md: make merge_bvec_fn more robust in face of personality changes.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75
76 /*
77 * Default number of read corrections we'll attempt on an rdev
78 * before ejecting it from the array. We divide the read error
79 * count by 2 for every hour elapsed between read errors.
80 */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84 * is 1000 KB/sec, so the extra system load does not show up that much.
85 * Increase it if you want to have more _guaranteed_ speed. Note that
86 * the RAID driver will use the maximum available bandwidth if the IO
87 * subsystem is idle. There is also an 'absolute maximum' reconstruction
88 * speed limit - in case reconstruction slows down your system despite
89 * idle IO detection.
90 *
91 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92 * or /sys/block/mdX/md/sync_speed_{min,max}
93 */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99 return mddev->sync_speed_min ?
100 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
103 static inline int speed_max(struct mddev *mddev)
104 {
105 return mddev->sync_speed_max ?
106 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static struct ctl_table raid_table[] = {
112 {
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = proc_dointvec,
118 },
119 {
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 { }
127 };
128
129 static struct ctl_table raid_dir_table[] = {
130 {
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
135 },
136 { }
137 };
138
139 static struct ctl_table raid_root_table[] = {
140 {
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154 * like bio_clone, but with a local bio set
155 */
156
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 struct mddev *mddev)
159 {
160 struct bio *b;
161
162 if (!mddev || !mddev->bio_set)
163 return bio_alloc(gfp_mask, nr_iovecs);
164
165 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 if (!b)
167 return NULL;
168 return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 struct mddev *mddev)
174 {
175 if (!mddev || !mddev->bio_set)
176 return bio_clone(bio, gfp_mask);
177
178 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181
182 /*
183 * We have a system wide 'event count' that is incremented
184 * on any 'interesting' event, and readers of /proc/mdstat
185 * can use 'poll' or 'select' to find out when the event
186 * count increases.
187 *
188 * Events are:
189 * start array, stop array, error, add device, remove device,
190 * start build, activate spare
191 */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196 atomic_inc(&md_event_count);
197 wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200
201 /* Alternate version that can be called from interrupts
202 * when calling sysfs_notify isn't needed.
203 */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 atomic_inc(&md_event_count);
207 wake_up(&md_event_waiters);
208 }
209
210 /*
211 * Enables to iterate over all existing md arrays
212 * all_mddevs_lock protects this list.
213 */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216
217 /*
218 * iterates through all used mddevs in the system.
219 * We take care to grab the all_mddevs_lock whenever navigating
220 * the list, and to always hold a refcount when unlocked.
221 * Any code which breaks out of this loop while own
222 * a reference to the current mddev and must mddev_put it.
223 */
224 #define for_each_mddev(_mddev,_tmp) \
225 \
226 for (({ spin_lock(&all_mddevs_lock); \
227 _tmp = all_mddevs.next; \
228 _mddev = NULL;}); \
229 ({ if (_tmp != &all_mddevs) \
230 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 spin_unlock(&all_mddevs_lock); \
232 if (_mddev) mddev_put(_mddev); \
233 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
234 _tmp != &all_mddevs;}); \
235 ({ spin_lock(&all_mddevs_lock); \
236 _tmp = _tmp->next;}) \
237 )
238
239 /* Rather than calling directly into the personality make_request function,
240 * IO requests come here first so that we can check if the device is
241 * being suspended pending a reconfiguration.
242 * We hold a refcount over the call to ->make_request. By the time that
243 * call has finished, the bio has been linked into some internal structure
244 * and so is visible to ->quiesce(), so we don't need the refcount any more.
245 */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 const int rw = bio_data_dir(bio);
249 struct mddev *mddev = q->queuedata;
250 unsigned int sectors;
251
252 if (mddev == NULL || mddev->pers == NULL
253 || !mddev->ready) {
254 bio_io_error(bio);
255 return;
256 }
257 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
258 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
259 return;
260 }
261 smp_rmb(); /* Ensure implications of 'active' are visible */
262 rcu_read_lock();
263 if (mddev->suspended) {
264 DEFINE_WAIT(__wait);
265 for (;;) {
266 prepare_to_wait(&mddev->sb_wait, &__wait,
267 TASK_UNINTERRUPTIBLE);
268 if (!mddev->suspended)
269 break;
270 rcu_read_unlock();
271 schedule();
272 rcu_read_lock();
273 }
274 finish_wait(&mddev->sb_wait, &__wait);
275 }
276 atomic_inc(&mddev->active_io);
277 rcu_read_unlock();
278
279 /*
280 * save the sectors now since our bio can
281 * go away inside make_request
282 */
283 sectors = bio_sectors(bio);
284 mddev->pers->make_request(mddev, bio);
285
286 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
287
288 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
289 wake_up(&mddev->sb_wait);
290 }
291
292 /* mddev_suspend makes sure no new requests are submitted
293 * to the device, and that any requests that have been submitted
294 * are completely handled.
295 * Once ->stop is called and completes, the module will be completely
296 * unused.
297 */
298 void mddev_suspend(struct mddev *mddev)
299 {
300 BUG_ON(mddev->suspended);
301 mddev->suspended = 1;
302 synchronize_rcu();
303 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
304 mddev->pers->quiesce(mddev, 1);
305
306 del_timer_sync(&mddev->safemode_timer);
307 }
308 EXPORT_SYMBOL_GPL(mddev_suspend);
309
310 void mddev_resume(struct mddev *mddev)
311 {
312 mddev->suspended = 0;
313 wake_up(&mddev->sb_wait);
314 mddev->pers->quiesce(mddev, 0);
315
316 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
317 md_wakeup_thread(mddev->thread);
318 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
319 }
320 EXPORT_SYMBOL_GPL(mddev_resume);
321
322 int mddev_congested(struct mddev *mddev, int bits)
323 {
324 struct md_personality *pers = mddev->pers;
325 int ret = 0;
326
327 rcu_read_lock();
328 if (mddev->suspended)
329 ret = 1;
330 else if (pers && pers->congested)
331 ret = pers->congested(mddev, bits);
332 rcu_read_unlock();
333 return ret;
334 }
335 EXPORT_SYMBOL_GPL(mddev_congested);
336 static int md_congested(void *data, int bits)
337 {
338 struct mddev *mddev = data;
339 return mddev_congested(mddev, bits);
340 }
341
342 static int md_mergeable_bvec(struct request_queue *q,
343 struct bvec_merge_data *bvm,
344 struct bio_vec *biovec)
345 {
346 struct mddev *mddev = q->queuedata;
347 int ret;
348 rcu_read_lock();
349 if (mddev->suspended) {
350 /* Must always allow one vec */
351 if (bvm->bi_size == 0)
352 ret = biovec->bv_len;
353 else
354 ret = 0;
355 } else {
356 struct md_personality *pers = mddev->pers;
357 if (pers && pers->mergeable_bvec)
358 ret = pers->mergeable_bvec(mddev, bvm, biovec);
359 else
360 ret = biovec->bv_len;
361 }
362 rcu_read_unlock();
363 return ret;
364 }
365 /*
366 * Generic flush handling for md
367 */
368
369 static void md_end_flush(struct bio *bio, int err)
370 {
371 struct md_rdev *rdev = bio->bi_private;
372 struct mddev *mddev = rdev->mddev;
373
374 rdev_dec_pending(rdev, mddev);
375
376 if (atomic_dec_and_test(&mddev->flush_pending)) {
377 /* The pre-request flush has finished */
378 queue_work(md_wq, &mddev->flush_work);
379 }
380 bio_put(bio);
381 }
382
383 static void md_submit_flush_data(struct work_struct *ws);
384
385 static void submit_flushes(struct work_struct *ws)
386 {
387 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
388 struct md_rdev *rdev;
389
390 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
391 atomic_set(&mddev->flush_pending, 1);
392 rcu_read_lock();
393 rdev_for_each_rcu(rdev, mddev)
394 if (rdev->raid_disk >= 0 &&
395 !test_bit(Faulty, &rdev->flags)) {
396 /* Take two references, one is dropped
397 * when request finishes, one after
398 * we reclaim rcu_read_lock
399 */
400 struct bio *bi;
401 atomic_inc(&rdev->nr_pending);
402 atomic_inc(&rdev->nr_pending);
403 rcu_read_unlock();
404 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
405 bi->bi_end_io = md_end_flush;
406 bi->bi_private = rdev;
407 bi->bi_bdev = rdev->bdev;
408 atomic_inc(&mddev->flush_pending);
409 submit_bio(WRITE_FLUSH, bi);
410 rcu_read_lock();
411 rdev_dec_pending(rdev, mddev);
412 }
413 rcu_read_unlock();
414 if (atomic_dec_and_test(&mddev->flush_pending))
415 queue_work(md_wq, &mddev->flush_work);
416 }
417
418 static void md_submit_flush_data(struct work_struct *ws)
419 {
420 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
421 struct bio *bio = mddev->flush_bio;
422
423 if (bio->bi_iter.bi_size == 0)
424 /* an empty barrier - all done */
425 bio_endio(bio, 0);
426 else {
427 bio->bi_rw &= ~REQ_FLUSH;
428 mddev->pers->make_request(mddev, bio);
429 }
430
431 mddev->flush_bio = NULL;
432 wake_up(&mddev->sb_wait);
433 }
434
435 void md_flush_request(struct mddev *mddev, struct bio *bio)
436 {
437 spin_lock_irq(&mddev->lock);
438 wait_event_lock_irq(mddev->sb_wait,
439 !mddev->flush_bio,
440 mddev->lock);
441 mddev->flush_bio = bio;
442 spin_unlock_irq(&mddev->lock);
443
444 INIT_WORK(&mddev->flush_work, submit_flushes);
445 queue_work(md_wq, &mddev->flush_work);
446 }
447 EXPORT_SYMBOL(md_flush_request);
448
449 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
450 {
451 struct mddev *mddev = cb->data;
452 md_wakeup_thread(mddev->thread);
453 kfree(cb);
454 }
455 EXPORT_SYMBOL(md_unplug);
456
457 static inline struct mddev *mddev_get(struct mddev *mddev)
458 {
459 atomic_inc(&mddev->active);
460 return mddev;
461 }
462
463 static void mddev_delayed_delete(struct work_struct *ws);
464
465 static void mddev_put(struct mddev *mddev)
466 {
467 struct bio_set *bs = NULL;
468
469 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
470 return;
471 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
472 mddev->ctime == 0 && !mddev->hold_active) {
473 /* Array is not configured at all, and not held active,
474 * so destroy it */
475 list_del_init(&mddev->all_mddevs);
476 bs = mddev->bio_set;
477 mddev->bio_set = NULL;
478 if (mddev->gendisk) {
479 /* We did a probe so need to clean up. Call
480 * queue_work inside the spinlock so that
481 * flush_workqueue() after mddev_find will
482 * succeed in waiting for the work to be done.
483 */
484 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
485 queue_work(md_misc_wq, &mddev->del_work);
486 } else
487 kfree(mddev);
488 }
489 spin_unlock(&all_mddevs_lock);
490 if (bs)
491 bioset_free(bs);
492 }
493
494 void mddev_init(struct mddev *mddev)
495 {
496 mutex_init(&mddev->open_mutex);
497 mutex_init(&mddev->reconfig_mutex);
498 mutex_init(&mddev->bitmap_info.mutex);
499 INIT_LIST_HEAD(&mddev->disks);
500 INIT_LIST_HEAD(&mddev->all_mddevs);
501 init_timer(&mddev->safemode_timer);
502 atomic_set(&mddev->active, 1);
503 atomic_set(&mddev->openers, 0);
504 atomic_set(&mddev->active_io, 0);
505 spin_lock_init(&mddev->lock);
506 atomic_set(&mddev->flush_pending, 0);
507 init_waitqueue_head(&mddev->sb_wait);
508 init_waitqueue_head(&mddev->recovery_wait);
509 mddev->reshape_position = MaxSector;
510 mddev->reshape_backwards = 0;
511 mddev->last_sync_action = "none";
512 mddev->resync_min = 0;
513 mddev->resync_max = MaxSector;
514 mddev->level = LEVEL_NONE;
515 }
516 EXPORT_SYMBOL_GPL(mddev_init);
517
518 static struct mddev *mddev_find(dev_t unit)
519 {
520 struct mddev *mddev, *new = NULL;
521
522 if (unit && MAJOR(unit) != MD_MAJOR)
523 unit &= ~((1<<MdpMinorShift)-1);
524
525 retry:
526 spin_lock(&all_mddevs_lock);
527
528 if (unit) {
529 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
530 if (mddev->unit == unit) {
531 mddev_get(mddev);
532 spin_unlock(&all_mddevs_lock);
533 kfree(new);
534 return mddev;
535 }
536
537 if (new) {
538 list_add(&new->all_mddevs, &all_mddevs);
539 spin_unlock(&all_mddevs_lock);
540 new->hold_active = UNTIL_IOCTL;
541 return new;
542 }
543 } else if (new) {
544 /* find an unused unit number */
545 static int next_minor = 512;
546 int start = next_minor;
547 int is_free = 0;
548 int dev = 0;
549 while (!is_free) {
550 dev = MKDEV(MD_MAJOR, next_minor);
551 next_minor++;
552 if (next_minor > MINORMASK)
553 next_minor = 0;
554 if (next_minor == start) {
555 /* Oh dear, all in use. */
556 spin_unlock(&all_mddevs_lock);
557 kfree(new);
558 return NULL;
559 }
560
561 is_free = 1;
562 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
563 if (mddev->unit == dev) {
564 is_free = 0;
565 break;
566 }
567 }
568 new->unit = dev;
569 new->md_minor = MINOR(dev);
570 new->hold_active = UNTIL_STOP;
571 list_add(&new->all_mddevs, &all_mddevs);
572 spin_unlock(&all_mddevs_lock);
573 return new;
574 }
575 spin_unlock(&all_mddevs_lock);
576
577 new = kzalloc(sizeof(*new), GFP_KERNEL);
578 if (!new)
579 return NULL;
580
581 new->unit = unit;
582 if (MAJOR(unit) == MD_MAJOR)
583 new->md_minor = MINOR(unit);
584 else
585 new->md_minor = MINOR(unit) >> MdpMinorShift;
586
587 mddev_init(new);
588
589 goto retry;
590 }
591
592 static inline int __must_check mddev_lock(struct mddev *mddev)
593 {
594 return mutex_lock_interruptible(&mddev->reconfig_mutex);
595 }
596
597 /* Sometimes we need to take the lock in a situation where
598 * failure due to interrupts is not acceptable.
599 */
600 static inline void mddev_lock_nointr(struct mddev *mddev)
601 {
602 mutex_lock(&mddev->reconfig_mutex);
603 }
604
605 static inline int mddev_is_locked(struct mddev *mddev)
606 {
607 return mutex_is_locked(&mddev->reconfig_mutex);
608 }
609
610 static inline int mddev_trylock(struct mddev *mddev)
611 {
612 return mutex_trylock(&mddev->reconfig_mutex);
613 }
614
615 static struct attribute_group md_redundancy_group;
616
617 static void mddev_unlock(struct mddev *mddev)
618 {
619 if (mddev->to_remove) {
620 /* These cannot be removed under reconfig_mutex as
621 * an access to the files will try to take reconfig_mutex
622 * while holding the file unremovable, which leads to
623 * a deadlock.
624 * So hold set sysfs_active while the remove in happeing,
625 * and anything else which might set ->to_remove or my
626 * otherwise change the sysfs namespace will fail with
627 * -EBUSY if sysfs_active is still set.
628 * We set sysfs_active under reconfig_mutex and elsewhere
629 * test it under the same mutex to ensure its correct value
630 * is seen.
631 */
632 struct attribute_group *to_remove = mddev->to_remove;
633 mddev->to_remove = NULL;
634 mddev->sysfs_active = 1;
635 mutex_unlock(&mddev->reconfig_mutex);
636
637 if (mddev->kobj.sd) {
638 if (to_remove != &md_redundancy_group)
639 sysfs_remove_group(&mddev->kobj, to_remove);
640 if (mddev->pers == NULL ||
641 mddev->pers->sync_request == NULL) {
642 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
643 if (mddev->sysfs_action)
644 sysfs_put(mddev->sysfs_action);
645 mddev->sysfs_action = NULL;
646 }
647 }
648 mddev->sysfs_active = 0;
649 } else
650 mutex_unlock(&mddev->reconfig_mutex);
651
652 /* As we've dropped the mutex we need a spinlock to
653 * make sure the thread doesn't disappear
654 */
655 spin_lock(&pers_lock);
656 md_wakeup_thread(mddev->thread);
657 spin_unlock(&pers_lock);
658 }
659
660 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
661 {
662 struct md_rdev *rdev;
663
664 rdev_for_each_rcu(rdev, mddev)
665 if (rdev->desc_nr == nr)
666 return rdev;
667
668 return NULL;
669 }
670
671 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
672 {
673 struct md_rdev *rdev;
674
675 rdev_for_each(rdev, mddev)
676 if (rdev->bdev->bd_dev == dev)
677 return rdev;
678
679 return NULL;
680 }
681
682 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
683 {
684 struct md_rdev *rdev;
685
686 rdev_for_each_rcu(rdev, mddev)
687 if (rdev->bdev->bd_dev == dev)
688 return rdev;
689
690 return NULL;
691 }
692
693 static struct md_personality *find_pers(int level, char *clevel)
694 {
695 struct md_personality *pers;
696 list_for_each_entry(pers, &pers_list, list) {
697 if (level != LEVEL_NONE && pers->level == level)
698 return pers;
699 if (strcmp(pers->name, clevel)==0)
700 return pers;
701 }
702 return NULL;
703 }
704
705 /* return the offset of the super block in 512byte sectors */
706 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
707 {
708 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
709 return MD_NEW_SIZE_SECTORS(num_sectors);
710 }
711
712 static int alloc_disk_sb(struct md_rdev *rdev)
713 {
714 rdev->sb_page = alloc_page(GFP_KERNEL);
715 if (!rdev->sb_page) {
716 printk(KERN_ALERT "md: out of memory.\n");
717 return -ENOMEM;
718 }
719
720 return 0;
721 }
722
723 void md_rdev_clear(struct md_rdev *rdev)
724 {
725 if (rdev->sb_page) {
726 put_page(rdev->sb_page);
727 rdev->sb_loaded = 0;
728 rdev->sb_page = NULL;
729 rdev->sb_start = 0;
730 rdev->sectors = 0;
731 }
732 if (rdev->bb_page) {
733 put_page(rdev->bb_page);
734 rdev->bb_page = NULL;
735 }
736 kfree(rdev->badblocks.page);
737 rdev->badblocks.page = NULL;
738 }
739 EXPORT_SYMBOL_GPL(md_rdev_clear);
740
741 static void super_written(struct bio *bio, int error)
742 {
743 struct md_rdev *rdev = bio->bi_private;
744 struct mddev *mddev = rdev->mddev;
745
746 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
747 printk("md: super_written gets error=%d, uptodate=%d\n",
748 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
749 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
750 md_error(mddev, rdev);
751 }
752
753 if (atomic_dec_and_test(&mddev->pending_writes))
754 wake_up(&mddev->sb_wait);
755 bio_put(bio);
756 }
757
758 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
759 sector_t sector, int size, struct page *page)
760 {
761 /* write first size bytes of page to sector of rdev
762 * Increment mddev->pending_writes before returning
763 * and decrement it on completion, waking up sb_wait
764 * if zero is reached.
765 * If an error occurred, call md_error
766 */
767 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
768
769 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
770 bio->bi_iter.bi_sector = sector;
771 bio_add_page(bio, page, size, 0);
772 bio->bi_private = rdev;
773 bio->bi_end_io = super_written;
774
775 atomic_inc(&mddev->pending_writes);
776 submit_bio(WRITE_FLUSH_FUA, bio);
777 }
778
779 void md_super_wait(struct mddev *mddev)
780 {
781 /* wait for all superblock writes that were scheduled to complete */
782 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
783 }
784
785 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
786 struct page *page, int rw, bool metadata_op)
787 {
788 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
789 int ret;
790
791 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
792 rdev->meta_bdev : rdev->bdev;
793 if (metadata_op)
794 bio->bi_iter.bi_sector = sector + rdev->sb_start;
795 else if (rdev->mddev->reshape_position != MaxSector &&
796 (rdev->mddev->reshape_backwards ==
797 (sector >= rdev->mddev->reshape_position)))
798 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
799 else
800 bio->bi_iter.bi_sector = sector + rdev->data_offset;
801 bio_add_page(bio, page, size, 0);
802 submit_bio_wait(rw, bio);
803
804 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
805 bio_put(bio);
806 return ret;
807 }
808 EXPORT_SYMBOL_GPL(sync_page_io);
809
810 static int read_disk_sb(struct md_rdev *rdev, int size)
811 {
812 char b[BDEVNAME_SIZE];
813
814 if (rdev->sb_loaded)
815 return 0;
816
817 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
818 goto fail;
819 rdev->sb_loaded = 1;
820 return 0;
821
822 fail:
823 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
824 bdevname(rdev->bdev,b));
825 return -EINVAL;
826 }
827
828 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
829 {
830 return sb1->set_uuid0 == sb2->set_uuid0 &&
831 sb1->set_uuid1 == sb2->set_uuid1 &&
832 sb1->set_uuid2 == sb2->set_uuid2 &&
833 sb1->set_uuid3 == sb2->set_uuid3;
834 }
835
836 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
837 {
838 int ret;
839 mdp_super_t *tmp1, *tmp2;
840
841 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
842 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
843
844 if (!tmp1 || !tmp2) {
845 ret = 0;
846 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
847 goto abort;
848 }
849
850 *tmp1 = *sb1;
851 *tmp2 = *sb2;
852
853 /*
854 * nr_disks is not constant
855 */
856 tmp1->nr_disks = 0;
857 tmp2->nr_disks = 0;
858
859 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
860 abort:
861 kfree(tmp1);
862 kfree(tmp2);
863 return ret;
864 }
865
866 static u32 md_csum_fold(u32 csum)
867 {
868 csum = (csum & 0xffff) + (csum >> 16);
869 return (csum & 0xffff) + (csum >> 16);
870 }
871
872 static unsigned int calc_sb_csum(mdp_super_t *sb)
873 {
874 u64 newcsum = 0;
875 u32 *sb32 = (u32*)sb;
876 int i;
877 unsigned int disk_csum, csum;
878
879 disk_csum = sb->sb_csum;
880 sb->sb_csum = 0;
881
882 for (i = 0; i < MD_SB_BYTES/4 ; i++)
883 newcsum += sb32[i];
884 csum = (newcsum & 0xffffffff) + (newcsum>>32);
885
886 #ifdef CONFIG_ALPHA
887 /* This used to use csum_partial, which was wrong for several
888 * reasons including that different results are returned on
889 * different architectures. It isn't critical that we get exactly
890 * the same return value as before (we always csum_fold before
891 * testing, and that removes any differences). However as we
892 * know that csum_partial always returned a 16bit value on
893 * alphas, do a fold to maximise conformity to previous behaviour.
894 */
895 sb->sb_csum = md_csum_fold(disk_csum);
896 #else
897 sb->sb_csum = disk_csum;
898 #endif
899 return csum;
900 }
901
902 /*
903 * Handle superblock details.
904 * We want to be able to handle multiple superblock formats
905 * so we have a common interface to them all, and an array of
906 * different handlers.
907 * We rely on user-space to write the initial superblock, and support
908 * reading and updating of superblocks.
909 * Interface methods are:
910 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
911 * loads and validates a superblock on dev.
912 * if refdev != NULL, compare superblocks on both devices
913 * Return:
914 * 0 - dev has a superblock that is compatible with refdev
915 * 1 - dev has a superblock that is compatible and newer than refdev
916 * so dev should be used as the refdev in future
917 * -EINVAL superblock incompatible or invalid
918 * -othererror e.g. -EIO
919 *
920 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
921 * Verify that dev is acceptable into mddev.
922 * The first time, mddev->raid_disks will be 0, and data from
923 * dev should be merged in. Subsequent calls check that dev
924 * is new enough. Return 0 or -EINVAL
925 *
926 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
927 * Update the superblock for rdev with data in mddev
928 * This does not write to disc.
929 *
930 */
931
932 struct super_type {
933 char *name;
934 struct module *owner;
935 int (*load_super)(struct md_rdev *rdev,
936 struct md_rdev *refdev,
937 int minor_version);
938 int (*validate_super)(struct mddev *mddev,
939 struct md_rdev *rdev);
940 void (*sync_super)(struct mddev *mddev,
941 struct md_rdev *rdev);
942 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
943 sector_t num_sectors);
944 int (*allow_new_offset)(struct md_rdev *rdev,
945 unsigned long long new_offset);
946 };
947
948 /*
949 * Check that the given mddev has no bitmap.
950 *
951 * This function is called from the run method of all personalities that do not
952 * support bitmaps. It prints an error message and returns non-zero if mddev
953 * has a bitmap. Otherwise, it returns 0.
954 *
955 */
956 int md_check_no_bitmap(struct mddev *mddev)
957 {
958 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
959 return 0;
960 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
961 mdname(mddev), mddev->pers->name);
962 return 1;
963 }
964 EXPORT_SYMBOL(md_check_no_bitmap);
965
966 /*
967 * load_super for 0.90.0
968 */
969 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
970 {
971 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
972 mdp_super_t *sb;
973 int ret;
974
975 /*
976 * Calculate the position of the superblock (512byte sectors),
977 * it's at the end of the disk.
978 *
979 * It also happens to be a multiple of 4Kb.
980 */
981 rdev->sb_start = calc_dev_sboffset(rdev);
982
983 ret = read_disk_sb(rdev, MD_SB_BYTES);
984 if (ret) return ret;
985
986 ret = -EINVAL;
987
988 bdevname(rdev->bdev, b);
989 sb = page_address(rdev->sb_page);
990
991 if (sb->md_magic != MD_SB_MAGIC) {
992 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
993 b);
994 goto abort;
995 }
996
997 if (sb->major_version != 0 ||
998 sb->minor_version < 90 ||
999 sb->minor_version > 91) {
1000 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1001 sb->major_version, sb->minor_version,
1002 b);
1003 goto abort;
1004 }
1005
1006 if (sb->raid_disks <= 0)
1007 goto abort;
1008
1009 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1010 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1011 b);
1012 goto abort;
1013 }
1014
1015 rdev->preferred_minor = sb->md_minor;
1016 rdev->data_offset = 0;
1017 rdev->new_data_offset = 0;
1018 rdev->sb_size = MD_SB_BYTES;
1019 rdev->badblocks.shift = -1;
1020
1021 if (sb->level == LEVEL_MULTIPATH)
1022 rdev->desc_nr = -1;
1023 else
1024 rdev->desc_nr = sb->this_disk.number;
1025
1026 if (!refdev) {
1027 ret = 1;
1028 } else {
1029 __u64 ev1, ev2;
1030 mdp_super_t *refsb = page_address(refdev->sb_page);
1031 if (!uuid_equal(refsb, sb)) {
1032 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1033 b, bdevname(refdev->bdev,b2));
1034 goto abort;
1035 }
1036 if (!sb_equal(refsb, sb)) {
1037 printk(KERN_WARNING "md: %s has same UUID"
1038 " but different superblock to %s\n",
1039 b, bdevname(refdev->bdev, b2));
1040 goto abort;
1041 }
1042 ev1 = md_event(sb);
1043 ev2 = md_event(refsb);
1044 if (ev1 > ev2)
1045 ret = 1;
1046 else
1047 ret = 0;
1048 }
1049 rdev->sectors = rdev->sb_start;
1050 /* Limit to 4TB as metadata cannot record more than that.
1051 * (not needed for Linear and RAID0 as metadata doesn't
1052 * record this size)
1053 */
1054 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1055 rdev->sectors = (2ULL << 32) - 2;
1056
1057 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1058 /* "this cannot possibly happen" ... */
1059 ret = -EINVAL;
1060
1061 abort:
1062 return ret;
1063 }
1064
1065 /*
1066 * validate_super for 0.90.0
1067 */
1068 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1069 {
1070 mdp_disk_t *desc;
1071 mdp_super_t *sb = page_address(rdev->sb_page);
1072 __u64 ev1 = md_event(sb);
1073
1074 rdev->raid_disk = -1;
1075 clear_bit(Faulty, &rdev->flags);
1076 clear_bit(In_sync, &rdev->flags);
1077 clear_bit(Bitmap_sync, &rdev->flags);
1078 clear_bit(WriteMostly, &rdev->flags);
1079
1080 if (mddev->raid_disks == 0) {
1081 mddev->major_version = 0;
1082 mddev->minor_version = sb->minor_version;
1083 mddev->patch_version = sb->patch_version;
1084 mddev->external = 0;
1085 mddev->chunk_sectors = sb->chunk_size >> 9;
1086 mddev->ctime = sb->ctime;
1087 mddev->utime = sb->utime;
1088 mddev->level = sb->level;
1089 mddev->clevel[0] = 0;
1090 mddev->layout = sb->layout;
1091 mddev->raid_disks = sb->raid_disks;
1092 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1093 mddev->events = ev1;
1094 mddev->bitmap_info.offset = 0;
1095 mddev->bitmap_info.space = 0;
1096 /* bitmap can use 60 K after the 4K superblocks */
1097 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1098 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1099 mddev->reshape_backwards = 0;
1100
1101 if (mddev->minor_version >= 91) {
1102 mddev->reshape_position = sb->reshape_position;
1103 mddev->delta_disks = sb->delta_disks;
1104 mddev->new_level = sb->new_level;
1105 mddev->new_layout = sb->new_layout;
1106 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1107 if (mddev->delta_disks < 0)
1108 mddev->reshape_backwards = 1;
1109 } else {
1110 mddev->reshape_position = MaxSector;
1111 mddev->delta_disks = 0;
1112 mddev->new_level = mddev->level;
1113 mddev->new_layout = mddev->layout;
1114 mddev->new_chunk_sectors = mddev->chunk_sectors;
1115 }
1116
1117 if (sb->state & (1<<MD_SB_CLEAN))
1118 mddev->recovery_cp = MaxSector;
1119 else {
1120 if (sb->events_hi == sb->cp_events_hi &&
1121 sb->events_lo == sb->cp_events_lo) {
1122 mddev->recovery_cp = sb->recovery_cp;
1123 } else
1124 mddev->recovery_cp = 0;
1125 }
1126
1127 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1128 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1129 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1130 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1131
1132 mddev->max_disks = MD_SB_DISKS;
1133
1134 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1135 mddev->bitmap_info.file == NULL) {
1136 mddev->bitmap_info.offset =
1137 mddev->bitmap_info.default_offset;
1138 mddev->bitmap_info.space =
1139 mddev->bitmap_info.default_space;
1140 }
1141
1142 } else if (mddev->pers == NULL) {
1143 /* Insist on good event counter while assembling, except
1144 * for spares (which don't need an event count) */
1145 ++ev1;
1146 if (sb->disks[rdev->desc_nr].state & (
1147 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1148 if (ev1 < mddev->events)
1149 return -EINVAL;
1150 } else if (mddev->bitmap) {
1151 /* if adding to array with a bitmap, then we can accept an
1152 * older device ... but not too old.
1153 */
1154 if (ev1 < mddev->bitmap->events_cleared)
1155 return 0;
1156 if (ev1 < mddev->events)
1157 set_bit(Bitmap_sync, &rdev->flags);
1158 } else {
1159 if (ev1 < mddev->events)
1160 /* just a hot-add of a new device, leave raid_disk at -1 */
1161 return 0;
1162 }
1163
1164 if (mddev->level != LEVEL_MULTIPATH) {
1165 desc = sb->disks + rdev->desc_nr;
1166
1167 if (desc->state & (1<<MD_DISK_FAULTY))
1168 set_bit(Faulty, &rdev->flags);
1169 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1170 desc->raid_disk < mddev->raid_disks */) {
1171 set_bit(In_sync, &rdev->flags);
1172 rdev->raid_disk = desc->raid_disk;
1173 rdev->saved_raid_disk = desc->raid_disk;
1174 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1175 /* active but not in sync implies recovery up to
1176 * reshape position. We don't know exactly where
1177 * that is, so set to zero for now */
1178 if (mddev->minor_version >= 91) {
1179 rdev->recovery_offset = 0;
1180 rdev->raid_disk = desc->raid_disk;
1181 }
1182 }
1183 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1184 set_bit(WriteMostly, &rdev->flags);
1185 } else /* MULTIPATH are always insync */
1186 set_bit(In_sync, &rdev->flags);
1187 return 0;
1188 }
1189
1190 /*
1191 * sync_super for 0.90.0
1192 */
1193 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1194 {
1195 mdp_super_t *sb;
1196 struct md_rdev *rdev2;
1197 int next_spare = mddev->raid_disks;
1198
1199 /* make rdev->sb match mddev data..
1200 *
1201 * 1/ zero out disks
1202 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1203 * 3/ any empty disks < next_spare become removed
1204 *
1205 * disks[0] gets initialised to REMOVED because
1206 * we cannot be sure from other fields if it has
1207 * been initialised or not.
