Merge branch 'next' into for-linus
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75
76 /*
77 * Default number of read corrections we'll attempt on an rdev
78 * before ejecting it from the array. We divide the read error
79 * count by 2 for every hour elapsed between read errors.
80 */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84 * is 1000 KB/sec, so the extra system load does not show up that much.
85 * Increase it if you want to have more _guaranteed_ speed. Note that
86 * the RAID driver will use the maximum available bandwidth if the IO
87 * subsystem is idle. There is also an 'absolute maximum' reconstruction
88 * speed limit - in case reconstruction slows down your system despite
89 * idle IO detection.
90 *
91 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92 * or /sys/block/mdX/md/sync_speed_{min,max}
93 */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99 return mddev->sync_speed_min ?
100 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
103 static inline int speed_max(struct mddev *mddev)
104 {
105 return mddev->sync_speed_max ?
106 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static struct ctl_table raid_table[] = {
112 {
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = proc_dointvec,
118 },
119 {
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 { }
127 };
128
129 static struct ctl_table raid_dir_table[] = {
130 {
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
135 },
136 { }
137 };
138
139 static struct ctl_table raid_root_table[] = {
140 {
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154 * like bio_clone, but with a local bio set
155 */
156
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 struct mddev *mddev)
159 {
160 struct bio *b;
161
162 if (!mddev || !mddev->bio_set)
163 return bio_alloc(gfp_mask, nr_iovecs);
164
165 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 if (!b)
167 return NULL;
168 return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 struct mddev *mddev)
174 {
175 if (!mddev || !mddev->bio_set)
176 return bio_clone(bio, gfp_mask);
177
178 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181
182 /*
183 * We have a system wide 'event count' that is incremented
184 * on any 'interesting' event, and readers of /proc/mdstat
185 * can use 'poll' or 'select' to find out when the event
186 * count increases.
187 *
188 * Events are:
189 * start array, stop array, error, add device, remove device,
190 * start build, activate spare
191 */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196 atomic_inc(&md_event_count);
197 wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200
201 /* Alternate version that can be called from interrupts
202 * when calling sysfs_notify isn't needed.
203 */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 atomic_inc(&md_event_count);
207 wake_up(&md_event_waiters);
208 }
209
210 /*
211 * Enables to iterate over all existing md arrays
212 * all_mddevs_lock protects this list.
213 */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216
217 /*
218 * iterates through all used mddevs in the system.
219 * We take care to grab the all_mddevs_lock whenever navigating
220 * the list, and to always hold a refcount when unlocked.
221 * Any code which breaks out of this loop while own
222 * a reference to the current mddev and must mddev_put it.
223 */
224 #define for_each_mddev(_mddev,_tmp) \
225 \
226 for (({ spin_lock(&all_mddevs_lock); \
227 _tmp = all_mddevs.next; \
228 _mddev = NULL;}); \
229 ({ if (_tmp != &all_mddevs) \
230 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 spin_unlock(&all_mddevs_lock); \
232 if (_mddev) mddev_put(_mddev); \
233 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
234 _tmp != &all_mddevs;}); \
235 ({ spin_lock(&all_mddevs_lock); \
236 _tmp = _tmp->next;}) \
237 )
238
239 /* Rather than calling directly into the personality make_request function,
240 * IO requests come here first so that we can check if the device is
241 * being suspended pending a reconfiguration.
242 * We hold a refcount over the call to ->make_request. By the time that
243 * call has finished, the bio has been linked into some internal structure
244 * and so is visible to ->quiesce(), so we don't need the refcount any more.
245 */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 const int rw = bio_data_dir(bio);
249 struct mddev *mddev = q->queuedata;
250 unsigned int sectors;
251
252 if (mddev == NULL || mddev->pers == NULL
253 || !mddev->ready) {
254 bio_io_error(bio);
255 return;
256 }
257 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
258 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
259 return;
260 }
261 smp_rmb(); /* Ensure implications of 'active' are visible */
262 rcu_read_lock();
263 if (mddev->suspended) {
264 DEFINE_WAIT(__wait);
265 for (;;) {
266 prepare_to_wait(&mddev->sb_wait, &__wait,
267 TASK_UNINTERRUPTIBLE);
268 if (!mddev->suspended)
269 break;
270 rcu_read_unlock();
271 schedule();
272 rcu_read_lock();
273 }
274 finish_wait(&mddev->sb_wait, &__wait);
275 }
276 atomic_inc(&mddev->active_io);
277 rcu_read_unlock();
278
279 /*
280 * save the sectors now since our bio can
281 * go away inside make_request
282 */
283 sectors = bio_sectors(bio);
284 mddev->pers->make_request(mddev, bio);
285
286 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
287
288 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
289 wake_up(&mddev->sb_wait);
290 }
291
292 /* mddev_suspend makes sure no new requests are submitted
293 * to the device, and that any requests that have been submitted
294 * are completely handled.
295 * Once ->stop is called and completes, the module will be completely
296 * unused.
297 */
298 void mddev_suspend(struct mddev *mddev)
299 {
300 BUG_ON(mddev->suspended);
301 mddev->suspended = 1;
302 synchronize_rcu();
303 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
304 mddev->pers->quiesce(mddev, 1);
305
306 del_timer_sync(&mddev->safemode_timer);
307 }
308 EXPORT_SYMBOL_GPL(mddev_suspend);
309
310 void mddev_resume(struct mddev *mddev)
311 {
312 mddev->suspended = 0;
313 wake_up(&mddev->sb_wait);
314 mddev->pers->quiesce(mddev, 0);
315
316 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
317 md_wakeup_thread(mddev->thread);
318 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
319 }
320 EXPORT_SYMBOL_GPL(mddev_resume);
321
322 int mddev_congested(struct mddev *mddev, int bits)
323 {
324 return mddev->suspended;
325 }
326 EXPORT_SYMBOL(mddev_congested);
327
328 /*
329 * Generic flush handling for md
330 */
331
332 static void md_end_flush(struct bio *bio, int err)
333 {
334 struct md_rdev *rdev = bio->bi_private;
335 struct mddev *mddev = rdev->mddev;
336
337 rdev_dec_pending(rdev, mddev);
338
339 if (atomic_dec_and_test(&mddev->flush_pending)) {
340 /* The pre-request flush has finished */
341 queue_work(md_wq, &mddev->flush_work);
342 }
343 bio_put(bio);
344 }
345
346 static void md_submit_flush_data(struct work_struct *ws);
347
348 static void submit_flushes(struct work_struct *ws)
349 {
350 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
351 struct md_rdev *rdev;
352
353 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
354 atomic_set(&mddev->flush_pending, 1);
355 rcu_read_lock();
356 rdev_for_each_rcu(rdev, mddev)
357 if (rdev->raid_disk >= 0 &&
358 !test_bit(Faulty, &rdev->flags)) {
359 /* Take two references, one is dropped
360 * when request finishes, one after
361 * we reclaim rcu_read_lock
362 */
363 struct bio *bi;
364 atomic_inc(&rdev->nr_pending);
365 atomic_inc(&rdev->nr_pending);
366 rcu_read_unlock();
367 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
368 bi->bi_end_io = md_end_flush;
369 bi->bi_private = rdev;
370 bi->bi_bdev = rdev->bdev;
371 atomic_inc(&mddev->flush_pending);
372 submit_bio(WRITE_FLUSH, bi);
373 rcu_read_lock();
374 rdev_dec_pending(rdev, mddev);
375 }
376 rcu_read_unlock();
377 if (atomic_dec_and_test(&mddev->flush_pending))
378 queue_work(md_wq, &mddev->flush_work);
379 }
380
381 static void md_submit_flush_data(struct work_struct *ws)
382 {
383 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
384 struct bio *bio = mddev->flush_bio;
385
386 if (bio->bi_iter.bi_size == 0)
387 /* an empty barrier - all done */
388 bio_endio(bio, 0);
389 else {
390 bio->bi_rw &= ~REQ_FLUSH;
391 mddev->pers->make_request(mddev, bio);
392 }
393
394 mddev->flush_bio = NULL;
395 wake_up(&mddev->sb_wait);
396 }
397
398 void md_flush_request(struct mddev *mddev, struct bio *bio)
399 {
400 spin_lock_irq(&mddev->write_lock);
401 wait_event_lock_irq(mddev->sb_wait,
402 !mddev->flush_bio,
403 mddev->write_lock);
404 mddev->flush_bio = bio;
405 spin_unlock_irq(&mddev->write_lock);
406
407 INIT_WORK(&mddev->flush_work, submit_flushes);
408 queue_work(md_wq, &mddev->flush_work);
409 }
410 EXPORT_SYMBOL(md_flush_request);
411
412 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
413 {
414 struct mddev *mddev = cb->data;
415 md_wakeup_thread(mddev->thread);
416 kfree(cb);
417 }
418 EXPORT_SYMBOL(md_unplug);
419
420 static inline struct mddev *mddev_get(struct mddev *mddev)
421 {
422 atomic_inc(&mddev->active);
423 return mddev;
424 }
425
426 static void mddev_delayed_delete(struct work_struct *ws);
427
428 static void mddev_put(struct mddev *mddev)
429 {
430 struct bio_set *bs = NULL;
431
432 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
433 return;
434 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
435 mddev->ctime == 0 && !mddev->hold_active) {
436 /* Array is not configured at all, and not held active,
437 * so destroy it */
438 list_del_init(&mddev->all_mddevs);
439 bs = mddev->bio_set;
440 mddev->bio_set = NULL;
441 if (mddev->gendisk) {
442 /* We did a probe so need to clean up. Call
443 * queue_work inside the spinlock so that
444 * flush_workqueue() after mddev_find will
445 * succeed in waiting for the work to be done.
446 */
447 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
448 queue_work(md_misc_wq, &mddev->del_work);
449 } else
450 kfree(mddev);
451 }
452 spin_unlock(&all_mddevs_lock);
453 if (bs)
454 bioset_free(bs);
455 }
456
457 void mddev_init(struct mddev *mddev)
458 {
459 mutex_init(&mddev->open_mutex);
460 mutex_init(&mddev->reconfig_mutex);
461 mutex_init(&mddev->bitmap_info.mutex);
462 INIT_LIST_HEAD(&mddev->disks);
463 INIT_LIST_HEAD(&mddev->all_mddevs);
464 init_timer(&mddev->safemode_timer);
465 atomic_set(&mddev->active, 1);
466 atomic_set(&mddev->openers, 0);
467 atomic_set(&mddev->active_io, 0);
468 spin_lock_init(&mddev->write_lock);
469 atomic_set(&mddev->flush_pending, 0);
470 init_waitqueue_head(&mddev->sb_wait);
471 init_waitqueue_head(&mddev->recovery_wait);
472 mddev->reshape_position = MaxSector;
473 mddev->reshape_backwards = 0;
474 mddev->last_sync_action = "none";
475 mddev->resync_min = 0;
476 mddev->resync_max = MaxSector;
477 mddev->level = LEVEL_NONE;
478 }
479 EXPORT_SYMBOL_GPL(mddev_init);
480
481 static struct mddev *mddev_find(dev_t unit)
482 {
483 struct mddev *mddev, *new = NULL;
484
485 if (unit && MAJOR(unit) != MD_MAJOR)
486 unit &= ~((1<<MdpMinorShift)-1);
487
488 retry:
489 spin_lock(&all_mddevs_lock);
490
491 if (unit) {
492 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
493 if (mddev->unit == unit) {
494 mddev_get(mddev);
495 spin_unlock(&all_mddevs_lock);
496 kfree(new);
497 return mddev;
498 }
499
500 if (new) {
501 list_add(&new->all_mddevs, &all_mddevs);
502 spin_unlock(&all_mddevs_lock);
503 new->hold_active = UNTIL_IOCTL;
504 return new;
505 }
506 } else if (new) {
507 /* find an unused unit number */
508 static int next_minor = 512;
509 int start = next_minor;
510 int is_free = 0;
511 int dev = 0;
512 while (!is_free) {
513 dev = MKDEV(MD_MAJOR, next_minor);
514 next_minor++;
515 if (next_minor > MINORMASK)
516 next_minor = 0;
517 if (next_minor == start) {
518 /* Oh dear, all in use. */
519 spin_unlock(&all_mddevs_lock);
520 kfree(new);
521 return NULL;
522 }
523
524 is_free = 1;
525 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
526 if (mddev->unit == dev) {
527 is_free = 0;
528 break;
529 }
530 }
531 new->unit = dev;
532 new->md_minor = MINOR(dev);
533 new->hold_active = UNTIL_STOP;
534 list_add(&new->all_mddevs, &all_mddevs);
535 spin_unlock(&all_mddevs_lock);
536 return new;
537 }
538 spin_unlock(&all_mddevs_lock);
539
540 new = kzalloc(sizeof(*new), GFP_KERNEL);
541 if (!new)
542 return NULL;
543
544 new->unit = unit;
545 if (MAJOR(unit) == MD_MAJOR)
546 new->md_minor = MINOR(unit);
547 else
548 new->md_minor = MINOR(unit) >> MdpMinorShift;
549
550 mddev_init(new);
551
552 goto retry;
553 }
554
555 static inline int __must_check mddev_lock(struct mddev *mddev)
556 {
557 return mutex_lock_interruptible(&mddev->reconfig_mutex);
558 }
559
560 /* Sometimes we need to take the lock in a situation where
561 * failure due to interrupts is not acceptable.
562 */
563 static inline void mddev_lock_nointr(struct mddev *mddev)
564 {
565 mutex_lock(&mddev->reconfig_mutex);
566 }
567
568 static inline int mddev_is_locked(struct mddev *mddev)
569 {
570 return mutex_is_locked(&mddev->reconfig_mutex);
571 }
572
573 static inline int mddev_trylock(struct mddev *mddev)
574 {
575 return mutex_trylock(&mddev->reconfig_mutex);
576 }
577
578 static struct attribute_group md_redundancy_group;
579
580 static void mddev_unlock(struct mddev *mddev)
581 {
582 if (mddev->to_remove) {
583 /* These cannot be removed under reconfig_mutex as
584 * an access to the files will try to take reconfig_mutex
585 * while holding the file unremovable, which leads to
586 * a deadlock.
587 * So hold set sysfs_active while the remove in happeing,
588 * and anything else which might set ->to_remove or my
589 * otherwise change the sysfs namespace will fail with
590 * -EBUSY if sysfs_active is still set.
591 * We set sysfs_active under reconfig_mutex and elsewhere
592 * test it under the same mutex to ensure its correct value
593 * is seen.
594 */
595 struct attribute_group *to_remove = mddev->to_remove;
596 mddev->to_remove = NULL;
597 mddev->sysfs_active = 1;
598 mutex_unlock(&mddev->reconfig_mutex);
599
600 if (mddev->kobj.sd) {
601 if (to_remove != &md_redundancy_group)
602 sysfs_remove_group(&mddev->kobj, to_remove);
603 if (mddev->pers == NULL ||
604 mddev->pers->sync_request == NULL) {
605 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
606 if (mddev->sysfs_action)
607 sysfs_put(mddev->sysfs_action);
608 mddev->sysfs_action = NULL;
609 }
610 }
611 mddev->sysfs_active = 0;
612 } else
613 mutex_unlock(&mddev->reconfig_mutex);
614
615 /* As we've dropped the mutex we need a spinlock to
616 * make sure the thread doesn't disappear
617 */
618 spin_lock(&pers_lock);
619 md_wakeup_thread(mddev->thread);
620 spin_unlock(&pers_lock);
621 }
622
623 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
624 {
625 struct md_rdev *rdev;
626
627 rdev_for_each_rcu(rdev, mddev)
628 if (rdev->desc_nr == nr)
629 return rdev;
630
631 return NULL;
632 }
633
634 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
635 {
636 struct md_rdev *rdev;
637
638 rdev_for_each(rdev, mddev)
639 if (rdev->bdev->bd_dev == dev)
640 return rdev;
641
642 return NULL;
643 }
644
645 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
646 {
647 struct md_rdev *rdev;
648
649 rdev_for_each_rcu(rdev, mddev)
650 if (rdev->bdev->bd_dev == dev)
651 return rdev;
652
653 return NULL;
654 }
655
656 static struct md_personality *find_pers(int level, char *clevel)
657 {
658 struct md_personality *pers;
659 list_for_each_entry(pers, &pers_list, list) {
660 if (level != LEVEL_NONE && pers->level == level)
661 return pers;
662 if (strcmp(pers->name, clevel)==0)
663 return pers;
664 }
665 return NULL;
666 }
667
668 /* return the offset of the super block in 512byte sectors */
669 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
670 {
671 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
672 return MD_NEW_SIZE_SECTORS(num_sectors);
673 }
674
675 static int alloc_disk_sb(struct md_rdev *rdev)
676 {
677 rdev->sb_page = alloc_page(GFP_KERNEL);
678 if (!rdev->sb_page) {
679 printk(KERN_ALERT "md: out of memory.\n");
680 return -ENOMEM;
681 }
682
683 return 0;
684 }
685
686 void md_rdev_clear(struct md_rdev *rdev)
687 {
688 if (rdev->sb_page) {
689 put_page(rdev->sb_page);
690 rdev->sb_loaded = 0;
691 rdev->sb_page = NULL;
692 rdev->sb_start = 0;
693 rdev->sectors = 0;
694 }
695 if (rdev->bb_page) {
696 put_page(rdev->bb_page);
697 rdev->bb_page = NULL;
698 }
699 kfree(rdev->badblocks.page);
700 rdev->badblocks.page = NULL;
701 }
702 EXPORT_SYMBOL_GPL(md_rdev_clear);
703
704 static void super_written(struct bio *bio, int error)
705 {
706 struct md_rdev *rdev = bio->bi_private;
707 struct mddev *mddev = rdev->mddev;
708
709 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
710 printk("md: super_written gets error=%d, uptodate=%d\n",
711 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
712 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
713 md_error(mddev, rdev);
714 }
715
716 if (atomic_dec_and_test(&mddev->pending_writes))
717 wake_up(&mddev->sb_wait);
718 bio_put(bio);
719 }
720
721 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
722 sector_t sector, int size, struct page *page)
723 {
724 /* write first size bytes of page to sector of rdev
725 * Increment mddev->pending_writes before returning
726 * and decrement it on completion, waking up sb_wait
727 * if zero is reached.
728 * If an error occurred, call md_error
729 */
730 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
731
732 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
733 bio->bi_iter.bi_sector = sector;
734 bio_add_page(bio, page, size, 0);
735 bio->bi_private = rdev;
736 bio->bi_end_io = super_written;
737
738 atomic_inc(&mddev->pending_writes);
739 submit_bio(WRITE_FLUSH_FUA, bio);
740 }
741
742 void md_super_wait(struct mddev *mddev)
743 {
744 /* wait for all superblock writes that were scheduled to complete */
745 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
746 }
747
748 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
749 struct page *page, int rw, bool metadata_op)
750 {
751 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
752 int ret;
753
754 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
755 rdev->meta_bdev : rdev->bdev;
756 if (metadata_op)
757 bio->bi_iter.bi_sector = sector + rdev->sb_start;
758 else if (rdev->mddev->reshape_position != MaxSector &&
759 (rdev->mddev->reshape_backwards ==
760 (sector >= rdev->mddev->reshape_position)))
761 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
762 else
763 bio->bi_iter.bi_sector = sector + rdev->data_offset;
764 bio_add_page(bio, page, size, 0);
765 submit_bio_wait(rw, bio);
766
767 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
768 bio_put(bio);
769 return ret;
770 }
771 EXPORT_SYMBOL_GPL(sync_page_io);
772
773 static int read_disk_sb(struct md_rdev *rdev, int size)
774 {
775 char b[BDEVNAME_SIZE];
776
777 if (rdev->sb_loaded)
778 return 0;
779
780 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
781 goto fail;
782 rdev->sb_loaded = 1;
783 return 0;
784
785 fail:
786 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
787 bdevname(rdev->bdev,b));
788 return -EINVAL;
789 }
790
791 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
792 {
793 return sb1->set_uuid0 == sb2->set_uuid0 &&
794 sb1->set_uuid1 == sb2->set_uuid1 &&
795 sb1->set_uuid2 == sb2->set_uuid2 &&
796 sb1->set_uuid3 == sb2->set_uuid3;
797 }
798
799 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
800 {
801 int ret;
802 mdp_super_t *tmp1, *tmp2;
803
804 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
805 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
806
807 if (!tmp1 || !tmp2) {
808 ret = 0;
809 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
810 goto abort;
811 }
812
813 *tmp1 = *sb1;
814 *tmp2 = *sb2;
815
816 /*
817 * nr_disks is not constant
818 */
819 tmp1->nr_disks = 0;
820 tmp2->nr_disks = 0;
821
822 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
823 abort:
824 kfree(tmp1);
825 kfree(tmp2);
826 return ret;
827 }
828
829 static u32 md_csum_fold(u32 csum)
830 {
831 csum = (csum & 0xffff) + (csum >> 16);
832 return (csum & 0xffff) + (csum >> 16);
833 }
834
835 static unsigned int calc_sb_csum(mdp_super_t *sb)
836 {
837 u64 newcsum = 0;
838 u32 *sb32 = (u32*)sb;
839 int i;
840 unsigned int disk_csum, csum;
841
842 disk_csum = sb->sb_csum;
843 sb->sb_csum = 0;
844
845 for (i = 0; i < MD_SB_BYTES/4 ; i++)
846 newcsum += sb32[i];
847 csum = (newcsum & 0xffffffff) + (newcsum>>32);
848
849 #ifdef CONFIG_ALPHA
850 /* This used to use csum_partial, which was wrong for several
851 * reasons including that different results are returned on
852 * different architectures. It isn't critical that we get exactly
853 * the same return value as before (we always csum_fold before
854 * testing, and that removes any differences). However as we
855 * know that csum_partial always returned a 16bit value on
856 * alphas, do a fold to maximise conformity to previous behaviour.
857 */
858 sb->sb_csum = md_csum_fold(disk_csum);
859 #else
860 sb->sb_csum = disk_csum;
861 #endif
862 return csum;
863 }
864
865 /*
866 * Handle superblock details.
867 * We want to be able to handle multiple superblock formats
868 * so we have a common interface to them all, and an array of
869 * different handlers.
870 * We rely on user-space to write the initial superblock, and support
871 * reading and updating of superblocks.
872 * Interface methods are:
873 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
874 * loads and validates a superblock on dev.
875 * if refdev != NULL, compare superblocks on both devices
876 * Return:
877 * 0 - dev has a superblock that is compatible with refdev
878 * 1 - dev has a superblock that is compatible and newer than refdev
879 * so dev should be used as the refdev in future
880 * -EINVAL superblock incompatible or invalid
881 * -othererror e.g. -EIO
882 *
883 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
884 * Verify that dev is acceptable into mddev.
885 * The first time, mddev->raid_disks will be 0, and data from
886 * dev should be merged in. Subsequent calls check that dev
887 * is new enough. Return 0 or -EINVAL
888 *
889 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
890 * Update the superblock for rdev with data in mddev
891 * This does not write to disc.
892 *
893 */
894
895 struct super_type {
896 char *name;
897 struct module *owner;
898 int (*load_super)(struct md_rdev *rdev,
899 struct md_rdev *refdev,
900 int minor_version);
901 int (*validate_super)(struct mddev *mddev,
902 struct md_rdev *rdev);
903 void (*sync_super)(struct mddev *mddev,
904 struct md_rdev *rdev);
905 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
906 sector_t num_sectors);
907 int (*allow_new_offset)(struct md_rdev *rdev,
908 unsigned long long new_offset);
909 };
910
911 /*
912 * Check that the given mddev has no bitmap.
913 *
914 * This function is called from the run method of all personalities that do not
915 * support bitmaps. It prints an error message and returns non-zero if mddev
916 * has a bitmap. Otherwise, it returns 0.
917 *
918 */
919 int md_check_no_bitmap(struct mddev *mddev)
920 {
921 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
922 return 0;
923 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
924 mdname(mddev), mddev->pers->name);
925 return 1;
926 }
927 EXPORT_SYMBOL(md_check_no_bitmap);
928
929 /*
930 * load_super for 0.90.0
931 */
932 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
933 {
934 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
935 mdp_super_t *sb;
936 int ret;
937
938 /*
939 * Calculate the position of the superblock (512byte sectors),
940 * it's at the end of the disk.
941 *
942 * It also happens to be a multiple of 4Kb.
943 */
944 rdev->sb_start = calc_dev_sboffset(rdev);
945
946 ret = read_disk_sb(rdev, MD_SB_BYTES);
947 if (ret) return ret;
948
949 ret = -EINVAL;
950
951 bdevname(rdev->bdev, b);
952 sb = page_address(rdev->sb_page);
953
954 if (sb->md_magic != MD_SB_MAGIC) {
955 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
956 b);
957 goto abort;
958 }
959
960 if (sb->major_version != 0 ||
961 sb->minor_version < 90 ||
962 sb->minor_version > 91) {
963 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
964 sb->major_version, sb->minor_version,
965 b);
966 goto abort;
967 }
968
969 if (sb->raid_disks <= 0)
970 goto abort;
971
972 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
973 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
974 b);
975 goto abort;
976 }
977
978 rdev->preferred_minor = sb->md_minor;
979 rdev->data_offset = 0;
980 rdev->new_data_offset = 0;
981 rdev->sb_size = MD_SB_BYTES;
982 rdev->badblocks.shift = -1;
983
984 if (sb->level == LEVEL_MULTIPATH)
985 rdev->desc_nr = -1;
986 else
987 rdev->desc_nr = sb->this_disk.number;
988
989 if (!refdev) {
990 ret = 1;
991 } else {
992 __u64 ev1, ev2;
993 mdp_super_t *refsb = page_address(refdev->sb_page);
994 if (!uuid_equal(refsb, sb)) {
995 printk(KERN_WARNING "md: %s has different UUID to %s\n",
996 b, bdevname(refdev->bdev,b2));
997 goto abort;
998 }
999 if (!sb_equal(refsb, sb)) {
1000 printk(KERN_WARNING "md: %s has same UUID"
1001 " but different superblock to %s\n",
1002 b, bdevname(refdev->bdev, b2));
1003 goto abort;
1004 }
1005 ev1 = md_event(sb);
1006 ev2 = md_event(refsb);
1007 if (ev1 > ev2)
1008 ret = 1;
1009 else
1010 ret = 0;
1011 }
1012 rdev->sectors = rdev->sb_start;
1013 /* Limit to 4TB as metadata cannot record more than that.
1014 * (not needed for Linear and RAID0 as metadata doesn't
1015 * record this size)
1016 */
1017 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1018 rdev->sectors = (2ULL << 32) - 2;
1019
1020 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1021 /* "this cannot possibly happen" ... */
1022 ret = -EINVAL;
1023
1024 abort:
1025 return ret;
1026 }
1027
1028 /*
1029 * validate_super for 0.90.0
1030 */
1031 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1032 {
1033 mdp_disk_t *desc;
1034 mdp_super_t *sb = page_address(rdev->sb_page);
1035 __u64 ev1 = md_event(sb);
1036
1037 rdev->raid_disk = -1;
1038 clear_bit(Faulty, &rdev->flags);
1039 clear_bit(In_sync, &rdev->flags);
1040 clear_bit(Bitmap_sync, &rdev->flags);
1041 clear_bit(WriteMostly, &rdev->flags);
1042
1043 if (mddev->raid_disks == 0) {
1044 mddev->major_version = 0;
1045 mddev->minor_version = sb->minor_version;
1046 mddev->patch_version = sb->patch_version;
1047 mddev->external = 0;
1048 mddev->chunk_sectors = sb->chunk_size >> 9;
1049 mddev->ctime = sb->ctime;
1050 mddev->utime = sb->utime;
1051 mddev->level = sb->level;
1052 mddev->clevel[0] = 0;
1053 mddev->layout = sb->layout;
1054 mddev->raid_disks = sb->raid_disks;
1055 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1056 mddev->events = ev1;
1057 mddev->bitmap_info.offset = 0;
1058 mddev->bitmap_info.space = 0;
1059 /* bitmap can use 60 K after the 4K superblocks */
1060 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1061 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1062 mddev->reshape_backwards = 0;
1063
1064 if (mddev->minor_version >= 91) {
1065 mddev->reshape_position = sb->reshape_position;
1066 mddev->delta_disks = sb->delta_disks;
1067 mddev->new_level = sb->new_level;
1068 mddev->new_layout = sb->new_layout;
1069 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1070 if (mddev->delta_disks < 0)
1071 mddev->reshape_backwards = 1;
1072 } else {
1073 mddev->reshape_position = MaxSector;
1074 mddev->delta_disks = 0;
1075 mddev->new_level = mddev->level;
1076 mddev->new_layout = mddev->layout;
1077 mddev->new_chunk_sectors = mddev->chunk_sectors;
1078 }
1079
1080 if (sb->state & (1<<MD_SB_CLEAN))
1081 mddev->recovery_cp = MaxSector;
1082 else {
1083 if (sb->events_hi == sb->cp_events_hi &&
1084 sb->events_lo == sb->cp_events_lo) {
1085 mddev->recovery_cp = sb->recovery_cp;
1086 } else
1087 mddev->recovery_cp = 0;
1088 }
1089
1090 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1091 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1092 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1093 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1094
1095 mddev->max_disks = MD_SB_DISKS;
1096
1097 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1098 mddev->bitmap_info.file == NULL) {
1099 mddev->bitmap_info.offset =
1100 mddev->bitmap_info.default_offset;
1101 mddev->bitmap_info.space =
1102 mddev->bitmap_info.default_space;
1103 }
1104
1105 } else if (mddev->pers == NULL) {
1106 /* Insist on good event counter while assembling, except
1107 * for spares (which don't need an event count) */
1108 ++ev1;
1109 if (sb->disks[rdev->desc_nr].state & (
1110 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1111 if (ev1 < mddev->events)
1112 return -EINVAL;
1113 } else if (mddev->bitmap) {
1114 /* if adding to array with a bitmap, then we can accept an
1115 * older device ... but not too old.
1116 */
1117 if (ev1 < mddev->bitmap->events_cleared)
1118 return 0;
1119 if (ev1 < mddev->events)
1120 set_bit(Bitmap_sync, &rdev->flags);
1121 } else {
1122 if (ev1 < mddev->events)
1123 /* just a hot-add of a new device, leave raid_disk at -1 */
1124 return 0;
1125 }
1126
1127 if (mddev->level != LEVEL_MULTIPATH) {
1128 desc = sb->disks + rdev->desc_nr;
1129
1130 if (desc->state & (1<<MD_DISK_FAULTY))
1131 set_bit(Faulty, &rdev->flags);
1132 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1133 desc->raid_disk < mddev->raid_disks */) {
1134 set_bit(In_sync, &rdev->flags);
1135 rdev->raid_disk = desc->raid_disk;
1136 rdev->saved_raid_disk = desc->raid_disk;
1137 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1138 /* active but not in sync implies recovery up to
1139 * reshape position. We don't know exactly where
1140 * that is, so set to zero for now */
1141 if (mddev->minor_version >= 91) {
1142 rdev->recovery_offset = 0;
1143 rdev->raid_disk = desc->raid_disk;
1144 }
1145 }
1146 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1147 set_bit(WriteMostly, &rdev->flags);
1148 } else /* MULTIPATH are always insync */
1149 set_bit(In_sync, &rdev->flags);
1150 return 0;
1151 }
1152
1153 /*
1154 * sync_super for 0.90.0
1155 */
1156 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1157 {
1158 mdp_super_t *sb;
1159 struct md_rdev *rdev2;
1160 int next_spare = mddev->raid_disks;
1161
1162 /* make rdev->sb match mddev data..
1163 *
1164 * 1/ zero out disks
1165 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1166 * 3/ any empty disks < next_spare become removed
1167 *
1168 * disks[0] gets initialised to REMOVED because
1169 * we cannot be sure from other fields if it has
1170 * been initialised or not.
1171 */
1172 int i;
1173 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1174
1175 rdev->sb_size = MD_SB_BYTES;
1176
1177 sb = page_address(rdev->sb_page);
1178
1179 memset(sb, 0, sizeof(*sb));
1180
1181 sb->md_magic = MD_SB_MAGIC;
1182 sb->major_version = mddev->major_version;
1183 sb->patch_version = mddev->patch_version;
1184 sb->gvalid_words = 0; /* ignored */
1185 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1186 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1187 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1188 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1189
1190 sb->ctime = mddev->ctime;
1191 sb->level = mddev->level;
1192 sb->size = mddev->dev_sectors / 2;
1193 sb->raid_disks = mddev->raid_disks;
1194 sb->md_minor = mddev->md_minor;
1195 sb->not_persistent = 0;
1196 sb->utime = mddev->utime;
1197 sb->state = 0;
1198 sb->events_hi = (mddev->events>>32);
1199 sb->events_lo = (u32)mddev->events;
1200
1201 if (mddev->reshape_position == MaxSector)
1202 sb->minor_version = 90;
1203 else {
1204 sb->minor_version = 91;
1205 sb->reshape_position = mddev->reshape_position;
1206 sb->new_level = mddev->new_level;
1207 sb->delta_disks = mddev->delta_disks;
1208 sb->new_layout = mddev->new_layout;
1209 sb->new_chunk = mddev->new_chunk_sectors << 9;
1210 }
1211 mddev->minor_version = sb->minor_version;
1212 if (mddev->in_sync)
1213 {
1214 sb->recovery_cp = mddev->recovery_cp;
1215 sb->cp_events_hi = (mddev->events>>32);
1216 sb->cp_events_lo = (u32)mddev->events;
1217 if (mddev->recovery_cp == MaxSector)
1218 sb->state = (1<< MD_SB_CLEAN);
1219 } else
1220 sb->recovery_cp = 0;
1221
1222 sb->layout = mddev->layout;
1223 sb->chunk_size = mddev->chunk_sectors << 9;
1224
1225 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1226 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1227
1228 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1229 rdev_for_each(rdev2, mddev) {
1230 mdp_disk_t *d;
1231 int desc_nr;
1232 int is_active = test_bit(In_sync, &rdev2->flags);
1233
1234 if (rdev2->raid_disk >= 0 &&
1235 sb->minor_version >= 91)
1236 /* we have nowhere to store the recovery_offset,
1237 * but if it is not below the reshape_position,
1238 * we can piggy-back on that.
