md-cluster: remove capabilities
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
294
295 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
296 wake_up(&mddev->sb_wait);
297 }
298
299 /* mddev_suspend makes sure no new requests are submitted
300 * to the device, and that any requests that have been submitted
301 * are completely handled.
302 * Once mddev_detach() is called and completes, the module will be
303 * completely unused.
304 */
305 void mddev_suspend(struct mddev *mddev)
306 {
307 BUG_ON(mddev->suspended);
308 mddev->suspended = 1;
309 synchronize_rcu();
310 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
311 mddev->pers->quiesce(mddev, 1);
312
313 del_timer_sync(&mddev->safemode_timer);
314 }
315 EXPORT_SYMBOL_GPL(mddev_suspend);
316
317 void mddev_resume(struct mddev *mddev)
318 {
319 mddev->suspended = 0;
320 wake_up(&mddev->sb_wait);
321 mddev->pers->quiesce(mddev, 0);
322
323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
324 md_wakeup_thread(mddev->thread);
325 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
326 }
327 EXPORT_SYMBOL_GPL(mddev_resume);
328
329 int mddev_congested(struct mddev *mddev, int bits)
330 {
331 struct md_personality *pers = mddev->pers;
332 int ret = 0;
333
334 rcu_read_lock();
335 if (mddev->suspended)
336 ret = 1;
337 else if (pers && pers->congested)
338 ret = pers->congested(mddev, bits);
339 rcu_read_unlock();
340 return ret;
341 }
342 EXPORT_SYMBOL_GPL(mddev_congested);
343 static int md_congested(void *data, int bits)
344 {
345 struct mddev *mddev = data;
346 return mddev_congested(mddev, bits);
347 }
348
349 static int md_mergeable_bvec(struct request_queue *q,
350 struct bvec_merge_data *bvm,
351 struct bio_vec *biovec)
352 {
353 struct mddev *mddev = q->queuedata;
354 int ret;
355 rcu_read_lock();
356 if (mddev->suspended) {
357 /* Must always allow one vec */
358 if (bvm->bi_size == 0)
359 ret = biovec->bv_len;
360 else
361 ret = 0;
362 } else {
363 struct md_personality *pers = mddev->pers;
364 if (pers && pers->mergeable_bvec)
365 ret = pers->mergeable_bvec(mddev, bvm, biovec);
366 else
367 ret = biovec->bv_len;
368 }
369 rcu_read_unlock();
370 return ret;
371 }
372 /*
373 * Generic flush handling for md
374 */
375
376 static void md_end_flush(struct bio *bio, int err)
377 {
378 struct md_rdev *rdev = bio->bi_private;
379 struct mddev *mddev = rdev->mddev;
380
381 rdev_dec_pending(rdev, mddev);
382
383 if (atomic_dec_and_test(&mddev->flush_pending)) {
384 /* The pre-request flush has finished */
385 queue_work(md_wq, &mddev->flush_work);
386 }
387 bio_put(bio);
388 }
389
390 static void md_submit_flush_data(struct work_struct *ws);
391
392 static void submit_flushes(struct work_struct *ws)
393 {
394 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
395 struct md_rdev *rdev;
396
397 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
398 atomic_set(&mddev->flush_pending, 1);
399 rcu_read_lock();
400 rdev_for_each_rcu(rdev, mddev)
401 if (rdev->raid_disk >= 0 &&
402 !test_bit(Faulty, &rdev->flags)) {
403 /* Take two references, one is dropped
404 * when request finishes, one after
405 * we reclaim rcu_read_lock
406 */
407 struct bio *bi;
408 atomic_inc(&rdev->nr_pending);
409 atomic_inc(&rdev->nr_pending);
410 rcu_read_unlock();
411 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
412 bi->bi_end_io = md_end_flush;
413 bi->bi_private = rdev;
414 bi->bi_bdev = rdev->bdev;
415 atomic_inc(&mddev->flush_pending);
416 submit_bio(WRITE_FLUSH, bi);
417 rcu_read_lock();
418 rdev_dec_pending(rdev, mddev);
419 }
420 rcu_read_unlock();
421 if (atomic_dec_and_test(&mddev->flush_pending))
422 queue_work(md_wq, &mddev->flush_work);
423 }
424
425 static void md_submit_flush_data(struct work_struct *ws)
426 {
427 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
428 struct bio *bio = mddev->flush_bio;
429
430 if (bio->bi_iter.bi_size == 0)
431 /* an empty barrier - all done */
432 bio_endio(bio, 0);
433 else {
434 bio->bi_rw &= ~REQ_FLUSH;
435 mddev->pers->make_request(mddev, bio);
436 }
437
438 mddev->flush_bio = NULL;
439 wake_up(&mddev->sb_wait);
440 }
441
442 void md_flush_request(struct mddev *mddev, struct bio *bio)
443 {
444 spin_lock_irq(&mddev->lock);
445 wait_event_lock_irq(mddev->sb_wait,
446 !mddev->flush_bio,
447 mddev->lock);
448 mddev->flush_bio = bio;
449 spin_unlock_irq(&mddev->lock);
450
451 INIT_WORK(&mddev->flush_work, submit_flushes);
452 queue_work(md_wq, &mddev->flush_work);
453 }
454 EXPORT_SYMBOL(md_flush_request);
455
456 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
457 {
458 struct mddev *mddev = cb->data;
459 md_wakeup_thread(mddev->thread);
460 kfree(cb);
461 }
462 EXPORT_SYMBOL(md_unplug);
463
464 static inline struct mddev *mddev_get(struct mddev *mddev)
465 {
466 atomic_inc(&mddev->active);
467 return mddev;
468 }
469
470 static void mddev_delayed_delete(struct work_struct *ws);
471
472 static void mddev_put(struct mddev *mddev)
473 {
474 struct bio_set *bs = NULL;
475
476 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
477 return;
478 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
479 mddev->ctime == 0 && !mddev->hold_active) {
480 /* Array is not configured at all, and not held active,
481 * so destroy it */
482 list_del_init(&mddev->all_mddevs);
483 bs = mddev->bio_set;
484 mddev->bio_set = NULL;
485 if (mddev->gendisk) {
486 /* We did a probe so need to clean up. Call
487 * queue_work inside the spinlock so that
488 * flush_workqueue() after mddev_find will
489 * succeed in waiting for the work to be done.
490 */
491 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
492 queue_work(md_misc_wq, &mddev->del_work);
493 } else
494 kfree(mddev);
495 }
496 spin_unlock(&all_mddevs_lock);
497 if (bs)
498 bioset_free(bs);
499 }
500
501 void mddev_init(struct mddev *mddev)
502 {
503 mutex_init(&mddev->open_mutex);
504 mutex_init(&mddev->reconfig_mutex);
505 mutex_init(&mddev->bitmap_info.mutex);
506 INIT_LIST_HEAD(&mddev->disks);
507 INIT_LIST_HEAD(&mddev->all_mddevs);
508 init_timer(&mddev->safemode_timer);
509 atomic_set(&mddev->active, 1);
510 atomic_set(&mddev->openers, 0);
511 atomic_set(&mddev->active_io, 0);
512 spin_lock_init(&mddev->lock);
513 atomic_set(&mddev->flush_pending, 0);
514 init_waitqueue_head(&mddev->sb_wait);
515 init_waitqueue_head(&mddev->recovery_wait);
516 mddev->reshape_position = MaxSector;
517 mddev->reshape_backwards = 0;
518 mddev->last_sync_action = "none";
519 mddev->resync_min = 0;
520 mddev->resync_max = MaxSector;
521 mddev->level = LEVEL_NONE;
522 }
523 EXPORT_SYMBOL_GPL(mddev_init);
524
525 static struct mddev *mddev_find(dev_t unit)
526 {
527 struct mddev *mddev, *new = NULL;
528
529 if (unit && MAJOR(unit) != MD_MAJOR)
530 unit &= ~((1<<MdpMinorShift)-1);
531
532 retry:
533 spin_lock(&all_mddevs_lock);
534
535 if (unit) {
536 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
537 if (mddev->unit == unit) {
538 mddev_get(mddev);
539 spin_unlock(&all_mddevs_lock);
540 kfree(new);
541 return mddev;
542 }
543
544 if (new) {
545 list_add(&new->all_mddevs, &all_mddevs);
546 spin_unlock(&all_mddevs_lock);
547 new->hold_active = UNTIL_IOCTL;
548 return new;
549 }
550 } else if (new) {
551 /* find an unused unit number */
552 static int next_minor = 512;
553 int start = next_minor;
554 int is_free = 0;
555 int dev = 0;
556 while (!is_free) {
557 dev = MKDEV(MD_MAJOR, next_minor);
558 next_minor++;
559 if (next_minor > MINORMASK)
560 next_minor = 0;
561 if (next_minor == start) {
562 /* Oh dear, all in use. */
563 spin_unlock(&all_mddevs_lock);
564 kfree(new);
565 return NULL;
566 }
567
568 is_free = 1;
569 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
570 if (mddev->unit == dev) {
571 is_free = 0;
572 break;
573 }
574 }
575 new->unit = dev;
576 new->md_minor = MINOR(dev);
577 new->hold_active = UNTIL_STOP;
578 list_add(&new->all_mddevs, &all_mddevs);
579 spin_unlock(&all_mddevs_lock);
580 return new;
581 }
582 spin_unlock(&all_mddevs_lock);
583
584 new = kzalloc(sizeof(*new), GFP_KERNEL);
585 if (!new)
586 return NULL;
587
588 new->unit = unit;
589 if (MAJOR(unit) == MD_MAJOR)
590 new->md_minor = MINOR(unit);
591 else
592 new->md_minor = MINOR(unit) >> MdpMinorShift;
593
594 mddev_init(new);
595
596 goto retry;
597 }
598
599 static struct attribute_group md_redundancy_group;
600
601 void mddev_unlock(struct mddev *mddev)
602 {
603 if (mddev->to_remove) {
604 /* These cannot be removed under reconfig_mutex as
605 * an access to the files will try to take reconfig_mutex
606 * while holding the file unremovable, which leads to
607 * a deadlock.
608 * So hold set sysfs_active while the remove in happeing,
609 * and anything else which might set ->to_remove or my
610 * otherwise change the sysfs namespace will fail with
611 * -EBUSY if sysfs_active is still set.
612 * We set sysfs_active under reconfig_mutex and elsewhere
613 * test it under the same mutex to ensure its correct value
614 * is seen.
615 */
616 struct attribute_group *to_remove = mddev->to_remove;
617 mddev->to_remove = NULL;
618 mddev->sysfs_active = 1;
619 mutex_unlock(&mddev->reconfig_mutex);
620
621 if (mddev->kobj.sd) {
622 if (to_remove != &md_redundancy_group)
623 sysfs_remove_group(&mddev->kobj, to_remove);
624 if (mddev->pers == NULL ||
625 mddev->pers->sync_request == NULL) {
626 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
627 if (mddev->sysfs_action)
628 sysfs_put(mddev->sysfs_action);
629 mddev->sysfs_action = NULL;
630 }
631 }
632 mddev->sysfs_active = 0;
633 } else
634 mutex_unlock(&mddev->reconfig_mutex);
635
636 /* As we've dropped the mutex we need a spinlock to
637 * make sure the thread doesn't disappear
638 */
639 spin_lock(&pers_lock);
640 md_wakeup_thread(mddev->thread);
641 spin_unlock(&pers_lock);
642 }
643 EXPORT_SYMBOL_GPL(mddev_unlock);
644
645 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
646 {
647 struct md_rdev *rdev;
648
649 rdev_for_each_rcu(rdev, mddev)
650 if (rdev->desc_nr == nr)
651 return rdev;
652
653 return NULL;
654 }
655 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
656
657 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
658 {
659 struct md_rdev *rdev;
660
661 rdev_for_each(rdev, mddev)
662 if (rdev->bdev->bd_dev == dev)
663 return rdev;
664
665 return NULL;
666 }
667
668 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
669 {
670 struct md_rdev *rdev;
671
672 rdev_for_each_rcu(rdev, mddev)
673 if (rdev->bdev->bd_dev == dev)
674 return rdev;
675
676 return NULL;
677 }
678
679 static struct md_personality *find_pers(int level, char *clevel)
680 {
681 struct md_personality *pers;
682 list_for_each_entry(pers, &pers_list, list) {
683 if (level != LEVEL_NONE && pers->level == level)
684 return pers;
685 if (strcmp(pers->name, clevel)==0)
686 return pers;
687 }
688 return NULL;
689 }
690
691 /* return the offset of the super block in 512byte sectors */
692 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
693 {
694 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
695 return MD_NEW_SIZE_SECTORS(num_sectors);
696 }
697
698 static int alloc_disk_sb(struct md_rdev *rdev)
699 {
700 rdev->sb_page = alloc_page(GFP_KERNEL);
701 if (!rdev->sb_page) {
702 printk(KERN_ALERT "md: out of memory.\n");
703 return -ENOMEM;
704 }
705
706 return 0;
707 }
708
709 void md_rdev_clear(struct md_rdev *rdev)
710 {
711 if (rdev->sb_page) {
712 put_page(rdev->sb_page);
713 rdev->sb_loaded = 0;
714 rdev->sb_page = NULL;
715 rdev->sb_start = 0;
716 rdev->sectors = 0;
717 }
718 if (rdev->bb_page) {
719 put_page(rdev->bb_page);
720 rdev->bb_page = NULL;
721 }
722 kfree(rdev->badblocks.page);
723 rdev->badblocks.page = NULL;
724 }
725 EXPORT_SYMBOL_GPL(md_rdev_clear);
726
727 static void super_written(struct bio *bio, int error)
728 {
729 struct md_rdev *rdev = bio->bi_private;
730 struct mddev *mddev = rdev->mddev;
731
732 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
733 printk("md: super_written gets error=%d, uptodate=%d\n",
734 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
735 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
736 md_error(mddev, rdev);
737 }
738
739 if (atomic_dec_and_test(&mddev->pending_writes))
740 wake_up(&mddev->sb_wait);
741 bio_put(bio);
742 }
743
744 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
745 sector_t sector, int size, struct page *page)
746 {
747 /* write first size bytes of page to sector of rdev
748 * Increment mddev->pending_writes before returning
749 * and decrement it on completion, waking up sb_wait
750 * if zero is reached.
751 * If an error occurred, call md_error
752 */
753 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
754
755 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
756 bio->bi_iter.bi_sector = sector;
757 bio_add_page(bio, page, size, 0);
758 bio->bi_private = rdev;
759 bio->bi_end_io = super_written;
760
761 atomic_inc(&mddev->pending_writes);
762 submit_bio(WRITE_FLUSH_FUA, bio);
763 }
764
765 void md_super_wait(struct mddev *mddev)
766 {
767 /* wait for all superblock writes that were scheduled to complete */
768 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
769 }
770
771 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
772 struct page *page, int rw, bool metadata_op)
773 {
774 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
775 int ret;
776
777 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
778 rdev->meta_bdev : rdev->bdev;
779 if (metadata_op)
780 bio->bi_iter.bi_sector = sector + rdev->sb_start;
781 else if (rdev->mddev->reshape_position != MaxSector &&
782 (rdev->mddev->reshape_backwards ==
783 (sector >= rdev->mddev->reshape_position)))
784 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
785 else
786 bio->bi_iter.bi_sector = sector + rdev->data_offset;
787 bio_add_page(bio, page, size, 0);
788 submit_bio_wait(rw, bio);
789
790 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
791 bio_put(bio);
792 return ret;
793 }
794 EXPORT_SYMBOL_GPL(sync_page_io);
795
796 static int read_disk_sb(struct md_rdev *rdev, int size)
797 {
798 char b[BDEVNAME_SIZE];
799
800 if (rdev->sb_loaded)
801 return 0;
802
803 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
804 goto fail;
805 rdev->sb_loaded = 1;
806 return 0;
807
808 fail:
809 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
810 bdevname(rdev->bdev,b));
811 return -EINVAL;
812 }
813
814 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
815 {
816 return sb1->set_uuid0 == sb2->set_uuid0 &&
817 sb1->set_uuid1 == sb2->set_uuid1 &&
818 sb1->set_uuid2 == sb2->set_uuid2 &&
819 sb1->set_uuid3 == sb2->set_uuid3;
820 }
821
822 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
823 {
824 int ret;
825 mdp_super_t *tmp1, *tmp2;
826
827 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
828 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
829
830 if (!tmp1 || !tmp2) {
831 ret = 0;
832 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
833 goto abort;
834 }
835
836 *tmp1 = *sb1;
837 *tmp2 = *sb2;
838
839 /*
840 * nr_disks is not constant
841 */
842 tmp1->nr_disks = 0;
843 tmp2->nr_disks = 0;
844
845 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
846 abort:
847 kfree(tmp1);
848 kfree(tmp2);
849 return ret;
850 }
851
852 static u32 md_csum_fold(u32 csum)
853 {
854 csum = (csum & 0xffff) + (csum >> 16);
855 return (csum & 0xffff) + (csum >> 16);
856 }
857
858 static unsigned int calc_sb_csum(mdp_super_t *sb)
859 {
860 u64 newcsum = 0;
861 u32 *sb32 = (u32*)sb;
862 int i;
863 unsigned int disk_csum, csum;
864
865 disk_csum = sb->sb_csum;
866 sb->sb_csum = 0;
867
868 for (i = 0; i < MD_SB_BYTES/4 ; i++)
869 newcsum += sb32[i];
870 csum = (newcsum & 0xffffffff) + (newcsum>>32);
871
872 #ifdef CONFIG_ALPHA
873 /* This used to use csum_partial, which was wrong for several
874 * reasons including that different results are returned on
875 * different architectures. It isn't critical that we get exactly
876 * the same return value as before (we always csum_fold before
877 * testing, and that removes any differences). However as we
878 * know that csum_partial always returned a 16bit value on
879 * alphas, do a fold to maximise conformity to previous behaviour.
880 */
881 sb->sb_csum = md_csum_fold(disk_csum);
882 #else
883 sb->sb_csum = disk_csum;
884 #endif
885 return csum;
886 }
887
888 /*
889 * Handle superblock details.
890 * We want to be able to handle multiple superblock formats
891 * so we have a common interface to them all, and an array of
892 * different handlers.
893 * We rely on user-space to write the initial superblock, and support
894 * reading and updating of superblocks.
895 * Interface methods are:
896 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
897 * loads and validates a superblock on dev.
898 * if refdev != NULL, compare superblocks on both devices
899 * Return:
900 * 0 - dev has a superblock that is compatible with refdev
901 * 1 - dev has a superblock that is compatible and newer than refdev
902 * so dev should be used as the refdev in future
903 * -EINVAL superblock incompatible or invalid
904 * -othererror e.g. -EIO
905 *
906 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
907 * Verify that dev is acceptable into mddev.
908 * The first time, mddev->raid_disks will be 0, and data from
909 * dev should be merged in. Subsequent calls check that dev
910 * is new enough. Return 0 or -EINVAL
911 *
912 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
913 * Update the superblock for rdev with data in mddev
914 * This does not write to disc.
915 *
916 */
917
918 struct super_type {
919 char *name;
920 struct module *owner;
921 int (*load_super)(struct md_rdev *rdev,
922 struct md_rdev *refdev,
923 int minor_version);
924 int (*validate_super)(struct mddev *mddev,
925 struct md_rdev *rdev);
926 void (*sync_super)(struct mddev *mddev,
927 struct md_rdev *rdev);
928 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
929 sector_t num_sectors);
930 int (*allow_new_offset)(struct md_rdev *rdev,
931 unsigned long long new_offset);
932 };
933
934 /*
935 * Check that the given mddev has no bitmap.
936 *
937 * This function is called from the run method of all personalities that do not
938 * support bitmaps. It prints an error message and returns non-zero if mddev
939 * has a bitmap. Otherwise, it returns 0.
940 *
941 */
942 int md_check_no_bitmap(struct mddev *mddev)
943 {
944 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
945 return 0;
946 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
947 mdname(mddev), mddev->pers->name);
948 return 1;
949 }
950 EXPORT_SYMBOL(md_check_no_bitmap);
951
952 /*
953 * load_super for 0.90.0
954 */
955 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
956 {
957 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
958 mdp_super_t *sb;
959 int ret;
960
961 /*
962 * Calculate the position of the superblock (512byte sectors),
963 * it's at the end of the disk.
964 *
965 * It also happens to be a multiple of 4Kb.
966 */
967 rdev->sb_start = calc_dev_sboffset(rdev);
968
969 ret = read_disk_sb(rdev, MD_SB_BYTES);
970 if (ret) return ret;
971
972 ret = -EINVAL;
973
974 bdevname(rdev->bdev, b);
975 sb = page_address(rdev->sb_page);
976
977 if (sb->md_magic != MD_SB_MAGIC) {
978 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
979 b);
980 goto abort;
981 }
982
983 if (sb->major_version != 0 ||
984 sb->minor_version < 90 ||
985 sb->minor_version > 91) {
986 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
987 sb->major_version, sb->minor_version,
988 b);
989 goto abort;
990 }
991
992 if (sb->raid_disks <= 0)
993 goto abort;
994
995 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
996 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
997 b);
998 goto abort;
999 }
1000
1001 rdev->preferred_minor = sb->md_minor;
1002 rdev->data_offset = 0;
1003 rdev->new_data_offset = 0;
1004 rdev->sb_size = MD_SB_BYTES;
1005 rdev->badblocks.shift = -1;
1006
1007 if (sb->level == LEVEL_MULTIPATH)
1008 rdev->desc_nr = -1;
1009 else
1010 rdev->desc_nr = sb->this_disk.number;
1011
1012 if (!refdev) {
1013 ret = 1;
1014 } else {
1015 __u64 ev1, ev2;
1016 mdp_super_t *refsb = page_address(refdev->sb_page);
1017 if (!uuid_equal(refsb, sb)) {
1018 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1019 b, bdevname(refdev->bdev,b2));
1020 goto abort;
1021 }
1022 if (!sb_equal(refsb, sb)) {
1023 printk(KERN_WARNING "md: %s has same UUID"
1024 " but different superblock to %s\n",
1025 b, bdevname(refdev->bdev, b2));
1026 goto abort;
1027 }
1028 ev1 = md_event(sb);
1029 ev2 = md_event(refsb);
1030 if (ev1 > ev2)
1031 ret = 1;
1032 else
1033 ret = 0;
1034 }
1035 rdev->sectors = rdev->sb_start;
1036 /* Limit to 4TB as metadata cannot record more than that.
1037 * (not needed for Linear and RAID0 as metadata doesn't
1038 * record this size)
1039 */
1040 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1041 rdev->sectors = (2ULL << 32) - 2;
1042
1043 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1044 /* "this cannot possibly happen" ... */
1045 ret = -EINVAL;
1046
1047 abort:
1048 return ret;
1049 }
1050
1051 /*
1052 * validate_super for 0.90.0
1053 */
1054 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1055 {
1056 mdp_disk_t *desc;
1057 mdp_super_t *sb = page_address(rdev->sb_page);
1058 __u64 ev1 = md_event(sb);
1059
1060 rdev->raid_disk = -1;
1061 clear_bit(Faulty, &rdev->flags);
1062 clear_bit(In_sync, &rdev->flags);
1063 clear_bit(Bitmap_sync, &rdev->flags);
1064 clear_bit(WriteMostly, &rdev->flags);
1065
1066 if (mddev->raid_disks == 0) {
1067 mddev->major_version = 0;
1068 mddev->minor_version = sb->minor_version;
1069 mddev->patch_version = sb->patch_version;
1070 mddev->external = 0;
1071 mddev->chunk_sectors = sb->chunk_size >> 9;
1072 mddev->ctime = sb->ctime;
1073 mddev->utime = sb->utime;
1074 mddev->level = sb->level;
1075 mddev->clevel[0] = 0;
1076 mddev->layout = sb->layout;
1077 mddev->raid_disks = sb->raid_disks;
1078 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1079 mddev->events = ev1;
1080 mddev->bitmap_info.offset = 0;
1081 mddev->bitmap_info.space = 0;
1082 /* bitmap can use 60 K after the 4K superblocks */
1083 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1084 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1085 mddev->reshape_backwards = 0;
1086
1087 if (mddev->minor_version >= 91) {
1088 mddev->reshape_position = sb->reshape_position;
1089 mddev->delta_disks = sb->delta_disks;
1090 mddev->new_level = sb->new_level;
1091 mddev->new_layout = sb->new_layout;
1092 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1093 if (mddev->delta_disks < 0)
1094 mddev->reshape_backwards = 1;
1095 } else {
1096 mddev->reshape_position = MaxSector;
1097 mddev->delta_disks = 0;
1098 mddev->new_level = mddev->level;
1099 mddev->new_layout = mddev->layout;
1100 mddev->new_chunk_sectors = mddev->chunk_sectors;
1101 }
1102
1103 if (sb->state & (1<<MD_SB_CLEAN))
1104 mddev->recovery_cp = MaxSector;
1105 else {
1106 if (sb->events_hi == sb->cp_events_hi &&
1107 sb->events_lo == sb->cp_events_lo) {
1108 mddev->recovery_cp = sb->recovery_cp;
1109 } else
1110 mddev->recovery_cp = 0;
1111 }
1112
1113 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1114 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1115 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1116 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1117
1118 mddev->max_disks = MD_SB_DISKS;
1119
1120 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1121 mddev->bitmap_info.file == NULL) {
1122 mddev->bitmap_info.offset =
1123 mddev->bitmap_info.default_offset;
1124 mddev->bitmap_info.space =
1125 mddev->bitmap_info.default_space;
1126 }
1127
1128 } else if (mddev->pers == NULL) {
1129 /* Insist on good event counter while assembling, except
1130 * for spares (which don't need an event count) */
1131 ++ev1;
1132 if (sb->disks[rdev->desc_nr].state & (
1133 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134 if (ev1 < mddev->events)
1135 return -EINVAL;
1136 } else if (mddev->bitmap) {
1137 /* if adding to array with a bitmap, then we can accept an
1138 * older device ... but not too old.