1208 */
1209 int i;
1210 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1211
1212 rdev->sb_size = MD_SB_BYTES;
1213
1214 sb = page_address(rdev->sb_page);
1215
1216 memset(sb, 0, sizeof(*sb));
1217
1218 sb->md_magic = MD_SB_MAGIC;
1219 sb->major_version = mddev->major_version;
1220 sb->patch_version = mddev->patch_version;
1221 sb->gvalid_words = 0; /* ignored */
1222 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1223 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1224 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1225 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1226
1227 sb->ctime = mddev->ctime;
1228 sb->level = mddev->level;
1229 sb->size = mddev->dev_sectors / 2;
1230 sb->raid_disks = mddev->raid_disks;
1231 sb->md_minor = mddev->md_minor;
1232 sb->not_persistent = 0;
1233 sb->utime = mddev->utime;
1234 sb->state = 0;
1235 sb->events_hi = (mddev->events>>32);
1236 sb->events_lo = (u32)mddev->events;
1237
1238 if (mddev->reshape_position == MaxSector)
1239 sb->minor_version = 90;
1240 else {
1241 sb->minor_version = 91;
1242 sb->reshape_position = mddev->reshape_position;
1243 sb->new_level = mddev->new_level;
1244 sb->delta_disks = mddev->delta_disks;
1245 sb->new_layout = mddev->new_layout;
1246 sb->new_chunk = mddev->new_chunk_sectors << 9;
1247 }
1248 mddev->minor_version = sb->minor_version;
1249 if (mddev->in_sync)
1250 {
1251 sb->recovery_cp = mddev->recovery_cp;
1252 sb->cp_events_hi = (mddev->events>>32);
1253 sb->cp_events_lo = (u32)mddev->events;
1254 if (mddev->recovery_cp == MaxSector)
1255 sb->state = (1<< MD_SB_CLEAN);
1256 } else
1257 sb->recovery_cp = 0;
1258
1259 sb->layout = mddev->layout;
1260 sb->chunk_size = mddev->chunk_sectors << 9;
1261
1262 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1263 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1264
1265 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1266 rdev_for_each(rdev2, mddev) {
1267 mdp_disk_t *d;
1268 int desc_nr;
1269 int is_active = test_bit(In_sync, &rdev2->flags);
1270
1271 if (rdev2->raid_disk >= 0 &&
1272 sb->minor_version >= 91)
1273 /* we have nowhere to store the recovery_offset,
1274 * but if it is not below the reshape_position,
1275 * we can piggy-back on that.
1276 */
1277 is_active = 1;
1278 if (rdev2->raid_disk < 0 ||
1279 test_bit(Faulty, &rdev2->flags))
1280 is_active = 0;
1281 if (is_active)
1282 desc_nr = rdev2->raid_disk;
1283 else
1284 desc_nr = next_spare++;
1285 rdev2->desc_nr = desc_nr;
1286 d = &sb->disks[rdev2->desc_nr];
1287 nr_disks++;
1288 d->number = rdev2->desc_nr;
1289 d->major = MAJOR(rdev2->bdev->bd_dev);
1290 d->minor = MINOR(rdev2->bdev->bd_dev);
1291 if (is_active)
1292 d->raid_disk = rdev2->raid_disk;
1293 else
1294 d->raid_disk = rdev2->desc_nr; /* compatibility */
1295 if (test_bit(Faulty, &rdev2->flags))
1296 d->state = (1<<MD_DISK_FAULTY);
1297 else if (is_active) {
1298 d->state = (1<<MD_DISK_ACTIVE);
1299 if (test_bit(In_sync, &rdev2->flags))
1300 d->state |= (1<<MD_DISK_SYNC);
1301 active++;
1302 working++;
1303 } else {
1304 d->state = 0;
1305 spare++;
1306 working++;
1307 }
1308 if (test_bit(WriteMostly, &rdev2->flags))
1309 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1310 }
1311 /* now set the "removed" and "faulty" bits on any missing devices */
1312 for (i=0 ; i < mddev->raid_disks ; i++) {
1313 mdp_disk_t *d = &sb->disks[i];
1314 if (d->state == 0 && d->number == 0) {
1315 d->number = i;
1316 d->raid_disk = i;
1317 d->state = (1<<MD_DISK_REMOVED);
1318 d->state |= (1<<MD_DISK_FAULTY);
1319 failed++;
1320 }
1321 }
1322 sb->nr_disks = nr_disks;
1323 sb->active_disks = active;
1324 sb->working_disks = working;
1325 sb->failed_disks = failed;
1326 sb->spare_disks = spare;
1327
1328 sb->this_disk = sb->disks[rdev->desc_nr];
1329 sb->sb_csum = calc_sb_csum(sb);
1330 }
1331
1332 /*
1333 * rdev_size_change for 0.90.0
1334 */
1335 static unsigned long long
1336 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1337 {
1338 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1339 return 0; /* component must fit device */
1340 if (rdev->mddev->bitmap_info.offset)
1341 return 0; /* can't move bitmap */
1342 rdev->sb_start = calc_dev_sboffset(rdev);
1343 if (!num_sectors || num_sectors > rdev->sb_start)
1344 num_sectors = rdev->sb_start;
1345 /* Limit to 4TB as metadata cannot record more than that.
1346 * 4TB == 2^32 KB, or 2*2^32 sectors.
1347 */
1348 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1349 num_sectors = (2ULL << 32) - 2;
1350 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1351 rdev->sb_page);
1352 md_super_wait(rdev->mddev);
1353 return num_sectors;
1354 }
1355
1356 static int
1357 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1358 {
1359 /* non-zero offset changes not possible with v0.90 */
1360 return new_offset == 0;
1361 }
1362
1363 /*
1364 * version 1 superblock
1365 */
1366
1367 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1368 {
1369 __le32 disk_csum;
1370 u32 csum;
1371 unsigned long long newcsum;
1372 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1373 __le32 *isuper = (__le32*)sb;
1374
1375 disk_csum = sb->sb_csum;
1376 sb->sb_csum = 0;
1377 newcsum = 0;
1378 for (; size >= 4; size -= 4)
1379 newcsum += le32_to_cpu(*isuper++);
1380
1381 if (size == 2)
1382 newcsum += le16_to_cpu(*(__le16*) isuper);
1383
1384 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1385 sb->sb_csum = disk_csum;
1386 return cpu_to_le32(csum);
1387 }
1388
1389 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1390 int acknowledged);
1391 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1392 {
1393 struct mdp_superblock_1 *sb;
1394 int ret;
1395 sector_t sb_start;
1396 sector_t sectors;
1397 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1398 int bmask;
1399
1400 /*
1401 * Calculate the position of the superblock in 512byte sectors.
1402 * It is always aligned to a 4K boundary and
1403 * depeding on minor_version, it can be:
1404 * 0: At least 8K, but less than 12K, from end of device
1405 * 1: At start of device
1406 * 2: 4K from start of device.
1407 */
1408 switch(minor_version) {
1409 case 0:
1410 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1411 sb_start -= 8*2;
1412 sb_start &= ~(sector_t)(4*2-1);
1413 break;
1414 case 1:
1415 sb_start = 0;
1416 break;
1417 case 2:
1418 sb_start = 8;
1419 break;
1420 default:
1421 return -EINVAL;
1422 }
1423 rdev->sb_start = sb_start;
1424
1425 /* superblock is rarely larger than 1K, but it can be larger,
1426 * and it is safe to read 4k, so we do that
1427 */
1428 ret = read_disk_sb(rdev, 4096);
1429 if (ret) return ret;
1430
1431 sb = page_address(rdev->sb_page);
1432
1433 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1434 sb->major_version != cpu_to_le32(1) ||
1435 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1436 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1437 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1438 return -EINVAL;
1439
1440 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1441 printk("md: invalid superblock checksum on %s\n",
1442 bdevname(rdev->bdev,b));
1443 return -EINVAL;
1444 }
1445 if (le64_to_cpu(sb->data_size) < 10) {
1446 printk("md: data_size too small on %s\n",
1447 bdevname(rdev->bdev,b));
1448 return -EINVAL;
1449 }
1450 if (sb->pad0 ||
1451 sb->pad3[0] ||
1452 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1453 /* Some padding is non-zero, might be a new feature */
1454 return -EINVAL;
1455
1456 rdev->preferred_minor = 0xffff;
1457 rdev->data_offset = le64_to_cpu(sb->data_offset);
1458 rdev->new_data_offset = rdev->data_offset;
1459 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1460 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1461 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1462 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1463
1464 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1465 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1466 if (rdev->sb_size & bmask)
1467 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1468
1469 if (minor_version
1470 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1471 return -EINVAL;
1472 if (minor_version
1473 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1474 return -EINVAL;
1475
1476 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1477 rdev->desc_nr = -1;
1478 else
1479 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1480
1481 if (!rdev->bb_page) {
1482 rdev->bb_page = alloc_page(GFP_KERNEL);
1483 if (!rdev->bb_page)
1484 return -ENOMEM;
1485 }
1486 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1487 rdev->badblocks.count == 0) {
1488 /* need to load the bad block list.
1489 * Currently we limit it to one page.
1490 */
1491 s32 offset;
1492 sector_t bb_sector;
1493 u64 *bbp;
1494 int i;
1495 int sectors = le16_to_cpu(sb->bblog_size);
1496 if (sectors > (PAGE_SIZE / 512))
1497 return -EINVAL;
1498 offset = le32_to_cpu(sb->bblog_offset);
1499 if (offset == 0)
1500 return -EINVAL;
1501 bb_sector = (long long)offset;
1502 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1503 rdev->bb_page, READ, true))
1504 return -EIO;
1505 bbp = (u64 *)page_address(rdev->bb_page);
1506 rdev->badblocks.shift = sb->bblog_shift;
1507 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1508 u64 bb = le64_to_cpu(*bbp);
1509 int count = bb & (0x3ff);
1510 u64 sector = bb >> 10;
1511 sector <<= sb->bblog_shift;
1512 count <<= sb->bblog_shift;
1513 if (bb + 1 == 0)
1514 break;
1515 if (md_set_badblocks(&rdev->badblocks,
1516 sector, count, 1) == 0)
1517 return -EINVAL;
1518 }
1519 } else if (sb->bblog_offset != 0)
1520 rdev->badblocks.shift = 0;
1521
1522 if (!refdev) {
1523 ret = 1;
1524 } else {
1525 __u64 ev1, ev2;
1526 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1527
1528 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1529 sb->level != refsb->level ||
1530 sb->layout != refsb->layout ||
1531 sb->chunksize != refsb->chunksize) {
1532 printk(KERN_WARNING "md: %s has strangely different"
1533 " superblock to %s\n",
1534 bdevname(rdev->bdev,b),
1535 bdevname(refdev->bdev,b2));
1536 return -EINVAL;
1537 }
1538 ev1 = le64_to_cpu(sb->events);
1539 ev2 = le64_to_cpu(refsb->events);
1540
1541 if (ev1 > ev2)
1542 ret = 1;
1543 else
1544 ret = 0;
1545 }
1546 if (minor_version) {
1547 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1548 sectors -= rdev->data_offset;
1549 } else
1550 sectors = rdev->sb_start;
1551 if (sectors < le64_to_cpu(sb->data_size))
1552 return -EINVAL;
1553 rdev->sectors = le64_to_cpu(sb->data_size);
1554 return ret;
1555 }
1556
1557 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1558 {
1559 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1560 __u64 ev1 = le64_to_cpu(sb->events);
1561
1562 rdev->raid_disk = -1;
1563 clear_bit(Faulty, &rdev->flags);
1564 clear_bit(In_sync, &rdev->flags);
1565 clear_bit(Bitmap_sync, &rdev->flags);
1566 clear_bit(WriteMostly, &rdev->flags);
1567
1568 if (mddev->raid_disks == 0) {
1569 mddev->major_version = 1;
1570 mddev->patch_version = 0;
1571 mddev->external = 0;
1572 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1573 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1574 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1575 mddev->level = le32_to_cpu(sb->level);
1576 mddev->clevel[0] = 0;
1577 mddev->layout = le32_to_cpu(sb->layout);
1578 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1579 mddev->dev_sectors = le64_to_cpu(sb->size);
1580 mddev->events = ev1;
1581 mddev->bitmap_info.offset = 0;
1582 mddev->bitmap_info.space = 0;
1583 /* Default location for bitmap is 1K after superblock
1584 * using 3K - total of 4K
1585 */
1586 mddev->bitmap_info.default_offset = 1024 >> 9;
1587 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1588 mddev->reshape_backwards = 0;
1589
1590 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1591 memcpy(mddev->uuid, sb->set_uuid, 16);
1592
1593 mddev->max_disks = (4096-256)/2;
1594
1595 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1596 mddev->bitmap_info.file == NULL) {
1597 mddev->bitmap_info.offset =
1598 (__s32)le32_to_cpu(sb->bitmap_offset);
1599 /* Metadata doesn't record how much space is available.
1600 * For 1.0, we assume we can use up to the superblock
1601 * if before, else to 4K beyond superblock.
1602 * For others, assume no change is possible.
1603 */
1604 if (mddev->minor_version > 0)
1605 mddev->bitmap_info.space = 0;
1606 else if (mddev->bitmap_info.offset > 0)
1607 mddev->bitmap_info.space =
1608 8 - mddev->bitmap_info.offset;
1609 else
1610 mddev->bitmap_info.space =
1611 -mddev->bitmap_info.offset;
1612 }
1613
1614 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1615 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1616 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1617 mddev->new_level = le32_to_cpu(sb->new_level);
1618 mddev->new_layout = le32_to_cpu(sb->new_layout);
1619 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1620 if (mddev->delta_disks < 0 ||
1621 (mddev->delta_disks == 0 &&
1622 (le32_to_cpu(sb->feature_map)
1623 & MD_FEATURE_RESHAPE_BACKWARDS)))
1624 mddev->reshape_backwards = 1;
1625 } else {
1626 mddev->reshape_position = MaxSector;
1627 mddev->delta_disks = 0;
1628 mddev->new_level = mddev->level;
1629 mddev->new_layout = mddev->layout;
1630 mddev->new_chunk_sectors = mddev->chunk_sectors;
1631 }
1632
1633 } else if (mddev->pers == NULL) {
1634 /* Insist of good event counter while assembling, except for
1635 * spares (which don't need an event count) */
1636 ++ev1;
1637 if (rdev->desc_nr >= 0 &&
1638 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1639 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1640 if (ev1 < mddev->events)
1641 return -EINVAL;
1642 } else if (mddev->bitmap) {
1643 /* If adding to array with a bitmap, then we can accept an
1644 * older device, but not too old.
1645 */
1646 if (ev1 < mddev->bitmap->events_cleared)
1647 return 0;
1648 if (ev1 < mddev->events)
1649 set_bit(Bitmap_sync, &rdev->flags);
1650 } else {
1651 if (ev1 < mddev->events)
1652 /* just a hot-add of a new device, leave raid_disk at -1 */
1653 return 0;
1654 }
1655 if (mddev->level != LEVEL_MULTIPATH) {
1656 int role;
1657 if (rdev->desc_nr < 0 ||
1658 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1659 role = 0xffff;
1660 rdev->desc_nr = -1;
1661 } else
1662 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1663 switch(role) {
1664 case 0xffff: /* spare */
1665 break;
1666 case 0xfffe: /* faulty */
1667 set_bit(Faulty, &rdev->flags);
1668 break;
1669 default:
1670 rdev->saved_raid_disk = role;
1671 if ((le32_to_cpu(sb->feature_map) &
1672 MD_FEATURE_RECOVERY_OFFSET)) {
1673 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1674 if (!(le32_to_cpu(sb->feature_map) &
1675 MD_FEATURE_RECOVERY_BITMAP))
1676 rdev->saved_raid_disk = -1;
1677 } else
1678 set_bit(In_sync, &rdev->flags);
1679 rdev->raid_disk = role;
1680 break;
1681 }
1682 if (sb->devflags & WriteMostly1)
1683 set_bit(WriteMostly, &rdev->flags);
1684 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1685 set_bit(Replacement, &rdev->flags);
1686 } else /* MULTIPATH are always insync */
1687 set_bit(In_sync, &rdev->flags);
1688
1689 return 0;
1690 }
1691
1692 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1693 {
1694 struct mdp_superblock_1 *sb;
1695 struct md_rdev *rdev2;
1696 int max_dev, i;
1697 /* make rdev->sb match mddev and rdev data. */
1698
1699 sb = page_address(rdev->sb_page);
1700
1701 sb->feature_map = 0;
1702 sb->pad0 = 0;
1703 sb->recovery_offset = cpu_to_le64(0);
1704 memset(sb->pad3, 0, sizeof(sb->pad3));
1705
1706 sb->utime = cpu_to_le64((__u64)mddev->utime);
1707 sb->events = cpu_to_le64(mddev->events);
1708 if (mddev->in_sync)
1709 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1710 else
1711 sb->resync_offset = cpu_to_le64(0);
1712
1713 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1714
1715 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1716 sb->size = cpu_to_le64(mddev->dev_sectors);
1717 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1718 sb->level = cpu_to_le32(mddev->level);
1719 sb->layout = cpu_to_le32(mddev->layout);
1720
1721 if (test_bit(WriteMostly, &rdev->flags))
1722 sb->devflags |= WriteMostly1;
1723 else
1724 sb->devflags &= ~WriteMostly1;
1725 sb->data_offset = cpu_to_le64(rdev->data_offset);
1726 sb->data_size = cpu_to_le64(rdev->sectors);
1727
1728 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1729 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1730 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1731 }
1732
1733 if (rdev->raid_disk >= 0 &&
1734 !test_bit(In_sync, &rdev->flags)) {
1735 sb->feature_map |=
1736 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1737 sb->recovery_offset =
1738 cpu_to_le64(rdev->recovery_offset);
1739 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1740 sb->feature_map |=
1741 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1742 }
1743 if (test_bit(Replacement, &rdev->flags))
1744 sb->feature_map |=
1745 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1746
1747 if (mddev->reshape_position != MaxSector) {
1748 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1749 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1750 sb->new_layout = cpu_to_le32(mddev->new_layout);
1751 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1752 sb->new_level = cpu_to_le32(mddev->new_level);
1753 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1754 if (mddev->delta_disks == 0 &&
1755 mddev->reshape_backwards)
1756 sb->feature_map
1757 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1758 if (rdev->new_data_offset != rdev->data_offset) {
1759 sb->feature_map
1760 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1761 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1762 - rdev->data_offset));
1763 }
1764 }
1765
1766 if (rdev->badblocks.count == 0)
1767 /* Nothing to do for bad blocks*/ ;
1768 else if (sb->bblog_offset == 0)
1769 /* Cannot record bad blocks on this device */
1770 md_error(mddev, rdev);
1771 else {
1772 struct badblocks *bb = &rdev->badblocks;
1773 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1774 u64 *p = bb->page;
1775 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1776 if (bb->changed) {
1777 unsigned seq;
1778
1779 retry:
1780 seq = read_seqbegin(&bb->lock);
1781
1782 memset(bbp, 0xff, PAGE_SIZE);
1783
1784 for (i = 0 ; i < bb->count ; i++) {
1785 u64 internal_bb = p[i];
1786 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1787 | BB_LEN(internal_bb));
1788 bbp[i] = cpu_to_le64(store_bb);
1789 }
1790 bb->changed = 0;
1791 if (read_seqretry(&bb->lock, seq))
1792 goto retry;
1793
1794 bb->sector = (rdev->sb_start +
1795 (int)le32_to_cpu(sb->bblog_offset));
1796 bb->size = le16_to_cpu(sb->bblog_size);
1797 }
1798 }
1799
1800 max_dev = 0;
1801 rdev_for_each(rdev2, mddev)
1802 if (rdev2->desc_nr+1 > max_dev)
1803 max_dev = rdev2->desc_nr+1;
1804
1805 if (max_dev > le32_to_cpu(sb->max_dev)) {
1806 int bmask;
1807 sb->max_dev = cpu_to_le32(max_dev);
1808 rdev->sb_size = max_dev * 2 + 256;
1809 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1810 if (rdev->sb_size & bmask)
1811 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1812 } else
1813 max_dev = le32_to_cpu(sb->max_dev);
1814
1815 for (i=0; i<max_dev;i++)
1816 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1817
1818 rdev_for_each(rdev2, mddev) {
1819 i = rdev2->desc_nr;
1820 if (test_bit(Faulty, &rdev2->flags))
1821 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1822 else if (test_bit(In_sync, &rdev2->flags))
1823 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1824 else if (rdev2->raid_disk >= 0)
1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 else
1827 sb->dev_roles[i] = cpu_to_le16(0xffff);
1828 }
1829
1830 sb->sb_csum = calc_sb_1_csum(sb);
1831 }
1832
1833 static unsigned long long
1834 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1835 {
1836 struct mdp_superblock_1 *sb;
1837 sector_t max_sectors;
1838 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1839 return 0; /* component must fit device */
1840 if (rdev->data_offset != rdev->new_data_offset)
1841 return 0; /* too confusing */
1842 if (rdev->sb_start < rdev->data_offset) {
1843 /* minor versions 1 and 2; superblock before data */
1844 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1845 max_sectors -= rdev->data_offset;
1846 if (!num_sectors || num_sectors > max_sectors)
1847 num_sectors = max_sectors;
1848 } else if (rdev->mddev->bitmap_info.offset) {
1849 /* minor version 0 with bitmap we can't move */
1850 return 0;
1851 } else {
1852 /* minor version 0; superblock after data */
1853 sector_t sb_start;
1854 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1855 sb_start &= ~(sector_t)(4*2 - 1);
1856 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1857 if (!num_sectors || num_sectors > max_sectors)
1858 num_sectors = max_sectors;
1859 rdev->sb_start = sb_start;
1860 }
1861 sb = page_address(rdev->sb_page);
1862 sb->data_size = cpu_to_le64(num_sectors);
1863 sb->super_offset = rdev->sb_start;
1864 sb->sb_csum = calc_sb_1_csum(sb);
1865 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1866 rdev->sb_page);
1867 md_super_wait(rdev->mddev);
1868 return num_sectors;
1869
1870 }
1871
1872 static int
1873 super_1_allow_new_offset(struct md_rdev *rdev,
1874 unsigned long long new_offset)
1875 {
1876 /* All necessary checks on new >= old have been done */
1877 struct bitmap *bitmap;
1878 if (new_offset >= rdev->data_offset)
1879 return 1;
1880
1881 /* with 1.0 metadata, there is no metadata to tread on
1882 * so we can always move back */
1883 if (rdev->mddev->minor_version == 0)
1884 return 1;
1885
1886 /* otherwise we must be sure not to step on
1887 * any metadata, so stay:
1888 * 36K beyond start of superblock
1889 * beyond end of badblocks
1890 * beyond write-intent bitmap
1891 */
1892 if (rdev->sb_start + (32+4)*2 > new_offset)
1893 return 0;
1894 bitmap = rdev->mddev->bitmap;
1895 if (bitmap && !rdev->mddev->bitmap_info.file &&
1896 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1897 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1898 return 0;
1899 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1900 return 0;
1901
1902 return 1;
1903 }
1904
1905 static struct super_type super_types[] = {
1906 [0] = {
1907 .name = "0.90.0",
1908 .owner = THIS_MODULE,
1909 .load_super = super_90_load,
1910 .validate_super = super_90_validate,
1911 .sync_super = super_90_sync,
1912 .rdev_size_change = super_90_rdev_size_change,
1913 .allow_new_offset = super_90_allow_new_offset,
1914 },
1915 [1] = {
1916 .name = "md-1",
1917 .owner = THIS_MODULE,
1918 .load_super = super_1_load,
1919 .validate_super = super_1_validate,
1920 .sync_super = super_1_sync,
1921 .rdev_size_change = super_1_rdev_size_change,
1922 .allow_new_offset = super_1_allow_new_offset,
1923 },
1924 };
1925
1926 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1927 {
1928 if (mddev->sync_super) {
1929 mddev->sync_super(mddev, rdev);
1930 return;
1931 }
1932
1933 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1934
1935 super_types[mddev->major_version].sync_super(mddev, rdev);
1936 }
1937
1938 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1939 {
1940 struct md_rdev *rdev, *rdev2;
1941
1942 rcu_read_lock();
1943 rdev_for_each_rcu(rdev, mddev1)
1944 rdev_for_each_rcu(rdev2, mddev2)
1945 if (rdev->bdev->bd_contains ==
1946 rdev2->bdev->bd_contains) {
1947 rcu_read_unlock();
1948 return 1;
1949 }
1950 rcu_read_unlock();
1951 return 0;
1952 }
1953
1954 static LIST_HEAD(pending_raid_disks);
1955
1956 /*
1957 * Try to register data integrity profile for an mddev
1958 *
1959 * This is called when an array is started and after a disk has been kicked
1960 * from the array. It only succeeds if all working and active component devices
1961 * are integrity capable with matching profiles.
1962 */
1963 int md_integrity_register(struct mddev *mddev)
1964 {
1965 struct md_rdev *rdev, *reference = NULL;
1966
1967 if (list_empty(&mddev->disks))
1968 return 0; /* nothing to do */
1969 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1970 return 0; /* shouldn't register, or already is */
1971 rdev_for_each(rdev, mddev) {
1972 /* skip spares and non-functional disks */
1973 if (test_bit(Faulty, &rdev->flags))
1974 continue;
1975 if (rdev->raid_disk < 0)
1976 continue;
1977 if (!reference) {
1978 /* Use the first rdev as the reference */
1979 reference = rdev;
1980 continue;
1981 }
1982 /* does this rdev's profile match the reference profile? */
1983 if (blk_integrity_compare(reference->bdev->bd_disk,
1984 rdev->bdev->bd_disk) < 0)
1985 return -EINVAL;
1986 }
1987 if (!reference || !bdev_get_integrity(reference->bdev))
1988 return 0;
1989 /*
1990 * All component devices are integrity capable and have matching
1991 * profiles, register the common profile for the md device.
1992 */
1993 if (blk_integrity_register(mddev->gendisk,
1994 bdev_get_integrity(reference->bdev)) != 0) {
1995 printk(KERN_ERR "md: failed to register integrity for %s\n",
1996 mdname(mddev));
1997 return -EINVAL;
1998 }
1999 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2000 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2001 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2002 mdname(mddev));
2003 return -EINVAL;
2004 }
2005 return 0;
2006 }
2007 EXPORT_SYMBOL(md_integrity_register);
2008
2009 /* Disable data integrity if non-capable/non-matching disk is being added */
2010 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2011 {
2012 struct blk_integrity *bi_rdev;
2013 struct blk_integrity *bi_mddev;
2014
2015 if (!mddev->gendisk)
2016 return;
2017
2018 bi_rdev = bdev_get_integrity(rdev->bdev);
2019 bi_mddev = blk_get_integrity(mddev->gendisk);
2020
2021 if (!bi_mddev) /* nothing to do */
2022 return;
2023 if (rdev->raid_disk < 0) /* skip spares */
2024 return;
2025 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2026 rdev->bdev->bd_disk) >= 0)
2027 return;
2028 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2029 blk_integrity_unregister(mddev->gendisk);
2030 }
2031 EXPORT_SYMBOL(md_integrity_add_rdev);
2032
2033 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2034 {
2035 char b[BDEVNAME_SIZE];
2036 struct kobject *ko;
2037 char *s;
2038 int err;
2039
2040 /* prevent duplicates */
2041 if (find_rdev(mddev, rdev->bdev->bd_dev))
2042 return -EEXIST;
2043
2044 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2045 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2046 rdev->sectors < mddev->dev_sectors)) {
2047 if (mddev->pers) {
2048 /* Cannot change size, so fail
2049 * If mddev->level <= 0, then we don't care
2050 * about aligning sizes (e.g. linear)
2051 */
2052 if (mddev->level > 0)
2053 return -ENOSPC;
2054 } else
2055 mddev->dev_sectors = rdev->sectors;
2056 }
2057
2058 /* Verify rdev->desc_nr is unique.
2059 * If it is -1, assign a free number, else
2060 * check number is not in use
2061 */
2062 rcu_read_lock();
2063 if (rdev->desc_nr < 0) {
2064 int choice = 0;
2065 if (mddev->pers)
2066 choice = mddev->raid_disks;
2067 while (find_rdev_nr_rcu(mddev, choice))
2068 choice++;
2069 rdev->desc_nr = choice;
2070 } else {
2071 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2072 rcu_read_unlock();
2073 return -EBUSY;
2074 }
2075 }
2076 rcu_read_unlock();
2077 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2078 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2079 mdname(mddev), mddev->max_disks);
2080 return -EBUSY;
2081 }
2082 bdevname(rdev->bdev,b);
2083 while ( (s=strchr(b, '/')) != NULL)
2084 *s = '!';
2085
2086 rdev->mddev = mddev;
2087 printk(KERN_INFO "md: bind<%s>\n", b);
2088
2089 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2090 goto fail;
2091
2092 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2093 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2094 /* failure here is OK */;
2095 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2096
2097 list_add_rcu(&rdev->same_set, &mddev->disks);
2098 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2099
2100 /* May as well allow recovery to be retried once */
2101 mddev->recovery_disabled++;
2102
2103 return 0;
2104
2105 fail:
2106 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2107 b, mdname(mddev));
2108 return err;
2109 }
2110
2111 static void md_delayed_delete(struct work_struct *ws)
2112 {
2113 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2114 kobject_del(&rdev->kobj);
2115 kobject_put(&rdev->kobj);
2116 }
2117
2118 static void unbind_rdev_from_array(struct md_rdev *rdev)
2119 {
2120 char b[BDEVNAME_SIZE];
2121
2122 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2123 list_del_rcu(&rdev->same_set);
2124 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2125 rdev->mddev = NULL;
2126 sysfs_remove_link(&rdev->kobj, "block");
2127 sysfs_put(rdev->sysfs_state);
2128 rdev->sysfs_state = NULL;
2129 rdev->badblocks.count = 0;
2130 /* We need to delay this, otherwise we can deadlock when
2131 * writing to 'remove' to "dev/state". We also need
2132 * to delay it due to rcu usage.
2133 */
2134 synchronize_rcu();
2135 INIT_WORK(&rdev->del_work, md_delayed_delete);
2136 kobject_get(&rdev->kobj);
2137 queue_work(md_misc_wq, &rdev->del_work);
2138 }
2139
2140 /*
2141 * prevent the device from being mounted, repartitioned or
2142 * otherwise reused by a RAID array (or any other kernel
2143 * subsystem), by bd_claiming the device.
2144 */
2145 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2146 {
2147 int err = 0;
2148 struct block_device *bdev;
2149 char b[BDEVNAME_SIZE];
2150
2151 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2152 shared ? (struct md_rdev *)lock_rdev : rdev);
2153 if (IS_ERR(bdev)) {
2154 printk(KERN_ERR "md: could not open %s.\n",
2155 __bdevname(dev, b));
2156 return PTR_ERR(bdev);
2157 }
2158 rdev->bdev = bdev;
2159 return err;
2160 }
2161
2162 static void unlock_rdev(struct md_rdev *rdev)
2163 {
2164 struct block_device *bdev = rdev->bdev;
2165 rdev->bdev = NULL;
2166 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2167 }
2168
2169 void md_autodetect_dev(dev_t dev);
2170
2171 static void export_rdev(struct md_rdev *rdev)
2172 {
2173 char b[BDEVNAME_SIZE];
2174
2175 printk(KERN_INFO "md: export_rdev(%s)\n",
2176 bdevname(rdev->bdev,b));
2177 md_rdev_clear(rdev);
2178 #ifndef MODULE
2179 if (test_bit(AutoDetected, &rdev->flags))
2180 md_autodetect_dev(rdev->bdev->bd_dev);
2181 #endif
2182 unlock_rdev(rdev);
2183 kobject_put(&rdev->kobj);
2184 }
2185
2186 static void kick_rdev_from_array(struct md_rdev *rdev)
2187 {
2188 unbind_rdev_from_array(rdev);
2189 export_rdev(rdev);
2190 }
2191
2192 static void export_array(struct mddev *mddev)
2193 {
2194 struct md_rdev *rdev;
2195
2196 while (!list_empty(&mddev->disks)) {
2197 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2198 same_set);
2199 kick_rdev_from_array(rdev);
2200 }
2201 mddev->raid_disks = 0;
2202 mddev->major_version = 0;
2203 }
2204
2205 static void sync_sbs(struct mddev *mddev, int nospares)
2206 {
2207 /* Update each superblock (in-memory image), but
2208 * if we are allowed to, skip spares which already
2209 * have the right event counter, or have one earlier
2210 * (which would mean they aren't being marked as dirty
2211 * with the rest of the array)
2212 */
2213 struct md_rdev *rdev;
2214 rdev_for_each(rdev, mddev) {
2215 if (rdev->sb_events == mddev->events ||
2216 (nospares &&
2217 rdev->raid_disk < 0 &&
2218 rdev->sb_events+1 == mddev->events)) {
2219 /* Don't update this superblock */
2220 rdev->sb_loaded = 2;
2221 } else {
2222 sync_super(mddev, rdev);
2223 rdev->sb_loaded = 1;
2224 }
2225 }
2226 }
2227
2228 static void md_update_sb(struct mddev *mddev, int force_change)
2229 {
2230 struct md_rdev *rdev;
2231 int sync_req;
2232 int nospares = 0;
2233 int any_badblocks_changed = 0;
2234
2235 if (mddev->ro) {
2236 if (force_change)
2237 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2238 return;
2239 }
2240 repeat:
2241 /* First make sure individual recovery_offsets are correct */
2242 rdev_for_each(rdev, mddev) {
2243 if (rdev->raid_disk >= 0 &&
2244 mddev->delta_disks >= 0 &&
2245 !test_bit(In_sync, &rdev->flags) &&
2246 mddev->curr_resync_completed > rdev->recovery_offset)
2247 rdev->recovery_offset = mddev->curr_resync_completed;
2248
2249 }
2250 if (!mddev->persistent) {
2251 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2252 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2253 if (!mddev->external) {
2254 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2255 rdev_for_each(rdev, mddev) {
2256 if (rdev->badblocks.changed) {
2257 rdev->badblocks.changed = 0;
2258 md_ack_all_badblocks(&rdev->badblocks);
2259 md_error(mddev, rdev);
2260 }
2261 clear_bit(Blocked, &rdev->flags);
2262 clear_bit(BlockedBadBlocks, &rdev->flags);
2263 wake_up(&rdev->blocked_wait);
2264 }
2265 }
2266 wake_up(&mddev->sb_wait);
2267 return;
2268 }
2269
2270 spin_lock(&mddev->lock);
2271
2272 mddev->utime = get_seconds();
2273
2274 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2275 force_change = 1;
2276 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2277 /* just a clean<-> dirty transition, possibly leave spares alone,
2278 * though if events isn't the right even/odd, we will have to do
2279 * spares after all
2280 */
2281 nospares = 1;
2282 if (force_change)
2283 nospares = 0;
2284 if (mddev->degraded)
2285 /* If the array is degraded, then skipping spares is both
2286 * dangerous and fairly pointless.