1239 */
1240 is_active = 1;
1241 if (rdev2->raid_disk < 0 ||
1242 test_bit(Faulty, &rdev2->flags))
1243 is_active = 0;
1244 if (is_active)
1245 desc_nr = rdev2->raid_disk;
1246 else
1247 desc_nr = next_spare++;
1248 rdev2->desc_nr = desc_nr;
1249 d = &sb->disks[rdev2->desc_nr];
1250 nr_disks++;
1251 d->number = rdev2->desc_nr;
1252 d->major = MAJOR(rdev2->bdev->bd_dev);
1253 d->minor = MINOR(rdev2->bdev->bd_dev);
1254 if (is_active)
1255 d->raid_disk = rdev2->raid_disk;
1256 else
1257 d->raid_disk = rdev2->desc_nr; /* compatibility */
1258 if (test_bit(Faulty, &rdev2->flags))
1259 d->state = (1<<MD_DISK_FAULTY);
1260 else if (is_active) {
1261 d->state = (1<<MD_DISK_ACTIVE);
1262 if (test_bit(In_sync, &rdev2->flags))
1263 d->state |= (1<<MD_DISK_SYNC);
1264 active++;
1265 working++;
1266 } else {
1267 d->state = 0;
1268 spare++;
1269 working++;
1270 }
1271 if (test_bit(WriteMostly, &rdev2->flags))
1272 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1273 }
1274 /* now set the "removed" and "faulty" bits on any missing devices */
1275 for (i=0 ; i < mddev->raid_disks ; i++) {
1276 mdp_disk_t *d = &sb->disks[i];
1277 if (d->state == 0 && d->number == 0) {
1278 d->number = i;
1279 d->raid_disk = i;
1280 d->state = (1<<MD_DISK_REMOVED);
1281 d->state |= (1<<MD_DISK_FAULTY);
1282 failed++;
1283 }
1284 }
1285 sb->nr_disks = nr_disks;
1286 sb->active_disks = active;
1287 sb->working_disks = working;
1288 sb->failed_disks = failed;
1289 sb->spare_disks = spare;
1290
1291 sb->this_disk = sb->disks[rdev->desc_nr];
1292 sb->sb_csum = calc_sb_csum(sb);
1293 }
1294
1295 /*
1296 * rdev_size_change for 0.90.0
1297 */
1298 static unsigned long long
1299 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1300 {
1301 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1302 return 0; /* component must fit device */
1303 if (rdev->mddev->bitmap_info.offset)
1304 return 0; /* can't move bitmap */
1305 rdev->sb_start = calc_dev_sboffset(rdev);
1306 if (!num_sectors || num_sectors > rdev->sb_start)
1307 num_sectors = rdev->sb_start;
1308 /* Limit to 4TB as metadata cannot record more than that.
1309 * 4TB == 2^32 KB, or 2*2^32 sectors.
1310 */
1311 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1312 num_sectors = (2ULL << 32) - 2;
1313 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1314 rdev->sb_page);
1315 md_super_wait(rdev->mddev);
1316 return num_sectors;
1317 }
1318
1319 static int
1320 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1321 {
1322 /* non-zero offset changes not possible with v0.90 */
1323 return new_offset == 0;
1324 }
1325
1326 /*
1327 * version 1 superblock
1328 */
1329
1330 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1331 {
1332 __le32 disk_csum;
1333 u32 csum;
1334 unsigned long long newcsum;
1335 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1336 __le32 *isuper = (__le32*)sb;
1337
1338 disk_csum = sb->sb_csum;
1339 sb->sb_csum = 0;
1340 newcsum = 0;
1341 for (; size >= 4; size -= 4)
1342 newcsum += le32_to_cpu(*isuper++);
1343
1344 if (size == 2)
1345 newcsum += le16_to_cpu(*(__le16*) isuper);
1346
1347 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1348 sb->sb_csum = disk_csum;
1349 return cpu_to_le32(csum);
1350 }
1351
1352 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1353 int acknowledged);
1354 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1355 {
1356 struct mdp_superblock_1 *sb;
1357 int ret;
1358 sector_t sb_start;
1359 sector_t sectors;
1360 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1361 int bmask;
1362
1363 /*
1364 * Calculate the position of the superblock in 512byte sectors.
1365 * It is always aligned to a 4K boundary and
1366 * depeding on minor_version, it can be:
1367 * 0: At least 8K, but less than 12K, from end of device
1368 * 1: At start of device
1369 * 2: 4K from start of device.
1370 */
1371 switch(minor_version) {
1372 case 0:
1373 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1374 sb_start -= 8*2;
1375 sb_start &= ~(sector_t)(4*2-1);
1376 break;
1377 case 1:
1378 sb_start = 0;
1379 break;
1380 case 2:
1381 sb_start = 8;
1382 break;
1383 default:
1384 return -EINVAL;
1385 }
1386 rdev->sb_start = sb_start;
1387
1388 /* superblock is rarely larger than 1K, but it can be larger,
1389 * and it is safe to read 4k, so we do that
1390 */
1391 ret = read_disk_sb(rdev, 4096);
1392 if (ret) return ret;
1393
1394 sb = page_address(rdev->sb_page);
1395
1396 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1397 sb->major_version != cpu_to_le32(1) ||
1398 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1399 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1400 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1401 return -EINVAL;
1402
1403 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1404 printk("md: invalid superblock checksum on %s\n",
1405 bdevname(rdev->bdev,b));
1406 return -EINVAL;
1407 }
1408 if (le64_to_cpu(sb->data_size) < 10) {
1409 printk("md: data_size too small on %s\n",
1410 bdevname(rdev->bdev,b));
1411 return -EINVAL;
1412 }
1413 if (sb->pad0 ||
1414 sb->pad3[0] ||
1415 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1416 /* Some padding is non-zero, might be a new feature */
1417 return -EINVAL;
1418
1419 rdev->preferred_minor = 0xffff;
1420 rdev->data_offset = le64_to_cpu(sb->data_offset);
1421 rdev->new_data_offset = rdev->data_offset;
1422 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1423 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1424 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1425 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426
1427 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 if (rdev->sb_size & bmask)
1430 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431
1432 if (minor_version
1433 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 return -EINVAL;
1435 if (minor_version
1436 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1437 return -EINVAL;
1438
1439 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1440 rdev->desc_nr = -1;
1441 else
1442 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1443
1444 if (!rdev->bb_page) {
1445 rdev->bb_page = alloc_page(GFP_KERNEL);
1446 if (!rdev->bb_page)
1447 return -ENOMEM;
1448 }
1449 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1450 rdev->badblocks.count == 0) {
1451 /* need to load the bad block list.
1452 * Currently we limit it to one page.
1453 */
1454 s32 offset;
1455 sector_t bb_sector;
1456 u64 *bbp;
1457 int i;
1458 int sectors = le16_to_cpu(sb->bblog_size);
1459 if (sectors > (PAGE_SIZE / 512))
1460 return -EINVAL;
1461 offset = le32_to_cpu(sb->bblog_offset);
1462 if (offset == 0)
1463 return -EINVAL;
1464 bb_sector = (long long)offset;
1465 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1466 rdev->bb_page, READ, true))
1467 return -EIO;
1468 bbp = (u64 *)page_address(rdev->bb_page);
1469 rdev->badblocks.shift = sb->bblog_shift;
1470 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1471 u64 bb = le64_to_cpu(*bbp);
1472 int count = bb & (0x3ff);
1473 u64 sector = bb >> 10;
1474 sector <<= sb->bblog_shift;
1475 count <<= sb->bblog_shift;
1476 if (bb + 1 == 0)
1477 break;
1478 if (md_set_badblocks(&rdev->badblocks,
1479 sector, count, 1) == 0)
1480 return -EINVAL;
1481 }
1482 } else if (sb->bblog_offset != 0)
1483 rdev->badblocks.shift = 0;
1484
1485 if (!refdev) {
1486 ret = 1;
1487 } else {
1488 __u64 ev1, ev2;
1489 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1490
1491 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1492 sb->level != refsb->level ||
1493 sb->layout != refsb->layout ||
1494 sb->chunksize != refsb->chunksize) {
1495 printk(KERN_WARNING "md: %s has strangely different"
1496 " superblock to %s\n",
1497 bdevname(rdev->bdev,b),
1498 bdevname(refdev->bdev,b2));
1499 return -EINVAL;
1500 }
1501 ev1 = le64_to_cpu(sb->events);
1502 ev2 = le64_to_cpu(refsb->events);
1503
1504 if (ev1 > ev2)
1505 ret = 1;
1506 else
1507 ret = 0;
1508 }
1509 if (minor_version) {
1510 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1511 sectors -= rdev->data_offset;
1512 } else
1513 sectors = rdev->sb_start;
1514 if (sectors < le64_to_cpu(sb->data_size))
1515 return -EINVAL;
1516 rdev->sectors = le64_to_cpu(sb->data_size);
1517 return ret;
1518 }
1519
1520 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1521 {
1522 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1523 __u64 ev1 = le64_to_cpu(sb->events);
1524
1525 rdev->raid_disk = -1;
1526 clear_bit(Faulty, &rdev->flags);
1527 clear_bit(In_sync, &rdev->flags);
1528 clear_bit(Bitmap_sync, &rdev->flags);
1529 clear_bit(WriteMostly, &rdev->flags);
1530
1531 if (mddev->raid_disks == 0) {
1532 mddev->major_version = 1;
1533 mddev->patch_version = 0;
1534 mddev->external = 0;
1535 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1536 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1537 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1538 mddev->level = le32_to_cpu(sb->level);
1539 mddev->clevel[0] = 0;
1540 mddev->layout = le32_to_cpu(sb->layout);
1541 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1542 mddev->dev_sectors = le64_to_cpu(sb->size);
1543 mddev->events = ev1;
1544 mddev->bitmap_info.offset = 0;
1545 mddev->bitmap_info.space = 0;
1546 /* Default location for bitmap is 1K after superblock
1547 * using 3K - total of 4K
1548 */
1549 mddev->bitmap_info.default_offset = 1024 >> 9;
1550 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1551 mddev->reshape_backwards = 0;
1552
1553 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1554 memcpy(mddev->uuid, sb->set_uuid, 16);
1555
1556 mddev->max_disks = (4096-256)/2;
1557
1558 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1559 mddev->bitmap_info.file == NULL) {
1560 mddev->bitmap_info.offset =
1561 (__s32)le32_to_cpu(sb->bitmap_offset);
1562 /* Metadata doesn't record how much space is available.
1563 * For 1.0, we assume we can use up to the superblock
1564 * if before, else to 4K beyond superblock.
1565 * For others, assume no change is possible.
1566 */
1567 if (mddev->minor_version > 0)
1568 mddev->bitmap_info.space = 0;
1569 else if (mddev->bitmap_info.offset > 0)
1570 mddev->bitmap_info.space =
1571 8 - mddev->bitmap_info.offset;
1572 else
1573 mddev->bitmap_info.space =
1574 -mddev->bitmap_info.offset;
1575 }
1576
1577 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1578 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1579 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1580 mddev->new_level = le32_to_cpu(sb->new_level);
1581 mddev->new_layout = le32_to_cpu(sb->new_layout);
1582 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1583 if (mddev->delta_disks < 0 ||
1584 (mddev->delta_disks == 0 &&
1585 (le32_to_cpu(sb->feature_map)
1586 & MD_FEATURE_RESHAPE_BACKWARDS)))
1587 mddev->reshape_backwards = 1;
1588 } else {
1589 mddev->reshape_position = MaxSector;
1590 mddev->delta_disks = 0;
1591 mddev->new_level = mddev->level;
1592 mddev->new_layout = mddev->layout;
1593 mddev->new_chunk_sectors = mddev->chunk_sectors;
1594 }
1595
1596 } else if (mddev->pers == NULL) {
1597 /* Insist of good event counter while assembling, except for
1598 * spares (which don't need an event count) */
1599 ++ev1;
1600 if (rdev->desc_nr >= 0 &&
1601 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1602 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1603 if (ev1 < mddev->events)
1604 return -EINVAL;
1605 } else if (mddev->bitmap) {
1606 /* If adding to array with a bitmap, then we can accept an
1607 * older device, but not too old.
1608 */
1609 if (ev1 < mddev->bitmap->events_cleared)
1610 return 0;
1611 if (ev1 < mddev->events)
1612 set_bit(Bitmap_sync, &rdev->flags);
1613 } else {
1614 if (ev1 < mddev->events)
1615 /* just a hot-add of a new device, leave raid_disk at -1 */
1616 return 0;
1617 }
1618 if (mddev->level != LEVEL_MULTIPATH) {
1619 int role;
1620 if (rdev->desc_nr < 0 ||
1621 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1622 role = 0xffff;
1623 rdev->desc_nr = -1;
1624 } else
1625 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1626 switch(role) {
1627 case 0xffff: /* spare */
1628 break;
1629 case 0xfffe: /* faulty */
1630 set_bit(Faulty, &rdev->flags);
1631 break;
1632 default:
1633 rdev->saved_raid_disk = role;
1634 if ((le32_to_cpu(sb->feature_map) &
1635 MD_FEATURE_RECOVERY_OFFSET)) {
1636 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1637 if (!(le32_to_cpu(sb->feature_map) &
1638 MD_FEATURE_RECOVERY_BITMAP))
1639 rdev->saved_raid_disk = -1;
1640 } else
1641 set_bit(In_sync, &rdev->flags);
1642 rdev->raid_disk = role;
1643 break;
1644 }
1645 if (sb->devflags & WriteMostly1)
1646 set_bit(WriteMostly, &rdev->flags);
1647 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1648 set_bit(Replacement, &rdev->flags);
1649 } else /* MULTIPATH are always insync */
1650 set_bit(In_sync, &rdev->flags);
1651
1652 return 0;
1653 }
1654
1655 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1656 {
1657 struct mdp_superblock_1 *sb;
1658 struct md_rdev *rdev2;
1659 int max_dev, i;
1660 /* make rdev->sb match mddev and rdev data. */
1661
1662 sb = page_address(rdev->sb_page);
1663
1664 sb->feature_map = 0;
1665 sb->pad0 = 0;
1666 sb->recovery_offset = cpu_to_le64(0);
1667 memset(sb->pad3, 0, sizeof(sb->pad3));
1668
1669 sb->utime = cpu_to_le64((__u64)mddev->utime);
1670 sb->events = cpu_to_le64(mddev->events);
1671 if (mddev->in_sync)
1672 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1673 else
1674 sb->resync_offset = cpu_to_le64(0);
1675
1676 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1677
1678 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1679 sb->size = cpu_to_le64(mddev->dev_sectors);
1680 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1681 sb->level = cpu_to_le32(mddev->level);
1682 sb->layout = cpu_to_le32(mddev->layout);
1683
1684 if (test_bit(WriteMostly, &rdev->flags))
1685 sb->devflags |= WriteMostly1;
1686 else
1687 sb->devflags &= ~WriteMostly1;
1688 sb->data_offset = cpu_to_le64(rdev->data_offset);
1689 sb->data_size = cpu_to_le64(rdev->sectors);
1690
1691 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1692 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1693 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1694 }
1695
1696 if (rdev->raid_disk >= 0 &&
1697 !test_bit(In_sync, &rdev->flags)) {
1698 sb->feature_map |=
1699 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1700 sb->recovery_offset =
1701 cpu_to_le64(rdev->recovery_offset);
1702 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1703 sb->feature_map |=
1704 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1705 }
1706 if (test_bit(Replacement, &rdev->flags))
1707 sb->feature_map |=
1708 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1709
1710 if (mddev->reshape_position != MaxSector) {
1711 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1712 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1713 sb->new_layout = cpu_to_le32(mddev->new_layout);
1714 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1715 sb->new_level = cpu_to_le32(mddev->new_level);
1716 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1717 if (mddev->delta_disks == 0 &&
1718 mddev->reshape_backwards)
1719 sb->feature_map
1720 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1721 if (rdev->new_data_offset != rdev->data_offset) {
1722 sb->feature_map
1723 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1724 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1725 - rdev->data_offset));
1726 }
1727 }
1728
1729 if (rdev->badblocks.count == 0)
1730 /* Nothing to do for bad blocks*/ ;
1731 else if (sb->bblog_offset == 0)
1732 /* Cannot record bad blocks on this device */
1733 md_error(mddev, rdev);
1734 else {
1735 struct badblocks *bb = &rdev->badblocks;
1736 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1737 u64 *p = bb->page;
1738 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1739 if (bb->changed) {
1740 unsigned seq;
1741
1742 retry:
1743 seq = read_seqbegin(&bb->lock);
1744
1745 memset(bbp, 0xff, PAGE_SIZE);
1746
1747 for (i = 0 ; i < bb->count ; i++) {
1748 u64 internal_bb = p[i];
1749 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1750 | BB_LEN(internal_bb));
1751 bbp[i] = cpu_to_le64(store_bb);
1752 }
1753 bb->changed = 0;
1754 if (read_seqretry(&bb->lock, seq))
1755 goto retry;
1756
1757 bb->sector = (rdev->sb_start +
1758 (int)le32_to_cpu(sb->bblog_offset));
1759 bb->size = le16_to_cpu(sb->bblog_size);
1760 }
1761 }
1762
1763 max_dev = 0;
1764 rdev_for_each(rdev2, mddev)
1765 if (rdev2->desc_nr+1 > max_dev)
1766 max_dev = rdev2->desc_nr+1;
1767
1768 if (max_dev > le32_to_cpu(sb->max_dev)) {
1769 int bmask;
1770 sb->max_dev = cpu_to_le32(max_dev);
1771 rdev->sb_size = max_dev * 2 + 256;
1772 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1773 if (rdev->sb_size & bmask)
1774 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1775 } else
1776 max_dev = le32_to_cpu(sb->max_dev);
1777
1778 for (i=0; i<max_dev;i++)
1779 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1780
1781 rdev_for_each(rdev2, mddev) {
1782 i = rdev2->desc_nr;
1783 if (test_bit(Faulty, &rdev2->flags))
1784 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1785 else if (test_bit(In_sync, &rdev2->flags))
1786 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1787 else if (rdev2->raid_disk >= 0)
1788 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1789 else
1790 sb->dev_roles[i] = cpu_to_le16(0xffff);
1791 }
1792
1793 sb->sb_csum = calc_sb_1_csum(sb);
1794 }
1795
1796 static unsigned long long
1797 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1798 {
1799 struct mdp_superblock_1 *sb;
1800 sector_t max_sectors;
1801 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1802 return 0; /* component must fit device */
1803 if (rdev->data_offset != rdev->new_data_offset)
1804 return 0; /* too confusing */
1805 if (rdev->sb_start < rdev->data_offset) {
1806 /* minor versions 1 and 2; superblock before data */
1807 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1808 max_sectors -= rdev->data_offset;
1809 if (!num_sectors || num_sectors > max_sectors)
1810 num_sectors = max_sectors;
1811 } else if (rdev->mddev->bitmap_info.offset) {
1812 /* minor version 0 with bitmap we can't move */
1813 return 0;
1814 } else {
1815 /* minor version 0; superblock after data */
1816 sector_t sb_start;
1817 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1818 sb_start &= ~(sector_t)(4*2 - 1);
1819 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1820 if (!num_sectors || num_sectors > max_sectors)
1821 num_sectors = max_sectors;
1822 rdev->sb_start = sb_start;
1823 }
1824 sb = page_address(rdev->sb_page);
1825 sb->data_size = cpu_to_le64(num_sectors);
1826 sb->super_offset = rdev->sb_start;
1827 sb->sb_csum = calc_sb_1_csum(sb);
1828 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1829 rdev->sb_page);
1830 md_super_wait(rdev->mddev);
1831 return num_sectors;
1832
1833 }
1834
1835 static int
1836 super_1_allow_new_offset(struct md_rdev *rdev,
1837 unsigned long long new_offset)
1838 {
1839 /* All necessary checks on new >= old have been done */
1840 struct bitmap *bitmap;
1841 if (new_offset >= rdev->data_offset)
1842 return 1;
1843
1844 /* with 1.0 metadata, there is no metadata to tread on
1845 * so we can always move back */
1846 if (rdev->mddev->minor_version == 0)
1847 return 1;
1848
1849 /* otherwise we must be sure not to step on
1850 * any metadata, so stay:
1851 * 36K beyond start of superblock
1852 * beyond end of badblocks
1853 * beyond write-intent bitmap
1854 */
1855 if (rdev->sb_start + (32+4)*2 > new_offset)
1856 return 0;
1857 bitmap = rdev->mddev->bitmap;
1858 if (bitmap && !rdev->mddev->bitmap_info.file &&
1859 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1860 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1861 return 0;
1862 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1863 return 0;
1864
1865 return 1;
1866 }
1867
1868 static struct super_type super_types[] = {
1869 [0] = {
1870 .name = "0.90.0",
1871 .owner = THIS_MODULE,
1872 .load_super = super_90_load,
1873 .validate_super = super_90_validate,
1874 .sync_super = super_90_sync,
1875 .rdev_size_change = super_90_rdev_size_change,
1876 .allow_new_offset = super_90_allow_new_offset,
1877 },
1878 [1] = {
1879 .name = "md-1",
1880 .owner = THIS_MODULE,
1881 .load_super = super_1_load,
1882 .validate_super = super_1_validate,
1883 .sync_super = super_1_sync,
1884 .rdev_size_change = super_1_rdev_size_change,
1885 .allow_new_offset = super_1_allow_new_offset,
1886 },
1887 };
1888
1889 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1890 {
1891 if (mddev->sync_super) {
1892 mddev->sync_super(mddev, rdev);
1893 return;
1894 }
1895
1896 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1897
1898 super_types[mddev->major_version].sync_super(mddev, rdev);
1899 }
1900
1901 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1902 {
1903 struct md_rdev *rdev, *rdev2;
1904
1905 rcu_read_lock();
1906 rdev_for_each_rcu(rdev, mddev1)
1907 rdev_for_each_rcu(rdev2, mddev2)
1908 if (rdev->bdev->bd_contains ==
1909 rdev2->bdev->bd_contains) {
1910 rcu_read_unlock();
1911 return 1;
1912 }
1913 rcu_read_unlock();
1914 return 0;
1915 }
1916
1917 static LIST_HEAD(pending_raid_disks);
1918
1919 /*
1920 * Try to register data integrity profile for an mddev
1921 *
1922 * This is called when an array is started and after a disk has been kicked
1923 * from the array. It only succeeds if all working and active component devices
1924 * are integrity capable with matching profiles.
1925 */
1926 int md_integrity_register(struct mddev *mddev)
1927 {
1928 struct md_rdev *rdev, *reference = NULL;
1929
1930 if (list_empty(&mddev->disks))
1931 return 0; /* nothing to do */
1932 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1933 return 0; /* shouldn't register, or already is */
1934 rdev_for_each(rdev, mddev) {
1935 /* skip spares and non-functional disks */
1936 if (test_bit(Faulty, &rdev->flags))
1937 continue;
1938 if (rdev->raid_disk < 0)
1939 continue;
1940 if (!reference) {
1941 /* Use the first rdev as the reference */
1942 reference = rdev;
1943 continue;
1944 }
1945 /* does this rdev's profile match the reference profile? */
1946 if (blk_integrity_compare(reference->bdev->bd_disk,
1947 rdev->bdev->bd_disk) < 0)
1948 return -EINVAL;
1949 }
1950 if (!reference || !bdev_get_integrity(reference->bdev))
1951 return 0;
1952 /*
1953 * All component devices are integrity capable and have matching
1954 * profiles, register the common profile for the md device.
1955 */
1956 if (blk_integrity_register(mddev->gendisk,
1957 bdev_get_integrity(reference->bdev)) != 0) {
1958 printk(KERN_ERR "md: failed to register integrity for %s\n",
1959 mdname(mddev));
1960 return -EINVAL;
1961 }
1962 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1963 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1964 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1965 mdname(mddev));
1966 return -EINVAL;
1967 }
1968 return 0;
1969 }
1970 EXPORT_SYMBOL(md_integrity_register);
1971
1972 /* Disable data integrity if non-capable/non-matching disk is being added */
1973 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1974 {
1975 struct blk_integrity *bi_rdev;
1976 struct blk_integrity *bi_mddev;
1977
1978 if (!mddev->gendisk)
1979 return;
1980
1981 bi_rdev = bdev_get_integrity(rdev->bdev);
1982 bi_mddev = blk_get_integrity(mddev->gendisk);
1983
1984 if (!bi_mddev) /* nothing to do */
1985 return;
1986 if (rdev->raid_disk < 0) /* skip spares */
1987 return;
1988 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1989 rdev->bdev->bd_disk) >= 0)
1990 return;
1991 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1992 blk_integrity_unregister(mddev->gendisk);
1993 }
1994 EXPORT_SYMBOL(md_integrity_add_rdev);
1995
1996 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
1997 {
1998 char b[BDEVNAME_SIZE];
1999 struct kobject *ko;
2000 char *s;
2001 int err;
2002
2003 /* prevent duplicates */
2004 if (find_rdev(mddev, rdev->bdev->bd_dev))
2005 return -EEXIST;
2006
2007 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2008 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2009 rdev->sectors < mddev->dev_sectors)) {
2010 if (mddev->pers) {
2011 /* Cannot change size, so fail
2012 * If mddev->level <= 0, then we don't care
2013 * about aligning sizes (e.g. linear)
2014 */
2015 if (mddev->level > 0)
2016 return -ENOSPC;
2017 } else
2018 mddev->dev_sectors = rdev->sectors;
2019 }
2020
2021 /* Verify rdev->desc_nr is unique.
2022 * If it is -1, assign a free number, else
2023 * check number is not in use
2024 */
2025 rcu_read_lock();
2026 if (rdev->desc_nr < 0) {
2027 int choice = 0;
2028 if (mddev->pers)
2029 choice = mddev->raid_disks;
2030 while (find_rdev_nr_rcu(mddev, choice))
2031 choice++;
2032 rdev->desc_nr = choice;
2033 } else {
2034 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2035 rcu_read_unlock();
2036 return -EBUSY;
2037 }
2038 }
2039 rcu_read_unlock();
2040 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2041 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2042 mdname(mddev), mddev->max_disks);
2043 return -EBUSY;
2044 }
2045 bdevname(rdev->bdev,b);
2046 while ( (s=strchr(b, '/')) != NULL)
2047 *s = '!';
2048
2049 rdev->mddev = mddev;
2050 printk(KERN_INFO "md: bind<%s>\n", b);
2051
2052 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2053 goto fail;
2054
2055 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2056 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2057 /* failure here is OK */;
2058 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2059
2060 list_add_rcu(&rdev->same_set, &mddev->disks);
2061 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2062
2063 /* May as well allow recovery to be retried once */
2064 mddev->recovery_disabled++;
2065
2066 return 0;
2067
2068 fail:
2069 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2070 b, mdname(mddev));
2071 return err;
2072 }
2073
2074 static void md_delayed_delete(struct work_struct *ws)
2075 {
2076 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2077 kobject_del(&rdev->kobj);
2078 kobject_put(&rdev->kobj);
2079 }
2080
2081 static void unbind_rdev_from_array(struct md_rdev *rdev)
2082 {
2083 char b[BDEVNAME_SIZE];
2084
2085 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2086 list_del_rcu(&rdev->same_set);
2087 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2088 rdev->mddev = NULL;
2089 sysfs_remove_link(&rdev->kobj, "block");
2090 sysfs_put(rdev->sysfs_state);
2091 rdev->sysfs_state = NULL;
2092 rdev->badblocks.count = 0;
2093 /* We need to delay this, otherwise we can deadlock when
2094 * writing to 'remove' to "dev/state". We also need
2095 * to delay it due to rcu usage.
2096 */
2097 synchronize_rcu();
2098 INIT_WORK(&rdev->del_work, md_delayed_delete);
2099 kobject_get(&rdev->kobj);
2100 queue_work(md_misc_wq, &rdev->del_work);
2101 }
2102
2103 /*
2104 * prevent the device from being mounted, repartitioned or
2105 * otherwise reused by a RAID array (or any other kernel
2106 * subsystem), by bd_claiming the device.
2107 */
2108 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2109 {
2110 int err = 0;
2111 struct block_device *bdev;
2112 char b[BDEVNAME_SIZE];
2113
2114 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2115 shared ? (struct md_rdev *)lock_rdev : rdev);
2116 if (IS_ERR(bdev)) {
2117 printk(KERN_ERR "md: could not open %s.\n",
2118 __bdevname(dev, b));
2119 return PTR_ERR(bdev);
2120 }
2121 rdev->bdev = bdev;
2122 return err;
2123 }
2124
2125 static void unlock_rdev(struct md_rdev *rdev)
2126 {
2127 struct block_device *bdev = rdev->bdev;
2128 rdev->bdev = NULL;
2129 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2130 }
2131
2132 void md_autodetect_dev(dev_t dev);
2133
2134 static void export_rdev(struct md_rdev *rdev)
2135 {
2136 char b[BDEVNAME_SIZE];
2137
2138 printk(KERN_INFO "md: export_rdev(%s)\n",
2139 bdevname(rdev->bdev,b));
2140 md_rdev_clear(rdev);
2141 #ifndef MODULE
2142 if (test_bit(AutoDetected, &rdev->flags))
2143 md_autodetect_dev(rdev->bdev->bd_dev);
2144 #endif
2145 unlock_rdev(rdev);
2146 kobject_put(&rdev->kobj);
2147 }
2148
2149 static void kick_rdev_from_array(struct md_rdev *rdev)
2150 {
2151 unbind_rdev_from_array(rdev);
2152 export_rdev(rdev);
2153 }
2154
2155 static void export_array(struct mddev *mddev)
2156 {
2157 struct md_rdev *rdev;
2158
2159 while (!list_empty(&mddev->disks)) {
2160 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2161 same_set);
2162 kick_rdev_from_array(rdev);
2163 }
2164 mddev->raid_disks = 0;
2165 mddev->major_version = 0;
2166 }
2167
2168 static void sync_sbs(struct mddev *mddev, int nospares)
2169 {
2170 /* Update each superblock (in-memory image), but
2171 * if we are allowed to, skip spares which already
2172 * have the right event counter, or have one earlier
2173 * (which would mean they aren't being marked as dirty
2174 * with the rest of the array)
2175 */
2176 struct md_rdev *rdev;
2177 rdev_for_each(rdev, mddev) {
2178 if (rdev->sb_events == mddev->events ||
2179 (nospares &&
2180 rdev->raid_disk < 0 &&
2181 rdev->sb_events+1 == mddev->events)) {
2182 /* Don't update this superblock */
2183 rdev->sb_loaded = 2;
2184 } else {
2185 sync_super(mddev, rdev);
2186 rdev->sb_loaded = 1;
2187 }
2188 }
2189 }
2190
2191 static void md_update_sb(struct mddev *mddev, int force_change)
2192 {
2193 struct md_rdev *rdev;
2194 int sync_req;
2195 int nospares = 0;
2196 int any_badblocks_changed = 0;
2197
2198 if (mddev->ro) {
2199 if (force_change)
2200 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2201 return;
2202 }
2203 repeat:
2204 /* First make sure individual recovery_offsets are correct */
2205 rdev_for_each(rdev, mddev) {
2206 if (rdev->raid_disk >= 0 &&
2207 mddev->delta_disks >= 0 &&
2208 !test_bit(In_sync, &rdev->flags) &&
2209 mddev->curr_resync_completed > rdev->recovery_offset)
2210 rdev->recovery_offset = mddev->curr_resync_completed;
2211
2212 }
2213 if (!mddev->persistent) {
2214 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2215 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2216 if (!mddev->external) {
2217 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2218 rdev_for_each(rdev, mddev) {
2219 if (rdev->badblocks.changed) {
2220 rdev->badblocks.changed = 0;
2221 md_ack_all_badblocks(&rdev->badblocks);
2222 md_error(mddev, rdev);
2223 }
2224 clear_bit(Blocked, &rdev->flags);
2225 clear_bit(BlockedBadBlocks, &rdev->flags);
2226 wake_up(&rdev->blocked_wait);
2227 }
2228 }
2229 wake_up(&mddev->sb_wait);
2230 return;
2231 }
2232
2233 spin_lock_irq(&mddev->write_lock);
2234
2235 mddev->utime = get_seconds();
2236
2237 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2238 force_change = 1;
2239 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2240 /* just a clean<-> dirty transition, possibly leave spares alone,
2241 * though if events isn't the right even/odd, we will have to do
2242 * spares after all
2243 */
2244 nospares = 1;
2245 if (force_change)
2246 nospares = 0;
2247 if (mddev->degraded)
2248 /* If the array is degraded, then skipping spares is both
2249 * dangerous and fairly pointless.
