
8601 static struct notifier_block md_notifier = {
8602 .notifier_call = md_notify_reboot,
8603 .next = NULL,
8604 .priority = INT_MAX, /* before any real devices */
8605 };
8606
8607 static void md_geninit(void)
8608 {
8609 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8610
8611 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8612 }
8613
8614 static int __init md_init(void)
8615 {
8616 int ret = -ENOMEM;
8617
8618 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8619 if (!md_wq)
8620 goto err_wq;
8621
8622 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8623 if (!md_misc_wq)
8624 goto err_misc_wq;
8625
8626 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8627 goto err_md;
8628
8629 if ((ret = register_blkdev(0, "mdp")) < 0)
8630 goto err_mdp;
8631 mdp_major = ret;
8632
8633 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8634 md_probe, NULL, NULL);
8635 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8636 md_probe, NULL, NULL);
8637
8638 register_reboot_notifier(&md_notifier);
8639 raid_table_header = register_sysctl_table(raid_root_table);
8640
8641 md_geninit();
8642 return 0;
8643
8644 err_mdp:
8645 unregister_blkdev(MD_MAJOR, "md");
8646 err_md:
8647 destroy_workqueue(md_misc_wq);
8648 err_misc_wq:
8649 destroy_workqueue(md_wq);
8650 err_wq:
8651 return ret;
8652 }
8653
8654 #ifndef MODULE
8655
8656 /*
8657 * Searches all registered partitions for autorun RAID arrays
8658 * at boot time.
8659 */
8660
8661 static LIST_HEAD(all_detected_devices);
8662 struct detected_devices_node {
8663 struct list_head list;
8664 dev_t dev;
8665 };
8666
8667 void md_autodetect_dev(dev_t dev)
8668 {
8669 struct detected_devices_node *node_detected_dev;
8670
8671 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8672 if (node_detected_dev) {
8673 node_detected_dev->dev = dev;
8674 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8675 } else {
8676 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8677 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8678 }
8679 }
8680
8681 static void autostart_arrays(int part)
8682 {
8683 struct md_rdev *rdev;
8684 struct detected_devices_node *node_detected_dev;
8685 dev_t dev;
8686 int i_scanned, i_passed;
8687
8688 i_scanned = 0;
8689 i_passed = 0;
8690
8691 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8692
8693 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8694 i_scanned++;
8695 node_detected_dev = list_entry(all_detected_devices.next,
8696 struct detected_devices_node, list);
8697 list_del(&node_detected_dev->list);
8698 dev = node_detected_dev->dev;
8699 kfree(node_detected_dev);
8700 rdev = md_import_device(dev,0, 90);
8701 if (IS_ERR(rdev))
8702 continue;
8703
8704 if (test_bit(Faulty, &rdev->flags))
8705 continue;
8706
8707 set_bit(AutoDetected, &rdev->flags);
8708 list_add(&rdev->same_set, &pending_raid_disks);
8709 i_passed++;
8710 }
8711
8712 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8713 i_scanned, i_passed);
8714
8715 autorun_devices(part);
8716 }
8717
8718 #endif /* !MODULE */
8719
8720 static __exit void md_exit(void)
8721 {
8722 struct mddev *mddev;
8723 struct list_head *tmp;
8724 int delay = 1;
8725
8726 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8727 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8728
8729 unregister_blkdev(MD_MAJOR,"md");
8730 unregister_blkdev(mdp_major, "mdp");
8731 unregister_reboot_notifier(&md_notifier);
8732 unregister_sysctl_table(raid_table_header);
8733
8734 /* We cannot unload the modules while some process is
8735 * waiting for us in select() or poll() - wake them up
8736 */
8737 md_unloading = 1;
8738 while (waitqueue_active(&md_event_waiters)) {
8739 /* not safe to leave yet */
8740 wake_up(&md_event_waiters);
8741 msleep(delay);
8742 delay += delay;
8743 }
8744 remove_proc_entry("mdstat", NULL);
8745
8746 for_each_mddev(mddev, tmp) {
8747 export_array(mddev);
8748 mddev->hold_active = 0;
8749 }
8750 destroy_workqueue(md_misc_wq);
8751 destroy_workqueue(md_wq);
8752 }
8753
8754 subsys_initcall(md_init);
8755 module_exit(md_exit)
8756
8757 static int get_ro(char *buffer, struct kernel_param *kp)
8758 {
8759 return sprintf(buffer, "%d", start_readonly);
8760 }
8761 static int set_ro(const char *val, struct kernel_param *kp)
8762 {
8763 char *e;
8764 int num = simple_strtoul(val, &e, 10);
8765 if (*val && (*e == '\0' || *e == '\n')) {
8766 start_readonly = num;
8767 return 0;
8768 }
8769 return -EINVAL;
8770 }
8771
8772 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8773 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8774 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8775
8776 MODULE_LICENSE("GPL");
8777 MODULE_DESCRIPTION("MD RAID framework");
8778 MODULE_ALIAS("md");
8779 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.206308 seconds and 6 git commands to generate.