1139 */
1140 if (ev1 < mddev->bitmap->events_cleared)
1141 return 0;
1142 if (ev1 < mddev->events)
1143 set_bit(Bitmap_sync, &rdev->flags);
1144 } else {
1145 if (ev1 < mddev->events)
1146 /* just a hot-add of a new device, leave raid_disk at -1 */
1147 return 0;
1148 }
1149
1150 if (mddev->level != LEVEL_MULTIPATH) {
1151 desc = sb->disks + rdev->desc_nr;
1152
1153 if (desc->state & (1<<MD_DISK_FAULTY))
1154 set_bit(Faulty, &rdev->flags);
1155 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1156 desc->raid_disk < mddev->raid_disks */) {
1157 set_bit(In_sync, &rdev->flags);
1158 rdev->raid_disk = desc->raid_disk;
1159 rdev->saved_raid_disk = desc->raid_disk;
1160 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1161 /* active but not in sync implies recovery up to
1162 * reshape position. We don't know exactly where
1163 * that is, so set to zero for now */
1164 if (mddev->minor_version >= 91) {
1165 rdev->recovery_offset = 0;
1166 rdev->raid_disk = desc->raid_disk;
1167 }
1168 }
1169 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1170 set_bit(WriteMostly, &rdev->flags);
1171 } else /* MULTIPATH are always insync */
1172 set_bit(In_sync, &rdev->flags);
1173 return 0;
1174 }
1175
1176 /*
1177 * sync_super for 0.90.0
1178 */
1179 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1180 {
1181 mdp_super_t *sb;
1182 struct md_rdev *rdev2;
1183 int next_spare = mddev->raid_disks;
1184
1185 /* make rdev->sb match mddev data..
1186 *
1187 * 1/ zero out disks
1188 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1189 * 3/ any empty disks < next_spare become removed
1190 *
1191 * disks[0] gets initialised to REMOVED because
1192 * we cannot be sure from other fields if it has
1193 * been initialised or not.
1194 */
1195 int i;
1196 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1197
1198 rdev->sb_size = MD_SB_BYTES;
1199
1200 sb = page_address(rdev->sb_page);
1201
1202 memset(sb, 0, sizeof(*sb));
1203
1204 sb->md_magic = MD_SB_MAGIC;
1205 sb->major_version = mddev->major_version;
1206 sb->patch_version = mddev->patch_version;
1207 sb->gvalid_words = 0; /* ignored */
1208 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1209 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1210 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1211 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1212
1213 sb->ctime = mddev->ctime;
1214 sb->level = mddev->level;
1215 sb->size = mddev->dev_sectors / 2;
1216 sb->raid_disks = mddev->raid_disks;
1217 sb->md_minor = mddev->md_minor;
1218 sb->not_persistent = 0;
1219 sb->utime = mddev->utime;
1220 sb->state = 0;
1221 sb->events_hi = (mddev->events>>32);
1222 sb->events_lo = (u32)mddev->events;
1223
1224 if (mddev->reshape_position == MaxSector)
1225 sb->minor_version = 90;
1226 else {
1227 sb->minor_version = 91;
1228 sb->reshape_position = mddev->reshape_position;
1229 sb->new_level = mddev->new_level;
1230 sb->delta_disks = mddev->delta_disks;
1231 sb->new_layout = mddev->new_layout;
1232 sb->new_chunk = mddev->new_chunk_sectors << 9;
1233 }
1234 mddev->minor_version = sb->minor_version;
1235 if (mddev->in_sync)
1236 {
1237 sb->recovery_cp = mddev->recovery_cp;
1238 sb->cp_events_hi = (mddev->events>>32);
1239 sb->cp_events_lo = (u32)mddev->events;
1240 if (mddev->recovery_cp == MaxSector)
1241 sb->state = (1<< MD_SB_CLEAN);
1242 } else
1243 sb->recovery_cp = 0;
1244
1245 sb->layout = mddev->layout;
1246 sb->chunk_size = mddev->chunk_sectors << 9;
1247
1248 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1249 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1250
1251 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1252 rdev_for_each(rdev2, mddev) {
1253 mdp_disk_t *d;
1254 int desc_nr;
1255 int is_active = test_bit(In_sync, &rdev2->flags);
1256
1257 if (rdev2->raid_disk >= 0 &&
1258 sb->minor_version >= 91)
1259 /* we have nowhere to store the recovery_offset,
1260 * but if it is not below the reshape_position,
1261 * we can piggy-back on that.
1262 */
1263 is_active = 1;
1264 if (rdev2->raid_disk < 0 ||
1265 test_bit(Faulty, &rdev2->flags))
1266 is_active = 0;
1267 if (is_active)
1268 desc_nr = rdev2->raid_disk;
1269 else
1270 desc_nr = next_spare++;
1271 rdev2->desc_nr = desc_nr;
1272 d = &sb->disks[rdev2->desc_nr];
1273 nr_disks++;
1274 d->number = rdev2->desc_nr;
1275 d->major = MAJOR(rdev2->bdev->bd_dev);
1276 d->minor = MINOR(rdev2->bdev->bd_dev);
1277 if (is_active)
1278 d->raid_disk = rdev2->raid_disk;
1279 else
1280 d->raid_disk = rdev2->desc_nr; /* compatibility */
1281 if (test_bit(Faulty, &rdev2->flags))
1282 d->state = (1<<MD_DISK_FAULTY);
1283 else if (is_active) {
1284 d->state = (1<<MD_DISK_ACTIVE);
1285 if (test_bit(In_sync, &rdev2->flags))
1286 d->state |= (1<<MD_DISK_SYNC);
1287 active++;
1288 working++;
1289 } else {
1290 d->state = 0;
1291 spare++;
1292 working++;
1293 }
1294 if (test_bit(WriteMostly, &rdev2->flags))
1295 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1296 }
1297 /* now set the "removed" and "faulty" bits on any missing devices */
1298 for (i=0 ; i < mddev->raid_disks ; i++) {
1299 mdp_disk_t *d = &sb->disks[i];
1300 if (d->state == 0 && d->number == 0) {
1301 d->number = i;
1302 d->raid_disk = i;
1303 d->state = (1<<MD_DISK_REMOVED);
1304 d->state |= (1<<MD_DISK_FAULTY);
1305 failed++;
1306 }
1307 }
1308 sb->nr_disks = nr_disks;
1309 sb->active_disks = active;
1310 sb->working_disks = working;
1311 sb->failed_disks = failed;
1312 sb->spare_disks = spare;
1313
1314 sb->this_disk = sb->disks[rdev->desc_nr];
1315 sb->sb_csum = calc_sb_csum(sb);
1316 }
1317
1318 /*
1319 * rdev_size_change for 0.90.0
1320 */
1321 static unsigned long long
1322 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1323 {
1324 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1325 return 0; /* component must fit device */
1326 if (rdev->mddev->bitmap_info.offset)
1327 return 0; /* can't move bitmap */
1328 rdev->sb_start = calc_dev_sboffset(rdev);
1329 if (!num_sectors || num_sectors > rdev->sb_start)
1330 num_sectors = rdev->sb_start;
1331 /* Limit to 4TB as metadata cannot record more than that.
1332 * 4TB == 2^32 KB, or 2*2^32 sectors.
1333 */
1334 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1335 num_sectors = (2ULL << 32) - 2;
1336 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1337 rdev->sb_page);
1338 md_super_wait(rdev->mddev);
1339 return num_sectors;
1340 }
1341
1342 static int
1343 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1344 {
1345 /* non-zero offset changes not possible with v0.90 */
1346 return new_offset == 0;
1347 }
1348
1349 /*
1350 * version 1 superblock
1351 */
1352
1353 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1354 {
1355 __le32 disk_csum;
1356 u32 csum;
1357 unsigned long long newcsum;
1358 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1359 __le32 *isuper = (__le32*)sb;
1360
1361 disk_csum = sb->sb_csum;
1362 sb->sb_csum = 0;
1363 newcsum = 0;
1364 for (; size >= 4; size -= 4)
1365 newcsum += le32_to_cpu(*isuper++);
1366
1367 if (size == 2)
1368 newcsum += le16_to_cpu(*(__le16*) isuper);
1369
1370 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1371 sb->sb_csum = disk_csum;
1372 return cpu_to_le32(csum);
1373 }
1374
1375 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1376 int acknowledged);
1377 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1378 {
1379 struct mdp_superblock_1 *sb;
1380 int ret;
1381 sector_t sb_start;
1382 sector_t sectors;
1383 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1384 int bmask;
1385
1386 /*
1387 * Calculate the position of the superblock in 512byte sectors.
1388 * It is always aligned to a 4K boundary and
1389 * depeding on minor_version, it can be:
1390 * 0: At least 8K, but less than 12K, from end of device
1391 * 1: At start of device
1392 * 2: 4K from start of device.
1393 */
1394 switch(minor_version) {
1395 case 0:
1396 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1397 sb_start -= 8*2;
1398 sb_start &= ~(sector_t)(4*2-1);
1399 break;
1400 case 1:
1401 sb_start = 0;
1402 break;
1403 case 2:
1404 sb_start = 8;
1405 break;
1406 default:
1407 return -EINVAL;
1408 }
1409 rdev->sb_start = sb_start;
1410
1411 /* superblock is rarely larger than 1K, but it can be larger,
1412 * and it is safe to read 4k, so we do that
1413 */
1414 ret = read_disk_sb(rdev, 4096);
1415 if (ret) return ret;
1416
1417 sb = page_address(rdev->sb_page);
1418
1419 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1420 sb->major_version != cpu_to_le32(1) ||
1421 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1422 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1423 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1424 return -EINVAL;
1425
1426 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1427 printk("md: invalid superblock checksum on %s\n",
1428 bdevname(rdev->bdev,b));
1429 return -EINVAL;
1430 }
1431 if (le64_to_cpu(sb->data_size) < 10) {
1432 printk("md: data_size too small on %s\n",
1433 bdevname(rdev->bdev,b));
1434 return -EINVAL;
1435 }
1436 if (sb->pad0 ||
1437 sb->pad3[0] ||
1438 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1439 /* Some padding is non-zero, might be a new feature */
1440 return -EINVAL;
1441
1442 rdev->preferred_minor = 0xffff;
1443 rdev->data_offset = le64_to_cpu(sb->data_offset);
1444 rdev->new_data_offset = rdev->data_offset;
1445 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1446 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1447 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1448 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1449
1450 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1451 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1452 if (rdev->sb_size & bmask)
1453 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1454
1455 if (minor_version
1456 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1457 return -EINVAL;
1458 if (minor_version
1459 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1460 return -EINVAL;
1461
1462 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1463 rdev->desc_nr = -1;
1464 else
1465 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1466
1467 if (!rdev->bb_page) {
1468 rdev->bb_page = alloc_page(GFP_KERNEL);
1469 if (!rdev->bb_page)
1470 return -ENOMEM;
1471 }
1472 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1473 rdev->badblocks.count == 0) {
1474 /* need to load the bad block list.
1475 * Currently we limit it to one page.
1476 */
1477 s32 offset;
1478 sector_t bb_sector;
1479 u64 *bbp;
1480 int i;
1481 int sectors = le16_to_cpu(sb->bblog_size);
1482 if (sectors > (PAGE_SIZE / 512))
1483 return -EINVAL;
1484 offset = le32_to_cpu(sb->bblog_offset);
1485 if (offset == 0)
1486 return -EINVAL;
1487 bb_sector = (long long)offset;
1488 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1489 rdev->bb_page, READ, true))
1490 return -EIO;
1491 bbp = (u64 *)page_address(rdev->bb_page);
1492 rdev->badblocks.shift = sb->bblog_shift;
1493 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1494 u64 bb = le64_to_cpu(*bbp);
1495 int count = bb & (0x3ff);
1496 u64 sector = bb >> 10;
1497 sector <<= sb->bblog_shift;
1498 count <<= sb->bblog_shift;
1499 if (bb + 1 == 0)
1500 break;
1501 if (md_set_badblocks(&rdev->badblocks,
1502 sector, count, 1) == 0)
1503 return -EINVAL;
1504 }
1505 } else if (sb->bblog_offset != 0)
1506 rdev->badblocks.shift = 0;
1507
1508 if (!refdev) {
1509 ret = 1;
1510 } else {
1511 __u64 ev1, ev2;
1512 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1513
1514 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1515 sb->level != refsb->level ||
1516 sb->layout != refsb->layout ||
1517 sb->chunksize != refsb->chunksize) {
1518 printk(KERN_WARNING "md: %s has strangely different"
1519 " superblock to %s\n",
1520 bdevname(rdev->bdev,b),
1521 bdevname(refdev->bdev,b2));
1522 return -EINVAL;
1523 }
1524 ev1 = le64_to_cpu(sb->events);
1525 ev2 = le64_to_cpu(refsb->events);
1526
1527 if (ev1 > ev2)
1528 ret = 1;
1529 else
1530 ret = 0;
1531 }
1532 if (minor_version) {
1533 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1534 sectors -= rdev->data_offset;
1535 } else
1536 sectors = rdev->sb_start;
1537 if (sectors < le64_to_cpu(sb->data_size))
1538 return -EINVAL;
1539 rdev->sectors = le64_to_cpu(sb->data_size);
1540 return ret;
1541 }
1542
1543 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1544 {
1545 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1546 __u64 ev1 = le64_to_cpu(sb->events);
1547
1548 rdev->raid_disk = -1;
1549 clear_bit(Faulty, &rdev->flags);
1550 clear_bit(In_sync, &rdev->flags);
1551 clear_bit(Bitmap_sync, &rdev->flags);
1552 clear_bit(WriteMostly, &rdev->flags);
1553
1554 if (mddev->raid_disks == 0) {
1555 mddev->major_version = 1;
1556 mddev->patch_version = 0;
1557 mddev->external = 0;
1558 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1559 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1560 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1561 mddev->level = le32_to_cpu(sb->level);
1562 mddev->clevel[0] = 0;
1563 mddev->layout = le32_to_cpu(sb->layout);
1564 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1565 mddev->dev_sectors = le64_to_cpu(sb->size);
1566 mddev->events = ev1;
1567 mddev->bitmap_info.offset = 0;
1568 mddev->bitmap_info.space = 0;
1569 /* Default location for bitmap is 1K after superblock
1570 * using 3K - total of 4K
1571 */
1572 mddev->bitmap_info.default_offset = 1024 >> 9;
1573 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1574 mddev->reshape_backwards = 0;
1575
1576 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1577 memcpy(mddev->uuid, sb->set_uuid, 16);
1578
1579 mddev->max_disks = (4096-256)/2;
1580
1581 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1582 mddev->bitmap_info.file == NULL) {
1583 mddev->bitmap_info.offset =
1584 (__s32)le32_to_cpu(sb->bitmap_offset);
1585 /* Metadata doesn't record how much space is available.
1586 * For 1.0, we assume we can use up to the superblock
1587 * if before, else to 4K beyond superblock.
1588 * For others, assume no change is possible.
1589 */
1590 if (mddev->minor_version > 0)
1591 mddev->bitmap_info.space = 0;
1592 else if (mddev->bitmap_info.offset > 0)
1593 mddev->bitmap_info.space =
1594 8 - mddev->bitmap_info.offset;
1595 else
1596 mddev->bitmap_info.space =
1597 -mddev->bitmap_info.offset;
1598 }
1599
1600 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1601 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1602 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1603 mddev->new_level = le32_to_cpu(sb->new_level);
1604 mddev->new_layout = le32_to_cpu(sb->new_layout);
1605 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1606 if (mddev->delta_disks < 0 ||
1607 (mddev->delta_disks == 0 &&
1608 (le32_to_cpu(sb->feature_map)
1609 & MD_FEATURE_RESHAPE_BACKWARDS)))
1610 mddev->reshape_backwards = 1;
1611 } else {
1612 mddev->reshape_position = MaxSector;
1613 mddev->delta_disks = 0;
1614 mddev->new_level = mddev->level;
1615 mddev->new_layout = mddev->layout;
1616 mddev->new_chunk_sectors = mddev->chunk_sectors;
1617 }
1618
1619 } else if (mddev->pers == NULL) {
1620 /* Insist of good event counter while assembling, except for
1621 * spares (which don't need an event count) */
1622 ++ev1;
1623 if (rdev->desc_nr >= 0 &&
1624 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1625 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1626 if (ev1 < mddev->events)
1627 return -EINVAL;
1628 } else if (mddev->bitmap) {
1629 /* If adding to array with a bitmap, then we can accept an
1630 * older device, but not too old.
1631 */
1632 if (ev1 < mddev->bitmap->events_cleared)
1633 return 0;
1634 if (ev1 < mddev->events)
1635 set_bit(Bitmap_sync, &rdev->flags);
1636 } else {
1637 if (ev1 < mddev->events)
1638 /* just a hot-add of a new device, leave raid_disk at -1 */
1639 return 0;
1640 }
1641 if (mddev->level != LEVEL_MULTIPATH) {
1642 int role;
1643 if (rdev->desc_nr < 0 ||
1644 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1645 role = 0xffff;
1646 rdev->desc_nr = -1;
1647 } else
1648 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1649 switch(role) {
1650 case 0xffff: /* spare */
1651 break;
1652 case 0xfffe: /* faulty */
1653 set_bit(Faulty, &rdev->flags);
1654 break;
1655 default:
1656 rdev->saved_raid_disk = role;
1657 if ((le32_to_cpu(sb->feature_map) &
1658 MD_FEATURE_RECOVERY_OFFSET)) {
1659 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1660 if (!(le32_to_cpu(sb->feature_map) &
1661 MD_FEATURE_RECOVERY_BITMAP))
1662 rdev->saved_raid_disk = -1;
1663 } else
1664 set_bit(In_sync, &rdev->flags);
1665 rdev->raid_disk = role;
1666 break;
1667 }
1668 if (sb->devflags & WriteMostly1)
1669 set_bit(WriteMostly, &rdev->flags);
1670 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1671 set_bit(Replacement, &rdev->flags);
1672 } else /* MULTIPATH are always insync */
1673 set_bit(In_sync, &rdev->flags);
1674
1675 return 0;
1676 }
1677
1678 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1679 {
1680 struct mdp_superblock_1 *sb;
1681 struct md_rdev *rdev2;
1682 int max_dev, i;
1683 /* make rdev->sb match mddev and rdev data. */
1684
1685 sb = page_address(rdev->sb_page);
1686
1687 sb->feature_map = 0;
1688 sb->pad0 = 0;
1689 sb->recovery_offset = cpu_to_le64(0);
1690 memset(sb->pad3, 0, sizeof(sb->pad3));
1691
1692 sb->utime = cpu_to_le64((__u64)mddev->utime);
1693 sb->events = cpu_to_le64(mddev->events);
1694 if (mddev->in_sync)
1695 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1696 else
1697 sb->resync_offset = cpu_to_le64(0);
1698
1699 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1700
1701 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1702 sb->size = cpu_to_le64(mddev->dev_sectors);
1703 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1704 sb->level = cpu_to_le32(mddev->level);
1705 sb->layout = cpu_to_le32(mddev->layout);
1706
1707 if (test_bit(WriteMostly, &rdev->flags))
1708 sb->devflags |= WriteMostly1;
1709 else
1710 sb->devflags &= ~WriteMostly1;
1711 sb->data_offset = cpu_to_le64(rdev->data_offset);
1712 sb->data_size = cpu_to_le64(rdev->sectors);
1713
1714 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1715 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1716 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1717 }
1718
1719 if (rdev->raid_disk >= 0 &&
1720 !test_bit(In_sync, &rdev->flags)) {
1721 sb->feature_map |=
1722 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1723 sb->recovery_offset =
1724 cpu_to_le64(rdev->recovery_offset);
1725 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1726 sb->feature_map |=
1727 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1728 }
1729 if (test_bit(Replacement, &rdev->flags))
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1732
1733 if (mddev->reshape_position != MaxSector) {
1734 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1735 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1736 sb->new_layout = cpu_to_le32(mddev->new_layout);
1737 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1738 sb->new_level = cpu_to_le32(mddev->new_level);
1739 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1740 if (mddev->delta_disks == 0 &&
1741 mddev->reshape_backwards)
1742 sb->feature_map
1743 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1744 if (rdev->new_data_offset != rdev->data_offset) {
1745 sb->feature_map
1746 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1747 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1748 - rdev->data_offset));
1749 }
1750 }
1751
1752 if (rdev->badblocks.count == 0)
1753 /* Nothing to do for bad blocks*/ ;
1754 else if (sb->bblog_offset == 0)
1755 /* Cannot record bad blocks on this device */
1756 md_error(mddev, rdev);
1757 else {
1758 struct badblocks *bb = &rdev->badblocks;
1759 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1760 u64 *p = bb->page;
1761 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1762 if (bb->changed) {
1763 unsigned seq;
1764
1765 retry:
1766 seq = read_seqbegin(&bb->lock);
1767
1768 memset(bbp, 0xff, PAGE_SIZE);
1769
1770 for (i = 0 ; i < bb->count ; i++) {
1771 u64 internal_bb = p[i];
1772 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1773 | BB_LEN(internal_bb));
1774 bbp[i] = cpu_to_le64(store_bb);
1775 }
1776 bb->changed = 0;
1777 if (read_seqretry(&bb->lock, seq))
1778 goto retry;
1779
1780 bb->sector = (rdev->sb_start +
1781 (int)le32_to_cpu(sb->bblog_offset));
1782 bb->size = le16_to_cpu(sb->bblog_size);
1783 }
1784 }
1785
1786 max_dev = 0;
1787 rdev_for_each(rdev2, mddev)
1788 if (rdev2->desc_nr+1 > max_dev)
1789 max_dev = rdev2->desc_nr+1;
1790
1791 if (max_dev > le32_to_cpu(sb->max_dev)) {
1792 int bmask;
1793 sb->max_dev = cpu_to_le32(max_dev);
1794 rdev->sb_size = max_dev * 2 + 256;
1795 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1796 if (rdev->sb_size & bmask)
1797 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1798 } else
1799 max_dev = le32_to_cpu(sb->max_dev);
1800
1801 for (i=0; i<max_dev;i++)
1802 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1803
1804 rdev_for_each(rdev2, mddev) {
1805 i = rdev2->desc_nr;
1806 if (test_bit(Faulty, &rdev2->flags))
1807 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1808 else if (test_bit(In_sync, &rdev2->flags))
1809 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1810 else if (rdev2->raid_disk >= 0)
1811 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1812 else
1813 sb->dev_roles[i] = cpu_to_le16(0xffff);
1814 }
1815
1816 sb->sb_csum = calc_sb_1_csum(sb);
1817 }
1818
1819 static unsigned long long
1820 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1821 {
1822 struct mdp_superblock_1 *sb;
1823 sector_t max_sectors;
1824 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1825 return 0; /* component must fit device */
1826 if (rdev->data_offset != rdev->new_data_offset)
1827 return 0; /* too confusing */
1828 if (rdev->sb_start < rdev->data_offset) {
1829 /* minor versions 1 and 2; superblock before data */
1830 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1831 max_sectors -= rdev->data_offset;
1832 if (!num_sectors || num_sectors > max_sectors)
1833 num_sectors = max_sectors;
1834 } else if (rdev->mddev->bitmap_info.offset) {
1835 /* minor version 0 with bitmap we can't move */
1836 return 0;
1837 } else {
1838 /* minor version 0; superblock after data */
1839 sector_t sb_start;
1840 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1841 sb_start &= ~(sector_t)(4*2 - 1);
1842 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1843 if (!num_sectors || num_sectors > max_sectors)
1844 num_sectors = max_sectors;
1845 rdev->sb_start = sb_start;
1846 }
1847 sb = page_address(rdev->sb_page);
1848 sb->data_size = cpu_to_le64(num_sectors);
1849 sb->super_offset = rdev->sb_start;
1850 sb->sb_csum = calc_sb_1_csum(sb);
1851 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1852 rdev->sb_page);
1853 md_super_wait(rdev->mddev);
1854 return num_sectors;
1855
1856 }
1857
1858 static int
1859 super_1_allow_new_offset(struct md_rdev *rdev,
1860 unsigned long long new_offset)
1861 {
1862 /* All necessary checks on new >= old have been done */
1863 struct bitmap *bitmap;
1864 if (new_offset >= rdev->data_offset)
1865 return 1;
1866
1867 /* with 1.0 metadata, there is no metadata to tread on
1868 * so we can always move back */
1869 if (rdev->mddev->minor_version == 0)
1870 return 1;
1871
1872 /* otherwise we must be sure not to step on
1873 * any metadata, so stay:
1874 * 36K beyond start of superblock
1875 * beyond end of badblocks
1876 * beyond write-intent bitmap
1877 */
1878 if (rdev->sb_start + (32+4)*2 > new_offset)
1879 return 0;
1880 bitmap = rdev->mddev->bitmap;
1881 if (bitmap && !rdev->mddev->bitmap_info.file &&
1882 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1883 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1884 return 0;
1885 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1886 return 0;
1887
1888 return 1;
1889 }
1890
1891 static struct super_type super_types[] = {
1892 [0] = {
1893 .name = "0.90.0",
1894 .owner = THIS_MODULE,
1895 .load_super = super_90_load,
1896 .validate_super = super_90_validate,
1897 .sync_super = super_90_sync,
1898 .rdev_size_change = super_90_rdev_size_change,
1899 .allow_new_offset = super_90_allow_new_offset,
1900 },
1901 [1] = {
1902 .name = "md-1",
1903 .owner = THIS_MODULE,
1904 .load_super = super_1_load,
1905 .validate_super = super_1_validate,
1906 .sync_super = super_1_sync,
1907 .rdev_size_change = super_1_rdev_size_change,
1908 .allow_new_offset = super_1_allow_new_offset,
1909 },
1910 };
1911
1912 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1913 {
1914 if (mddev->sync_super) {
1915 mddev->sync_super(mddev, rdev);
1916 return;
1917 }
1918
1919 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1920
1921 super_types[mddev->major_version].sync_super(mddev, rdev);
1922 }
1923
1924 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1925 {
1926 struct md_rdev *rdev, *rdev2;
1927
1928 rcu_read_lock();
1929 rdev_for_each_rcu(rdev, mddev1)
1930 rdev_for_each_rcu(rdev2, mddev2)
1931 if (rdev->bdev->bd_contains ==
1932 rdev2->bdev->bd_contains) {
1933 rcu_read_unlock();
1934 return 1;
1935 }
1936 rcu_read_unlock();
1937 return 0;
1938 }
1939
1940 static LIST_HEAD(pending_raid_disks);
1941
1942 /*
1943 * Try to register data integrity profile for an mddev
1944 *
1945 * This is called when an array is started and after a disk has been kicked
1946 * from the array. It only succeeds if all working and active component devices
1947 * are integrity capable with matching profiles.