2250 * Dangerous because a device that was removed from the array
2251 * might have a event_count that still looks up-to-date,
2252 * so it can be re-added without a resync.
2253 * Pointless because if there are any spares to skip,
2254 * then a recovery will happen and soon that array won't
2255 * be degraded any more and the spare can go back to sleep then.
2256 */
2257 nospares = 0;
2258
2259 sync_req = mddev->in_sync;
2260
2261 /* If this is just a dirty<->clean transition, and the array is clean
2262 * and 'events' is odd, we can roll back to the previous clean state */
2263 if (nospares
2264 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2265 && mddev->can_decrease_events
2266 && mddev->events != 1) {
2267 mddev->events--;
2268 mddev->can_decrease_events = 0;
2269 } else {
2270 /* otherwise we have to go forward and ... */
2271 mddev->events ++;
2272 mddev->can_decrease_events = nospares;
2273 }
2274
2275 /*
2276 * This 64-bit counter should never wrap.
2277 * Either we are in around ~1 trillion A.C., assuming
2278 * 1 reboot per second, or we have a bug...
2279 */
2280 WARN_ON(mddev->events == 0);
2281
2282 rdev_for_each(rdev, mddev) {
2283 if (rdev->badblocks.changed)
2284 any_badblocks_changed++;
2285 if (test_bit(Faulty, &rdev->flags))
2286 set_bit(FaultRecorded, &rdev->flags);
2287 }
2288
2289 sync_sbs(mddev, nospares);
2290 spin_unlock_irq(&mddev->write_lock);
2291
2292 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2293 mdname(mddev), mddev->in_sync);
2294
2295 bitmap_update_sb(mddev->bitmap);
2296 rdev_for_each(rdev, mddev) {
2297 char b[BDEVNAME_SIZE];
2298
2299 if (rdev->sb_loaded != 1)
2300 continue; /* no noise on spare devices */
2301
2302 if (!test_bit(Faulty, &rdev->flags)) {
2303 md_super_write(mddev,rdev,
2304 rdev->sb_start, rdev->sb_size,
2305 rdev->sb_page);
2306 pr_debug("md: (write) %s's sb offset: %llu\n",
2307 bdevname(rdev->bdev, b),
2308 (unsigned long long)rdev->sb_start);
2309 rdev->sb_events = mddev->events;
2310 if (rdev->badblocks.size) {
2311 md_super_write(mddev, rdev,
2312 rdev->badblocks.sector,
2313 rdev->badblocks.size << 9,
2314 rdev->bb_page);
2315 rdev->badblocks.size = 0;
2316 }
2317
2318 } else
2319 pr_debug("md: %s (skipping faulty)\n",
2320 bdevname(rdev->bdev, b));
2321
2322 if (mddev->level == LEVEL_MULTIPATH)
2323 /* only need to write one superblock... */
2324 break;
2325 }
2326 md_super_wait(mddev);
2327 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2328
2329 spin_lock_irq(&mddev->write_lock);
2330 if (mddev->in_sync != sync_req ||
2331 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2332 /* have to write it out again */
2333 spin_unlock_irq(&mddev->write_lock);
2334 goto repeat;
2335 }
2336 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2337 spin_unlock_irq(&mddev->write_lock);
2338 wake_up(&mddev->sb_wait);
2339 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2340 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2341
2342 rdev_for_each(rdev, mddev) {
2343 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2344 clear_bit(Blocked, &rdev->flags);
2345
2346 if (any_badblocks_changed)
2347 md_ack_all_badblocks(&rdev->badblocks);
2348 clear_bit(BlockedBadBlocks, &rdev->flags);
2349 wake_up(&rdev->blocked_wait);
2350 }
2351 }
2352
2353 /* words written to sysfs files may, or may not, be \n terminated.
2354 * We want to accept with case. For this we use cmd_match.
2355 */
2356 static int cmd_match(const char *cmd, const char *str)
2357 {
2358 /* See if cmd, written into a sysfs file, matches
2359 * str. They must either be the same, or cmd can
2360 * have a trailing newline
2361 */
2362 while (*cmd && *str && *cmd == *str) {
2363 cmd++;
2364 str++;
2365 }
2366 if (*cmd == '\n')
2367 cmd++;
2368 if (*str || *cmd)
2369 return 0;
2370 return 1;
2371 }
2372
2373 struct rdev_sysfs_entry {
2374 struct attribute attr;
2375 ssize_t (*show)(struct md_rdev *, char *);
2376 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2377 };
2378
2379 static ssize_t
2380 state_show(struct md_rdev *rdev, char *page)
2381 {
2382 char *sep = "";
2383 size_t len = 0;
2384
2385 if (test_bit(Faulty, &rdev->flags) ||
2386 rdev->badblocks.unacked_exist) {
2387 len+= sprintf(page+len, "%sfaulty",sep);
2388 sep = ",";
2389 }
2390 if (test_bit(In_sync, &rdev->flags)) {
2391 len += sprintf(page+len, "%sin_sync",sep);
2392 sep = ",";
2393 }
2394 if (test_bit(WriteMostly, &rdev->flags)) {
2395 len += sprintf(page+len, "%swrite_mostly",sep);
2396 sep = ",";
2397 }
2398 if (test_bit(Blocked, &rdev->flags) ||
2399 (rdev->badblocks.unacked_exist
2400 && !test_bit(Faulty, &rdev->flags))) {
2401 len += sprintf(page+len, "%sblocked", sep);
2402 sep = ",";
2403 }
2404 if (!test_bit(Faulty, &rdev->flags) &&
2405 !test_bit(In_sync, &rdev->flags)) {
2406 len += sprintf(page+len, "%sspare", sep);
2407 sep = ",";
2408 }
2409 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2410 len += sprintf(page+len, "%swrite_error", sep);
2411 sep = ",";
2412 }
2413 if (test_bit(WantReplacement, &rdev->flags)) {
2414 len += sprintf(page+len, "%swant_replacement", sep);
2415 sep = ",";
2416 }
2417 if (test_bit(Replacement, &rdev->flags)) {
2418 len += sprintf(page+len, "%sreplacement", sep);
2419 sep = ",";
2420 }
2421
2422 return len+sprintf(page+len, "\n");
2423 }
2424
2425 static ssize_t
2426 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2427 {
2428 /* can write
2429 * faulty - simulates an error
2430 * remove - disconnects the device
2431 * writemostly - sets write_mostly
2432 * -writemostly - clears write_mostly
2433 * blocked - sets the Blocked flags
2434 * -blocked - clears the Blocked and possibly simulates an error
2435 * insync - sets Insync providing device isn't active
2436 * -insync - clear Insync for a device with a slot assigned,
2437 * so that it gets rebuilt based on bitmap
2438 * write_error - sets WriteErrorSeen
2439 * -write_error - clears WriteErrorSeen
2440 */
2441 int err = -EINVAL;
2442 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2443 md_error(rdev->mddev, rdev);
2444 if (test_bit(Faulty, &rdev->flags))
2445 err = 0;
2446 else
2447 err = -EBUSY;
2448 } else if (cmd_match(buf, "remove")) {
2449 if (rdev->raid_disk >= 0)
2450 err = -EBUSY;
2451 else {
2452 struct mddev *mddev = rdev->mddev;
2453 kick_rdev_from_array(rdev);
2454 if (mddev->pers)
2455 md_update_sb(mddev, 1);
2456 md_new_event(mddev);
2457 err = 0;
2458 }
2459 } else if (cmd_match(buf, "writemostly")) {
2460 set_bit(WriteMostly, &rdev->flags);
2461 err = 0;
2462 } else if (cmd_match(buf, "-writemostly")) {
2463 clear_bit(WriteMostly, &rdev->flags);
2464 err = 0;
2465 } else if (cmd_match(buf, "blocked")) {
2466 set_bit(Blocked, &rdev->flags);
2467 err = 0;
2468 } else if (cmd_match(buf, "-blocked")) {
2469 if (!test_bit(Faulty, &rdev->flags) &&
2470 rdev->badblocks.unacked_exist) {
2471 /* metadata handler doesn't understand badblocks,
2472 * so we need to fail the device
2473 */
2474 md_error(rdev->mddev, rdev);
2475 }
2476 clear_bit(Blocked, &rdev->flags);
2477 clear_bit(BlockedBadBlocks, &rdev->flags);
2478 wake_up(&rdev->blocked_wait);
2479 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2480 md_wakeup_thread(rdev->mddev->thread);
2481
2482 err = 0;
2483 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2484 set_bit(In_sync, &rdev->flags);
2485 err = 0;
2486 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2487 if (rdev->mddev->pers == NULL) {
2488 clear_bit(In_sync, &rdev->flags);
2489 rdev->saved_raid_disk = rdev->raid_disk;
2490 rdev->raid_disk = -1;
2491 err = 0;
2492 }
2493 } else if (cmd_match(buf, "write_error")) {
2494 set_bit(WriteErrorSeen, &rdev->flags);
2495 err = 0;
2496 } else if (cmd_match(buf, "-write_error")) {
2497 clear_bit(WriteErrorSeen, &rdev->flags);
2498 err = 0;
2499 } else if (cmd_match(buf, "want_replacement")) {
2500 /* Any non-spare device that is not a replacement can
2501 * become want_replacement at any time, but we then need to
2502 * check if recovery is needed.
2503 */
2504 if (rdev->raid_disk >= 0 &&
2505 !test_bit(Replacement, &rdev->flags))
2506 set_bit(WantReplacement, &rdev->flags);
2507 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2508 md_wakeup_thread(rdev->mddev->thread);
2509 err = 0;
2510 } else if (cmd_match(buf, "-want_replacement")) {
2511 /* Clearing 'want_replacement' is always allowed.
2512 * Once replacements starts it is too late though.
2513 */
2514 err = 0;
2515 clear_bit(WantReplacement, &rdev->flags);
2516 } else if (cmd_match(buf, "replacement")) {
2517 /* Can only set a device as a replacement when array has not
2518 * yet been started. Once running, replacement is automatic
2519 * from spares, or by assigning 'slot'.
2520 */
2521 if (rdev->mddev->pers)
2522 err = -EBUSY;
2523 else {
2524 set_bit(Replacement, &rdev->flags);
2525 err = 0;
2526 }
2527 } else if (cmd_match(buf, "-replacement")) {
2528 /* Similarly, can only clear Replacement before start */
2529 if (rdev->mddev->pers)
2530 err = -EBUSY;
2531 else {
2532 clear_bit(Replacement, &rdev->flags);
2533 err = 0;
2534 }
2535 }
2536 if (!err)
2537 sysfs_notify_dirent_safe(rdev->sysfs_state);
2538 return err ? err : len;
2539 }
2540 static struct rdev_sysfs_entry rdev_state =
2541 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2542
2543 static ssize_t
2544 errors_show(struct md_rdev *rdev, char *page)
2545 {
2546 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2547 }
2548
2549 static ssize_t
2550 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2551 {
2552 char *e;
2553 unsigned long n = simple_strtoul(buf, &e, 10);
2554 if (*buf && (*e == 0 || *e == '\n')) {
2555 atomic_set(&rdev->corrected_errors, n);
2556 return len;
2557 }
2558 return -EINVAL;
2559 }
2560 static struct rdev_sysfs_entry rdev_errors =
2561 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2562
2563 static ssize_t
2564 slot_show(struct md_rdev *rdev, char *page)
2565 {
2566 if (rdev->raid_disk < 0)
2567 return sprintf(page, "none\n");
2568 else
2569 return sprintf(page, "%d\n", rdev->raid_disk);
2570 }
2571
2572 static ssize_t
2573 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2574 {
2575 char *e;
2576 int err;
2577 int slot = simple_strtoul(buf, &e, 10);
2578 if (strncmp(buf, "none", 4)==0)
2579 slot = -1;
2580 else if (e==buf || (*e && *e!= '\n'))
2581 return -EINVAL;
2582 if (rdev->mddev->pers && slot == -1) {
2583 /* Setting 'slot' on an active array requires also
2584 * updating the 'rd%d' link, and communicating
2585 * with the personality with ->hot_*_disk.
2586 * For now we only support removing
2587 * failed/spare devices. This normally happens automatically,
2588 * but not when the metadata is externally managed.
2589 */
2590 if (rdev->raid_disk == -1)
2591 return -EEXIST;
2592 /* personality does all needed checks */
2593 if (rdev->mddev->pers->hot_remove_disk == NULL)
2594 return -EINVAL;
2595 clear_bit(Blocked, &rdev->flags);
2596 remove_and_add_spares(rdev->mddev, rdev);
2597 if (rdev->raid_disk >= 0)
2598 return -EBUSY;
2599 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2600 md_wakeup_thread(rdev->mddev->thread);
2601 } else if (rdev->mddev->pers) {
2602 /* Activating a spare .. or possibly reactivating
2603 * if we ever get bitmaps working here.
2604 */
2605
2606 if (rdev->raid_disk != -1)
2607 return -EBUSY;
2608
2609 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2610 return -EBUSY;
2611
2612 if (rdev->mddev->pers->hot_add_disk == NULL)
2613 return -EINVAL;
2614
2615 if (slot >= rdev->mddev->raid_disks &&
2616 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2617 return -ENOSPC;
2618
2619 rdev->raid_disk = slot;
2620 if (test_bit(In_sync, &rdev->flags))
2621 rdev->saved_raid_disk = slot;
2622 else
2623 rdev->saved_raid_disk = -1;
2624 clear_bit(In_sync, &rdev->flags);
2625 clear_bit(Bitmap_sync, &rdev->flags);
2626 err = rdev->mddev->pers->
2627 hot_add_disk(rdev->mddev, rdev);
2628 if (err) {
2629 rdev->raid_disk = -1;
2630 return err;
2631 } else
2632 sysfs_notify_dirent_safe(rdev->sysfs_state);
2633 if (sysfs_link_rdev(rdev->mddev, rdev))
2634 /* failure here is OK */;
2635 /* don't wakeup anyone, leave that to userspace. */
2636 } else {
2637 if (slot >= rdev->mddev->raid_disks &&
2638 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2639 return -ENOSPC;
2640 rdev->raid_disk = slot;
2641 /* assume it is working */
2642 clear_bit(Faulty, &rdev->flags);
2643 clear_bit(WriteMostly, &rdev->flags);
2644 set_bit(In_sync, &rdev->flags);
2645 sysfs_notify_dirent_safe(rdev->sysfs_state);
2646 }
2647 return len;
2648 }
2649
2650 static struct rdev_sysfs_entry rdev_slot =
2651 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2652
2653 static ssize_t
2654 offset_show(struct md_rdev *rdev, char *page)
2655 {
2656 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2657 }
2658
2659 static ssize_t
2660 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2661 {
2662 unsigned long long offset;
2663 if (kstrtoull(buf, 10, &offset) < 0)
2664 return -EINVAL;
2665 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2666 return -EBUSY;
2667 if (rdev->sectors && rdev->mddev->external)
2668 /* Must set offset before size, so overlap checks
2669 * can be sane */
2670 return -EBUSY;
2671 rdev->data_offset = offset;
2672 rdev->new_data_offset = offset;
2673 return len;
2674 }
2675
2676 static struct rdev_sysfs_entry rdev_offset =
2677 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2678
2679 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2680 {
2681 return sprintf(page, "%llu\n",
2682 (unsigned long long)rdev->new_data_offset);
2683 }
2684
2685 static ssize_t new_offset_store(struct md_rdev *rdev,
2686 const char *buf, size_t len)
2687 {
2688 unsigned long long new_offset;
2689 struct mddev *mddev = rdev->mddev;
2690
2691 if (kstrtoull(buf, 10, &new_offset) < 0)
2692 return -EINVAL;
2693
2694 if (mddev->sync_thread ||
2695 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2696 return -EBUSY;
2697 if (new_offset == rdev->data_offset)
2698 /* reset is always permitted */
2699 ;
2700 else if (new_offset > rdev->data_offset) {
2701 /* must not push array size beyond rdev_sectors */
2702 if (new_offset - rdev->data_offset
2703 + mddev->dev_sectors > rdev->sectors)
2704 return -E2BIG;
2705 }
2706 /* Metadata worries about other space details. */
2707
2708 /* decreasing the offset is inconsistent with a backwards
2709 * reshape.
2710 */
2711 if (new_offset < rdev->data_offset &&
2712 mddev->reshape_backwards)
2713 return -EINVAL;
2714 /* Increasing offset is inconsistent with forwards
2715 * reshape. reshape_direction should be set to
2716 * 'backwards' first.
2717 */
2718 if (new_offset > rdev->data_offset &&
2719 !mddev->reshape_backwards)
2720 return -EINVAL;
2721
2722 if (mddev->pers && mddev->persistent &&
2723 !super_types[mddev->major_version]
2724 .allow_new_offset(rdev, new_offset))
2725 return -E2BIG;
2726 rdev->new_data_offset = new_offset;
2727 if (new_offset > rdev->data_offset)
2728 mddev->reshape_backwards = 1;
2729 else if (new_offset < rdev->data_offset)
2730 mddev->reshape_backwards = 0;
2731
2732 return len;
2733 }
2734 static struct rdev_sysfs_entry rdev_new_offset =
2735 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2736
2737 static ssize_t
2738 rdev_size_show(struct md_rdev *rdev, char *page)
2739 {
2740 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2741 }
2742
2743 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2744 {
2745 /* check if two start/length pairs overlap */
2746 if (s1+l1 <= s2)
2747 return 0;
2748 if (s2+l2 <= s1)
2749 return 0;
2750 return 1;
2751 }
2752
2753 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2754 {
2755 unsigned long long blocks;
2756 sector_t new;
2757
2758 if (kstrtoull(buf, 10, &blocks) < 0)
2759 return -EINVAL;
2760
2761 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2762 return -EINVAL; /* sector conversion overflow */
2763
2764 new = blocks * 2;
2765 if (new != blocks * 2)
2766 return -EINVAL; /* unsigned long long to sector_t overflow */
2767
2768 *sectors = new;
2769 return 0;
2770 }
2771
2772 static ssize_t
2773 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2774 {
2775 struct mddev *my_mddev = rdev->mddev;
2776 sector_t oldsectors = rdev->sectors;
2777 sector_t sectors;
2778
2779 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2780 return -EINVAL;
2781 if (rdev->data_offset != rdev->new_data_offset)
2782 return -EINVAL; /* too confusing */
2783 if (my_mddev->pers && rdev->raid_disk >= 0) {
2784 if (my_mddev->persistent) {
2785 sectors = super_types[my_mddev->major_version].
2786 rdev_size_change(rdev, sectors);
2787 if (!sectors)
2788 return -EBUSY;
2789 } else if (!sectors)
2790 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2791 rdev->data_offset;
2792 if (!my_mddev->pers->resize)
2793 /* Cannot change size for RAID0 or Linear etc */
2794 return -EINVAL;
2795 }
2796 if (sectors < my_mddev->dev_sectors)
2797 return -EINVAL; /* component must fit device */
2798
2799 rdev->sectors = sectors;
2800 if (sectors > oldsectors && my_mddev->external) {
2801 /* Need to check that all other rdevs with the same
2802 * ->bdev do not overlap. 'rcu' is sufficient to walk
2803 * the rdev lists safely.
2804 * This check does not provide a hard guarantee, it
2805 * just helps avoid dangerous mistakes.
2806 */
2807 struct mddev *mddev;
2808 int overlap = 0;
2809 struct list_head *tmp;
2810
2811 rcu_read_lock();
2812 for_each_mddev(mddev, tmp) {
2813 struct md_rdev *rdev2;
2814
2815 rdev_for_each(rdev2, mddev)
2816 if (rdev->bdev == rdev2->bdev &&
2817 rdev != rdev2 &&
2818 overlaps(rdev->data_offset, rdev->sectors,
2819 rdev2->data_offset,
2820 rdev2->sectors)) {
2821 overlap = 1;
2822 break;
2823 }
2824 if (overlap) {
2825 mddev_put(mddev);
2826 break;
2827 }
2828 }
2829 rcu_read_unlock();
2830 if (overlap) {
2831 /* Someone else could have slipped in a size
2832 * change here, but doing so is just silly.
2833 * We put oldsectors back because we *know* it is
2834 * safe, and trust userspace not to race with
2835 * itself
2836 */
2837 rdev->sectors = oldsectors;
2838 return -EBUSY;
2839 }
2840 }
2841 return len;
2842 }
2843
2844 static struct rdev_sysfs_entry rdev_size =
2845 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2846
2847 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2848 {
2849 unsigned long long recovery_start = rdev->recovery_offset;
2850
2851 if (test_bit(In_sync, &rdev->flags) ||
2852 recovery_start == MaxSector)
2853 return sprintf(page, "none\n");
2854
2855 return sprintf(page, "%llu\n", recovery_start);
2856 }
2857
2858 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2859 {
2860 unsigned long long recovery_start;
2861
2862 if (cmd_match(buf, "none"))
2863 recovery_start = MaxSector;
2864 else if (kstrtoull(buf, 10, &recovery_start))
2865 return -EINVAL;
2866
2867 if (rdev->mddev->pers &&
2868 rdev->raid_disk >= 0)
2869 return -EBUSY;
2870
2871 rdev->recovery_offset = recovery_start;
2872 if (recovery_start == MaxSector)
2873 set_bit(In_sync, &rdev->flags);
2874 else
2875 clear_bit(In_sync, &rdev->flags);
2876 return len;
2877 }
2878
2879 static struct rdev_sysfs_entry rdev_recovery_start =
2880 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2881
2882 static ssize_t
2883 badblocks_show(struct badblocks *bb, char *page, int unack);
2884 static ssize_t
2885 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2886
2887 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2888 {
2889 return badblocks_show(&rdev->badblocks, page, 0);
2890 }
2891 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2892 {
2893 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2894 /* Maybe that ack was all we needed */
2895 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2896 wake_up(&rdev->blocked_wait);
2897 return rv;
2898 }
2899 static struct rdev_sysfs_entry rdev_bad_blocks =
2900 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2901
2902 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2903 {
2904 return badblocks_show(&rdev->badblocks, page, 1);
2905 }
2906 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2907 {
2908 return badblocks_store(&rdev->badblocks, page, len, 1);
2909 }
2910 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2911 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2912
2913 static struct attribute *rdev_default_attrs[] = {
2914 &rdev_state.attr,
2915 &rdev_errors.attr,
2916 &rdev_slot.attr,
2917 &rdev_offset.attr,
2918 &rdev_new_offset.attr,
2919 &rdev_size.attr,
2920 &rdev_recovery_start.attr,
2921 &rdev_bad_blocks.attr,
2922 &rdev_unack_bad_blocks.attr,
2923 NULL,
2924 };
2925 static ssize_t
2926 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2927 {
2928 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2929 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2930 struct mddev *mddev = rdev->mddev;
2931 ssize_t rv;
2932
2933 if (!entry->show)
2934 return -EIO;
2935
2936 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2937 if (!rv) {
2938 if (rdev->mddev == NULL)
2939 rv = -EBUSY;
2940 else
2941 rv = entry->show(rdev, page);
2942 mddev_unlock(mddev);
2943 }
2944 return rv;
2945 }
2946
2947 static ssize_t
2948 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2949 const char *page, size_t length)
2950 {
2951 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2952 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2953 ssize_t rv;
2954 struct mddev *mddev = rdev->mddev;
2955
2956 if (!entry->store)
2957 return -EIO;
2958 if (!capable(CAP_SYS_ADMIN))
2959 return -EACCES;
2960 rv = mddev ? mddev_lock(mddev): -EBUSY;
2961 if (!rv) {
2962 if (rdev->mddev == NULL)
2963 rv = -EBUSY;
2964 else
2965 rv = entry->store(rdev, page, length);
2966 mddev_unlock(mddev);
2967 }
2968 return rv;
2969 }
2970
2971 static void rdev_free(struct kobject *ko)
2972 {
2973 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2974 kfree(rdev);
2975 }
2976 static const struct sysfs_ops rdev_sysfs_ops = {
2977 .show = rdev_attr_show,
2978 .store = rdev_attr_store,
2979 };
2980 static struct kobj_type rdev_ktype = {
2981 .release = rdev_free,
2982 .sysfs_ops = &rdev_sysfs_ops,
2983 .default_attrs = rdev_default_attrs,
2984 };
2985
2986 int md_rdev_init(struct md_rdev *rdev)
2987 {
2988 rdev->desc_nr = -1;
2989 rdev->saved_raid_disk = -1;
2990 rdev->raid_disk = -1;
2991 rdev->flags = 0;
2992 rdev->data_offset = 0;
2993 rdev->new_data_offset = 0;
2994 rdev->sb_events = 0;
2995 rdev->last_read_error.tv_sec = 0;
2996 rdev->last_read_error.tv_nsec = 0;
2997 rdev->sb_loaded = 0;
2998 rdev->bb_page = NULL;
2999 atomic_set(&rdev->nr_pending, 0);
3000 atomic_set(&rdev->read_errors, 0);
3001 atomic_set(&rdev->corrected_errors, 0);
3002
3003 INIT_LIST_HEAD(&rdev->same_set);
3004 init_waitqueue_head(&rdev->blocked_wait);
3005
3006 /* Add space to store bad block list.
3007 * This reserves the space even on arrays where it cannot
3008 * be used - I wonder if that matters
3009 */
3010 rdev->badblocks.count = 0;
3011 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3012 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3013 seqlock_init(&rdev->badblocks.lock);
3014 if (rdev->badblocks.page == NULL)
3015 return -ENOMEM;
3016
3017 return 0;
3018 }
3019 EXPORT_SYMBOL_GPL(md_rdev_init);
3020 /*
3021 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3022 *
3023 * mark the device faulty if:
3024 *
3025 * - the device is nonexistent (zero size)
3026 * - the device has no valid superblock
3027 *
3028 * a faulty rdev _never_ has rdev->sb set.
3029 */
3030 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3031 {
3032 char b[BDEVNAME_SIZE];
3033 int err;
3034 struct md_rdev *rdev;
3035 sector_t size;
3036
3037 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3038 if (!rdev) {
3039 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3040 return ERR_PTR(-ENOMEM);
3041 }
3042
3043 err = md_rdev_init(rdev);
3044 if (err)
3045 goto abort_free;
3046 err = alloc_disk_sb(rdev);
3047 if (err)
3048 goto abort_free;
3049
3050 err = lock_rdev(rdev, newdev, super_format == -2);
3051 if (err)
3052 goto abort_free;
3053
3054 kobject_init(&rdev->kobj, &rdev_ktype);
3055
3056 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3057 if (!size) {
3058 printk(KERN_WARNING
3059 "md: %s has zero or unknown size, marking faulty!\n",
3060 bdevname(rdev->bdev,b));
3061 err = -EINVAL;
3062 goto abort_free;
3063 }
3064
3065 if (super_format >= 0) {
3066 err = super_types[super_format].
3067 load_super(rdev, NULL, super_minor);
3068 if (err == -EINVAL) {
3069 printk(KERN_WARNING
3070 "md: %s does not have a valid v%d.%d "
3071 "superblock, not importing!\n",
3072 bdevname(rdev->bdev,b),
3073 super_format, super_minor);
3074 goto abort_free;
3075 }
3076 if (err < 0) {
3077 printk(KERN_WARNING
3078 "md: could not read %s's sb, not importing!\n",
3079 bdevname(rdev->bdev,b));
3080 goto abort_free;
3081 }
3082 }
3083
3084 return rdev;
3085
3086 abort_free:
3087 if (rdev->bdev)
3088 unlock_rdev(rdev);
3089 md_rdev_clear(rdev);
3090 kfree(rdev);
3091 return ERR_PTR(err);
3092 }
3093
3094 /*
3095 * Check a full RAID array for plausibility
3096 */
3097
3098 static void analyze_sbs(struct mddev *mddev)
3099 {
3100 int i;
3101 struct md_rdev *rdev, *freshest, *tmp;
3102 char b[BDEVNAME_SIZE];
3103
3104 freshest = NULL;
3105 rdev_for_each_safe(rdev, tmp, mddev)
3106 switch (super_types[mddev->major_version].
3107 load_super(rdev, freshest, mddev->minor_version)) {
3108 case 1:
3109 freshest = rdev;
3110 break;
3111 case 0:
3112 break;
3113 default:
3114 printk( KERN_ERR \
3115 "md: fatal superblock inconsistency in %s"
3116 " -- removing from array\n",
3117 bdevname(rdev->bdev,b));
3118 kick_rdev_from_array(rdev);
3119 }
3120
3121 super_types[mddev->major_version].
3122 validate_super(mddev, freshest);
3123
3124 i = 0;
3125 rdev_for_each_safe(rdev, tmp, mddev) {
3126 if (mddev->max_disks &&
3127 (rdev->desc_nr >= mddev->max_disks ||
3128 i > mddev->max_disks)) {
3129 printk(KERN_WARNING
3130 "md: %s: %s: only %d devices permitted\n",
3131 mdname(mddev), bdevname(rdev->bdev, b),
3132 mddev->max_disks);
3133 kick_rdev_from_array(rdev);
3134 continue;
3135 }
3136 if (rdev != freshest)
3137 if (super_types[mddev->major_version].
3138 validate_super(mddev, rdev)) {
3139 printk(KERN_WARNING "md: kicking non-fresh %s"
3140 " from array!\n",
3141 bdevname(rdev->bdev,b));
3142 kick_rdev_from_array(rdev);
3143 continue;
3144 }
3145 if (mddev->level == LEVEL_MULTIPATH) {
3146 rdev->desc_nr = i++;
3147 rdev->raid_disk = rdev->desc_nr;
3148 set_bit(In_sync, &rdev->flags);
3149 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3150 rdev->raid_disk = -1;
3151 clear_bit(In_sync, &rdev->flags);
3152 }
3153 }
3154 }
3155
3156 /* Read a fixed-point number.
3157 * Numbers in sysfs attributes should be in "standard" units where
3158 * possible, so time should be in seconds.
3159 * However we internally use a a much smaller unit such as
3160 * milliseconds or jiffies.
3161 * This function takes a decimal number with a possible fractional
3162 * component, and produces an integer which is the result of
3163 * multiplying that number by 10^'scale'.
3164 * all without any floating-point arithmetic.
3165 */
3166 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3167 {
3168 unsigned long result = 0;
3169 long decimals = -1;
3170 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3171 if (*cp == '.')
3172 decimals = 0;
3173 else if (decimals < scale) {
3174 unsigned int value;
3175 value = *cp - '0';
3176 result = result * 10 + value;
3177 if (decimals >= 0)
3178 decimals++;
3179 }
3180 cp++;
3181 }
3182 if (*cp == '\n')
3183 cp++;
3184 if (*cp)
3185 return -EINVAL;
3186 if (decimals < 0)
3187 decimals = 0;
3188 while (decimals < scale) {
3189 result *= 10;
3190 decimals ++;
3191 }
3192 *res = result;
3193 return 0;
3194 }
3195
3196 static void md_safemode_timeout(unsigned long data);
3197
3198 static ssize_t
3199 safe_delay_show(struct mddev *mddev, char *page)
3200 {
3201 int msec = (mddev->safemode_delay*1000)/HZ;
3202 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3203 }
3204 static ssize_t
3205 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3206 {
3207 unsigned long msec;
3208
3209 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3210 return -EINVAL;
3211 if (msec == 0)
3212 mddev->safemode_delay = 0;
3213 else {
3214 unsigned long old_delay = mddev->safemode_delay;
3215 mddev->safemode_delay = (msec*HZ)/1000;
3216 if (mddev->safemode_delay == 0)
3217 mddev->safemode_delay = 1;
3218 if (mddev->safemode_delay < old_delay || old_delay == 0)
3219 md_safemode_timeout((unsigned long)mddev);
3220 }
3221 return len;
3222 }
3223 static struct md_sysfs_entry md_safe_delay =
3224 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3225
3226 static ssize_t
3227 level_show(struct mddev *mddev, char *page)
3228 {
3229 struct md_personality *p = mddev->pers;
3230 if (p)
3231 return sprintf(page, "%s\n", p->name);
3232 else if (mddev->clevel[0])
3233 return sprintf(page, "%s\n", mddev->clevel);
3234 else if (mddev->level != LEVEL_NONE)
3235 return sprintf(page, "%d\n", mddev->level);
3236 else
3237 return 0;
3238 }
3239
3240 static ssize_t
3241 level_store(struct mddev *mddev, const char *buf, size_t len)
3242 {
3243 char clevel[16];
3244 ssize_t rv = len;
3245 struct md_personality *pers;
3246 long level;
3247 void *priv;
3248 struct md_rdev *rdev;
3249
3250 if (mddev->pers == NULL) {
3251 if (len == 0)
3252 return 0;
3253 if (len >= sizeof(mddev->clevel))
3254 return -ENOSPC;
3255 strncpy(mddev->clevel, buf, len);
3256 if (mddev->clevel[len-1] == '\n')
3257 len--;
3258 mddev->clevel[len] = 0;
3259 mddev->level = LEVEL_NONE;
3260 return rv;
3261 }
3262 if (mddev->ro)
3263 return -EROFS;
3264
3265 /* request to change the personality. Need to ensure:
3266 * - array is not engaged in resync/recovery/reshape
3267 * - old personality can be suspended
3268 * - new personality will access other array.