2287 * Dangerous because a device that was removed from the array
2288 * might have a event_count that still looks up-to-date,
2289 * so it can be re-added without a resync.
2290 * Pointless because if there are any spares to skip,
2291 * then a recovery will happen and soon that array won't
2292 * be degraded any more and the spare can go back to sleep then.
2293 */
2294 nospares = 0;
2295
2296 sync_req = mddev->in_sync;
2297
2298 /* If this is just a dirty<->clean transition, and the array is clean
2299 * and 'events' is odd, we can roll back to the previous clean state */
2300 if (nospares
2301 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2302 && mddev->can_decrease_events
2303 && mddev->events != 1) {
2304 mddev->events--;
2305 mddev->can_decrease_events = 0;
2306 } else {
2307 /* otherwise we have to go forward and ... */
2308 mddev->events ++;
2309 mddev->can_decrease_events = nospares;
2310 }
2311
2312 /*
2313 * This 64-bit counter should never wrap.
2314 * Either we are in around ~1 trillion A.C., assuming
2315 * 1 reboot per second, or we have a bug...
2316 */
2317 WARN_ON(mddev->events == 0);
2318
2319 rdev_for_each(rdev, mddev) {
2320 if (rdev->badblocks.changed)
2321 any_badblocks_changed++;
2322 if (test_bit(Faulty, &rdev->flags))
2323 set_bit(FaultRecorded, &rdev->flags);
2324 }
2325
2326 sync_sbs(mddev, nospares);
2327 spin_unlock(&mddev->lock);
2328
2329 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2330 mdname(mddev), mddev->in_sync);
2331
2332 bitmap_update_sb(mddev->bitmap);
2333 rdev_for_each(rdev, mddev) {
2334 char b[BDEVNAME_SIZE];
2335
2336 if (rdev->sb_loaded != 1)
2337 continue; /* no noise on spare devices */
2338
2339 if (!test_bit(Faulty, &rdev->flags)) {
2340 md_super_write(mddev,rdev,
2341 rdev->sb_start, rdev->sb_size,
2342 rdev->sb_page);
2343 pr_debug("md: (write) %s's sb offset: %llu\n",
2344 bdevname(rdev->bdev, b),
2345 (unsigned long long)rdev->sb_start);
2346 rdev->sb_events = mddev->events;
2347 if (rdev->badblocks.size) {
2348 md_super_write(mddev, rdev,
2349 rdev->badblocks.sector,
2350 rdev->badblocks.size << 9,
2351 rdev->bb_page);
2352 rdev->badblocks.size = 0;
2353 }
2354
2355 } else
2356 pr_debug("md: %s (skipping faulty)\n",
2357 bdevname(rdev->bdev, b));
2358
2359 if (mddev->level == LEVEL_MULTIPATH)
2360 /* only need to write one superblock... */
2361 break;
2362 }
2363 md_super_wait(mddev);
2364 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2365
2366 spin_lock(&mddev->lock);
2367 if (mddev->in_sync != sync_req ||
2368 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2369 /* have to write it out again */
2370 spin_unlock(&mddev->lock);
2371 goto repeat;
2372 }
2373 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2374 spin_unlock(&mddev->lock);
2375 wake_up(&mddev->sb_wait);
2376 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2377 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2378
2379 rdev_for_each(rdev, mddev) {
2380 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2381 clear_bit(Blocked, &rdev->flags);
2382
2383 if (any_badblocks_changed)
2384 md_ack_all_badblocks(&rdev->badblocks);
2385 clear_bit(BlockedBadBlocks, &rdev->flags);
2386 wake_up(&rdev->blocked_wait);
2387 }
2388 }
2389
2390 /* words written to sysfs files may, or may not, be \n terminated.
2391 * We want to accept with case. For this we use cmd_match.
2392 */
2393 static int cmd_match(const char *cmd, const char *str)
2394 {
2395 /* See if cmd, written into a sysfs file, matches
2396 * str. They must either be the same, or cmd can
2397 * have a trailing newline
2398 */
2399 while (*cmd && *str && *cmd == *str) {
2400 cmd++;
2401 str++;
2402 }
2403 if (*cmd == '\n')
2404 cmd++;
2405 if (*str || *cmd)
2406 return 0;
2407 return 1;
2408 }
2409
2410 struct rdev_sysfs_entry {
2411 struct attribute attr;
2412 ssize_t (*show)(struct md_rdev *, char *);
2413 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2414 };
2415
2416 static ssize_t
2417 state_show(struct md_rdev *rdev, char *page)
2418 {
2419 char *sep = "";
2420 size_t len = 0;
2421
2422 if (test_bit(Faulty, &rdev->flags) ||
2423 rdev->badblocks.unacked_exist) {
2424 len+= sprintf(page+len, "%sfaulty",sep);
2425 sep = ",";
2426 }
2427 if (test_bit(In_sync, &rdev->flags)) {
2428 len += sprintf(page+len, "%sin_sync",sep);
2429 sep = ",";
2430 }
2431 if (test_bit(WriteMostly, &rdev->flags)) {
2432 len += sprintf(page+len, "%swrite_mostly",sep);
2433 sep = ",";
2434 }
2435 if (test_bit(Blocked, &rdev->flags) ||
2436 (rdev->badblocks.unacked_exist
2437 && !test_bit(Faulty, &rdev->flags))) {
2438 len += sprintf(page+len, "%sblocked", sep);
2439 sep = ",";
2440 }
2441 if (!test_bit(Faulty, &rdev->flags) &&
2442 !test_bit(In_sync, &rdev->flags)) {
2443 len += sprintf(page+len, "%sspare", sep);
2444 sep = ",";
2445 }
2446 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2447 len += sprintf(page+len, "%swrite_error", sep);
2448 sep = ",";
2449 }
2450 if (test_bit(WantReplacement, &rdev->flags)) {
2451 len += sprintf(page+len, "%swant_replacement", sep);
2452 sep = ",";
2453 }
2454 if (test_bit(Replacement, &rdev->flags)) {
2455 len += sprintf(page+len, "%sreplacement", sep);
2456 sep = ",";
2457 }
2458
2459 return len+sprintf(page+len, "\n");
2460 }
2461
2462 static ssize_t
2463 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2464 {
2465 /* can write
2466 * faulty - simulates an error
2467 * remove - disconnects the device
2468 * writemostly - sets write_mostly
2469 * -writemostly - clears write_mostly
2470 * blocked - sets the Blocked flags
2471 * -blocked - clears the Blocked and possibly simulates an error
2472 * insync - sets Insync providing device isn't active
2473 * -insync - clear Insync for a device with a slot assigned,
2474 * so that it gets rebuilt based on bitmap
2475 * write_error - sets WriteErrorSeen
2476 * -write_error - clears WriteErrorSeen
2477 */
2478 int err = -EINVAL;
2479 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2480 md_error(rdev->mddev, rdev);
2481 if (test_bit(Faulty, &rdev->flags))
2482 err = 0;
2483 else
2484 err = -EBUSY;
2485 } else if (cmd_match(buf, "remove")) {
2486 if (rdev->raid_disk >= 0)
2487 err = -EBUSY;
2488 else {
2489 struct mddev *mddev = rdev->mddev;
2490 kick_rdev_from_array(rdev);
2491 if (mddev->pers)
2492 md_update_sb(mddev, 1);
2493 md_new_event(mddev);
2494 err = 0;
2495 }
2496 } else if (cmd_match(buf, "writemostly")) {
2497 set_bit(WriteMostly, &rdev->flags);
2498 err = 0;
2499 } else if (cmd_match(buf, "-writemostly")) {
2500 clear_bit(WriteMostly, &rdev->flags);
2501 err = 0;
2502 } else if (cmd_match(buf, "blocked")) {
2503 set_bit(Blocked, &rdev->flags);
2504 err = 0;
2505 } else if (cmd_match(buf, "-blocked")) {
2506 if (!test_bit(Faulty, &rdev->flags) &&
2507 rdev->badblocks.unacked_exist) {
2508 /* metadata handler doesn't understand badblocks,
2509 * so we need to fail the device
2510 */
2511 md_error(rdev->mddev, rdev);
2512 }
2513 clear_bit(Blocked, &rdev->flags);
2514 clear_bit(BlockedBadBlocks, &rdev->flags);
2515 wake_up(&rdev->blocked_wait);
2516 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2517 md_wakeup_thread(rdev->mddev->thread);
2518
2519 err = 0;
2520 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2521 set_bit(In_sync, &rdev->flags);
2522 err = 0;
2523 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2524 if (rdev->mddev->pers == NULL) {
2525 clear_bit(In_sync, &rdev->flags);
2526 rdev->saved_raid_disk = rdev->raid_disk;
2527 rdev->raid_disk = -1;
2528 err = 0;
2529 }
2530 } else if (cmd_match(buf, "write_error")) {
2531 set_bit(WriteErrorSeen, &rdev->flags);
2532 err = 0;
2533 } else if (cmd_match(buf, "-write_error")) {
2534 clear_bit(WriteErrorSeen, &rdev->flags);
2535 err = 0;
2536 } else if (cmd_match(buf, "want_replacement")) {
2537 /* Any non-spare device that is not a replacement can
2538 * become want_replacement at any time, but we then need to
2539 * check if recovery is needed.
2540 */
2541 if (rdev->raid_disk >= 0 &&
2542 !test_bit(Replacement, &rdev->flags))
2543 set_bit(WantReplacement, &rdev->flags);
2544 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2545 md_wakeup_thread(rdev->mddev->thread);
2546 err = 0;
2547 } else if (cmd_match(buf, "-want_replacement")) {
2548 /* Clearing 'want_replacement' is always allowed.
2549 * Once replacements starts it is too late though.
2550 */
2551 err = 0;
2552 clear_bit(WantReplacement, &rdev->flags);
2553 } else if (cmd_match(buf, "replacement")) {
2554 /* Can only set a device as a replacement when array has not
2555 * yet been started. Once running, replacement is automatic
2556 * from spares, or by assigning 'slot'.
2557 */
2558 if (rdev->mddev->pers)
2559 err = -EBUSY;
2560 else {
2561 set_bit(Replacement, &rdev->flags);
2562 err = 0;
2563 }
2564 } else if (cmd_match(buf, "-replacement")) {
2565 /* Similarly, can only clear Replacement before start */
2566 if (rdev->mddev->pers)
2567 err = -EBUSY;
2568 else {
2569 clear_bit(Replacement, &rdev->flags);
2570 err = 0;
2571 }
2572 }
2573 if (!err)
2574 sysfs_notify_dirent_safe(rdev->sysfs_state);
2575 return err ? err : len;
2576 }
2577 static struct rdev_sysfs_entry rdev_state =
2578 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2579
2580 static ssize_t
2581 errors_show(struct md_rdev *rdev, char *page)
2582 {
2583 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2584 }
2585
2586 static ssize_t
2587 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2588 {
2589 char *e;
2590 unsigned long n = simple_strtoul(buf, &e, 10);
2591 if (*buf && (*e == 0 || *e == '\n')) {
2592 atomic_set(&rdev->corrected_errors, n);
2593 return len;
2594 }
2595 return -EINVAL;
2596 }
2597 static struct rdev_sysfs_entry rdev_errors =
2598 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2599
2600 static ssize_t
2601 slot_show(struct md_rdev *rdev, char *page)
2602 {
2603 if (rdev->raid_disk < 0)
2604 return sprintf(page, "none\n");
2605 else
2606 return sprintf(page, "%d\n", rdev->raid_disk);
2607 }
2608
2609 static ssize_t
2610 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2611 {
2612 char *e;
2613 int err;
2614 int slot = simple_strtoul(buf, &e, 10);
2615 if (strncmp(buf, "none", 4)==0)
2616 slot = -1;
2617 else if (e==buf || (*e && *e!= '\n'))
2618 return -EINVAL;
2619 if (rdev->mddev->pers && slot == -1) {
2620 /* Setting 'slot' on an active array requires also
2621 * updating the 'rd%d' link, and communicating
2622 * with the personality with ->hot_*_disk.
2623 * For now we only support removing
2624 * failed/spare devices. This normally happens automatically,
2625 * but not when the metadata is externally managed.
2626 */
2627 if (rdev->raid_disk == -1)
2628 return -EEXIST;
2629 /* personality does all needed checks */
2630 if (rdev->mddev->pers->hot_remove_disk == NULL)
2631 return -EINVAL;
2632 clear_bit(Blocked, &rdev->flags);
2633 remove_and_add_spares(rdev->mddev, rdev);
2634 if (rdev->raid_disk >= 0)
2635 return -EBUSY;
2636 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2637 md_wakeup_thread(rdev->mddev->thread);
2638 } else if (rdev->mddev->pers) {
2639 /* Activating a spare .. or possibly reactivating
2640 * if we ever get bitmaps working here.
2641 */
2642
2643 if (rdev->raid_disk != -1)
2644 return -EBUSY;
2645
2646 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2647 return -EBUSY;
2648
2649 if (rdev->mddev->pers->hot_add_disk == NULL)
2650 return -EINVAL;
2651
2652 if (slot >= rdev->mddev->raid_disks &&
2653 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2654 return -ENOSPC;
2655
2656 rdev->raid_disk = slot;
2657 if (test_bit(In_sync, &rdev->flags))
2658 rdev->saved_raid_disk = slot;
2659 else
2660 rdev->saved_raid_disk = -1;
2661 clear_bit(In_sync, &rdev->flags);
2662 clear_bit(Bitmap_sync, &rdev->flags);
2663 err = rdev->mddev->pers->
2664 hot_add_disk(rdev->mddev, rdev);
2665 if (err) {
2666 rdev->raid_disk = -1;
2667 return err;
2668 } else
2669 sysfs_notify_dirent_safe(rdev->sysfs_state);
2670 if (sysfs_link_rdev(rdev->mddev, rdev))
2671 /* failure here is OK */;
2672 /* don't wakeup anyone, leave that to userspace. */
2673 } else {
2674 if (slot >= rdev->mddev->raid_disks &&
2675 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2676 return -ENOSPC;
2677 rdev->raid_disk = slot;
2678 /* assume it is working */
2679 clear_bit(Faulty, &rdev->flags);
2680 clear_bit(WriteMostly, &rdev->flags);
2681 set_bit(In_sync, &rdev->flags);
2682 sysfs_notify_dirent_safe(rdev->sysfs_state);
2683 }
2684 return len;
2685 }
2686
2687 static struct rdev_sysfs_entry rdev_slot =
2688 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2689
2690 static ssize_t
2691 offset_show(struct md_rdev *rdev, char *page)
2692 {
2693 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2694 }
2695
2696 static ssize_t
2697 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2698 {
2699 unsigned long long offset;
2700 if (kstrtoull(buf, 10, &offset) < 0)
2701 return -EINVAL;
2702 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2703 return -EBUSY;
2704 if (rdev->sectors && rdev->mddev->external)
2705 /* Must set offset before size, so overlap checks
2706 * can be sane */
2707 return -EBUSY;
2708 rdev->data_offset = offset;
2709 rdev->new_data_offset = offset;
2710 return len;
2711 }
2712
2713 static struct rdev_sysfs_entry rdev_offset =
2714 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2715
2716 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2717 {
2718 return sprintf(page, "%llu\n",
2719 (unsigned long long)rdev->new_data_offset);
2720 }
2721
2722 static ssize_t new_offset_store(struct md_rdev *rdev,
2723 const char *buf, size_t len)
2724 {
2725 unsigned long long new_offset;
2726 struct mddev *mddev = rdev->mddev;
2727
2728 if (kstrtoull(buf, 10, &new_offset) < 0)
2729 return -EINVAL;
2730
2731 if (mddev->sync_thread ||
2732 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2733 return -EBUSY;
2734 if (new_offset == rdev->data_offset)
2735 /* reset is always permitted */
2736 ;
2737 else if (new_offset > rdev->data_offset) {
2738 /* must not push array size beyond rdev_sectors */
2739 if (new_offset - rdev->data_offset
2740 + mddev->dev_sectors > rdev->sectors)
2741 return -E2BIG;
2742 }
2743 /* Metadata worries about other space details. */
2744
2745 /* decreasing the offset is inconsistent with a backwards
2746 * reshape.
2747 */
2748 if (new_offset < rdev->data_offset &&
2749 mddev->reshape_backwards)
2750 return -EINVAL;
2751 /* Increasing offset is inconsistent with forwards
2752 * reshape. reshape_direction should be set to
2753 * 'backwards' first.
2754 */
2755 if (new_offset > rdev->data_offset &&
2756 !mddev->reshape_backwards)
2757 return -EINVAL;
2758
2759 if (mddev->pers && mddev->persistent &&
2760 !super_types[mddev->major_version]
2761 .allow_new_offset(rdev, new_offset))
2762 return -E2BIG;
2763 rdev->new_data_offset = new_offset;
2764 if (new_offset > rdev->data_offset)
2765 mddev->reshape_backwards = 1;
2766 else if (new_offset < rdev->data_offset)
2767 mddev->reshape_backwards = 0;
2768
2769 return len;
2770 }
2771 static struct rdev_sysfs_entry rdev_new_offset =
2772 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2773
2774 static ssize_t
2775 rdev_size_show(struct md_rdev *rdev, char *page)
2776 {
2777 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2778 }
2779
2780 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2781 {
2782 /* check if two start/length pairs overlap */
2783 if (s1+l1 <= s2)
2784 return 0;
2785 if (s2+l2 <= s1)
2786 return 0;
2787 return 1;
2788 }
2789
2790 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2791 {
2792 unsigned long long blocks;
2793 sector_t new;
2794
2795 if (kstrtoull(buf, 10, &blocks) < 0)
2796 return -EINVAL;
2797
2798 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2799 return -EINVAL; /* sector conversion overflow */
2800
2801 new = blocks * 2;
2802 if (new != blocks * 2)
2803 return -EINVAL; /* unsigned long long to sector_t overflow */
2804
2805 *sectors = new;
2806 return 0;
2807 }
2808
2809 static ssize_t
2810 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 {
2812 struct mddev *my_mddev = rdev->mddev;
2813 sector_t oldsectors = rdev->sectors;
2814 sector_t sectors;
2815
2816 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2817 return -EINVAL;
2818 if (rdev->data_offset != rdev->new_data_offset)
2819 return -EINVAL; /* too confusing */
2820 if (my_mddev->pers && rdev->raid_disk >= 0) {
2821 if (my_mddev->persistent) {
2822 sectors = super_types[my_mddev->major_version].
2823 rdev_size_change(rdev, sectors);
2824 if (!sectors)
2825 return -EBUSY;
2826 } else if (!sectors)
2827 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2828 rdev->data_offset;
2829 if (!my_mddev->pers->resize)
2830 /* Cannot change size for RAID0 or Linear etc */
2831 return -EINVAL;
2832 }
2833 if (sectors < my_mddev->dev_sectors)
2834 return -EINVAL; /* component must fit device */
2835
2836 rdev->sectors = sectors;
2837 if (sectors > oldsectors && my_mddev->external) {
2838 /* Need to check that all other rdevs with the same
2839 * ->bdev do not overlap. 'rcu' is sufficient to walk
2840 * the rdev lists safely.
2841 * This check does not provide a hard guarantee, it
2842 * just helps avoid dangerous mistakes.
2843 */
2844 struct mddev *mddev;
2845 int overlap = 0;
2846 struct list_head *tmp;
2847
2848 rcu_read_lock();
2849 for_each_mddev(mddev, tmp) {
2850 struct md_rdev *rdev2;
2851
2852 rdev_for_each(rdev2, mddev)
2853 if (rdev->bdev == rdev2->bdev &&
2854 rdev != rdev2 &&
2855 overlaps(rdev->data_offset, rdev->sectors,
2856 rdev2->data_offset,
2857 rdev2->sectors)) {
2858 overlap = 1;
2859 break;
2860 }
2861 if (overlap) {
2862 mddev_put(mddev);
2863 break;
2864 }
2865 }
2866 rcu_read_unlock();
2867 if (overlap) {
2868 /* Someone else could have slipped in a size
2869 * change here, but doing so is just silly.
2870 * We put oldsectors back because we *know* it is
2871 * safe, and trust userspace not to race with
2872 * itself
2873 */
2874 rdev->sectors = oldsectors;
2875 return -EBUSY;
2876 }
2877 }
2878 return len;
2879 }
2880
2881 static struct rdev_sysfs_entry rdev_size =
2882 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2883
2884 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2885 {
2886 unsigned long long recovery_start = rdev->recovery_offset;
2887
2888 if (test_bit(In_sync, &rdev->flags) ||
2889 recovery_start == MaxSector)
2890 return sprintf(page, "none\n");
2891
2892 return sprintf(page, "%llu\n", recovery_start);
2893 }
2894
2895 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2896 {
2897 unsigned long long recovery_start;
2898
2899 if (cmd_match(buf, "none"))
2900 recovery_start = MaxSector;
2901 else if (kstrtoull(buf, 10, &recovery_start))
2902 return -EINVAL;
2903
2904 if (rdev->mddev->pers &&
2905 rdev->raid_disk >= 0)
2906 return -EBUSY;
2907
2908 rdev->recovery_offset = recovery_start;
2909 if (recovery_start == MaxSector)
2910 set_bit(In_sync, &rdev->flags);
2911 else
2912 clear_bit(In_sync, &rdev->flags);
2913 return len;
2914 }
2915
2916 static struct rdev_sysfs_entry rdev_recovery_start =
2917 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2918
2919 static ssize_t
2920 badblocks_show(struct badblocks *bb, char *page, int unack);
2921 static ssize_t
2922 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2923
2924 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2925 {
2926 return badblocks_show(&rdev->badblocks, page, 0);
2927 }
2928 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2929 {
2930 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2931 /* Maybe that ack was all we needed */
2932 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2933 wake_up(&rdev->blocked_wait);
2934 return rv;
2935 }
2936 static struct rdev_sysfs_entry rdev_bad_blocks =
2937 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2938
2939 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2940 {
2941 return badblocks_show(&rdev->badblocks, page, 1);
2942 }
2943 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2944 {
2945 return badblocks_store(&rdev->badblocks, page, len, 1);
2946 }
2947 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2948 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2949
2950 static struct attribute *rdev_default_attrs[] = {
2951 &rdev_state.attr,
2952 &rdev_errors.attr,
2953 &rdev_slot.attr,
2954 &rdev_offset.attr,
2955 &rdev_new_offset.attr,
2956 &rdev_size.attr,
2957 &rdev_recovery_start.attr,
2958 &rdev_bad_blocks.attr,
2959 &rdev_unack_bad_blocks.attr,
2960 NULL,
2961 };
2962 static ssize_t
2963 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2964 {
2965 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2966 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2967 struct mddev *mddev = rdev->mddev;
2968 ssize_t rv;
2969
2970 if (!entry->show)
2971 return -EIO;
2972
2973 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2974 if (!rv) {
2975 if (rdev->mddev == NULL)
2976 rv = -EBUSY;
2977 else
2978 rv = entry->show(rdev, page);
2979 mddev_unlock(mddev);
2980 }
2981 return rv;
2982 }
2983
2984 static ssize_t
2985 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2986 const char *page, size_t length)
2987 {
2988 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2989 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2990 ssize_t rv;
2991 struct mddev *mddev = rdev->mddev;
2992
2993 if (!entry->store)
2994 return -EIO;
2995 if (!capable(CAP_SYS_ADMIN))
2996 return -EACCES;
2997 rv = mddev ? mddev_lock(mddev): -EBUSY;
2998 if (!rv) {
2999 if (rdev->mddev == NULL)
3000 rv = -EBUSY;
3001 else
3002 rv = entry->store(rdev, page, length);
3003 mddev_unlock(mddev);
3004 }
3005 return rv;
3006 }
3007
3008 static void rdev_free(struct kobject *ko)
3009 {
3010 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3011 kfree(rdev);
3012 }
3013 static const struct sysfs_ops rdev_sysfs_ops = {
3014 .show = rdev_attr_show,
3015 .store = rdev_attr_store,
3016 };
3017 static struct kobj_type rdev_ktype = {
3018 .release = rdev_free,
3019 .sysfs_ops = &rdev_sysfs_ops,
3020 .default_attrs = rdev_default_attrs,
3021 };
3022
3023 int md_rdev_init(struct md_rdev *rdev)
3024 {
3025 rdev->desc_nr = -1;
3026 rdev->saved_raid_disk = -1;
3027 rdev->raid_disk = -1;
3028 rdev->flags = 0;
3029 rdev->data_offset = 0;
3030 rdev->new_data_offset = 0;
3031 rdev->sb_events = 0;
3032 rdev->last_read_error.tv_sec = 0;
3033 rdev->last_read_error.tv_nsec = 0;
3034 rdev->sb_loaded = 0;
3035 rdev->bb_page = NULL;
3036 atomic_set(&rdev->nr_pending, 0);
3037 atomic_set(&rdev->read_errors, 0);
3038 atomic_set(&rdev->corrected_errors, 0);
3039
3040 INIT_LIST_HEAD(&rdev->same_set);
3041 init_waitqueue_head(&rdev->blocked_wait);
3042
3043 /* Add space to store bad block list.
3044 * This reserves the space even on arrays where it cannot
3045 * be used - I wonder if that matters
3046 */
3047 rdev->badblocks.count = 0;
3048 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3049 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3050 seqlock_init(&rdev->badblocks.lock);
3051 if (rdev->badblocks.page == NULL)
3052 return -ENOMEM;
3053
3054 return 0;
3055 }
3056 EXPORT_SYMBOL_GPL(md_rdev_init);
3057 /*
3058 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3059 *
3060 * mark the device faulty if:
3061 *
3062 * - the device is nonexistent (zero size)
3063 * - the device has no valid superblock
3064 *
3065 * a faulty rdev _never_ has rdev->sb set.
3066 */
3067 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3068 {
3069 char b[BDEVNAME_SIZE];
3070 int err;
3071 struct md_rdev *rdev;
3072 sector_t size;
3073
3074 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3075 if (!rdev) {
3076 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3077 return ERR_PTR(-ENOMEM);
3078 }
3079
3080 err = md_rdev_init(rdev);
3081 if (err)
3082 goto abort_free;
3083 err = alloc_disk_sb(rdev);
3084 if (err)
3085 goto abort_free;
3086
3087 err = lock_rdev(rdev, newdev, super_format == -2);
3088 if (err)
3089 goto abort_free;
3090
3091 kobject_init(&rdev->kobj, &rdev_ktype);
3092
3093 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3094 if (!size) {
3095 printk(KERN_WARNING
3096 "md: %s has zero or unknown size, marking faulty!\n",
3097 bdevname(rdev->bdev,b));
3098 err = -EINVAL;
3099 goto abort_free;
3100 }
3101
3102 if (super_format >= 0) {
3103 err = super_types[super_format].
3104 load_super(rdev, NULL, super_minor);
3105 if (err == -EINVAL) {
3106 printk(KERN_WARNING
3107 "md: %s does not have a valid v%d.%d "
3108 "superblock, not importing!\n",
3109 bdevname(rdev->bdev,b),
3110 super_format, super_minor);
3111 goto abort_free;
3112 }
3113 if (err < 0) {
3114 printk(KERN_WARNING
3115 "md: could not read %s's sb, not importing!\n",
3116 bdevname(rdev->bdev,b));
3117 goto abort_free;
3118 }
3119 }
3120
3121 return rdev;
3122
3123 abort_free:
3124 if (rdev->bdev)
3125 unlock_rdev(rdev);
3126 md_rdev_clear(rdev);
3127 kfree(rdev);
3128 return ERR_PTR(err);
3129 }
3130
3131 /*
3132 * Check a full RAID array for plausibility
3133 */
3134
3135 static void analyze_sbs(struct mddev *mddev)
3136 {
3137 int i;
3138 struct md_rdev *rdev, *freshest, *tmp;
3139 char b[BDEVNAME_SIZE];
3140
3141 freshest = NULL;
3142 rdev_for_each_safe(rdev, tmp, mddev)
3143 switch (super_types[mddev->major_version].
3144 load_super(rdev, freshest, mddev->minor_version)) {
3145 case 1:
3146 freshest = rdev;
3147 break;
3148 case 0:
3149 break;
3150 default:
3151 printk( KERN_ERR \
3152 "md: fatal superblock inconsistency in %s"
3153 " -- removing from array\n",
3154 bdevname(rdev->bdev,b));
3155 kick_rdev_from_array(rdev);
3156 }
3157
3158 super_types[mddev->major_version].
3159 validate_super(mddev, freshest);
3160
3161 i = 0;
3162 rdev_for_each_safe(rdev, tmp, mddev) {
3163 if (mddev->max_disks &&
3164 (rdev->desc_nr >= mddev->max_disks ||
3165 i > mddev->max_disks)) {
3166 printk(KERN_WARNING
3167 "md: %s: %s: only %d devices permitted\n",
3168 mdname(mddev), bdevname(rdev->bdev, b),
3169 mddev->max_disks);
3170 kick_rdev_from_array(rdev);
3171 continue;
3172 }
3173 if (rdev != freshest)
3174 if (super_types[mddev->major_version].
3175 validate_super(mddev, rdev)) {
3176 printk(KERN_WARNING "md: kicking non-fresh %s"
3177 " from array!\n",
3178 bdevname(rdev->bdev,b));
3179 kick_rdev_from_array(rdev);
3180 continue;
3181 }
3182 if (mddev->level == LEVEL_MULTIPATH) {
3183 rdev->desc_nr = i++;
3184 rdev->raid_disk = rdev->desc_nr;
3185 set_bit(In_sync, &rdev->flags);
3186 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3187 rdev->raid_disk = -1;
3188 clear_bit(In_sync, &rdev->flags);
3189 }
3190 }
3191 }
3192
3193 /* Read a fixed-point number.
3194 * Numbers in sysfs attributes should be in "standard" units where
3195 * possible, so time should be in seconds.
3196 * However we internally use a a much smaller unit such as
3197 * milliseconds or jiffies.
3198 * This function takes a decimal number with a possible fractional
3199 * component, and produces an integer which is the result of
3200 * multiplying that number by 10^'scale'.
3201 * all without any floating-point arithmetic.
3202 */
3203 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3204 {
3205 unsigned long result = 0;
3206 long decimals = -1;
3207 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3208 if (*cp == '.')
3209 decimals = 0;
3210 else if (decimals < scale) {
3211 unsigned int value;
3212 value = *cp - '0';
3213 result = result * 10 + value;
3214 if (decimals >= 0)
3215 decimals++;
3216 }
3217 cp++;
3218 }
3219 if (*cp == '\n')
3220 cp++;
3221 if (*cp)
3222 return -EINVAL;
3223 if (decimals < 0)
3224 decimals = 0;
3225 while (decimals < scale) {
3226 result *= 10;
3227 decimals ++;
3228 }
3229 *res = result;
3230 return 0;
3231 }
3232
3233 static void md_safemode_timeout(unsigned long data);
3234
3235 static ssize_t
3236 safe_delay_show(struct mddev *mddev, char *page)
3237 {
3238 int msec = (mddev->safemode_delay*1000)/HZ;
3239 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3240 }
3241 static ssize_t
3242 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3243 {
3244 unsigned long msec;
3245
3246 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3247 return -EINVAL;
3248 if (msec == 0)
3249 mddev->safemode_delay = 0;
3250 else {
3251 unsigned long old_delay = mddev->safemode_delay;
3252 mddev->safemode_delay = (msec*HZ)/1000;
3253 if (mddev->safemode_delay == 0)
3254 mddev->safemode_delay = 1;
3255 if (mddev->safemode_delay < old_delay || old_delay == 0)
3256 md_safemode_timeout((unsigned long)mddev);
3257 }
3258 return len;
3259 }
3260 static struct md_sysfs_entry md_safe_delay =
3261 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3262
3263 static ssize_t
3264 level_show(struct mddev *mddev, char *page)
3265 {
3266 struct md_personality *p = mddev->pers;
3267 if (p)
3268 return sprintf(page, "%s\n", p->name);
3269 else if (mddev->clevel[0])
3270 return sprintf(page, "%s\n", mddev->clevel);
3271 else if (mddev->level != LEVEL_NONE)
3272 return sprintf(page, "%d\n", mddev->level);
3273 else
3274 return 0;
3275 }
3276
3277 static ssize_t
3278 level_store(struct mddev *mddev, const char *buf, size_t len)
3279 {
3280 char clevel[16];
3281 ssize_t rv = len;
3282 struct md_personality *pers;
3283 long level;
3284 void *priv;
3285 struct md_rdev *rdev;
3286
3287 if (mddev->pers == NULL) {
3288 if (len == 0)
3289 return 0;
3290 if (len >= sizeof(mddev->clevel))
3291 return -ENOSPC;
3292 strncpy(mddev->clevel, buf, len);
3293 if (mddev->clevel[len-1] == '\n')
3294 len--;
3295 mddev->clevel[len] = 0;
3296 mddev->level = LEVEL_NONE;
3297 return rv;
3298 }
3299 if (mddev->ro)
3300 return -EROFS;
3301
3302 /* request to change the personality. Need to ensure:
3303 * - array is not engaged in resync/recovery/reshape
3304 * - old personality can be suspended
3305 * - new personality will access other array.