1948 */
1949 int md_integrity_register(struct mddev *mddev)
1950 {
1951 struct md_rdev *rdev, *reference = NULL;
1952
1953 if (list_empty(&mddev->disks))
1954 return 0; /* nothing to do */
1955 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1956 return 0; /* shouldn't register, or already is */
1957 rdev_for_each(rdev, mddev) {
1958 /* skip spares and non-functional disks */
1959 if (test_bit(Faulty, &rdev->flags))
1960 continue;
1961 if (rdev->raid_disk < 0)
1962 continue;
1963 if (!reference) {
1964 /* Use the first rdev as the reference */
1965 reference = rdev;
1966 continue;
1967 }
1968 /* does this rdev's profile match the reference profile? */
1969 if (blk_integrity_compare(reference->bdev->bd_disk,
1970 rdev->bdev->bd_disk) < 0)
1971 return -EINVAL;
1972 }
1973 if (!reference || !bdev_get_integrity(reference->bdev))
1974 return 0;
1975 /*
1976 * All component devices are integrity capable and have matching
1977 * profiles, register the common profile for the md device.
1978 */
1979 if (blk_integrity_register(mddev->gendisk,
1980 bdev_get_integrity(reference->bdev)) != 0) {
1981 printk(KERN_ERR "md: failed to register integrity for %s\n",
1982 mdname(mddev));
1983 return -EINVAL;
1984 }
1985 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1986 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1987 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1988 mdname(mddev));
1989 return -EINVAL;
1990 }
1991 return 0;
1992 }
1993 EXPORT_SYMBOL(md_integrity_register);
1994
1995 /* Disable data integrity if non-capable/non-matching disk is being added */
1996 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1997 {
1998 struct blk_integrity *bi_rdev;
1999 struct blk_integrity *bi_mddev;
2000
2001 if (!mddev->gendisk)
2002 return;
2003
2004 bi_rdev = bdev_get_integrity(rdev->bdev);
2005 bi_mddev = blk_get_integrity(mddev->gendisk);
2006
2007 if (!bi_mddev) /* nothing to do */
2008 return;
2009 if (rdev->raid_disk < 0) /* skip spares */
2010 return;
2011 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2012 rdev->bdev->bd_disk) >= 0)
2013 return;
2014 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2015 blk_integrity_unregister(mddev->gendisk);
2016 }
2017 EXPORT_SYMBOL(md_integrity_add_rdev);
2018
2019 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2020 {
2021 char b[BDEVNAME_SIZE];
2022 struct kobject *ko;
2023 char *s;
2024 int err;
2025
2026 /* prevent duplicates */
2027 if (find_rdev(mddev, rdev->bdev->bd_dev))
2028 return -EEXIST;
2029
2030 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2031 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2032 rdev->sectors < mddev->dev_sectors)) {
2033 if (mddev->pers) {
2034 /* Cannot change size, so fail
2035 * If mddev->level <= 0, then we don't care
2036 * about aligning sizes (e.g. linear)
2037 */
2038 if (mddev->level > 0)
2039 return -ENOSPC;
2040 } else
2041 mddev->dev_sectors = rdev->sectors;
2042 }
2043
2044 /* Verify rdev->desc_nr is unique.
2045 * If it is -1, assign a free number, else
2046 * check number is not in use
2047 */
2048 rcu_read_lock();
2049 if (rdev->desc_nr < 0) {
2050 int choice = 0;
2051 if (mddev->pers)
2052 choice = mddev->raid_disks;
2053 while (md_find_rdev_nr_rcu(mddev, choice))
2054 choice++;
2055 rdev->desc_nr = choice;
2056 } else {
2057 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2058 rcu_read_unlock();
2059 return -EBUSY;
2060 }
2061 }
2062 rcu_read_unlock();
2063 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2064 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2065 mdname(mddev), mddev->max_disks);
2066 return -EBUSY;
2067 }
2068 bdevname(rdev->bdev,b);
2069 while ( (s=strchr(b, '/')) != NULL)
2070 *s = '!';
2071
2072 rdev->mddev = mddev;
2073 printk(KERN_INFO "md: bind<%s>\n", b);
2074
2075 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2076 goto fail;
2077
2078 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2079 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2080 /* failure here is OK */;
2081 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2082
2083 list_add_rcu(&rdev->same_set, &mddev->disks);
2084 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2085
2086 /* May as well allow recovery to be retried once */
2087 mddev->recovery_disabled++;
2088
2089 return 0;
2090
2091 fail:
2092 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2093 b, mdname(mddev));
2094 return err;
2095 }
2096
2097 static void md_delayed_delete(struct work_struct *ws)
2098 {
2099 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2100 kobject_del(&rdev->kobj);
2101 kobject_put(&rdev->kobj);
2102 }
2103
2104 static void unbind_rdev_from_array(struct md_rdev *rdev)
2105 {
2106 char b[BDEVNAME_SIZE];
2107
2108 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2109 list_del_rcu(&rdev->same_set);
2110 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2111 rdev->mddev = NULL;
2112 sysfs_remove_link(&rdev->kobj, "block");
2113 sysfs_put(rdev->sysfs_state);
2114 rdev->sysfs_state = NULL;
2115 rdev->badblocks.count = 0;
2116 /* We need to delay this, otherwise we can deadlock when
2117 * writing to 'remove' to "dev/state". We also need
2118 * to delay it due to rcu usage.
2119 */
2120 synchronize_rcu();
2121 INIT_WORK(&rdev->del_work, md_delayed_delete);
2122 kobject_get(&rdev->kobj);
2123 queue_work(md_misc_wq, &rdev->del_work);
2124 }
2125
2126 /*
2127 * prevent the device from being mounted, repartitioned or
2128 * otherwise reused by a RAID array (or any other kernel
2129 * subsystem), by bd_claiming the device.
2130 */
2131 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2132 {
2133 int err = 0;
2134 struct block_device *bdev;
2135 char b[BDEVNAME_SIZE];
2136
2137 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2138 shared ? (struct md_rdev *)lock_rdev : rdev);
2139 if (IS_ERR(bdev)) {
2140 printk(KERN_ERR "md: could not open %s.\n",
2141 __bdevname(dev, b));
2142 return PTR_ERR(bdev);
2143 }
2144 rdev->bdev = bdev;
2145 return err;
2146 }
2147
2148 static void unlock_rdev(struct md_rdev *rdev)
2149 {
2150 struct block_device *bdev = rdev->bdev;
2151 rdev->bdev = NULL;
2152 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2153 }
2154
2155 void md_autodetect_dev(dev_t dev);
2156
2157 static void export_rdev(struct md_rdev *rdev)
2158 {
2159 char b[BDEVNAME_SIZE];
2160
2161 printk(KERN_INFO "md: export_rdev(%s)\n",
2162 bdevname(rdev->bdev,b));
2163 md_rdev_clear(rdev);
2164 #ifndef MODULE
2165 if (test_bit(AutoDetected, &rdev->flags))
2166 md_autodetect_dev(rdev->bdev->bd_dev);
2167 #endif
2168 unlock_rdev(rdev);
2169 kobject_put(&rdev->kobj);
2170 }
2171
2172 void md_kick_rdev_from_array(struct md_rdev *rdev)
2173 {
2174 unbind_rdev_from_array(rdev);
2175 export_rdev(rdev);
2176 }
2177 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2178
2179 static void export_array(struct mddev *mddev)
2180 {
2181 struct md_rdev *rdev;
2182
2183 while (!list_empty(&mddev->disks)) {
2184 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2185 same_set);
2186 md_kick_rdev_from_array(rdev);
2187 }
2188 mddev->raid_disks = 0;
2189 mddev->major_version = 0;
2190 }
2191
2192 static void sync_sbs(struct mddev *mddev, int nospares)
2193 {
2194 /* Update each superblock (in-memory image), but
2195 * if we are allowed to, skip spares which already
2196 * have the right event counter, or have one earlier
2197 * (which would mean they aren't being marked as dirty
2198 * with the rest of the array)
2199 */
2200 struct md_rdev *rdev;
2201 rdev_for_each(rdev, mddev) {
2202 if (rdev->sb_events == mddev->events ||
2203 (nospares &&
2204 rdev->raid_disk < 0 &&
2205 rdev->sb_events+1 == mddev->events)) {
2206 /* Don't update this superblock */
2207 rdev->sb_loaded = 2;
2208 } else {
2209 sync_super(mddev, rdev);
2210 rdev->sb_loaded = 1;
2211 }
2212 }
2213 }
2214
2215 void md_update_sb(struct mddev *mddev, int force_change)
2216 {
2217 struct md_rdev *rdev;
2218 int sync_req;
2219 int nospares = 0;
2220 int any_badblocks_changed = 0;
2221
2222 if (mddev->ro) {
2223 if (force_change)
2224 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2225 return;
2226 }
2227 repeat:
2228 /* First make sure individual recovery_offsets are correct */
2229 rdev_for_each(rdev, mddev) {
2230 if (rdev->raid_disk >= 0 &&
2231 mddev->delta_disks >= 0 &&
2232 !test_bit(In_sync, &rdev->flags) &&
2233 mddev->curr_resync_completed > rdev->recovery_offset)
2234 rdev->recovery_offset = mddev->curr_resync_completed;
2235
2236 }
2237 if (!mddev->persistent) {
2238 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2239 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2240 if (!mddev->external) {
2241 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2242 rdev_for_each(rdev, mddev) {
2243 if (rdev->badblocks.changed) {
2244 rdev->badblocks.changed = 0;
2245 md_ack_all_badblocks(&rdev->badblocks);
2246 md_error(mddev, rdev);
2247 }
2248 clear_bit(Blocked, &rdev->flags);
2249 clear_bit(BlockedBadBlocks, &rdev->flags);
2250 wake_up(&rdev->blocked_wait);
2251 }
2252 }
2253 wake_up(&mddev->sb_wait);
2254 return;
2255 }
2256
2257 spin_lock(&mddev->lock);
2258
2259 mddev->utime = get_seconds();
2260
2261 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2262 force_change = 1;
2263 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2264 /* just a clean<-> dirty transition, possibly leave spares alone,
2265 * though if events isn't the right even/odd, we will have to do
2266 * spares after all
2267 */
2268 nospares = 1;
2269 if (force_change)
2270 nospares = 0;
2271 if (mddev->degraded)
2272 /* If the array is degraded, then skipping spares is both
2273 * dangerous and fairly pointless.
2274 * Dangerous because a device that was removed from the array
2275 * might have a event_count that still looks up-to-date,
2276 * so it can be re-added without a resync.
2277 * Pointless because if there are any spares to skip,
2278 * then a recovery will happen and soon that array won't
2279 * be degraded any more and the spare can go back to sleep then.
2280 */
2281 nospares = 0;
2282
2283 sync_req = mddev->in_sync;
2284
2285 /* If this is just a dirty<->clean transition, and the array is clean
2286 * and 'events' is odd, we can roll back to the previous clean state */
2287 if (nospares
2288 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2289 && mddev->can_decrease_events
2290 && mddev->events != 1) {
2291 mddev->events--;
2292 mddev->can_decrease_events = 0;
2293 } else {
2294 /* otherwise we have to go forward and ... */
2295 mddev->events ++;
2296 mddev->can_decrease_events = nospares;
2297 }
2298
2299 /*
2300 * This 64-bit counter should never wrap.
2301 * Either we are in around ~1 trillion A.C., assuming
2302 * 1 reboot per second, or we have a bug...
2303 */
2304 WARN_ON(mddev->events == 0);
2305
2306 rdev_for_each(rdev, mddev) {
2307 if (rdev->badblocks.changed)
2308 any_badblocks_changed++;
2309 if (test_bit(Faulty, &rdev->flags))
2310 set_bit(FaultRecorded, &rdev->flags);
2311 }
2312
2313 sync_sbs(mddev, nospares);
2314 spin_unlock(&mddev->lock);
2315
2316 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2317 mdname(mddev), mddev->in_sync);
2318
2319 bitmap_update_sb(mddev->bitmap);
2320 rdev_for_each(rdev, mddev) {
2321 char b[BDEVNAME_SIZE];
2322
2323 if (rdev->sb_loaded != 1)
2324 continue; /* no noise on spare devices */
2325
2326 if (!test_bit(Faulty, &rdev->flags)) {
2327 md_super_write(mddev,rdev,
2328 rdev->sb_start, rdev->sb_size,
2329 rdev->sb_page);
2330 pr_debug("md: (write) %s's sb offset: %llu\n",
2331 bdevname(rdev->bdev, b),
2332 (unsigned long long)rdev->sb_start);
2333 rdev->sb_events = mddev->events;
2334 if (rdev->badblocks.size) {
2335 md_super_write(mddev, rdev,
2336 rdev->badblocks.sector,
2337 rdev->badblocks.size << 9,
2338 rdev->bb_page);
2339 rdev->badblocks.size = 0;
2340 }
2341
2342 } else
2343 pr_debug("md: %s (skipping faulty)\n",
2344 bdevname(rdev->bdev, b));
2345
2346 if (mddev->level == LEVEL_MULTIPATH)
2347 /* only need to write one superblock... */
2348 break;
2349 }
2350 md_super_wait(mddev);
2351 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2352
2353 spin_lock(&mddev->lock);
2354 if (mddev->in_sync != sync_req ||
2355 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2356 /* have to write it out again */
2357 spin_unlock(&mddev->lock);
2358 goto repeat;
2359 }
2360 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2361 spin_unlock(&mddev->lock);
2362 wake_up(&mddev->sb_wait);
2363 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2364 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2365
2366 rdev_for_each(rdev, mddev) {
2367 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2368 clear_bit(Blocked, &rdev->flags);
2369
2370 if (any_badblocks_changed)
2371 md_ack_all_badblocks(&rdev->badblocks);
2372 clear_bit(BlockedBadBlocks, &rdev->flags);
2373 wake_up(&rdev->blocked_wait);
2374 }
2375 }
2376 EXPORT_SYMBOL(md_update_sb);
2377
2378 /* words written to sysfs files may, or may not, be \n terminated.
2379 * We want to accept with case. For this we use cmd_match.
2380 */
2381 static int cmd_match(const char *cmd, const char *str)
2382 {
2383 /* See if cmd, written into a sysfs file, matches
2384 * str. They must either be the same, or cmd can
2385 * have a trailing newline
2386 */
2387 while (*cmd && *str && *cmd == *str) {
2388 cmd++;
2389 str++;
2390 }
2391 if (*cmd == '\n')
2392 cmd++;
2393 if (*str || *cmd)
2394 return 0;
2395 return 1;
2396 }
2397
2398 struct rdev_sysfs_entry {
2399 struct attribute attr;
2400 ssize_t (*show)(struct md_rdev *, char *);
2401 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2402 };
2403
2404 static ssize_t
2405 state_show(struct md_rdev *rdev, char *page)
2406 {
2407 char *sep = "";
2408 size_t len = 0;
2409 unsigned long flags = ACCESS_ONCE(rdev->flags);
2410
2411 if (test_bit(Faulty, &flags) ||
2412 rdev->badblocks.unacked_exist) {
2413 len+= sprintf(page+len, "%sfaulty",sep);
2414 sep = ",";
2415 }
2416 if (test_bit(In_sync, &flags)) {
2417 len += sprintf(page+len, "%sin_sync",sep);
2418 sep = ",";
2419 }
2420 if (test_bit(WriteMostly, &flags)) {
2421 len += sprintf(page+len, "%swrite_mostly",sep);
2422 sep = ",";
2423 }
2424 if (test_bit(Blocked, &flags) ||
2425 (rdev->badblocks.unacked_exist
2426 && !test_bit(Faulty, &flags))) {
2427 len += sprintf(page+len, "%sblocked", sep);
2428 sep = ",";
2429 }
2430 if (!test_bit(Faulty, &flags) &&
2431 !test_bit(In_sync, &flags)) {
2432 len += sprintf(page+len, "%sspare", sep);
2433 sep = ",";
2434 }
2435 if (test_bit(WriteErrorSeen, &flags)) {
2436 len += sprintf(page+len, "%swrite_error", sep);
2437 sep = ",";
2438 }
2439 if (test_bit(WantReplacement, &flags)) {
2440 len += sprintf(page+len, "%swant_replacement", sep);
2441 sep = ",";
2442 }
2443 if (test_bit(Replacement, &flags)) {
2444 len += sprintf(page+len, "%sreplacement", sep);
2445 sep = ",";
2446 }
2447
2448 return len+sprintf(page+len, "\n");
2449 }
2450
2451 static ssize_t
2452 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2453 {
2454 /* can write
2455 * faulty - simulates an error
2456 * remove - disconnects the device
2457 * writemostly - sets write_mostly
2458 * -writemostly - clears write_mostly
2459 * blocked - sets the Blocked flags
2460 * -blocked - clears the Blocked and possibly simulates an error
2461 * insync - sets Insync providing device isn't active
2462 * -insync - clear Insync for a device with a slot assigned,
2463 * so that it gets rebuilt based on bitmap
2464 * write_error - sets WriteErrorSeen
2465 * -write_error - clears WriteErrorSeen
2466 */
2467 int err = -EINVAL;
2468 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2469 md_error(rdev->mddev, rdev);
2470 if (test_bit(Faulty, &rdev->flags))
2471 err = 0;
2472 else
2473 err = -EBUSY;
2474 } else if (cmd_match(buf, "remove")) {
2475 if (rdev->raid_disk >= 0)
2476 err = -EBUSY;
2477 else {
2478 struct mddev *mddev = rdev->mddev;
2479 if (mddev_is_clustered(mddev))
2480 md_cluster_ops->remove_disk(mddev, rdev);
2481 md_kick_rdev_from_array(rdev);
2482 if (mddev_is_clustered(mddev))
2483 md_cluster_ops->metadata_update_start(mddev);
2484 if (mddev->pers)
2485 md_update_sb(mddev, 1);
2486 md_new_event(mddev);
2487 if (mddev_is_clustered(mddev))
2488 md_cluster_ops->metadata_update_finish(mddev);
2489 err = 0;
2490 }
2491 } else if (cmd_match(buf, "writemostly")) {
2492 set_bit(WriteMostly, &rdev->flags);
2493 err = 0;
2494 } else if (cmd_match(buf, "-writemostly")) {
2495 clear_bit(WriteMostly, &rdev->flags);
2496 err = 0;
2497 } else if (cmd_match(buf, "blocked")) {
2498 set_bit(Blocked, &rdev->flags);
2499 err = 0;
2500 } else if (cmd_match(buf, "-blocked")) {
2501 if (!test_bit(Faulty, &rdev->flags) &&
2502 rdev->badblocks.unacked_exist) {
2503 /* metadata handler doesn't understand badblocks,
2504 * so we need to fail the device
2505 */
2506 md_error(rdev->mddev, rdev);
2507 }
2508 clear_bit(Blocked, &rdev->flags);
2509 clear_bit(BlockedBadBlocks, &rdev->flags);
2510 wake_up(&rdev->blocked_wait);
2511 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2512 md_wakeup_thread(rdev->mddev->thread);
2513
2514 err = 0;
2515 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2516 set_bit(In_sync, &rdev->flags);
2517 err = 0;
2518 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2519 if (rdev->mddev->pers == NULL) {
2520 clear_bit(In_sync, &rdev->flags);
2521 rdev->saved_raid_disk = rdev->raid_disk;
2522 rdev->raid_disk = -1;
2523 err = 0;
2524 }
2525 } else if (cmd_match(buf, "write_error")) {
2526 set_bit(WriteErrorSeen, &rdev->flags);
2527 err = 0;
2528 } else if (cmd_match(buf, "-write_error")) {
2529 clear_bit(WriteErrorSeen, &rdev->flags);
2530 err = 0;
2531 } else if (cmd_match(buf, "want_replacement")) {
2532 /* Any non-spare device that is not a replacement can
2533 * become want_replacement at any time, but we then need to
2534 * check if recovery is needed.
2535 */
2536 if (rdev->raid_disk >= 0 &&
2537 !test_bit(Replacement, &rdev->flags))
2538 set_bit(WantReplacement, &rdev->flags);
2539 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2540 md_wakeup_thread(rdev->mddev->thread);
2541 err = 0;
2542 } else if (cmd_match(buf, "-want_replacement")) {
2543 /* Clearing 'want_replacement' is always allowed.
2544 * Once replacements starts it is too late though.
2545 */
2546 err = 0;
2547 clear_bit(WantReplacement, &rdev->flags);
2548 } else if (cmd_match(buf, "replacement")) {
2549 /* Can only set a device as a replacement when array has not
2550 * yet been started. Once running, replacement is automatic
2551 * from spares, or by assigning 'slot'.