3269 */
3270
3271 if (mddev->sync_thread ||
3272 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3273 mddev->reshape_position != MaxSector ||
3274 mddev->sysfs_active)
3275 return -EBUSY;
3276
3277 if (!mddev->pers->quiesce) {
3278 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3279 mdname(mddev), mddev->pers->name);
3280 return -EINVAL;
3281 }
3282
3283 /* Now find the new personality */
3284 if (len == 0 || len >= sizeof(clevel))
3285 return -EINVAL;
3286 strncpy(clevel, buf, len);
3287 if (clevel[len-1] == '\n')
3288 len--;
3289 clevel[len] = 0;
3290 if (kstrtol(clevel, 10, &level))
3291 level = LEVEL_NONE;
3292
3293 if (request_module("md-%s", clevel) != 0)
3294 request_module("md-level-%s", clevel);
3295 spin_lock(&pers_lock);
3296 pers = find_pers(level, clevel);
3297 if (!pers || !try_module_get(pers->owner)) {
3298 spin_unlock(&pers_lock);
3299 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3300 return -EINVAL;
3301 }
3302 spin_unlock(&pers_lock);
3303
3304 if (pers == mddev->pers) {
3305 /* Nothing to do! */
3306 module_put(pers->owner);
3307 return rv;
3308 }
3309 if (!pers->takeover) {
3310 module_put(pers->owner);
3311 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3312 mdname(mddev), clevel);
3313 return -EINVAL;
3314 }
3315
3316 rdev_for_each(rdev, mddev)
3317 rdev->new_raid_disk = rdev->raid_disk;
3318
3319 /* ->takeover must set new_* and/or delta_disks
3320 * if it succeeds, and may set them when it fails.
3321 */
3322 priv = pers->takeover(mddev);
3323 if (IS_ERR(priv)) {
3324 mddev->new_level = mddev->level;
3325 mddev->new_layout = mddev->layout;
3326 mddev->new_chunk_sectors = mddev->chunk_sectors;
3327 mddev->raid_disks -= mddev->delta_disks;
3328 mddev->delta_disks = 0;
3329 mddev->reshape_backwards = 0;
3330 module_put(pers->owner);
3331 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3332 mdname(mddev), clevel);
3333 return PTR_ERR(priv);
3334 }
3335
3336 /* Looks like we have a winner */
3337 mddev_suspend(mddev);
3338 mddev->pers->stop(mddev);
3339
3340 if (mddev->pers->sync_request == NULL &&
3341 pers->sync_request != NULL) {
3342 /* need to add the md_redundancy_group */
3343 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3344 printk(KERN_WARNING
3345 "md: cannot register extra attributes for %s\n",
3346 mdname(mddev));
3347 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3348 }
3349 if (mddev->pers->sync_request != NULL &&
3350 pers->sync_request == NULL) {
3351 /* need to remove the md_redundancy_group */
3352 if (mddev->to_remove == NULL)
3353 mddev->to_remove = &md_redundancy_group;
3354 }
3355
3356 if (mddev->pers->sync_request == NULL &&
3357 mddev->external) {
3358 /* We are converting from a no-redundancy array
3359 * to a redundancy array and metadata is managed
3360 * externally so we need to be sure that writes
3361 * won't block due to a need to transition
3362 * clean->dirty
3363 * until external management is started.
3364 */
3365 mddev->in_sync = 0;
3366 mddev->safemode_delay = 0;
3367 mddev->safemode = 0;
3368 }
3369
3370 rdev_for_each(rdev, mddev) {
3371 if (rdev->raid_disk < 0)
3372 continue;
3373 if (rdev->new_raid_disk >= mddev->raid_disks)
3374 rdev->new_raid_disk = -1;
3375 if (rdev->new_raid_disk == rdev->raid_disk)
3376 continue;
3377 sysfs_unlink_rdev(mddev, rdev);
3378 }
3379 rdev_for_each(rdev, mddev) {
3380 if (rdev->raid_disk < 0)
3381 continue;
3382 if (rdev->new_raid_disk == rdev->raid_disk)
3383 continue;
3384 rdev->raid_disk = rdev->new_raid_disk;
3385 if (rdev->raid_disk < 0)
3386 clear_bit(In_sync, &rdev->flags);
3387 else {
3388 if (sysfs_link_rdev(mddev, rdev))
3389 printk(KERN_WARNING "md: cannot register rd%d"
3390 " for %s after level change\n",
3391 rdev->raid_disk, mdname(mddev));
3392 }
3393 }
3394
3395 module_put(mddev->pers->owner);
3396 mddev->pers = pers;
3397 mddev->private = priv;
3398 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3399 mddev->level = mddev->new_level;
3400 mddev->layout = mddev->new_layout;
3401 mddev->chunk_sectors = mddev->new_chunk_sectors;
3402 mddev->delta_disks = 0;
3403 mddev->reshape_backwards = 0;
3404 mddev->degraded = 0;
3405 if (mddev->pers->sync_request == NULL) {
3406 /* this is now an array without redundancy, so
3407 * it must always be in_sync
3408 */
3409 mddev->in_sync = 1;
3410 del_timer_sync(&mddev->safemode_timer);
3411 }
3412 blk_set_stacking_limits(&mddev->queue->limits);
3413 pers->run(mddev);
3414 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3415 mddev_resume(mddev);
3416 if (!mddev->thread)
3417 md_update_sb(mddev, 1);
3418 sysfs_notify(&mddev->kobj, NULL, "level");
3419 md_new_event(mddev);
3420 return rv;
3421 }
3422
3423 static struct md_sysfs_entry md_level =
3424 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3425
3426 static ssize_t
3427 layout_show(struct mddev *mddev, char *page)
3428 {
3429 /* just a number, not meaningful for all levels */
3430 if (mddev->reshape_position != MaxSector &&
3431 mddev->layout != mddev->new_layout)
3432 return sprintf(page, "%d (%d)\n",
3433 mddev->new_layout, mddev->layout);
3434 return sprintf(page, "%d\n", mddev->layout);
3435 }
3436
3437 static ssize_t
3438 layout_store(struct mddev *mddev, const char *buf, size_t len)
3439 {
3440 char *e;
3441 unsigned long n = simple_strtoul(buf, &e, 10);
3442
3443 if (!*buf || (*e && *e != '\n'))
3444 return -EINVAL;
3445
3446 if (mddev->pers) {
3447 int err;
3448 if (mddev->pers->check_reshape == NULL)
3449 return -EBUSY;
3450 if (mddev->ro)
3451 return -EROFS;
3452 mddev->new_layout = n;
3453 err = mddev->pers->check_reshape(mddev);
3454 if (err) {
3455 mddev->new_layout = mddev->layout;
3456 return err;
3457 }
3458 } else {
3459 mddev->new_layout = n;
3460 if (mddev->reshape_position == MaxSector)
3461 mddev->layout = n;
3462 }
3463 return len;
3464 }
3465 static struct md_sysfs_entry md_layout =
3466 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3467
3468 static ssize_t
3469 raid_disks_show(struct mddev *mddev, char *page)
3470 {
3471 if (mddev->raid_disks == 0)
3472 return 0;
3473 if (mddev->reshape_position != MaxSector &&
3474 mddev->delta_disks != 0)
3475 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3476 mddev->raid_disks - mddev->delta_disks);
3477 return sprintf(page, "%d\n", mddev->raid_disks);
3478 }
3479
3480 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3481
3482 static ssize_t
3483 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3484 {
3485 char *e;
3486 int rv = 0;
3487 unsigned long n = simple_strtoul(buf, &e, 10);
3488
3489 if (!*buf || (*e && *e != '\n'))
3490 return -EINVAL;
3491
3492 if (mddev->pers)
3493 rv = update_raid_disks(mddev, n);
3494 else if (mddev->reshape_position != MaxSector) {
3495 struct md_rdev *rdev;
3496 int olddisks = mddev->raid_disks - mddev->delta_disks;
3497
3498 rdev_for_each(rdev, mddev) {
3499 if (olddisks < n &&
3500 rdev->data_offset < rdev->new_data_offset)
3501 return -EINVAL;
3502 if (olddisks > n &&
3503 rdev->data_offset > rdev->new_data_offset)
3504 return -EINVAL;
3505 }
3506 mddev->delta_disks = n - olddisks;
3507 mddev->raid_disks = n;
3508 mddev->reshape_backwards = (mddev->delta_disks < 0);
3509 } else
3510 mddev->raid_disks = n;
3511 return rv ? rv : len;
3512 }
3513 static struct md_sysfs_entry md_raid_disks =
3514 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3515
3516 static ssize_t
3517 chunk_size_show(struct mddev *mddev, char *page)
3518 {
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->chunk_sectors != mddev->new_chunk_sectors)
3521 return sprintf(page, "%d (%d)\n",
3522 mddev->new_chunk_sectors << 9,
3523 mddev->chunk_sectors << 9);
3524 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3525 }
3526
3527 static ssize_t
3528 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3529 {
3530 char *e;
3531 unsigned long n = simple_strtoul(buf, &e, 10);
3532
3533 if (!*buf || (*e && *e != '\n'))
3534 return -EINVAL;
3535
3536 if (mddev->pers) {
3537 int err;
3538 if (mddev->pers->check_reshape == NULL)
3539 return -EBUSY;
3540 if (mddev->ro)
3541 return -EROFS;
3542 mddev->new_chunk_sectors = n >> 9;
3543 err = mddev->pers->check_reshape(mddev);
3544 if (err) {
3545 mddev->new_chunk_sectors = mddev->chunk_sectors;
3546 return err;
3547 }
3548 } else {
3549 mddev->new_chunk_sectors = n >> 9;
3550 if (mddev->reshape_position == MaxSector)
3551 mddev->chunk_sectors = n >> 9;
3552 }
3553 return len;
3554 }
3555 static struct md_sysfs_entry md_chunk_size =
3556 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3557
3558 static ssize_t
3559 resync_start_show(struct mddev *mddev, char *page)
3560 {
3561 if (mddev->recovery_cp == MaxSector)
3562 return sprintf(page, "none\n");
3563 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3564 }
3565
3566 static ssize_t
3567 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3568 {
3569 char *e;
3570 unsigned long long n = simple_strtoull(buf, &e, 10);
3571
3572 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3573 return -EBUSY;
3574 if (cmd_match(buf, "none"))
3575 n = MaxSector;
3576 else if (!*buf || (*e && *e != '\n'))
3577 return -EINVAL;
3578
3579 mddev->recovery_cp = n;
3580 if (mddev->pers)
3581 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3582 return len;
3583 }
3584 static struct md_sysfs_entry md_resync_start =
3585 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3586
3587 /*
3588 * The array state can be:
3589 *
3590 * clear
3591 * No devices, no size, no level
3592 * Equivalent to STOP_ARRAY ioctl
3593 * inactive
3594 * May have some settings, but array is not active
3595 * all IO results in error
3596 * When written, doesn't tear down array, but just stops it
3597 * suspended (not supported yet)
3598 * All IO requests will block. The array can be reconfigured.
3599 * Writing this, if accepted, will block until array is quiescent
3600 * readonly
3601 * no resync can happen. no superblocks get written.
3602 * write requests fail
3603 * read-auto
3604 * like readonly, but behaves like 'clean' on a write request.
3605 *
3606 * clean - no pending writes, but otherwise active.
3607 * When written to inactive array, starts without resync
3608 * If a write request arrives then
3609 * if metadata is known, mark 'dirty' and switch to 'active'.
3610 * if not known, block and switch to write-pending
3611 * If written to an active array that has pending writes, then fails.
3612 * active
3613 * fully active: IO and resync can be happening.
3614 * When written to inactive array, starts with resync
3615 *
3616 * write-pending
3617 * clean, but writes are blocked waiting for 'active' to be written.
3618 *
3619 * active-idle
3620 * like active, but no writes have been seen for a while (100msec).
3621 *
3622 */
3623 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3624 write_pending, active_idle, bad_word};
3625 static char *array_states[] = {
3626 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3627 "write-pending", "active-idle", NULL };
3628
3629 static int match_word(const char *word, char **list)
3630 {
3631 int n;
3632 for (n=0; list[n]; n++)
3633 if (cmd_match(word, list[n]))
3634 break;
3635 return n;
3636 }
3637
3638 static ssize_t
3639 array_state_show(struct mddev *mddev, char *page)
3640 {
3641 enum array_state st = inactive;
3642
3643 if (mddev->pers)
3644 switch(mddev->ro) {
3645 case 1:
3646 st = readonly;
3647 break;
3648 case 2:
3649 st = read_auto;
3650 break;
3651 case 0:
3652 if (mddev->in_sync)
3653 st = clean;
3654 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3655 st = write_pending;
3656 else if (mddev->safemode)
3657 st = active_idle;
3658 else
3659 st = active;
3660 }
3661 else {
3662 if (list_empty(&mddev->disks) &&
3663 mddev->raid_disks == 0 &&
3664 mddev->dev_sectors == 0)
3665 st = clear;
3666 else
3667 st = inactive;
3668 }
3669 return sprintf(page, "%s\n", array_states[st]);
3670 }
3671
3672 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3673 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3674 static int do_md_run(struct mddev *mddev);
3675 static int restart_array(struct mddev *mddev);
3676
3677 static ssize_t
3678 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3679 {
3680 int err = -EINVAL;
3681 enum array_state st = match_word(buf, array_states);
3682 switch(st) {
3683 case bad_word:
3684 break;
3685 case clear:
3686 /* stopping an active array */
3687 err = do_md_stop(mddev, 0, NULL);
3688 break;
3689 case inactive:
3690 /* stopping an active array */
3691 if (mddev->pers)
3692 err = do_md_stop(mddev, 2, NULL);
3693 else
3694 err = 0; /* already inactive */
3695 break;
3696 case suspended:
3697 break; /* not supported yet */
3698 case readonly:
3699 if (mddev->pers)
3700 err = md_set_readonly(mddev, NULL);
3701 else {
3702 mddev->ro = 1;
3703 set_disk_ro(mddev->gendisk, 1);
3704 err = do_md_run(mddev);
3705 }
3706 break;
3707 case read_auto:
3708 if (mddev->pers) {
3709 if (mddev->ro == 0)
3710 err = md_set_readonly(mddev, NULL);
3711 else if (mddev->ro == 1)
3712 err = restart_array(mddev);
3713 if (err == 0) {
3714 mddev->ro = 2;
3715 set_disk_ro(mddev->gendisk, 0);
3716 }
3717 } else {
3718 mddev->ro = 2;
3719 err = do_md_run(mddev);
3720 }
3721 break;
3722 case clean:
3723 if (mddev->pers) {
3724 restart_array(mddev);
3725 spin_lock_irq(&mddev->write_lock);
3726 if (atomic_read(&mddev->writes_pending) == 0) {
3727 if (mddev->in_sync == 0) {
3728 mddev->in_sync = 1;
3729 if (mddev->safemode == 1)
3730 mddev->safemode = 0;
3731 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3732 }
3733 err = 0;
3734 } else
3735 err = -EBUSY;
3736 spin_unlock_irq(&mddev->write_lock);
3737 } else
3738 err = -EINVAL;
3739 break;
3740 case active:
3741 if (mddev->pers) {
3742 restart_array(mddev);
3743 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3744 wake_up(&mddev->sb_wait);
3745 err = 0;
3746 } else {
3747 mddev->ro = 0;
3748 set_disk_ro(mddev->gendisk, 0);
3749 err = do_md_run(mddev);
3750 }
3751 break;
3752 case write_pending:
3753 case active_idle:
3754 /* these cannot be set */
3755 break;
3756 }
3757 if (err)
3758 return err;
3759 else {
3760 if (mddev->hold_active == UNTIL_IOCTL)
3761 mddev->hold_active = 0;
3762 sysfs_notify_dirent_safe(mddev->sysfs_state);
3763 return len;
3764 }
3765 }
3766 static struct md_sysfs_entry md_array_state =
3767 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3768
3769 static ssize_t
3770 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3771 return sprintf(page, "%d\n",
3772 atomic_read(&mddev->max_corr_read_errors));
3773 }
3774
3775 static ssize_t
3776 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3777 {
3778 char *e;
3779 unsigned long n = simple_strtoul(buf, &e, 10);
3780
3781 if (*buf && (*e == 0 || *e == '\n')) {
3782 atomic_set(&mddev->max_corr_read_errors, n);
3783 return len;
3784 }
3785 return -EINVAL;
3786 }
3787
3788 static struct md_sysfs_entry max_corr_read_errors =
3789 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3790 max_corrected_read_errors_store);
3791
3792 static ssize_t
3793 null_show(struct mddev *mddev, char *page)
3794 {
3795 return -EINVAL;
3796 }
3797
3798 static ssize_t
3799 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3800 {
3801 /* buf must be %d:%d\n? giving major and minor numbers */
3802 /* The new device is added to the array.
3803 * If the array has a persistent superblock, we read the
3804 * superblock to initialise info and check validity.
3805 * Otherwise, only checking done is that in bind_rdev_to_array,
3806 * which mainly checks size.
3807 */
3808 char *e;
3809 int major = simple_strtoul(buf, &e, 10);
3810 int minor;
3811 dev_t dev;
3812 struct md_rdev *rdev;
3813 int err;
3814
3815 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3816 return -EINVAL;
3817 minor = simple_strtoul(e+1, &e, 10);
3818 if (*e && *e != '\n')
3819 return -EINVAL;
3820 dev = MKDEV(major, minor);
3821 if (major != MAJOR(dev) ||
3822 minor != MINOR(dev))
3823 return -EOVERFLOW;
3824
3825 if (mddev->persistent) {
3826 rdev = md_import_device(dev, mddev->major_version,
3827 mddev->minor_version);
3828 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3829 struct md_rdev *rdev0
3830 = list_entry(mddev->disks.next,
3831 struct md_rdev, same_set);
3832 err = super_types[mddev->major_version]
3833 .load_super(rdev, rdev0, mddev->minor_version);
3834 if (err < 0)
3835 goto out;
3836 }
3837 } else if (mddev->external)
3838 rdev = md_import_device(dev, -2, -1);
3839 else
3840 rdev = md_import_device(dev, -1, -1);
3841
3842 if (IS_ERR(rdev))
3843 return PTR_ERR(rdev);
3844 err = bind_rdev_to_array(rdev, mddev);
3845 out:
3846 if (err)
3847 export_rdev(rdev);
3848 return err ? err : len;
3849 }
3850
3851 static struct md_sysfs_entry md_new_device =
3852 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3853
3854 static ssize_t
3855 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3856 {
3857 char *end;
3858 unsigned long chunk, end_chunk;
3859
3860 if (!mddev->bitmap)
3861 goto out;
3862 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3863 while (*buf) {
3864 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3865 if (buf == end) break;
3866 if (*end == '-') { /* range */
3867 buf = end + 1;
3868 end_chunk = simple_strtoul(buf, &end, 0);
3869 if (buf == end) break;
3870 }
3871 if (*end && !isspace(*end)) break;
3872 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3873 buf = skip_spaces(end);
3874 }
3875 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3876 out:
3877 return len;
3878 }
3879
3880 static struct md_sysfs_entry md_bitmap =
3881 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3882
3883 static ssize_t
3884 size_show(struct mddev *mddev, char *page)
3885 {
3886 return sprintf(page, "%llu\n",
3887 (unsigned long long)mddev->dev_sectors / 2);
3888 }
3889
3890 static int update_size(struct mddev *mddev, sector_t num_sectors);
3891
3892 static ssize_t
3893 size_store(struct mddev *mddev, const char *buf, size_t len)
3894 {
3895 /* If array is inactive, we can reduce the component size, but
3896 * not increase it (except from 0).
3897 * If array is active, we can try an on-line resize
3898 */
3899 sector_t sectors;
3900 int err = strict_blocks_to_sectors(buf, &sectors);
3901
3902 if (err < 0)
3903 return err;
3904 if (mddev->pers) {
3905 err = update_size(mddev, sectors);
3906 md_update_sb(mddev, 1);
3907 } else {
3908 if (mddev->dev_sectors == 0 ||
3909 mddev->dev_sectors > sectors)
3910 mddev->dev_sectors = sectors;
3911 else
3912 err = -ENOSPC;
3913 }
3914 return err ? err : len;
3915 }
3916
3917 static struct md_sysfs_entry md_size =
3918 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3919
3920 /* Metadata version.
3921 * This is one of
3922 * 'none' for arrays with no metadata (good luck...)
3923 * 'external' for arrays with externally managed metadata,
3924 * or N.M for internally known formats
3925 */
3926 static ssize_t
3927 metadata_show(struct mddev *mddev, char *page)
3928 {
3929 if (mddev->persistent)
3930 return sprintf(page, "%d.%d\n",
3931 mddev->major_version, mddev->minor_version);
3932 else if (mddev->external)
3933 return sprintf(page, "external:%s\n", mddev->metadata_type);
3934 else
3935 return sprintf(page, "none\n");
3936 }
3937
3938 static ssize_t
3939 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3940 {
3941 int major, minor;
3942 char *e;
3943 /* Changing the details of 'external' metadata is
3944 * always permitted. Otherwise there must be
3945 * no devices attached to the array.
3946 */
3947 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3948 ;
3949 else if (!list_empty(&mddev->disks))
3950 return -EBUSY;
3951
3952 if (cmd_match(buf, "none")) {
3953 mddev->persistent = 0;
3954 mddev->external = 0;
3955 mddev->major_version = 0;
3956 mddev->minor_version = 90;
3957 return len;
3958 }
3959 if (strncmp(buf, "external:", 9) == 0) {
3960 size_t namelen = len-9;
3961 if (namelen >= sizeof(mddev->metadata_type))
3962 namelen = sizeof(mddev->metadata_type)-1;
3963 strncpy(mddev->metadata_type, buf+9, namelen);
3964 mddev->metadata_type[namelen] = 0;
3965 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3966 mddev->metadata_type[--namelen] = 0;
3967 mddev->persistent = 0;
3968 mddev->external = 1;
3969 mddev->major_version = 0;
3970 mddev->minor_version = 90;
3971 return len;
3972 }
3973 major = simple_strtoul(buf, &e, 10);
3974 if (e==buf || *e != '.')
3975 return -EINVAL;
3976 buf = e+1;
3977 minor = simple_strtoul(buf, &e, 10);
3978 if (e==buf || (*e && *e != '\n') )
3979 return -EINVAL;
3980 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3981 return -ENOENT;
3982 mddev->major_version = major;
3983 mddev->minor_version = minor;
3984 mddev->persistent = 1;
3985 mddev->external = 0;
3986 return len;
3987 }
3988
3989 static struct md_sysfs_entry md_metadata =
3990 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3991
3992 static ssize_t
3993 action_show(struct mddev *mddev, char *page)
3994 {
3995 char *type = "idle";
3996 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3997 type = "frozen";
3998 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3999 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4000 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4001 type = "reshape";
4002 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4003 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4004 type = "resync";
4005 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4006 type = "check";
4007 else
4008 type = "repair";
4009 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4010 type = "recover";
4011 }
4012 return sprintf(page, "%s\n", type);
4013 }
4014
4015 static ssize_t
4016 action_store(struct mddev *mddev, const char *page, size_t len)
4017 {
4018 if (!mddev->pers || !mddev->pers->sync_request)
4019 return -EINVAL;
4020
4021 if (cmd_match(page, "frozen"))
4022 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4023 else
4024 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4025
4026 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4027 flush_workqueue(md_misc_wq);
4028 if (mddev->sync_thread) {
4029 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4030 md_reap_sync_thread(mddev);
4031 }
4032 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4034 return -EBUSY;
4035 else if (cmd_match(page, "resync"))
4036 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4037 else if (cmd_match(page, "recover")) {
4038 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4039 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4040 } else if (cmd_match(page, "reshape")) {
4041 int err;
4042 if (mddev->pers->start_reshape == NULL)
4043 return -EINVAL;
4044 err = mddev->pers->start_reshape(mddev);
4045 if (err)
4046 return err;
4047 sysfs_notify(&mddev->kobj, NULL, "degraded");
4048 } else {
4049 if (cmd_match(page, "check"))
4050 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4051 else if (!cmd_match(page, "repair"))
4052 return -EINVAL;
4053 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4054 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4055 }
4056 if (mddev->ro == 2) {
4057 /* A write to sync_action is enough to justify
4058 * canceling read-auto mode
4059 */
4060 mddev->ro = 0;
4061 md_wakeup_thread(mddev->sync_thread);
4062 }
4063 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4064 md_wakeup_thread(mddev->thread);
4065 sysfs_notify_dirent_safe(mddev->sysfs_action);
4066 return len;
4067 }
4068
4069 static struct md_sysfs_entry md_scan_mode =
4070 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4071
4072 static ssize_t
4073 last_sync_action_show(struct mddev *mddev, char *page)
4074 {
4075 return sprintf(page, "%s\n", mddev->last_sync_action);
4076 }
4077
4078 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4079
4080 static ssize_t
4081 mismatch_cnt_show(struct mddev *mddev, char *page)
4082 {
4083 return sprintf(page, "%llu\n",
4084 (unsigned long long)
4085 atomic64_read(&mddev->resync_mismatches));
4086 }
4087
4088 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4089
4090 static ssize_t
4091 sync_min_show(struct mddev *mddev, char *page)
4092 {
4093 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4094 mddev->sync_speed_min ? "local": "system");
4095 }
4096
4097 static ssize_t
4098 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4099 {
4100 int min;
4101 char *e;
4102 if (strncmp(buf, "system", 6)==0) {
4103 mddev->sync_speed_min = 0;
4104 return len;
4105 }
4106 min = simple_strtoul(buf, &e, 10);
4107 if (buf == e || (*e && *e != '\n') || min <= 0)
4108 return -EINVAL;
4109 mddev->sync_speed_min = min;
4110 return len;
4111 }
4112
4113 static struct md_sysfs_entry md_sync_min =
4114 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4115
4116 static ssize_t
4117 sync_max_show(struct mddev *mddev, char *page)
4118 {
4119 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4120 mddev->sync_speed_max ? "local": "system");
4121 }
4122
4123 static ssize_t
4124 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4125 {
4126 int max;
4127 char *e;
4128 if (strncmp(buf, "system", 6)==0) {
4129 mddev->sync_speed_max = 0;
4130 return len;
4131 }
4132 max = simple_strtoul(buf, &e, 10);
4133 if (buf == e || (*e && *e != '\n') || max <= 0)
4134 return -EINVAL;
4135 mddev->sync_speed_max = max;
4136 return len;
4137 }
4138
4139 static struct md_sysfs_entry md_sync_max =
4140 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4141
4142 static ssize_t
4143 degraded_show(struct mddev *mddev, char *page)
4144 {
4145 return sprintf(page, "%d\n", mddev->degraded);
4146 }
4147 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4148
4149 static ssize_t
4150 sync_force_parallel_show(struct mddev *mddev, char *page)
4151 {
4152 return sprintf(page, "%d\n", mddev->parallel_resync);
4153 }
4154
4155 static ssize_t
4156 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4157 {
4158 long n;
4159
4160 if (kstrtol(buf, 10, &n))
4161 return -EINVAL;
4162
4163 if (n != 0 && n != 1)
4164 return -EINVAL;
4165
4166 mddev->parallel_resync = n;
4167
4168 if (mddev->sync_thread)
4169 wake_up(&resync_wait);
4170
4171 return len;
4172 }
4173
4174 /* force parallel resync, even with shared block devices */
4175 static struct md_sysfs_entry md_sync_force_parallel =
4176 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4177 sync_force_parallel_show, sync_force_parallel_store);
4178
4179 static ssize_t
4180 sync_speed_show(struct mddev *mddev, char *page)
4181 {
4182 unsigned long resync, dt, db;
4183 if (mddev->curr_resync == 0)
4184 return sprintf(page, "none\n");
4185 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4186 dt = (jiffies - mddev->resync_mark) / HZ;
4187 if (!dt) dt++;
4188 db = resync - mddev->resync_mark_cnt;
4189 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4190 }
4191
4192 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4193
4194 static ssize_t
4195 sync_completed_show(struct mddev *mddev, char *page)
4196 {
4197 unsigned long long max_sectors, resync;
4198
4199 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4200 return sprintf(page, "none\n");
4201
4202 if (mddev->curr_resync == 1 ||
4203 mddev->curr_resync == 2)
4204 return sprintf(page, "delayed\n");
4205
4206 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4207 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4208 max_sectors = mddev->resync_max_sectors;
4209 else
4210 max_sectors = mddev->dev_sectors;
4211
4212 resync = mddev->curr_resync_completed;
4213 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4214 }
4215
4216 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4217
4218 static ssize_t
4219 min_sync_show(struct mddev *mddev, char *page)
4220 {
4221 return sprintf(page, "%llu\n",
4222 (unsigned long long)mddev->resync_min);
4223 }
4224 static ssize_t
4225 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4226 {
4227 unsigned long long min;
4228 if (kstrtoull(buf, 10, &min))
4229 return -EINVAL;
4230 if (min > mddev->resync_max)
4231 return -EINVAL;
4232 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4233 return -EBUSY;
4234
4235 /* Must be a multiple of chunk_size */
4236 if (mddev->chunk_sectors) {
4237 sector_t temp = min;
4238 if (sector_div(temp, mddev->chunk_sectors))
4239 return -EINVAL;
4240 }
4241 mddev->resync_min = min;
4242
4243 return len;
4244 }
4245
4246 static struct md_sysfs_entry md_min_sync =
4247 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4248
4249 static ssize_t
4250 max_sync_show(struct mddev *mddev, char *page)
4251 {
4252 if (mddev->resync_max == MaxSector)
4253 return sprintf(page, "max\n");
4254 else
4255 return sprintf(page, "%llu\n",
4256 (unsigned long long)mddev->resync_max);
4257 }
4258 static ssize_t
4259 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4260 {
4261 if (strncmp(buf, "max", 3) == 0)
4262 mddev->resync_max = MaxSector;
4263 else {
4264 unsigned long long max;
4265 if (kstrtoull(buf, 10, &max))
4266 return -EINVAL;
4267 if (max < mddev->resync_min)
4268 return -EINVAL;
4269 if (max < mddev->resync_max &&
4270 mddev->ro == 0 &&
4271 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4272 return -EBUSY;
4273
4274 /* Must be a multiple of chunk_size */
4275 if (mddev->chunk_sectors) {
4276 sector_t temp = max;
4277 if (sector_div(temp, mddev->chunk_sectors))
4278 return -EINVAL;
4279 }
4280 mddev->resync_max = max;
4281 }
4282 wake_up(&mddev->recovery_wait);
4283 return len;
4284 }
4285
4286 static struct md_sysfs_entry md_max_sync =
4287 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4288
4289 static ssize_t
4290 suspend_lo_show(struct mddev *mddev, char *page)
4291 {
4292 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4293 }
4294
4295 static ssize_t
4296 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4297 {
4298 char *e;
4299 unsigned long long new = simple_strtoull(buf, &e, 10);
4300 unsigned long long old = mddev->suspend_lo;
4301
4302 if (mddev->pers == NULL ||
4303 mddev->pers->quiesce == NULL)
4304 return -EINVAL;
4305 if (buf == e || (*e && *e != '\n'))
4306 return -EINVAL;
4307
4308 mddev->suspend_lo = new;
4309 if (new >= old)
4310 /* Shrinking suspended region */
4311 mddev->pers->quiesce(mddev, 2);
4312 else {
4313 /* Expanding suspended region - need to wait */
4314 mddev->pers->quiesce(mddev, 1);
4315 mddev->pers->quiesce(mddev, 0);
4316 }
4317 return len;
4318 }
4319 static struct md_sysfs_entry md_suspend_lo =
4320 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4321
4322 static ssize_t
4323 suspend_hi_show(struct mddev *mddev, char *page)
4324 {
4325 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4326 }
4327
4328 static ssize_t
4329 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4330 {
4331 char *e;
4332 unsigned long long new = simple_strtoull(buf, &e, 10);
4333 unsigned long long old = mddev->suspend_hi;
4334
4335 if (mddev->pers == NULL ||
4336 mddev->pers->quiesce == NULL)
4337 return -EINVAL;
4338 if (buf == e || (*e && *e != '\n'))
4339 return -EINVAL;
4340
4341 mddev->suspend_hi = new;
4342 if (new <= old)
4343 /* Shrinking suspended region */
4344 mddev->pers->quiesce(mddev, 2);
4345 else {
4346 /* Expanding suspended region - need to wait */
4347 mddev->pers->quiesce(mddev, 1);
4348 mddev->pers->quiesce(mddev, 0);
4349 }
4350 return len;
4351 }
4352 static struct md_sysfs_entry md_suspend_hi =
4353 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4354
4355 static ssize_t
4356 reshape_position_show(struct mddev *mddev, char *page)
4357 {
4358 if (mddev->reshape_position != MaxSector)
4359 return sprintf(page, "%llu\n",
4360 (unsigned long long)mddev->reshape_position);
4361 strcpy(page, "none\n");
4362 return 5;
4363 }
4364
4365 static ssize_t
4366 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4367 {
4368 struct md_rdev *rdev;
4369 char *e;
4370 unsigned long long new = simple_strtoull(buf, &e, 10);
4371 if (mddev->pers)
4372 return -EBUSY;
4373 if (buf == e || (*e && *e != '\n'))
4374 return -EINVAL;
4375 mddev->reshape_position = new;
4376 mddev->delta_disks = 0;
4377 mddev->reshape_backwards = 0;
4378 mddev->new_level = mddev->level;
4379 mddev->new_layout = mddev->layout;
4380 mddev->new_chunk_sectors = mddev->chunk_sectors;
4381 rdev_for_each(rdev, mddev)
4382 rdev->new_data_offset = rdev->data_offset;
4383 return len;
4384 }
4385
4386 static struct md_sysfs_entry md_reshape_position =
4387 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4388 reshape_position_store);
4389
4390 static ssize_t
4391 reshape_direction_show(struct mddev *mddev, char *page)
4392 {
4393 return sprintf(page, "%s\n",
4394 mddev->reshape_backwards ? "backwards" : "forwards");
4395 }
4396
4397 static ssize_t
4398 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4399 {
4400 int backwards = 0;
4401 if (cmd_match(buf, "forwards"))
4402 backwards = 0;
4403 else if (cmd_match(buf, "backwards"))
4404 backwards = 1;
4405 else
4406 return -EINVAL;
4407 if (mddev->reshape_backwards == backwards)
4408 return len;
4409
4410 /* check if we are allowed to change */
4411 if (mddev->delta_disks)
4412 return -EBUSY;
4413
4414 if (mddev->persistent &&
4415 mddev->major_version == 0)
4416 return -EINVAL;
4417
4418 mddev->reshape_backwards = backwards;
4419 return len;
4420 }
4421
4422 static struct md_sysfs_entry md_reshape_direction =
4423 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4424 reshape_direction_store);
4425
4426 static ssize_t
4427 array_size_show(struct mddev *mddev, char *page)
4428 {
4429 if (mddev->external_size)
4430 return sprintf(page, "%llu\n",
4431 (unsigned long long)mddev->array_sectors/2);
4432 else
4433 return sprintf(page, "default\n");
4434 }
4435
4436 static ssize_t
4437 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 sector_t sectors;
4440
4441 if (strncmp(buf, "default", 7) == 0) {
4442 if (mddev->pers)
4443 sectors = mddev->pers->size(mddev, 0, 0);
4444 else
4445 sectors = mddev->array_sectors;
4446
4447 mddev->external_size = 0;
4448 } else {
4449 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4450 return -EINVAL;
4451 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4452 return -E2BIG;
4453
4454 mddev->external_size = 1;
4455 }
4456
4457 mddev->array_sectors = sectors;
4458 if (mddev->pers) {
4459 set_capacity(mddev->gendisk, mddev->array_sectors);
4460 revalidate_disk(mddev->gendisk);
4461 }
4462 return len;
4463 }
4464
4465 static struct md_sysfs_entry md_array_size =
4466 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4467 array_size_store);
4468
4469 static struct attribute *md_default_attrs[] = {
4470 &md_level.attr,
4471 &md_layout.attr,
4472 &md_raid_disks.attr,
4473 &md_chunk_size.attr,
4474 &md_size.attr,
4475 &md_resync_start.attr,
4476 &md_metadata.attr,
4477 &md_new_device.attr,
4478 &md_safe_delay.attr,
4479 &md_array_state.attr,
4480 &md_reshape_position.attr,
4481 &md_reshape_direction.attr,
4482 &md_array_size.attr,
4483 &max_corr_read_errors.attr,
4484 NULL,
4485 };
4486
4487 static struct attribute *md_redundancy_attrs[] = {
4488 &md_scan_mode.attr,
4489 &md_last_scan_mode.attr,
4490 &md_mismatches.attr,
4491 &md_sync_min.attr,
4492 &md_sync_max.attr,
4493 &md_sync_speed.attr,
4494 &md_sync_force_parallel.attr,
4495 &md_sync_completed.attr,
4496 &md_min_sync.attr,
4497 &md_max_sync.attr,
4498 &md_suspend_lo.attr,
4499 &md_suspend_hi.attr,
4500 &md_bitmap.attr,
4501 &md_degraded.attr,
4502 NULL,
4503 };
4504 static struct attribute_group md_redundancy_group = {
4505 .name = NULL,
4506 .attrs = md_redundancy_attrs,
4507 };
4508
4509 static ssize_t
4510 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4511 {
4512 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4513 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4514 ssize_t rv;
4515
4516 if (!entry->show)
4517 return -EIO;
4518 spin_lock(&all_mddevs_lock);
4519 if (list_empty(&mddev->all_mddevs)) {
4520 spin_unlock(&all_mddevs_lock);
4521 return -EBUSY;
4522 }
4523 mddev_get(mddev);
4524 spin_unlock(&all_mddevs_lock);
4525
4526 rv = mddev_lock(mddev);
4527 if (!rv) {
4528 rv = entry->show(mddev, page);
4529 mddev_unlock(mddev);
4530 }
4531 mddev_put(mddev);
4532 return rv;
4533 }
4534
4535 static ssize_t
4536 md_attr_store(struct kobject *kobj, struct attribute *attr,
4537 const char *page, size_t length)
4538 {
4539 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4540 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4541 ssize_t rv;
4542
4543 if (!entry->store)
4544 return -EIO;
4545 if (!capable(CAP_SYS_ADMIN))
4546 return -EACCES;
4547 spin_lock(&all_mddevs_lock);
4548 if (list_empty(&mddev->all_mddevs)) {
4549 spin_unlock(&all_mddevs_lock);
4550 return -EBUSY;
4551 }
4552 mddev_get(mddev);
4553 spin_unlock(&all_mddevs_lock);
4554 if (entry->store == new_dev_store)
4555 flush_workqueue(md_misc_wq);
4556 rv = mddev_lock(mddev);
4557 if (!rv) {
4558 rv = entry->store(mddev, page, length);
4559 mddev_unlock(mddev);
4560 }
4561 mddev_put(mddev);
4562 return rv;
4563 }
4564
4565 static void md_free(struct kobject *ko)
4566 {
4567 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4568
4569 if (mddev->sysfs_state)
4570 sysfs_put(mddev->sysfs_state);
4571
4572 if (mddev->gendisk) {
4573 del_gendisk(mddev->gendisk);
4574 put_disk(mddev->gendisk);
4575 }
4576 if (mddev->queue)
4577 blk_cleanup_queue(mddev->queue);
4578
4579 kfree(mddev);
4580 }
4581
4582 static const struct sysfs_ops md_sysfs_ops = {
4583 .show = md_attr_show,
4584 .store = md_attr_store,
4585 };
4586 static struct kobj_type md_ktype = {
4587 .release = md_free,
4588 .sysfs_ops = &md_sysfs_ops,
4589 .default_attrs = md_default_attrs,
4590 };
4591
4592 int mdp_major = 0;
4593
4594 static void mddev_delayed_delete(struct work_struct *ws)
4595 {
4596 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4597
4598 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4599 kobject_del(&mddev->kobj);
4600 kobject_put(&mddev->kobj);
4601 }
4602
4603 static int md_alloc(dev_t dev, char *name)
4604 {
4605 static DEFINE_MUTEX(disks_mutex);
4606 struct mddev *mddev = mddev_find(dev);
4607 struct gendisk *disk;
4608 int partitioned;
4609 int shift;
4610 int unit;
4611 int error;
4612
4613 if (!mddev)
4614 return -ENODEV;
4615
4616 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4617 shift = partitioned ? MdpMinorShift : 0;
4618 unit = MINOR(mddev->unit) >> shift;
4619
4620 /* wait for any previous instance of this device to be
4621 * completely removed (mddev_delayed_delete).