3306 */
3307
3308 if (mddev->sync_thread ||
3309 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3310 mddev->reshape_position != MaxSector ||
3311 mddev->sysfs_active)
3312 return -EBUSY;
3313
3314 if (!mddev->pers->quiesce) {
3315 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3316 mdname(mddev), mddev->pers->name);
3317 return -EINVAL;
3318 }
3319
3320 /* Now find the new personality */
3321 if (len == 0 || len >= sizeof(clevel))
3322 return -EINVAL;
3323 strncpy(clevel, buf, len);
3324 if (clevel[len-1] == '\n')
3325 len--;
3326 clevel[len] = 0;
3327 if (kstrtol(clevel, 10, &level))
3328 level = LEVEL_NONE;
3329
3330 if (request_module("md-%s", clevel) != 0)
3331 request_module("md-level-%s", clevel);
3332 spin_lock(&pers_lock);
3333 pers = find_pers(level, clevel);
3334 if (!pers || !try_module_get(pers->owner)) {
3335 spin_unlock(&pers_lock);
3336 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3337 return -EINVAL;
3338 }
3339 spin_unlock(&pers_lock);
3340
3341 if (pers == mddev->pers) {
3342 /* Nothing to do! */
3343 module_put(pers->owner);
3344 return rv;
3345 }
3346 if (!pers->takeover) {
3347 module_put(pers->owner);
3348 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3349 mdname(mddev), clevel);
3350 return -EINVAL;
3351 }
3352
3353 rdev_for_each(rdev, mddev)
3354 rdev->new_raid_disk = rdev->raid_disk;
3355
3356 /* ->takeover must set new_* and/or delta_disks
3357 * if it succeeds, and may set them when it fails.
3358 */
3359 priv = pers->takeover(mddev);
3360 if (IS_ERR(priv)) {
3361 mddev->new_level = mddev->level;
3362 mddev->new_layout = mddev->layout;
3363 mddev->new_chunk_sectors = mddev->chunk_sectors;
3364 mddev->raid_disks -= mddev->delta_disks;
3365 mddev->delta_disks = 0;
3366 mddev->reshape_backwards = 0;
3367 module_put(pers->owner);
3368 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3369 mdname(mddev), clevel);
3370 return PTR_ERR(priv);
3371 }
3372
3373 /* Looks like we have a winner */
3374 mddev_suspend(mddev);
3375 mddev->pers->stop(mddev);
3376
3377 if (mddev->pers->sync_request == NULL &&
3378 pers->sync_request != NULL) {
3379 /* need to add the md_redundancy_group */
3380 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3381 printk(KERN_WARNING
3382 "md: cannot register extra attributes for %s\n",
3383 mdname(mddev));
3384 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3385 }
3386 if (mddev->pers->sync_request != NULL &&
3387 pers->sync_request == NULL) {
3388 /* need to remove the md_redundancy_group */
3389 if (mddev->to_remove == NULL)
3390 mddev->to_remove = &md_redundancy_group;
3391 }
3392
3393 if (mddev->pers->sync_request == NULL &&
3394 mddev->external) {
3395 /* We are converting from a no-redundancy array
3396 * to a redundancy array and metadata is managed
3397 * externally so we need to be sure that writes
3398 * won't block due to a need to transition
3399 * clean->dirty
3400 * until external management is started.
3401 */
3402 mddev->in_sync = 0;
3403 mddev->safemode_delay = 0;
3404 mddev->safemode = 0;
3405 }
3406
3407 rdev_for_each(rdev, mddev) {
3408 if (rdev->raid_disk < 0)
3409 continue;
3410 if (rdev->new_raid_disk >= mddev->raid_disks)
3411 rdev->new_raid_disk = -1;
3412 if (rdev->new_raid_disk == rdev->raid_disk)
3413 continue;
3414 sysfs_unlink_rdev(mddev, rdev);
3415 }
3416 rdev_for_each(rdev, mddev) {
3417 if (rdev->raid_disk < 0)
3418 continue;
3419 if (rdev->new_raid_disk == rdev->raid_disk)
3420 continue;
3421 rdev->raid_disk = rdev->new_raid_disk;
3422 if (rdev->raid_disk < 0)
3423 clear_bit(In_sync, &rdev->flags);
3424 else {
3425 if (sysfs_link_rdev(mddev, rdev))
3426 printk(KERN_WARNING "md: cannot register rd%d"
3427 " for %s after level change\n",
3428 rdev->raid_disk, mdname(mddev));
3429 }
3430 }
3431
3432 module_put(mddev->pers->owner);
3433 mddev->pers = pers;
3434 mddev->private = priv;
3435 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3436 mddev->level = mddev->new_level;
3437 mddev->layout = mddev->new_layout;
3438 mddev->chunk_sectors = mddev->new_chunk_sectors;
3439 mddev->delta_disks = 0;
3440 mddev->reshape_backwards = 0;
3441 mddev->degraded = 0;
3442 if (mddev->pers->sync_request == NULL) {
3443 /* this is now an array without redundancy, so
3444 * it must always be in_sync
3445 */
3446 mddev->in_sync = 1;
3447 del_timer_sync(&mddev->safemode_timer);
3448 }
3449 blk_set_stacking_limits(&mddev->queue->limits);
3450 pers->run(mddev);
3451 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3452 mddev_resume(mddev);
3453 if (!mddev->thread)
3454 md_update_sb(mddev, 1);
3455 sysfs_notify(&mddev->kobj, NULL, "level");
3456 md_new_event(mddev);
3457 return rv;
3458 }
3459
3460 static struct md_sysfs_entry md_level =
3461 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3462
3463 static ssize_t
3464 layout_show(struct mddev *mddev, char *page)
3465 {
3466 /* just a number, not meaningful for all levels */
3467 if (mddev->reshape_position != MaxSector &&
3468 mddev->layout != mddev->new_layout)
3469 return sprintf(page, "%d (%d)\n",
3470 mddev->new_layout, mddev->layout);
3471 return sprintf(page, "%d\n", mddev->layout);
3472 }
3473
3474 static ssize_t
3475 layout_store(struct mddev *mddev, const char *buf, size_t len)
3476 {
3477 char *e;
3478 unsigned long n = simple_strtoul(buf, &e, 10);
3479
3480 if (!*buf || (*e && *e != '\n'))
3481 return -EINVAL;
3482
3483 if (mddev->pers) {
3484 int err;
3485 if (mddev->pers->check_reshape == NULL)
3486 return -EBUSY;
3487 if (mddev->ro)
3488 return -EROFS;
3489 mddev->new_layout = n;
3490 err = mddev->pers->check_reshape(mddev);
3491 if (err) {
3492 mddev->new_layout = mddev->layout;
3493 return err;
3494 }
3495 } else {
3496 mddev->new_layout = n;
3497 if (mddev->reshape_position == MaxSector)
3498 mddev->layout = n;
3499 }
3500 return len;
3501 }
3502 static struct md_sysfs_entry md_layout =
3503 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3504
3505 static ssize_t
3506 raid_disks_show(struct mddev *mddev, char *page)
3507 {
3508 if (mddev->raid_disks == 0)
3509 return 0;
3510 if (mddev->reshape_position != MaxSector &&
3511 mddev->delta_disks != 0)
3512 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3513 mddev->raid_disks - mddev->delta_disks);
3514 return sprintf(page, "%d\n", mddev->raid_disks);
3515 }
3516
3517 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3518
3519 static ssize_t
3520 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3521 {
3522 char *e;
3523 int rv = 0;
3524 unsigned long n = simple_strtoul(buf, &e, 10);
3525
3526 if (!*buf || (*e && *e != '\n'))
3527 return -EINVAL;
3528
3529 if (mddev->pers)
3530 rv = update_raid_disks(mddev, n);
3531 else if (mddev->reshape_position != MaxSector) {
3532 struct md_rdev *rdev;
3533 int olddisks = mddev->raid_disks - mddev->delta_disks;
3534
3535 rdev_for_each(rdev, mddev) {
3536 if (olddisks < n &&
3537 rdev->data_offset < rdev->new_data_offset)
3538 return -EINVAL;
3539 if (olddisks > n &&
3540 rdev->data_offset > rdev->new_data_offset)
3541 return -EINVAL;
3542 }
3543 mddev->delta_disks = n - olddisks;
3544 mddev->raid_disks = n;
3545 mddev->reshape_backwards = (mddev->delta_disks < 0);
3546 } else
3547 mddev->raid_disks = n;
3548 return rv ? rv : len;
3549 }
3550 static struct md_sysfs_entry md_raid_disks =
3551 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3552
3553 static ssize_t
3554 chunk_size_show(struct mddev *mddev, char *page)
3555 {
3556 if (mddev->reshape_position != MaxSector &&
3557 mddev->chunk_sectors != mddev->new_chunk_sectors)
3558 return sprintf(page, "%d (%d)\n",
3559 mddev->new_chunk_sectors << 9,
3560 mddev->chunk_sectors << 9);
3561 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3562 }
3563
3564 static ssize_t
3565 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3566 {
3567 char *e;
3568 unsigned long n = simple_strtoul(buf, &e, 10);
3569
3570 if (!*buf || (*e && *e != '\n'))
3571 return -EINVAL;
3572
3573 if (mddev->pers) {
3574 int err;
3575 if (mddev->pers->check_reshape == NULL)
3576 return -EBUSY;
3577 if (mddev->ro)
3578 return -EROFS;
3579 mddev->new_chunk_sectors = n >> 9;
3580 err = mddev->pers->check_reshape(mddev);
3581 if (err) {
3582 mddev->new_chunk_sectors = mddev->chunk_sectors;
3583 return err;
3584 }
3585 } else {
3586 mddev->new_chunk_sectors = n >> 9;
3587 if (mddev->reshape_position == MaxSector)
3588 mddev->chunk_sectors = n >> 9;
3589 }
3590 return len;
3591 }
3592 static struct md_sysfs_entry md_chunk_size =
3593 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3594
3595 static ssize_t
3596 resync_start_show(struct mddev *mddev, char *page)
3597 {
3598 if (mddev->recovery_cp == MaxSector)
3599 return sprintf(page, "none\n");
3600 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3601 }
3602
3603 static ssize_t
3604 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3605 {
3606 char *e;
3607 unsigned long long n = simple_strtoull(buf, &e, 10);
3608
3609 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3610 return -EBUSY;
3611 if (cmd_match(buf, "none"))
3612 n = MaxSector;
3613 else if (!*buf || (*e && *e != '\n'))
3614 return -EINVAL;
3615
3616 mddev->recovery_cp = n;
3617 if (mddev->pers)
3618 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3619 return len;
3620 }
3621 static struct md_sysfs_entry md_resync_start =
3622 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3623
3624 /*
3625 * The array state can be:
3626 *
3627 * clear
3628 * No devices, no size, no level
3629 * Equivalent to STOP_ARRAY ioctl
3630 * inactive
3631 * May have some settings, but array is not active
3632 * all IO results in error
3633 * When written, doesn't tear down array, but just stops it
3634 * suspended (not supported yet)
3635 * All IO requests will block. The array can be reconfigured.
3636 * Writing this, if accepted, will block until array is quiescent
3637 * readonly
3638 * no resync can happen. no superblocks get written.
3639 * write requests fail
3640 * read-auto
3641 * like readonly, but behaves like 'clean' on a write request.
3642 *
3643 * clean - no pending writes, but otherwise active.
3644 * When written to inactive array, starts without resync
3645 * If a write request arrives then
3646 * if metadata is known, mark 'dirty' and switch to 'active'.
3647 * if not known, block and switch to write-pending
3648 * If written to an active array that has pending writes, then fails.
3649 * active
3650 * fully active: IO and resync can be happening.
3651 * When written to inactive array, starts with resync
3652 *
3653 * write-pending
3654 * clean, but writes are blocked waiting for 'active' to be written.
3655 *
3656 * active-idle
3657 * like active, but no writes have been seen for a while (100msec).
3658 *
3659 */
3660 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3661 write_pending, active_idle, bad_word};
3662 static char *array_states[] = {
3663 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3664 "write-pending", "active-idle", NULL };
3665
3666 static int match_word(const char *word, char **list)
3667 {
3668 int n;
3669 for (n=0; list[n]; n++)
3670 if (cmd_match(word, list[n]))
3671 break;
3672 return n;
3673 }
3674
3675 static ssize_t
3676 array_state_show(struct mddev *mddev, char *page)
3677 {
3678 enum array_state st = inactive;
3679
3680 if (mddev->pers)
3681 switch(mddev->ro) {
3682 case 1:
3683 st = readonly;
3684 break;
3685 case 2:
3686 st = read_auto;
3687 break;
3688 case 0:
3689 if (mddev->in_sync)
3690 st = clean;
3691 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3692 st = write_pending;
3693 else if (mddev->safemode)
3694 st = active_idle;
3695 else
3696 st = active;
3697 }
3698 else {
3699 if (list_empty(&mddev->disks) &&
3700 mddev->raid_disks == 0 &&
3701 mddev->dev_sectors == 0)
3702 st = clear;
3703 else
3704 st = inactive;
3705 }
3706 return sprintf(page, "%s\n", array_states[st]);
3707 }
3708
3709 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3710 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3711 static int do_md_run(struct mddev *mddev);
3712 static int restart_array(struct mddev *mddev);
3713
3714 static ssize_t
3715 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3716 {
3717 int err = -EINVAL;
3718 enum array_state st = match_word(buf, array_states);
3719 switch(st) {
3720 case bad_word:
3721 break;
3722 case clear:
3723 /* stopping an active array */
3724 err = do_md_stop(mddev, 0, NULL);
3725 break;
3726 case inactive:
3727 /* stopping an active array */
3728 if (mddev->pers)
3729 err = do_md_stop(mddev, 2, NULL);
3730 else
3731 err = 0; /* already inactive */
3732 break;
3733 case suspended:
3734 break; /* not supported yet */
3735 case readonly:
3736 if (mddev->pers)
3737 err = md_set_readonly(mddev, NULL);
3738 else {
3739 mddev->ro = 1;
3740 set_disk_ro(mddev->gendisk, 1);
3741 err = do_md_run(mddev);
3742 }
3743 break;
3744 case read_auto:
3745 if (mddev->pers) {
3746 if (mddev->ro == 0)
3747 err = md_set_readonly(mddev, NULL);
3748 else if (mddev->ro == 1)
3749 err = restart_array(mddev);
3750 if (err == 0) {
3751 mddev->ro = 2;
3752 set_disk_ro(mddev->gendisk, 0);
3753 }
3754 } else {
3755 mddev->ro = 2;
3756 err = do_md_run(mddev);
3757 }
3758 break;
3759 case clean:
3760 if (mddev->pers) {
3761 restart_array(mddev);
3762 spin_lock(&mddev->lock);
3763 if (atomic_read(&mddev->writes_pending) == 0) {
3764 if (mddev->in_sync == 0) {
3765 mddev->in_sync = 1;
3766 if (mddev->safemode == 1)
3767 mddev->safemode = 0;
3768 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3769 }
3770 err = 0;
3771 } else
3772 err = -EBUSY;
3773 spin_unlock(&mddev->lock);
3774 } else
3775 err = -EINVAL;
3776 break;
3777 case active:
3778 if (mddev->pers) {
3779 restart_array(mddev);
3780 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3781 wake_up(&mddev->sb_wait);
3782 err = 0;
3783 } else {
3784 mddev->ro = 0;
3785 set_disk_ro(mddev->gendisk, 0);
3786 err = do_md_run(mddev);
3787 }
3788 break;
3789 case write_pending:
3790 case active_idle:
3791 /* these cannot be set */
3792 break;
3793 }
3794 if (err)
3795 return err;
3796 else {
3797 if (mddev->hold_active == UNTIL_IOCTL)
3798 mddev->hold_active = 0;
3799 sysfs_notify_dirent_safe(mddev->sysfs_state);
3800 return len;
3801 }
3802 }
3803 static struct md_sysfs_entry md_array_state =
3804 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3805
3806 static ssize_t
3807 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3808 return sprintf(page, "%d\n",
3809 atomic_read(&mddev->max_corr_read_errors));
3810 }
3811
3812 static ssize_t
3813 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3814 {
3815 char *e;
3816 unsigned long n = simple_strtoul(buf, &e, 10);
3817
3818 if (*buf && (*e == 0 || *e == '\n')) {
3819 atomic_set(&mddev->max_corr_read_errors, n);
3820 return len;
3821 }
3822 return -EINVAL;
3823 }
3824
3825 static struct md_sysfs_entry max_corr_read_errors =
3826 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3827 max_corrected_read_errors_store);
3828
3829 static ssize_t
3830 null_show(struct mddev *mddev, char *page)
3831 {
3832 return -EINVAL;
3833 }
3834
3835 static ssize_t
3836 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3837 {
3838 /* buf must be %d:%d\n? giving major and minor numbers */
3839 /* The new device is added to the array.
3840 * If the array has a persistent superblock, we read the
3841 * superblock to initialise info and check validity.
3842 * Otherwise, only checking done is that in bind_rdev_to_array,
3843 * which mainly checks size.
3844 */
3845 char *e;
3846 int major = simple_strtoul(buf, &e, 10);
3847 int minor;
3848 dev_t dev;
3849 struct md_rdev *rdev;
3850 int err;
3851
3852 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3853 return -EINVAL;
3854 minor = simple_strtoul(e+1, &e, 10);
3855 if (*e && *e != '\n')
3856 return -EINVAL;
3857 dev = MKDEV(major, minor);
3858 if (major != MAJOR(dev) ||
3859 minor != MINOR(dev))
3860 return -EOVERFLOW;
3861
3862 if (mddev->persistent) {
3863 rdev = md_import_device(dev, mddev->major_version,
3864 mddev->minor_version);
3865 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3866 struct md_rdev *rdev0
3867 = list_entry(mddev->disks.next,
3868 struct md_rdev, same_set);
3869 err = super_types[mddev->major_version]
3870 .load_super(rdev, rdev0, mddev->minor_version);
3871 if (err < 0)
3872 goto out;
3873 }
3874 } else if (mddev->external)
3875 rdev = md_import_device(dev, -2, -1);
3876 else
3877 rdev = md_import_device(dev, -1, -1);
3878
3879 if (IS_ERR(rdev))
3880 return PTR_ERR(rdev);
3881 err = bind_rdev_to_array(rdev, mddev);
3882 out:
3883 if (err)
3884 export_rdev(rdev);
3885 return err ? err : len;
3886 }
3887
3888 static struct md_sysfs_entry md_new_device =
3889 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3890
3891 static ssize_t
3892 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3893 {
3894 char *end;
3895 unsigned long chunk, end_chunk;
3896
3897 if (!mddev->bitmap)
3898 goto out;
3899 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3900 while (*buf) {
3901 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3902 if (buf == end) break;
3903 if (*end == '-') { /* range */
3904 buf = end + 1;
3905 end_chunk = simple_strtoul(buf, &end, 0);
3906 if (buf == end) break;
3907 }
3908 if (*end && !isspace(*end)) break;
3909 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3910 buf = skip_spaces(end);
3911 }
3912 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3913 out:
3914 return len;
3915 }
3916
3917 static struct md_sysfs_entry md_bitmap =
3918 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3919
3920 static ssize_t
3921 size_show(struct mddev *mddev, char *page)
3922 {
3923 return sprintf(page, "%llu\n",
3924 (unsigned long long)mddev->dev_sectors / 2);
3925 }
3926
3927 static int update_size(struct mddev *mddev, sector_t num_sectors);
3928
3929 static ssize_t
3930 size_store(struct mddev *mddev, const char *buf, size_t len)
3931 {
3932 /* If array is inactive, we can reduce the component size, but
3933 * not increase it (except from 0).
3934 * If array is active, we can try an on-line resize
3935 */
3936 sector_t sectors;
3937 int err = strict_blocks_to_sectors(buf, &sectors);
3938
3939 if (err < 0)
3940 return err;
3941 if (mddev->pers) {
3942 err = update_size(mddev, sectors);
3943 md_update_sb(mddev, 1);
3944 } else {
3945 if (mddev->dev_sectors == 0 ||
3946 mddev->dev_sectors > sectors)
3947 mddev->dev_sectors = sectors;
3948 else
3949 err = -ENOSPC;
3950 }
3951 return err ? err : len;
3952 }
3953
3954 static struct md_sysfs_entry md_size =
3955 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3956
3957 /* Metadata version.
3958 * This is one of
3959 * 'none' for arrays with no metadata (good luck...)
3960 * 'external' for arrays with externally managed metadata,
3961 * or N.M for internally known formats
3962 */
3963 static ssize_t
3964 metadata_show(struct mddev *mddev, char *page)
3965 {
3966 if (mddev->persistent)
3967 return sprintf(page, "%d.%d\n",
3968 mddev->major_version, mddev->minor_version);
3969 else if (mddev->external)
3970 return sprintf(page, "external:%s\n", mddev->metadata_type);
3971 else
3972 return sprintf(page, "none\n");
3973 }
3974
3975 static ssize_t
3976 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3977 {
3978 int major, minor;
3979 char *e;
3980 /* Changing the details of 'external' metadata is
3981 * always permitted. Otherwise there must be
3982 * no devices attached to the array.
3983 */
3984 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3985 ;
3986 else if (!list_empty(&mddev->disks))
3987 return -EBUSY;
3988
3989 if (cmd_match(buf, "none")) {
3990 mddev->persistent = 0;
3991 mddev->external = 0;
3992 mddev->major_version = 0;
3993 mddev->minor_version = 90;
3994 return len;
3995 }
3996 if (strncmp(buf, "external:", 9) == 0) {
3997 size_t namelen = len-9;
3998 if (namelen >= sizeof(mddev->metadata_type))
3999 namelen = sizeof(mddev->metadata_type)-1;
4000 strncpy(mddev->metadata_type, buf+9, namelen);
4001 mddev->metadata_type[namelen] = 0;
4002 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4003 mddev->metadata_type[--namelen] = 0;
4004 mddev->persistent = 0;
4005 mddev->external = 1;
4006 mddev->major_version = 0;
4007 mddev->minor_version = 90;
4008 return len;
4009 }
4010 major = simple_strtoul(buf, &e, 10);
4011 if (e==buf || *e != '.')
4012 return -EINVAL;
4013 buf = e+1;
4014 minor = simple_strtoul(buf, &e, 10);
4015 if (e==buf || (*e && *e != '\n') )
4016 return -EINVAL;
4017 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4018 return -ENOENT;
4019 mddev->major_version = major;
4020 mddev->minor_version = minor;
4021 mddev->persistent = 1;
4022 mddev->external = 0;
4023 return len;
4024 }
4025
4026 static struct md_sysfs_entry md_metadata =
4027 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4028
4029 static ssize_t
4030 action_show(struct mddev *mddev, char *page)
4031 {
4032 char *type = "idle";
4033 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4034 type = "frozen";
4035 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4036 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4037 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4038 type = "reshape";
4039 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4040 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4041 type = "resync";
4042 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4043 type = "check";
4044 else
4045 type = "repair";
4046 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4047 type = "recover";
4048 }
4049 return sprintf(page, "%s\n", type);
4050 }
4051
4052 static ssize_t
4053 action_store(struct mddev *mddev, const char *page, size_t len)
4054 {
4055 if (!mddev->pers || !mddev->pers->sync_request)
4056 return -EINVAL;
4057
4058 if (cmd_match(page, "frozen"))
4059 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4060 else
4061 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062
4063 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4064 flush_workqueue(md_misc_wq);
4065 if (mddev->sync_thread) {
4066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4067 md_reap_sync_thread(mddev);
4068 }
4069 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4070 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4071 return -EBUSY;
4072 else if (cmd_match(page, "resync"))
4073 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4074 else if (cmd_match(page, "recover")) {
4075 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4076 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4077 } else if (cmd_match(page, "reshape")) {
4078 int err;
4079 if (mddev->pers->start_reshape == NULL)
4080 return -EINVAL;
4081 err = mddev->pers->start_reshape(mddev);
4082 if (err)
4083 return err;
4084 sysfs_notify(&mddev->kobj, NULL, "degraded");
4085 } else {
4086 if (cmd_match(page, "check"))
4087 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4088 else if (!cmd_match(page, "repair"))
4089 return -EINVAL;
4090 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4091 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4092 }
4093 if (mddev->ro == 2) {
4094 /* A write to sync_action is enough to justify
4095 * canceling read-auto mode
4096 */
4097 mddev->ro = 0;
4098 md_wakeup_thread(mddev->sync_thread);
4099 }
4100 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4101 md_wakeup_thread(mddev->thread);
4102 sysfs_notify_dirent_safe(mddev->sysfs_action);
4103 return len;
4104 }
4105
4106 static struct md_sysfs_entry md_scan_mode =
4107 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4108
4109 static ssize_t
4110 last_sync_action_show(struct mddev *mddev, char *page)
4111 {
4112 return sprintf(page, "%s\n", mddev->last_sync_action);
4113 }
4114
4115 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4116
4117 static ssize_t
4118 mismatch_cnt_show(struct mddev *mddev, char *page)
4119 {
4120 return sprintf(page, "%llu\n",
4121 (unsigned long long)
4122 atomic64_read(&mddev->resync_mismatches));
4123 }
4124
4125 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4126
4127 static ssize_t
4128 sync_min_show(struct mddev *mddev, char *page)
4129 {
4130 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4131 mddev->sync_speed_min ? "local": "system");
4132 }
4133
4134 static ssize_t
4135 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4136 {
4137 int min;
4138 char *e;
4139 if (strncmp(buf, "system", 6)==0) {
4140 mddev->sync_speed_min = 0;
4141 return len;
4142 }
4143 min = simple_strtoul(buf, &e, 10);
4144 if (buf == e || (*e && *e != '\n') || min <= 0)
4145 return -EINVAL;
4146 mddev->sync_speed_min = min;
4147 return len;
4148 }
4149
4150 static struct md_sysfs_entry md_sync_min =
4151 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4152
4153 static ssize_t
4154 sync_max_show(struct mddev *mddev, char *page)
4155 {
4156 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4157 mddev->sync_speed_max ? "local": "system");
4158 }
4159
4160 static ssize_t
4161 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4162 {
4163 int max;
4164 char *e;
4165 if (strncmp(buf, "system", 6)==0) {
4166 mddev->sync_speed_max = 0;
4167 return len;
4168 }
4169 max = simple_strtoul(buf, &e, 10);
4170 if (buf == e || (*e && *e != '\n') || max <= 0)
4171 return -EINVAL;
4172 mddev->sync_speed_max = max;
4173 return len;
4174 }
4175
4176 static struct md_sysfs_entry md_sync_max =
4177 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4178
4179 static ssize_t
4180 degraded_show(struct mddev *mddev, char *page)
4181 {
4182 return sprintf(page, "%d\n", mddev->degraded);
4183 }
4184 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4185
4186 static ssize_t
4187 sync_force_parallel_show(struct mddev *mddev, char *page)
4188 {
4189 return sprintf(page, "%d\n", mddev->parallel_resync);
4190 }
4191
4192 static ssize_t
4193 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4194 {
4195 long n;
4196
4197 if (kstrtol(buf, 10, &n))
4198 return -EINVAL;
4199
4200 if (n != 0 && n != 1)
4201 return -EINVAL;
4202
4203 mddev->parallel_resync = n;
4204
4205 if (mddev->sync_thread)
4206 wake_up(&resync_wait);
4207
4208 return len;
4209 }
4210
4211 /* force parallel resync, even with shared block devices */
4212 static struct md_sysfs_entry md_sync_force_parallel =
4213 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4214 sync_force_parallel_show, sync_force_parallel_store);
4215
4216 static ssize_t
4217 sync_speed_show(struct mddev *mddev, char *page)
4218 {
4219 unsigned long resync, dt, db;
4220 if (mddev->curr_resync == 0)
4221 return sprintf(page, "none\n");
4222 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4223 dt = (jiffies - mddev->resync_mark) / HZ;
4224 if (!dt) dt++;
4225 db = resync - mddev->resync_mark_cnt;
4226 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4227 }
4228
4229 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4230
4231 static ssize_t
4232 sync_completed_show(struct mddev *mddev, char *page)
4233 {
4234 unsigned long long max_sectors, resync;
4235
4236 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4237 return sprintf(page, "none\n");
4238
4239 if (mddev->curr_resync == 1 ||
4240 mddev->curr_resync == 2)
4241 return sprintf(page, "delayed\n");
4242
4243 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4244 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4245 max_sectors = mddev->resync_max_sectors;
4246 else
4247 max_sectors = mddev->dev_sectors;
4248
4249 resync = mddev->curr_resync_completed;
4250 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4251 }
4252
4253 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4254
4255 static ssize_t
4256 min_sync_show(struct mddev *mddev, char *page)
4257 {
4258 return sprintf(page, "%llu\n",
4259 (unsigned long long)mddev->resync_min);
4260 }
4261 static ssize_t
4262 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4263 {
4264 unsigned long long min;
4265 if (kstrtoull(buf, 10, &min))
4266 return -EINVAL;
4267 if (min > mddev->resync_max)
4268 return -EINVAL;
4269 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4270 return -EBUSY;
4271
4272 /* Must be a multiple of chunk_size */
4273 if (mddev->chunk_sectors) {
4274 sector_t temp = min;
4275 if (sector_div(temp, mddev->chunk_sectors))
4276 return -EINVAL;
4277 }
4278 mddev->resync_min = min;
4279
4280 return len;
4281 }
4282
4283 static struct md_sysfs_entry md_min_sync =
4284 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4285
4286 static ssize_t
4287 max_sync_show(struct mddev *mddev, char *page)
4288 {
4289 if (mddev->resync_max == MaxSector)
4290 return sprintf(page, "max\n");
4291 else
4292 return sprintf(page, "%llu\n",
4293 (unsigned long long)mddev->resync_max);
4294 }
4295 static ssize_t
4296 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4297 {
4298 if (strncmp(buf, "max", 3) == 0)
4299 mddev->resync_max = MaxSector;
4300 else {
4301 unsigned long long max;
4302 if (kstrtoull(buf, 10, &max))
4303 return -EINVAL;
4304 if (max < mddev->resync_min)
4305 return -EINVAL;
4306 if (max < mddev->resync_max &&
4307 mddev->ro == 0 &&
4308 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4309 return -EBUSY;
4310
4311 /* Must be a multiple of chunk_size */
4312 if (mddev->chunk_sectors) {
4313 sector_t temp = max;
4314 if (sector_div(temp, mddev->chunk_sectors))
4315 return -EINVAL;
4316 }
4317 mddev->resync_max = max;
4318 }
4319 wake_up(&mddev->recovery_wait);
4320 return len;
4321 }
4322
4323 static struct md_sysfs_entry md_max_sync =
4324 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4325
4326 static ssize_t
4327 suspend_lo_show(struct mddev *mddev, char *page)
4328 {
4329 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4330 }
4331
4332 static ssize_t
4333 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4334 {
4335 char *e;
4336 unsigned long long new = simple_strtoull(buf, &e, 10);
4337 unsigned long long old = mddev->suspend_lo;
4338
4339 if (mddev->pers == NULL ||
4340 mddev->pers->quiesce == NULL)
4341 return -EINVAL;
4342 if (buf == e || (*e && *e != '\n'))
4343 return -EINVAL;
4344
4345 mddev->suspend_lo = new;
4346 if (new >= old)
4347 /* Shrinking suspended region */
4348 mddev->pers->quiesce(mddev, 2);
4349 else {
4350 /* Expanding suspended region - need to wait */
4351 mddev->pers->quiesce(mddev, 1);
4352 mddev->pers->quiesce(mddev, 0);
4353 }
4354 return len;
4355 }
4356 static struct md_sysfs_entry md_suspend_lo =
4357 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4358
4359 static ssize_t
4360 suspend_hi_show(struct mddev *mddev, char *page)
4361 {
4362 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4363 }
4364
4365 static ssize_t
4366 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4367 {
4368 char *e;
4369 unsigned long long new = simple_strtoull(buf, &e, 10);
4370 unsigned long long old = mddev->suspend_hi;
4371
4372 if (mddev->pers == NULL ||
4373 mddev->pers->quiesce == NULL)
4374 return -EINVAL;
4375 if (buf == e || (*e && *e != '\n'))
4376 return -EINVAL;
4377
4378 mddev->suspend_hi = new;
4379 if (new <= old)
4380 /* Shrinking suspended region */
4381 mddev->pers->quiesce(mddev, 2);
4382 else {
4383 /* Expanding suspended region - need to wait */
4384 mddev->pers->quiesce(mddev, 1);
4385 mddev->pers->quiesce(mddev, 0);
4386 }
4387 return len;
4388 }
4389 static struct md_sysfs_entry md_suspend_hi =
4390 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4391
4392 static ssize_t
4393 reshape_position_show(struct mddev *mddev, char *page)
4394 {
4395 if (mddev->reshape_position != MaxSector)
4396 return sprintf(page, "%llu\n",
4397 (unsigned long long)mddev->reshape_position);
4398 strcpy(page, "none\n");
4399 return 5;
4400 }
4401
4402 static ssize_t
4403 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4404 {
4405 struct md_rdev *rdev;
4406 char *e;
4407 unsigned long long new = simple_strtoull(buf, &e, 10);
4408 if (mddev->pers)
4409 return -EBUSY;
4410 if (buf == e || (*e && *e != '\n'))
4411 return -EINVAL;
4412 mddev->reshape_position = new;
4413 mddev->delta_disks = 0;
4414 mddev->reshape_backwards = 0;
4415 mddev->new_level = mddev->level;
4416 mddev->new_layout = mddev->layout;
4417 mddev->new_chunk_sectors = mddev->chunk_sectors;
4418 rdev_for_each(rdev, mddev)
4419 rdev->new_data_offset = rdev->data_offset;
4420 return len;
4421 }
4422
4423 static struct md_sysfs_entry md_reshape_position =
4424 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4425 reshape_position_store);
4426
4427 static ssize_t
4428 reshape_direction_show(struct mddev *mddev, char *page)
4429 {
4430 return sprintf(page, "%s\n",
4431 mddev->reshape_backwards ? "backwards" : "forwards");
4432 }
4433
4434 static ssize_t
4435 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4436 {
4437 int backwards = 0;
4438 if (cmd_match(buf, "forwards"))
4439 backwards = 0;
4440 else if (cmd_match(buf, "backwards"))
4441 backwards = 1;
4442 else
4443 return -EINVAL;
4444 if (mddev->reshape_backwards == backwards)
4445 return len;
4446
4447 /* check if we are allowed to change */
4448 if (mddev->delta_disks)
4449 return -EBUSY;
4450
4451 if (mddev->persistent &&
4452 mddev->major_version == 0)
4453 return -EINVAL;
4454
4455 mddev->reshape_backwards = backwards;
4456 return len;
4457 }
4458
4459 static struct md_sysfs_entry md_reshape_direction =
4460 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4461 reshape_direction_store);
4462
4463 static ssize_t
4464 array_size_show(struct mddev *mddev, char *page)
4465 {
4466 if (mddev->external_size)
4467 return sprintf(page, "%llu\n",
4468 (unsigned long long)mddev->array_sectors/2);
4469 else
4470 return sprintf(page, "default\n");
4471 }
4472
4473 static ssize_t
4474 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476 sector_t sectors;
4477
4478 if (strncmp(buf, "default", 7) == 0) {
4479 if (mddev->pers)
4480 sectors = mddev->pers->size(mddev, 0, 0);
4481 else
4482 sectors = mddev->array_sectors;
4483
4484 mddev->external_size = 0;
4485 } else {
4486 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4487 return -EINVAL;
4488 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4489 return -E2BIG;
4490
4491 mddev->external_size = 1;
4492 }
4493
4494 mddev->array_sectors = sectors;
4495 if (mddev->pers) {
4496 set_capacity(mddev->gendisk, mddev->array_sectors);
4497 revalidate_disk(mddev->gendisk);
4498 }
4499 return len;
4500 }
4501
4502 static struct md_sysfs_entry md_array_size =
4503 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4504 array_size_store);
4505
4506 static struct attribute *md_default_attrs[] = {
4507 &md_level.attr,
4508 &md_layout.attr,
4509 &md_raid_disks.attr,
4510 &md_chunk_size.attr,
4511 &md_size.attr,
4512 &md_resync_start.attr,
4513 &md_metadata.attr,
4514 &md_new_device.attr,
4515 &md_safe_delay.attr,
4516 &md_array_state.attr,
4517 &md_reshape_position.attr,
4518 &md_reshape_direction.attr,
4519 &md_array_size.attr,
4520 &max_corr_read_errors.attr,
4521 NULL,
4522 };
4523
4524 static struct attribute *md_redundancy_attrs[] = {
4525 &md_scan_mode.attr,
4526 &md_last_scan_mode.attr,
4527 &md_mismatches.attr,
4528 &md_sync_min.attr,
4529 &md_sync_max.attr,
4530 &md_sync_speed.attr,
4531 &md_sync_force_parallel.attr,
4532 &md_sync_completed.attr,
4533 &md_min_sync.attr,
4534 &md_max_sync.attr,
4535 &md_suspend_lo.attr,
4536 &md_suspend_hi.attr,
4537 &md_bitmap.attr,
4538 &md_degraded.attr,
4539 NULL,
4540 };
4541 static struct attribute_group md_redundancy_group = {
4542 .name = NULL,
4543 .attrs = md_redundancy_attrs,
4544 };
4545
4546 static ssize_t
4547 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4548 {
4549 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4550 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4551 ssize_t rv;
4552
4553 if (!entry->show)
4554 return -EIO;
4555 spin_lock(&all_mddevs_lock);
4556 if (list_empty(&mddev->all_mddevs)) {
4557 spin_unlock(&all_mddevs_lock);
4558 return -EBUSY;
4559 }
4560 mddev_get(mddev);
4561 spin_unlock(&all_mddevs_lock);
4562
4563 rv = mddev_lock(mddev);
4564 if (!rv) {
4565 rv = entry->show(mddev, page);
4566 mddev_unlock(mddev);
4567 }
4568 mddev_put(mddev);
4569 return rv;
4570 }
4571
4572 static ssize_t
4573 md_attr_store(struct kobject *kobj, struct attribute *attr,
4574 const char *page, size_t length)
4575 {
4576 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4577 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4578 ssize_t rv;
4579
4580 if (!entry->store)
4581 return -EIO;
4582 if (!capable(CAP_SYS_ADMIN))
4583 return -EACCES;
4584 spin_lock(&all_mddevs_lock);
4585 if (list_empty(&mddev->all_mddevs)) {
4586 spin_unlock(&all_mddevs_lock);
4587 return -EBUSY;
4588 }
4589 mddev_get(mddev);
4590 spin_unlock(&all_mddevs_lock);
4591 if (entry->store == new_dev_store)
4592 flush_workqueue(md_misc_wq);
4593 rv = mddev_lock(mddev);
4594 if (!rv) {
4595 rv = entry->store(mddev, page, length);
4596 mddev_unlock(mddev);
4597 }
4598 mddev_put(mddev);
4599 return rv;
4600 }
4601
4602 static void md_free(struct kobject *ko)
4603 {
4604 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4605
4606 if (mddev->sysfs_state)
4607 sysfs_put(mddev->sysfs_state);
4608
4609 if (mddev->gendisk) {
4610 del_gendisk(mddev->gendisk);
4611 put_disk(mddev->gendisk);
4612 }
4613 if (mddev->queue)
4614 blk_cleanup_queue(mddev->queue);
4615
4616 kfree(mddev);
4617 }
4618
4619 static const struct sysfs_ops md_sysfs_ops = {
4620 .show = md_attr_show,
4621 .store = md_attr_store,
4622 };
4623 static struct kobj_type md_ktype = {
4624 .release = md_free,
4625 .sysfs_ops = &md_sysfs_ops,
4626 .default_attrs = md_default_attrs,
4627 };
4628
4629 int mdp_major = 0;
4630
4631 static void mddev_delayed_delete(struct work_struct *ws)
4632 {
4633 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4634
4635 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4636 kobject_del(&mddev->kobj);
4637 kobject_put(&mddev->kobj);
4638 }
4639
4640 static int md_alloc(dev_t dev, char *name)
4641 {
4642 static DEFINE_MUTEX(disks_mutex);
4643 struct mddev *mddev = mddev_find(dev);
4644 struct gendisk *disk;
4645 int partitioned;
4646 int shift;
4647 int unit;
4648 int error;
4649
4650 if (!mddev)
4651 return -ENODEV;
4652
4653 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4654 shift = partitioned ? MdpMinorShift : 0;
4655 unit = MINOR(mddev->unit) >> shift;
4656
4657 /* wait for any previous instance of this device to be
4658 * completely removed (mddev_delayed_delete).