2552 */
2553 if (rdev->mddev->pers)
2554 err = -EBUSY;
2555 else {
2556 set_bit(Replacement, &rdev->flags);
2557 err = 0;
2558 }
2559 } else if (cmd_match(buf, "-replacement")) {
2560 /* Similarly, can only clear Replacement before start */
2561 if (rdev->mddev->pers)
2562 err = -EBUSY;
2563 else {
2564 clear_bit(Replacement, &rdev->flags);
2565 err = 0;
2566 }
2567 }
2568 if (!err)
2569 sysfs_notify_dirent_safe(rdev->sysfs_state);
2570 return err ? err : len;
2571 }
2572 static struct rdev_sysfs_entry rdev_state =
2573 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2574
2575 static ssize_t
2576 errors_show(struct md_rdev *rdev, char *page)
2577 {
2578 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2579 }
2580
2581 static ssize_t
2582 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2583 {
2584 char *e;
2585 unsigned long n = simple_strtoul(buf, &e, 10);
2586 if (*buf && (*e == 0 || *e == '\n')) {
2587 atomic_set(&rdev->corrected_errors, n);
2588 return len;
2589 }
2590 return -EINVAL;
2591 }
2592 static struct rdev_sysfs_entry rdev_errors =
2593 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2594
2595 static ssize_t
2596 slot_show(struct md_rdev *rdev, char *page)
2597 {
2598 if (rdev->raid_disk < 0)
2599 return sprintf(page, "none\n");
2600 else
2601 return sprintf(page, "%d\n", rdev->raid_disk);
2602 }
2603
2604 static ssize_t
2605 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2606 {
2607 char *e;
2608 int err;
2609 int slot = simple_strtoul(buf, &e, 10);
2610 if (strncmp(buf, "none", 4)==0)
2611 slot = -1;
2612 else if (e==buf || (*e && *e!= '\n'))
2613 return -EINVAL;
2614 if (rdev->mddev->pers && slot == -1) {
2615 /* Setting 'slot' on an active array requires also
2616 * updating the 'rd%d' link, and communicating
2617 * with the personality with ->hot_*_disk.
2618 * For now we only support removing
2619 * failed/spare devices. This normally happens automatically,
2620 * but not when the metadata is externally managed.
2621 */
2622 if (rdev->raid_disk == -1)
2623 return -EEXIST;
2624 /* personality does all needed checks */
2625 if (rdev->mddev->pers->hot_remove_disk == NULL)
2626 return -EINVAL;
2627 clear_bit(Blocked, &rdev->flags);
2628 remove_and_add_spares(rdev->mddev, rdev);
2629 if (rdev->raid_disk >= 0)
2630 return -EBUSY;
2631 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2632 md_wakeup_thread(rdev->mddev->thread);
2633 } else if (rdev->mddev->pers) {
2634 /* Activating a spare .. or possibly reactivating
2635 * if we ever get bitmaps working here.
2636 */
2637
2638 if (rdev->raid_disk != -1)
2639 return -EBUSY;
2640
2641 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2642 return -EBUSY;
2643
2644 if (rdev->mddev->pers->hot_add_disk == NULL)
2645 return -EINVAL;
2646
2647 if (slot >= rdev->mddev->raid_disks &&
2648 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2649 return -ENOSPC;
2650
2651 rdev->raid_disk = slot;
2652 if (test_bit(In_sync, &rdev->flags))
2653 rdev->saved_raid_disk = slot;
2654 else
2655 rdev->saved_raid_disk = -1;
2656 clear_bit(In_sync, &rdev->flags);
2657 clear_bit(Bitmap_sync, &rdev->flags);
2658 err = rdev->mddev->pers->
2659 hot_add_disk(rdev->mddev, rdev);
2660 if (err) {
2661 rdev->raid_disk = -1;
2662 return err;
2663 } else
2664 sysfs_notify_dirent_safe(rdev->sysfs_state);
2665 if (sysfs_link_rdev(rdev->mddev, rdev))
2666 /* failure here is OK */;
2667 /* don't wakeup anyone, leave that to userspace. */
2668 } else {
2669 if (slot >= rdev->mddev->raid_disks &&
2670 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2671 return -ENOSPC;
2672 rdev->raid_disk = slot;
2673 /* assume it is working */
2674 clear_bit(Faulty, &rdev->flags);
2675 clear_bit(WriteMostly, &rdev->flags);
2676 set_bit(In_sync, &rdev->flags);
2677 sysfs_notify_dirent_safe(rdev->sysfs_state);
2678 }
2679 return len;
2680 }
2681
2682 static struct rdev_sysfs_entry rdev_slot =
2683 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2684
2685 static ssize_t
2686 offset_show(struct md_rdev *rdev, char *page)
2687 {
2688 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2689 }
2690
2691 static ssize_t
2692 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2693 {
2694 unsigned long long offset;
2695 if (kstrtoull(buf, 10, &offset) < 0)
2696 return -EINVAL;
2697 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2698 return -EBUSY;
2699 if (rdev->sectors && rdev->mddev->external)
2700 /* Must set offset before size, so overlap checks
2701 * can be sane */
2702 return -EBUSY;
2703 rdev->data_offset = offset;
2704 rdev->new_data_offset = offset;
2705 return len;
2706 }
2707
2708 static struct rdev_sysfs_entry rdev_offset =
2709 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2710
2711 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2712 {
2713 return sprintf(page, "%llu\n",
2714 (unsigned long long)rdev->new_data_offset);
2715 }
2716
2717 static ssize_t new_offset_store(struct md_rdev *rdev,
2718 const char *buf, size_t len)
2719 {
2720 unsigned long long new_offset;
2721 struct mddev *mddev = rdev->mddev;
2722
2723 if (kstrtoull(buf, 10, &new_offset) < 0)
2724 return -EINVAL;
2725
2726 if (mddev->sync_thread ||
2727 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2728 return -EBUSY;
2729 if (new_offset == rdev->data_offset)
2730 /* reset is always permitted */
2731 ;
2732 else if (new_offset > rdev->data_offset) {
2733 /* must not push array size beyond rdev_sectors */
2734 if (new_offset - rdev->data_offset
2735 + mddev->dev_sectors > rdev->sectors)
2736 return -E2BIG;
2737 }
2738 /* Metadata worries about other space details. */
2739
2740 /* decreasing the offset is inconsistent with a backwards
2741 * reshape.
2742 */
2743 if (new_offset < rdev->data_offset &&
2744 mddev->reshape_backwards)
2745 return -EINVAL;
2746 /* Increasing offset is inconsistent with forwards
2747 * reshape. reshape_direction should be set to
2748 * 'backwards' first.
2749 */
2750 if (new_offset > rdev->data_offset &&
2751 !mddev->reshape_backwards)
2752 return -EINVAL;
2753
2754 if (mddev->pers && mddev->persistent &&
2755 !super_types[mddev->major_version]
2756 .allow_new_offset(rdev, new_offset))
2757 return -E2BIG;
2758 rdev->new_data_offset = new_offset;
2759 if (new_offset > rdev->data_offset)
2760 mddev->reshape_backwards = 1;
2761 else if (new_offset < rdev->data_offset)
2762 mddev->reshape_backwards = 0;
2763
2764 return len;
2765 }
2766 static struct rdev_sysfs_entry rdev_new_offset =
2767 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2768
2769 static ssize_t
2770 rdev_size_show(struct md_rdev *rdev, char *page)
2771 {
2772 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2773 }
2774
2775 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2776 {
2777 /* check if two start/length pairs overlap */
2778 if (s1+l1 <= s2)
2779 return 0;
2780 if (s2+l2 <= s1)
2781 return 0;
2782 return 1;
2783 }
2784
2785 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2786 {
2787 unsigned long long blocks;
2788 sector_t new;
2789
2790 if (kstrtoull(buf, 10, &blocks) < 0)
2791 return -EINVAL;
2792
2793 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2794 return -EINVAL; /* sector conversion overflow */
2795
2796 new = blocks * 2;
2797 if (new != blocks * 2)
2798 return -EINVAL; /* unsigned long long to sector_t overflow */
2799
2800 *sectors = new;
2801 return 0;
2802 }
2803
2804 static ssize_t
2805 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2806 {
2807 struct mddev *my_mddev = rdev->mddev;
2808 sector_t oldsectors = rdev->sectors;
2809 sector_t sectors;
2810
2811 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2812 return -EINVAL;
2813 if (rdev->data_offset != rdev->new_data_offset)
2814 return -EINVAL; /* too confusing */
2815 if (my_mddev->pers && rdev->raid_disk >= 0) {
2816 if (my_mddev->persistent) {
2817 sectors = super_types[my_mddev->major_version].
2818 rdev_size_change(rdev, sectors);
2819 if (!sectors)
2820 return -EBUSY;
2821 } else if (!sectors)
2822 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2823 rdev->data_offset;
2824 if (!my_mddev->pers->resize)
2825 /* Cannot change size for RAID0 or Linear etc */
2826 return -EINVAL;
2827 }
2828 if (sectors < my_mddev->dev_sectors)
2829 return -EINVAL; /* component must fit device */
2830
2831 rdev->sectors = sectors;
2832 if (sectors > oldsectors && my_mddev->external) {
2833 /* Need to check that all other rdevs with the same
2834 * ->bdev do not overlap. 'rcu' is sufficient to walk
2835 * the rdev lists safely.
2836 * This check does not provide a hard guarantee, it
2837 * just helps avoid dangerous mistakes.
2838 */
2839 struct mddev *mddev;
2840 int overlap = 0;
2841 struct list_head *tmp;
2842
2843 rcu_read_lock();
2844 for_each_mddev(mddev, tmp) {
2845 struct md_rdev *rdev2;
2846
2847 rdev_for_each(rdev2, mddev)
2848 if (rdev->bdev == rdev2->bdev &&
2849 rdev != rdev2 &&
2850 overlaps(rdev->data_offset, rdev->sectors,
2851 rdev2->data_offset,
2852 rdev2->sectors)) {
2853 overlap = 1;
2854 break;
2855 }
2856 if (overlap) {
2857 mddev_put(mddev);
2858 break;
2859 }
2860 }
2861 rcu_read_unlock();
2862 if (overlap) {
2863 /* Someone else could have slipped in a size
2864 * change here, but doing so is just silly.
2865 * We put oldsectors back because we *know* it is
2866 * safe, and trust userspace not to race with
2867 * itself
2868 */
2869 rdev->sectors = oldsectors;
2870 return -EBUSY;
2871 }
2872 }
2873 return len;
2874 }
2875
2876 static struct rdev_sysfs_entry rdev_size =
2877 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2878
2879 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2880 {
2881 unsigned long long recovery_start = rdev->recovery_offset;
2882
2883 if (test_bit(In_sync, &rdev->flags) ||
2884 recovery_start == MaxSector)
2885 return sprintf(page, "none\n");
2886
2887 return sprintf(page, "%llu\n", recovery_start);
2888 }
2889
2890 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2891 {
2892 unsigned long long recovery_start;
2893
2894 if (cmd_match(buf, "none"))
2895 recovery_start = MaxSector;
2896 else if (kstrtoull(buf, 10, &recovery_start))
2897 return -EINVAL;
2898
2899 if (rdev->mddev->pers &&
2900 rdev->raid_disk >= 0)
2901 return -EBUSY;
2902
2903 rdev->recovery_offset = recovery_start;
2904 if (recovery_start == MaxSector)
2905 set_bit(In_sync, &rdev->flags);
2906 else
2907 clear_bit(In_sync, &rdev->flags);
2908 return len;
2909 }
2910
2911 static struct rdev_sysfs_entry rdev_recovery_start =
2912 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2913
2914 static ssize_t
2915 badblocks_show(struct badblocks *bb, char *page, int unack);
2916 static ssize_t
2917 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2918
2919 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2920 {
2921 return badblocks_show(&rdev->badblocks, page, 0);
2922 }
2923 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2924 {
2925 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2926 /* Maybe that ack was all we needed */
2927 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2928 wake_up(&rdev->blocked_wait);
2929 return rv;
2930 }
2931 static struct rdev_sysfs_entry rdev_bad_blocks =
2932 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2933
2934 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2935 {
2936 return badblocks_show(&rdev->badblocks, page, 1);
2937 }
2938 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2939 {
2940 return badblocks_store(&rdev->badblocks, page, len, 1);
2941 }
2942 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2943 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2944
2945 static struct attribute *rdev_default_attrs[] = {
2946 &rdev_state.attr,
2947 &rdev_errors.attr,
2948 &rdev_slot.attr,
2949 &rdev_offset.attr,
2950 &rdev_new_offset.attr,
2951 &rdev_size.attr,
2952 &rdev_recovery_start.attr,
2953 &rdev_bad_blocks.attr,
2954 &rdev_unack_bad_blocks.attr,
2955 NULL,
2956 };
2957 static ssize_t
2958 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2959 {
2960 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2961 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2962
2963 if (!entry->show)
2964 return -EIO;
2965 if (!rdev->mddev)
2966 return -EBUSY;
2967 return entry->show(rdev, page);
2968 }
2969
2970 static ssize_t
2971 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2972 const char *page, size_t length)
2973 {
2974 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2975 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2976 ssize_t rv;
2977 struct mddev *mddev = rdev->mddev;
2978
2979 if (!entry->store)
2980 return -EIO;
2981 if (!capable(CAP_SYS_ADMIN))
2982 return -EACCES;
2983 rv = mddev ? mddev_lock(mddev): -EBUSY;
2984 if (!rv) {
2985 if (rdev->mddev == NULL)
2986 rv = -EBUSY;
2987 else
2988 rv = entry->store(rdev, page, length);
2989 mddev_unlock(mddev);
2990 }
2991 return rv;
2992 }
2993
2994 static void rdev_free(struct kobject *ko)
2995 {
2996 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2997 kfree(rdev);
2998 }
2999 static const struct sysfs_ops rdev_sysfs_ops = {
3000 .show = rdev_attr_show,
3001 .store = rdev_attr_store,
3002 };
3003 static struct kobj_type rdev_ktype = {
3004 .release = rdev_free,
3005 .sysfs_ops = &rdev_sysfs_ops,
3006 .default_attrs = rdev_default_attrs,
3007 };
3008
3009 int md_rdev_init(struct md_rdev *rdev)
3010 {
3011 rdev->desc_nr = -1;
3012 rdev->saved_raid_disk = -1;
3013 rdev->raid_disk = -1;
3014 rdev->flags = 0;
3015 rdev->data_offset = 0;
3016 rdev->new_data_offset = 0;
3017 rdev->sb_events = 0;
3018 rdev->last_read_error.tv_sec = 0;
3019 rdev->last_read_error.tv_nsec = 0;
3020 rdev->sb_loaded = 0;
3021 rdev->bb_page = NULL;
3022 atomic_set(&rdev->nr_pending, 0);
3023 atomic_set(&rdev->read_errors, 0);
3024 atomic_set(&rdev->corrected_errors, 0);
3025
3026 INIT_LIST_HEAD(&rdev->same_set);
3027 init_waitqueue_head(&rdev->blocked_wait);
3028
3029 /* Add space to store bad block list.
3030 * This reserves the space even on arrays where it cannot
3031 * be used - I wonder if that matters
3032 */
3033 rdev->badblocks.count = 0;
3034 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3035 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3036 seqlock_init(&rdev->badblocks.lock);
3037 if (rdev->badblocks.page == NULL)
3038 return -ENOMEM;
3039
3040 return 0;
3041 }
3042 EXPORT_SYMBOL_GPL(md_rdev_init);
3043 /*
3044 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3045 *
3046 * mark the device faulty if:
3047 *
3048 * - the device is nonexistent (zero size)
3049 * - the device has no valid superblock
3050 *
3051 * a faulty rdev _never_ has rdev->sb set.
3052 */
3053 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3054 {
3055 char b[BDEVNAME_SIZE];
3056 int err;
3057 struct md_rdev *rdev;
3058 sector_t size;
3059
3060 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3061 if (!rdev) {
3062 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3063 return ERR_PTR(-ENOMEM);
3064 }
3065
3066 err = md_rdev_init(rdev);
3067 if (err)
3068 goto abort_free;
3069 err = alloc_disk_sb(rdev);
3070 if (err)
3071 goto abort_free;
3072
3073 err = lock_rdev(rdev, newdev, super_format == -2);
3074 if (err)
3075 goto abort_free;
3076
3077 kobject_init(&rdev->kobj, &rdev_ktype);
3078
3079 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3080 if (!size) {
3081 printk(KERN_WARNING
3082 "md: %s has zero or unknown size, marking faulty!\n",
3083 bdevname(rdev->bdev,b));
3084 err = -EINVAL;
3085 goto abort_free;
3086 }
3087
3088 if (super_format >= 0) {
3089 err = super_types[super_format].
3090 load_super(rdev, NULL, super_minor);
3091 if (err == -EINVAL) {
3092 printk(KERN_WARNING
3093 "md: %s does not have a valid v%d.%d "
3094 "superblock, not importing!\n",
3095 bdevname(rdev->bdev,b),
3096 super_format, super_minor);
3097 goto abort_free;
3098 }
3099 if (err < 0) {
3100 printk(KERN_WARNING
3101 "md: could not read %s's sb, not importing!\n",
3102 bdevname(rdev->bdev,b));
3103 goto abort_free;
3104 }
3105 }
3106
3107 return rdev;
3108
3109 abort_free:
3110 if (rdev->bdev)
3111 unlock_rdev(rdev);
3112 md_rdev_clear(rdev);
3113 kfree(rdev);
3114 return ERR_PTR(err);
3115 }
3116
3117 /*
3118 * Check a full RAID array for plausibility
3119 */
3120
3121 static void analyze_sbs(struct mddev *mddev)
3122 {
3123 int i;
3124 struct md_rdev *rdev, *freshest, *tmp;
3125 char b[BDEVNAME_SIZE];
3126
3127 freshest = NULL;
3128 rdev_for_each_safe(rdev, tmp, mddev)
3129 switch (super_types[mddev->major_version].
3130 load_super(rdev, freshest, mddev->minor_version)) {
3131 case 1:
3132 freshest = rdev;
3133 break;
3134 case 0:
3135 break;
3136 default:
3137 printk( KERN_ERR \
3138 "md: fatal superblock inconsistency in %s"
3139 " -- removing from array\n",
3140 bdevname(rdev->bdev,b));
3141 md_kick_rdev_from_array(rdev);
3142 }
3143
3144 super_types[mddev->major_version].
3145 validate_super(mddev, freshest);
3146
3147 i = 0;
3148 rdev_for_each_safe(rdev, tmp, mddev) {
3149 if (mddev->max_disks &&
3150 (rdev->desc_nr >= mddev->max_disks ||
3151 i > mddev->max_disks)) {
3152 printk(KERN_WARNING
3153 "md: %s: %s: only %d devices permitted\n",
3154 mdname(mddev), bdevname(rdev->bdev, b),
3155 mddev->max_disks);
3156 md_kick_rdev_from_array(rdev);
3157 continue;
3158 }
3159 if (rdev != freshest) {
3160 if (super_types[mddev->major_version].
3161 validate_super(mddev, rdev)) {
3162 printk(KERN_WARNING "md: kicking non-fresh %s"
3163 " from array!\n",
3164 bdevname(rdev->bdev,b));
3165 md_kick_rdev_from_array(rdev);
3166 continue;
3167 }
3168 /* No device should have a Candidate flag
3169 * when reading devices
3170 */
3171 if (test_bit(Candidate, &rdev->flags)) {
3172 pr_info("md: kicking Cluster Candidate %s from array!\n",
3173 bdevname(rdev->bdev, b));
3174 md_kick_rdev_from_array(rdev);
3175 }
3176 }
3177 if (mddev->level == LEVEL_MULTIPATH) {
3178 rdev->desc_nr = i++;
3179 rdev->raid_disk = rdev->desc_nr;
3180 set_bit(In_sync, &rdev->flags);
3181 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3182 rdev->raid_disk = -1;
3183 clear_bit(In_sync, &rdev->flags);
3184 }
3185 }
3186 }
3187
3188 /* Read a fixed-point number.
3189 * Numbers in sysfs attributes should be in "standard" units where
3190 * possible, so time should be in seconds.
3191 * However we internally use a a much smaller unit such as
3192 * milliseconds or jiffies.
3193 * This function takes a decimal number with a possible fractional
3194 * component, and produces an integer which is the result of
3195 * multiplying that number by 10^'scale'.
3196 * all without any floating-point arithmetic.
3197 */
3198 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3199 {
3200 unsigned long result = 0;
3201 long decimals = -1;
3202 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3203 if (*cp == '.')
3204 decimals = 0;
3205 else if (decimals < scale) {
3206 unsigned int value;
3207 value = *cp - '0';
3208 result = result * 10 + value;
3209 if (decimals >= 0)
3210 decimals++;
3211 }
3212 cp++;
3213 }
3214 if (*cp == '\n')
3215 cp++;
3216 if (*cp)
3217 return -EINVAL;
3218 if (decimals < 0)
3219 decimals = 0;
3220 while (decimals < scale) {
3221 result *= 10;
3222 decimals ++;
3223 }
3224 *res = result;
3225 return 0;
3226 }
3227
3228 static void md_safemode_timeout(unsigned long data);
3229
3230 static ssize_t
3231 safe_delay_show(struct mddev *mddev, char *page)
3232 {
3233 int msec = (mddev->safemode_delay*1000)/HZ;
3234 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3235 }
3236 static ssize_t
3237 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3238 {
3239 unsigned long msec;
3240
3241 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3242 return -EINVAL;
3243 if (msec == 0)
3244 mddev->safemode_delay = 0;
3245 else {
3246 unsigned long old_delay = mddev->safemode_delay;
3247 unsigned long new_delay = (msec*HZ)/1000;
3248
3249 if (new_delay == 0)
3250 new_delay = 1;
3251 mddev->safemode_delay = new_delay;
3252 if (new_delay < old_delay || old_delay == 0)
3253 mod_timer(&mddev->safemode_timer, jiffies+1);
3254 }
3255 return len;
3256 }
3257 static struct md_sysfs_entry md_safe_delay =
3258 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3259
3260 static ssize_t
3261 level_show(struct mddev *mddev, char *page)
3262 {
3263 struct md_personality *p;
3264 int ret;
3265 spin_lock(&mddev->lock);
3266 p = mddev->pers;
3267 if (p)
3268 ret = sprintf(page, "%s\n", p->name);
3269 else if (mddev->clevel[0])
3270 ret = sprintf(page, "%s\n", mddev->clevel);
3271 else if (mddev->level != LEVEL_NONE)
3272 ret = sprintf(page, "%d\n", mddev->level);
3273 else
3274 ret = 0;
3275 spin_unlock(&mddev->lock);
3276 return ret;
3277 }
3278
3279 static ssize_t
3280 level_store(struct mddev *mddev, const char *buf, size_t len)
3281 {
3282 char clevel[16];
3283 ssize_t rv;
3284 size_t slen = len;
3285 struct md_personality *pers, *oldpers;
3286 long level;
3287 void *priv, *oldpriv;
3288 struct md_rdev *rdev;
3289
3290 if (slen == 0 || slen >= sizeof(clevel))
3291 return -EINVAL;
3292
3293 rv = mddev_lock(mddev);
3294 if (rv)
3295 return rv;
3296
3297 if (mddev->pers == NULL) {
3298 strncpy(mddev->clevel, buf, slen);
3299 if (mddev->clevel[slen-1] == '\n')
3300 slen--;
3301 mddev->clevel[slen] = 0;
3302 mddev->level = LEVEL_NONE;
3303 rv = len;
3304 goto out_unlock;
3305 }
3306 rv = -EROFS;
3307 if (mddev->ro)
3308 goto out_unlock;
3309
3310 /* request to change the personality. Need to ensure:
3311 * - array is not engaged in resync/recovery/reshape
3312 * - old personality can be suspended
3313 * - new personality will access other array.
3314 */
3315
3316 rv = -EBUSY;
3317 if (mddev->sync_thread ||
3318 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3319 mddev->reshape_position != MaxSector ||
3320 mddev->sysfs_active)
3321 goto out_unlock;
3322
3323 rv = -EINVAL;
3324 if (!mddev->pers->quiesce) {
3325 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3326 mdname(mddev), mddev->pers->name);
3327 goto out_unlock;
3328 }
3329
3330 /* Now find the new personality */
3331 strncpy(clevel, buf, slen);
3332 if (clevel[slen-1] == '\n')
3333 slen--;
3334 clevel[slen] = 0;
3335 if (kstrtol(clevel, 10, &level))
3336 level = LEVEL_NONE;
3337
3338 if (request_module("md-%s", clevel) != 0)
3339 request_module("md-level-%s", clevel);
3340 spin_lock(&pers_lock);
3341 pers = find_pers(level, clevel);
3342 if (!pers || !try_module_get(pers->owner)) {
3343 spin_unlock(&pers_lock);
3344 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3345 rv = -EINVAL;
3346 goto out_unlock;
3347 }
3348 spin_unlock(&pers_lock);
3349
3350 if (pers == mddev->pers) {
3351 /* Nothing to do! */
3352 module_put(pers->owner);
3353 rv = len;
3354 goto out_unlock;
3355 }
3356 if (!pers->takeover) {
3357 module_put(pers->owner);
3358 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3359 mdname(mddev), clevel);
3360 rv = -EINVAL;
3361 goto out_unlock;
3362 }
3363
3364 rdev_for_each(rdev, mddev)
3365 rdev->new_raid_disk = rdev->raid_disk;
3366
3367 /* ->takeover must set new_* and/or delta_disks
3368 * if it succeeds, and may set them when it fails.