4622 */
4623 flush_workqueue(md_misc_wq);
4624
4625 mutex_lock(&disks_mutex);
4626 error = -EEXIST;
4627 if (mddev->gendisk)
4628 goto abort;
4629
4630 if (name) {
4631 /* Need to ensure that 'name' is not a duplicate.
4632 */
4633 struct mddev *mddev2;
4634 spin_lock(&all_mddevs_lock);
4635
4636 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4637 if (mddev2->gendisk &&
4638 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4639 spin_unlock(&all_mddevs_lock);
4640 goto abort;
4641 }
4642 spin_unlock(&all_mddevs_lock);
4643 }
4644
4645 error = -ENOMEM;
4646 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4647 if (!mddev->queue)
4648 goto abort;
4649 mddev->queue->queuedata = mddev;
4650
4651 blk_queue_make_request(mddev->queue, md_make_request);
4652 blk_set_stacking_limits(&mddev->queue->limits);
4653
4654 disk = alloc_disk(1 << shift);
4655 if (!disk) {
4656 blk_cleanup_queue(mddev->queue);
4657 mddev->queue = NULL;
4658 goto abort;
4659 }
4660 disk->major = MAJOR(mddev->unit);
4661 disk->first_minor = unit << shift;
4662 if (name)
4663 strcpy(disk->disk_name, name);
4664 else if (partitioned)
4665 sprintf(disk->disk_name, "md_d%d", unit);
4666 else
4667 sprintf(disk->disk_name, "md%d", unit);
4668 disk->fops = &md_fops;
4669 disk->private_data = mddev;
4670 disk->queue = mddev->queue;
4671 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4672 /* Allow extended partitions. This makes the
4673 * 'mdp' device redundant, but we can't really
4674 * remove it now.
4675 */
4676 disk->flags |= GENHD_FL_EXT_DEVT;
4677 mddev->gendisk = disk;
4678 /* As soon as we call add_disk(), another thread could get
4679 * through to md_open, so make sure it doesn't get too far
4680 */
4681 mutex_lock(&mddev->open_mutex);
4682 add_disk(disk);
4683
4684 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4685 &disk_to_dev(disk)->kobj, "%s", "md");
4686 if (error) {
4687 /* This isn't possible, but as kobject_init_and_add is marked
4688 * __must_check, we must do something with the result
4689 */
4690 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4691 disk->disk_name);
4692 error = 0;
4693 }
4694 if (mddev->kobj.sd &&
4695 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4696 printk(KERN_DEBUG "pointless warning\n");
4697 mutex_unlock(&mddev->open_mutex);
4698 abort:
4699 mutex_unlock(&disks_mutex);
4700 if (!error && mddev->kobj.sd) {
4701 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4702 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4703 }
4704 mddev_put(mddev);
4705 return error;
4706 }
4707
4708 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4709 {
4710 md_alloc(dev, NULL);
4711 return NULL;
4712 }
4713
4714 static int add_named_array(const char *val, struct kernel_param *kp)
4715 {
4716 /* val must be "md_*" where * is not all digits.
4717 * We allocate an array with a large free minor number, and
4718 * set the name to val. val must not already be an active name.
4719 */
4720 int len = strlen(val);
4721 char buf[DISK_NAME_LEN];
4722
4723 while (len && val[len-1] == '\n')
4724 len--;
4725 if (len >= DISK_NAME_LEN)
4726 return -E2BIG;
4727 strlcpy(buf, val, len+1);
4728 if (strncmp(buf, "md_", 3) != 0)
4729 return -EINVAL;
4730 return md_alloc(0, buf);
4731 }
4732
4733 static void md_safemode_timeout(unsigned long data)
4734 {
4735 struct mddev *mddev = (struct mddev *) data;
4736
4737 if (!atomic_read(&mddev->writes_pending)) {
4738 mddev->safemode = 1;
4739 if (mddev->external)
4740 sysfs_notify_dirent_safe(mddev->sysfs_state);
4741 }
4742 md_wakeup_thread(mddev->thread);
4743 }
4744
4745 static int start_dirty_degraded;
4746
4747 int md_run(struct mddev *mddev)
4748 {
4749 int err;
4750 struct md_rdev *rdev;
4751 struct md_personality *pers;
4752
4753 if (list_empty(&mddev->disks))
4754 /* cannot run an array with no devices.. */
4755 return -EINVAL;
4756
4757 if (mddev->pers)
4758 return -EBUSY;
4759 /* Cannot run until previous stop completes properly */
4760 if (mddev->sysfs_active)
4761 return -EBUSY;
4762
4763 /*
4764 * Analyze all RAID superblock(s)
4765 */
4766 if (!mddev->raid_disks) {
4767 if (!mddev->persistent)
4768 return -EINVAL;
4769 analyze_sbs(mddev);
4770 }
4771
4772 if (mddev->level != LEVEL_NONE)
4773 request_module("md-level-%d", mddev->level);
4774 else if (mddev->clevel[0])
4775 request_module("md-%s", mddev->clevel);
4776
4777 /*
4778 * Drop all container device buffers, from now on
4779 * the only valid external interface is through the md
4780 * device.
4781 */
4782 rdev_for_each(rdev, mddev) {
4783 if (test_bit(Faulty, &rdev->flags))
4784 continue;
4785 sync_blockdev(rdev->bdev);
4786 invalidate_bdev(rdev->bdev);
4787
4788 /* perform some consistency tests on the device.
4789 * We don't want the data to overlap the metadata,
4790 * Internal Bitmap issues have been handled elsewhere.
4791 */
4792 if (rdev->meta_bdev) {
4793 /* Nothing to check */;
4794 } else if (rdev->data_offset < rdev->sb_start) {
4795 if (mddev->dev_sectors &&
4796 rdev->data_offset + mddev->dev_sectors
4797 > rdev->sb_start) {
4798 printk("md: %s: data overlaps metadata\n",
4799 mdname(mddev));
4800 return -EINVAL;
4801 }
4802 } else {
4803 if (rdev->sb_start + rdev->sb_size/512
4804 > rdev->data_offset) {
4805 printk("md: %s: metadata overlaps data\n",
4806 mdname(mddev));
4807 return -EINVAL;
4808 }
4809 }
4810 sysfs_notify_dirent_safe(rdev->sysfs_state);
4811 }
4812
4813 if (mddev->bio_set == NULL)
4814 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4815
4816 spin_lock(&pers_lock);
4817 pers = find_pers(mddev->level, mddev->clevel);
4818 if (!pers || !try_module_get(pers->owner)) {
4819 spin_unlock(&pers_lock);
4820 if (mddev->level != LEVEL_NONE)
4821 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4822 mddev->level);
4823 else
4824 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4825 mddev->clevel);
4826 return -EINVAL;
4827 }
4828 mddev->pers = pers;
4829 spin_unlock(&pers_lock);
4830 if (mddev->level != pers->level) {
4831 mddev->level = pers->level;
4832 mddev->new_level = pers->level;
4833 }
4834 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4835
4836 if (mddev->reshape_position != MaxSector &&
4837 pers->start_reshape == NULL) {
4838 /* This personality cannot handle reshaping... */
4839 mddev->pers = NULL;
4840 module_put(pers->owner);
4841 return -EINVAL;
4842 }
4843
4844 if (pers->sync_request) {
4845 /* Warn if this is a potentially silly
4846 * configuration.
4847 */
4848 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4849 struct md_rdev *rdev2;
4850 int warned = 0;
4851
4852 rdev_for_each(rdev, mddev)
4853 rdev_for_each(rdev2, mddev) {
4854 if (rdev < rdev2 &&
4855 rdev->bdev->bd_contains ==
4856 rdev2->bdev->bd_contains) {
4857 printk(KERN_WARNING
4858 "%s: WARNING: %s appears to be"
4859 " on the same physical disk as"
4860 " %s.\n",
4861 mdname(mddev),
4862 bdevname(rdev->bdev,b),
4863 bdevname(rdev2->bdev,b2));
4864 warned = 1;
4865 }
4866 }
4867
4868 if (warned)
4869 printk(KERN_WARNING
4870 "True protection against single-disk"
4871 " failure might be compromised.\n");
4872 }
4873
4874 mddev->recovery = 0;
4875 /* may be over-ridden by personality */
4876 mddev->resync_max_sectors = mddev->dev_sectors;
4877
4878 mddev->ok_start_degraded = start_dirty_degraded;
4879
4880 if (start_readonly && mddev->ro == 0)
4881 mddev->ro = 2; /* read-only, but switch on first write */
4882
4883 err = mddev->pers->run(mddev);
4884 if (err)
4885 printk(KERN_ERR "md: pers->run() failed ...\n");
4886 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4887 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4888 " but 'external_size' not in effect?\n", __func__);
4889 printk(KERN_ERR
4890 "md: invalid array_size %llu > default size %llu\n",
4891 (unsigned long long)mddev->array_sectors / 2,
4892 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4893 err = -EINVAL;
4894 mddev->pers->stop(mddev);
4895 }
4896 if (err == 0 && mddev->pers->sync_request &&
4897 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4898 err = bitmap_create(mddev);
4899 if (err) {
4900 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4901 mdname(mddev), err);
4902 mddev->pers->stop(mddev);
4903 }
4904 }
4905 if (err) {
4906 module_put(mddev->pers->owner);
4907 mddev->pers = NULL;
4908 bitmap_destroy(mddev);
4909 return err;
4910 }
4911 if (mddev->pers->sync_request) {
4912 if (mddev->kobj.sd &&
4913 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4914 printk(KERN_WARNING
4915 "md: cannot register extra attributes for %s\n",
4916 mdname(mddev));
4917 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4918 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4919 mddev->ro = 0;
4920
4921 atomic_set(&mddev->writes_pending,0);
4922 atomic_set(&mddev->max_corr_read_errors,
4923 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4924 mddev->safemode = 0;
4925 mddev->safemode_timer.function = md_safemode_timeout;
4926 mddev->safemode_timer.data = (unsigned long) mddev;
4927 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4928 mddev->in_sync = 1;
4929 smp_wmb();
4930 mddev->ready = 1;
4931 rdev_for_each(rdev, mddev)
4932 if (rdev->raid_disk >= 0)
4933 if (sysfs_link_rdev(mddev, rdev))
4934 /* failure here is OK */;
4935
4936 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4937
4938 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4939 md_update_sb(mddev, 0);
4940
4941 md_new_event(mddev);
4942 sysfs_notify_dirent_safe(mddev->sysfs_state);
4943 sysfs_notify_dirent_safe(mddev->sysfs_action);
4944 sysfs_notify(&mddev->kobj, NULL, "degraded");
4945 return 0;
4946 }
4947 EXPORT_SYMBOL_GPL(md_run);
4948
4949 static int do_md_run(struct mddev *mddev)
4950 {
4951 int err;
4952
4953 err = md_run(mddev);
4954 if (err)
4955 goto out;
4956 err = bitmap_load(mddev);
4957 if (err) {
4958 bitmap_destroy(mddev);
4959 goto out;
4960 }
4961
4962 md_wakeup_thread(mddev->thread);
4963 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4964
4965 set_capacity(mddev->gendisk, mddev->array_sectors);
4966 revalidate_disk(mddev->gendisk);
4967 mddev->changed = 1;
4968 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4969 out:
4970 return err;
4971 }
4972
4973 static int restart_array(struct mddev *mddev)
4974 {
4975 struct gendisk *disk = mddev->gendisk;
4976
4977 /* Complain if it has no devices */
4978 if (list_empty(&mddev->disks))
4979 return -ENXIO;
4980 if (!mddev->pers)
4981 return -EINVAL;
4982 if (!mddev->ro)
4983 return -EBUSY;
4984 mddev->safemode = 0;
4985 mddev->ro = 0;
4986 set_disk_ro(disk, 0);
4987 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4988 mdname(mddev));
4989 /* Kick recovery or resync if necessary */
4990 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4991 md_wakeup_thread(mddev->thread);
4992 md_wakeup_thread(mddev->sync_thread);
4993 sysfs_notify_dirent_safe(mddev->sysfs_state);
4994 return 0;
4995 }
4996
4997 static void md_clean(struct mddev *mddev)
4998 {
4999 mddev->array_sectors = 0;
5000 mddev->external_size = 0;
5001 mddev->dev_sectors = 0;
5002 mddev->raid_disks = 0;
5003 mddev->recovery_cp = 0;
5004 mddev->resync_min = 0;
5005 mddev->resync_max = MaxSector;
5006 mddev->reshape_position = MaxSector;
5007 mddev->external = 0;
5008 mddev->persistent = 0;
5009 mddev->level = LEVEL_NONE;
5010 mddev->clevel[0] = 0;
5011 mddev->flags = 0;
5012 mddev->ro = 0;
5013 mddev->metadata_type[0] = 0;
5014 mddev->chunk_sectors = 0;
5015 mddev->ctime = mddev->utime = 0;
5016 mddev->layout = 0;
5017 mddev->max_disks = 0;
5018 mddev->events = 0;
5019 mddev->can_decrease_events = 0;
5020 mddev->delta_disks = 0;
5021 mddev->reshape_backwards = 0;
5022 mddev->new_level = LEVEL_NONE;
5023 mddev->new_layout = 0;
5024 mddev->new_chunk_sectors = 0;
5025 mddev->curr_resync = 0;
5026 atomic64_set(&mddev->resync_mismatches, 0);
5027 mddev->suspend_lo = mddev->suspend_hi = 0;
5028 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5029 mddev->recovery = 0;
5030 mddev->in_sync = 0;
5031 mddev->changed = 0;
5032 mddev->degraded = 0;
5033 mddev->safemode = 0;
5034 mddev->merge_check_needed = 0;
5035 mddev->bitmap_info.offset = 0;
5036 mddev->bitmap_info.default_offset = 0;
5037 mddev->bitmap_info.default_space = 0;
5038 mddev->bitmap_info.chunksize = 0;
5039 mddev->bitmap_info.daemon_sleep = 0;
5040 mddev->bitmap_info.max_write_behind = 0;
5041 }
5042
5043 static void __md_stop_writes(struct mddev *mddev)
5044 {
5045 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5046 flush_workqueue(md_misc_wq);
5047 if (mddev->sync_thread) {
5048 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5049 md_reap_sync_thread(mddev);
5050 }
5051
5052 del_timer_sync(&mddev->safemode_timer);
5053
5054 bitmap_flush(mddev);
5055 md_super_wait(mddev);
5056
5057 if (mddev->ro == 0 &&
5058 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5059 /* mark array as shutdown cleanly */
5060 mddev->in_sync = 1;
5061 md_update_sb(mddev, 1);
5062 }
5063 }
5064
5065 void md_stop_writes(struct mddev *mddev)
5066 {
5067 mddev_lock_nointr(mddev);
5068 __md_stop_writes(mddev);
5069 mddev_unlock(mddev);
5070 }
5071 EXPORT_SYMBOL_GPL(md_stop_writes);
5072
5073 static void __md_stop(struct mddev *mddev)
5074 {
5075 mddev->ready = 0;
5076 mddev->pers->stop(mddev);
5077 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5078 mddev->to_remove = &md_redundancy_group;
5079 module_put(mddev->pers->owner);
5080 mddev->pers = NULL;
5081 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082 }
5083
5084 void md_stop(struct mddev *mddev)
5085 {
5086 /* stop the array and free an attached data structures.
5087 * This is called from dm-raid
5088 */
5089 __md_stop(mddev);
5090 bitmap_destroy(mddev);
5091 if (mddev->bio_set)
5092 bioset_free(mddev->bio_set);
5093 }
5094
5095 EXPORT_SYMBOL_GPL(md_stop);
5096
5097 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5098 {
5099 int err = 0;
5100 int did_freeze = 0;
5101
5102 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5103 did_freeze = 1;
5104 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5105 md_wakeup_thread(mddev->thread);
5106 }
5107 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5108 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5109 if (mddev->sync_thread)
5110 /* Thread might be blocked waiting for metadata update
5111 * which will now never happen */
5112 wake_up_process(mddev->sync_thread->tsk);
5113
5114 mddev_unlock(mddev);
5115 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5116 &mddev->recovery));
5117 mddev_lock_nointr(mddev);
5118
5119 mutex_lock(&mddev->open_mutex);
5120 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5121 mddev->sync_thread ||
5122 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5123 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5124 printk("md: %s still in use.\n",mdname(mddev));
5125 if (did_freeze) {
5126 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5128 md_wakeup_thread(mddev->thread);
5129 }
5130 err = -EBUSY;
5131 goto out;
5132 }
5133 if (mddev->pers) {
5134 __md_stop_writes(mddev);
5135
5136 err = -ENXIO;
5137 if (mddev->ro==1)
5138 goto out;
5139 mddev->ro = 1;
5140 set_disk_ro(mddev->gendisk, 1);
5141 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5142 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5143 md_wakeup_thread(mddev->thread);
5144 sysfs_notify_dirent_safe(mddev->sysfs_state);
5145 err = 0;
5146 }
5147 out:
5148 mutex_unlock(&mddev->open_mutex);
5149 return err;
5150 }
5151
5152 /* mode:
5153 * 0 - completely stop and dis-assemble array
5154 * 2 - stop but do not disassemble array
5155 */
5156 static int do_md_stop(struct mddev *mddev, int mode,
5157 struct block_device *bdev)
5158 {
5159 struct gendisk *disk = mddev->gendisk;
5160 struct md_rdev *rdev;
5161 int did_freeze = 0;
5162
5163 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5164 did_freeze = 1;
5165 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5166 md_wakeup_thread(mddev->thread);
5167 }
5168 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5169 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5170 if (mddev->sync_thread)
5171 /* Thread might be blocked waiting for metadata update
5172 * which will now never happen */
5173 wake_up_process(mddev->sync_thread->tsk);
5174
5175 mddev_unlock(mddev);
5176 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5177 !test_bit(MD_RECOVERY_RUNNING,
5178 &mddev->recovery)));
5179 mddev_lock_nointr(mddev);
5180
5181 mutex_lock(&mddev->open_mutex);
5182 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5183 mddev->sysfs_active ||
5184 mddev->sync_thread ||
5185 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5186 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5187 printk("md: %s still in use.\n",mdname(mddev));
5188 mutex_unlock(&mddev->open_mutex);
5189 if (did_freeze) {
5190 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192 md_wakeup_thread(mddev->thread);
5193 }
5194 return -EBUSY;
5195 }
5196 if (mddev->pers) {
5197 if (mddev->ro)
5198 set_disk_ro(disk, 0);
5199
5200 __md_stop_writes(mddev);
5201 __md_stop(mddev);
5202 mddev->queue->merge_bvec_fn = NULL;
5203 mddev->queue->backing_dev_info.congested_fn = NULL;
5204
5205 /* tell userspace to handle 'inactive' */
5206 sysfs_notify_dirent_safe(mddev->sysfs_state);
5207
5208 rdev_for_each(rdev, mddev)
5209 if (rdev->raid_disk >= 0)
5210 sysfs_unlink_rdev(mddev, rdev);
5211
5212 set_capacity(disk, 0);
5213 mutex_unlock(&mddev->open_mutex);
5214 mddev->changed = 1;
5215 revalidate_disk(disk);
5216
5217 if (mddev->ro)
5218 mddev->ro = 0;
5219 } else
5220 mutex_unlock(&mddev->open_mutex);
5221 /*
5222 * Free resources if final stop
5223 */
5224 if (mode == 0) {
5225 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5226
5227 bitmap_destroy(mddev);
5228 if (mddev->bitmap_info.file) {
5229 fput(mddev->bitmap_info.file);
5230 mddev->bitmap_info.file = NULL;
5231 }
5232 mddev->bitmap_info.offset = 0;
5233
5234 export_array(mddev);
5235
5236 md_clean(mddev);
5237 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5238 if (mddev->hold_active == UNTIL_STOP)
5239 mddev->hold_active = 0;
5240 }
5241 blk_integrity_unregister(disk);
5242 md_new_event(mddev);
5243 sysfs_notify_dirent_safe(mddev->sysfs_state);
5244 return 0;
5245 }
5246
5247 #ifndef MODULE
5248 static void autorun_array(struct mddev *mddev)
5249 {
5250 struct md_rdev *rdev;
5251 int err;
5252
5253 if (list_empty(&mddev->disks))
5254 return;
5255
5256 printk(KERN_INFO "md: running: ");
5257
5258 rdev_for_each(rdev, mddev) {
5259 char b[BDEVNAME_SIZE];
5260 printk("<%s>", bdevname(rdev->bdev,b));
5261 }
5262 printk("\n");
5263
5264 err = do_md_run(mddev);
5265 if (err) {
5266 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5267 do_md_stop(mddev, 0, NULL);
5268 }
5269 }
5270
5271 /*
5272 * lets try to run arrays based on all disks that have arrived
5273 * until now. (those are in pending_raid_disks)
5274 *
5275 * the method: pick the first pending disk, collect all disks with
5276 * the same UUID, remove all from the pending list and put them into
5277 * the 'same_array' list. Then order this list based on superblock
5278 * update time (freshest comes first), kick out 'old' disks and
5279 * compare superblocks. If everything's fine then run it.
5280 *
5281 * If "unit" is allocated, then bump its reference count
5282 */
5283 static void autorun_devices(int part)
5284 {
5285 struct md_rdev *rdev0, *rdev, *tmp;
5286 struct mddev *mddev;
5287 char b[BDEVNAME_SIZE];
5288
5289 printk(KERN_INFO "md: autorun ...\n");
5290 while (!list_empty(&pending_raid_disks)) {
5291 int unit;
5292 dev_t dev;
5293 LIST_HEAD(candidates);
5294 rdev0 = list_entry(pending_raid_disks.next,
5295 struct md_rdev, same_set);
5296
5297 printk(KERN_INFO "md: considering %s ...\n",
5298 bdevname(rdev0->bdev,b));
5299 INIT_LIST_HEAD(&candidates);
5300 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5301 if (super_90_load(rdev, rdev0, 0) >= 0) {
5302 printk(KERN_INFO "md: adding %s ...\n",
5303 bdevname(rdev->bdev,b));
5304 list_move(&rdev->same_set, &candidates);
5305 }
5306 /*
5307 * now we have a set of devices, with all of them having
5308 * mostly sane superblocks. It's time to allocate the
5309 * mddev.
5310 */
5311 if (part) {
5312 dev = MKDEV(mdp_major,
5313 rdev0->preferred_minor << MdpMinorShift);
5314 unit = MINOR(dev) >> MdpMinorShift;
5315 } else {
5316 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5317 unit = MINOR(dev);
5318 }
5319 if (rdev0->preferred_minor != unit) {
5320 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5321 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5322 break;
5323 }
5324
5325 md_probe(dev, NULL, NULL);
5326 mddev = mddev_find(dev);
5327 if (!mddev || !mddev->gendisk) {
5328 if (mddev)
5329 mddev_put(mddev);
5330 printk(KERN_ERR
5331 "md: cannot allocate memory for md drive.\n");
5332 break;
5333 }
5334 if (mddev_lock(mddev))
5335 printk(KERN_WARNING "md: %s locked, cannot run\n",
5336 mdname(mddev));
5337 else if (mddev->raid_disks || mddev->major_version
5338 || !list_empty(&mddev->disks)) {
5339 printk(KERN_WARNING
5340 "md: %s already running, cannot run %s\n",
5341 mdname(mddev), bdevname(rdev0->bdev,b));
5342 mddev_unlock(mddev);
5343 } else {
5344 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5345 mddev->persistent = 1;
5346 rdev_for_each_list(rdev, tmp, &candidates) {
5347 list_del_init(&rdev->same_set);
5348 if (bind_rdev_to_array(rdev, mddev))
5349 export_rdev(rdev);
5350 }
5351 autorun_array(mddev);
5352 mddev_unlock(mddev);
5353 }
5354 /* on success, candidates will be empty, on error
5355 * it won't...