4659 */
4660 flush_workqueue(md_misc_wq);
4661
4662 mutex_lock(&disks_mutex);
4663 error = -EEXIST;
4664 if (mddev->gendisk)
4665 goto abort;
4666
4667 if (name) {
4668 /* Need to ensure that 'name' is not a duplicate.
4669 */
4670 struct mddev *mddev2;
4671 spin_lock(&all_mddevs_lock);
4672
4673 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4674 if (mddev2->gendisk &&
4675 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4676 spin_unlock(&all_mddevs_lock);
4677 goto abort;
4678 }
4679 spin_unlock(&all_mddevs_lock);
4680 }
4681
4682 error = -ENOMEM;
4683 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4684 if (!mddev->queue)
4685 goto abort;
4686 mddev->queue->queuedata = mddev;
4687
4688 blk_queue_make_request(mddev->queue, md_make_request);
4689 blk_set_stacking_limits(&mddev->queue->limits);
4690
4691 disk = alloc_disk(1 << shift);
4692 if (!disk) {
4693 blk_cleanup_queue(mddev->queue);
4694 mddev->queue = NULL;
4695 goto abort;
4696 }
4697 disk->major = MAJOR(mddev->unit);
4698 disk->first_minor = unit << shift;
4699 if (name)
4700 strcpy(disk->disk_name, name);
4701 else if (partitioned)
4702 sprintf(disk->disk_name, "md_d%d", unit);
4703 else
4704 sprintf(disk->disk_name, "md%d", unit);
4705 disk->fops = &md_fops;
4706 disk->private_data = mddev;
4707 disk->queue = mddev->queue;
4708 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4709 /* Allow extended partitions. This makes the
4710 * 'mdp' device redundant, but we can't really
4711 * remove it now.
4712 */
4713 disk->flags |= GENHD_FL_EXT_DEVT;
4714 mddev->gendisk = disk;
4715 /* As soon as we call add_disk(), another thread could get
4716 * through to md_open, so make sure it doesn't get too far
4717 */
4718 mutex_lock(&mddev->open_mutex);
4719 add_disk(disk);
4720
4721 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4722 &disk_to_dev(disk)->kobj, "%s", "md");
4723 if (error) {
4724 /* This isn't possible, but as kobject_init_and_add is marked
4725 * __must_check, we must do something with the result
4726 */
4727 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4728 disk->disk_name);
4729 error = 0;
4730 }
4731 if (mddev->kobj.sd &&
4732 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4733 printk(KERN_DEBUG "pointless warning\n");
4734 mutex_unlock(&mddev->open_mutex);
4735 abort:
4736 mutex_unlock(&disks_mutex);
4737 if (!error && mddev->kobj.sd) {
4738 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4739 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4740 }
4741 mddev_put(mddev);
4742 return error;
4743 }
4744
4745 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4746 {
4747 md_alloc(dev, NULL);
4748 return NULL;
4749 }
4750
4751 static int add_named_array(const char *val, struct kernel_param *kp)
4752 {
4753 /* val must be "md_*" where * is not all digits.
4754 * We allocate an array with a large free minor number, and
4755 * set the name to val. val must not already be an active name.
4756 */
4757 int len = strlen(val);
4758 char buf[DISK_NAME_LEN];
4759
4760 while (len && val[len-1] == '\n')
4761 len--;
4762 if (len >= DISK_NAME_LEN)
4763 return -E2BIG;
4764 strlcpy(buf, val, len+1);
4765 if (strncmp(buf, "md_", 3) != 0)
4766 return -EINVAL;
4767 return md_alloc(0, buf);
4768 }
4769
4770 static void md_safemode_timeout(unsigned long data)
4771 {
4772 struct mddev *mddev = (struct mddev *) data;
4773
4774 if (!atomic_read(&mddev->writes_pending)) {
4775 mddev->safemode = 1;
4776 if (mddev->external)
4777 sysfs_notify_dirent_safe(mddev->sysfs_state);
4778 }
4779 md_wakeup_thread(mddev->thread);
4780 }
4781
4782 static int start_dirty_degraded;
4783
4784 int md_run(struct mddev *mddev)
4785 {
4786 int err;
4787 struct md_rdev *rdev;
4788 struct md_personality *pers;
4789
4790 if (list_empty(&mddev->disks))
4791 /* cannot run an array with no devices.. */
4792 return -EINVAL;
4793
4794 if (mddev->pers)
4795 return -EBUSY;
4796 /* Cannot run until previous stop completes properly */
4797 if (mddev->sysfs_active)
4798 return -EBUSY;
4799
4800 /*
4801 * Analyze all RAID superblock(s)
4802 */
4803 if (!mddev->raid_disks) {
4804 if (!mddev->persistent)
4805 return -EINVAL;
4806 analyze_sbs(mddev);
4807 }
4808
4809 if (mddev->level != LEVEL_NONE)
4810 request_module("md-level-%d", mddev->level);
4811 else if (mddev->clevel[0])
4812 request_module("md-%s", mddev->clevel);
4813
4814 /*
4815 * Drop all container device buffers, from now on
4816 * the only valid external interface is through the md
4817 * device.
4818 */
4819 rdev_for_each(rdev, mddev) {
4820 if (test_bit(Faulty, &rdev->flags))
4821 continue;
4822 sync_blockdev(rdev->bdev);
4823 invalidate_bdev(rdev->bdev);
4824
4825 /* perform some consistency tests on the device.
4826 * We don't want the data to overlap the metadata,
4827 * Internal Bitmap issues have been handled elsewhere.
4828 */
4829 if (rdev->meta_bdev) {
4830 /* Nothing to check */;
4831 } else if (rdev->data_offset < rdev->sb_start) {
4832 if (mddev->dev_sectors &&
4833 rdev->data_offset + mddev->dev_sectors
4834 > rdev->sb_start) {
4835 printk("md: %s: data overlaps metadata\n",
4836 mdname(mddev));
4837 return -EINVAL;
4838 }
4839 } else {
4840 if (rdev->sb_start + rdev->sb_size/512
4841 > rdev->data_offset) {
4842 printk("md: %s: metadata overlaps data\n",
4843 mdname(mddev));
4844 return -EINVAL;
4845 }
4846 }
4847 sysfs_notify_dirent_safe(rdev->sysfs_state);
4848 }
4849
4850 if (mddev->bio_set == NULL)
4851 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4852
4853 spin_lock(&pers_lock);
4854 pers = find_pers(mddev->level, mddev->clevel);
4855 if (!pers || !try_module_get(pers->owner)) {
4856 spin_unlock(&pers_lock);
4857 if (mddev->level != LEVEL_NONE)
4858 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4859 mddev->level);
4860 else
4861 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4862 mddev->clevel);
4863 return -EINVAL;
4864 }
4865 mddev->pers = pers;
4866 spin_unlock(&pers_lock);
4867 if (mddev->level != pers->level) {
4868 mddev->level = pers->level;
4869 mddev->new_level = pers->level;
4870 }
4871 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4872
4873 if (mddev->reshape_position != MaxSector &&
4874 pers->start_reshape == NULL) {
4875 /* This personality cannot handle reshaping... */
4876 mddev->pers = NULL;
4877 module_put(pers->owner);
4878 return -EINVAL;
4879 }
4880
4881 if (pers->sync_request) {
4882 /* Warn if this is a potentially silly
4883 * configuration.
4884 */
4885 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4886 struct md_rdev *rdev2;
4887 int warned = 0;
4888
4889 rdev_for_each(rdev, mddev)
4890 rdev_for_each(rdev2, mddev) {
4891 if (rdev < rdev2 &&
4892 rdev->bdev->bd_contains ==
4893 rdev2->bdev->bd_contains) {
4894 printk(KERN_WARNING
4895 "%s: WARNING: %s appears to be"
4896 " on the same physical disk as"
4897 " %s.\n",
4898 mdname(mddev),
4899 bdevname(rdev->bdev,b),
4900 bdevname(rdev2->bdev,b2));
4901 warned = 1;
4902 }
4903 }
4904
4905 if (warned)
4906 printk(KERN_WARNING
4907 "True protection against single-disk"
4908 " failure might be compromised.\n");
4909 }
4910
4911 mddev->recovery = 0;
4912 /* may be over-ridden by personality */
4913 mddev->resync_max_sectors = mddev->dev_sectors;
4914
4915 mddev->ok_start_degraded = start_dirty_degraded;
4916
4917 if (start_readonly && mddev->ro == 0)
4918 mddev->ro = 2; /* read-only, but switch on first write */
4919
4920 err = mddev->pers->run(mddev);
4921 if (err)
4922 printk(KERN_ERR "md: pers->run() failed ...\n");
4923 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4924 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4925 " but 'external_size' not in effect?\n", __func__);
4926 printk(KERN_ERR
4927 "md: invalid array_size %llu > default size %llu\n",
4928 (unsigned long long)mddev->array_sectors / 2,
4929 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4930 err = -EINVAL;
4931 mddev->pers->stop(mddev);
4932 }
4933 if (err == 0 && mddev->pers->sync_request &&
4934 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4935 err = bitmap_create(mddev);
4936 if (err) {
4937 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4938 mdname(mddev), err);
4939 mddev->pers->stop(mddev);
4940 }
4941 }
4942 if (err) {
4943 module_put(mddev->pers->owner);
4944 mddev->pers = NULL;
4945 bitmap_destroy(mddev);
4946 return err;
4947 }
4948 if (mddev->queue) {
4949 mddev->queue->backing_dev_info.congested_data = mddev;
4950 mddev->queue->backing_dev_info.congested_fn = md_congested;
4951 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
4952 }
4953 if (mddev->pers->sync_request) {
4954 if (mddev->kobj.sd &&
4955 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4956 printk(KERN_WARNING
4957 "md: cannot register extra attributes for %s\n",
4958 mdname(mddev));
4959 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4960 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4961 mddev->ro = 0;
4962
4963 atomic_set(&mddev->writes_pending,0);
4964 atomic_set(&mddev->max_corr_read_errors,
4965 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4966 mddev->safemode = 0;
4967 mddev->safemode_timer.function = md_safemode_timeout;
4968 mddev->safemode_timer.data = (unsigned long) mddev;
4969 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4970 mddev->in_sync = 1;
4971 smp_wmb();
4972 mddev->ready = 1;
4973 rdev_for_each(rdev, mddev)
4974 if (rdev->raid_disk >= 0)
4975 if (sysfs_link_rdev(mddev, rdev))
4976 /* failure here is OK */;
4977
4978 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4979
4980 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4981 md_update_sb(mddev, 0);
4982
4983 md_new_event(mddev);
4984 sysfs_notify_dirent_safe(mddev->sysfs_state);
4985 sysfs_notify_dirent_safe(mddev->sysfs_action);
4986 sysfs_notify(&mddev->kobj, NULL, "degraded");
4987 return 0;
4988 }
4989 EXPORT_SYMBOL_GPL(md_run);
4990
4991 static int do_md_run(struct mddev *mddev)
4992 {
4993 int err;
4994
4995 err = md_run(mddev);
4996 if (err)
4997 goto out;
4998 err = bitmap_load(mddev);
4999 if (err) {
5000 bitmap_destroy(mddev);
5001 goto out;
5002 }
5003
5004 md_wakeup_thread(mddev->thread);
5005 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5006
5007 set_capacity(mddev->gendisk, mddev->array_sectors);
5008 revalidate_disk(mddev->gendisk);
5009 mddev->changed = 1;
5010 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5011 out:
5012 return err;
5013 }
5014
5015 static int restart_array(struct mddev *mddev)
5016 {
5017 struct gendisk *disk = mddev->gendisk;
5018
5019 /* Complain if it has no devices */
5020 if (list_empty(&mddev->disks))
5021 return -ENXIO;
5022 if (!mddev->pers)
5023 return -EINVAL;
5024 if (!mddev->ro)
5025 return -EBUSY;
5026 mddev->safemode = 0;
5027 mddev->ro = 0;
5028 set_disk_ro(disk, 0);
5029 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5030 mdname(mddev));
5031 /* Kick recovery or resync if necessary */
5032 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5033 md_wakeup_thread(mddev->thread);
5034 md_wakeup_thread(mddev->sync_thread);
5035 sysfs_notify_dirent_safe(mddev->sysfs_state);
5036 return 0;
5037 }
5038
5039 static void md_clean(struct mddev *mddev)
5040 {
5041 mddev->array_sectors = 0;
5042 mddev->external_size = 0;
5043 mddev->dev_sectors = 0;
5044 mddev->raid_disks = 0;
5045 mddev->recovery_cp = 0;
5046 mddev->resync_min = 0;
5047 mddev->resync_max = MaxSector;
5048 mddev->reshape_position = MaxSector;
5049 mddev->external = 0;
5050 mddev->persistent = 0;
5051 mddev->level = LEVEL_NONE;
5052 mddev->clevel[0] = 0;
5053 mddev->flags = 0;
5054 mddev->ro = 0;
5055 mddev->metadata_type[0] = 0;
5056 mddev->chunk_sectors = 0;
5057 mddev->ctime = mddev->utime = 0;
5058 mddev->layout = 0;
5059 mddev->max_disks = 0;
5060 mddev->events = 0;
5061 mddev->can_decrease_events = 0;
5062 mddev->delta_disks = 0;
5063 mddev->reshape_backwards = 0;
5064 mddev->new_level = LEVEL_NONE;
5065 mddev->new_layout = 0;
5066 mddev->new_chunk_sectors = 0;
5067 mddev->curr_resync = 0;
5068 atomic64_set(&mddev->resync_mismatches, 0);
5069 mddev->suspend_lo = mddev->suspend_hi = 0;
5070 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5071 mddev->recovery = 0;
5072 mddev->in_sync = 0;
5073 mddev->changed = 0;
5074 mddev->degraded = 0;
5075 mddev->safemode = 0;
5076 mddev->merge_check_needed = 0;
5077 mddev->bitmap_info.offset = 0;
5078 mddev->bitmap_info.default_offset = 0;
5079 mddev->bitmap_info.default_space = 0;
5080 mddev->bitmap_info.chunksize = 0;
5081 mddev->bitmap_info.daemon_sleep = 0;
5082 mddev->bitmap_info.max_write_behind = 0;
5083 }
5084
5085 static void __md_stop_writes(struct mddev *mddev)
5086 {
5087 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5088 flush_workqueue(md_misc_wq);
5089 if (mddev->sync_thread) {
5090 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5091 md_reap_sync_thread(mddev);
5092 }
5093
5094 del_timer_sync(&mddev->safemode_timer);
5095
5096 bitmap_flush(mddev);
5097 md_super_wait(mddev);
5098
5099 if (mddev->ro == 0 &&
5100 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5101 /* mark array as shutdown cleanly */
5102 mddev->in_sync = 1;
5103 md_update_sb(mddev, 1);
5104 }
5105 }
5106
5107 void md_stop_writes(struct mddev *mddev)
5108 {
5109 mddev_lock_nointr(mddev);
5110 __md_stop_writes(mddev);
5111 mddev_unlock(mddev);
5112 }
5113 EXPORT_SYMBOL_GPL(md_stop_writes);
5114
5115 static void __md_stop(struct mddev *mddev)
5116 {
5117 mddev->ready = 0;
5118 mddev->pers->stop(mddev);
5119 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5120 mddev->to_remove = &md_redundancy_group;
5121 module_put(mddev->pers->owner);
5122 mddev->pers = NULL;
5123 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 }
5125
5126 void md_stop(struct mddev *mddev)
5127 {
5128 /* stop the array and free an attached data structures.
5129 * This is called from dm-raid
5130 */
5131 __md_stop(mddev);
5132 bitmap_destroy(mddev);
5133 if (mddev->bio_set)
5134 bioset_free(mddev->bio_set);
5135 }
5136
5137 EXPORT_SYMBOL_GPL(md_stop);
5138
5139 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5140 {
5141 int err = 0;
5142 int did_freeze = 0;
5143
5144 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5145 did_freeze = 1;
5146 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5147 md_wakeup_thread(mddev->thread);
5148 }
5149 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5150 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5151 if (mddev->sync_thread)
5152 /* Thread might be blocked waiting for metadata update
5153 * which will now never happen */
5154 wake_up_process(mddev->sync_thread->tsk);
5155
5156 mddev_unlock(mddev);
5157 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5158 &mddev->recovery));
5159 mddev_lock_nointr(mddev);
5160
5161 mutex_lock(&mddev->open_mutex);
5162 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5163 mddev->sync_thread ||
5164 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5165 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5166 printk("md: %s still in use.\n",mdname(mddev));
5167 if (did_freeze) {
5168 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5169 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5170 md_wakeup_thread(mddev->thread);
5171 }
5172 err = -EBUSY;
5173 goto out;
5174 }
5175 if (mddev->pers) {
5176 __md_stop_writes(mddev);
5177
5178 err = -ENXIO;
5179 if (mddev->ro==1)
5180 goto out;
5181 mddev->ro = 1;
5182 set_disk_ro(mddev->gendisk, 1);
5183 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5184 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5185 md_wakeup_thread(mddev->thread);
5186 sysfs_notify_dirent_safe(mddev->sysfs_state);
5187 err = 0;
5188 }
5189 out:
5190 mutex_unlock(&mddev->open_mutex);
5191 return err;
5192 }
5193
5194 /* mode:
5195 * 0 - completely stop and dis-assemble array
5196 * 2 - stop but do not disassemble array
5197 */
5198 static int do_md_stop(struct mddev *mddev, int mode,
5199 struct block_device *bdev)
5200 {
5201 struct gendisk *disk = mddev->gendisk;
5202 struct md_rdev *rdev;
5203 int did_freeze = 0;
5204
5205 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5206 did_freeze = 1;
5207 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5208 md_wakeup_thread(mddev->thread);
5209 }
5210 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5211 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5212 if (mddev->sync_thread)
5213 /* Thread might be blocked waiting for metadata update
5214 * which will now never happen */
5215 wake_up_process(mddev->sync_thread->tsk);
5216
5217 mddev_unlock(mddev);
5218 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5219 !test_bit(MD_RECOVERY_RUNNING,
5220 &mddev->recovery)));
5221 mddev_lock_nointr(mddev);
5222
5223 mutex_lock(&mddev->open_mutex);
5224 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5225 mddev->sysfs_active ||
5226 mddev->sync_thread ||
5227 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5228 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5229 printk("md: %s still in use.\n",mdname(mddev));
5230 mutex_unlock(&mddev->open_mutex);
5231 if (did_freeze) {
5232 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5234 md_wakeup_thread(mddev->thread);
5235 }
5236 return -EBUSY;
5237 }
5238 if (mddev->pers) {
5239 if (mddev->ro)
5240 set_disk_ro(disk, 0);
5241
5242 __md_stop_writes(mddev);
5243 __md_stop(mddev);
5244 mddev->queue->merge_bvec_fn = NULL;
5245 mddev->queue->backing_dev_info.congested_fn = NULL;
5246
5247 /* tell userspace to handle 'inactive' */
5248 sysfs_notify_dirent_safe(mddev->sysfs_state);
5249
5250 rdev_for_each(rdev, mddev)
5251 if (rdev->raid_disk >= 0)
5252 sysfs_unlink_rdev(mddev, rdev);
5253
5254 set_capacity(disk, 0);
5255 mutex_unlock(&mddev->open_mutex);
5256 mddev->changed = 1;
5257 revalidate_disk(disk);
5258
5259 if (mddev->ro)
5260 mddev->ro = 0;
5261 } else
5262 mutex_unlock(&mddev->open_mutex);
5263 /*
5264 * Free resources if final stop
5265 */
5266 if (mode == 0) {
5267 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5268
5269 bitmap_destroy(mddev);
5270 if (mddev->bitmap_info.file) {
5271 fput(mddev->bitmap_info.file);
5272 mddev->bitmap_info.file = NULL;
5273 }
5274 mddev->bitmap_info.offset = 0;
5275
5276 export_array(mddev);
5277
5278 md_clean(mddev);
5279 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5280 if (mddev->hold_active == UNTIL_STOP)
5281 mddev->hold_active = 0;
5282 }
5283 blk_integrity_unregister(disk);
5284 md_new_event(mddev);
5285 sysfs_notify_dirent_safe(mddev->sysfs_state);
5286 return 0;
5287 }
5288
5289 #ifndef MODULE
5290 static void autorun_array(struct mddev *mddev)
5291 {
5292 struct md_rdev *rdev;
5293 int err;
5294
5295 if (list_empty(&mddev->disks))
5296 return;
5297
5298 printk(KERN_INFO "md: running: ");
5299
5300 rdev_for_each(rdev, mddev) {
5301 char b[BDEVNAME_SIZE];
5302 printk("<%s>", bdevname(rdev->bdev,b));
5303 }
5304 printk("\n");
5305
5306 err = do_md_run(mddev);
5307 if (err) {
5308 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5309 do_md_stop(mddev, 0, NULL);
5310 }
5311 }
5312
5313 /*
5314 * lets try to run arrays based on all disks that have arrived
5315 * until now. (those are in pending_raid_disks)
5316 *
5317 * the method: pick the first pending disk, collect all disks with
5318 * the same UUID, remove all from the pending list and put them into
5319 * the 'same_array' list. Then order this list based on superblock
5320 * update time (freshest comes first), kick out 'old' disks and
5321 * compare superblocks. If everything's fine then run it.
5322 *
5323 * If "unit" is allocated, then bump its reference count
5324 */
5325 static void autorun_devices(int part)
5326 {
5327 struct md_rdev *rdev0, *rdev, *tmp;
5328 struct mddev *mddev;
5329 char b[BDEVNAME_SIZE];
5330
5331 printk(KERN_INFO "md: autorun ...\n");
5332 while (!list_empty(&pending_raid_disks)) {
5333 int unit;
5334 dev_t dev;
5335 LIST_HEAD(candidates);
5336 rdev0 = list_entry(pending_raid_disks.next,
5337 struct md_rdev, same_set);
5338
5339 printk(KERN_INFO "md: considering %s ...\n",
5340 bdevname(rdev0->bdev,b));
5341 INIT_LIST_HEAD(&candidates);
5342 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5343 if (super_90_load(rdev, rdev0, 0) >= 0) {
5344 printk(KERN_INFO "md: adding %s ...\n",
5345 bdevname(rdev->bdev,b));
5346 list_move(&rdev->same_set, &candidates);
5347 }
5348 /*
5349 * now we have a set of devices, with all of them having
5350 * mostly sane superblocks. It's time to allocate the
5351 * mddev.
5352 */
5353 if (part) {
5354 dev = MKDEV(mdp_major,
5355 rdev0->preferred_minor << MdpMinorShift);
5356 unit = MINOR(dev) >> MdpMinorShift;
5357 } else {
5358 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5359 unit = MINOR(dev);
5360 }
5361 if (rdev0->preferred_minor != unit) {
5362 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5363 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5364 break;
5365 }
5366
5367 md_probe(dev, NULL, NULL);
5368 mddev = mddev_find(dev);
5369 if (!mddev || !mddev->gendisk) {
5370 if (mddev)
5371 mddev_put(mddev);
5372 printk(KERN_ERR
5373 "md: cannot allocate memory for md drive.\n");
5374 break;
5375 }
5376 if (mddev_lock(mddev))
5377 printk(KERN_WARNING "md: %s locked, cannot run\n",
5378 mdname(mddev));
5379 else if (mddev->raid_disks || mddev->major_version
5380 || !list_empty(&mddev->disks)) {
5381 printk(KERN_WARNING
5382 "md: %s already running, cannot run %s\n",
5383 mdname(mddev), bdevname(rdev0->bdev,b));
5384 mddev_unlock(mddev);
5385 } else {
5386 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5387 mddev->persistent = 1;
5388 rdev_for_each_list(rdev, tmp, &candidates) {
5389 list_del_init(&rdev->same_set);
5390 if (bind_rdev_to_array(rdev, mddev))
5391 export_rdev(rdev);
5392 }
5393 autorun_array(mddev);
5394 mddev_unlock(mddev);
5395 }
5396 /* on success, candidates will be empty, on error
5397 * it won't...