3369 */
3370 priv = pers->takeover(mddev);
3371 if (IS_ERR(priv)) {
3372 mddev->new_level = mddev->level;
3373 mddev->new_layout = mddev->layout;
3374 mddev->new_chunk_sectors = mddev->chunk_sectors;
3375 mddev->raid_disks -= mddev->delta_disks;
3376 mddev->delta_disks = 0;
3377 mddev->reshape_backwards = 0;
3378 module_put(pers->owner);
3379 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3380 mdname(mddev), clevel);
3381 rv = PTR_ERR(priv);
3382 goto out_unlock;
3383 }
3384
3385 /* Looks like we have a winner */
3386 mddev_suspend(mddev);
3387 mddev_detach(mddev);
3388
3389 spin_lock(&mddev->lock);
3390 oldpers = mddev->pers;
3391 oldpriv = mddev->private;
3392 mddev->pers = pers;
3393 mddev->private = priv;
3394 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3395 mddev->level = mddev->new_level;
3396 mddev->layout = mddev->new_layout;
3397 mddev->chunk_sectors = mddev->new_chunk_sectors;
3398 mddev->delta_disks = 0;
3399 mddev->reshape_backwards = 0;
3400 mddev->degraded = 0;
3401 spin_unlock(&mddev->lock);
3402
3403 if (oldpers->sync_request == NULL &&
3404 mddev->external) {
3405 /* We are converting from a no-redundancy array
3406 * to a redundancy array and metadata is managed
3407 * externally so we need to be sure that writes
3408 * won't block due to a need to transition
3409 * clean->dirty
3410 * until external management is started.
3411 */
3412 mddev->in_sync = 0;
3413 mddev->safemode_delay = 0;
3414 mddev->safemode = 0;
3415 }
3416
3417 oldpers->free(mddev, oldpriv);
3418
3419 if (oldpers->sync_request == NULL &&
3420 pers->sync_request != NULL) {
3421 /* need to add the md_redundancy_group */
3422 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3423 printk(KERN_WARNING
3424 "md: cannot register extra attributes for %s\n",
3425 mdname(mddev));
3426 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3427 }
3428 if (oldpers->sync_request != NULL &&
3429 pers->sync_request == NULL) {
3430 /* need to remove the md_redundancy_group */
3431 if (mddev->to_remove == NULL)
3432 mddev->to_remove = &md_redundancy_group;
3433 }
3434
3435 rdev_for_each(rdev, mddev) {
3436 if (rdev->raid_disk < 0)
3437 continue;
3438 if (rdev->new_raid_disk >= mddev->raid_disks)
3439 rdev->new_raid_disk = -1;
3440 if (rdev->new_raid_disk == rdev->raid_disk)
3441 continue;
3442 sysfs_unlink_rdev(mddev, rdev);
3443 }
3444 rdev_for_each(rdev, mddev) {
3445 if (rdev->raid_disk < 0)
3446 continue;
3447 if (rdev->new_raid_disk == rdev->raid_disk)
3448 continue;
3449 rdev->raid_disk = rdev->new_raid_disk;
3450 if (rdev->raid_disk < 0)
3451 clear_bit(In_sync, &rdev->flags);
3452 else {
3453 if (sysfs_link_rdev(mddev, rdev))
3454 printk(KERN_WARNING "md: cannot register rd%d"
3455 " for %s after level change\n",
3456 rdev->raid_disk, mdname(mddev));
3457 }
3458 }
3459
3460 if (pers->sync_request == NULL) {
3461 /* this is now an array without redundancy, so
3462 * it must always be in_sync
3463 */
3464 mddev->in_sync = 1;
3465 del_timer_sync(&mddev->safemode_timer);
3466 }
3467 blk_set_stacking_limits(&mddev->queue->limits);
3468 pers->run(mddev);
3469 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3470 mddev_resume(mddev);
3471 if (!mddev->thread)
3472 md_update_sb(mddev, 1);
3473 sysfs_notify(&mddev->kobj, NULL, "level");
3474 md_new_event(mddev);
3475 rv = len;
3476 out_unlock:
3477 mddev_unlock(mddev);
3478 return rv;
3479 }
3480
3481 static struct md_sysfs_entry md_level =
3482 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3483
3484 static ssize_t
3485 layout_show(struct mddev *mddev, char *page)
3486 {
3487 /* just a number, not meaningful for all levels */
3488 if (mddev->reshape_position != MaxSector &&
3489 mddev->layout != mddev->new_layout)
3490 return sprintf(page, "%d (%d)\n",
3491 mddev->new_layout, mddev->layout);
3492 return sprintf(page, "%d\n", mddev->layout);
3493 }
3494
3495 static ssize_t
3496 layout_store(struct mddev *mddev, const char *buf, size_t len)
3497 {
3498 char *e;
3499 unsigned long n = simple_strtoul(buf, &e, 10);
3500 int err;
3501
3502 if (!*buf || (*e && *e != '\n'))
3503 return -EINVAL;
3504 err = mddev_lock(mddev);
3505 if (err)
3506 return err;
3507
3508 if (mddev->pers) {
3509 if (mddev->pers->check_reshape == NULL)
3510 err = -EBUSY;
3511 else if (mddev->ro)
3512 err = -EROFS;
3513 else {
3514 mddev->new_layout = n;
3515 err = mddev->pers->check_reshape(mddev);
3516 if (err)
3517 mddev->new_layout = mddev->layout;
3518 }
3519 } else {
3520 mddev->new_layout = n;
3521 if (mddev->reshape_position == MaxSector)
3522 mddev->layout = n;
3523 }
3524 mddev_unlock(mddev);
3525 return err ?: len;
3526 }
3527 static struct md_sysfs_entry md_layout =
3528 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3529
3530 static ssize_t
3531 raid_disks_show(struct mddev *mddev, char *page)
3532 {
3533 if (mddev->raid_disks == 0)
3534 return 0;
3535 if (mddev->reshape_position != MaxSector &&
3536 mddev->delta_disks != 0)
3537 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3538 mddev->raid_disks - mddev->delta_disks);
3539 return sprintf(page, "%d\n", mddev->raid_disks);
3540 }
3541
3542 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3543
3544 static ssize_t
3545 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3546 {
3547 char *e;
3548 int err;
3549 unsigned long n = simple_strtoul(buf, &e, 10);
3550
3551 if (!*buf || (*e && *e != '\n'))
3552 return -EINVAL;
3553
3554 err = mddev_lock(mddev);
3555 if (err)
3556 return err;
3557 if (mddev->pers)
3558 err = update_raid_disks(mddev, n);
3559 else if (mddev->reshape_position != MaxSector) {
3560 struct md_rdev *rdev;
3561 int olddisks = mddev->raid_disks - mddev->delta_disks;
3562
3563 err = -EINVAL;
3564 rdev_for_each(rdev, mddev) {
3565 if (olddisks < n &&
3566 rdev->data_offset < rdev->new_data_offset)
3567 goto out_unlock;
3568 if (olddisks > n &&
3569 rdev->data_offset > rdev->new_data_offset)
3570 goto out_unlock;
3571 }
3572 err = 0;
3573 mddev->delta_disks = n - olddisks;
3574 mddev->raid_disks = n;
3575 mddev->reshape_backwards = (mddev->delta_disks < 0);
3576 } else
3577 mddev->raid_disks = n;
3578 out_unlock:
3579 mddev_unlock(mddev);
3580 return err ? err : len;
3581 }
3582 static struct md_sysfs_entry md_raid_disks =
3583 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3584
3585 static ssize_t
3586 chunk_size_show(struct mddev *mddev, char *page)
3587 {
3588 if (mddev->reshape_position != MaxSector &&
3589 mddev->chunk_sectors != mddev->new_chunk_sectors)
3590 return sprintf(page, "%d (%d)\n",
3591 mddev->new_chunk_sectors << 9,
3592 mddev->chunk_sectors << 9);
3593 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3594 }
3595
3596 static ssize_t
3597 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3598 {
3599 int err;
3600 char *e;
3601 unsigned long n = simple_strtoul(buf, &e, 10);
3602
3603 if (!*buf || (*e && *e != '\n'))
3604 return -EINVAL;
3605
3606 err = mddev_lock(mddev);
3607 if (err)
3608 return err;
3609 if (mddev->pers) {
3610 if (mddev->pers->check_reshape == NULL)
3611 err = -EBUSY;
3612 else if (mddev->ro)
3613 err = -EROFS;
3614 else {
3615 mddev->new_chunk_sectors = n >> 9;
3616 err = mddev->pers->check_reshape(mddev);
3617 if (err)
3618 mddev->new_chunk_sectors = mddev->chunk_sectors;
3619 }
3620 } else {
3621 mddev->new_chunk_sectors = n >> 9;
3622 if (mddev->reshape_position == MaxSector)
3623 mddev->chunk_sectors = n >> 9;
3624 }
3625 mddev_unlock(mddev);
3626 return err ?: len;
3627 }
3628 static struct md_sysfs_entry md_chunk_size =
3629 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3630
3631 static ssize_t
3632 resync_start_show(struct mddev *mddev, char *page)
3633 {
3634 if (mddev->recovery_cp == MaxSector)
3635 return sprintf(page, "none\n");
3636 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3637 }
3638
3639 static ssize_t
3640 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3641 {
3642 int err;
3643 char *e;
3644 unsigned long long n = simple_strtoull(buf, &e, 10);
3645
3646 err = mddev_lock(mddev);
3647 if (err)
3648 return err;
3649 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3650 err = -EBUSY;
3651 else if (cmd_match(buf, "none"))
3652 n = MaxSector;
3653 else if (!*buf || (*e && *e != '\n'))
3654 err = -EINVAL;
3655
3656 if (!err) {
3657 mddev->recovery_cp = n;
3658 if (mddev->pers)
3659 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3660 }
3661 mddev_unlock(mddev);
3662 return err ?: len;
3663 }
3664 static struct md_sysfs_entry md_resync_start =
3665 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3666
3667 /*
3668 * The array state can be:
3669 *
3670 * clear
3671 * No devices, no size, no level
3672 * Equivalent to STOP_ARRAY ioctl
3673 * inactive
3674 * May have some settings, but array is not active
3675 * all IO results in error
3676 * When written, doesn't tear down array, but just stops it
3677 * suspended (not supported yet)
3678 * All IO requests will block. The array can be reconfigured.
3679 * Writing this, if accepted, will block until array is quiescent
3680 * readonly
3681 * no resync can happen. no superblocks get written.
3682 * write requests fail
3683 * read-auto
3684 * like readonly, but behaves like 'clean' on a write request.
3685 *
3686 * clean - no pending writes, but otherwise active.
3687 * When written to inactive array, starts without resync
3688 * If a write request arrives then
3689 * if metadata is known, mark 'dirty' and switch to 'active'.
3690 * if not known, block and switch to write-pending
3691 * If written to an active array that has pending writes, then fails.
3692 * active
3693 * fully active: IO and resync can be happening.
3694 * When written to inactive array, starts with resync
3695 *
3696 * write-pending
3697 * clean, but writes are blocked waiting for 'active' to be written.
3698 *
3699 * active-idle
3700 * like active, but no writes have been seen for a while (100msec).
3701 *
3702 */
3703 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3704 write_pending, active_idle, bad_word};
3705 static char *array_states[] = {
3706 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3707 "write-pending", "active-idle", NULL };
3708
3709 static int match_word(const char *word, char **list)
3710 {
3711 int n;
3712 for (n=0; list[n]; n++)
3713 if (cmd_match(word, list[n]))
3714 break;
3715 return n;
3716 }
3717
3718 static ssize_t
3719 array_state_show(struct mddev *mddev, char *page)
3720 {
3721 enum array_state st = inactive;
3722
3723 if (mddev->pers)
3724 switch(mddev->ro) {
3725 case 1:
3726 st = readonly;
3727 break;
3728 case 2:
3729 st = read_auto;
3730 break;
3731 case 0:
3732 if (mddev->in_sync)
3733 st = clean;
3734 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3735 st = write_pending;
3736 else if (mddev->safemode)
3737 st = active_idle;
3738 else
3739 st = active;
3740 }
3741 else {
3742 if (list_empty(&mddev->disks) &&
3743 mddev->raid_disks == 0 &&
3744 mddev->dev_sectors == 0)
3745 st = clear;
3746 else
3747 st = inactive;
3748 }
3749 return sprintf(page, "%s\n", array_states[st]);
3750 }
3751
3752 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3753 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3754 static int do_md_run(struct mddev *mddev);
3755 static int restart_array(struct mddev *mddev);
3756
3757 static ssize_t
3758 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3759 {
3760 int err;
3761 enum array_state st = match_word(buf, array_states);
3762
3763 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3764 /* don't take reconfig_mutex when toggling between
3765 * clean and active
3766 */
3767 spin_lock(&mddev->lock);
3768 if (st == active) {
3769 restart_array(mddev);
3770 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3771 wake_up(&mddev->sb_wait);
3772 err = 0;
3773 } else /* st == clean */ {
3774 restart_array(mddev);
3775 if (atomic_read(&mddev->writes_pending) == 0) {
3776 if (mddev->in_sync == 0) {
3777 mddev->in_sync = 1;
3778 if (mddev->safemode == 1)
3779 mddev->safemode = 0;
3780 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3781 }
3782 err = 0;
3783 } else
3784 err = -EBUSY;
3785 }
3786 spin_unlock(&mddev->lock);
3787 return err;
3788 }
3789 err = mddev_lock(mddev);
3790 if (err)
3791 return err;
3792 err = -EINVAL;
3793 switch(st) {
3794 case bad_word:
3795 break;
3796 case clear:
3797 /* stopping an active array */
3798 err = do_md_stop(mddev, 0, NULL);
3799 break;
3800 case inactive:
3801 /* stopping an active array */
3802 if (mddev->pers)
3803 err = do_md_stop(mddev, 2, NULL);
3804 else
3805 err = 0; /* already inactive */
3806 break;
3807 case suspended:
3808 break; /* not supported yet */
3809 case readonly:
3810 if (mddev->pers)
3811 err = md_set_readonly(mddev, NULL);
3812 else {
3813 mddev->ro = 1;
3814 set_disk_ro(mddev->gendisk, 1);
3815 err = do_md_run(mddev);
3816 }
3817 break;
3818 case read_auto:
3819 if (mddev->pers) {
3820 if (mddev->ro == 0)
3821 err = md_set_readonly(mddev, NULL);
3822 else if (mddev->ro == 1)
3823 err = restart_array(mddev);
3824 if (err == 0) {
3825 mddev->ro = 2;
3826 set_disk_ro(mddev->gendisk, 0);
3827 }
3828 } else {
3829 mddev->ro = 2;
3830 err = do_md_run(mddev);
3831 }
3832 break;
3833 case clean:
3834 if (mddev->pers) {
3835 restart_array(mddev);
3836 spin_lock(&mddev->lock);
3837 if (atomic_read(&mddev->writes_pending) == 0) {
3838 if (mddev->in_sync == 0) {
3839 mddev->in_sync = 1;
3840 if (mddev->safemode == 1)
3841 mddev->safemode = 0;
3842 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3843 }
3844 err = 0;
3845 } else
3846 err = -EBUSY;
3847 spin_unlock(&mddev->lock);
3848 } else
3849 err = -EINVAL;
3850 break;
3851 case active:
3852 if (mddev->pers) {
3853 restart_array(mddev);
3854 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3855 wake_up(&mddev->sb_wait);
3856 err = 0;
3857 } else {
3858 mddev->ro = 0;
3859 set_disk_ro(mddev->gendisk, 0);
3860 err = do_md_run(mddev);
3861 }
3862 break;
3863 case write_pending:
3864 case active_idle:
3865 /* these cannot be set */
3866 break;
3867 }
3868
3869 if (!err) {
3870 if (mddev->hold_active == UNTIL_IOCTL)
3871 mddev->hold_active = 0;
3872 sysfs_notify_dirent_safe(mddev->sysfs_state);
3873 }
3874 mddev_unlock(mddev);
3875 return err ?: len;
3876 }
3877 static struct md_sysfs_entry md_array_state =
3878 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3879
3880 static ssize_t
3881 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3882 return sprintf(page, "%d\n",
3883 atomic_read(&mddev->max_corr_read_errors));
3884 }
3885
3886 static ssize_t
3887 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3888 {
3889 char *e;
3890 unsigned long n = simple_strtoul(buf, &e, 10);
3891
3892 if (*buf && (*e == 0 || *e == '\n')) {
3893 atomic_set(&mddev->max_corr_read_errors, n);
3894 return len;
3895 }
3896 return -EINVAL;
3897 }
3898
3899 static struct md_sysfs_entry max_corr_read_errors =
3900 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3901 max_corrected_read_errors_store);
3902
3903 static ssize_t
3904 null_show(struct mddev *mddev, char *page)
3905 {
3906 return -EINVAL;
3907 }
3908
3909 static ssize_t
3910 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3911 {
3912 /* buf must be %d:%d\n? giving major and minor numbers */
3913 /* The new device is added to the array.
3914 * If the array has a persistent superblock, we read the
3915 * superblock to initialise info and check validity.
3916 * Otherwise, only checking done is that in bind_rdev_to_array,
3917 * which mainly checks size.
3918 */
3919 char *e;
3920 int major = simple_strtoul(buf, &e, 10);
3921 int minor;
3922 dev_t dev;
3923 struct md_rdev *rdev;
3924 int err;
3925
3926 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3927 return -EINVAL;
3928 minor = simple_strtoul(e+1, &e, 10);
3929 if (*e && *e != '\n')
3930 return -EINVAL;
3931 dev = MKDEV(major, minor);
3932 if (major != MAJOR(dev) ||
3933 minor != MINOR(dev))
3934 return -EOVERFLOW;
3935
3936 flush_workqueue(md_misc_wq);
3937
3938 err = mddev_lock(mddev);
3939 if (err)
3940 return err;
3941 if (mddev->persistent) {
3942 rdev = md_import_device(dev, mddev->major_version,
3943 mddev->minor_version);
3944 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3945 struct md_rdev *rdev0
3946 = list_entry(mddev->disks.next,
3947 struct md_rdev, same_set);
3948 err = super_types[mddev->major_version]
3949 .load_super(rdev, rdev0, mddev->minor_version);
3950 if (err < 0)
3951 goto out;
3952 }
3953 } else if (mddev->external)
3954 rdev = md_import_device(dev, -2, -1);
3955 else
3956 rdev = md_import_device(dev, -1, -1);
3957
3958 if (IS_ERR(rdev))
3959 return PTR_ERR(rdev);
3960 err = bind_rdev_to_array(rdev, mddev);
3961 out:
3962 if (err)
3963 export_rdev(rdev);
3964 mddev_unlock(mddev);
3965 return err ? err : len;
3966 }
3967
3968 static struct md_sysfs_entry md_new_device =
3969 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3970
3971 static ssize_t
3972 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3973 {
3974 char *end;
3975 unsigned long chunk, end_chunk;
3976 int err;
3977
3978 err = mddev_lock(mddev);
3979 if (err)
3980 return err;
3981 if (!mddev->bitmap)
3982 goto out;
3983 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3984 while (*buf) {
3985 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3986 if (buf == end) break;
3987 if (*end == '-') { /* range */
3988 buf = end + 1;
3989 end_chunk = simple_strtoul(buf, &end, 0);
3990 if (buf == end) break;
3991 }
3992 if (*end && !isspace(*end)) break;
3993 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3994 buf = skip_spaces(end);
3995 }
3996 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3997 out:
3998 mddev_unlock(mddev);
3999 return len;
4000 }
4001
4002 static struct md_sysfs_entry md_bitmap =
4003 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4004
4005 static ssize_t
4006 size_show(struct mddev *mddev, char *page)
4007 {
4008 return sprintf(page, "%llu\n",
4009 (unsigned long long)mddev->dev_sectors / 2);
4010 }
4011
4012 static int update_size(struct mddev *mddev, sector_t num_sectors);
4013
4014 static ssize_t
4015 size_store(struct mddev *mddev, const char *buf, size_t len)
4016 {
4017 /* If array is inactive, we can reduce the component size, but
4018 * not increase it (except from 0).
4019 * If array is active, we can try an on-line resize
4020 */
4021 sector_t sectors;
4022 int err = strict_blocks_to_sectors(buf, &sectors);
4023
4024 if (err < 0)
4025 return err;
4026 err = mddev_lock(mddev);
4027 if (err)
4028 return err;
4029 if (mddev->pers) {
4030 if (mddev_is_clustered(mddev))
4031 md_cluster_ops->metadata_update_start(mddev);
4032 err = update_size(mddev, sectors);
4033 md_update_sb(mddev, 1);
4034 if (mddev_is_clustered(mddev))
4035 md_cluster_ops->metadata_update_finish(mddev);
4036 } else {
4037 if (mddev->dev_sectors == 0 ||
4038 mddev->dev_sectors > sectors)
4039 mddev->dev_sectors = sectors;
4040 else
4041 err = -ENOSPC;
4042 }
4043 mddev_unlock(mddev);
4044 return err ? err : len;
4045 }
4046
4047 static struct md_sysfs_entry md_size =
4048 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4049
4050 /* Metadata version.
4051 * This is one of
4052 * 'none' for arrays with no metadata (good luck...)
4053 * 'external' for arrays with externally managed metadata,
4054 * or N.M for internally known formats
4055 */
4056 static ssize_t
4057 metadata_show(struct mddev *mddev, char *page)
4058 {
4059 if (mddev->persistent)
4060 return sprintf(page, "%d.%d\n",
4061 mddev->major_version, mddev->minor_version);
4062 else if (mddev->external)
4063 return sprintf(page, "external:%s\n", mddev->metadata_type);
4064 else
4065 return sprintf(page, "none\n");
4066 }
4067
4068 static ssize_t
4069 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4070 {
4071 int major, minor;
4072 char *e;
4073 int err;
4074 /* Changing the details of 'external' metadata is
4075 * always permitted. Otherwise there must be
4076 * no devices attached to the array.
4077 */
4078
4079 err = mddev_lock(mddev);
4080 if (err)
4081 return err;
4082 err = -EBUSY;
4083 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4084 ;
4085 else if (!list_empty(&mddev->disks))
4086 goto out_unlock;
4087
4088 err = 0;
4089 if (cmd_match(buf, "none")) {
4090 mddev->persistent = 0;
4091 mddev->external = 0;
4092 mddev->major_version = 0;
4093 mddev->minor_version = 90;
4094 goto out_unlock;
4095 }
4096 if (strncmp(buf, "external:", 9) == 0) {
4097 size_t namelen = len-9;
4098 if (namelen >= sizeof(mddev->metadata_type))
4099 namelen = sizeof(mddev->metadata_type)-1;
4100 strncpy(mddev->metadata_type, buf+9, namelen);
4101 mddev->metadata_type[namelen] = 0;
4102 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4103 mddev->metadata_type[--namelen] = 0;
4104 mddev->persistent = 0;
4105 mddev->external = 1;
4106 mddev->major_version = 0;
4107 mddev->minor_version = 90;
4108 goto out_unlock;
4109 }
4110 major = simple_strtoul(buf, &e, 10);
4111 err = -EINVAL;
4112 if (e==buf || *e != '.')