5356 */
5357 rdev_for_each_list(rdev, tmp, &candidates) {
5358 list_del_init(&rdev->same_set);
5359 export_rdev(rdev);
5360 }
5361 mddev_put(mddev);
5362 }
5363 printk(KERN_INFO "md: ... autorun DONE.\n");
5364 }
5365 #endif /* !MODULE */
5366
5367 static int get_version(void __user *arg)
5368 {
5369 mdu_version_t ver;
5370
5371 ver.major = MD_MAJOR_VERSION;
5372 ver.minor = MD_MINOR_VERSION;
5373 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5374
5375 if (copy_to_user(arg, &ver, sizeof(ver)))
5376 return -EFAULT;
5377
5378 return 0;
5379 }
5380
5381 static int get_array_info(struct mddev *mddev, void __user *arg)
5382 {
5383 mdu_array_info_t info;
5384 int nr,working,insync,failed,spare;
5385 struct md_rdev *rdev;
5386
5387 nr = working = insync = failed = spare = 0;
5388 rcu_read_lock();
5389 rdev_for_each_rcu(rdev, mddev) {
5390 nr++;
5391 if (test_bit(Faulty, &rdev->flags))
5392 failed++;
5393 else {
5394 working++;
5395 if (test_bit(In_sync, &rdev->flags))
5396 insync++;
5397 else
5398 spare++;
5399 }
5400 }
5401 rcu_read_unlock();
5402
5403 info.major_version = mddev->major_version;
5404 info.minor_version = mddev->minor_version;
5405 info.patch_version = MD_PATCHLEVEL_VERSION;
5406 info.ctime = mddev->ctime;
5407 info.level = mddev->level;
5408 info.size = mddev->dev_sectors / 2;
5409 if (info.size != mddev->dev_sectors / 2) /* overflow */
5410 info.size = -1;
5411 info.nr_disks = nr;
5412 info.raid_disks = mddev->raid_disks;
5413 info.md_minor = mddev->md_minor;
5414 info.not_persistent= !mddev->persistent;
5415
5416 info.utime = mddev->utime;
5417 info.state = 0;
5418 if (mddev->in_sync)
5419 info.state = (1<<MD_SB_CLEAN);
5420 if (mddev->bitmap && mddev->bitmap_info.offset)
5421 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5422 info.active_disks = insync;
5423 info.working_disks = working;
5424 info.failed_disks = failed;
5425 info.spare_disks = spare;
5426
5427 info.layout = mddev->layout;
5428 info.chunk_size = mddev->chunk_sectors << 9;
5429
5430 if (copy_to_user(arg, &info, sizeof(info)))
5431 return -EFAULT;
5432
5433 return 0;
5434 }
5435
5436 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5437 {
5438 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5439 char *ptr, *buf = NULL;
5440 int err = -ENOMEM;
5441
5442 file = kmalloc(sizeof(*file), GFP_NOIO);
5443
5444 if (!file)
5445 goto out;
5446
5447 /* bitmap disabled, zero the first byte and copy out */
5448 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5449 file->pathname[0] = '\0';
5450 goto copy_out;
5451 }
5452
5453 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5454 if (!buf)
5455 goto out;
5456
5457 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5458 buf, sizeof(file->pathname));
5459 if (IS_ERR(ptr))
5460 goto out;
5461
5462 strcpy(file->pathname, ptr);
5463
5464 copy_out:
5465 err = 0;
5466 if (copy_to_user(arg, file, sizeof(*file)))
5467 err = -EFAULT;
5468 out:
5469 kfree(buf);
5470 kfree(file);
5471 return err;
5472 }
5473
5474 static int get_disk_info(struct mddev *mddev, void __user * arg)
5475 {
5476 mdu_disk_info_t info;
5477 struct md_rdev *rdev;
5478
5479 if (copy_from_user(&info, arg, sizeof(info)))
5480 return -EFAULT;
5481
5482 rcu_read_lock();
5483 rdev = find_rdev_nr_rcu(mddev, info.number);
5484 if (rdev) {
5485 info.major = MAJOR(rdev->bdev->bd_dev);
5486 info.minor = MINOR(rdev->bdev->bd_dev);
5487 info.raid_disk = rdev->raid_disk;
5488 info.state = 0;
5489 if (test_bit(Faulty, &rdev->flags))
5490 info.state |= (1<<MD_DISK_FAULTY);
5491 else if (test_bit(In_sync, &rdev->flags)) {
5492 info.state |= (1<<MD_DISK_ACTIVE);
5493 info.state |= (1<<MD_DISK_SYNC);
5494 }
5495 if (test_bit(WriteMostly, &rdev->flags))
5496 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5497 } else {
5498 info.major = info.minor = 0;
5499 info.raid_disk = -1;
5500 info.state = (1<<MD_DISK_REMOVED);
5501 }
5502 rcu_read_unlock();
5503
5504 if (copy_to_user(arg, &info, sizeof(info)))
5505 return -EFAULT;
5506
5507 return 0;
5508 }
5509
5510 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5511 {
5512 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5513 struct md_rdev *rdev;
5514 dev_t dev = MKDEV(info->major,info->minor);
5515
5516 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5517 return -EOVERFLOW;
5518
5519 if (!mddev->raid_disks) {
5520 int err;
5521 /* expecting a device which has a superblock */
5522 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5523 if (IS_ERR(rdev)) {
5524 printk(KERN_WARNING
5525 "md: md_import_device returned %ld\n",
5526 PTR_ERR(rdev));
5527 return PTR_ERR(rdev);
5528 }
5529 if (!list_empty(&mddev->disks)) {
5530 struct md_rdev *rdev0
5531 = list_entry(mddev->disks.next,
5532 struct md_rdev, same_set);
5533 err = super_types[mddev->major_version]
5534 .load_super(rdev, rdev0, mddev->minor_version);
5535 if (err < 0) {
5536 printk(KERN_WARNING
5537 "md: %s has different UUID to %s\n",
5538 bdevname(rdev->bdev,b),
5539 bdevname(rdev0->bdev,b2));
5540 export_rdev(rdev);
5541 return -EINVAL;
5542 }
5543 }
5544 err = bind_rdev_to_array(rdev, mddev);
5545 if (err)
5546 export_rdev(rdev);
5547 return err;
5548 }
5549
5550 /*
5551 * add_new_disk can be used once the array is assembled
5552 * to add "hot spares". They must already have a superblock
5553 * written
5554 */
5555 if (mddev->pers) {
5556 int err;
5557 if (!mddev->pers->hot_add_disk) {
5558 printk(KERN_WARNING
5559 "%s: personality does not support diskops!\n",
5560 mdname(mddev));
5561 return -EINVAL;
5562 }
5563 if (mddev->persistent)
5564 rdev = md_import_device(dev, mddev->major_version,
5565 mddev->minor_version);
5566 else
5567 rdev = md_import_device(dev, -1, -1);
5568 if (IS_ERR(rdev)) {
5569 printk(KERN_WARNING
5570 "md: md_import_device returned %ld\n",
5571 PTR_ERR(rdev));
5572 return PTR_ERR(rdev);
5573 }
5574 /* set saved_raid_disk if appropriate */
5575 if (!mddev->persistent) {
5576 if (info->state & (1<<MD_DISK_SYNC) &&
5577 info->raid_disk < mddev->raid_disks) {
5578 rdev->raid_disk = info->raid_disk;
5579 set_bit(In_sync, &rdev->flags);
5580 clear_bit(Bitmap_sync, &rdev->flags);
5581 } else
5582 rdev->raid_disk = -1;
5583 rdev->saved_raid_disk = rdev->raid_disk;
5584 } else
5585 super_types[mddev->major_version].
5586 validate_super(mddev, rdev);
5587 if ((info->state & (1<<MD_DISK_SYNC)) &&
5588 rdev->raid_disk != info->raid_disk) {
5589 /* This was a hot-add request, but events doesn't
5590 * match, so reject it.
5591 */
5592 export_rdev(rdev);
5593 return -EINVAL;
5594 }
5595
5596 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5597 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5598 set_bit(WriteMostly, &rdev->flags);
5599 else
5600 clear_bit(WriteMostly, &rdev->flags);
5601
5602 rdev->raid_disk = -1;
5603 err = bind_rdev_to_array(rdev, mddev);
5604 if (!err && !mddev->pers->hot_remove_disk) {
5605 /* If there is hot_add_disk but no hot_remove_disk
5606 * then added disks for geometry changes,
5607 * and should be added immediately.
5608 */
5609 super_types[mddev->major_version].
5610 validate_super(mddev, rdev);
5611 err = mddev->pers->hot_add_disk(mddev, rdev);
5612 if (err)
5613 unbind_rdev_from_array(rdev);
5614 }
5615 if (err)
5616 export_rdev(rdev);
5617 else
5618 sysfs_notify_dirent_safe(rdev->sysfs_state);
5619
5620 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5621 if (mddev->degraded)
5622 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5623 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5624 if (!err)
5625 md_new_event(mddev);
5626 md_wakeup_thread(mddev->thread);
5627 return err;
5628 }
5629
5630 /* otherwise, add_new_disk is only allowed
5631 * for major_version==0 superblocks
5632 */
5633 if (mddev->major_version != 0) {
5634 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5635 mdname(mddev));
5636 return -EINVAL;
5637 }
5638
5639 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5640 int err;
5641 rdev = md_import_device(dev, -1, 0);
5642 if (IS_ERR(rdev)) {
5643 printk(KERN_WARNING
5644 "md: error, md_import_device() returned %ld\n",
5645 PTR_ERR(rdev));
5646 return PTR_ERR(rdev);
5647 }
5648 rdev->desc_nr = info->number;
5649 if (info->raid_disk < mddev->raid_disks)
5650 rdev->raid_disk = info->raid_disk;
5651 else
5652 rdev->raid_disk = -1;
5653
5654 if (rdev->raid_disk < mddev->raid_disks)
5655 if (info->state & (1<<MD_DISK_SYNC))
5656 set_bit(In_sync, &rdev->flags);
5657
5658 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5659 set_bit(WriteMostly, &rdev->flags);
5660
5661 if (!mddev->persistent) {
5662 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5663 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5664 } else
5665 rdev->sb_start = calc_dev_sboffset(rdev);
5666 rdev->sectors = rdev->sb_start;
5667
5668 err = bind_rdev_to_array(rdev, mddev);
5669 if (err) {
5670 export_rdev(rdev);
5671 return err;
5672 }
5673 }
5674
5675 return 0;
5676 }
5677
5678 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5679 {
5680 char b[BDEVNAME_SIZE];
5681 struct md_rdev *rdev;
5682
5683 rdev = find_rdev(mddev, dev);
5684 if (!rdev)
5685 return -ENXIO;
5686
5687 clear_bit(Blocked, &rdev->flags);
5688 remove_and_add_spares(mddev, rdev);
5689
5690 if (rdev->raid_disk >= 0)
5691 goto busy;
5692
5693 kick_rdev_from_array(rdev);
5694 md_update_sb(mddev, 1);
5695 md_new_event(mddev);
5696
5697 return 0;
5698 busy:
5699 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5700 bdevname(rdev->bdev,b), mdname(mddev));
5701 return -EBUSY;
5702 }
5703
5704 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5705 {
5706 char b[BDEVNAME_SIZE];
5707 int err;
5708 struct md_rdev *rdev;
5709
5710 if (!mddev->pers)
5711 return -ENODEV;
5712
5713 if (mddev->major_version != 0) {
5714 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5715 " version-0 superblocks.\n",
5716 mdname(mddev));
5717 return -EINVAL;
5718 }
5719 if (!mddev->pers->hot_add_disk) {
5720 printk(KERN_WARNING
5721 "%s: personality does not support diskops!\n",
5722 mdname(mddev));
5723 return -EINVAL;
5724 }
5725
5726 rdev = md_import_device(dev, -1, 0);
5727 if (IS_ERR(rdev)) {
5728 printk(KERN_WARNING
5729 "md: error, md_import_device() returned %ld\n",
5730 PTR_ERR(rdev));
5731 return -EINVAL;
5732 }
5733
5734 if (mddev->persistent)
5735 rdev->sb_start = calc_dev_sboffset(rdev);
5736 else
5737 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5738
5739 rdev->sectors = rdev->sb_start;
5740
5741 if (test_bit(Faulty, &rdev->flags)) {
5742 printk(KERN_WARNING
5743 "md: can not hot-add faulty %s disk to %s!\n",
5744 bdevname(rdev->bdev,b), mdname(mddev));
5745 err = -EINVAL;
5746 goto abort_export;
5747 }
5748 clear_bit(In_sync, &rdev->flags);
5749 rdev->desc_nr = -1;
5750 rdev->saved_raid_disk = -1;
5751 err = bind_rdev_to_array(rdev, mddev);
5752 if (err)
5753 goto abort_export;
5754
5755 /*
5756 * The rest should better be atomic, we can have disk failures
5757 * noticed in interrupt contexts ...
5758 */
5759
5760 rdev->raid_disk = -1;
5761
5762 md_update_sb(mddev, 1);
5763
5764 /*
5765 * Kick recovery, maybe this spare has to be added to the
5766 * array immediately.
5767 */
5768 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5769 md_wakeup_thread(mddev->thread);
5770 md_new_event(mddev);
5771 return 0;
5772
5773 abort_export:
5774 export_rdev(rdev);
5775 return err;
5776 }
5777
5778 static int set_bitmap_file(struct mddev *mddev, int fd)
5779 {
5780 int err = 0;
5781
5782 if (mddev->pers) {
5783 if (!mddev->pers->quiesce || !mddev->thread)
5784 return -EBUSY;
5785 if (mddev->recovery || mddev->sync_thread)
5786 return -EBUSY;
5787 /* we should be able to change the bitmap.. */
5788 }
5789
5790 if (fd >= 0) {
5791 struct inode *inode;
5792 if (mddev->bitmap)
5793 return -EEXIST; /* cannot add when bitmap is present */
5794 mddev->bitmap_info.file = fget(fd);
5795
5796 if (mddev->bitmap_info.file == NULL) {
5797 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5798 mdname(mddev));
5799 return -EBADF;
5800 }
5801
5802 inode = mddev->bitmap_info.file->f_mapping->host;
5803 if (!S_ISREG(inode->i_mode)) {
5804 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5805 mdname(mddev));
5806 err = -EBADF;
5807 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5808 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5809 mdname(mddev));
5810 err = -EBADF;
5811 } else if (atomic_read(&inode->i_writecount) != 1) {
5812 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5813 mdname(mddev));
5814 err = -EBUSY;
5815 }
5816 if (err) {
5817 fput(mddev->bitmap_info.file);
5818 mddev->bitmap_info.file = NULL;
5819 return err;
5820 }
5821 mddev->bitmap_info.offset = 0; /* file overrides offset */
5822 } else if (mddev->bitmap == NULL)
5823 return -ENOENT; /* cannot remove what isn't there */
5824 err = 0;
5825 if (mddev->pers) {
5826 mddev->pers->quiesce(mddev, 1);
5827 if (fd >= 0) {
5828 err = bitmap_create(mddev);
5829 if (!err)
5830 err = bitmap_load(mddev);
5831 }
5832 if (fd < 0 || err) {
5833 bitmap_destroy(mddev);
5834 fd = -1; /* make sure to put the file */
5835 }
5836 mddev->pers->quiesce(mddev, 0);
5837 }
5838 if (fd < 0) {
5839 if (mddev->bitmap_info.file)
5840 fput(mddev->bitmap_info.file);
5841 mddev->bitmap_info.file = NULL;
5842 }
5843
5844 return err;
5845 }
5846
5847 /*
5848 * set_array_info is used two different ways
5849 * The original usage is when creating a new array.
5850 * In this usage, raid_disks is > 0 and it together with
5851 * level, size, not_persistent,layout,chunksize determine the
5852 * shape of the array.
5853 * This will always create an array with a type-0.90.0 superblock.
5854 * The newer usage is when assembling an array.
5855 * In this case raid_disks will be 0, and the major_version field is
5856 * use to determine which style super-blocks are to be found on the devices.
5857 * The minor and patch _version numbers are also kept incase the
5858 * super_block handler wishes to interpret them.
5859 */
5860 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5861 {
5862
5863 if (info->raid_disks == 0) {
5864 /* just setting version number for superblock loading */
5865 if (info->major_version < 0 ||
5866 info->major_version >= ARRAY_SIZE(super_types) ||
5867 super_types[info->major_version].name == NULL) {
5868 /* maybe try to auto-load a module? */
5869 printk(KERN_INFO
5870 "md: superblock version %d not known\n",
5871 info->major_version);
5872 return -EINVAL;
5873 }
5874 mddev->major_version = info->major_version;
5875 mddev->minor_version = info->minor_version;
5876 mddev->patch_version = info->patch_version;
5877 mddev->persistent = !info->not_persistent;
5878 /* ensure mddev_put doesn't delete this now that there
5879 * is some minimal configuration.
5880 */
5881 mddev->ctime = get_seconds();
5882 return 0;
5883 }
5884 mddev->major_version = MD_MAJOR_VERSION;
5885 mddev->minor_version = MD_MINOR_VERSION;
5886 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5887 mddev->ctime = get_seconds();
5888
5889 mddev->level = info->level;
5890 mddev->clevel[0] = 0;
5891 mddev->dev_sectors = 2 * (sector_t)info->size;
5892 mddev->raid_disks = info->raid_disks;
5893 /* don't set md_minor, it is determined by which /dev/md* was
5894 * openned
5895 */
5896 if (info->state & (1<<MD_SB_CLEAN))
5897 mddev->recovery_cp = MaxSector;
5898 else
5899 mddev->recovery_cp = 0;
5900 mddev->persistent = ! info->not_persistent;
5901 mddev->external = 0;
5902
5903 mddev->layout = info->layout;
5904 mddev->chunk_sectors = info->chunk_size >> 9;
5905
5906 mddev->max_disks = MD_SB_DISKS;
5907
5908 if (mddev->persistent)
5909 mddev->flags = 0;
5910 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5911
5912 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5913 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5914 mddev->bitmap_info.offset = 0;
5915
5916 mddev->reshape_position = MaxSector;
5917
5918 /*
5919 * Generate a 128 bit UUID
5920 */
5921 get_random_bytes(mddev->uuid, 16);
5922
5923 mddev->new_level = mddev->level;
5924 mddev->new_chunk_sectors = mddev->chunk_sectors;
5925 mddev->new_layout = mddev->layout;
5926 mddev->delta_disks = 0;
5927 mddev->reshape_backwards = 0;
5928
5929 return 0;
5930 }
5931
5932 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5933 {
5934 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5935
5936 if (mddev->external_size)
5937 return;
5938
5939 mddev->array_sectors = array_sectors;
5940 }
5941 EXPORT_SYMBOL(md_set_array_sectors);
5942
5943 static int update_size(struct mddev *mddev, sector_t num_sectors)
5944 {
5945 struct md_rdev *rdev;
5946 int rv;
5947 int fit = (num_sectors == 0);
5948
5949 if (mddev->pers->resize == NULL)
5950 return -EINVAL;
5951 /* The "num_sectors" is the number of sectors of each device that
5952 * is used. This can only make sense for arrays with redundancy.
5953 * linear and raid0 always use whatever space is available. We can only
5954 * consider changing this number if no resync or reconstruction is
5955 * happening, and if the new size is acceptable. It must fit before the
5956 * sb_start or, if that is <data_offset, it must fit before the size
5957 * of each device. If num_sectors is zero, we find the largest size
5958 * that fits.
5959 */
5960 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5961 mddev->sync_thread)
5962 return -EBUSY;
5963 if (mddev->ro)
5964 return -EROFS;
5965
5966 rdev_for_each(rdev, mddev) {
5967 sector_t avail = rdev->sectors;
5968
5969 if (fit && (num_sectors == 0 || num_sectors > avail))
5970 num_sectors = avail;
5971 if (avail < num_sectors)
5972 return -ENOSPC;
5973 }
5974 rv = mddev->pers->resize(mddev, num_sectors);
5975 if (!rv)
5976 revalidate_disk(mddev->gendisk);
5977 return rv;
5978 }
5979
5980 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5981 {
5982 int rv;
5983 struct md_rdev *rdev;
5984 /* change the number of raid disks */
5985 if (mddev->pers->check_reshape == NULL)
5986 return -EINVAL;
5987 if (mddev->ro)
5988 return -EROFS;
5989 if (raid_disks <= 0 ||
5990 (mddev->max_disks && raid_disks >= mddev->max_disks))
5991 return -EINVAL;
5992 if (mddev->sync_thread ||
5993 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5994 mddev->reshape_position != MaxSector)
5995 return -EBUSY;
5996
5997 rdev_for_each(rdev, mddev) {
5998 if (mddev->raid_disks < raid_disks &&
5999 rdev->data_offset < rdev->new_data_offset)
6000 return -EINVAL;
6001 if (mddev->raid_disks > raid_disks &&
6002 rdev->data_offset > rdev->new_data_offset)
6003 return -EINVAL;
6004 }
6005
6006 mddev->delta_disks = raid_disks - mddev->raid_disks;
6007 if (mddev->delta_disks < 0)
6008 mddev->reshape_backwards = 1;
6009 else if (mddev->delta_disks > 0)
6010 mddev->reshape_backwards = 0;
6011
6012 rv = mddev->pers->check_reshape(mddev);
6013 if (rv < 0) {
6014 mddev->delta_disks = 0;
6015 mddev->reshape_backwards = 0;
6016 }
6017 return rv;
6018 }
6019
6020 /*
6021 * update_array_info is used to change the configuration of an
6022 * on-line array.
6023 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6024 * fields in the info are checked against the array.
6025 * Any differences that cannot be handled will cause an error.
6026 * Normally, only one change can be managed at a time.
6027 */
6028 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6029 {
6030 int rv = 0;
6031 int cnt = 0;
6032 int state = 0;
6033
6034 /* calculate expected state,ignoring low bits */
6035 if (mddev->bitmap && mddev->bitmap_info.offset)
6036 state |= (1 << MD_SB_BITMAP_PRESENT);
6037
6038 if (mddev->major_version != info->major_version ||
6039 mddev->minor_version != info->minor_version ||
6040 /* mddev->patch_version != info->patch_version || */
6041 mddev->ctime != info->ctime ||
6042 mddev->level != info->level ||
6043 /* mddev->layout != info->layout || */
6044 !mddev->persistent != info->not_persistent||
6045 mddev->chunk_sectors != info->chunk_size >> 9 ||
6046 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6047 ((state^info->state) & 0xfffffe00)
6048 )
6049 return -EINVAL;
6050 /* Check there is only one change */
6051 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6052 cnt++;
6053 if (mddev->raid_disks != info->raid_disks)
6054 cnt++;
6055 if (mddev->layout != info->layout)
6056 cnt++;
6057 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6058 cnt++;
6059 if (cnt == 0)
6060 return 0;
6061 if (cnt > 1)
6062 return -EINVAL;
6063
6064 if (mddev->layout != info->layout) {
6065 /* Change layout
6066 * we don't need to do anything at the md level, the
6067 * personality will take care of it all.
6068 */
6069 if (mddev->pers->check_reshape == NULL)
6070 return -EINVAL;
6071 else {
6072 mddev->new_layout = info->layout;
6073 rv = mddev->pers->check_reshape(mddev);
6074 if (rv)
6075 mddev->new_layout = mddev->layout;
6076 return rv;
6077 }
6078 }
6079 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6080 rv = update_size(mddev, (sector_t)info->size * 2);
6081
6082 if (mddev->raid_disks != info->raid_disks)
6083 rv = update_raid_disks(mddev, info->raid_disks);
6084
6085 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6086 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6087 return -EINVAL;
6088 if (mddev->recovery || mddev->sync_thread)
6089 return -EBUSY;
6090 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6091 /* add the bitmap */
6092 if (mddev->bitmap)
6093 return -EEXIST;
6094 if (mddev->bitmap_info.default_offset == 0)
6095 return -EINVAL;
6096 mddev->bitmap_info.offset =
6097 mddev->bitmap_info.default_offset;
6098 mddev->bitmap_info.space =
6099 mddev->bitmap_info.default_space;
6100 mddev->pers->quiesce(mddev, 1);
6101 rv = bitmap_create(mddev);
6102 if (!rv)
6103 rv = bitmap_load(mddev);
6104 if (rv)
6105 bitmap_destroy(mddev);
6106 mddev->pers->quiesce(mddev, 0);
6107 } else {
6108 /* remove the bitmap */
6109 if (!mddev->bitmap)
6110 return -ENOENT;
6111 if (mddev->bitmap->storage.file)
6112 return -EINVAL;
6113 mddev->pers->quiesce(mddev, 1);
6114 bitmap_destroy(mddev);
6115 mddev->pers->quiesce(mddev, 0);
6116 mddev->bitmap_info.offset = 0;
6117 }
6118 }
6119 md_update_sb(mddev, 1);
6120 return rv;
6121 }
6122
6123 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6124 {
6125 struct md_rdev *rdev;
6126 int err = 0;
6127
6128 if (mddev->pers == NULL)
6129 return -ENODEV;
6130
6131 rcu_read_lock();
6132 rdev = find_rdev_rcu(mddev, dev);
6133 if (!rdev)
6134 err = -ENODEV;
6135 else {
6136 md_error(mddev, rdev);
6137 if (!test_bit(Faulty, &rdev->flags))
6138 err = -EBUSY;
6139 }
6140 rcu_read_unlock();
6141 return err;
6142 }
6143
6144 /*
6145 * We have a problem here : there is no easy way to give a CHS
6146 * virtual geometry. We currently pretend that we have a 2 heads
6147 * 4 sectors (with a BIG number of cylinders...). This drives
6148 * dosfs just mad... ;-)
6149 */
6150 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6151 {
6152 struct mddev *mddev = bdev->bd_disk->private_data;
6153
6154 geo->heads = 2;
6155 geo->sectors = 4;
6156 geo->cylinders = mddev->array_sectors / 8;
6157 return 0;
6158 }
6159
6160 static inline bool md_ioctl_valid(unsigned int cmd)
6161 {
6162 switch (cmd) {
6163 case ADD_NEW_DISK:
6164 case BLKROSET:
6165 case GET_ARRAY_INFO:
6166 case GET_BITMAP_FILE:
6167 case GET_DISK_INFO:
6168 case HOT_ADD_DISK:
6169 case HOT_REMOVE_DISK:
6170 case RAID_AUTORUN:
6171 case RAID_VERSION:
6172 case RESTART_ARRAY_RW:
6173 case RUN_ARRAY:
6174 case SET_ARRAY_INFO:
6175 case SET_BITMAP_FILE:
6176 case SET_DISK_FAULTY:
6177 case STOP_ARRAY:
6178 case STOP_ARRAY_RO:
6179 return true;
6180 default:
6181 return false;
6182 }
6183 }
6184
6185 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6186 unsigned int cmd, unsigned long arg)
6187 {
6188 int err = 0;
6189 void __user *argp = (void __user *)arg;
6190 struct mddev *mddev = NULL;
6191 int ro;
6192
6193 if (!md_ioctl_valid(cmd))
6194 return -ENOTTY;
6195
6196 switch (cmd) {
6197 case RAID_VERSION:
6198 case GET_ARRAY_INFO:
6199 case GET_DISK_INFO:
6200 break;
6201 default:
6202 if (!capable(CAP_SYS_ADMIN))
6203 return -EACCES;
6204 }
6205
6206 /*
6207 * Commands dealing with the RAID driver but not any
6208 * particular array:
6209 */
6210 switch (cmd) {
6211 case RAID_VERSION:
6212 err = get_version(argp);
6213 goto out;
6214
6215 #ifndef MODULE
6216 case RAID_AUTORUN:
6217 err = 0;
6218 autostart_arrays(arg);
6219 goto out;
6220 #endif
6221 default:;
6222 }
6223
6224 /*
6225 * Commands creating/starting a new array:
6226 */
6227
6228 mddev = bdev->bd_disk->private_data;
6229
6230 if (!mddev) {
6231 BUG();
6232 goto out;
6233 }
6234
6235 /* Some actions do not requires the mutex */
6236 switch (cmd) {
6237 case GET_ARRAY_INFO:
6238 if (!mddev->raid_disks && !mddev->external)
6239 err = -ENODEV;
6240 else
6241 err = get_array_info(mddev, argp);
6242 goto out;
6243
6244 case GET_DISK_INFO:
6245 if (!mddev->raid_disks && !mddev->external)
6246 err = -ENODEV;
6247 else
6248 err = get_disk_info(mddev, argp);
6249 goto out;
6250
6251 case SET_DISK_FAULTY:
6252 err = set_disk_faulty(mddev, new_decode_dev(arg));
6253 goto out;
6254 }
6255
6256 if (cmd == ADD_NEW_DISK)
6257 /* need to ensure md_delayed_delete() has completed */
6258 flush_workqueue(md_misc_wq);
6259
6260 if (cmd == HOT_REMOVE_DISK)
6261 /* need to ensure recovery thread has run */
6262 wait_event_interruptible_timeout(mddev->sb_wait,
6263 !test_bit(MD_RECOVERY_NEEDED,
6264 &mddev->flags),
6265 msecs_to_jiffies(5000));
6266 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6267 /* Need to flush page cache, and ensure no-one else opens
6268 * and writes
6269 */
6270 mutex_lock(&mddev->open_mutex);
6271 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6272 mutex_unlock(&mddev->open_mutex);
6273 err = -EBUSY;
6274 goto out;
6275 }
6276 set_bit(MD_STILL_CLOSED, &mddev->flags);
6277 mutex_unlock(&mddev->open_mutex);
6278 sync_blockdev(bdev);
6279 }
6280 err = mddev_lock(mddev);
6281 if (err) {
6282 printk(KERN_INFO
6283 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6284 err, cmd);
6285 goto out;
6286 }
6287
6288 if (cmd == SET_ARRAY_INFO) {
6289 mdu_array_info_t info;
6290 if (!arg)
6291 memset(&info, 0, sizeof(info));
6292 else if (copy_from_user(&info, argp, sizeof(info))) {
6293 err = -EFAULT;
6294 goto unlock;
6295 }
6296 if (mddev->pers) {
6297 err = update_array_info(mddev, &info);
6298 if (err) {
6299 printk(KERN_WARNING "md: couldn't update"
6300 " array info. %d\n", err);
6301 goto unlock;
6302 }
6303 goto unlock;
6304 }
6305 if (!list_empty(&mddev->disks)) {
6306 printk(KERN_WARNING
6307 "md: array %s already has disks!\n",
6308 mdname(mddev));
6309 err = -EBUSY;
6310 goto unlock;
6311 }
6312 if (mddev->raid_disks) {
6313 printk(KERN_WARNING
6314 "md: array %s already initialised!\n",
6315 mdname(mddev));
6316 err = -EBUSY;
6317 goto unlock;
6318 }
6319 err = set_array_info(mddev, &info);
6320 if (err) {
6321 printk(KERN_WARNING "md: couldn't set"
6322 " array info. %d\n", err);
6323 goto unlock;
6324 }
6325 goto unlock;
6326 }
6327
6328 /*
6329 * Commands querying/configuring an existing array:
6330 */
6331 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6332 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6333 if ((!mddev->raid_disks && !mddev->external)
6334 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6335 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6336 && cmd != GET_BITMAP_FILE) {
6337 err = -ENODEV;
6338 goto unlock;
6339 }
6340
6341 /*
6342 * Commands even a read-only array can execute:
6343 */
6344 switch (cmd) {
6345 case GET_BITMAP_FILE:
6346 err = get_bitmap_file(mddev, argp);
6347 goto unlock;
6348
6349 case RESTART_ARRAY_RW:
6350 err = restart_array(mddev);
6351 goto unlock;
6352
6353 case STOP_ARRAY:
6354 err = do_md_stop(mddev, 0, bdev);
6355 goto unlock;
6356
6357 case STOP_ARRAY_RO:
6358 err = md_set_readonly(mddev, bdev);
6359 goto unlock;
6360
6361 case HOT_REMOVE_DISK:
6362 err = hot_remove_disk(mddev, new_decode_dev(arg));
6363 goto unlock;
6364
6365 case ADD_NEW_DISK:
6366 /* We can support ADD_NEW_DISK on read-only arrays
6367 * on if we are re-adding a preexisting device.
6368 * So require mddev->pers and MD_DISK_SYNC.
6369 */
6370 if (mddev->pers) {
6371 mdu_disk_info_t info;
6372 if (copy_from_user(&info, argp, sizeof(info)))
6373 err = -EFAULT;
6374 else if (!(info.state & (1<<MD_DISK_SYNC)))
6375 /* Need to clear read-only for this */
6376 break;
6377 else
6378 err = add_new_disk(mddev, &info);
6379 goto unlock;
6380 }
6381 break;
6382
6383 case BLKROSET:
6384 if (get_user(ro, (int __user *)(arg))) {
6385 err = -EFAULT;
6386 goto unlock;
6387 }
6388 err = -EINVAL;
6389
6390 /* if the bdev is going readonly the value of mddev->ro
6391 * does not matter, no writes are coming
6392 */
6393 if (ro)
6394 goto unlock;
6395
6396 /* are we are already prepared for writes? */
6397 if (mddev->ro != 1)
6398 goto unlock;
6399
6400 /* transitioning to readauto need only happen for
6401 * arrays that call md_write_start
6402 */
6403 if (mddev->pers) {
6404 err = restart_array(mddev);
6405 if (err == 0) {
6406 mddev->ro = 2;
6407 set_disk_ro(mddev->gendisk, 0);
6408 }
6409 }
6410 goto unlock;
6411 }
6412
6413 /*
6414 * The remaining ioctls are changing the state of the
6415 * superblock, so we do not allow them on read-only arrays.
6416 */
6417 if (mddev->ro && mddev->pers) {
6418 if (mddev->ro == 2) {
6419 mddev->ro = 0;
6420 sysfs_notify_dirent_safe(mddev->sysfs_state);
6421 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6422 /* mddev_unlock will wake thread */
6423 /* If a device failed while we were read-only, we
6424 * need to make sure the metadata is updated now.