5398 */
5399 rdev_for_each_list(rdev, tmp, &candidates) {
5400 list_del_init(&rdev->same_set);
5401 export_rdev(rdev);
5402 }
5403 mddev_put(mddev);
5404 }
5405 printk(KERN_INFO "md: ... autorun DONE.\n");
5406 }
5407 #endif /* !MODULE */
5408
5409 static int get_version(void __user *arg)
5410 {
5411 mdu_version_t ver;
5412
5413 ver.major = MD_MAJOR_VERSION;
5414 ver.minor = MD_MINOR_VERSION;
5415 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5416
5417 if (copy_to_user(arg, &ver, sizeof(ver)))
5418 return -EFAULT;
5419
5420 return 0;
5421 }
5422
5423 static int get_array_info(struct mddev *mddev, void __user *arg)
5424 {
5425 mdu_array_info_t info;
5426 int nr,working,insync,failed,spare;
5427 struct md_rdev *rdev;
5428
5429 nr = working = insync = failed = spare = 0;
5430 rcu_read_lock();
5431 rdev_for_each_rcu(rdev, mddev) {
5432 nr++;
5433 if (test_bit(Faulty, &rdev->flags))
5434 failed++;
5435 else {
5436 working++;
5437 if (test_bit(In_sync, &rdev->flags))
5438 insync++;
5439 else
5440 spare++;
5441 }
5442 }
5443 rcu_read_unlock();
5444
5445 info.major_version = mddev->major_version;
5446 info.minor_version = mddev->minor_version;
5447 info.patch_version = MD_PATCHLEVEL_VERSION;
5448 info.ctime = mddev->ctime;
5449 info.level = mddev->level;
5450 info.size = mddev->dev_sectors / 2;
5451 if (info.size != mddev->dev_sectors / 2) /* overflow */
5452 info.size = -1;
5453 info.nr_disks = nr;
5454 info.raid_disks = mddev->raid_disks;
5455 info.md_minor = mddev->md_minor;
5456 info.not_persistent= !mddev->persistent;
5457
5458 info.utime = mddev->utime;
5459 info.state = 0;
5460 if (mddev->in_sync)
5461 info.state = (1<<MD_SB_CLEAN);
5462 if (mddev->bitmap && mddev->bitmap_info.offset)
5463 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5464 info.active_disks = insync;
5465 info.working_disks = working;
5466 info.failed_disks = failed;
5467 info.spare_disks = spare;
5468
5469 info.layout = mddev->layout;
5470 info.chunk_size = mddev->chunk_sectors << 9;
5471
5472 if (copy_to_user(arg, &info, sizeof(info)))
5473 return -EFAULT;
5474
5475 return 0;
5476 }
5477
5478 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5479 {
5480 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5481 char *ptr, *buf = NULL;
5482 int err = -ENOMEM;
5483
5484 file = kmalloc(sizeof(*file), GFP_NOIO);
5485
5486 if (!file)
5487 goto out;
5488
5489 /* bitmap disabled, zero the first byte and copy out */
5490 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5491 file->pathname[0] = '\0';
5492 goto copy_out;
5493 }
5494
5495 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5496 if (!buf)
5497 goto out;
5498
5499 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5500 buf, sizeof(file->pathname));
5501 if (IS_ERR(ptr))
5502 goto out;
5503
5504 strcpy(file->pathname, ptr);
5505
5506 copy_out:
5507 err = 0;
5508 if (copy_to_user(arg, file, sizeof(*file)))
5509 err = -EFAULT;
5510 out:
5511 kfree(buf);
5512 kfree(file);
5513 return err;
5514 }
5515
5516 static int get_disk_info(struct mddev *mddev, void __user * arg)
5517 {
5518 mdu_disk_info_t info;
5519 struct md_rdev *rdev;
5520
5521 if (copy_from_user(&info, arg, sizeof(info)))
5522 return -EFAULT;
5523
5524 rcu_read_lock();
5525 rdev = find_rdev_nr_rcu(mddev, info.number);
5526 if (rdev) {
5527 info.major = MAJOR(rdev->bdev->bd_dev);
5528 info.minor = MINOR(rdev->bdev->bd_dev);
5529 info.raid_disk = rdev->raid_disk;
5530 info.state = 0;
5531 if (test_bit(Faulty, &rdev->flags))
5532 info.state |= (1<<MD_DISK_FAULTY);
5533 else if (test_bit(In_sync, &rdev->flags)) {
5534 info.state |= (1<<MD_DISK_ACTIVE);
5535 info.state |= (1<<MD_DISK_SYNC);
5536 }
5537 if (test_bit(WriteMostly, &rdev->flags))
5538 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5539 } else {
5540 info.major = info.minor = 0;
5541 info.raid_disk = -1;
5542 info.state = (1<<MD_DISK_REMOVED);
5543 }
5544 rcu_read_unlock();
5545
5546 if (copy_to_user(arg, &info, sizeof(info)))
5547 return -EFAULT;
5548
5549 return 0;
5550 }
5551
5552 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5553 {
5554 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5555 struct md_rdev *rdev;
5556 dev_t dev = MKDEV(info->major,info->minor);
5557
5558 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5559 return -EOVERFLOW;
5560
5561 if (!mddev->raid_disks) {
5562 int err;
5563 /* expecting a device which has a superblock */
5564 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5565 if (IS_ERR(rdev)) {
5566 printk(KERN_WARNING
5567 "md: md_import_device returned %ld\n",
5568 PTR_ERR(rdev));
5569 return PTR_ERR(rdev);
5570 }
5571 if (!list_empty(&mddev->disks)) {
5572 struct md_rdev *rdev0
5573 = list_entry(mddev->disks.next,
5574 struct md_rdev, same_set);
5575 err = super_types[mddev->major_version]
5576 .load_super(rdev, rdev0, mddev->minor_version);
5577 if (err < 0) {
5578 printk(KERN_WARNING
5579 "md: %s has different UUID to %s\n",
5580 bdevname(rdev->bdev,b),
5581 bdevname(rdev0->bdev,b2));
5582 export_rdev(rdev);
5583 return -EINVAL;
5584 }
5585 }
5586 err = bind_rdev_to_array(rdev, mddev);
5587 if (err)
5588 export_rdev(rdev);
5589 return err;
5590 }
5591
5592 /*
5593 * add_new_disk can be used once the array is assembled
5594 * to add "hot spares". They must already have a superblock
5595 * written
5596 */
5597 if (mddev->pers) {
5598 int err;
5599 if (!mddev->pers->hot_add_disk) {
5600 printk(KERN_WARNING
5601 "%s: personality does not support diskops!\n",
5602 mdname(mddev));
5603 return -EINVAL;
5604 }
5605 if (mddev->persistent)
5606 rdev = md_import_device(dev, mddev->major_version,
5607 mddev->minor_version);
5608 else
5609 rdev = md_import_device(dev, -1, -1);
5610 if (IS_ERR(rdev)) {
5611 printk(KERN_WARNING
5612 "md: md_import_device returned %ld\n",
5613 PTR_ERR(rdev));
5614 return PTR_ERR(rdev);
5615 }
5616 /* set saved_raid_disk if appropriate */
5617 if (!mddev->persistent) {
5618 if (info->state & (1<<MD_DISK_SYNC) &&
5619 info->raid_disk < mddev->raid_disks) {
5620 rdev->raid_disk = info->raid_disk;
5621 set_bit(In_sync, &rdev->flags);
5622 clear_bit(Bitmap_sync, &rdev->flags);
5623 } else
5624 rdev->raid_disk = -1;
5625 rdev->saved_raid_disk = rdev->raid_disk;
5626 } else
5627 super_types[mddev->major_version].
5628 validate_super(mddev, rdev);
5629 if ((info->state & (1<<MD_DISK_SYNC)) &&
5630 rdev->raid_disk != info->raid_disk) {
5631 /* This was a hot-add request, but events doesn't
5632 * match, so reject it.
5633 */
5634 export_rdev(rdev);
5635 return -EINVAL;
5636 }
5637
5638 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5639 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5640 set_bit(WriteMostly, &rdev->flags);
5641 else
5642 clear_bit(WriteMostly, &rdev->flags);
5643
5644 rdev->raid_disk = -1;
5645 err = bind_rdev_to_array(rdev, mddev);
5646 if (!err && !mddev->pers->hot_remove_disk) {
5647 /* If there is hot_add_disk but no hot_remove_disk
5648 * then added disks for geometry changes,
5649 * and should be added immediately.
5650 */
5651 super_types[mddev->major_version].
5652 validate_super(mddev, rdev);
5653 err = mddev->pers->hot_add_disk(mddev, rdev);
5654 if (err)
5655 unbind_rdev_from_array(rdev);
5656 }
5657 if (err)
5658 export_rdev(rdev);
5659 else
5660 sysfs_notify_dirent_safe(rdev->sysfs_state);
5661
5662 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5663 if (mddev->degraded)
5664 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5665 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5666 if (!err)
5667 md_new_event(mddev);
5668 md_wakeup_thread(mddev->thread);
5669 return err;
5670 }
5671
5672 /* otherwise, add_new_disk is only allowed
5673 * for major_version==0 superblocks
5674 */
5675 if (mddev->major_version != 0) {
5676 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5677 mdname(mddev));
5678 return -EINVAL;
5679 }
5680
5681 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5682 int err;
5683 rdev = md_import_device(dev, -1, 0);
5684 if (IS_ERR(rdev)) {
5685 printk(KERN_WARNING
5686 "md: error, md_import_device() returned %ld\n",
5687 PTR_ERR(rdev));
5688 return PTR_ERR(rdev);
5689 }
5690 rdev->desc_nr = info->number;
5691 if (info->raid_disk < mddev->raid_disks)
5692 rdev->raid_disk = info->raid_disk;
5693 else
5694 rdev->raid_disk = -1;
5695
5696 if (rdev->raid_disk < mddev->raid_disks)
5697 if (info->state & (1<<MD_DISK_SYNC))
5698 set_bit(In_sync, &rdev->flags);
5699
5700 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5701 set_bit(WriteMostly, &rdev->flags);
5702
5703 if (!mddev->persistent) {
5704 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5705 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5706 } else
5707 rdev->sb_start = calc_dev_sboffset(rdev);
5708 rdev->sectors = rdev->sb_start;
5709
5710 err = bind_rdev_to_array(rdev, mddev);
5711 if (err) {
5712 export_rdev(rdev);
5713 return err;
5714 }
5715 }
5716
5717 return 0;
5718 }
5719
5720 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5721 {
5722 char b[BDEVNAME_SIZE];
5723 struct md_rdev *rdev;
5724
5725 rdev = find_rdev(mddev, dev);
5726 if (!rdev)
5727 return -ENXIO;
5728
5729 clear_bit(Blocked, &rdev->flags);
5730 remove_and_add_spares(mddev, rdev);
5731
5732 if (rdev->raid_disk >= 0)
5733 goto busy;
5734
5735 kick_rdev_from_array(rdev);
5736 md_update_sb(mddev, 1);
5737 md_new_event(mddev);
5738
5739 return 0;
5740 busy:
5741 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5742 bdevname(rdev->bdev,b), mdname(mddev));
5743 return -EBUSY;
5744 }
5745
5746 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5747 {
5748 char b[BDEVNAME_SIZE];
5749 int err;
5750 struct md_rdev *rdev;
5751
5752 if (!mddev->pers)
5753 return -ENODEV;
5754
5755 if (mddev->major_version != 0) {
5756 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5757 " version-0 superblocks.\n",
5758 mdname(mddev));
5759 return -EINVAL;
5760 }
5761 if (!mddev->pers->hot_add_disk) {
5762 printk(KERN_WARNING
5763 "%s: personality does not support diskops!\n",
5764 mdname(mddev));
5765 return -EINVAL;
5766 }
5767
5768 rdev = md_import_device(dev, -1, 0);
5769 if (IS_ERR(rdev)) {
5770 printk(KERN_WARNING
5771 "md: error, md_import_device() returned %ld\n",
5772 PTR_ERR(rdev));
5773 return -EINVAL;
5774 }
5775
5776 if (mddev->persistent)
5777 rdev->sb_start = calc_dev_sboffset(rdev);
5778 else
5779 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5780
5781 rdev->sectors = rdev->sb_start;
5782
5783 if (test_bit(Faulty, &rdev->flags)) {
5784 printk(KERN_WARNING
5785 "md: can not hot-add faulty %s disk to %s!\n",
5786 bdevname(rdev->bdev,b), mdname(mddev));
5787 err = -EINVAL;
5788 goto abort_export;
5789 }
5790 clear_bit(In_sync, &rdev->flags);
5791 rdev->desc_nr = -1;
5792 rdev->saved_raid_disk = -1;
5793 err = bind_rdev_to_array(rdev, mddev);
5794 if (err)
5795 goto abort_export;
5796
5797 /*
5798 * The rest should better be atomic, we can have disk failures
5799 * noticed in interrupt contexts ...
5800 */
5801
5802 rdev->raid_disk = -1;
5803
5804 md_update_sb(mddev, 1);
5805
5806 /*
5807 * Kick recovery, maybe this spare has to be added to the
5808 * array immediately.
5809 */
5810 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5811 md_wakeup_thread(mddev->thread);
5812 md_new_event(mddev);
5813 return 0;
5814
5815 abort_export:
5816 export_rdev(rdev);
5817 return err;
5818 }
5819
5820 static int set_bitmap_file(struct mddev *mddev, int fd)
5821 {
5822 int err = 0;
5823
5824 if (mddev->pers) {
5825 if (!mddev->pers->quiesce || !mddev->thread)
5826 return -EBUSY;
5827 if (mddev->recovery || mddev->sync_thread)
5828 return -EBUSY;
5829 /* we should be able to change the bitmap.. */
5830 }
5831
5832 if (fd >= 0) {
5833 struct inode *inode;
5834 if (mddev->bitmap)
5835 return -EEXIST; /* cannot add when bitmap is present */
5836 mddev->bitmap_info.file = fget(fd);
5837
5838 if (mddev->bitmap_info.file == NULL) {
5839 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5840 mdname(mddev));
5841 return -EBADF;
5842 }
5843
5844 inode = mddev->bitmap_info.file->f_mapping->host;
5845 if (!S_ISREG(inode->i_mode)) {
5846 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5847 mdname(mddev));
5848 err = -EBADF;
5849 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5850 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5851 mdname(mddev));
5852 err = -EBADF;
5853 } else if (atomic_read(&inode->i_writecount) != 1) {
5854 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5855 mdname(mddev));
5856 err = -EBUSY;
5857 }
5858 if (err) {
5859 fput(mddev->bitmap_info.file);
5860 mddev->bitmap_info.file = NULL;
5861 return err;
5862 }
5863 mddev->bitmap_info.offset = 0; /* file overrides offset */
5864 } else if (mddev->bitmap == NULL)
5865 return -ENOENT; /* cannot remove what isn't there */
5866 err = 0;
5867 if (mddev->pers) {
5868 mddev->pers->quiesce(mddev, 1);
5869 if (fd >= 0) {
5870 err = bitmap_create(mddev);
5871 if (!err)
5872 err = bitmap_load(mddev);
5873 }
5874 if (fd < 0 || err) {
5875 bitmap_destroy(mddev);
5876 fd = -1; /* make sure to put the file */
5877 }
5878 mddev->pers->quiesce(mddev, 0);
5879 }
5880 if (fd < 0) {
5881 if (mddev->bitmap_info.file)
5882 fput(mddev->bitmap_info.file);
5883 mddev->bitmap_info.file = NULL;
5884 }
5885
5886 return err;
5887 }
5888
5889 /*
5890 * set_array_info is used two different ways
5891 * The original usage is when creating a new array.
5892 * In this usage, raid_disks is > 0 and it together with
5893 * level, size, not_persistent,layout,chunksize determine the
5894 * shape of the array.
5895 * This will always create an array with a type-0.90.0 superblock.
5896 * The newer usage is when assembling an array.
5897 * In this case raid_disks will be 0, and the major_version field is
5898 * use to determine which style super-blocks are to be found on the devices.
5899 * The minor and patch _version numbers are also kept incase the
5900 * super_block handler wishes to interpret them.
5901 */
5902 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5903 {
5904
5905 if (info->raid_disks == 0) {
5906 /* just setting version number for superblock loading */
5907 if (info->major_version < 0 ||
5908 info->major_version >= ARRAY_SIZE(super_types) ||
5909 super_types[info->major_version].name == NULL) {
5910 /* maybe try to auto-load a module? */
5911 printk(KERN_INFO
5912 "md: superblock version %d not known\n",
5913 info->major_version);
5914 return -EINVAL;
5915 }
5916 mddev->major_version = info->major_version;
5917 mddev->minor_version = info->minor_version;
5918 mddev->patch_version = info->patch_version;
5919 mddev->persistent = !info->not_persistent;
5920 /* ensure mddev_put doesn't delete this now that there
5921 * is some minimal configuration.
5922 */
5923 mddev->ctime = get_seconds();
5924 return 0;
5925 }
5926 mddev->major_version = MD_MAJOR_VERSION;
5927 mddev->minor_version = MD_MINOR_VERSION;
5928 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5929 mddev->ctime = get_seconds();
5930
5931 mddev->level = info->level;
5932 mddev->clevel[0] = 0;
5933 mddev->dev_sectors = 2 * (sector_t)info->size;
5934 mddev->raid_disks = info->raid_disks;
5935 /* don't set md_minor, it is determined by which /dev/md* was
5936 * openned
5937 */
5938 if (info->state & (1<<MD_SB_CLEAN))
5939 mddev->recovery_cp = MaxSector;
5940 else
5941 mddev->recovery_cp = 0;
5942 mddev->persistent = ! info->not_persistent;
5943 mddev->external = 0;
5944
5945 mddev->layout = info->layout;
5946 mddev->chunk_sectors = info->chunk_size >> 9;
5947
5948 mddev->max_disks = MD_SB_DISKS;
5949
5950 if (mddev->persistent)
5951 mddev->flags = 0;
5952 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5953
5954 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5955 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5956 mddev->bitmap_info.offset = 0;
5957
5958 mddev->reshape_position = MaxSector;
5959
5960 /*
5961 * Generate a 128 bit UUID
5962 */
5963 get_random_bytes(mddev->uuid, 16);
5964
5965 mddev->new_level = mddev->level;
5966 mddev->new_chunk_sectors = mddev->chunk_sectors;
5967 mddev->new_layout = mddev->layout;
5968 mddev->delta_disks = 0;
5969 mddev->reshape_backwards = 0;
5970
5971 return 0;
5972 }
5973
5974 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5975 {
5976 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5977
5978 if (mddev->external_size)
5979 return;
5980
5981 mddev->array_sectors = array_sectors;
5982 }
5983 EXPORT_SYMBOL(md_set_array_sectors);
5984
5985 static int update_size(struct mddev *mddev, sector_t num_sectors)
5986 {
5987 struct md_rdev *rdev;
5988 int rv;
5989 int fit = (num_sectors == 0);
5990
5991 if (mddev->pers->resize == NULL)
5992 return -EINVAL;
5993 /* The "num_sectors" is the number of sectors of each device that
5994 * is used. This can only make sense for arrays with redundancy.
5995 * linear and raid0 always use whatever space is available. We can only
5996 * consider changing this number if no resync or reconstruction is
5997 * happening, and if the new size is acceptable. It must fit before the
5998 * sb_start or, if that is <data_offset, it must fit before the size
5999 * of each device. If num_sectors is zero, we find the largest size
6000 * that fits.
6001 */
6002 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6003 mddev->sync_thread)
6004 return -EBUSY;
6005 if (mddev->ro)
6006 return -EROFS;
6007
6008 rdev_for_each(rdev, mddev) {
6009 sector_t avail = rdev->sectors;
6010
6011 if (fit && (num_sectors == 0 || num_sectors > avail))
6012 num_sectors = avail;
6013 if (avail < num_sectors)
6014 return -ENOSPC;
6015 }
6016 rv = mddev->pers->resize(mddev, num_sectors);
6017 if (!rv)
6018 revalidate_disk(mddev->gendisk);
6019 return rv;
6020 }
6021
6022 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6023 {
6024 int rv;
6025 struct md_rdev *rdev;
6026 /* change the number of raid disks */
6027 if (mddev->pers->check_reshape == NULL)
6028 return -EINVAL;
6029 if (mddev->ro)
6030 return -EROFS;
6031 if (raid_disks <= 0 ||
6032 (mddev->max_disks && raid_disks >= mddev->max_disks))
6033 return -EINVAL;
6034 if (mddev->sync_thread ||
6035 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6036 mddev->reshape_position != MaxSector)
6037 return -EBUSY;
6038
6039 rdev_for_each(rdev, mddev) {
6040 if (mddev->raid_disks < raid_disks &&
6041 rdev->data_offset < rdev->new_data_offset)
6042 return -EINVAL;
6043 if (mddev->raid_disks > raid_disks &&
6044 rdev->data_offset > rdev->new_data_offset)
6045 return -EINVAL;
6046 }
6047
6048 mddev->delta_disks = raid_disks - mddev->raid_disks;
6049 if (mddev->delta_disks < 0)
6050 mddev->reshape_backwards = 1;
6051 else if (mddev->delta_disks > 0)
6052 mddev->reshape_backwards = 0;
6053
6054 rv = mddev->pers->check_reshape(mddev);
6055 if (rv < 0) {
6056 mddev->delta_disks = 0;
6057 mddev->reshape_backwards = 0;
6058 }
6059 return rv;
6060 }
6061
6062 /*
6063 * update_array_info is used to change the configuration of an
6064 * on-line array.
6065 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6066 * fields in the info are checked against the array.
6067 * Any differences that cannot be handled will cause an error.
6068 * Normally, only one change can be managed at a time.
6069 */
6070 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6071 {
6072 int rv = 0;
6073 int cnt = 0;
6074 int state = 0;
6075
6076 /* calculate expected state,ignoring low bits */
6077 if (mddev->bitmap && mddev->bitmap_info.offset)
6078 state |= (1 << MD_SB_BITMAP_PRESENT);
6079
6080 if (mddev->major_version != info->major_version ||
6081 mddev->minor_version != info->minor_version ||
6082 /* mddev->patch_version != info->patch_version || */
6083 mddev->ctime != info->ctime ||
6084 mddev->level != info->level ||
6085 /* mddev->layout != info->layout || */
6086 !mddev->persistent != info->not_persistent||
6087 mddev->chunk_sectors != info->chunk_size >> 9 ||
6088 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6089 ((state^info->state) & 0xfffffe00)
6090 )
6091 return -EINVAL;
6092 /* Check there is only one change */
6093 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6094 cnt++;
6095 if (mddev->raid_disks != info->raid_disks)
6096 cnt++;
6097 if (mddev->layout != info->layout)
6098 cnt++;
6099 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6100 cnt++;
6101 if (cnt == 0)
6102 return 0;
6103 if (cnt > 1)
6104 return -EINVAL;
6105
6106 if (mddev->layout != info->layout) {
6107 /* Change layout
6108 * we don't need to do anything at the md level, the
6109 * personality will take care of it all.
6110 */
6111 if (mddev->pers->check_reshape == NULL)
6112 return -EINVAL;
6113 else {
6114 mddev->new_layout = info->layout;
6115 rv = mddev->pers->check_reshape(mddev);
6116 if (rv)
6117 mddev->new_layout = mddev->layout;
6118 return rv;
6119 }
6120 }
6121 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6122 rv = update_size(mddev, (sector_t)info->size * 2);
6123
6124 if (mddev->raid_disks != info->raid_disks)
6125 rv = update_raid_disks(mddev, info->raid_disks);
6126
6127 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6128 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6129 return -EINVAL;
6130 if (mddev->recovery || mddev->sync_thread)
6131 return -EBUSY;
6132 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6133 /* add the bitmap */
6134 if (mddev->bitmap)
6135 return -EEXIST;
6136 if (mddev->bitmap_info.default_offset == 0)
6137 return -EINVAL;
6138 mddev->bitmap_info.offset =
6139 mddev->bitmap_info.default_offset;
6140 mddev->bitmap_info.space =
6141 mddev->bitmap_info.default_space;
6142 mddev->pers->quiesce(mddev, 1);
6143 rv = bitmap_create(mddev);
6144 if (!rv)
6145 rv = bitmap_load(mddev);
6146 if (rv)
6147 bitmap_destroy(mddev);
6148 mddev->pers->quiesce(mddev, 0);
6149 } else {
6150 /* remove the bitmap */
6151 if (!mddev->bitmap)
6152 return -ENOENT;
6153 if (mddev->bitmap->storage.file)
6154 return -EINVAL;
6155 mddev->pers->quiesce(mddev, 1);
6156 bitmap_destroy(mddev);
6157 mddev->pers->quiesce(mddev, 0);
6158 mddev->bitmap_info.offset = 0;
6159 }
6160 }
6161 md_update_sb(mddev, 1);
6162 return rv;
6163 }
6164
6165 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6166 {
6167 struct md_rdev *rdev;
6168 int err = 0;
6169
6170 if (mddev->pers == NULL)
6171 return -ENODEV;
6172
6173 rcu_read_lock();
6174 rdev = find_rdev_rcu(mddev, dev);
6175 if (!rdev)
6176 err = -ENODEV;
6177 else {
6178 md_error(mddev, rdev);
6179 if (!test_bit(Faulty, &rdev->flags))
6180 err = -EBUSY;
6181 }
6182 rcu_read_unlock();
6183 return err;
6184 }
6185
6186 /*
6187 * We have a problem here : there is no easy way to give a CHS
6188 * virtual geometry. We currently pretend that we have a 2 heads
6189 * 4 sectors (with a BIG number of cylinders...). This drives
6190 * dosfs just mad... ;-)
6191 */
6192 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6193 {
6194 struct mddev *mddev = bdev->bd_disk->private_data;
6195
6196 geo->heads = 2;
6197 geo->sectors = 4;
6198 geo->cylinders = mddev->array_sectors / 8;
6199 return 0;
6200 }
6201
6202 static inline bool md_ioctl_valid(unsigned int cmd)
6203 {
6204 switch (cmd) {
6205 case ADD_NEW_DISK:
6206 case BLKROSET:
6207 case GET_ARRAY_INFO:
6208 case GET_BITMAP_FILE:
6209 case GET_DISK_INFO:
6210 case HOT_ADD_DISK:
6211 case HOT_REMOVE_DISK:
6212 case RAID_AUTORUN:
6213 case RAID_VERSION:
6214 case RESTART_ARRAY_RW:
6215 case RUN_ARRAY:
6216 case SET_ARRAY_INFO:
6217 case SET_BITMAP_FILE:
6218 case SET_DISK_FAULTY:
6219 case STOP_ARRAY:
6220 case STOP_ARRAY_RO:
6221 return true;
6222 default:
6223 return false;
6224 }
6225 }
6226
6227 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6228 unsigned int cmd, unsigned long arg)
6229 {
6230 int err = 0;
6231 void __user *argp = (void __user *)arg;
6232 struct mddev *mddev = NULL;
6233 int ro;
6234
6235 if (!md_ioctl_valid(cmd))
6236 return -ENOTTY;
6237
6238 switch (cmd) {
6239 case RAID_VERSION:
6240 case GET_ARRAY_INFO:
6241 case GET_DISK_INFO:
6242 break;
6243 default:
6244 if (!capable(CAP_SYS_ADMIN))
6245 return -EACCES;
6246 }
6247
6248 /*
6249 * Commands dealing with the RAID driver but not any
6250 * particular array:
6251 */
6252 switch (cmd) {
6253 case RAID_VERSION:
6254 err = get_version(argp);
6255 goto out;
6256
6257 #ifndef MODULE
6258 case RAID_AUTORUN:
6259 err = 0;
6260 autostart_arrays(arg);
6261 goto out;
6262 #endif
6263 default:;
6264 }
6265
6266 /*
6267 * Commands creating/starting a new array:
6268 */
6269
6270 mddev = bdev->bd_disk->private_data;
6271
6272 if (!mddev) {
6273 BUG();
6274 goto out;
6275 }
6276
6277 /* Some actions do not requires the mutex */
6278 switch (cmd) {
6279 case GET_ARRAY_INFO:
6280 if (!mddev->raid_disks && !mddev->external)
6281 err = -ENODEV;
6282 else
6283 err = get_array_info(mddev, argp);
6284 goto out;
6285
6286 case GET_DISK_INFO:
6287 if (!mddev->raid_disks && !mddev->external)
6288 err = -ENODEV;
6289 else
6290 err = get_disk_info(mddev, argp);
6291 goto out;
6292
6293 case SET_DISK_FAULTY:
6294 err = set_disk_faulty(mddev, new_decode_dev(arg));
6295 goto out;
6296 }
6297
6298 if (cmd == ADD_NEW_DISK)
6299 /* need to ensure md_delayed_delete() has completed */
6300 flush_workqueue(md_misc_wq);
6301
6302 if (cmd == HOT_REMOVE_DISK)
6303 /* need to ensure recovery thread has run */
6304 wait_event_interruptible_timeout(mddev->sb_wait,
6305 !test_bit(MD_RECOVERY_NEEDED,
6306 &mddev->flags),
6307 msecs_to_jiffies(5000));
6308 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6309 /* Need to flush page cache, and ensure no-one else opens
6310 * and writes
6311 */
6312 mutex_lock(&mddev->open_mutex);
6313 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6314 mutex_unlock(&mddev->open_mutex);
6315 err = -EBUSY;
6316 goto out;
6317 }
6318 set_bit(MD_STILL_CLOSED, &mddev->flags);
6319 mutex_unlock(&mddev->open_mutex);
6320 sync_blockdev(bdev);
6321 }
6322 err = mddev_lock(mddev);
6323 if (err) {
6324 printk(KERN_INFO
6325 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6326 err, cmd);
6327 goto out;
6328 }
6329
6330 if (cmd == SET_ARRAY_INFO) {
6331 mdu_array_info_t info;
6332 if (!arg)
6333 memset(&info, 0, sizeof(info));
6334 else if (copy_from_user(&info, argp, sizeof(info))) {
6335 err = -EFAULT;
6336 goto unlock;
6337 }
6338 if (mddev->pers) {
6339 err = update_array_info(mddev, &info);
6340 if (err) {
6341 printk(KERN_WARNING "md: couldn't update"
6342 " array info. %d\n", err);
6343 goto unlock;
6344 }
6345 goto unlock;
6346 }
6347 if (!list_empty(&mddev->disks)) {
6348 printk(KERN_WARNING
6349 "md: array %s already has disks!\n",
6350 mdname(mddev));
6351 err = -EBUSY;
6352 goto unlock;
6353 }
6354 if (mddev->raid_disks) {
6355 printk(KERN_WARNING
6356 "md: array %s already initialised!\n",
6357 mdname(mddev));
6358 err = -EBUSY;
6359 goto unlock;
6360 }
6361 err = set_array_info(mddev, &info);
6362 if (err) {
6363 printk(KERN_WARNING "md: couldn't set"
6364 " array info. %d\n", err);
6365 goto unlock;
6366 }
6367 goto unlock;
6368 }
6369
6370 /*
6371 * Commands querying/configuring an existing array:
6372 */
6373 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6374 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6375 if ((!mddev->raid_disks && !mddev->external)
6376 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6377 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6378 && cmd != GET_BITMAP_FILE) {
6379 err = -ENODEV;
6380 goto unlock;
6381 }
6382
6383 /*
6384 * Commands even a read-only array can execute:
6385 */
6386 switch (cmd) {
6387 case GET_BITMAP_FILE:
6388 err = get_bitmap_file(mddev, argp);
6389 goto unlock;
6390
6391 case RESTART_ARRAY_RW:
6392 err = restart_array(mddev);
6393 goto unlock;
6394
6395 case STOP_ARRAY:
6396 err = do_md_stop(mddev, 0, bdev);
6397 goto unlock;
6398
6399 case STOP_ARRAY_RO:
6400 err = md_set_readonly(mddev, bdev);
6401 goto unlock;
6402
6403 case HOT_REMOVE_DISK:
6404 err = hot_remove_disk(mddev, new_decode_dev(arg));
6405 goto unlock;
6406
6407 case ADD_NEW_DISK:
6408 /* We can support ADD_NEW_DISK on read-only arrays
6409 * on if we are re-adding a preexisting device.
6410 * So require mddev->pers and MD_DISK_SYNC.
6411 */
6412 if (mddev->pers) {
6413 mdu_disk_info_t info;
6414 if (copy_from_user(&info, argp, sizeof(info)))
6415 err = -EFAULT;
6416 else if (!(info.state & (1<<MD_DISK_SYNC)))
6417 /* Need to clear read-only for this */
6418 break;
6419 else
6420 err = add_new_disk(mddev, &info);
6421 goto unlock;
6422 }
6423 break;
6424
6425 case BLKROSET:
6426 if (get_user(ro, (int __user *)(arg))) {
6427 err = -EFAULT;
6428 goto unlock;
6429 }
6430 err = -EINVAL;
6431
6432 /* if the bdev is going readonly the value of mddev->ro
6433 * does not matter, no writes are coming
6434 */
6435 if (ro)
6436 goto unlock;
6437
6438 /* are we are already prepared for writes? */
6439 if (mddev->ro != 1)
6440 goto unlock;
6441
6442 /* transitioning to readauto need only happen for
6443 * arrays that call md_write_start
6444 */
6445 if (mddev->pers) {
6446 err = restart_array(mddev);
6447 if (err == 0) {
6448 mddev->ro = 2;
6449 set_disk_ro(mddev->gendisk, 0);
6450 }
6451 }
6452 goto unlock;
6453 }
6454
6455 /*
6456 * The remaining ioctls are changing the state of the
6457 * superblock, so we do not allow them on read-only arrays.