4113 goto out_unlock;
4114 buf = e+1;
4115 minor = simple_strtoul(buf, &e, 10);
4116 if (e==buf || (*e && *e != '\n') )
4117 goto out_unlock;
4118 err = -ENOENT;
4119 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4120 goto out_unlock;
4121 mddev->major_version = major;
4122 mddev->minor_version = minor;
4123 mddev->persistent = 1;
4124 mddev->external = 0;
4125 err = 0;
4126 out_unlock:
4127 mddev_unlock(mddev);
4128 return err ?: len;
4129 }
4130
4131 static struct md_sysfs_entry md_metadata =
4132 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4133
4134 static ssize_t
4135 action_show(struct mddev *mddev, char *page)
4136 {
4137 char *type = "idle";
4138 unsigned long recovery = mddev->recovery;
4139 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4140 type = "frozen";
4141 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4142 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4143 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4144 type = "reshape";
4145 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4146 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4147 type = "resync";
4148 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4149 type = "check";
4150 else
4151 type = "repair";
4152 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4153 type = "recover";
4154 }
4155 return sprintf(page, "%s\n", type);
4156 }
4157
4158 static ssize_t
4159 action_store(struct mddev *mddev, const char *page, size_t len)
4160 {
4161 if (!mddev->pers || !mddev->pers->sync_request)
4162 return -EINVAL;
4163
4164 if (cmd_match(page, "frozen"))
4165 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4166 else
4167 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4168
4169 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4170 flush_workqueue(md_misc_wq);
4171 if (mddev->sync_thread) {
4172 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4173 if (mddev_lock(mddev) == 0) {
4174 md_reap_sync_thread(mddev);
4175 mddev_unlock(mddev);
4176 }
4177 }
4178 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4179 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4180 return -EBUSY;
4181 else if (cmd_match(page, "resync"))
4182 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4183 else if (cmd_match(page, "recover")) {
4184 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4185 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4186 } else if (cmd_match(page, "reshape")) {
4187 int err;
4188 if (mddev->pers->start_reshape == NULL)
4189 return -EINVAL;
4190 err = mddev_lock(mddev);
4191 if (!err) {
4192 err = mddev->pers->start_reshape(mddev);
4193 mddev_unlock(mddev);
4194 }
4195 if (err)
4196 return err;
4197 sysfs_notify(&mddev->kobj, NULL, "degraded");
4198 } else {
4199 if (cmd_match(page, "check"))
4200 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4201 else if (!cmd_match(page, "repair"))
4202 return -EINVAL;
4203 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4204 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4205 }
4206 if (mddev->ro == 2) {
4207 /* A write to sync_action is enough to justify
4208 * canceling read-auto mode
4209 */
4210 mddev->ro = 0;
4211 md_wakeup_thread(mddev->sync_thread);
4212 }
4213 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4214 md_wakeup_thread(mddev->thread);
4215 sysfs_notify_dirent_safe(mddev->sysfs_action);
4216 return len;
4217 }
4218
4219 static struct md_sysfs_entry md_scan_mode =
4220 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4221
4222 static ssize_t
4223 last_sync_action_show(struct mddev *mddev, char *page)
4224 {
4225 return sprintf(page, "%s\n", mddev->last_sync_action);
4226 }
4227
4228 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4229
4230 static ssize_t
4231 mismatch_cnt_show(struct mddev *mddev, char *page)
4232 {
4233 return sprintf(page, "%llu\n",
4234 (unsigned long long)
4235 atomic64_read(&mddev->resync_mismatches));
4236 }
4237
4238 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4239
4240 static ssize_t
4241 sync_min_show(struct mddev *mddev, char *page)
4242 {
4243 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4244 mddev->sync_speed_min ? "local": "system");
4245 }
4246
4247 static ssize_t
4248 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4249 {
4250 int min;
4251 char *e;
4252 if (strncmp(buf, "system", 6)==0) {
4253 mddev->sync_speed_min = 0;
4254 return len;
4255 }
4256 min = simple_strtoul(buf, &e, 10);
4257 if (buf == e || (*e && *e != '\n') || min <= 0)
4258 return -EINVAL;
4259 mddev->sync_speed_min = min;
4260 return len;
4261 }
4262
4263 static struct md_sysfs_entry md_sync_min =
4264 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4265
4266 static ssize_t
4267 sync_max_show(struct mddev *mddev, char *page)
4268 {
4269 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4270 mddev->sync_speed_max ? "local": "system");
4271 }
4272
4273 static ssize_t
4274 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4275 {
4276 int max;
4277 char *e;
4278 if (strncmp(buf, "system", 6)==0) {
4279 mddev->sync_speed_max = 0;
4280 return len;
4281 }
4282 max = simple_strtoul(buf, &e, 10);
4283 if (buf == e || (*e && *e != '\n') || max <= 0)
4284 return -EINVAL;
4285 mddev->sync_speed_max = max;
4286 return len;
4287 }
4288
4289 static struct md_sysfs_entry md_sync_max =
4290 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4291
4292 static ssize_t
4293 degraded_show(struct mddev *mddev, char *page)
4294 {
4295 return sprintf(page, "%d\n", mddev->degraded);
4296 }
4297 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4298
4299 static ssize_t
4300 sync_force_parallel_show(struct mddev *mddev, char *page)
4301 {
4302 return sprintf(page, "%d\n", mddev->parallel_resync);
4303 }
4304
4305 static ssize_t
4306 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4307 {
4308 long n;
4309
4310 if (kstrtol(buf, 10, &n))
4311 return -EINVAL;
4312
4313 if (n != 0 && n != 1)
4314 return -EINVAL;
4315
4316 mddev->parallel_resync = n;
4317
4318 if (mddev->sync_thread)
4319 wake_up(&resync_wait);
4320
4321 return len;
4322 }
4323
4324 /* force parallel resync, even with shared block devices */
4325 static struct md_sysfs_entry md_sync_force_parallel =
4326 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4327 sync_force_parallel_show, sync_force_parallel_store);
4328
4329 static ssize_t
4330 sync_speed_show(struct mddev *mddev, char *page)
4331 {
4332 unsigned long resync, dt, db;
4333 if (mddev->curr_resync == 0)
4334 return sprintf(page, "none\n");
4335 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4336 dt = (jiffies - mddev->resync_mark) / HZ;
4337 if (!dt) dt++;
4338 db = resync - mddev->resync_mark_cnt;
4339 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4340 }
4341
4342 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4343
4344 static ssize_t
4345 sync_completed_show(struct mddev *mddev, char *page)
4346 {
4347 unsigned long long max_sectors, resync;
4348
4349 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4350 return sprintf(page, "none\n");
4351
4352 if (mddev->curr_resync == 1 ||
4353 mddev->curr_resync == 2)
4354 return sprintf(page, "delayed\n");
4355
4356 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4357 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4358 max_sectors = mddev->resync_max_sectors;
4359 else
4360 max_sectors = mddev->dev_sectors;
4361
4362 resync = mddev->curr_resync_completed;
4363 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4364 }
4365
4366 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4367
4368 static ssize_t
4369 min_sync_show(struct mddev *mddev, char *page)
4370 {
4371 return sprintf(page, "%llu\n",
4372 (unsigned long long)mddev->resync_min);
4373 }
4374 static ssize_t
4375 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4376 {
4377 unsigned long long min;
4378 int err;
4379 int chunk;
4380
4381 if (kstrtoull(buf, 10, &min))
4382 return -EINVAL;
4383
4384 spin_lock(&mddev->lock);
4385 err = -EINVAL;
4386 if (min > mddev->resync_max)
4387 goto out_unlock;
4388
4389 err = -EBUSY;
4390 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4391 goto out_unlock;
4392
4393 /* Must be a multiple of chunk_size */
4394 chunk = mddev->chunk_sectors;
4395 if (chunk) {
4396 sector_t temp = min;
4397
4398 err = -EINVAL;
4399 if (sector_div(temp, chunk))
4400 goto out_unlock;
4401 }
4402 mddev->resync_min = min;
4403 err = 0;
4404
4405 out_unlock:
4406 spin_unlock(&mddev->lock);
4407 return err ?: len;
4408 }
4409
4410 static struct md_sysfs_entry md_min_sync =
4411 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4412
4413 static ssize_t
4414 max_sync_show(struct mddev *mddev, char *page)
4415 {
4416 if (mddev->resync_max == MaxSector)
4417 return sprintf(page, "max\n");
4418 else
4419 return sprintf(page, "%llu\n",
4420 (unsigned long long)mddev->resync_max);
4421 }
4422 static ssize_t
4423 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4424 {
4425 int err;
4426 spin_lock(&mddev->lock);
4427 if (strncmp(buf, "max", 3) == 0)
4428 mddev->resync_max = MaxSector;
4429 else {
4430 unsigned long long max;
4431 int chunk;
4432
4433 err = -EINVAL;
4434 if (kstrtoull(buf, 10, &max))
4435 goto out_unlock;
4436 if (max < mddev->resync_min)
4437 goto out_unlock;
4438
4439 err = -EBUSY;
4440 if (max < mddev->resync_max &&
4441 mddev->ro == 0 &&
4442 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4443 goto out_unlock;
4444
4445 /* Must be a multiple of chunk_size */
4446 chunk = mddev->chunk_sectors;
4447 if (chunk) {
4448 sector_t temp = max;
4449
4450 err = -EINVAL;
4451 if (sector_div(temp, chunk))
4452 goto out_unlock;
4453 }
4454 mddev->resync_max = max;
4455 }
4456 wake_up(&mddev->recovery_wait);
4457 err = 0;
4458 out_unlock:
4459 spin_unlock(&mddev->lock);
4460 return err ?: len;
4461 }
4462
4463 static struct md_sysfs_entry md_max_sync =
4464 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4465
4466 static ssize_t
4467 suspend_lo_show(struct mddev *mddev, char *page)
4468 {
4469 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4470 }
4471
4472 static ssize_t
4473 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4474 {
4475 char *e;
4476 unsigned long long new = simple_strtoull(buf, &e, 10);
4477 unsigned long long old;
4478 int err;
4479
4480 if (buf == e || (*e && *e != '\n'))
4481 return -EINVAL;
4482
4483 err = mddev_lock(mddev);
4484 if (err)
4485 return err;
4486 err = -EINVAL;
4487 if (mddev->pers == NULL ||
4488 mddev->pers->quiesce == NULL)
4489 goto unlock;
4490 old = mddev->suspend_lo;
4491 mddev->suspend_lo = new;
4492 if (new >= old)
4493 /* Shrinking suspended region */
4494 mddev->pers->quiesce(mddev, 2);
4495 else {
4496 /* Expanding suspended region - need to wait */
4497 mddev->pers->quiesce(mddev, 1);
4498 mddev->pers->quiesce(mddev, 0);
4499 }
4500 err = 0;
4501 unlock:
4502 mddev_unlock(mddev);
4503 return err ?: len;
4504 }
4505 static struct md_sysfs_entry md_suspend_lo =
4506 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4507
4508 static ssize_t
4509 suspend_hi_show(struct mddev *mddev, char *page)
4510 {
4511 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4512 }
4513
4514 static ssize_t
4515 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4516 {
4517 char *e;
4518 unsigned long long new = simple_strtoull(buf, &e, 10);
4519 unsigned long long old;
4520 int err;
4521
4522 if (buf == e || (*e && *e != '\n'))
4523 return -EINVAL;
4524
4525 err = mddev_lock(mddev);
4526 if (err)
4527 return err;
4528 err = -EINVAL;
4529 if (mddev->pers == NULL ||
4530 mddev->pers->quiesce == NULL)
4531 goto unlock;
4532 old = mddev->suspend_hi;
4533 mddev->suspend_hi = new;
4534 if (new <= old)
4535 /* Shrinking suspended region */
4536 mddev->pers->quiesce(mddev, 2);
4537 else {
4538 /* Expanding suspended region - need to wait */
4539 mddev->pers->quiesce(mddev, 1);
4540 mddev->pers->quiesce(mddev, 0);
4541 }
4542 err = 0;
4543 unlock:
4544 mddev_unlock(mddev);
4545 return err ?: len;
4546 }
4547 static struct md_sysfs_entry md_suspend_hi =
4548 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4549
4550 static ssize_t
4551 reshape_position_show(struct mddev *mddev, char *page)
4552 {
4553 if (mddev->reshape_position != MaxSector)
4554 return sprintf(page, "%llu\n",
4555 (unsigned long long)mddev->reshape_position);
4556 strcpy(page, "none\n");
4557 return 5;
4558 }
4559
4560 static ssize_t
4561 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4562 {
4563 struct md_rdev *rdev;
4564 char *e;
4565 int err;
4566 unsigned long long new = simple_strtoull(buf, &e, 10);
4567
4568 if (buf == e || (*e && *e != '\n'))
4569 return -EINVAL;
4570 err = mddev_lock(mddev);
4571 if (err)
4572 return err;
4573 err = -EBUSY;
4574 if (mddev->pers)
4575 goto unlock;
4576 mddev->reshape_position = new;
4577 mddev->delta_disks = 0;
4578 mddev->reshape_backwards = 0;
4579 mddev->new_level = mddev->level;
4580 mddev->new_layout = mddev->layout;
4581 mddev->new_chunk_sectors = mddev->chunk_sectors;
4582 rdev_for_each(rdev, mddev)
4583 rdev->new_data_offset = rdev->data_offset;
4584 err = 0;
4585 unlock:
4586 mddev_unlock(mddev);
4587 return err ?: len;
4588 }
4589
4590 static struct md_sysfs_entry md_reshape_position =
4591 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4592 reshape_position_store);
4593
4594 static ssize_t
4595 reshape_direction_show(struct mddev *mddev, char *page)
4596 {
4597 return sprintf(page, "%s\n",
4598 mddev->reshape_backwards ? "backwards" : "forwards");
4599 }
4600
4601 static ssize_t
4602 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4603 {
4604 int backwards = 0;
4605 int err;
4606
4607 if (cmd_match(buf, "forwards"))
4608 backwards = 0;
4609 else if (cmd_match(buf, "backwards"))
4610 backwards = 1;
4611 else
4612 return -EINVAL;
4613 if (mddev->reshape_backwards == backwards)
4614 return len;
4615
4616 err = mddev_lock(mddev);
4617 if (err)
4618 return err;
4619 /* check if we are allowed to change */
4620 if (mddev->delta_disks)
4621 err = -EBUSY;
4622 else if (mddev->persistent &&
4623 mddev->major_version == 0)
4624 err = -EINVAL;
4625 else
4626 mddev->reshape_backwards = backwards;
4627 mddev_unlock(mddev);
4628 return err ?: len;
4629 }
4630
4631 static struct md_sysfs_entry md_reshape_direction =
4632 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4633 reshape_direction_store);
4634
4635 static ssize_t
4636 array_size_show(struct mddev *mddev, char *page)
4637 {
4638 if (mddev->external_size)
4639 return sprintf(page, "%llu\n",
4640 (unsigned long long)mddev->array_sectors/2);
4641 else
4642 return sprintf(page, "default\n");
4643 }
4644
4645 static ssize_t
4646 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4647 {
4648 sector_t sectors;
4649 int err;
4650
4651 err = mddev_lock(mddev);
4652 if (err)
4653 return err;
4654
4655 if (strncmp(buf, "default", 7) == 0) {
4656 if (mddev->pers)
4657 sectors = mddev->pers->size(mddev, 0, 0);
4658 else
4659 sectors = mddev->array_sectors;
4660
4661 mddev->external_size = 0;
4662 } else {
4663 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4664 err = -EINVAL;
4665 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4666 err = -E2BIG;
4667 else
4668 mddev->external_size = 1;
4669 }
4670
4671 if (!err) {
4672 mddev->array_sectors = sectors;
4673 if (mddev->pers) {
4674 set_capacity(mddev->gendisk, mddev->array_sectors);
4675 revalidate_disk(mddev->gendisk);
4676 }
4677 }
4678 mddev_unlock(mddev);
4679 return err ?: len;
4680 }
4681
4682 static struct md_sysfs_entry md_array_size =
4683 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4684 array_size_store);
4685
4686 static struct attribute *md_default_attrs[] = {
4687 &md_level.attr,
4688 &md_layout.attr,
4689 &md_raid_disks.attr,
4690 &md_chunk_size.attr,
4691 &md_size.attr,
4692 &md_resync_start.attr,
4693 &md_metadata.attr,
4694 &md_new_device.attr,
4695 &md_safe_delay.attr,
4696 &md_array_state.attr,
4697 &md_reshape_position.attr,
4698 &md_reshape_direction.attr,
4699 &md_array_size.attr,
4700 &max_corr_read_errors.attr,
4701 NULL,
4702 };
4703
4704 static struct attribute *md_redundancy_attrs[] = {
4705 &md_scan_mode.attr,
4706 &md_last_scan_mode.attr,
4707 &md_mismatches.attr,
4708 &md_sync_min.attr,
4709 &md_sync_max.attr,
4710 &md_sync_speed.attr,
4711 &md_sync_force_parallel.attr,
4712 &md_sync_completed.attr,
4713 &md_min_sync.attr,
4714 &md_max_sync.attr,
4715 &md_suspend_lo.attr,
4716 &md_suspend_hi.attr,
4717 &md_bitmap.attr,
4718 &md_degraded.attr,
4719 NULL,
4720 };
4721 static struct attribute_group md_redundancy_group = {
4722 .name = NULL,
4723 .attrs = md_redundancy_attrs,
4724 };
4725
4726 static ssize_t
4727 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4728 {
4729 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4730 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4731 ssize_t rv;
4732
4733 if (!entry->show)
4734 return -EIO;
4735 spin_lock(&all_mddevs_lock);
4736 if (list_empty(&mddev->all_mddevs)) {
4737 spin_unlock(&all_mddevs_lock);
4738 return -EBUSY;
4739 }
4740 mddev_get(mddev);
4741 spin_unlock(&all_mddevs_lock);
4742
4743 rv = entry->show(mddev, page);
4744 mddev_put(mddev);
4745 return rv;
4746 }
4747
4748 static ssize_t
4749 md_attr_store(struct kobject *kobj, struct attribute *attr,
4750 const char *page, size_t length)
4751 {
4752 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4753 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4754 ssize_t rv;
4755
4756 if (!entry->store)
4757 return -EIO;
4758 if (!capable(CAP_SYS_ADMIN))
4759 return -EACCES;
4760 spin_lock(&all_mddevs_lock);
4761 if (list_empty(&mddev->all_mddevs)) {
4762 spin_unlock(&all_mddevs_lock);
4763 return -EBUSY;
4764 }
4765 mddev_get(mddev);
4766 spin_unlock(&all_mddevs_lock);
4767 rv = entry->store(mddev, page, length);
4768 mddev_put(mddev);
4769 return rv;
4770 }
4771
4772 static void md_free(struct kobject *ko)
4773 {
4774 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4775
4776 if (mddev->sysfs_state)
4777 sysfs_put(mddev->sysfs_state);
4778
4779 if (mddev->gendisk) {
4780 del_gendisk(mddev->gendisk);
4781 put_disk(mddev->gendisk);
4782 }
4783 if (mddev->queue)
4784 blk_cleanup_queue(mddev->queue);
4785
4786 kfree(mddev);
4787 }
4788
4789 static const struct sysfs_ops md_sysfs_ops = {
4790 .show = md_attr_show,
4791 .store = md_attr_store,
4792 };
4793 static struct kobj_type md_ktype = {
4794 .release = md_free,
4795 .sysfs_ops = &md_sysfs_ops,
4796 .default_attrs = md_default_attrs,
4797 };
4798
4799 int mdp_major = 0;
4800
4801 static void mddev_delayed_delete(struct work_struct *ws)
4802 {
4803 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4804
4805 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4806 kobject_del(&mddev->kobj);
4807 kobject_put(&mddev->kobj);
4808 }
4809
4810 static int md_alloc(dev_t dev, char *name)
4811 {
4812 static DEFINE_MUTEX(disks_mutex);
4813 struct mddev *mddev = mddev_find(dev);
4814 struct gendisk *disk;
4815 int partitioned;
4816 int shift;
4817 int unit;
4818 int error;
4819
4820 if (!mddev)
4821 return -ENODEV;
4822
4823 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4824 shift = partitioned ? MdpMinorShift : 0;
4825 unit = MINOR(mddev->unit) >> shift;
4826
4827 /* wait for any previous instance of this device to be
4828 * completely removed (mddev_delayed_delete).
4829 */
4830 flush_workqueue(md_misc_wq);
4831
4832 mutex_lock(&disks_mutex);
4833 error = -EEXIST;
4834 if (mddev->gendisk)
4835 goto abort;
4836
4837 if (name) {
4838 /* Need to ensure that 'name' is not a duplicate.
4839 */
4840 struct mddev *mddev2;
4841 spin_lock(&all_mddevs_lock);
4842
4843 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4844 if (mddev2->gendisk &&
4845 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4846 spin_unlock(&all_mddevs_lock);
4847 goto abort;
4848 }
4849 spin_unlock(&all_mddevs_lock);
4850 }
4851
4852 error = -ENOMEM;
4853 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4854 if (!mddev->queue)
4855 goto abort;
4856 mddev->queue->queuedata = mddev;
4857
4858 blk_queue_make_request(mddev->queue, md_make_request);
4859 blk_set_stacking_limits(&mddev->queue->limits);
4860
4861 disk = alloc_disk(1 << shift);
4862 if (!disk) {
4863 blk_cleanup_queue(mddev->queue);
4864 mddev->queue = NULL;
4865 goto abort;
4866 }
4867 disk->major = MAJOR(mddev->unit);
4868 disk->first_minor = unit << shift;
4869 if (name)
4870 strcpy(disk->disk_name, name);
4871 else if (partitioned)
4872 sprintf(disk->disk_name, "md_d%d", unit);
4873 else
4874 sprintf(disk->disk_name, "md%d", unit);
4875 disk->fops = &md_fops;
4876 disk->private_data = mddev;
4877 disk->queue = mddev->queue;
4878 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4879 /* Allow extended partitions. This makes the
4880 * 'mdp' device redundant, but we can't really
4881 * remove it now.
4882 */
4883 disk->flags |= GENHD_FL_EXT_DEVT;
4884 mddev->gendisk = disk;
4885 /* As soon as we call add_disk(), another thread could get
4886 * through to md_open, so make sure it doesn't get too far
4887 */
4888 mutex_lock(&mddev->open_mutex);
4889 add_disk(disk);
4890
4891 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4892 &disk_to_dev(disk)->kobj, "%s", "md");
4893 if (error) {
4894 /* This isn't possible, but as kobject_init_and_add is marked
4895 * __must_check, we must do something with the result
4896 */
4897 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4898 disk->disk_name);
4899 error = 0;
4900 }
4901 if (mddev->kobj.sd &&
4902 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4903 printk(KERN_DEBUG "pointless warning\n");
4904 mutex_unlock(&mddev->open_mutex);
4905 abort:
4906 mutex_unlock(&disks_mutex);
4907 if (!error && mddev->kobj.sd) {
4908 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4909 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4910 }
4911 mddev_put(mddev);
4912 return error;
4913 }
4914
4915 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4916 {
4917 md_alloc(dev, NULL);
4918 return NULL;
4919 }
4920
4921 static int add_named_array(const char *val, struct kernel_param *kp)
4922 {
4923 /* val must be "md_*" where * is not all digits.
4924 * We allocate an array with a large free minor number, and
4925 * set the name to val. val must not already be an active name.
4926 */
4927 int len = strlen(val);
4928 char buf[DISK_NAME_LEN];
4929
4930 while (len && val[len-1] == '\n')
4931 len--;
4932 if (len >= DISK_NAME_LEN)
4933 return -E2BIG;
4934 strlcpy(buf, val, len+1);
4935 if (strncmp(buf, "md_", 3) != 0)
4936 return -EINVAL;
4937 return md_alloc(0, buf);
4938 }
4939
4940 static void md_safemode_timeout(unsigned long data)
4941 {
4942 struct mddev *mddev = (struct mddev *) data;
4943
4944 if (!atomic_read(&mddev->writes_pending)) {
4945 mddev->safemode = 1;
4946 if (mddev->external)
4947 sysfs_notify_dirent_safe(mddev->sysfs_state);
4948 }
4949 md_wakeup_thread(mddev->thread);
4950 }
4951
4952 static int start_dirty_degraded;
4953
4954 int md_run(struct mddev *mddev)
4955 {
4956 int err;
4957 struct md_rdev *rdev;
4958 struct md_personality *pers;
4959
4960 if (list_empty(&mddev->disks))
4961 /* cannot run an array with no devices.. */
4962 return -EINVAL;
4963
4964 if (mddev->pers)
4965 return -EBUSY;
4966 /* Cannot run until previous stop completes properly */
4967 if (mddev->sysfs_active)
4968 return -EBUSY;
4969
4970 /*
4971 * Analyze all RAID superblock(s)
4972 */
4973 if (!mddev->raid_disks) {
4974 if (!mddev->persistent)
4975 return -EINVAL;
4976 analyze_sbs(mddev);
4977 }
4978
4979 if (mddev->level != LEVEL_NONE)
4980 request_module("md-level-%d", mddev->level);
4981 else if (mddev->clevel[0])
4982 request_module("md-%s", mddev->clevel);
4983
4984 /*
4985 * Drop all container device buffers, from now on
4986 * the only valid external interface is through the md
4987 * device.
4988 */
4989 rdev_for_each(rdev, mddev) {
4990 if (test_bit(Faulty, &rdev->flags))
4991 continue;
4992 sync_blockdev(rdev->bdev);
4993 invalidate_bdev(rdev->bdev);
4994
4995 /* perform some consistency tests on the device.
4996 * We don't want the data to overlap the metadata,
4997 * Internal Bitmap issues have been handled elsewhere.