6425 */
6426 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6427 mddev_unlock(mddev);
6428 wait_event(mddev->sb_wait,
6429 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6430 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6431 mddev_lock_nointr(mddev);
6432 }
6433 } else {
6434 err = -EROFS;
6435 goto unlock;
6436 }
6437 }
6438
6439 switch (cmd) {
6440 case ADD_NEW_DISK:
6441 {
6442 mdu_disk_info_t info;
6443 if (copy_from_user(&info, argp, sizeof(info)))
6444 err = -EFAULT;
6445 else
6446 err = add_new_disk(mddev, &info);
6447 goto unlock;
6448 }
6449
6450 case HOT_ADD_DISK:
6451 err = hot_add_disk(mddev, new_decode_dev(arg));
6452 goto unlock;
6453
6454 case RUN_ARRAY:
6455 err = do_md_run(mddev);
6456 goto unlock;
6457
6458 case SET_BITMAP_FILE:
6459 err = set_bitmap_file(mddev, (int)arg);
6460 goto unlock;
6461
6462 default:
6463 err = -EINVAL;
6464 goto unlock;
6465 }
6466
6467 unlock:
6468 if (mddev->hold_active == UNTIL_IOCTL &&
6469 err != -EINVAL)
6470 mddev->hold_active = 0;
6471 mddev_unlock(mddev);
6472 out:
6473 return err;
6474 }
6475 #ifdef CONFIG_COMPAT
6476 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6477 unsigned int cmd, unsigned long arg)
6478 {
6479 switch (cmd) {
6480 case HOT_REMOVE_DISK:
6481 case HOT_ADD_DISK:
6482 case SET_DISK_FAULTY:
6483 case SET_BITMAP_FILE:
6484 /* These take in integer arg, do not convert */
6485 break;
6486 default:
6487 arg = (unsigned long)compat_ptr(arg);
6488 break;
6489 }
6490
6491 return md_ioctl(bdev, mode, cmd, arg);
6492 }
6493 #endif /* CONFIG_COMPAT */
6494
6495 static int md_open(struct block_device *bdev, fmode_t mode)
6496 {
6497 /*
6498 * Succeed if we can lock the mddev, which confirms that
6499 * it isn't being stopped right now.
6500 */
6501 struct mddev *mddev = mddev_find(bdev->bd_dev);
6502 int err;
6503
6504 if (!mddev)
6505 return -ENODEV;
6506
6507 if (mddev->gendisk != bdev->bd_disk) {
6508 /* we are racing with mddev_put which is discarding this
6509 * bd_disk.
6510 */
6511 mddev_put(mddev);
6512 /* Wait until bdev->bd_disk is definitely gone */
6513 flush_workqueue(md_misc_wq);
6514 /* Then retry the open from the top */
6515 return -ERESTARTSYS;
6516 }
6517 BUG_ON(mddev != bdev->bd_disk->private_data);
6518
6519 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6520 goto out;
6521
6522 err = 0;
6523 atomic_inc(&mddev->openers);
6524 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6525 mutex_unlock(&mddev->open_mutex);
6526
6527 check_disk_change(bdev);
6528 out:
6529 return err;
6530 }
6531
6532 static void md_release(struct gendisk *disk, fmode_t mode)
6533 {
6534 struct mddev *mddev = disk->private_data;
6535
6536 BUG_ON(!mddev);
6537 atomic_dec(&mddev->openers);
6538 mddev_put(mddev);
6539 }
6540
6541 static int md_media_changed(struct gendisk *disk)
6542 {
6543 struct mddev *mddev = disk->private_data;
6544
6545 return mddev->changed;
6546 }
6547
6548 static int md_revalidate(struct gendisk *disk)
6549 {
6550 struct mddev *mddev = disk->private_data;
6551
6552 mddev->changed = 0;
6553 return 0;
6554 }
6555 static const struct block_device_operations md_fops =
6556 {
6557 .owner = THIS_MODULE,
6558 .open = md_open,
6559 .release = md_release,
6560 .ioctl = md_ioctl,
6561 #ifdef CONFIG_COMPAT
6562 .compat_ioctl = md_compat_ioctl,
6563 #endif
6564 .getgeo = md_getgeo,
6565 .media_changed = md_media_changed,
6566 .revalidate_disk= md_revalidate,
6567 };
6568
6569 static int md_thread(void *arg)
6570 {
6571 struct md_thread *thread = arg;
6572
6573 /*
6574 * md_thread is a 'system-thread', it's priority should be very
6575 * high. We avoid resource deadlocks individually in each
6576 * raid personality. (RAID5 does preallocation) We also use RR and
6577 * the very same RT priority as kswapd, thus we will never get
6578 * into a priority inversion deadlock.
6579 *
6580 * we definitely have to have equal or higher priority than
6581 * bdflush, otherwise bdflush will deadlock if there are too
6582 * many dirty RAID5 blocks.
6583 */
6584
6585 allow_signal(SIGKILL);
6586 while (!kthread_should_stop()) {
6587
6588 /* We need to wait INTERRUPTIBLE so that
6589 * we don't add to the load-average.
6590 * That means we need to be sure no signals are
6591 * pending
6592 */
6593 if (signal_pending(current))
6594 flush_signals(current);
6595
6596 wait_event_interruptible_timeout
6597 (thread->wqueue,
6598 test_bit(THREAD_WAKEUP, &thread->flags)
6599 || kthread_should_stop(),
6600 thread->timeout);
6601
6602 clear_bit(THREAD_WAKEUP, &thread->flags);
6603 if (!kthread_should_stop())
6604 thread->run(thread);
6605 }
6606
6607 return 0;
6608 }
6609
6610 void md_wakeup_thread(struct md_thread *thread)
6611 {
6612 if (thread) {
6613 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6614 set_bit(THREAD_WAKEUP, &thread->flags);
6615 wake_up(&thread->wqueue);
6616 }
6617 }
6618 EXPORT_SYMBOL(md_wakeup_thread);
6619
6620 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6621 struct mddev *mddev, const char *name)
6622 {
6623 struct md_thread *thread;
6624
6625 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6626 if (!thread)
6627 return NULL;
6628
6629 init_waitqueue_head(&thread->wqueue);
6630
6631 thread->run = run;
6632 thread->mddev = mddev;
6633 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6634 thread->tsk = kthread_run(md_thread, thread,
6635 "%s_%s",
6636 mdname(thread->mddev),
6637 name);
6638 if (IS_ERR(thread->tsk)) {
6639 kfree(thread);
6640 return NULL;
6641 }
6642 return thread;
6643 }
6644 EXPORT_SYMBOL(md_register_thread);
6645
6646 void md_unregister_thread(struct md_thread **threadp)
6647 {
6648 struct md_thread *thread = *threadp;
6649 if (!thread)
6650 return;
6651 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6652 /* Locking ensures that mddev_unlock does not wake_up a
6653 * non-existent thread
6654 */
6655 spin_lock(&pers_lock);
6656 *threadp = NULL;
6657 spin_unlock(&pers_lock);
6658
6659 kthread_stop(thread->tsk);
6660 kfree(thread);
6661 }
6662 EXPORT_SYMBOL(md_unregister_thread);
6663
6664 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6665 {
6666 if (!rdev || test_bit(Faulty, &rdev->flags))
6667 return;
6668
6669 if (!mddev->pers || !mddev->pers->error_handler)
6670 return;
6671 mddev->pers->error_handler(mddev,rdev);
6672 if (mddev->degraded)
6673 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6674 sysfs_notify_dirent_safe(rdev->sysfs_state);
6675 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6676 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6677 md_wakeup_thread(mddev->thread);
6678 if (mddev->event_work.func)
6679 queue_work(md_misc_wq, &mddev->event_work);
6680 md_new_event_inintr(mddev);
6681 }
6682 EXPORT_SYMBOL(md_error);
6683
6684 /* seq_file implementation /proc/mdstat */
6685
6686 static void status_unused(struct seq_file *seq)
6687 {
6688 int i = 0;
6689 struct md_rdev *rdev;
6690
6691 seq_printf(seq, "unused devices: ");
6692
6693 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6694 char b[BDEVNAME_SIZE];
6695 i++;
6696 seq_printf(seq, "%s ",
6697 bdevname(rdev->bdev,b));
6698 }
6699 if (!i)
6700 seq_printf(seq, "<none>");
6701
6702 seq_printf(seq, "\n");
6703 }
6704
6705 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6706 {
6707 sector_t max_sectors, resync, res;
6708 unsigned long dt, db;
6709 sector_t rt;
6710 int scale;
6711 unsigned int per_milli;
6712
6713 if (mddev->curr_resync <= 3)
6714 resync = 0;
6715 else
6716 resync = mddev->curr_resync
6717 - atomic_read(&mddev->recovery_active);
6718
6719 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6720 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6721 max_sectors = mddev->resync_max_sectors;
6722 else
6723 max_sectors = mddev->dev_sectors;
6724
6725 WARN_ON(max_sectors == 0);
6726 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6727 * in a sector_t, and (max_sectors>>scale) will fit in a
6728 * u32, as those are the requirements for sector_div.
6729 * Thus 'scale' must be at least 10
6730 */
6731 scale = 10;
6732 if (sizeof(sector_t) > sizeof(unsigned long)) {
6733 while ( max_sectors/2 > (1ULL<<(scale+32)))
6734 scale++;
6735 }
6736 res = (resync>>scale)*1000;
6737 sector_div(res, (u32)((max_sectors>>scale)+1));
6738
6739 per_milli = res;
6740 {
6741 int i, x = per_milli/50, y = 20-x;
6742 seq_printf(seq, "[");
6743 for (i = 0; i < x; i++)
6744 seq_printf(seq, "=");
6745 seq_printf(seq, ">");
6746 for (i = 0; i < y; i++)
6747 seq_printf(seq, ".");
6748 seq_printf(seq, "] ");
6749 }
6750 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6751 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6752 "reshape" :
6753 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6754 "check" :
6755 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6756 "resync" : "recovery"))),
6757 per_milli/10, per_milli % 10,
6758 (unsigned long long) resync/2,
6759 (unsigned long long) max_sectors/2);
6760
6761 /*
6762 * dt: time from mark until now
6763 * db: blocks written from mark until now
6764 * rt: remaining time
6765 *
6766 * rt is a sector_t, so could be 32bit or 64bit.
6767 * So we divide before multiply in case it is 32bit and close
6768 * to the limit.
6769 * We scale the divisor (db) by 32 to avoid losing precision
6770 * near the end of resync when the number of remaining sectors
6771 * is close to 'db'.
6772 * We then divide rt by 32 after multiplying by db to compensate.
6773 * The '+1' avoids division by zero if db is very small.
6774 */
6775 dt = ((jiffies - mddev->resync_mark) / HZ);
6776 if (!dt) dt++;
6777 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6778 - mddev->resync_mark_cnt;
6779
6780 rt = max_sectors - resync; /* number of remaining sectors */
6781 sector_div(rt, db/32+1);
6782 rt *= dt;
6783 rt >>= 5;
6784
6785 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6786 ((unsigned long)rt % 60)/6);
6787
6788 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6789 }
6790
6791 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6792 {
6793 struct list_head *tmp;
6794 loff_t l = *pos;
6795 struct mddev *mddev;
6796
6797 if (l >= 0x10000)
6798 return NULL;
6799 if (!l--)
6800 /* header */
6801 return (void*)1;
6802
6803 spin_lock(&all_mddevs_lock);
6804 list_for_each(tmp,&all_mddevs)
6805 if (!l--) {
6806 mddev = list_entry(tmp, struct mddev, all_mddevs);
6807 mddev_get(mddev);
6808 spin_unlock(&all_mddevs_lock);
6809 return mddev;
6810 }
6811 spin_unlock(&all_mddevs_lock);
6812 if (!l--)
6813 return (void*)2;/* tail */
6814 return NULL;
6815 }
6816
6817 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6818 {
6819 struct list_head *tmp;
6820 struct mddev *next_mddev, *mddev = v;
6821
6822 ++*pos;
6823 if (v == (void*)2)
6824 return NULL;
6825
6826 spin_lock(&all_mddevs_lock);
6827 if (v == (void*)1)
6828 tmp = all_mddevs.next;
6829 else
6830 tmp = mddev->all_mddevs.next;
6831 if (tmp != &all_mddevs)
6832 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6833 else {
6834 next_mddev = (void*)2;
6835 *pos = 0x10000;
6836 }
6837 spin_unlock(&all_mddevs_lock);
6838
6839 if (v != (void*)1)
6840 mddev_put(mddev);
6841 return next_mddev;
6842
6843 }
6844
6845 static void md_seq_stop(struct seq_file *seq, void *v)
6846 {
6847 struct mddev *mddev = v;
6848
6849 if (mddev && v != (void*)1 && v != (void*)2)
6850 mddev_put(mddev);
6851 }
6852
6853 static int md_seq_show(struct seq_file *seq, void *v)
6854 {
6855 struct mddev *mddev = v;
6856 sector_t sectors;
6857 struct md_rdev *rdev;
6858
6859 if (v == (void*)1) {
6860 struct md_personality *pers;
6861 seq_printf(seq, "Personalities : ");
6862 spin_lock(&pers_lock);
6863 list_for_each_entry(pers, &pers_list, list)
6864 seq_printf(seq, "[%s] ", pers->name);
6865
6866 spin_unlock(&pers_lock);
6867 seq_printf(seq, "\n");
6868 seq->poll_event = atomic_read(&md_event_count);
6869 return 0;
6870 }
6871 if (v == (void*)2) {
6872 status_unused(seq);
6873 return 0;
6874 }
6875
6876 if (mddev_lock(mddev) < 0)
6877 return -EINTR;
6878
6879 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6880 seq_printf(seq, "%s : %sactive", mdname(mddev),
6881 mddev->pers ? "" : "in");
6882 if (mddev->pers) {
6883 if (mddev->ro==1)
6884 seq_printf(seq, " (read-only)");
6885 if (mddev->ro==2)
6886 seq_printf(seq, " (auto-read-only)");
6887 seq_printf(seq, " %s", mddev->pers->name);
6888 }
6889
6890 sectors = 0;
6891 rdev_for_each(rdev, mddev) {
6892 char b[BDEVNAME_SIZE];
6893 seq_printf(seq, " %s[%d]",
6894 bdevname(rdev->bdev,b), rdev->desc_nr);
6895 if (test_bit(WriteMostly, &rdev->flags))
6896 seq_printf(seq, "(W)");
6897 if (test_bit(Faulty, &rdev->flags)) {
6898 seq_printf(seq, "(F)");
6899 continue;
6900 }
6901 if (rdev->raid_disk < 0)
6902 seq_printf(seq, "(S)"); /* spare */
6903 if (test_bit(Replacement, &rdev->flags))
6904 seq_printf(seq, "(R)");
6905 sectors += rdev->sectors;
6906 }
6907
6908 if (!list_empty(&mddev->disks)) {
6909 if (mddev->pers)
6910 seq_printf(seq, "\n %llu blocks",
6911 (unsigned long long)
6912 mddev->array_sectors / 2);
6913 else
6914 seq_printf(seq, "\n %llu blocks",
6915 (unsigned long long)sectors / 2);
6916 }
6917 if (mddev->persistent) {
6918 if (mddev->major_version != 0 ||
6919 mddev->minor_version != 90) {
6920 seq_printf(seq," super %d.%d",
6921 mddev->major_version,
6922 mddev->minor_version);
6923 }
6924 } else if (mddev->external)
6925 seq_printf(seq, " super external:%s",
6926 mddev->metadata_type);
6927 else
6928 seq_printf(seq, " super non-persistent");
6929
6930 if (mddev->pers) {
6931 mddev->pers->status(seq, mddev);
6932 seq_printf(seq, "\n ");
6933 if (mddev->pers->sync_request) {
6934 if (mddev->curr_resync > 2) {
6935 status_resync(seq, mddev);
6936 seq_printf(seq, "\n ");
6937 } else if (mddev->curr_resync >= 1)
6938 seq_printf(seq, "\tresync=DELAYED\n ");
6939 else if (mddev->recovery_cp < MaxSector)
6940 seq_printf(seq, "\tresync=PENDING\n ");
6941 }
6942 } else
6943 seq_printf(seq, "\n ");
6944
6945 bitmap_status(seq, mddev->bitmap);
6946
6947 seq_printf(seq, "\n");
6948 }
6949 mddev_unlock(mddev);
6950
6951 return 0;
6952 }
6953
6954 static const struct seq_operations md_seq_ops = {
6955 .start = md_seq_start,
6956 .next = md_seq_next,
6957 .stop = md_seq_stop,
6958 .show = md_seq_show,
6959 };
6960
6961 static int md_seq_open(struct inode *inode, struct file *file)
6962 {
6963 struct seq_file *seq;
6964 int error;
6965
6966 error = seq_open(file, &md_seq_ops);
6967 if (error)
6968 return error;
6969
6970 seq = file->private_data;
6971 seq->poll_event = atomic_read(&md_event_count);
6972 return error;
6973 }
6974
6975 static int md_unloading;
6976 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6977 {
6978 struct seq_file *seq = filp->private_data;
6979 int mask;
6980
6981 if (md_unloading)
6982 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
6983 poll_wait(filp, &md_event_waiters, wait);
6984
6985 /* always allow read */
6986 mask = POLLIN | POLLRDNORM;
6987
6988 if (seq->poll_event != atomic_read(&md_event_count))
6989 mask |= POLLERR | POLLPRI;
6990 return mask;
6991 }
6992
6993 static const struct file_operations md_seq_fops = {
6994 .owner = THIS_MODULE,
6995 .open = md_seq_open,
6996 .read = seq_read,
6997 .llseek = seq_lseek,
6998 .release = seq_release_private,
6999 .poll = mdstat_poll,
7000 };
7001
7002 int register_md_personality(struct md_personality *p)
7003 {
7004 printk(KERN_INFO "md: %s personality registered for level %d\n",
7005 p->name, p->level);
7006 spin_lock(&pers_lock);
7007 list_add_tail(&p->list, &pers_list);
7008 spin_unlock(&pers_lock);
7009 return 0;
7010 }
7011 EXPORT_SYMBOL(register_md_personality);
7012
7013 int unregister_md_personality(struct md_personality *p)
7014 {
7015 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7016 spin_lock(&pers_lock);
7017 list_del_init(&p->list);
7018 spin_unlock(&pers_lock);
7019 return 0;
7020 }
7021 EXPORT_SYMBOL(unregister_md_personality);
7022
7023 static int is_mddev_idle(struct mddev *mddev, int init)
7024 {
7025 struct md_rdev *rdev;
7026 int idle;
7027 int curr_events;
7028
7029 idle = 1;
7030 rcu_read_lock();
7031 rdev_for_each_rcu(rdev, mddev) {
7032 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7033 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7034 (int)part_stat_read(&disk->part0, sectors[1]) -
7035 atomic_read(&disk->sync_io);
7036 /* sync IO will cause sync_io to increase before the disk_stats
7037 * as sync_io is counted when a request starts, and
7038 * disk_stats is counted when it completes.
7039 * So resync activity will cause curr_events to be smaller than
7040 * when there was no such activity.
7041 * non-sync IO will cause disk_stat to increase without
7042 * increasing sync_io so curr_events will (eventually)
7043 * be larger than it was before. Once it becomes
7044 * substantially larger, the test below will cause
7045 * the array to appear non-idle, and resync will slow
7046 * down.
7047 * If there is a lot of outstanding resync activity when
7048 * we set last_event to curr_events, then all that activity
7049 * completing might cause the array to appear non-idle
7050 * and resync will be slowed down even though there might
7051 * not have been non-resync activity. This will only
7052 * happen once though. 'last_events' will soon reflect
7053 * the state where there is little or no outstanding
7054 * resync requests, and further resync activity will
7055 * always make curr_events less than last_events.
7056 *
7057 */
7058 if (init || curr_events - rdev->last_events > 64) {
7059 rdev->last_events = curr_events;
7060 idle = 0;
7061 }
7062 }
7063 rcu_read_unlock();
7064 return idle;
7065 }
7066
7067 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7068 {
7069 /* another "blocks" (512byte) blocks have been synced */
7070 atomic_sub(blocks, &mddev->recovery_active);
7071 wake_up(&mddev->recovery_wait);
7072 if (!ok) {
7073 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7074 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7075 md_wakeup_thread(mddev->thread);
7076 // stop recovery, signal do_sync ....
7077 }
7078 }
7079 EXPORT_SYMBOL(md_done_sync);
7080
7081 /* md_write_start(mddev, bi)
7082 * If we need to update some array metadata (e.g. 'active' flag
7083 * in superblock) before writing, schedule a superblock update
7084 * and wait for it to complete.
7085 */
7086 void md_write_start(struct mddev *mddev, struct bio *bi)
7087 {
7088 int did_change = 0;
7089 if (bio_data_dir(bi) != WRITE)
7090 return;
7091
7092 BUG_ON(mddev->ro == 1);
7093 if (mddev->ro == 2) {
7094 /* need to switch to read/write */
7095 mddev->ro = 0;
7096 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7097 md_wakeup_thread(mddev->thread);
7098 md_wakeup_thread(mddev->sync_thread);
7099 did_change = 1;
7100 }
7101 atomic_inc(&mddev->writes_pending);
7102 if (mddev->safemode == 1)
7103 mddev->safemode = 0;
7104 if (mddev->in_sync) {
7105 spin_lock_irq(&mddev->write_lock);
7106 if (mddev->in_sync) {
7107 mddev->in_sync = 0;
7108 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7109 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7110 md_wakeup_thread(mddev->thread);
7111 did_change = 1;
7112 }
7113 spin_unlock_irq(&mddev->write_lock);
7114 }
7115 if (did_change)
7116 sysfs_notify_dirent_safe(mddev->sysfs_state);
7117 wait_event(mddev->sb_wait,
7118 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7119 }
7120 EXPORT_SYMBOL(md_write_start);
7121
7122 void md_write_end(struct mddev *mddev)
7123 {
7124 if (atomic_dec_and_test(&mddev->writes_pending)) {
7125 if (mddev->safemode == 2)
7126 md_wakeup_thread(mddev->thread);
7127 else if (mddev->safemode_delay)
7128 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7129 }
7130 }
7131 EXPORT_SYMBOL(md_write_end);
7132
7133 /* md_allow_write(mddev)
7134 * Calling this ensures that the array is marked 'active' so that writes
7135 * may proceed without blocking. It is important to call this before
7136 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7137 * Must be called with mddev_lock held.
7138 *
7139 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7140 * is dropped, so return -EAGAIN after notifying userspace.
7141 */
7142 int md_allow_write(struct mddev *mddev)
7143 {
7144 if (!mddev->pers)
7145 return 0;
7146 if (mddev->ro)
7147 return 0;
7148 if (!mddev->pers->sync_request)
7149 return 0;
7150
7151 spin_lock_irq(&mddev->write_lock);
7152 if (mddev->in_sync) {
7153 mddev->in_sync = 0;
7154 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7155 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7156 if (mddev->safemode_delay &&
7157 mddev->safemode == 0)
7158 mddev->safemode = 1;
7159 spin_unlock_irq(&mddev->write_lock);
7160 md_update_sb(mddev, 0);
7161 sysfs_notify_dirent_safe(mddev->sysfs_state);
7162 } else
7163 spin_unlock_irq(&mddev->write_lock);
7164
7165 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7166 return -EAGAIN;
7167 else
7168 return 0;
7169 }
7170 EXPORT_SYMBOL_GPL(md_allow_write);
7171
7172 #define SYNC_MARKS 10
7173 #define SYNC_MARK_STEP (3*HZ)
7174 #define UPDATE_FREQUENCY (5*60*HZ)
7175 void md_do_sync(struct md_thread *thread)
7176 {
7177 struct mddev *mddev = thread->mddev;
7178 struct mddev *mddev2;
7179 unsigned int currspeed = 0,
7180 window;
7181 sector_t max_sectors,j, io_sectors, recovery_done;
7182 unsigned long mark[SYNC_MARKS];
7183 unsigned long update_time;
7184 sector_t mark_cnt[SYNC_MARKS];
7185 int last_mark,m;
7186 struct list_head *tmp;
7187 sector_t last_check;
7188 int skipped = 0;
7189 struct md_rdev *rdev;
7190 char *desc, *action = NULL;
7191 struct blk_plug plug;
7192
7193 /* just incase thread restarts... */
7194 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7195 return;
7196 if (mddev->ro) {/* never try to sync a read-only array */
7197 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7198 return;
7199 }
7200
7201 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7202 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7203 desc = "data-check";
7204 action = "check";
7205 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7206 desc = "requested-resync";
7207 action = "repair";
7208 } else
7209 desc = "resync";
7210 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7211 desc = "reshape";
7212 else
7213 desc = "recovery";
7214
7215 mddev->last_sync_action = action ?: desc;
7216
7217 /* we overload curr_resync somewhat here.
7218 * 0 == not engaged in resync at all
7219 * 2 == checking that there is no conflict with another sync
7220 * 1 == like 2, but have yielded to allow conflicting resync to
7221 * commense
7222 * other == active in resync - this many blocks
7223 *
7224 * Before starting a resync we must have set curr_resync to
7225 * 2, and then checked that every "conflicting" array has curr_resync
7226 * less than ours. When we find one that is the same or higher
7227 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7228 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7229 * This will mean we have to start checking from the beginning again.
7230 *
7231 */
7232
7233 do {
7234 mddev->curr_resync = 2;
7235
7236 try_again:
7237 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7238 goto skip;
7239 for_each_mddev(mddev2, tmp) {
7240 if (mddev2 == mddev)
7241 continue;
7242 if (!mddev->parallel_resync
7243 && mddev2->curr_resync
7244 && match_mddev_units(mddev, mddev2)) {
7245 DEFINE_WAIT(wq);
7246 if (mddev < mddev2 && mddev->curr_resync == 2) {
7247 /* arbitrarily yield */
7248 mddev->curr_resync = 1;
7249 wake_up(&resync_wait);
7250 }
7251 if (mddev > mddev2 && mddev->curr_resync == 1)
7252 /* no need to wait here, we can wait the next
7253 * time 'round when curr_resync == 2
7254 */
7255 continue;
7256 /* We need to wait 'interruptible' so as not to
7257 * contribute to the load average, and not to
7258 * be caught by 'softlockup'
7259 */
7260 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7261 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7262 mddev2->curr_resync >= mddev->curr_resync) {
7263 printk(KERN_INFO "md: delaying %s of %s"
7264 " until %s has finished (they"
7265 " share one or more physical units)\n",
7266 desc, mdname(mddev), mdname(mddev2));
7267 mddev_put(mddev2);
7268 if (signal_pending(current))
7269 flush_signals(current);
7270 schedule();
7271 finish_wait(&resync_wait, &wq);
7272 goto try_again;
7273 }
7274 finish_wait(&resync_wait, &wq);
7275 }
7276 }
7277 } while (mddev->curr_resync < 2);
7278
7279 j = 0;
7280 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7281 /* resync follows the size requested by the personality,
7282 * which defaults to physical size, but can be virtual size
7283 */
7284 max_sectors = mddev->resync_max_sectors;
7285 atomic64_set(&mddev->resync_mismatches, 0);
7286 /* we don't use the checkpoint if there's a bitmap */
7287 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7288 j = mddev->resync_min;
7289 else if (!mddev->bitmap)
7290 j = mddev->recovery_cp;
7291
7292 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7293 max_sectors = mddev->resync_max_sectors;
7294 else {
7295 /* recovery follows the physical size of devices */
7296 max_sectors = mddev->dev_sectors;
7297 j = MaxSector;
7298 rcu_read_lock();
7299 rdev_for_each_rcu(rdev, mddev)
7300 if (rdev->raid_disk >= 0 &&
7301 !test_bit(Faulty, &rdev->flags) &&
7302 !test_bit(In_sync, &rdev->flags) &&
7303 rdev->recovery_offset < j)
7304 j = rdev->recovery_offset;
7305 rcu_read_unlock();
7306
7307 /* If there is a bitmap, we need to make sure all
7308 * writes that started before we added a spare
7309 * complete before we start doing a recovery.
7310 * Otherwise the write might complete and (via
7311 * bitmap_endwrite) set a bit in the bitmap after the
7312 * recovery has checked that bit and skipped that
7313 * region.
7314 */
7315 if (mddev->bitmap) {
7316 mddev->pers->quiesce(mddev, 1);
7317 mddev->pers->quiesce(mddev, 0);
7318 }
7319 }
7320
7321 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7322 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7323 " %d KB/sec/disk.\n", speed_min(mddev));
7324 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7325 "(but not more than %d KB/sec) for %s.\n",
7326 speed_max(mddev), desc);
7327
7328 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7329
7330 io_sectors = 0;
7331 for (m = 0; m < SYNC_MARKS; m++) {
7332 mark[m] = jiffies;
7333 mark_cnt[m] = io_sectors;
7334 }
7335 last_mark = 0;
7336 mddev->resync_mark = mark[last_mark];
7337 mddev->resync_mark_cnt = mark_cnt[last_mark];
7338
7339 /*
7340 * Tune reconstruction:
7341 */
7342 window = 32*(PAGE_SIZE/512);
7343 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7344 window/2, (unsigned long long)max_sectors/2);
7345
7346 atomic_set(&mddev->recovery_active, 0);
7347 last_check = 0;
7348
7349 if (j>2) {
7350 printk(KERN_INFO
7351 "md: resuming %s of %s from checkpoint.\n",
7352 desc, mdname(mddev));
7353 mddev->curr_resync = j;
7354 } else
7355 mddev->curr_resync = 3; /* no longer delayed */
7356 mddev->curr_resync_completed = j;
7357 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7358 md_new_event(mddev);
7359 update_time = jiffies;
7360
7361 blk_start_plug(&plug);
7362 while (j < max_sectors) {
7363 sector_t sectors;
7364
7365 skipped = 0;
7366
7367 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7368 ((mddev->curr_resync > mddev->curr_resync_completed &&
7369 (mddev->curr_resync - mddev->curr_resync_completed)
7370 > (max_sectors >> 4)) ||
7371 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7372 (j - mddev->curr_resync_completed)*2
7373 >= mddev->resync_max - mddev->curr_resync_completed
7374 )) {
7375 /* time to update curr_resync_completed */
7376 wait_event(mddev->recovery_wait,
7377 atomic_read(&mddev->recovery_active) == 0);
7378 mddev->curr_resync_completed = j;
7379 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7380 j > mddev->recovery_cp)
7381 mddev->recovery_cp = j;
7382 update_time = jiffies;
7383 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7384 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7385 }
7386
7387 while (j >= mddev->resync_max &&
7388 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7389 /* As this condition is controlled by user-space,
7390 * we can block indefinitely, so use '_interruptible'
7391 * to avoid triggering warnings.
7392 */
7393 flush_signals(current); /* just in case */
7394 wait_event_interruptible(mddev->recovery_wait,
7395 mddev->resync_max > j
7396 || test_bit(MD_RECOVERY_INTR,
7397 &mddev->recovery));
7398 }
7399
7400 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7401 break;
7402
7403 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7404 currspeed < speed_min(mddev));
7405 if (sectors == 0) {
7406 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7407 break;
7408 }
7409
7410 if (!skipped) { /* actual IO requested */
7411 io_sectors += sectors;
7412 atomic_add(sectors, &mddev->recovery_active);
7413 }
7414
7415 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7416 break;
7417
7418 j += sectors;
7419 if (j > 2)
7420 mddev->curr_resync = j;
7421 mddev->curr_mark_cnt = io_sectors;
7422 if (last_check == 0)
7423 /* this is the earliest that rebuild will be
7424 * visible in /proc/mdstat
7425 */
7426 md_new_event(mddev);
7427
7428 if (last_check + window > io_sectors || j == max_sectors)
7429 continue;
7430
7431 last_check = io_sectors;
7432 repeat:
7433 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7434 /* step marks */
7435 int next = (last_mark+1) % SYNC_MARKS;
7436
7437 mddev->resync_mark = mark[next];
7438 mddev->resync_mark_cnt = mark_cnt[next];
7439 mark[next] = jiffies;
7440 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7441 last_mark = next;
7442 }
7443
7444 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7445 break;
7446
7447 /*
7448 * this loop exits only if either when we are slower than
7449 * the 'hard' speed limit, or the system was IO-idle for
7450 * a jiffy.