6458 */
6459 if (mddev->ro && mddev->pers) {
6460 if (mddev->ro == 2) {
6461 mddev->ro = 0;
6462 sysfs_notify_dirent_safe(mddev->sysfs_state);
6463 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6464 /* mddev_unlock will wake thread */
6465 /* If a device failed while we were read-only, we
6466 * need to make sure the metadata is updated now.
6467 */
6468 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6469 mddev_unlock(mddev);
6470 wait_event(mddev->sb_wait,
6471 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6472 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6473 mddev_lock_nointr(mddev);
6474 }
6475 } else {
6476 err = -EROFS;
6477 goto unlock;
6478 }
6479 }
6480
6481 switch (cmd) {
6482 case ADD_NEW_DISK:
6483 {
6484 mdu_disk_info_t info;
6485 if (copy_from_user(&info, argp, sizeof(info)))
6486 err = -EFAULT;
6487 else
6488 err = add_new_disk(mddev, &info);
6489 goto unlock;
6490 }
6491
6492 case HOT_ADD_DISK:
6493 err = hot_add_disk(mddev, new_decode_dev(arg));
6494 goto unlock;
6495
6496 case RUN_ARRAY:
6497 err = do_md_run(mddev);
6498 goto unlock;
6499
6500 case SET_BITMAP_FILE:
6501 err = set_bitmap_file(mddev, (int)arg);
6502 goto unlock;
6503
6504 default:
6505 err = -EINVAL;
6506 goto unlock;
6507 }
6508
6509 unlock:
6510 if (mddev->hold_active == UNTIL_IOCTL &&
6511 err != -EINVAL)
6512 mddev->hold_active = 0;
6513 mddev_unlock(mddev);
6514 out:
6515 return err;
6516 }
6517 #ifdef CONFIG_COMPAT
6518 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6519 unsigned int cmd, unsigned long arg)
6520 {
6521 switch (cmd) {
6522 case HOT_REMOVE_DISK:
6523 case HOT_ADD_DISK:
6524 case SET_DISK_FAULTY:
6525 case SET_BITMAP_FILE:
6526 /* These take in integer arg, do not convert */
6527 break;
6528 default:
6529 arg = (unsigned long)compat_ptr(arg);
6530 break;
6531 }
6532
6533 return md_ioctl(bdev, mode, cmd, arg);
6534 }
6535 #endif /* CONFIG_COMPAT */
6536
6537 static int md_open(struct block_device *bdev, fmode_t mode)
6538 {
6539 /*
6540 * Succeed if we can lock the mddev, which confirms that
6541 * it isn't being stopped right now.
6542 */
6543 struct mddev *mddev = mddev_find(bdev->bd_dev);
6544 int err;
6545
6546 if (!mddev)
6547 return -ENODEV;
6548
6549 if (mddev->gendisk != bdev->bd_disk) {
6550 /* we are racing with mddev_put which is discarding this
6551 * bd_disk.
6552 */
6553 mddev_put(mddev);
6554 /* Wait until bdev->bd_disk is definitely gone */
6555 flush_workqueue(md_misc_wq);
6556 /* Then retry the open from the top */
6557 return -ERESTARTSYS;
6558 }
6559 BUG_ON(mddev != bdev->bd_disk->private_data);
6560
6561 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6562 goto out;
6563
6564 err = 0;
6565 atomic_inc(&mddev->openers);
6566 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6567 mutex_unlock(&mddev->open_mutex);
6568
6569 check_disk_change(bdev);
6570 out:
6571 return err;
6572 }
6573
6574 static void md_release(struct gendisk *disk, fmode_t mode)
6575 {
6576 struct mddev *mddev = disk->private_data;
6577
6578 BUG_ON(!mddev);
6579 atomic_dec(&mddev->openers);
6580 mddev_put(mddev);
6581 }
6582
6583 static int md_media_changed(struct gendisk *disk)
6584 {
6585 struct mddev *mddev = disk->private_data;
6586
6587 return mddev->changed;
6588 }
6589
6590 static int md_revalidate(struct gendisk *disk)
6591 {
6592 struct mddev *mddev = disk->private_data;
6593
6594 mddev->changed = 0;
6595 return 0;
6596 }
6597 static const struct block_device_operations md_fops =
6598 {
6599 .owner = THIS_MODULE,
6600 .open = md_open,
6601 .release = md_release,
6602 .ioctl = md_ioctl,
6603 #ifdef CONFIG_COMPAT
6604 .compat_ioctl = md_compat_ioctl,
6605 #endif
6606 .getgeo = md_getgeo,
6607 .media_changed = md_media_changed,
6608 .revalidate_disk= md_revalidate,
6609 };
6610
6611 static int md_thread(void *arg)
6612 {
6613 struct md_thread *thread = arg;
6614
6615 /*
6616 * md_thread is a 'system-thread', it's priority should be very
6617 * high. We avoid resource deadlocks individually in each
6618 * raid personality. (RAID5 does preallocation) We also use RR and
6619 * the very same RT priority as kswapd, thus we will never get
6620 * into a priority inversion deadlock.
6621 *
6622 * we definitely have to have equal or higher priority than
6623 * bdflush, otherwise bdflush will deadlock if there are too
6624 * many dirty RAID5 blocks.
6625 */
6626
6627 allow_signal(SIGKILL);
6628 while (!kthread_should_stop()) {
6629
6630 /* We need to wait INTERRUPTIBLE so that
6631 * we don't add to the load-average.
6632 * That means we need to be sure no signals are
6633 * pending
6634 */
6635 if (signal_pending(current))
6636 flush_signals(current);
6637
6638 wait_event_interruptible_timeout
6639 (thread->wqueue,
6640 test_bit(THREAD_WAKEUP, &thread->flags)
6641 || kthread_should_stop(),
6642 thread->timeout);
6643
6644 clear_bit(THREAD_WAKEUP, &thread->flags);
6645 if (!kthread_should_stop())
6646 thread->run(thread);
6647 }
6648
6649 return 0;
6650 }
6651
6652 void md_wakeup_thread(struct md_thread *thread)
6653 {
6654 if (thread) {
6655 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6656 set_bit(THREAD_WAKEUP, &thread->flags);
6657 wake_up(&thread->wqueue);
6658 }
6659 }
6660 EXPORT_SYMBOL(md_wakeup_thread);
6661
6662 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6663 struct mddev *mddev, const char *name)
6664 {
6665 struct md_thread *thread;
6666
6667 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6668 if (!thread)
6669 return NULL;
6670
6671 init_waitqueue_head(&thread->wqueue);
6672
6673 thread->run = run;
6674 thread->mddev = mddev;
6675 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6676 thread->tsk = kthread_run(md_thread, thread,
6677 "%s_%s",
6678 mdname(thread->mddev),
6679 name);
6680 if (IS_ERR(thread->tsk)) {
6681 kfree(thread);
6682 return NULL;
6683 }
6684 return thread;
6685 }
6686 EXPORT_SYMBOL(md_register_thread);
6687
6688 void md_unregister_thread(struct md_thread **threadp)
6689 {
6690 struct md_thread *thread = *threadp;
6691 if (!thread)
6692 return;
6693 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6694 /* Locking ensures that mddev_unlock does not wake_up a
6695 * non-existent thread
6696 */
6697 spin_lock(&pers_lock);
6698 *threadp = NULL;
6699 spin_unlock(&pers_lock);
6700
6701 kthread_stop(thread->tsk);
6702 kfree(thread);
6703 }
6704 EXPORT_SYMBOL(md_unregister_thread);
6705
6706 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6707 {
6708 if (!rdev || test_bit(Faulty, &rdev->flags))
6709 return;
6710
6711 if (!mddev->pers || !mddev->pers->error_handler)
6712 return;
6713 mddev->pers->error_handler(mddev,rdev);
6714 if (mddev->degraded)
6715 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6716 sysfs_notify_dirent_safe(rdev->sysfs_state);
6717 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6718 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6719 md_wakeup_thread(mddev->thread);
6720 if (mddev->event_work.func)
6721 queue_work(md_misc_wq, &mddev->event_work);
6722 md_new_event_inintr(mddev);
6723 }
6724 EXPORT_SYMBOL(md_error);
6725
6726 /* seq_file implementation /proc/mdstat */
6727
6728 static void status_unused(struct seq_file *seq)
6729 {
6730 int i = 0;
6731 struct md_rdev *rdev;
6732
6733 seq_printf(seq, "unused devices: ");
6734
6735 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6736 char b[BDEVNAME_SIZE];
6737 i++;
6738 seq_printf(seq, "%s ",
6739 bdevname(rdev->bdev,b));
6740 }
6741 if (!i)
6742 seq_printf(seq, "<none>");
6743
6744 seq_printf(seq, "\n");
6745 }
6746
6747 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6748 {
6749 sector_t max_sectors, resync, res;
6750 unsigned long dt, db;
6751 sector_t rt;
6752 int scale;
6753 unsigned int per_milli;
6754
6755 if (mddev->curr_resync <= 3)
6756 resync = 0;
6757 else
6758 resync = mddev->curr_resync
6759 - atomic_read(&mddev->recovery_active);
6760
6761 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6762 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6763 max_sectors = mddev->resync_max_sectors;
6764 else
6765 max_sectors = mddev->dev_sectors;
6766
6767 WARN_ON(max_sectors == 0);
6768 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6769 * in a sector_t, and (max_sectors>>scale) will fit in a
6770 * u32, as those are the requirements for sector_div.
6771 * Thus 'scale' must be at least 10
6772 */
6773 scale = 10;
6774 if (sizeof(sector_t) > sizeof(unsigned long)) {
6775 while ( max_sectors/2 > (1ULL<<(scale+32)))
6776 scale++;
6777 }
6778 res = (resync>>scale)*1000;
6779 sector_div(res, (u32)((max_sectors>>scale)+1));
6780
6781 per_milli = res;
6782 {
6783 int i, x = per_milli/50, y = 20-x;
6784 seq_printf(seq, "[");
6785 for (i = 0; i < x; i++)
6786 seq_printf(seq, "=");
6787 seq_printf(seq, ">");
6788 for (i = 0; i < y; i++)
6789 seq_printf(seq, ".");
6790 seq_printf(seq, "] ");
6791 }
6792 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6793 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6794 "reshape" :
6795 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6796 "check" :
6797 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6798 "resync" : "recovery"))),
6799 per_milli/10, per_milli % 10,
6800 (unsigned long long) resync/2,
6801 (unsigned long long) max_sectors/2);
6802
6803 /*
6804 * dt: time from mark until now
6805 * db: blocks written from mark until now
6806 * rt: remaining time
6807 *
6808 * rt is a sector_t, so could be 32bit or 64bit.
6809 * So we divide before multiply in case it is 32bit and close
6810 * to the limit.
6811 * We scale the divisor (db) by 32 to avoid losing precision
6812 * near the end of resync when the number of remaining sectors
6813 * is close to 'db'.
6814 * We then divide rt by 32 after multiplying by db to compensate.
6815 * The '+1' avoids division by zero if db is very small.
6816 */
6817 dt = ((jiffies - mddev->resync_mark) / HZ);
6818 if (!dt) dt++;
6819 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6820 - mddev->resync_mark_cnt;
6821
6822 rt = max_sectors - resync; /* number of remaining sectors */
6823 sector_div(rt, db/32+1);
6824 rt *= dt;
6825 rt >>= 5;
6826
6827 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6828 ((unsigned long)rt % 60)/6);
6829
6830 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6831 }
6832
6833 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6834 {
6835 struct list_head *tmp;
6836 loff_t l = *pos;
6837 struct mddev *mddev;
6838
6839 if (l >= 0x10000)
6840 return NULL;
6841 if (!l--)
6842 /* header */
6843 return (void*)1;
6844
6845 spin_lock(&all_mddevs_lock);
6846 list_for_each(tmp,&all_mddevs)
6847 if (!l--) {
6848 mddev = list_entry(tmp, struct mddev, all_mddevs);
6849 mddev_get(mddev);
6850 spin_unlock(&all_mddevs_lock);
6851 return mddev;
6852 }
6853 spin_unlock(&all_mddevs_lock);
6854 if (!l--)
6855 return (void*)2;/* tail */
6856 return NULL;
6857 }
6858
6859 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6860 {
6861 struct list_head *tmp;
6862 struct mddev *next_mddev, *mddev = v;
6863
6864 ++*pos;
6865 if (v == (void*)2)
6866 return NULL;
6867
6868 spin_lock(&all_mddevs_lock);
6869 if (v == (void*)1)
6870 tmp = all_mddevs.next;
6871 else
6872 tmp = mddev->all_mddevs.next;
6873 if (tmp != &all_mddevs)
6874 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6875 else {
6876 next_mddev = (void*)2;
6877 *pos = 0x10000;
6878 }
6879 spin_unlock(&all_mddevs_lock);
6880
6881 if (v != (void*)1)
6882 mddev_put(mddev);
6883 return next_mddev;
6884
6885 }
6886
6887 static void md_seq_stop(struct seq_file *seq, void *v)
6888 {
6889 struct mddev *mddev = v;
6890
6891 if (mddev && v != (void*)1 && v != (void*)2)
6892 mddev_put(mddev);
6893 }
6894
6895 static int md_seq_show(struct seq_file *seq, void *v)
6896 {
6897 struct mddev *mddev = v;
6898 sector_t sectors;
6899 struct md_rdev *rdev;
6900
6901 if (v == (void*)1) {
6902 struct md_personality *pers;
6903 seq_printf(seq, "Personalities : ");
6904 spin_lock(&pers_lock);
6905 list_for_each_entry(pers, &pers_list, list)
6906 seq_printf(seq, "[%s] ", pers->name);
6907
6908 spin_unlock(&pers_lock);
6909 seq_printf(seq, "\n");
6910 seq->poll_event = atomic_read(&md_event_count);
6911 return 0;
6912 }
6913 if (v == (void*)2) {
6914 status_unused(seq);
6915 return 0;
6916 }
6917
6918 if (mddev_lock(mddev) < 0)
6919 return -EINTR;
6920
6921 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6922 seq_printf(seq, "%s : %sactive", mdname(mddev),
6923 mddev->pers ? "" : "in");
6924 if (mddev->pers) {
6925 if (mddev->ro==1)
6926 seq_printf(seq, " (read-only)");
6927 if (mddev->ro==2)
6928 seq_printf(seq, " (auto-read-only)");
6929 seq_printf(seq, " %s", mddev->pers->name);
6930 }
6931
6932 sectors = 0;
6933 rdev_for_each(rdev, mddev) {
6934 char b[BDEVNAME_SIZE];
6935 seq_printf(seq, " %s[%d]",
6936 bdevname(rdev->bdev,b), rdev->desc_nr);
6937 if (test_bit(WriteMostly, &rdev->flags))
6938 seq_printf(seq, "(W)");
6939 if (test_bit(Faulty, &rdev->flags)) {
6940 seq_printf(seq, "(F)");
6941 continue;
6942 }
6943 if (rdev->raid_disk < 0)
6944 seq_printf(seq, "(S)"); /* spare */
6945 if (test_bit(Replacement, &rdev->flags))
6946 seq_printf(seq, "(R)");
6947 sectors += rdev->sectors;
6948 }
6949
6950 if (!list_empty(&mddev->disks)) {
6951 if (mddev->pers)
6952 seq_printf(seq, "\n %llu blocks",
6953 (unsigned long long)
6954 mddev->array_sectors / 2);
6955 else
6956 seq_printf(seq, "\n %llu blocks",
6957 (unsigned long long)sectors / 2);
6958 }
6959 if (mddev->persistent) {
6960 if (mddev->major_version != 0 ||
6961 mddev->minor_version != 90) {
6962 seq_printf(seq," super %d.%d",
6963 mddev->major_version,
6964 mddev->minor_version);
6965 }
6966 } else if (mddev->external)
6967 seq_printf(seq, " super external:%s",
6968 mddev->metadata_type);
6969 else
6970 seq_printf(seq, " super non-persistent");
6971
6972 if (mddev->pers) {
6973 mddev->pers->status(seq, mddev);
6974 seq_printf(seq, "\n ");
6975 if (mddev->pers->sync_request) {
6976 if (mddev->curr_resync > 2) {
6977 status_resync(seq, mddev);
6978 seq_printf(seq, "\n ");
6979 } else if (mddev->curr_resync >= 1)
6980 seq_printf(seq, "\tresync=DELAYED\n ");
6981 else if (mddev->recovery_cp < MaxSector)
6982 seq_printf(seq, "\tresync=PENDING\n ");
6983 }
6984 } else
6985 seq_printf(seq, "\n ");
6986
6987 bitmap_status(seq, mddev->bitmap);
6988
6989 seq_printf(seq, "\n");
6990 }
6991 mddev_unlock(mddev);
6992
6993 return 0;
6994 }
6995
6996 static const struct seq_operations md_seq_ops = {
6997 .start = md_seq_start,
6998 .next = md_seq_next,
6999 .stop = md_seq_stop,
7000 .show = md_seq_show,
7001 };
7002
7003 static int md_seq_open(struct inode *inode, struct file *file)
7004 {
7005 struct seq_file *seq;
7006 int error;
7007
7008 error = seq_open(file, &md_seq_ops);
7009 if (error)
7010 return error;
7011
7012 seq = file->private_data;
7013 seq->poll_event = atomic_read(&md_event_count);
7014 return error;
7015 }
7016
7017 static int md_unloading;
7018 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7019 {
7020 struct seq_file *seq = filp->private_data;
7021 int mask;
7022
7023 if (md_unloading)
7024 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7025 poll_wait(filp, &md_event_waiters, wait);
7026
7027 /* always allow read */
7028 mask = POLLIN | POLLRDNORM;
7029
7030 if (seq->poll_event != atomic_read(&md_event_count))
7031 mask |= POLLERR | POLLPRI;
7032 return mask;
7033 }
7034
7035 static const struct file_operations md_seq_fops = {
7036 .owner = THIS_MODULE,
7037 .open = md_seq_open,
7038 .read = seq_read,
7039 .llseek = seq_lseek,
7040 .release = seq_release_private,
7041 .poll = mdstat_poll,
7042 };
7043
7044 int register_md_personality(struct md_personality *p)
7045 {
7046 printk(KERN_INFO "md: %s personality registered for level %d\n",
7047 p->name, p->level);
7048 spin_lock(&pers_lock);
7049 list_add_tail(&p->list, &pers_list);
7050 spin_unlock(&pers_lock);
7051 return 0;
7052 }
7053 EXPORT_SYMBOL(register_md_personality);
7054
7055 int unregister_md_personality(struct md_personality *p)
7056 {
7057 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7058 spin_lock(&pers_lock);
7059 list_del_init(&p->list);
7060 spin_unlock(&pers_lock);
7061 return 0;
7062 }
7063 EXPORT_SYMBOL(unregister_md_personality);
7064
7065 static int is_mddev_idle(struct mddev *mddev, int init)
7066 {
7067 struct md_rdev *rdev;
7068 int idle;
7069 int curr_events;
7070
7071 idle = 1;
7072 rcu_read_lock();
7073 rdev_for_each_rcu(rdev, mddev) {
7074 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7075 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7076 (int)part_stat_read(&disk->part0, sectors[1]) -
7077 atomic_read(&disk->sync_io);
7078 /* sync IO will cause sync_io to increase before the disk_stats
7079 * as sync_io is counted when a request starts, and
7080 * disk_stats is counted when it completes.
7081 * So resync activity will cause curr_events to be smaller than
7082 * when there was no such activity.
7083 * non-sync IO will cause disk_stat to increase without
7084 * increasing sync_io so curr_events will (eventually)
7085 * be larger than it was before. Once it becomes
7086 * substantially larger, the test below will cause
7087 * the array to appear non-idle, and resync will slow
7088 * down.
7089 * If there is a lot of outstanding resync activity when
7090 * we set last_event to curr_events, then all that activity
7091 * completing might cause the array to appear non-idle
7092 * and resync will be slowed down even though there might
7093 * not have been non-resync activity. This will only
7094 * happen once though. 'last_events' will soon reflect
7095 * the state where there is little or no outstanding
7096 * resync requests, and further resync activity will
7097 * always make curr_events less than last_events.
7098 *
7099 */
7100 if (init || curr_events - rdev->last_events > 64) {
7101 rdev->last_events = curr_events;
7102 idle = 0;
7103 }
7104 }
7105 rcu_read_unlock();
7106 return idle;
7107 }
7108
7109 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7110 {
7111 /* another "blocks" (512byte) blocks have been synced */
7112 atomic_sub(blocks, &mddev->recovery_active);
7113 wake_up(&mddev->recovery_wait);
7114 if (!ok) {
7115 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7116 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7117 md_wakeup_thread(mddev->thread);
7118 // stop recovery, signal do_sync ....
7119 }
7120 }
7121 EXPORT_SYMBOL(md_done_sync);
7122
7123 /* md_write_start(mddev, bi)
7124 * If we need to update some array metadata (e.g. 'active' flag
7125 * in superblock) before writing, schedule a superblock update
7126 * and wait for it to complete.
7127 */
7128 void md_write_start(struct mddev *mddev, struct bio *bi)
7129 {
7130 int did_change = 0;
7131 if (bio_data_dir(bi) != WRITE)
7132 return;
7133
7134 BUG_ON(mddev->ro == 1);
7135 if (mddev->ro == 2) {
7136 /* need to switch to read/write */
7137 mddev->ro = 0;
7138 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7139 md_wakeup_thread(mddev->thread);
7140 md_wakeup_thread(mddev->sync_thread);
7141 did_change = 1;
7142 }
7143 atomic_inc(&mddev->writes_pending);
7144 if (mddev->safemode == 1)
7145 mddev->safemode = 0;
7146 if (mddev->in_sync) {
7147 spin_lock(&mddev->lock);
7148 if (mddev->in_sync) {
7149 mddev->in_sync = 0;
7150 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7151 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7152 md_wakeup_thread(mddev->thread);
7153 did_change = 1;
7154 }
7155 spin_unlock(&mddev->lock);
7156 }
7157 if (did_change)
7158 sysfs_notify_dirent_safe(mddev->sysfs_state);
7159 wait_event(mddev->sb_wait,
7160 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7161 }
7162 EXPORT_SYMBOL(md_write_start);
7163
7164 void md_write_end(struct mddev *mddev)
7165 {
7166 if (atomic_dec_and_test(&mddev->writes_pending)) {
7167 if (mddev->safemode == 2)
7168 md_wakeup_thread(mddev->thread);
7169 else if (mddev->safemode_delay)
7170 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7171 }
7172 }
7173 EXPORT_SYMBOL(md_write_end);
7174
7175 /* md_allow_write(mddev)
7176 * Calling this ensures that the array is marked 'active' so that writes
7177 * may proceed without blocking. It is important to call this before
7178 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7179 * Must be called with mddev_lock held.
7180 *
7181 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7182 * is dropped, so return -EAGAIN after notifying userspace.
7183 */
7184 int md_allow_write(struct mddev *mddev)
7185 {
7186 if (!mddev->pers)
7187 return 0;
7188 if (mddev->ro)
7189 return 0;
7190 if (!mddev->pers->sync_request)
7191 return 0;
7192
7193 spin_lock(&mddev->lock);
7194 if (mddev->in_sync) {
7195 mddev->in_sync = 0;
7196 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7197 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7198 if (mddev->safemode_delay &&
7199 mddev->safemode == 0)
7200 mddev->safemode = 1;
7201 spin_unlock(&mddev->lock);
7202 md_update_sb(mddev, 0);
7203 sysfs_notify_dirent_safe(mddev->sysfs_state);
7204 } else
7205 spin_unlock(&mddev->lock);
7206
7207 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7208 return -EAGAIN;
7209 else
7210 return 0;
7211 }
7212 EXPORT_SYMBOL_GPL(md_allow_write);
7213
7214 #define SYNC_MARKS 10
7215 #define SYNC_MARK_STEP (3*HZ)
7216 #define UPDATE_FREQUENCY (5*60*HZ)
7217 void md_do_sync(struct md_thread *thread)
7218 {
7219 struct mddev *mddev = thread->mddev;
7220 struct mddev *mddev2;
7221 unsigned int currspeed = 0,
7222 window;
7223 sector_t max_sectors,j, io_sectors, recovery_done;
7224 unsigned long mark[SYNC_MARKS];
7225 unsigned long update_time;
7226 sector_t mark_cnt[SYNC_MARKS];
7227 int last_mark,m;
7228 struct list_head *tmp;
7229 sector_t last_check;
7230 int skipped = 0;
7231 struct md_rdev *rdev;
7232 char *desc, *action = NULL;
7233 struct blk_plug plug;
7234
7235 /* just incase thread restarts... */
7236 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7237 return;
7238 if (mddev->ro) {/* never try to sync a read-only array */
7239 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7240 return;
7241 }
7242
7243 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7244 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7245 desc = "data-check";
7246 action = "check";
7247 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7248 desc = "requested-resync";
7249 action = "repair";
7250 } else
7251 desc = "resync";
7252 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7253 desc = "reshape";
7254 else
7255 desc = "recovery";
7256
7257 mddev->last_sync_action = action ?: desc;
7258
7259 /* we overload curr_resync somewhat here.
7260 * 0 == not engaged in resync at all
7261 * 2 == checking that there is no conflict with another sync
7262 * 1 == like 2, but have yielded to allow conflicting resync to
7263 * commense
7264 * other == active in resync - this many blocks
7265 *
7266 * Before starting a resync we must have set curr_resync to
7267 * 2, and then checked that every "conflicting" array has curr_resync
7268 * less than ours. When we find one that is the same or higher
7269 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7270 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7271 * This will mean we have to start checking from the beginning again.
7272 *
7273 */
7274
7275 do {
7276 mddev->curr_resync = 2;
7277
7278 try_again:
7279 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7280 goto skip;
7281 for_each_mddev(mddev2, tmp) {
7282 if (mddev2 == mddev)
7283 continue;
7284 if (!mddev->parallel_resync
7285 && mddev2->curr_resync
7286 && match_mddev_units(mddev, mddev2)) {
7287 DEFINE_WAIT(wq);
7288 if (mddev < mddev2 && mddev->curr_resync == 2) {
7289 /* arbitrarily yield */
7290 mddev->curr_resync = 1;
7291 wake_up(&resync_wait);
7292 }
7293 if (mddev > mddev2 && mddev->curr_resync == 1)
7294 /* no need to wait here, we can wait the next
7295 * time 'round when curr_resync == 2
7296 */
7297 continue;
7298 /* We need to wait 'interruptible' so as not to
7299 * contribute to the load average, and not to
7300 * be caught by 'softlockup'
7301 */
7302 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7303 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7304 mddev2->curr_resync >= mddev->curr_resync) {
7305 printk(KERN_INFO "md: delaying %s of %s"
7306 " until %s has finished (they"
7307 " share one or more physical units)\n",
7308 desc, mdname(mddev), mdname(mddev2));
7309 mddev_put(mddev2);
7310 if (signal_pending(current))
7311 flush_signals(current);
7312 schedule();
7313 finish_wait(&resync_wait, &wq);
7314 goto try_again;
7315 }
7316 finish_wait(&resync_wait, &wq);
7317 }
7318 }
7319 } while (mddev->curr_resync < 2);
7320
7321 j = 0;
7322 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7323 /* resync follows the size requested by the personality,
7324 * which defaults to physical size, but can be virtual size
7325 */
7326 max_sectors = mddev->resync_max_sectors;
7327 atomic64_set(&mddev->resync_mismatches, 0);
7328 /* we don't use the checkpoint if there's a bitmap */
7329 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7330 j = mddev->resync_min;
7331 else if (!mddev->bitmap)
7332 j = mddev->recovery_cp;
7333
7334 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7335 max_sectors = mddev->resync_max_sectors;
7336 else {
7337 /* recovery follows the physical size of devices */
7338 max_sectors = mddev->dev_sectors;
7339 j = MaxSector;
7340 rcu_read_lock();
7341 rdev_for_each_rcu(rdev, mddev)
7342 if (rdev->raid_disk >= 0 &&
7343 !test_bit(Faulty, &rdev->flags) &&
7344 !test_bit(In_sync, &rdev->flags) &&
7345 rdev->recovery_offset < j)
7346 j = rdev->recovery_offset;
7347 rcu_read_unlock();
7348
7349 /* If there is a bitmap, we need to make sure all
7350 * writes that started before we added a spare
7351 * complete before we start doing a recovery.
7352 * Otherwise the write might complete and (via
7353 * bitmap_endwrite) set a bit in the bitmap after the
7354 * recovery has checked that bit and skipped that
7355 * region.
7356 */
7357 if (mddev->bitmap) {
7358 mddev->pers->quiesce(mddev, 1);
7359 mddev->pers->quiesce(mddev, 0);
7360 }
7361 }
7362
7363 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7364 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7365 " %d KB/sec/disk.\n", speed_min(mddev));
7366 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7367 "(but not more than %d KB/sec) for %s.\n",
7368 speed_max(mddev), desc);
7369
7370 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7371
7372 io_sectors = 0;
7373 for (m = 0; m < SYNC_MARKS; m++) {
7374 mark[m] = jiffies;
7375 mark_cnt[m] = io_sectors;
7376 }
7377 last_mark = 0;
7378 mddev->resync_mark = mark[last_mark];
7379 mddev->resync_mark_cnt = mark_cnt[last_mark];
7380
7381 /*
7382 * Tune reconstruction:
7383 */
7384 window = 32*(PAGE_SIZE/512);
7385 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7386 window/2, (unsigned long long)max_sectors/2);
7387
7388 atomic_set(&mddev->recovery_active, 0);
7389 last_check = 0;
7390
7391 if (j>2) {
7392 printk(KERN_INFO
7393 "md: resuming %s of %s from checkpoint.\n",
7394 desc, mdname(mddev));
7395 mddev->curr_resync = j;
7396 } else
7397 mddev->curr_resync = 3; /* no longer delayed */
7398 mddev->curr_resync_completed = j;
7399 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7400 md_new_event(mddev);
7401 update_time = jiffies;
7402
7403 blk_start_plug(&plug);
7404 while (j < max_sectors) {
7405 sector_t sectors;
7406
7407 skipped = 0;
7408
7409 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7410 ((mddev->curr_resync > mddev->curr_resync_completed &&
7411 (mddev->curr_resync - mddev->curr_resync_completed)
7412 > (max_sectors >> 4)) ||
7413 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7414 (j - mddev->curr_resync_completed)*2
7415 >= mddev->resync_max - mddev->curr_resync_completed
7416 )) {
7417 /* time to update curr_resync_completed */
7418 wait_event(mddev->recovery_wait,
7419 atomic_read(&mddev->recovery_active) == 0);
7420 mddev->curr_resync_completed = j;
7421 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7422 j > mddev->recovery_cp)
7423 mddev->recovery_cp = j;
7424 update_time = jiffies;
7425 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7426 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7427 }
7428
7429 while (j >= mddev->resync_max &&
7430 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7431 /* As this condition is controlled by user-space,
7432 * we can block indefinitely, so use '_interruptible'
7433 * to avoid triggering warnings.
7434 */
7435 flush_signals(current); /* just in case */
7436 wait_event_interruptible(mddev->recovery_wait,
7437 mddev->resync_max > j
7438 || test_bit(MD_RECOVERY_INTR,
7439 &mddev->recovery));
7440 }
7441
7442 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7443 break;
7444
7445 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7446 currspeed < speed_min(mddev));
7447 if (sectors == 0) {
7448 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7449 break;
7450 }
7451
7452 if (!skipped) { /* actual IO requested */
7453 io_sectors += sectors;
7454 atomic_add(sectors, &mddev->recovery_active);
7455 }
7456
7457 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7458 break;
7459
7460 j += sectors;
7461 if (j > 2)
7462 mddev->curr_resync = j;
7463 mddev->curr_mark_cnt = io_sectors;
7464 if (last_check == 0)
7465 /* this is the earliest that rebuild will be
7466 * visible in /proc/mdstat
7467 */
7468 md_new_event(mddev);
7469
7470 if (last_check + window > io_sectors || j == max_sectors)
7471 continue;
7472
7473 last_check = io_sectors;
7474 repeat:
7475 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7476 /* step marks */
7477 int next = (last_mark+1) % SYNC_MARKS;
7478
7479 mddev->resync_mark = mark[next];
7480 mddev->resync_mark_cnt = mark_cnt[next];
7481 mark[next] = jiffies;
7482 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7483 last_mark = next;
7484 }
7485
7486 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7487 break;
7488
7489 /*
7490 * this loop exits only if either when we are slower than
7491 * the 'hard' speed limit, or the system was IO-idle for
7492 * a jiffy.