4998 */
4999 if (rdev->meta_bdev) {
5000 /* Nothing to check */;
5001 } else if (rdev->data_offset < rdev->sb_start) {
5002 if (mddev->dev_sectors &&
5003 rdev->data_offset + mddev->dev_sectors
5004 > rdev->sb_start) {
5005 printk("md: %s: data overlaps metadata\n",
5006 mdname(mddev));
5007 return -EINVAL;
5008 }
5009 } else {
5010 if (rdev->sb_start + rdev->sb_size/512
5011 > rdev->data_offset) {
5012 printk("md: %s: metadata overlaps data\n",
5013 mdname(mddev));
5014 return -EINVAL;
5015 }
5016 }
5017 sysfs_notify_dirent_safe(rdev->sysfs_state);
5018 }
5019
5020 if (mddev->bio_set == NULL)
5021 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5022
5023 spin_lock(&pers_lock);
5024 pers = find_pers(mddev->level, mddev->clevel);
5025 if (!pers || !try_module_get(pers->owner)) {
5026 spin_unlock(&pers_lock);
5027 if (mddev->level != LEVEL_NONE)
5028 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5029 mddev->level);
5030 else
5031 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5032 mddev->clevel);
5033 return -EINVAL;
5034 }
5035 spin_unlock(&pers_lock);
5036 if (mddev->level != pers->level) {
5037 mddev->level = pers->level;
5038 mddev->new_level = pers->level;
5039 }
5040 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5041
5042 if (mddev->reshape_position != MaxSector &&
5043 pers->start_reshape == NULL) {
5044 /* This personality cannot handle reshaping... */
5045 module_put(pers->owner);
5046 return -EINVAL;
5047 }
5048
5049 if (pers->sync_request) {
5050 /* Warn if this is a potentially silly
5051 * configuration.
5052 */
5053 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5054 struct md_rdev *rdev2;
5055 int warned = 0;
5056
5057 rdev_for_each(rdev, mddev)
5058 rdev_for_each(rdev2, mddev) {
5059 if (rdev < rdev2 &&
5060 rdev->bdev->bd_contains ==
5061 rdev2->bdev->bd_contains) {
5062 printk(KERN_WARNING
5063 "%s: WARNING: %s appears to be"
5064 " on the same physical disk as"
5065 " %s.\n",
5066 mdname(mddev),
5067 bdevname(rdev->bdev,b),
5068 bdevname(rdev2->bdev,b2));
5069 warned = 1;
5070 }
5071 }
5072
5073 if (warned)
5074 printk(KERN_WARNING
5075 "True protection against single-disk"
5076 " failure might be compromised.\n");
5077 }
5078
5079 mddev->recovery = 0;
5080 /* may be over-ridden by personality */
5081 mddev->resync_max_sectors = mddev->dev_sectors;
5082
5083 mddev->ok_start_degraded = start_dirty_degraded;
5084
5085 if (start_readonly && mddev->ro == 0)
5086 mddev->ro = 2; /* read-only, but switch on first write */
5087
5088 err = pers->run(mddev);
5089 if (err)
5090 printk(KERN_ERR "md: pers->run() failed ...\n");
5091 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5092 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5093 " but 'external_size' not in effect?\n", __func__);
5094 printk(KERN_ERR
5095 "md: invalid array_size %llu > default size %llu\n",
5096 (unsigned long long)mddev->array_sectors / 2,
5097 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5098 err = -EINVAL;
5099 }
5100 if (err == 0 && pers->sync_request &&
5101 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5102 struct bitmap *bitmap;
5103
5104 bitmap = bitmap_create(mddev, -1);
5105 if (IS_ERR(bitmap)) {
5106 err = PTR_ERR(bitmap);
5107 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5108 mdname(mddev), err);
5109 } else
5110 mddev->bitmap = bitmap;
5111
5112 }
5113 if (err) {
5114 mddev_detach(mddev);
5115 pers->free(mddev, mddev->private);
5116 module_put(pers->owner);
5117 bitmap_destroy(mddev);
5118 return err;
5119 }
5120 if (mddev->queue) {
5121 mddev->queue->backing_dev_info.congested_data = mddev;
5122 mddev->queue->backing_dev_info.congested_fn = md_congested;
5123 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5124 }
5125 if (pers->sync_request) {
5126 if (mddev->kobj.sd &&
5127 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5128 printk(KERN_WARNING
5129 "md: cannot register extra attributes for %s\n",
5130 mdname(mddev));
5131 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5132 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5133 mddev->ro = 0;
5134
5135 atomic_set(&mddev->writes_pending,0);
5136 atomic_set(&mddev->max_corr_read_errors,
5137 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5138 mddev->safemode = 0;
5139 mddev->safemode_timer.function = md_safemode_timeout;
5140 mddev->safemode_timer.data = (unsigned long) mddev;
5141 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5142 mddev->in_sync = 1;
5143 smp_wmb();
5144 spin_lock(&mddev->lock);
5145 mddev->pers = pers;
5146 mddev->ready = 1;
5147 spin_unlock(&mddev->lock);
5148 rdev_for_each(rdev, mddev)
5149 if (rdev->raid_disk >= 0)
5150 if (sysfs_link_rdev(mddev, rdev))
5151 /* failure here is OK */;
5152
5153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5154
5155 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5156 md_update_sb(mddev, 0);
5157
5158 md_new_event(mddev);
5159 sysfs_notify_dirent_safe(mddev->sysfs_state);
5160 sysfs_notify_dirent_safe(mddev->sysfs_action);
5161 sysfs_notify(&mddev->kobj, NULL, "degraded");
5162 return 0;
5163 }
5164 EXPORT_SYMBOL_GPL(md_run);
5165
5166 static int do_md_run(struct mddev *mddev)
5167 {
5168 int err;
5169
5170 err = md_run(mddev);
5171 if (err)
5172 goto out;
5173 err = bitmap_load(mddev);
5174 if (err) {
5175 bitmap_destroy(mddev);
5176 goto out;
5177 }
5178
5179 md_wakeup_thread(mddev->thread);
5180 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5181
5182 set_capacity(mddev->gendisk, mddev->array_sectors);
5183 revalidate_disk(mddev->gendisk);
5184 mddev->changed = 1;
5185 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5186 out:
5187 return err;
5188 }
5189
5190 static int restart_array(struct mddev *mddev)
5191 {
5192 struct gendisk *disk = mddev->gendisk;
5193
5194 /* Complain if it has no devices */
5195 if (list_empty(&mddev->disks))
5196 return -ENXIO;
5197 if (!mddev->pers)
5198 return -EINVAL;
5199 if (!mddev->ro)
5200 return -EBUSY;
5201 mddev->safemode = 0;
5202 mddev->ro = 0;
5203 set_disk_ro(disk, 0);
5204 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5205 mdname(mddev));
5206 /* Kick recovery or resync if necessary */
5207 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5208 md_wakeup_thread(mddev->thread);
5209 md_wakeup_thread(mddev->sync_thread);
5210 sysfs_notify_dirent_safe(mddev->sysfs_state);
5211 return 0;
5212 }
5213
5214 static void md_clean(struct mddev *mddev)
5215 {
5216 mddev->array_sectors = 0;
5217 mddev->external_size = 0;
5218 mddev->dev_sectors = 0;
5219 mddev->raid_disks = 0;
5220 mddev->recovery_cp = 0;
5221 mddev->resync_min = 0;
5222 mddev->resync_max = MaxSector;
5223 mddev->reshape_position = MaxSector;
5224 mddev->external = 0;
5225 mddev->persistent = 0;
5226 mddev->level = LEVEL_NONE;
5227 mddev->clevel[0] = 0;
5228 mddev->flags = 0;
5229 mddev->ro = 0;
5230 mddev->metadata_type[0] = 0;
5231 mddev->chunk_sectors = 0;
5232 mddev->ctime = mddev->utime = 0;
5233 mddev->layout = 0;
5234 mddev->max_disks = 0;
5235 mddev->events = 0;
5236 mddev->can_decrease_events = 0;
5237 mddev->delta_disks = 0;
5238 mddev->reshape_backwards = 0;
5239 mddev->new_level = LEVEL_NONE;
5240 mddev->new_layout = 0;
5241 mddev->new_chunk_sectors = 0;
5242 mddev->curr_resync = 0;
5243 atomic64_set(&mddev->resync_mismatches, 0);
5244 mddev->suspend_lo = mddev->suspend_hi = 0;
5245 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5246 mddev->recovery = 0;
5247 mddev->in_sync = 0;
5248 mddev->changed = 0;
5249 mddev->degraded = 0;
5250 mddev->safemode = 0;
5251 mddev->merge_check_needed = 0;
5252 mddev->bitmap_info.offset = 0;
5253 mddev->bitmap_info.default_offset = 0;
5254 mddev->bitmap_info.default_space = 0;
5255 mddev->bitmap_info.chunksize = 0;
5256 mddev->bitmap_info.daemon_sleep = 0;
5257 mddev->bitmap_info.max_write_behind = 0;
5258 }
5259
5260 static void __md_stop_writes(struct mddev *mddev)
5261 {
5262 if (mddev_is_clustered(mddev))
5263 md_cluster_ops->metadata_update_start(mddev);
5264 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5265 flush_workqueue(md_misc_wq);
5266 if (mddev->sync_thread) {
5267 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5268 md_reap_sync_thread(mddev);
5269 }
5270
5271 del_timer_sync(&mddev->safemode_timer);
5272
5273 bitmap_flush(mddev);
5274 md_super_wait(mddev);
5275
5276 if (mddev->ro == 0 &&
5277 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5278 /* mark array as shutdown cleanly */
5279 mddev->in_sync = 1;
5280 md_update_sb(mddev, 1);
5281 }
5282 if (mddev_is_clustered(mddev))
5283 md_cluster_ops->metadata_update_finish(mddev);
5284 }
5285
5286 void md_stop_writes(struct mddev *mddev)
5287 {
5288 mddev_lock_nointr(mddev);
5289 __md_stop_writes(mddev);
5290 mddev_unlock(mddev);
5291 }
5292 EXPORT_SYMBOL_GPL(md_stop_writes);
5293
5294 static void mddev_detach(struct mddev *mddev)
5295 {
5296 struct bitmap *bitmap = mddev->bitmap;
5297 /* wait for behind writes to complete */
5298 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5299 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5300 mdname(mddev));
5301 /* need to kick something here to make sure I/O goes? */
5302 wait_event(bitmap->behind_wait,
5303 atomic_read(&bitmap->behind_writes) == 0);
5304 }
5305 if (mddev->pers && mddev->pers->quiesce) {
5306 mddev->pers->quiesce(mddev, 1);
5307 mddev->pers->quiesce(mddev, 0);
5308 }
5309 md_unregister_thread(&mddev->thread);
5310 if (mddev->queue)
5311 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5312 }
5313
5314 static void __md_stop(struct mddev *mddev)
5315 {
5316 struct md_personality *pers = mddev->pers;
5317 mddev_detach(mddev);
5318 spin_lock(&mddev->lock);
5319 mddev->ready = 0;
5320 mddev->pers = NULL;
5321 spin_unlock(&mddev->lock);
5322 pers->free(mddev, mddev->private);
5323 if (pers->sync_request && mddev->to_remove == NULL)
5324 mddev->to_remove = &md_redundancy_group;
5325 module_put(pers->owner);
5326 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5327 }
5328
5329 void md_stop(struct mddev *mddev)
5330 {
5331 /* stop the array and free an attached data structures.
5332 * This is called from dm-raid
5333 */
5334 __md_stop(mddev);
5335 bitmap_destroy(mddev);
5336 if (mddev->bio_set)
5337 bioset_free(mddev->bio_set);
5338 }
5339
5340 EXPORT_SYMBOL_GPL(md_stop);
5341
5342 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5343 {
5344 int err = 0;
5345 int did_freeze = 0;
5346
5347 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5348 did_freeze = 1;
5349 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5350 md_wakeup_thread(mddev->thread);
5351 }
5352 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5353 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5354 if (mddev->sync_thread)
5355 /* Thread might be blocked waiting for metadata update
5356 * which will now never happen */
5357 wake_up_process(mddev->sync_thread->tsk);
5358
5359 mddev_unlock(mddev);
5360 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5361 &mddev->recovery));
5362 mddev_lock_nointr(mddev);
5363
5364 mutex_lock(&mddev->open_mutex);
5365 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5366 mddev->sync_thread ||
5367 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5368 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5369 printk("md: %s still in use.\n",mdname(mddev));
5370 if (did_freeze) {
5371 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5372 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5373 md_wakeup_thread(mddev->thread);
5374 }
5375 err = -EBUSY;
5376 goto out;
5377 }
5378 if (mddev->pers) {
5379 __md_stop_writes(mddev);
5380
5381 err = -ENXIO;
5382 if (mddev->ro==1)
5383 goto out;
5384 mddev->ro = 1;
5385 set_disk_ro(mddev->gendisk, 1);
5386 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5387 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5388 md_wakeup_thread(mddev->thread);
5389 sysfs_notify_dirent_safe(mddev->sysfs_state);
5390 err = 0;
5391 }
5392 out:
5393 mutex_unlock(&mddev->open_mutex);
5394 return err;
5395 }
5396
5397 /* mode:
5398 * 0 - completely stop and dis-assemble array
5399 * 2 - stop but do not disassemble array
5400 */
5401 static int do_md_stop(struct mddev *mddev, int mode,
5402 struct block_device *bdev)
5403 {
5404 struct gendisk *disk = mddev->gendisk;
5405 struct md_rdev *rdev;
5406 int did_freeze = 0;
5407
5408 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5409 did_freeze = 1;
5410 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5411 md_wakeup_thread(mddev->thread);
5412 }
5413 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5414 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5415 if (mddev->sync_thread)
5416 /* Thread might be blocked waiting for metadata update
5417 * which will now never happen */
5418 wake_up_process(mddev->sync_thread->tsk);
5419
5420 mddev_unlock(mddev);
5421 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5422 !test_bit(MD_RECOVERY_RUNNING,
5423 &mddev->recovery)));
5424 mddev_lock_nointr(mddev);
5425
5426 mutex_lock(&mddev->open_mutex);
5427 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5428 mddev->sysfs_active ||
5429 mddev->sync_thread ||
5430 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5431 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5432 printk("md: %s still in use.\n",mdname(mddev));
5433 mutex_unlock(&mddev->open_mutex);
5434 if (did_freeze) {
5435 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5436 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5437 md_wakeup_thread(mddev->thread);
5438 }
5439 return -EBUSY;
5440 }
5441 if (mddev->pers) {
5442 if (mddev->ro)
5443 set_disk_ro(disk, 0);
5444
5445 __md_stop_writes(mddev);
5446 __md_stop(mddev);
5447 mddev->queue->merge_bvec_fn = NULL;
5448 mddev->queue->backing_dev_info.congested_fn = NULL;
5449
5450 /* tell userspace to handle 'inactive' */
5451 sysfs_notify_dirent_safe(mddev->sysfs_state);
5452
5453 rdev_for_each(rdev, mddev)
5454 if (rdev->raid_disk >= 0)
5455 sysfs_unlink_rdev(mddev, rdev);
5456
5457 set_capacity(disk, 0);
5458 mutex_unlock(&mddev->open_mutex);
5459 mddev->changed = 1;
5460 revalidate_disk(disk);
5461
5462 if (mddev->ro)
5463 mddev->ro = 0;
5464 } else
5465 mutex_unlock(&mddev->open_mutex);
5466 /*
5467 * Free resources if final stop
5468 */
5469 if (mode == 0) {
5470 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5471
5472 bitmap_destroy(mddev);
5473 if (mddev->bitmap_info.file) {
5474 struct file *f = mddev->bitmap_info.file;
5475 spin_lock(&mddev->lock);
5476 mddev->bitmap_info.file = NULL;
5477 spin_unlock(&mddev->lock);
5478 fput(f);
5479 }
5480 mddev->bitmap_info.offset = 0;
5481
5482 export_array(mddev);
5483
5484 md_clean(mddev);
5485 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5486 if (mddev->hold_active == UNTIL_STOP)
5487 mddev->hold_active = 0;
5488 }
5489 blk_integrity_unregister(disk);
5490 md_new_event(mddev);
5491 sysfs_notify_dirent_safe(mddev->sysfs_state);
5492 return 0;
5493 }
5494
5495 #ifndef MODULE
5496 static void autorun_array(struct mddev *mddev)
5497 {
5498 struct md_rdev *rdev;
5499 int err;
5500
5501 if (list_empty(&mddev->disks))
5502 return;
5503
5504 printk(KERN_INFO "md: running: ");
5505
5506 rdev_for_each(rdev, mddev) {
5507 char b[BDEVNAME_SIZE];
5508 printk("<%s>", bdevname(rdev->bdev,b));
5509 }
5510 printk("\n");
5511
5512 err = do_md_run(mddev);
5513 if (err) {
5514 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5515 do_md_stop(mddev, 0, NULL);
5516 }
5517 }
5518
5519 /*
5520 * lets try to run arrays based on all disks that have arrived
5521 * until now. (those are in pending_raid_disks)
5522 *
5523 * the method: pick the first pending disk, collect all disks with
5524 * the same UUID, remove all from the pending list and put them into
5525 * the 'same_array' list. Then order this list based on superblock
5526 * update time (freshest comes first), kick out 'old' disks and
5527 * compare superblocks. If everything's fine then run it.
5528 *
5529 * If "unit" is allocated, then bump its reference count
5530 */
5531 static void autorun_devices(int part)
5532 {
5533 struct md_rdev *rdev0, *rdev, *tmp;
5534 struct mddev *mddev;
5535 char b[BDEVNAME_SIZE];
5536
5537 printk(KERN_INFO "md: autorun ...\n");
5538 while (!list_empty(&pending_raid_disks)) {
5539 int unit;
5540 dev_t dev;
5541 LIST_HEAD(candidates);
5542 rdev0 = list_entry(pending_raid_disks.next,
5543 struct md_rdev, same_set);
5544
5545 printk(KERN_INFO "md: considering %s ...\n",
5546 bdevname(rdev0->bdev,b));
5547 INIT_LIST_HEAD(&candidates);
5548 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5549 if (super_90_load(rdev, rdev0, 0) >= 0) {
5550 printk(KERN_INFO "md: adding %s ...\n",
5551 bdevname(rdev->bdev,b));
5552 list_move(&rdev->same_set, &candidates);
5553 }
5554 /*
5555 * now we have a set of devices, with all of them having
5556 * mostly sane superblocks. It's time to allocate the
5557 * mddev.
5558 */
5559 if (part) {
5560 dev = MKDEV(mdp_major,
5561 rdev0->preferred_minor << MdpMinorShift);
5562 unit = MINOR(dev) >> MdpMinorShift;
5563 } else {
5564 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5565 unit = MINOR(dev);
5566 }
5567 if (rdev0->preferred_minor != unit) {
5568 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5569 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5570 break;
5571 }
5572
5573 md_probe(dev, NULL, NULL);
5574 mddev = mddev_find(dev);
5575 if (!mddev || !mddev->gendisk) {
5576 if (mddev)
5577 mddev_put(mddev);
5578 printk(KERN_ERR
5579 "md: cannot allocate memory for md drive.\n");
5580 break;
5581 }
5582 if (mddev_lock(mddev))
5583 printk(KERN_WARNING "md: %s locked, cannot run\n",
5584 mdname(mddev));
5585 else if (mddev->raid_disks || mddev->major_version
5586 || !list_empty(&mddev->disks)) {
5587 printk(KERN_WARNING
5588 "md: %s already running, cannot run %s\n",
5589 mdname(mddev), bdevname(rdev0->bdev,b));
5590 mddev_unlock(mddev);
5591 } else {
5592 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5593 mddev->persistent = 1;
5594 rdev_for_each_list(rdev, tmp, &candidates) {
5595 list_del_init(&rdev->same_set);
5596 if (bind_rdev_to_array(rdev, mddev))
5597 export_rdev(rdev);
5598 }
5599 autorun_array(mddev);
5600 mddev_unlock(mddev);
5601 }
5602 /* on success, candidates will be empty, on error
5603 * it won't...
5604 */
5605 rdev_for_each_list(rdev, tmp, &candidates) {
5606 list_del_init(&rdev->same_set);
5607 export_rdev(rdev);
5608 }
5609 mddev_put(mddev);
5610 }
5611 printk(KERN_INFO "md: ... autorun DONE.\n");
5612 }
5613 #endif /* !MODULE */
5614
5615 static int get_version(void __user *arg)
5616 {
5617 mdu_version_t ver;
5618
5619 ver.major = MD_MAJOR_VERSION;
5620 ver.minor = MD_MINOR_VERSION;
5621 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5622
5623 if (copy_to_user(arg, &ver, sizeof(ver)))
5624 return -EFAULT;
5625
5626 return 0;
5627 }
5628
5629 static int get_array_info(struct mddev *mddev, void __user *arg)
5630 {
5631 mdu_array_info_t info;
5632 int nr,working,insync,failed,spare;
5633 struct md_rdev *rdev;
5634
5635 nr = working = insync = failed = spare = 0;
5636 rcu_read_lock();
5637 rdev_for_each_rcu(rdev, mddev) {
5638 nr++;
5639 if (test_bit(Faulty, &rdev->flags))
5640 failed++;
5641 else {
5642 working++;
5643 if (test_bit(In_sync, &rdev->flags))
5644 insync++;
5645 else
5646 spare++;
5647 }
5648 }
5649 rcu_read_unlock();
5650
5651 info.major_version = mddev->major_version;
5652 info.minor_version = mddev->minor_version;
5653 info.patch_version = MD_PATCHLEVEL_VERSION;
5654 info.ctime = mddev->ctime;
5655 info.level = mddev->level;
5656 info.size = mddev->dev_sectors / 2;
5657 if (info.size != mddev->dev_sectors / 2) /* overflow */
5658 info.size = -1;
5659 info.nr_disks = nr;
5660 info.raid_disks = mddev->raid_disks;
5661 info.md_minor = mddev->md_minor;
5662 info.not_persistent= !mddev->persistent;
5663
5664 info.utime = mddev->utime;
5665 info.state = 0;
5666 if (mddev->in_sync)
5667 info.state = (1<<MD_SB_CLEAN);
5668 if (mddev->bitmap && mddev->bitmap_info.offset)
5669 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5670 if (mddev_is_clustered(mddev))
5671 info.state |= (1<<MD_SB_CLUSTERED);
5672 info.active_disks = insync;
5673 info.working_disks = working;
5674 info.failed_disks = failed;
5675 info.spare_disks = spare;
5676
5677 info.layout = mddev->layout;
5678 info.chunk_size = mddev->chunk_sectors << 9;
5679
5680 if (copy_to_user(arg, &info, sizeof(info)))
5681 return -EFAULT;
5682
5683 return 0;
5684 }
5685
5686 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5687 {
5688 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5689 char *ptr;
5690 int err;
5691
5692 file = kmalloc(sizeof(*file), GFP_NOIO);
5693 if (!file)
5694 return -ENOMEM;
5695
5696 err = 0;
5697 spin_lock(&mddev->lock);
5698 /* bitmap disabled, zero the first byte and copy out */
5699 if (!mddev->bitmap_info.file)
5700 file->pathname[0] = '\0';
5701 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5702 file->pathname, sizeof(file->pathname))),
5703 IS_ERR(ptr))
5704 err = PTR_ERR(ptr);
5705 else
5706 memmove(file->pathname, ptr,
5707 sizeof(file->pathname)-(ptr-file->pathname));
5708 spin_unlock(&mddev->lock);
5709
5710 if (err == 0 &&
5711 copy_to_user(arg, file, sizeof(*file)))
5712 err = -EFAULT;
5713
5714 kfree(file);
5715 return err;
5716 }
5717
5718 static int get_disk_info(struct mddev *mddev, void __user * arg)
5719 {
5720 mdu_disk_info_t info;
5721 struct md_rdev *rdev;
5722
5723 if (copy_from_user(&info, arg, sizeof(info)))
5724 return -EFAULT;
5725
5726 rcu_read_lock();
5727 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5728 if (rdev) {
5729 info.major = MAJOR(rdev->bdev->bd_dev);
5730 info.minor = MINOR(rdev->bdev->bd_dev);
5731 info.raid_disk = rdev->raid_disk;
5732 info.state = 0;
5733 if (test_bit(Faulty, &rdev->flags))
5734 info.state |= (1<<MD_DISK_FAULTY);
5735 else if (test_bit(In_sync, &rdev->flags)) {
5736 info.state |= (1<<MD_DISK_ACTIVE);
5737 info.state |= (1<<MD_DISK_SYNC);
5738 }
5739 if (test_bit(WriteMostly, &rdev->flags))
5740 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5741 } else {
5742 info.major = info.minor = 0;
5743 info.raid_disk = -1;
5744 info.state = (1<<MD_DISK_REMOVED);
5745 }
5746 rcu_read_unlock();
5747
5748 if (copy_to_user(arg, &info, sizeof(info)))
5749 return -EFAULT;
5750
5751 return 0;
5752 }
5753
5754 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5755 {
5756 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5757 struct md_rdev *rdev;
5758 dev_t dev = MKDEV(info->major,info->minor);
5759
5760 if (mddev_is_clustered(mddev) &&
5761 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5762 pr_err("%s: Cannot add to clustered mddev.\n",
5763 mdname(mddev));
5764 return -EINVAL;
5765 }
5766
5767 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5768 return -EOVERFLOW;
5769
5770 if (!mddev->raid_disks) {
5771 int err;
5772 /* expecting a device which has a superblock */
5773 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5774 if (IS_ERR(rdev)) {
5775 printk(KERN_WARNING
5776 "md: md_import_device returned %ld\n",
5777 PTR_ERR(rdev));
5778 return PTR_ERR(rdev);
5779 }
5780 if (!list_empty(&mddev->disks)) {
5781 struct md_rdev *rdev0
5782 = list_entry(mddev->disks.next,
5783 struct md_rdev, same_set);
5784 err = super_types[mddev->major_version]
5785 .load_super(rdev, rdev0, mddev->minor_version);
5786 if (err < 0) {
5787 printk(KERN_WARNING
5788 "md: %s has different UUID to %s\n",
5789 bdevname(rdev->bdev,b),
5790 bdevname(rdev0->bdev,b2));
5791 export_rdev(rdev);
5792 return -EINVAL;
5793 }
5794 }
5795 err = bind_rdev_to_array(rdev, mddev);
5796 if (err)
5797 export_rdev(rdev);
5798 return err;
5799 }
5800
5801 /*
5802 * add_new_disk can be used once the array is assembled
5803 * to add "hot spares". They must already have a superblock
5804 * written
5805 */
5806 if (mddev->pers) {
5807 int err;
5808 if (!mddev->pers->hot_add_disk) {
5809 printk(KERN_WARNING
5810 "%s: personality does not support diskops!\n",
5811 mdname(mddev));
5812 return -EINVAL;
5813 }
5814 if (mddev->persistent)
5815 rdev = md_import_device(dev, mddev->major_version,
5816 mddev->minor_version);
5817 else
5818 rdev = md_import_device(dev, -1, -1);
5819 if (IS_ERR(rdev)) {
5820 printk(KERN_WARNING
5821 "md: md_import_device returned %ld\n",
5822 PTR_ERR(rdev));
5823 return PTR_ERR(rdev);
5824 }
5825 /* set saved_raid_disk if appropriate */
5826 if (!mddev->persistent) {
5827 if (info->state & (1<<MD_DISK_SYNC) &&
5828 info->raid_disk < mddev->raid_disks) {
5829 rdev->raid_disk = info->raid_disk;
5830 set_bit(In_sync, &rdev->flags);
5831 clear_bit(Bitmap_sync, &rdev->flags);
5832 } else
5833 rdev->raid_disk = -1;
5834 rdev->saved_raid_disk = rdev->raid_disk;
5835 } else
5836 super_types[mddev->major_version].