7451 * the system might be non-idle CPU-wise, but we only care
7452 * about not overloading the IO subsystem. (things like an
7453 * e2fsck being done on the RAID array should execute fast)
7454 */
7455 cond_resched();
7456
7457 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7458 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7459 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7460
7461 if (currspeed > speed_min(mddev)) {
7462 if ((currspeed > speed_max(mddev)) ||
7463 !is_mddev_idle(mddev, 0)) {
7464 msleep(500);
7465 goto repeat;
7466 }
7467 }
7468 }
7469 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7470 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7471 ? "interrupted" : "done");
7472 /*
7473 * this also signals 'finished resyncing' to md_stop
7474 */
7475 blk_finish_plug(&plug);
7476 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7477
7478 /* tell personality that we are finished */
7479 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7480
7481 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7482 mddev->curr_resync > 2) {
7483 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7484 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7485 if (mddev->curr_resync >= mddev->recovery_cp) {
7486 printk(KERN_INFO
7487 "md: checkpointing %s of %s.\n",
7488 desc, mdname(mddev));
7489 if (test_bit(MD_RECOVERY_ERROR,
7490 &mddev->recovery))
7491 mddev->recovery_cp =
7492 mddev->curr_resync_completed;
7493 else
7494 mddev->recovery_cp =
7495 mddev->curr_resync;
7496 }
7497 } else
7498 mddev->recovery_cp = MaxSector;
7499 } else {
7500 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7501 mddev->curr_resync = MaxSector;
7502 rcu_read_lock();
7503 rdev_for_each_rcu(rdev, mddev)
7504 if (rdev->raid_disk >= 0 &&
7505 mddev->delta_disks >= 0 &&
7506 !test_bit(Faulty, &rdev->flags) &&
7507 !test_bit(In_sync, &rdev->flags) &&
7508 rdev->recovery_offset < mddev->curr_resync)
7509 rdev->recovery_offset = mddev->curr_resync;
7510 rcu_read_unlock();
7511 }
7512 }
7513 skip:
7514 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7515
7516 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7517 /* We completed so min/max setting can be forgotten if used. */
7518 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7519 mddev->resync_min = 0;
7520 mddev->resync_max = MaxSector;
7521 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7522 mddev->resync_min = mddev->curr_resync_completed;
7523 mddev->curr_resync = 0;
7524 wake_up(&resync_wait);
7525 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7526 md_wakeup_thread(mddev->thread);
7527 return;
7528 }
7529 EXPORT_SYMBOL_GPL(md_do_sync);
7530
7531 static int remove_and_add_spares(struct mddev *mddev,
7532 struct md_rdev *this)
7533 {
7534 struct md_rdev *rdev;
7535 int spares = 0;
7536 int removed = 0;
7537
7538 rdev_for_each(rdev, mddev)
7539 if ((this == NULL || rdev == this) &&
7540 rdev->raid_disk >= 0 &&
7541 !test_bit(Blocked, &rdev->flags) &&
7542 (test_bit(Faulty, &rdev->flags) ||
7543 ! test_bit(In_sync, &rdev->flags)) &&
7544 atomic_read(&rdev->nr_pending)==0) {
7545 if (mddev->pers->hot_remove_disk(
7546 mddev, rdev) == 0) {
7547 sysfs_unlink_rdev(mddev, rdev);
7548 rdev->raid_disk = -1;
7549 removed++;
7550 }
7551 }
7552 if (removed && mddev->kobj.sd)
7553 sysfs_notify(&mddev->kobj, NULL, "degraded");
7554
7555 if (this)
7556 goto no_add;
7557
7558 rdev_for_each(rdev, mddev) {
7559 if (rdev->raid_disk >= 0 &&
7560 !test_bit(In_sync, &rdev->flags) &&
7561 !test_bit(Faulty, &rdev->flags))
7562 spares++;
7563 if (rdev->raid_disk >= 0)
7564 continue;
7565 if (test_bit(Faulty, &rdev->flags))
7566 continue;
7567 if (mddev->ro &&
7568 ! (rdev->saved_raid_disk >= 0 &&
7569 !test_bit(Bitmap_sync, &rdev->flags)))
7570 continue;
7571
7572 if (rdev->saved_raid_disk < 0)
7573 rdev->recovery_offset = 0;
7574 if (mddev->pers->
7575 hot_add_disk(mddev, rdev) == 0) {
7576 if (sysfs_link_rdev(mddev, rdev))
7577 /* failure here is OK */;
7578 spares++;
7579 md_new_event(mddev);
7580 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7581 }
7582 }
7583 no_add:
7584 if (removed)
7585 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7586 return spares;
7587 }
7588
7589 static void md_start_sync(struct work_struct *ws)
7590 {
7591 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7592
7593 mddev->sync_thread = md_register_thread(md_do_sync,
7594 mddev,
7595 "resync");
7596 if (!mddev->sync_thread) {
7597 printk(KERN_ERR "%s: could not start resync"
7598 " thread...\n",
7599 mdname(mddev));
7600 /* leave the spares where they are, it shouldn't hurt */
7601 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7602 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7603 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7604 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7605 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7606 wake_up(&resync_wait);
7607 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7608 &mddev->recovery))
7609 if (mddev->sysfs_action)
7610 sysfs_notify_dirent_safe(mddev->sysfs_action);
7611 } else
7612 md_wakeup_thread(mddev->sync_thread);
7613 sysfs_notify_dirent_safe(mddev->sysfs_action);
7614 md_new_event(mddev);
7615 }
7616
7617 /*
7618 * This routine is regularly called by all per-raid-array threads to
7619 * deal with generic issues like resync and super-block update.
7620 * Raid personalities that don't have a thread (linear/raid0) do not
7621 * need this as they never do any recovery or update the superblock.
7622 *
7623 * It does not do any resync itself, but rather "forks" off other threads
7624 * to do that as needed.
7625 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7626 * "->recovery" and create a thread at ->sync_thread.
7627 * When the thread finishes it sets MD_RECOVERY_DONE
7628 * and wakeups up this thread which will reap the thread and finish up.
7629 * This thread also removes any faulty devices (with nr_pending == 0).
7630 *
7631 * The overall approach is:
7632 * 1/ if the superblock needs updating, update it.
7633 * 2/ If a recovery thread is running, don't do anything else.
7634 * 3/ If recovery has finished, clean up, possibly marking spares active.
7635 * 4/ If there are any faulty devices, remove them.
7636 * 5/ If array is degraded, try to add spares devices
7637 * 6/ If array has spares or is not in-sync, start a resync thread.
7638 */
7639 void md_check_recovery(struct mddev *mddev)
7640 {
7641 if (mddev->suspended)
7642 return;
7643
7644 if (mddev->bitmap)
7645 bitmap_daemon_work(mddev);
7646
7647 if (signal_pending(current)) {
7648 if (mddev->pers->sync_request && !mddev->external) {
7649 printk(KERN_INFO "md: %s in immediate safe mode\n",
7650 mdname(mddev));
7651 mddev->safemode = 2;
7652 }
7653 flush_signals(current);
7654 }
7655
7656 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7657 return;
7658 if ( ! (
7659 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7660 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7661 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7662 (mddev->external == 0 && mddev->safemode == 1) ||
7663 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7664 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7665 ))
7666 return;
7667
7668 if (mddev_trylock(mddev)) {
7669 int spares = 0;
7670
7671 if (mddev->ro) {
7672 /* On a read-only array we can:
7673 * - remove failed devices
7674 * - add already-in_sync devices if the array itself
7675 * is in-sync.
7676 * As we only add devices that are already in-sync,
7677 * we can activate the spares immediately.
7678 */
7679 remove_and_add_spares(mddev, NULL);
7680 /* There is no thread, but we need to call
7681 * ->spare_active and clear saved_raid_disk
7682 */
7683 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7684 md_reap_sync_thread(mddev);
7685 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7686 goto unlock;
7687 }
7688
7689 if (!mddev->external) {
7690 int did_change = 0;
7691 spin_lock_irq(&mddev->write_lock);
7692 if (mddev->safemode &&
7693 !atomic_read(&mddev->writes_pending) &&
7694 !mddev->in_sync &&
7695 mddev->recovery_cp == MaxSector) {
7696 mddev->in_sync = 1;
7697 did_change = 1;
7698 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7699 }
7700 if (mddev->safemode == 1)
7701 mddev->safemode = 0;
7702 spin_unlock_irq(&mddev->write_lock);
7703 if (did_change)
7704 sysfs_notify_dirent_safe(mddev->sysfs_state);
7705 }
7706
7707 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7708 md_update_sb(mddev, 0);
7709
7710 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7711 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7712 /* resync/recovery still happening */
7713 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7714 goto unlock;
7715 }
7716 if (mddev->sync_thread) {
7717 md_reap_sync_thread(mddev);
7718 goto unlock;
7719 }
7720 /* Set RUNNING before clearing NEEDED to avoid
7721 * any transients in the value of "sync_action".
7722 */
7723 mddev->curr_resync_completed = 0;
7724 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7725 /* Clear some bits that don't mean anything, but
7726 * might be left set
7727 */
7728 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7729 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7730
7731 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7732 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7733 goto not_running;
7734 /* no recovery is running.
7735 * remove any failed drives, then
7736 * add spares if possible.
7737 * Spares are also removed and re-added, to allow
7738 * the personality to fail the re-add.
7739 */
7740
7741 if (mddev->reshape_position != MaxSector) {
7742 if (mddev->pers->check_reshape == NULL ||
7743 mddev->pers->check_reshape(mddev) != 0)
7744 /* Cannot proceed */
7745 goto not_running;
7746 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7747 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7748 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7749 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7750 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7751 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7752 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7753 } else if (mddev->recovery_cp < MaxSector) {
7754 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7755 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7756 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7757 /* nothing to be done ... */
7758 goto not_running;
7759
7760 if (mddev->pers->sync_request) {
7761 if (spares) {
7762 /* We are adding a device or devices to an array
7763 * which has the bitmap stored on all devices.
7764 * So make sure all bitmap pages get written
7765 */
7766 bitmap_write_all(mddev->bitmap);
7767 }
7768 INIT_WORK(&mddev->del_work, md_start_sync);
7769 queue_work(md_misc_wq, &mddev->del_work);
7770 goto unlock;
7771 }
7772 not_running:
7773 if (!mddev->sync_thread) {
7774 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7775 wake_up(&resync_wait);
7776 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7777 &mddev->recovery))
7778 if (mddev->sysfs_action)
7779 sysfs_notify_dirent_safe(mddev->sysfs_action);
7780 }
7781 unlock:
7782 wake_up(&mddev->sb_wait);
7783 mddev_unlock(mddev);
7784 }
7785 }
7786 EXPORT_SYMBOL(md_check_recovery);
7787
7788 void md_reap_sync_thread(struct mddev *mddev)
7789 {
7790 struct md_rdev *rdev;
7791
7792 /* resync has finished, collect result */
7793 md_unregister_thread(&mddev->sync_thread);
7794 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7795 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7796 /* success...*/
7797 /* activate any spares */
7798 if (mddev->pers->spare_active(mddev)) {
7799 sysfs_notify(&mddev->kobj, NULL,
7800 "degraded");
7801 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7802 }
7803 }
7804 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7805 mddev->pers->finish_reshape)
7806 mddev->pers->finish_reshape(mddev);
7807
7808 /* If array is no-longer degraded, then any saved_raid_disk
7809 * information must be scrapped.
7810 */
7811 if (!mddev->degraded)
7812 rdev_for_each(rdev, mddev)
7813 rdev->saved_raid_disk = -1;
7814
7815 md_update_sb(mddev, 1);
7816 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7817 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7818 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7819 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7820 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7821 wake_up(&resync_wait);
7822 /* flag recovery needed just to double check */
7823 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7824 sysfs_notify_dirent_safe(mddev->sysfs_action);
7825 md_new_event(mddev);
7826 if (mddev->event_work.func)
7827 queue_work(md_misc_wq, &mddev->event_work);
7828 }
7829 EXPORT_SYMBOL(md_reap_sync_thread);
7830
7831 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7832 {
7833 sysfs_notify_dirent_safe(rdev->sysfs_state);
7834 wait_event_timeout(rdev->blocked_wait,
7835 !test_bit(Blocked, &rdev->flags) &&
7836 !test_bit(BlockedBadBlocks, &rdev->flags),
7837 msecs_to_jiffies(5000));
7838 rdev_dec_pending(rdev, mddev);
7839 }
7840 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7841
7842 void md_finish_reshape(struct mddev *mddev)
7843 {
7844 /* called be personality module when reshape completes. */
7845 struct md_rdev *rdev;
7846
7847 rdev_for_each(rdev, mddev) {
7848 if (rdev->data_offset > rdev->new_data_offset)
7849 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7850 else
7851 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7852 rdev->data_offset = rdev->new_data_offset;
7853 }
7854 }
7855 EXPORT_SYMBOL(md_finish_reshape);
7856
7857 /* Bad block management.
7858 * We can record which blocks on each device are 'bad' and so just
7859 * fail those blocks, or that stripe, rather than the whole device.
7860 * Entries in the bad-block table are 64bits wide. This comprises:
7861 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7862 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7863 * A 'shift' can be set so that larger blocks are tracked and
7864 * consequently larger devices can be covered.
7865 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7866 *
7867 * Locking of the bad-block table uses a seqlock so md_is_badblock
7868 * might need to retry if it is very unlucky.
7869 * We will sometimes want to check for bad blocks in a bi_end_io function,
7870 * so we use the write_seqlock_irq variant.
7871 *
7872 * When looking for a bad block we specify a range and want to
7873 * know if any block in the range is bad. So we binary-search
7874 * to the last range that starts at-or-before the given endpoint,
7875 * (or "before the sector after the target range")
7876 * then see if it ends after the given start.
7877 * We return
7878 * 0 if there are no known bad blocks in the range
7879 * 1 if there are known bad block which are all acknowledged
7880 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7881 * plus the start/length of the first bad section we overlap.
7882 */
7883 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7884 sector_t *first_bad, int *bad_sectors)
7885 {
7886 int hi;
7887 int lo;
7888 u64 *p = bb->page;
7889 int rv;
7890 sector_t target = s + sectors;
7891 unsigned seq;
7892
7893 if (bb->shift > 0) {
7894 /* round the start down, and the end up */
7895 s >>= bb->shift;
7896 target += (1<<bb->shift) - 1;
7897 target >>= bb->shift;
7898 sectors = target - s;
7899 }
7900 /* 'target' is now the first block after the bad range */
7901
7902 retry:
7903 seq = read_seqbegin(&bb->lock);
7904 lo = 0;
7905 rv = 0;
7906 hi = bb->count;
7907
7908 /* Binary search between lo and hi for 'target'
7909 * i.e. for the last range that starts before 'target'
7910 */
7911 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7912 * are known not to be the last range before target.
7913 * VARIANT: hi-lo is the number of possible
7914 * ranges, and decreases until it reaches 1
7915 */
7916 while (hi - lo > 1) {
7917 int mid = (lo + hi) / 2;
7918 sector_t a = BB_OFFSET(p[mid]);
7919 if (a < target)
7920 /* This could still be the one, earlier ranges
7921 * could not. */
7922 lo = mid;
7923 else
7924 /* This and later ranges are definitely out. */
7925 hi = mid;
7926 }
7927 /* 'lo' might be the last that started before target, but 'hi' isn't */
7928 if (hi > lo) {
7929 /* need to check all range that end after 's' to see if
7930 * any are unacknowledged.
7931 */
7932 while (lo >= 0 &&
7933 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7934 if (BB_OFFSET(p[lo]) < target) {
7935 /* starts before the end, and finishes after
7936 * the start, so they must overlap
7937 */
7938 if (rv != -1 && BB_ACK(p[lo]))
7939 rv = 1;
7940 else
7941 rv = -1;
7942 *first_bad = BB_OFFSET(p[lo]);
7943 *bad_sectors = BB_LEN(p[lo]);
7944 }
7945 lo--;
7946 }
7947 }
7948
7949 if (read_seqretry(&bb->lock, seq))
7950 goto retry;
7951
7952 return rv;
7953 }
7954 EXPORT_SYMBOL_GPL(md_is_badblock);
7955
7956 /*
7957 * Add a range of bad blocks to the table.
7958 * This might extend the table, or might contract it
7959 * if two adjacent ranges can be merged.
7960 * We binary-search to find the 'insertion' point, then
7961 * decide how best to handle it.
7962 */
7963 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7964 int acknowledged)
7965 {
7966 u64 *p;
7967 int lo, hi;
7968 int rv = 1;
7969 unsigned long flags;
7970
7971 if (bb->shift < 0)
7972 /* badblocks are disabled */
7973 return 0;
7974
7975 if (bb->shift) {
7976 /* round the start down, and the end up */
7977 sector_t next = s + sectors;
7978 s >>= bb->shift;
7979 next += (1<<bb->shift) - 1;
7980 next >>= bb->shift;
7981 sectors = next - s;
7982 }
7983
7984 write_seqlock_irqsave(&bb->lock, flags);
7985
7986 p = bb->page;
7987 lo = 0;
7988 hi = bb->count;
7989 /* Find the last range that starts at-or-before 's' */
7990 while (hi - lo > 1) {
7991 int mid = (lo + hi) / 2;
7992 sector_t a = BB_OFFSET(p[mid]);
7993 if (a <= s)
7994 lo = mid;
7995 else
7996 hi = mid;
7997 }
7998 if (hi > lo && BB_OFFSET(p[lo]) > s)
7999 hi = lo;
8000
8001 if (hi > lo) {
8002 /* we found a range that might merge with the start
8003 * of our new range
8004 */
8005 sector_t a = BB_OFFSET(p[lo]);
8006 sector_t e = a + BB_LEN(p[lo]);
8007 int ack = BB_ACK(p[lo]);
8008 if (e >= s) {
8009 /* Yes, we can merge with a previous range */
8010 if (s == a && s + sectors >= e)
8011 /* new range covers old */
8012 ack = acknowledged;
8013 else
8014 ack = ack && acknowledged;
8015
8016 if (e < s + sectors)
8017 e = s + sectors;
8018 if (e - a <= BB_MAX_LEN) {
8019 p[lo] = BB_MAKE(a, e-a, ack);
8020 s = e;
8021 } else {
8022 /* does not all fit in one range,
8023 * make p[lo] maximal
8024 */
8025 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8026 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8027 s = a + BB_MAX_LEN;
8028 }
8029 sectors = e - s;
8030 }
8031 }
8032 if (sectors && hi < bb->count) {
8033 /* 'hi' points to the first range that starts after 's'.
8034 * Maybe we can merge with the start of that range */
8035 sector_t a = BB_OFFSET(p[hi]);
8036 sector_t e = a + BB_LEN(p[hi]);
8037 int ack = BB_ACK(p[hi]);
8038 if (a <= s + sectors) {
8039 /* merging is possible */
8040 if (e <= s + sectors) {
8041 /* full overlap */
8042 e = s + sectors;
8043 ack = acknowledged;
8044 } else
8045 ack = ack && acknowledged;
8046
8047 a = s;
8048 if (e - a <= BB_MAX_LEN) {
8049 p[hi] = BB_MAKE(a, e-a, ack);
8050 s = e;
8051 } else {
8052 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8053 s = a + BB_MAX_LEN;
8054 }
8055 sectors = e - s;
8056 lo = hi;
8057 hi++;
8058 }
8059 }
8060 if (sectors == 0 && hi < bb->count) {
8061 /* we might be able to combine lo and hi */
8062 /* Note: 's' is at the end of 'lo' */
8063 sector_t a = BB_OFFSET(p[hi]);
8064 int lolen = BB_LEN(p[lo]);
8065 int hilen = BB_LEN(p[hi]);
8066 int newlen = lolen + hilen - (s - a);
8067 if (s >= a && newlen < BB_MAX_LEN) {
8068 /* yes, we can combine them */
8069 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8070 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8071 memmove(p + hi, p + hi + 1,
8072 (bb->count - hi - 1) * 8);
8073 bb->count--;
8074 }
8075 }
8076 while (sectors) {
8077 /* didn't merge (it all).
8078 * Need to add a range just before 'hi' */
8079 if (bb->count >= MD_MAX_BADBLOCKS) {
8080 /* No room for more */
8081 rv = 0;
8082 break;
8083 } else {
8084 int this_sectors = sectors;
8085 memmove(p + hi + 1, p + hi,
8086 (bb->count - hi) * 8);
8087 bb->count++;
8088
8089 if (this_sectors > BB_MAX_LEN)
8090 this_sectors = BB_MAX_LEN;
8091 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8092 sectors -= this_sectors;
8093 s += this_sectors;
8094 }
8095 }
8096
8097 bb->changed = 1;
8098 if (!acknowledged)
8099 bb->unacked_exist = 1;
8100 write_sequnlock_irqrestore(&bb->lock, flags);
8101
8102 return rv;
8103 }
8104
8105 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8106 int is_new)
8107 {
8108 int rv;
8109 if (is_new)
8110 s += rdev->new_data_offset;
8111 else
8112 s += rdev->data_offset;
8113 rv = md_set_badblocks(&rdev->badblocks,
8114 s, sectors, 0);
8115 if (rv) {
8116 /* Make sure they get written out promptly */
8117 sysfs_notify_dirent_safe(rdev->sysfs_state);
8118 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8119 md_wakeup_thread(rdev->mddev->thread);
8120 }
8121 return rv;
8122 }
8123 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8124
8125 /*
8126 * Remove a range of bad blocks from the table.
8127 * This may involve extending the table if we spilt a region,
8128 * but it must not fail. So if the table becomes full, we just
8129 * drop the remove request.
8130 */
8131 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8132 {
8133 u64 *p;
8134 int lo, hi;
8135 sector_t target = s + sectors;
8136 int rv = 0;
8137
8138 if (bb->shift > 0) {
8139 /* When clearing we round the start up and the end down.
8140 * This should not matter as the shift should align with
8141 * the block size and no rounding should ever be needed.
8142 * However it is better the think a block is bad when it
8143 * isn't than to think a block is not bad when it is.
8144 */
8145 s += (1<<bb->shift) - 1;
8146 s >>= bb->shift;
8147 target >>= bb->shift;
8148 sectors = target - s;
8149 }
8150
8151 write_seqlock_irq(&bb->lock);
8152
8153 p = bb->page;
8154 lo = 0;
8155 hi = bb->count;
8156 /* Find the last range that starts before 'target' */
8157 while (hi - lo > 1) {
8158 int mid = (lo + hi) / 2;
8159 sector_t a = BB_OFFSET(p[mid]);
8160 if (a < target)
8161 lo = mid;
8162 else
8163 hi = mid;
8164 }
8165 if (hi > lo) {
8166 /* p[lo] is the last range that could overlap the
8167 * current range. Earlier ranges could also overlap,
8168 * but only this one can overlap the end of the range.
8169 */
8170 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8171 /* Partial overlap, leave the tail of this range */
8172 int ack = BB_ACK(p[lo]);
8173 sector_t a = BB_OFFSET(p[lo]);
8174 sector_t end = a + BB_LEN(p[lo]);
8175
8176 if (a < s) {
8177 /* we need to split this range */
8178 if (bb->count >= MD_MAX_BADBLOCKS) {
8179 rv = -ENOSPC;
8180 goto out;
8181 }
8182 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8183 bb->count++;
8184 p[lo] = BB_MAKE(a, s-a, ack);
8185 lo++;
8186 }
8187 p[lo] = BB_MAKE(target, end - target, ack);
8188 /* there is no longer an overlap */
8189 hi = lo;
8190 lo--;
8191 }
8192 while (lo >= 0 &&
8193 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8194 /* This range does overlap */
8195 if (BB_OFFSET(p[lo]) < s) {
8196 /* Keep the early parts of this range. */
8197 int ack = BB_ACK(p[lo]);
8198 sector_t start = BB_OFFSET(p[lo]);
8199 p[lo] = BB_MAKE(start, s - start, ack);
8200 /* now low doesn't overlap, so.. */
8201 break;
8202 }
8203 lo--;
8204 }
8205 /* 'lo' is strictly before, 'hi' is strictly after,
8206 * anything between needs to be discarded
8207 */
8208 if (hi - lo > 1) {
8209 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8210 bb->count -= (hi - lo - 1);
8211 }
8212 }
8213
8214 bb->changed = 1;
8215 out:
8216 write_sequnlock_irq(&bb->lock);
8217 return rv;
8218 }
8219
8220 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8221 int is_new)
8222 {
8223 if (is_new)
8224 s += rdev->new_data_offset;
8225 else
8226 s += rdev->data_offset;
8227 return md_clear_badblocks(&rdev->badblocks,
8228 s, sectors);
8229 }
8230 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8231
8232 /*
8233 * Acknowledge all bad blocks in a list.
8234 * This only succeeds if ->changed is clear. It is used by
8235 * in-kernel metadata updates
8236 */
8237 void md_ack_all_badblocks(struct badblocks *bb)
8238 {
8239 if (bb->page == NULL || bb->changed)
8240 /* no point even trying */
8241 return;
8242 write_seqlock_irq(&bb->lock);
8243
8244 if (bb->changed == 0 && bb->unacked_exist) {
8245 u64 *p = bb->page;
8246 int i;
8247 for (i = 0; i < bb->count ; i++) {
8248 if (!BB_ACK(p[i])) {
8249 sector_t start = BB_OFFSET(p[i]);
8250 int len = BB_LEN(p[i]);
8251 p[i] = BB_MAKE(start, len, 1);
8252 }
8253 }
8254 bb->unacked_exist = 0;
8255 }
8256 write_sequnlock_irq(&bb->lock);
8257 }
8258 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8259
8260 /* sysfs access to bad-blocks list.
8261 * We present two files.
8262 * 'bad-blocks' lists sector numbers and lengths of ranges that
8263 * are recorded as bad. The list is truncated to fit within
8264 * the one-page limit of sysfs.
8265 * Writing "sector length" to this file adds an acknowledged
8266 * bad block list.
8267 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8268 * been acknowledged. Writing to this file adds bad blocks
8269 * without acknowledging them. This is largely for testing.
8270 */
8271
8272 static ssize_t
8273 badblocks_show(struct badblocks *bb, char *page, int unack)
8274 {
8275 size_t len;
8276 int i;
8277 u64 *p = bb->page;
8278 unsigned seq;
8279
8280 if (bb->shift < 0)
8281 return 0;
8282
8283 retry:
8284 seq = read_seqbegin(&bb->lock);
8285
8286 len = 0;
8287 i = 0;
8288
8289 while (len < PAGE_SIZE && i < bb->count) {
8290 sector_t s = BB_OFFSET(p[i]);
8291 unsigned int length = BB_LEN(p[i]);
8292 int ack = BB_ACK(p[i]);
8293 i++;
8294
8295 if (unack && ack)
8296 continue;
8297
8298 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8299 (unsigned long long)s << bb->shift,
8300 length << bb->shift);
8301 }
8302 if (unack && len == 0)
8303 bb->unacked_exist = 0;
8304
8305 if (read_seqretry(&bb->lock, seq))
8306 goto retry;
8307
8308 return len;
8309 }
8310
8311 #define DO_DEBUG 1
8312
8313 static ssize_t
8314 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8315 {
8316 unsigned long long sector;
8317 int length;
8318 char newline;
8319 #ifdef DO_DEBUG
8320 /* Allow clearing via sysfs *only* for testing/debugging.
8321 * Normally only a successful write may clear a badblock
8322 */
8323 int clear = 0;
8324 if (page[0] == '-') {
8325 clear = 1;
8326 page++;
8327 }
8328 #endif /* DO_DEBUG */
8329
8330 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8331 case 3:
8332 if (newline != '\n')
8333 return -EINVAL;
8334 case 2:
8335 if (length <= 0)
8336 return -EINVAL;
8337 break;
8338 default:
8339 return -EINVAL;
8340 }
8341
8342 #ifdef DO_DEBUG
8343 if (clear) {
8344 md_clear_badblocks(bb, sector, length);
8345 return len;
8346 }
8347 #endif /* DO_DEBUG */
8348 if (md_set_badblocks(bb, sector, length, !unack))
8349 return len;
8350 else
8351 return -ENOSPC;
8352 }
8353
8354 static int md_notify_reboot(struct notifier_block *this,
8355 unsigned long code, void *x)
8356 {
8357 struct list_head *tmp;
8358 struct mddev *mddev;
8359 int need_delay = 0;
8360
8361 for_each_mddev(mddev, tmp) {
8362 if (mddev_trylock(mddev)) {
8363 if (mddev->pers)
8364 __md_stop_writes(mddev);
8365 if (mddev->persistent)
8366 mddev->safemode = 2;
8367 mddev_unlock(mddev);
8368 }
8369 need_delay = 1;
8370 }
8371 /*
8372 * certain more exotic SCSI devices are known to be
8373 * volatile wrt too early system reboots. While the
8374 * right place to handle this issue is the given
8375 * driver, we do want to have a safe RAID driver ...
8376 */
8377 if (need_delay)
8378 mdelay(1000*1);
8379
8380 return NOTIFY_DONE;
8381 }
8382
8383 static struct notifier_block md_notifier = {
8384 .notifier_call = md_notify_reboot,
8385 .next = NULL,
8386 .priority = INT_MAX, /* before any real devices */
8387 };
8388
8389 static void md_geninit(void)
8390 {
8391 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8392
8393 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8394 }
8395
8396 static int __init md_init(void)
8397 {
8398 int ret = -ENOMEM;
8399
8400 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8401 if (!md_wq)
8402 goto err_wq;
8403
8404 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8405 if (!md_misc_wq)
8406 goto err_misc_wq;
8407
8408 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8409 goto err_md;
8410
8411 if ((ret = register_blkdev(0, "mdp")) < 0)
8412 goto err_mdp;
8413 mdp_major = ret;
8414
8415 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8416 md_probe, NULL, NULL);
8417 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8418 md_probe, NULL, NULL);
8419
8420 register_reboot_notifier(&md_notifier);
8421 raid_table_header = register_sysctl_table(raid_root_table);
8422
8423 md_geninit();
8424 return 0;
8425
8426 err_mdp:
8427 unregister_blkdev(MD_MAJOR, "md");
8428 err_md:
8429 destroy_workqueue(md_misc_wq);
8430 err_misc_wq:
8431 destroy_workqueue(md_wq);
8432 err_wq:
8433 return ret;
8434 }
8435
8436 #ifndef MODULE
8437
8438 /*
8439 * Searches all registered partitions for autorun RAID arrays
8440 * at boot time.
8441 */
8442
8443 static LIST_HEAD(all_detected_devices);
8444 struct detected_devices_node {
8445 struct list_head list;
8446 dev_t dev;
8447 };
8448
8449 void md_autodetect_dev(dev_t dev)
8450 {
8451 struct detected_devices_node *node_detected_dev;
8452
8453 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8454 if (node_detected_dev) {
8455 node_detected_dev->dev = dev;
8456 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8457 } else {
8458 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8459 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8460 }
8461 }
8462
8463 static void autostart_arrays(int part)
8464 {
8465 struct md_rdev *rdev;
8466 struct detected_devices_node *node_detected_dev;
8467 dev_t dev;
8468 int i_scanned, i_passed;
8469
8470 i_scanned = 0;
8471 i_passed = 0;
8472
8473 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8474
8475 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8476 i_scanned++;
8477 node_detected_dev = list_entry(all_detected_devices.next,
8478 struct detected_devices_node, list);
8479 list_del(&node_detected_dev->list);
8480 dev = node_detected_dev->dev;
8481 kfree(node_detected_dev);
8482 rdev = md_import_device(dev,0, 90);
8483 if (IS_ERR(rdev))
8484 continue;
8485
8486 if (test_bit(Faulty, &rdev->flags))
8487 continue;
8488
8489 set_bit(AutoDetected, &rdev->flags);
8490 list_add(&rdev->same_set, &pending_raid_disks);
8491 i_passed++;
8492 }
8493
8494 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8495 i_scanned, i_passed);
8496
8497 autorun_devices(part);
8498 }
8499
8500 #endif /* !MODULE */
8501
8502 static __exit void md_exit(void)
8503 {
8504 struct mddev *mddev;
8505 struct list_head *tmp;
8506 int delay = 1;
8507
8508 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8509 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8510
8511 unregister_blkdev(MD_MAJOR,"md");
8512 unregister_blkdev(mdp_major, "mdp");
8513 unregister_reboot_notifier(&md_notifier);
8514 unregister_sysctl_table(raid_table_header);
8515
8516 /* We cannot unload the modules while some process is
8517 * waiting for us in select() or poll() - wake them up
8518 */
8519 md_unloading = 1;
8520 while (waitqueue_active(&md_event_waiters)) {
8521 /* not safe to leave yet */
8522 wake_up(&md_event_waiters);
8523 msleep(delay);
8524 delay += delay;
8525 }
8526 remove_proc_entry("mdstat", NULL);
8527
8528 for_each_mddev(mddev, tmp) {
8529 export_array(mddev);
8530 mddev->hold_active = 0;
8531 }
8532 destroy_workqueue(md_misc_wq);
8533 destroy_workqueue(md_wq);
8534 }
8535
8536 subsys_initcall(md_init);
8537 module_exit(md_exit)
8538
8539 static int get_ro(char *buffer, struct kernel_param *kp)
8540 {
8541 return sprintf(buffer, "%d", start_readonly);
8542 }
8543 static int set_ro(const char *val, struct kernel_param *kp)
8544 {
8545 char *e;
8546 int num = simple_strtoul(val, &e, 10);
8547 if (*val && (*e == '\0' || *e == '\n')) {
8548 start_readonly = num;
8549 return 0;
8550 }
8551 return -EINVAL;
8552 }
8553
8554 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8555 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8556 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8557
8558 MODULE_LICENSE("GPL");
8559 MODULE_DESCRIPTION("MD RAID framework");
8560 MODULE_ALIAS("md");
8561 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.21074 seconds and 6 git commands to generate.