7493 * the system might be non-idle CPU-wise, but we only care
7494 * about not overloading the IO subsystem. (things like an
7495 * e2fsck being done on the RAID array should execute fast)
7496 */
7497 cond_resched();
7498
7499 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7500 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7501 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7502
7503 if (currspeed > speed_min(mddev)) {
7504 if ((currspeed > speed_max(mddev)) ||
7505 !is_mddev_idle(mddev, 0)) {
7506 msleep(500);
7507 goto repeat;
7508 }
7509 }
7510 }
7511 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7512 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7513 ? "interrupted" : "done");
7514 /*
7515 * this also signals 'finished resyncing' to md_stop
7516 */
7517 blk_finish_plug(&plug);
7518 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7519
7520 /* tell personality that we are finished */
7521 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7522
7523 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7524 mddev->curr_resync > 2) {
7525 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7526 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7527 if (mddev->curr_resync >= mddev->recovery_cp) {
7528 printk(KERN_INFO
7529 "md: checkpointing %s of %s.\n",
7530 desc, mdname(mddev));
7531 if (test_bit(MD_RECOVERY_ERROR,
7532 &mddev->recovery))
7533 mddev->recovery_cp =
7534 mddev->curr_resync_completed;
7535 else
7536 mddev->recovery_cp =
7537 mddev->curr_resync;
7538 }
7539 } else
7540 mddev->recovery_cp = MaxSector;
7541 } else {
7542 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7543 mddev->curr_resync = MaxSector;
7544 rcu_read_lock();
7545 rdev_for_each_rcu(rdev, mddev)
7546 if (rdev->raid_disk >= 0 &&
7547 mddev->delta_disks >= 0 &&
7548 !test_bit(Faulty, &rdev->flags) &&
7549 !test_bit(In_sync, &rdev->flags) &&
7550 rdev->recovery_offset < mddev->curr_resync)
7551 rdev->recovery_offset = mddev->curr_resync;
7552 rcu_read_unlock();
7553 }
7554 }
7555 skip:
7556 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7557
7558 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7559 /* We completed so min/max setting can be forgotten if used. */
7560 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7561 mddev->resync_min = 0;
7562 mddev->resync_max = MaxSector;
7563 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7564 mddev->resync_min = mddev->curr_resync_completed;
7565 mddev->curr_resync = 0;
7566 wake_up(&resync_wait);
7567 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7568 md_wakeup_thread(mddev->thread);
7569 return;
7570 }
7571 EXPORT_SYMBOL_GPL(md_do_sync);
7572
7573 static int remove_and_add_spares(struct mddev *mddev,
7574 struct md_rdev *this)
7575 {
7576 struct md_rdev *rdev;
7577 int spares = 0;
7578 int removed = 0;
7579
7580 rdev_for_each(rdev, mddev)
7581 if ((this == NULL || rdev == this) &&
7582 rdev->raid_disk >= 0 &&
7583 !test_bit(Blocked, &rdev->flags) &&
7584 (test_bit(Faulty, &rdev->flags) ||
7585 ! test_bit(In_sync, &rdev->flags)) &&
7586 atomic_read(&rdev->nr_pending)==0) {
7587 if (mddev->pers->hot_remove_disk(
7588 mddev, rdev) == 0) {
7589 sysfs_unlink_rdev(mddev, rdev);
7590 rdev->raid_disk = -1;
7591 removed++;
7592 }
7593 }
7594 if (removed && mddev->kobj.sd)
7595 sysfs_notify(&mddev->kobj, NULL, "degraded");
7596
7597 if (this)
7598 goto no_add;
7599
7600 rdev_for_each(rdev, mddev) {
7601 if (rdev->raid_disk >= 0 &&
7602 !test_bit(In_sync, &rdev->flags) &&
7603 !test_bit(Faulty, &rdev->flags))
7604 spares++;
7605 if (rdev->raid_disk >= 0)
7606 continue;
7607 if (test_bit(Faulty, &rdev->flags))
7608 continue;
7609 if (mddev->ro &&
7610 ! (rdev->saved_raid_disk >= 0 &&
7611 !test_bit(Bitmap_sync, &rdev->flags)))
7612 continue;
7613
7614 if (rdev->saved_raid_disk < 0)
7615 rdev->recovery_offset = 0;
7616 if (mddev->pers->
7617 hot_add_disk(mddev, rdev) == 0) {
7618 if (sysfs_link_rdev(mddev, rdev))
7619 /* failure here is OK */;
7620 spares++;
7621 md_new_event(mddev);
7622 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7623 }
7624 }
7625 no_add:
7626 if (removed)
7627 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7628 return spares;
7629 }
7630
7631 static void md_start_sync(struct work_struct *ws)
7632 {
7633 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7634
7635 mddev->sync_thread = md_register_thread(md_do_sync,
7636 mddev,
7637 "resync");
7638 if (!mddev->sync_thread) {
7639 printk(KERN_ERR "%s: could not start resync"
7640 " thread...\n",
7641 mdname(mddev));
7642 /* leave the spares where they are, it shouldn't hurt */
7643 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7644 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7645 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7646 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7647 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7648 wake_up(&resync_wait);
7649 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7650 &mddev->recovery))
7651 if (mddev->sysfs_action)
7652 sysfs_notify_dirent_safe(mddev->sysfs_action);
7653 } else
7654 md_wakeup_thread(mddev->sync_thread);
7655 sysfs_notify_dirent_safe(mddev->sysfs_action);
7656 md_new_event(mddev);
7657 }
7658
7659 /*
7660 * This routine is regularly called by all per-raid-array threads to
7661 * deal with generic issues like resync and super-block update.
7662 * Raid personalities that don't have a thread (linear/raid0) do not
7663 * need this as they never do any recovery or update the superblock.
7664 *
7665 * It does not do any resync itself, but rather "forks" off other threads
7666 * to do that as needed.
7667 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7668 * "->recovery" and create a thread at ->sync_thread.
7669 * When the thread finishes it sets MD_RECOVERY_DONE
7670 * and wakeups up this thread which will reap the thread and finish up.
7671 * This thread also removes any faulty devices (with nr_pending == 0).
7672 *
7673 * The overall approach is:
7674 * 1/ if the superblock needs updating, update it.
7675 * 2/ If a recovery thread is running, don't do anything else.
7676 * 3/ If recovery has finished, clean up, possibly marking spares active.
7677 * 4/ If there are any faulty devices, remove them.
7678 * 5/ If array is degraded, try to add spares devices
7679 * 6/ If array has spares or is not in-sync, start a resync thread.
7680 */
7681 void md_check_recovery(struct mddev *mddev)
7682 {
7683 if (mddev->suspended)
7684 return;
7685
7686 if (mddev->bitmap)
7687 bitmap_daemon_work(mddev);
7688
7689 if (signal_pending(current)) {
7690 if (mddev->pers->sync_request && !mddev->external) {
7691 printk(KERN_INFO "md: %s in immediate safe mode\n",
7692 mdname(mddev));
7693 mddev->safemode = 2;
7694 }
7695 flush_signals(current);
7696 }
7697
7698 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7699 return;
7700 if ( ! (
7701 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7702 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7703 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7704 (mddev->external == 0 && mddev->safemode == 1) ||
7705 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7706 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7707 ))
7708 return;
7709
7710 if (mddev_trylock(mddev)) {
7711 int spares = 0;
7712
7713 if (mddev->ro) {
7714 /* On a read-only array we can:
7715 * - remove failed devices
7716 * - add already-in_sync devices if the array itself
7717 * is in-sync.
7718 * As we only add devices that are already in-sync,
7719 * we can activate the spares immediately.
7720 */
7721 remove_and_add_spares(mddev, NULL);
7722 /* There is no thread, but we need to call
7723 * ->spare_active and clear saved_raid_disk
7724 */
7725 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7726 md_reap_sync_thread(mddev);
7727 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7728 goto unlock;
7729 }
7730
7731 if (!mddev->external) {
7732 int did_change = 0;
7733 spin_lock(&mddev->lock);
7734 if (mddev->safemode &&
7735 !atomic_read(&mddev->writes_pending) &&
7736 !mddev->in_sync &&
7737 mddev->recovery_cp == MaxSector) {
7738 mddev->in_sync = 1;
7739 did_change = 1;
7740 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7741 }
7742 if (mddev->safemode == 1)
7743 mddev->safemode = 0;
7744 spin_unlock(&mddev->lock);
7745 if (did_change)
7746 sysfs_notify_dirent_safe(mddev->sysfs_state);
7747 }
7748
7749 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7750 md_update_sb(mddev, 0);
7751
7752 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7753 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7754 /* resync/recovery still happening */
7755 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7756 goto unlock;
7757 }
7758 if (mddev->sync_thread) {
7759 md_reap_sync_thread(mddev);
7760 goto unlock;
7761 }
7762 /* Set RUNNING before clearing NEEDED to avoid
7763 * any transients in the value of "sync_action".
7764 */
7765 mddev->curr_resync_completed = 0;
7766 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7767 /* Clear some bits that don't mean anything, but
7768 * might be left set
7769 */
7770 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7771 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7772
7773 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7774 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7775 goto not_running;
7776 /* no recovery is running.
7777 * remove any failed drives, then
7778 * add spares if possible.
7779 * Spares are also removed and re-added, to allow
7780 * the personality to fail the re-add.
7781 */
7782
7783 if (mddev->reshape_position != MaxSector) {
7784 if (mddev->pers->check_reshape == NULL ||
7785 mddev->pers->check_reshape(mddev) != 0)
7786 /* Cannot proceed */
7787 goto not_running;
7788 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7789 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7790 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7791 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7792 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7793 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7794 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7795 } else if (mddev->recovery_cp < MaxSector) {
7796 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7797 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7798 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7799 /* nothing to be done ... */
7800 goto not_running;
7801
7802 if (mddev->pers->sync_request) {
7803 if (spares) {
7804 /* We are adding a device or devices to an array
7805 * which has the bitmap stored on all devices.
7806 * So make sure all bitmap pages get written
7807 */
7808 bitmap_write_all(mddev->bitmap);
7809 }
7810 INIT_WORK(&mddev->del_work, md_start_sync);
7811 queue_work(md_misc_wq, &mddev->del_work);
7812 goto unlock;
7813 }
7814 not_running:
7815 if (!mddev->sync_thread) {
7816 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7817 wake_up(&resync_wait);
7818 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7819 &mddev->recovery))
7820 if (mddev->sysfs_action)
7821 sysfs_notify_dirent_safe(mddev->sysfs_action);
7822 }
7823 unlock:
7824 wake_up(&mddev->sb_wait);
7825 mddev_unlock(mddev);
7826 }
7827 }
7828 EXPORT_SYMBOL(md_check_recovery);
7829
7830 void md_reap_sync_thread(struct mddev *mddev)
7831 {
7832 struct md_rdev *rdev;
7833
7834 /* resync has finished, collect result */
7835 md_unregister_thread(&mddev->sync_thread);
7836 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7837 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7838 /* success...*/
7839 /* activate any spares */
7840 if (mddev->pers->spare_active(mddev)) {
7841 sysfs_notify(&mddev->kobj, NULL,
7842 "degraded");
7843 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7844 }
7845 }
7846 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7847 mddev->pers->finish_reshape)
7848 mddev->pers->finish_reshape(mddev);
7849
7850 /* If array is no-longer degraded, then any saved_raid_disk
7851 * information must be scrapped.
7852 */
7853 if (!mddev->degraded)
7854 rdev_for_each(rdev, mddev)
7855 rdev->saved_raid_disk = -1;
7856
7857 md_update_sb(mddev, 1);
7858 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7859 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7860 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7861 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7862 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7863 wake_up(&resync_wait);
7864 /* flag recovery needed just to double check */
7865 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7866 sysfs_notify_dirent_safe(mddev->sysfs_action);
7867 md_new_event(mddev);
7868 if (mddev->event_work.func)
7869 queue_work(md_misc_wq, &mddev->event_work);
7870 }
7871 EXPORT_SYMBOL(md_reap_sync_thread);
7872
7873 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7874 {
7875 sysfs_notify_dirent_safe(rdev->sysfs_state);
7876 wait_event_timeout(rdev->blocked_wait,
7877 !test_bit(Blocked, &rdev->flags) &&
7878 !test_bit(BlockedBadBlocks, &rdev->flags),
7879 msecs_to_jiffies(5000));
7880 rdev_dec_pending(rdev, mddev);
7881 }
7882 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7883
7884 void md_finish_reshape(struct mddev *mddev)
7885 {
7886 /* called be personality module when reshape completes. */
7887 struct md_rdev *rdev;
7888
7889 rdev_for_each(rdev, mddev) {
7890 if (rdev->data_offset > rdev->new_data_offset)
7891 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7892 else
7893 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7894 rdev->data_offset = rdev->new_data_offset;
7895 }
7896 }
7897 EXPORT_SYMBOL(md_finish_reshape);
7898
7899 /* Bad block management.
7900 * We can record which blocks on each device are 'bad' and so just
7901 * fail those blocks, or that stripe, rather than the whole device.
7902 * Entries in the bad-block table are 64bits wide. This comprises:
7903 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7904 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7905 * A 'shift' can be set so that larger blocks are tracked and
7906 * consequently larger devices can be covered.
7907 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7908 *
7909 * Locking of the bad-block table uses a seqlock so md_is_badblock
7910 * might need to retry if it is very unlucky.
7911 * We will sometimes want to check for bad blocks in a bi_end_io function,
7912 * so we use the write_seqlock_irq variant.
7913 *
7914 * When looking for a bad block we specify a range and want to
7915 * know if any block in the range is bad. So we binary-search
7916 * to the last range that starts at-or-before the given endpoint,
7917 * (or "before the sector after the target range")
7918 * then see if it ends after the given start.
7919 * We return
7920 * 0 if there are no known bad blocks in the range
7921 * 1 if there are known bad block which are all acknowledged
7922 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7923 * plus the start/length of the first bad section we overlap.
7924 */
7925 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7926 sector_t *first_bad, int *bad_sectors)
7927 {
7928 int hi;
7929 int lo;
7930 u64 *p = bb->page;
7931 int rv;
7932 sector_t target = s + sectors;
7933 unsigned seq;
7934
7935 if (bb->shift > 0) {
7936 /* round the start down, and the end up */
7937 s >>= bb->shift;
7938 target += (1<<bb->shift) - 1;
7939 target >>= bb->shift;
7940 sectors = target - s;
7941 }
7942 /* 'target' is now the first block after the bad range */
7943
7944 retry:
7945 seq = read_seqbegin(&bb->lock);
7946 lo = 0;
7947 rv = 0;
7948 hi = bb->count;
7949
7950 /* Binary search between lo and hi for 'target'
7951 * i.e. for the last range that starts before 'target'
7952 */
7953 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7954 * are known not to be the last range before target.
7955 * VARIANT: hi-lo is the number of possible
7956 * ranges, and decreases until it reaches 1
7957 */
7958 while (hi - lo > 1) {
7959 int mid = (lo + hi) / 2;
7960 sector_t a = BB_OFFSET(p[mid]);
7961 if (a < target)
7962 /* This could still be the one, earlier ranges
7963 * could not. */
7964 lo = mid;
7965 else
7966 /* This and later ranges are definitely out. */
7967 hi = mid;
7968 }
7969 /* 'lo' might be the last that started before target, but 'hi' isn't */
7970 if (hi > lo) {
7971 /* need to check all range that end after 's' to see if
7972 * any are unacknowledged.
7973 */
7974 while (lo >= 0 &&
7975 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7976 if (BB_OFFSET(p[lo]) < target) {
7977 /* starts before the end, and finishes after
7978 * the start, so they must overlap
7979 */
7980 if (rv != -1 && BB_ACK(p[lo]))
7981 rv = 1;
7982 else
7983 rv = -1;
7984 *first_bad = BB_OFFSET(p[lo]);
7985 *bad_sectors = BB_LEN(p[lo]);
7986 }
7987 lo--;
7988 }
7989 }
7990
7991 if (read_seqretry(&bb->lock, seq))
7992 goto retry;
7993
7994 return rv;
7995 }
7996 EXPORT_SYMBOL_GPL(md_is_badblock);
7997
7998 /*
7999 * Add a range of bad blocks to the table.
8000 * This might extend the table, or might contract it
8001 * if two adjacent ranges can be merged.
8002 * We binary-search to find the 'insertion' point, then
8003 * decide how best to handle it.
8004 */
8005 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8006 int acknowledged)
8007 {
8008 u64 *p;
8009 int lo, hi;
8010 int rv = 1;
8011 unsigned long flags;
8012
8013 if (bb->shift < 0)
8014 /* badblocks are disabled */
8015 return 0;
8016
8017 if (bb->shift) {
8018 /* round the start down, and the end up */
8019 sector_t next = s + sectors;
8020 s >>= bb->shift;
8021 next += (1<<bb->shift) - 1;
8022 next >>= bb->shift;
8023 sectors = next - s;
8024 }
8025
8026 write_seqlock_irqsave(&bb->lock, flags);
8027
8028 p = bb->page;
8029 lo = 0;
8030 hi = bb->count;
8031 /* Find the last range that starts at-or-before 's' */
8032 while (hi - lo > 1) {
8033 int mid = (lo + hi) / 2;
8034 sector_t a = BB_OFFSET(p[mid]);
8035 if (a <= s)
8036 lo = mid;
8037 else
8038 hi = mid;
8039 }
8040 if (hi > lo && BB_OFFSET(p[lo]) > s)
8041 hi = lo;
8042
8043 if (hi > lo) {
8044 /* we found a range that might merge with the start
8045 * of our new range
8046 */
8047 sector_t a = BB_OFFSET(p[lo]);
8048 sector_t e = a + BB_LEN(p[lo]);
8049 int ack = BB_ACK(p[lo]);
8050 if (e >= s) {
8051 /* Yes, we can merge with a previous range */
8052 if (s == a && s + sectors >= e)
8053 /* new range covers old */
8054 ack = acknowledged;
8055 else
8056 ack = ack && acknowledged;
8057
8058 if (e < s + sectors)
8059 e = s + sectors;
8060 if (e - a <= BB_MAX_LEN) {
8061 p[lo] = BB_MAKE(a, e-a, ack);
8062 s = e;
8063 } else {
8064 /* does not all fit in one range,
8065 * make p[lo] maximal
8066 */
8067 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8068 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8069 s = a + BB_MAX_LEN;
8070 }
8071 sectors = e - s;
8072 }
8073 }
8074 if (sectors && hi < bb->count) {
8075 /* 'hi' points to the first range that starts after 's'.
8076 * Maybe we can merge with the start of that range */
8077 sector_t a = BB_OFFSET(p[hi]);
8078 sector_t e = a + BB_LEN(p[hi]);
8079 int ack = BB_ACK(p[hi]);
8080 if (a <= s + sectors) {
8081 /* merging is possible */
8082 if (e <= s + sectors) {
8083 /* full overlap */
8084 e = s + sectors;
8085 ack = acknowledged;
8086 } else
8087 ack = ack && acknowledged;
8088
8089 a = s;
8090 if (e - a <= BB_MAX_LEN) {
8091 p[hi] = BB_MAKE(a, e-a, ack);
8092 s = e;
8093 } else {
8094 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8095 s = a + BB_MAX_LEN;
8096 }
8097 sectors = e - s;
8098 lo = hi;
8099 hi++;
8100 }
8101 }
8102 if (sectors == 0 && hi < bb->count) {
8103 /* we might be able to combine lo and hi */
8104 /* Note: 's' is at the end of 'lo' */
8105 sector_t a = BB_OFFSET(p[hi]);
8106 int lolen = BB_LEN(p[lo]);
8107 int hilen = BB_LEN(p[hi]);
8108 int newlen = lolen + hilen - (s - a);
8109 if (s >= a && newlen < BB_MAX_LEN) {
8110 /* yes, we can combine them */
8111 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8112 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8113 memmove(p + hi, p + hi + 1,
8114 (bb->count - hi - 1) * 8);
8115 bb->count--;
8116 }
8117 }
8118 while (sectors) {
8119 /* didn't merge (it all).
8120 * Need to add a range just before 'hi' */
8121 if (bb->count >= MD_MAX_BADBLOCKS) {
8122 /* No room for more */
8123 rv = 0;
8124 break;
8125 } else {
8126 int this_sectors = sectors;
8127 memmove(p + hi + 1, p + hi,
8128 (bb->count - hi) * 8);
8129 bb->count++;
8130
8131 if (this_sectors > BB_MAX_LEN)
8132 this_sectors = BB_MAX_LEN;
8133 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8134 sectors -= this_sectors;
8135 s += this_sectors;
8136 }
8137 }
8138
8139 bb->changed = 1;
8140 if (!acknowledged)
8141 bb->unacked_exist = 1;
8142 write_sequnlock_irqrestore(&bb->lock, flags);
8143
8144 return rv;
8145 }
8146
8147 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8148 int is_new)
8149 {
8150 int rv;
8151 if (is_new)
8152 s += rdev->new_data_offset;
8153 else
8154 s += rdev->data_offset;
8155 rv = md_set_badblocks(&rdev->badblocks,
8156 s, sectors, 0);
8157 if (rv) {
8158 /* Make sure they get written out promptly */
8159 sysfs_notify_dirent_safe(rdev->sysfs_state);
8160 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8161 md_wakeup_thread(rdev->mddev->thread);
8162 }
8163 return rv;
8164 }
8165 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8166
8167 /*
8168 * Remove a range of bad blocks from the table.
8169 * This may involve extending the table if we spilt a region,
8170 * but it must not fail. So if the table becomes full, we just
8171 * drop the remove request.
8172 */
8173 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8174 {
8175 u64 *p;
8176 int lo, hi;
8177 sector_t target = s + sectors;
8178 int rv = 0;
8179
8180 if (bb->shift > 0) {
8181 /* When clearing we round the start up and the end down.
8182 * This should not matter as the shift should align with
8183 * the block size and no rounding should ever be needed.
8184 * However it is better the think a block is bad when it
8185 * isn't than to think a block is not bad when it is.
8186 */
8187 s += (1<<bb->shift) - 1;
8188 s >>= bb->shift;
8189 target >>= bb->shift;
8190 sectors = target - s;
8191 }
8192
8193 write_seqlock_irq(&bb->lock);
8194
8195 p = bb->page;
8196 lo = 0;
8197 hi = bb->count;
8198 /* Find the last range that starts before 'target' */
8199 while (hi - lo > 1) {
8200 int mid = (lo + hi) / 2;
8201 sector_t a = BB_OFFSET(p[mid]);
8202 if (a < target)
8203 lo = mid;
8204 else
8205 hi = mid;
8206 }
8207 if (hi > lo) {
8208 /* p[lo] is the last range that could overlap the
8209 * current range. Earlier ranges could also overlap,
8210 * but only this one can overlap the end of the range.
8211 */
8212 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8213 /* Partial overlap, leave the tail of this range */
8214 int ack = BB_ACK(p[lo]);
8215 sector_t a = BB_OFFSET(p[lo]);
8216 sector_t end = a + BB_LEN(p[lo]);
8217
8218 if (a < s) {
8219 /* we need to split this range */
8220 if (bb->count >= MD_MAX_BADBLOCKS) {
8221 rv = -ENOSPC;
8222 goto out;
8223 }
8224 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8225 bb->count++;
8226 p[lo] = BB_MAKE(a, s-a, ack);
8227 lo++;
8228 }
8229 p[lo] = BB_MAKE(target, end - target, ack);
8230 /* there is no longer an overlap */
8231 hi = lo;
8232 lo--;
8233 }
8234 while (lo >= 0 &&
8235 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8236 /* This range does overlap */
8237 if (BB_OFFSET(p[lo]) < s) {
8238 /* Keep the early parts of this range. */
8239 int ack = BB_ACK(p[lo]);
8240 sector_t start = BB_OFFSET(p[lo]);
8241 p[lo] = BB_MAKE(start, s - start, ack);
8242 /* now low doesn't overlap, so.. */
8243 break;
8244 }
8245 lo--;
8246 }
8247 /* 'lo' is strictly before, 'hi' is strictly after,
8248 * anything between needs to be discarded
8249 */
8250 if (hi - lo > 1) {
8251 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8252 bb->count -= (hi - lo - 1);
8253 }
8254 }
8255
8256 bb->changed = 1;
8257 out:
8258 write_sequnlock_irq(&bb->lock);
8259 return rv;
8260 }
8261
8262 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8263 int is_new)
8264 {
8265 if (is_new)
8266 s += rdev->new_data_offset;
8267 else
8268 s += rdev->data_offset;
8269 return md_clear_badblocks(&rdev->badblocks,
8270 s, sectors);
8271 }
8272 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8273
8274 /*
8275 * Acknowledge all bad blocks in a list.
8276 * This only succeeds if ->changed is clear. It is used by
8277 * in-kernel metadata updates
8278 */
8279 void md_ack_all_badblocks(struct badblocks *bb)
8280 {
8281 if (bb->page == NULL || bb->changed)
8282 /* no point even trying */
8283 return;
8284 write_seqlock_irq(&bb->lock);
8285
8286 if (bb->changed == 0 && bb->unacked_exist) {
8287 u64 *p = bb->page;
8288 int i;
8289 for (i = 0; i < bb->count ; i++) {
8290 if (!BB_ACK(p[i])) {
8291 sector_t start = BB_OFFSET(p[i]);
8292 int len = BB_LEN(p[i]);
8293 p[i] = BB_MAKE(start, len, 1);
8294 }
8295 }
8296 bb->unacked_exist = 0;
8297 }
8298 write_sequnlock_irq(&bb->lock);
8299 }
8300 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8301
8302 /* sysfs access to bad-blocks list.
8303 * We present two files.
8304 * 'bad-blocks' lists sector numbers and lengths of ranges that
8305 * are recorded as bad. The list is truncated to fit within
8306 * the one-page limit of sysfs.
8307 * Writing "sector length" to this file adds an acknowledged
8308 * bad block list.
8309 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8310 * been acknowledged. Writing to this file adds bad blocks
8311 * without acknowledging them. This is largely for testing.
8312 */
8313
8314 static ssize_t
8315 badblocks_show(struct badblocks *bb, char *page, int unack)
8316 {
8317 size_t len;
8318 int i;
8319 u64 *p = bb->page;
8320 unsigned seq;
8321
8322 if (bb->shift < 0)
8323 return 0;
8324
8325 retry:
8326 seq = read_seqbegin(&bb->lock);
8327
8328 len = 0;
8329 i = 0;
8330
8331 while (len < PAGE_SIZE && i < bb->count) {
8332 sector_t s = BB_OFFSET(p[i]);
8333 unsigned int length = BB_LEN(p[i]);
8334 int ack = BB_ACK(p[i]);
8335 i++;
8336
8337 if (unack && ack)
8338 continue;
8339
8340 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8341 (unsigned long long)s << bb->shift,
8342 length << bb->shift);
8343 }
8344 if (unack && len == 0)
8345 bb->unacked_exist = 0;
8346
8347 if (read_seqretry(&bb->lock, seq))
8348 goto retry;
8349
8350 return len;
8351 }
8352
8353 #define DO_DEBUG 1
8354
8355 static ssize_t
8356 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8357 {
8358 unsigned long long sector;
8359 int length;
8360 char newline;
8361 #ifdef DO_DEBUG
8362 /* Allow clearing via sysfs *only* for testing/debugging.
8363 * Normally only a successful write may clear a badblock
8364 */
8365 int clear = 0;
8366 if (page[0] == '-') {
8367 clear = 1;
8368 page++;
8369 }
8370 #endif /* DO_DEBUG */
8371
8372 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8373 case 3:
8374 if (newline != '\n')
8375 return -EINVAL;
8376 case 2:
8377 if (length <= 0)
8378 return -EINVAL;
8379 break;
8380 default:
8381 return -EINVAL;
8382 }
8383
8384 #ifdef DO_DEBUG
8385 if (clear) {
8386 md_clear_badblocks(bb, sector, length);
8387 return len;
8388 }
8389 #endif /* DO_DEBUG */
8390 if (md_set_badblocks(bb, sector, length, !unack))
8391 return len;
8392 else
8393 return -ENOSPC;
8394 }
8395
8396 static int md_notify_reboot(struct notifier_block *this,
8397 unsigned long code, void *x)
8398 {
8399 struct list_head *tmp;
8400 struct mddev *mddev;
8401 int need_delay = 0;
8402
8403 for_each_mddev(mddev, tmp) {
8404 if (mddev_trylock(mddev)) {
8405 if (mddev->pers)
8406 __md_stop_writes(mddev);
8407 if (mddev->persistent)
8408 mddev->safemode = 2;
8409 mddev_unlock(mddev);
8410 }
8411 need_delay = 1;
8412 }
8413 /*
8414 * certain more exotic SCSI devices are known to be
8415 * volatile wrt too early system reboots. While the
8416 * right place to handle this issue is the given
8417 * driver, we do want to have a safe RAID driver ...
8418 */
8419 if (need_delay)
8420 mdelay(1000*1);
8421
8422 return NOTIFY_DONE;
8423 }
8424
8425 static struct notifier_block md_notifier = {
8426 .notifier_call = md_notify_reboot,
8427 .next = NULL,
8428 .priority = INT_MAX, /* before any real devices */
8429 };
8430
8431 static void md_geninit(void)
8432 {
8433 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8434
8435 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8436 }
8437
8438 static int __init md_init(void)
8439 {
8440 int ret = -ENOMEM;
8441
8442 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8443 if (!md_wq)
8444 goto err_wq;
8445
8446 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8447 if (!md_misc_wq)
8448 goto err_misc_wq;
8449
8450 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8451 goto err_md;
8452
8453 if ((ret = register_blkdev(0, "mdp")) < 0)
8454 goto err_mdp;
8455 mdp_major = ret;
8456
8457 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8458 md_probe, NULL, NULL);
8459 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8460 md_probe, NULL, NULL);
8461
8462 register_reboot_notifier(&md_notifier);
8463 raid_table_header = register_sysctl_table(raid_root_table);
8464
8465 md_geninit();
8466 return 0;
8467
8468 err_mdp:
8469 unregister_blkdev(MD_MAJOR, "md");
8470 err_md:
8471 destroy_workqueue(md_misc_wq);
8472 err_misc_wq:
8473 destroy_workqueue(md_wq);
8474 err_wq:
8475 return ret;
8476 }
8477
8478 #ifndef MODULE
8479
8480 /*
8481 * Searches all registered partitions for autorun RAID arrays
8482 * at boot time.
8483 */
8484
8485 static LIST_HEAD(all_detected_devices);
8486 struct detected_devices_node {
8487 struct list_head list;
8488 dev_t dev;
8489 };
8490
8491 void md_autodetect_dev(dev_t dev)
8492 {
8493 struct detected_devices_node *node_detected_dev;
8494
8495 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8496 if (node_detected_dev) {
8497 node_detected_dev->dev = dev;
8498 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8499 } else {
8500 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8501 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8502 }
8503 }
8504
8505 static void autostart_arrays(int part)
8506 {
8507 struct md_rdev *rdev;
8508 struct detected_devices_node *node_detected_dev;
8509 dev_t dev;
8510 int i_scanned, i_passed;
8511
8512 i_scanned = 0;
8513 i_passed = 0;
8514
8515 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8516
8517 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8518 i_scanned++;
8519 node_detected_dev = list_entry(all_detected_devices.next,
8520 struct detected_devices_node, list);
8521 list_del(&node_detected_dev->list);
8522 dev = node_detected_dev->dev;
8523 kfree(node_detected_dev);
8524 rdev = md_import_device(dev,0, 90);
8525 if (IS_ERR(rdev))
8526 continue;
8527
8528 if (test_bit(Faulty, &rdev->flags))
8529 continue;
8530
8531 set_bit(AutoDetected, &rdev->flags);
8532 list_add(&rdev->same_set, &pending_raid_disks);
8533 i_passed++;
8534 }
8535
8536 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8537 i_scanned, i_passed);
8538
8539 autorun_devices(part);
8540 }
8541
8542 #endif /* !MODULE */
8543
8544 static __exit void md_exit(void)
8545 {
8546 struct mddev *mddev;
8547 struct list_head *tmp;
8548 int delay = 1;
8549
8550 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8551 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8552
8553 unregister_blkdev(MD_MAJOR,"md");
8554 unregister_blkdev(mdp_major, "mdp");
8555 unregister_reboot_notifier(&md_notifier);
8556 unregister_sysctl_table(raid_table_header);
8557
8558 /* We cannot unload the modules while some process is
8559 * waiting for us in select() or poll() - wake them up
8560 */
8561 md_unloading = 1;
8562 while (waitqueue_active(&md_event_waiters)) {
8563 /* not safe to leave yet */
8564 wake_up(&md_event_waiters);
8565 msleep(delay);
8566 delay += delay;
8567 }
8568 remove_proc_entry("mdstat", NULL);
8569
8570 for_each_mddev(mddev, tmp) {
8571 export_array(mddev);
8572 mddev->hold_active = 0;
8573 }
8574 destroy_workqueue(md_misc_wq);
8575 destroy_workqueue(md_wq);
8576 }
8577
8578 subsys_initcall(md_init);
8579 module_exit(md_exit)
8580
8581 static int get_ro(char *buffer, struct kernel_param *kp)
8582 {
8583 return sprintf(buffer, "%d", start_readonly);
8584 }
8585 static int set_ro(const char *val, struct kernel_param *kp)
8586 {
8587 char *e;
8588 int num = simple_strtoul(val, &e, 10);
8589 if (*val && (*e == '\0' || *e == '\n')) {
8590 start_readonly = num;
8591 return 0;
8592 }
8593 return -EINVAL;
8594 }
8595
8596 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8597 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8598 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8599
8600 MODULE_LICENSE("GPL");
8601 MODULE_DESCRIPTION("MD RAID framework");
8602 MODULE_ALIAS("md");
8603 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.206959 seconds and 6 git commands to generate.