5837 validate_super(mddev, rdev);
5838 if ((info->state & (1<<MD_DISK_SYNC)) &&
5839 rdev->raid_disk != info->raid_disk) {
5840 /* This was a hot-add request, but events doesn't
5841 * match, so reject it.
5842 */
5843 export_rdev(rdev);
5844 return -EINVAL;
5845 }
5846
5847 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5848 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5849 set_bit(WriteMostly, &rdev->flags);
5850 else
5851 clear_bit(WriteMostly, &rdev->flags);
5852
5853 /*
5854 * check whether the device shows up in other nodes
5855 */
5856 if (mddev_is_clustered(mddev)) {
5857 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5858 /* Through --cluster-confirm */
5859 set_bit(Candidate, &rdev->flags);
5860 err = md_cluster_ops->new_disk_ack(mddev, true);
5861 if (err) {
5862 export_rdev(rdev);
5863 return err;
5864 }
5865 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5866 /* --add initiated by this node */
5867 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5868 if (err) {
5869 md_cluster_ops->add_new_disk_finish(mddev);
5870 export_rdev(rdev);
5871 return err;
5872 }
5873 }
5874 }
5875
5876 rdev->raid_disk = -1;
5877 err = bind_rdev_to_array(rdev, mddev);
5878 if (!err && !mddev->pers->hot_remove_disk) {
5879 /* If there is hot_add_disk but no hot_remove_disk
5880 * then added disks for geometry changes,
5881 * and should be added immediately.
5882 */
5883 super_types[mddev->major_version].
5884 validate_super(mddev, rdev);
5885 err = mddev->pers->hot_add_disk(mddev, rdev);
5886 if (err)
5887 unbind_rdev_from_array(rdev);
5888 }
5889 if (err)
5890 export_rdev(rdev);
5891 else
5892 sysfs_notify_dirent_safe(rdev->sysfs_state);
5893
5894 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5895 if (mddev->degraded)
5896 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5897 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5898 if (!err)
5899 md_new_event(mddev);
5900 md_wakeup_thread(mddev->thread);
5901 if (mddev_is_clustered(mddev) &&
5902 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5903 md_cluster_ops->add_new_disk_finish(mddev);
5904 return err;
5905 }
5906
5907 /* otherwise, add_new_disk is only allowed
5908 * for major_version==0 superblocks
5909 */
5910 if (mddev->major_version != 0) {
5911 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5912 mdname(mddev));
5913 return -EINVAL;
5914 }
5915
5916 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5917 int err;
5918 rdev = md_import_device(dev, -1, 0);
5919 if (IS_ERR(rdev)) {
5920 printk(KERN_WARNING
5921 "md: error, md_import_device() returned %ld\n",
5922 PTR_ERR(rdev));
5923 return PTR_ERR(rdev);
5924 }
5925 rdev->desc_nr = info->number;
5926 if (info->raid_disk < mddev->raid_disks)
5927 rdev->raid_disk = info->raid_disk;
5928 else
5929 rdev->raid_disk = -1;
5930
5931 if (rdev->raid_disk < mddev->raid_disks)
5932 if (info->state & (1<<MD_DISK_SYNC))
5933 set_bit(In_sync, &rdev->flags);
5934
5935 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5936 set_bit(WriteMostly, &rdev->flags);
5937
5938 if (!mddev->persistent) {
5939 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5940 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5941 } else
5942 rdev->sb_start = calc_dev_sboffset(rdev);
5943 rdev->sectors = rdev->sb_start;
5944
5945 err = bind_rdev_to_array(rdev, mddev);
5946 if (err) {
5947 export_rdev(rdev);
5948 return err;
5949 }
5950 }
5951
5952 return 0;
5953 }
5954
5955 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5956 {
5957 char b[BDEVNAME_SIZE];
5958 struct md_rdev *rdev;
5959
5960 rdev = find_rdev(mddev, dev);
5961 if (!rdev)
5962 return -ENXIO;
5963
5964 if (mddev_is_clustered(mddev))
5965 md_cluster_ops->metadata_update_start(mddev);
5966
5967 clear_bit(Blocked, &rdev->flags);
5968 remove_and_add_spares(mddev, rdev);
5969
5970 if (rdev->raid_disk >= 0)
5971 goto busy;
5972
5973 if (mddev_is_clustered(mddev))
5974 md_cluster_ops->remove_disk(mddev, rdev);
5975
5976 md_kick_rdev_from_array(rdev);
5977 md_update_sb(mddev, 1);
5978 md_new_event(mddev);
5979
5980 if (mddev_is_clustered(mddev))
5981 md_cluster_ops->metadata_update_finish(mddev);
5982
5983 return 0;
5984 busy:
5985 if (mddev_is_clustered(mddev))
5986 md_cluster_ops->metadata_update_cancel(mddev);
5987 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5988 bdevname(rdev->bdev,b), mdname(mddev));
5989 return -EBUSY;
5990 }
5991
5992 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5993 {
5994 char b[BDEVNAME_SIZE];
5995 int err;
5996 struct md_rdev *rdev;
5997
5998 if (!mddev->pers)
5999 return -ENODEV;
6000
6001 if (mddev->major_version != 0) {
6002 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6003 " version-0 superblocks.\n",
6004 mdname(mddev));
6005 return -EINVAL;
6006 }
6007 if (!mddev->pers->hot_add_disk) {
6008 printk(KERN_WARNING
6009 "%s: personality does not support diskops!\n",
6010 mdname(mddev));
6011 return -EINVAL;
6012 }
6013
6014 rdev = md_import_device(dev, -1, 0);
6015 if (IS_ERR(rdev)) {
6016 printk(KERN_WARNING
6017 "md: error, md_import_device() returned %ld\n",
6018 PTR_ERR(rdev));
6019 return -EINVAL;
6020 }
6021
6022 if (mddev->persistent)
6023 rdev->sb_start = calc_dev_sboffset(rdev);
6024 else
6025 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6026
6027 rdev->sectors = rdev->sb_start;
6028
6029 if (test_bit(Faulty, &rdev->flags)) {
6030 printk(KERN_WARNING
6031 "md: can not hot-add faulty %s disk to %s!\n",
6032 bdevname(rdev->bdev,b), mdname(mddev));
6033 err = -EINVAL;
6034 goto abort_export;
6035 }
6036
6037 if (mddev_is_clustered(mddev))
6038 md_cluster_ops->metadata_update_start(mddev);
6039 clear_bit(In_sync, &rdev->flags);
6040 rdev->desc_nr = -1;
6041 rdev->saved_raid_disk = -1;
6042 err = bind_rdev_to_array(rdev, mddev);
6043 if (err)
6044 goto abort_clustered;
6045
6046 /*
6047 * The rest should better be atomic, we can have disk failures
6048 * noticed in interrupt contexts ...
6049 */
6050
6051 rdev->raid_disk = -1;
6052
6053 md_update_sb(mddev, 1);
6054
6055 if (mddev_is_clustered(mddev))
6056 md_cluster_ops->metadata_update_finish(mddev);
6057 /*
6058 * Kick recovery, maybe this spare has to be added to the
6059 * array immediately.
6060 */
6061 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6062 md_wakeup_thread(mddev->thread);
6063 md_new_event(mddev);
6064 return 0;
6065
6066 abort_clustered:
6067 if (mddev_is_clustered(mddev))
6068 md_cluster_ops->metadata_update_cancel(mddev);
6069 abort_export:
6070 export_rdev(rdev);
6071 return err;
6072 }
6073
6074 static int set_bitmap_file(struct mddev *mddev, int fd)
6075 {
6076 int err = 0;
6077
6078 if (mddev->pers) {
6079 if (!mddev->pers->quiesce || !mddev->thread)
6080 return -EBUSY;
6081 if (mddev->recovery || mddev->sync_thread)
6082 return -EBUSY;
6083 /* we should be able to change the bitmap.. */
6084 }
6085
6086 if (fd >= 0) {
6087 struct inode *inode;
6088 struct file *f;
6089
6090 if (mddev->bitmap || mddev->bitmap_info.file)
6091 return -EEXIST; /* cannot add when bitmap is present */
6092 f = fget(fd);
6093
6094 if (f == NULL) {
6095 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6096 mdname(mddev));
6097 return -EBADF;
6098 }
6099
6100 inode = f->f_mapping->host;
6101 if (!S_ISREG(inode->i_mode)) {
6102 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6103 mdname(mddev));
6104 err = -EBADF;
6105 } else if (!(f->f_mode & FMODE_WRITE)) {
6106 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6107 mdname(mddev));
6108 err = -EBADF;
6109 } else if (atomic_read(&inode->i_writecount) != 1) {
6110 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6111 mdname(mddev));
6112 err = -EBUSY;
6113 }
6114 if (err) {
6115 fput(f);
6116 return err;
6117 }
6118 mddev->bitmap_info.file = f;
6119 mddev->bitmap_info.offset = 0; /* file overrides offset */
6120 } else if (mddev->bitmap == NULL)
6121 return -ENOENT; /* cannot remove what isn't there */
6122 err = 0;
6123 if (mddev->pers) {
6124 mddev->pers->quiesce(mddev, 1);
6125 if (fd >= 0) {
6126 struct bitmap *bitmap;
6127
6128 bitmap = bitmap_create(mddev, -1);
6129 if (!IS_ERR(bitmap)) {
6130 mddev->bitmap = bitmap;
6131 err = bitmap_load(mddev);
6132 } else
6133 err = PTR_ERR(bitmap);
6134 }
6135 if (fd < 0 || err) {
6136 bitmap_destroy(mddev);
6137 fd = -1; /* make sure to put the file */
6138 }
6139 mddev->pers->quiesce(mddev, 0);
6140 }
6141 if (fd < 0) {
6142 struct file *f = mddev->bitmap_info.file;
6143 if (f) {
6144 spin_lock(&mddev->lock);
6145 mddev->bitmap_info.file = NULL;
6146 spin_unlock(&mddev->lock);
6147 fput(f);
6148 }
6149 }
6150
6151 return err;
6152 }
6153
6154 /*
6155 * set_array_info is used two different ways
6156 * The original usage is when creating a new array.
6157 * In this usage, raid_disks is > 0 and it together with
6158 * level, size, not_persistent,layout,chunksize determine the
6159 * shape of the array.
6160 * This will always create an array with a type-0.90.0 superblock.
6161 * The newer usage is when assembling an array.
6162 * In this case raid_disks will be 0, and the major_version field is
6163 * use to determine which style super-blocks are to be found on the devices.
6164 * The minor and patch _version numbers are also kept incase the
6165 * super_block handler wishes to interpret them.
6166 */
6167 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6168 {
6169
6170 if (info->raid_disks == 0) {
6171 /* just setting version number for superblock loading */
6172 if (info->major_version < 0 ||
6173 info->major_version >= ARRAY_SIZE(super_types) ||
6174 super_types[info->major_version].name == NULL) {
6175 /* maybe try to auto-load a module? */
6176 printk(KERN_INFO
6177 "md: superblock version %d not known\n",
6178 info->major_version);
6179 return -EINVAL;
6180 }
6181 mddev->major_version = info->major_version;
6182 mddev->minor_version = info->minor_version;
6183 mddev->patch_version = info->patch_version;
6184 mddev->persistent = !info->not_persistent;
6185 /* ensure mddev_put doesn't delete this now that there
6186 * is some minimal configuration.
6187 */
6188 mddev->ctime = get_seconds();
6189 return 0;
6190 }
6191 mddev->major_version = MD_MAJOR_VERSION;
6192 mddev->minor_version = MD_MINOR_VERSION;
6193 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6194 mddev->ctime = get_seconds();
6195
6196 mddev->level = info->level;
6197 mddev->clevel[0] = 0;
6198 mddev->dev_sectors = 2 * (sector_t)info->size;
6199 mddev->raid_disks = info->raid_disks;
6200 /* don't set md_minor, it is determined by which /dev/md* was
6201 * openned
6202 */
6203 if (info->state & (1<<MD_SB_CLEAN))
6204 mddev->recovery_cp = MaxSector;
6205 else
6206 mddev->recovery_cp = 0;
6207 mddev->persistent = ! info->not_persistent;
6208 mddev->external = 0;
6209
6210 mddev->layout = info->layout;
6211 mddev->chunk_sectors = info->chunk_size >> 9;
6212
6213 mddev->max_disks = MD_SB_DISKS;
6214
6215 if (mddev->persistent)
6216 mddev->flags = 0;
6217 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6218
6219 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6220 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6221 mddev->bitmap_info.offset = 0;
6222
6223 mddev->reshape_position = MaxSector;
6224
6225 /*
6226 * Generate a 128 bit UUID
6227 */
6228 get_random_bytes(mddev->uuid, 16);
6229
6230 mddev->new_level = mddev->level;
6231 mddev->new_chunk_sectors = mddev->chunk_sectors;
6232 mddev->new_layout = mddev->layout;
6233 mddev->delta_disks = 0;
6234 mddev->reshape_backwards = 0;
6235
6236 return 0;
6237 }
6238
6239 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6240 {
6241 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6242
6243 if (mddev->external_size)
6244 return;
6245
6246 mddev->array_sectors = array_sectors;
6247 }
6248 EXPORT_SYMBOL(md_set_array_sectors);
6249
6250 static int update_size(struct mddev *mddev, sector_t num_sectors)
6251 {
6252 struct md_rdev *rdev;
6253 int rv;
6254 int fit = (num_sectors == 0);
6255
6256 if (mddev->pers->resize == NULL)
6257 return -EINVAL;
6258 /* The "num_sectors" is the number of sectors of each device that
6259 * is used. This can only make sense for arrays with redundancy.
6260 * linear and raid0 always use whatever space is available. We can only
6261 * consider changing this number if no resync or reconstruction is
6262 * happening, and if the new size is acceptable. It must fit before the
6263 * sb_start or, if that is <data_offset, it must fit before the size
6264 * of each device. If num_sectors is zero, we find the largest size
6265 * that fits.
6266 */
6267 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6268 mddev->sync_thread)
6269 return -EBUSY;
6270 if (mddev->ro)
6271 return -EROFS;
6272
6273 rdev_for_each(rdev, mddev) {
6274 sector_t avail = rdev->sectors;
6275
6276 if (fit && (num_sectors == 0 || num_sectors > avail))
6277 num_sectors = avail;
6278 if (avail < num_sectors)
6279 return -ENOSPC;
6280 }
6281 rv = mddev->pers->resize(mddev, num_sectors);
6282 if (!rv)
6283 revalidate_disk(mddev->gendisk);
6284 return rv;
6285 }
6286
6287 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6288 {
6289 int rv;
6290 struct md_rdev *rdev;
6291 /* change the number of raid disks */
6292 if (mddev->pers->check_reshape == NULL)
6293 return -EINVAL;
6294 if (mddev->ro)
6295 return -EROFS;
6296 if (raid_disks <= 0 ||
6297 (mddev->max_disks && raid_disks >= mddev->max_disks))
6298 return -EINVAL;
6299 if (mddev->sync_thread ||
6300 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6301 mddev->reshape_position != MaxSector)
6302 return -EBUSY;
6303
6304 rdev_for_each(rdev, mddev) {
6305 if (mddev->raid_disks < raid_disks &&
6306 rdev->data_offset < rdev->new_data_offset)
6307 return -EINVAL;
6308 if (mddev->raid_disks > raid_disks &&
6309 rdev->data_offset > rdev->new_data_offset)
6310 return -EINVAL;
6311 }
6312
6313 mddev->delta_disks = raid_disks - mddev->raid_disks;
6314 if (mddev->delta_disks < 0)
6315 mddev->reshape_backwards = 1;
6316 else if (mddev->delta_disks > 0)
6317 mddev->reshape_backwards = 0;
6318
6319 rv = mddev->pers->check_reshape(mddev);
6320 if (rv < 0) {
6321 mddev->delta_disks = 0;
6322 mddev->reshape_backwards = 0;
6323 }
6324 return rv;
6325 }
6326
6327 /*
6328 * update_array_info is used to change the configuration of an
6329 * on-line array.
6330 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6331 * fields in the info are checked against the array.
6332 * Any differences that cannot be handled will cause an error.
6333 * Normally, only one change can be managed at a time.
6334 */
6335 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6336 {
6337 int rv = 0;
6338 int cnt = 0;
6339 int state = 0;
6340
6341 /* calculate expected state,ignoring low bits */
6342 if (mddev->bitmap && mddev->bitmap_info.offset)
6343 state |= (1 << MD_SB_BITMAP_PRESENT);
6344
6345 if (mddev->major_version != info->major_version ||
6346 mddev->minor_version != info->minor_version ||
6347 /* mddev->patch_version != info->patch_version || */
6348 mddev->ctime != info->ctime ||
6349 mddev->level != info->level ||
6350 /* mddev->layout != info->layout || */
6351 !mddev->persistent != info->not_persistent||
6352 mddev->chunk_sectors != info->chunk_size >> 9 ||
6353 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6354 ((state^info->state) & 0xfffffe00)
6355 )
6356 return -EINVAL;
6357 /* Check there is only one change */
6358 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6359 cnt++;
6360 if (mddev->raid_disks != info->raid_disks)
6361 cnt++;
6362 if (mddev->layout != info->layout)
6363 cnt++;
6364 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6365 cnt++;
6366 if (cnt == 0)
6367 return 0;
6368 if (cnt > 1)
6369 return -EINVAL;
6370
6371 if (mddev->layout != info->layout) {
6372 /* Change layout
6373 * we don't need to do anything at the md level, the
6374 * personality will take care of it all.
6375 */
6376 if (mddev->pers->check_reshape == NULL)
6377 return -EINVAL;
6378 else {
6379 mddev->new_layout = info->layout;
6380 rv = mddev->pers->check_reshape(mddev);
6381 if (rv)
6382 mddev->new_layout = mddev->layout;
6383 return rv;
6384 }
6385 }
6386 if (mddev_is_clustered(mddev))
6387 md_cluster_ops->metadata_update_start(mddev);
6388 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6389 rv = update_size(mddev, (sector_t)info->size * 2);
6390
6391 if (mddev->raid_disks != info->raid_disks)
6392 rv = update_raid_disks(mddev, info->raid_disks);
6393
6394 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6395 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6396 rv = -EINVAL;
6397 goto err;
6398 }
6399 if (mddev->recovery || mddev->sync_thread) {
6400 rv = -EBUSY;
6401 goto err;
6402 }
6403 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6404 struct bitmap *bitmap;
6405 /* add the bitmap */
6406 if (mddev->bitmap) {
6407 rv = -EEXIST;
6408 goto err;
6409 }
6410 if (mddev->bitmap_info.default_offset == 0) {
6411 rv = -EINVAL;
6412 goto err;
6413 }
6414 mddev->bitmap_info.offset =
6415 mddev->bitmap_info.default_offset;
6416 mddev->bitmap_info.space =
6417 mddev->bitmap_info.default_space;
6418 mddev->pers->quiesce(mddev, 1);
6419 bitmap = bitmap_create(mddev, -1);
6420 if (!IS_ERR(bitmap)) {
6421 mddev->bitmap = bitmap;
6422 rv = bitmap_load(mddev);
6423 } else
6424 rv = PTR_ERR(bitmap);
6425 if (rv)
6426 bitmap_destroy(mddev);
6427 mddev->pers->quiesce(mddev, 0);
6428 } else {
6429 /* remove the bitmap */
6430 if (!mddev->bitmap) {
6431 rv = -ENOENT;
6432 goto err;
6433 }
6434 if (mddev->bitmap->storage.file) {
6435 rv = -EINVAL;
6436 goto err;
6437 }
6438 mddev->pers->quiesce(mddev, 1);
6439 bitmap_destroy(mddev);
6440 mddev->pers->quiesce(mddev, 0);
6441 mddev->bitmap_info.offset = 0;
6442 }
6443 }
6444 md_update_sb(mddev, 1);
6445 if (mddev_is_clustered(mddev))
6446 md_cluster_ops->metadata_update_finish(mddev);
6447 return rv;
6448 err:
6449 if (mddev_is_clustered(mddev))
6450 md_cluster_ops->metadata_update_cancel(mddev);
6451 return rv;
6452 }
6453
6454 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6455 {
6456 struct md_rdev *rdev;
6457 int err = 0;
6458
6459 if (mddev->pers == NULL)
6460 return -ENODEV;
6461
6462 rcu_read_lock();
6463 rdev = find_rdev_rcu(mddev, dev);
6464 if (!rdev)
6465 err = -ENODEV;
6466 else {
6467 md_error(mddev, rdev);
6468 if (!test_bit(Faulty, &rdev->flags))
6469 err = -EBUSY;
6470 }
6471 rcu_read_unlock();
6472 return err;
6473 }
6474
6475 /*
6476 * We have a problem here : there is no easy way to give a CHS
6477 * virtual geometry. We currently pretend that we have a 2 heads
6478 * 4 sectors (with a BIG number of cylinders...). This drives
6479 * dosfs just mad... ;-)
6480 */
6481 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6482 {
6483 struct mddev *mddev = bdev->bd_disk->private_data;
6484
6485 geo->heads = 2;
6486 geo->sectors = 4;
6487 geo->cylinders = mddev->array_sectors / 8;
6488 return 0;
6489 }
6490
6491 static inline bool md_ioctl_valid(unsigned int cmd)
6492 {
6493 switch (cmd) {
6494 case ADD_NEW_DISK:
6495 case BLKROSET:
6496 case GET_ARRAY_INFO:
6497 case GET_BITMAP_FILE:
6498 case GET_DISK_INFO:
6499 case HOT_ADD_DISK:
6500 case HOT_REMOVE_DISK:
6501 case RAID_AUTORUN:
6502 case RAID_VERSION:
6503 case RESTART_ARRAY_RW:
6504 case RUN_ARRAY:
6505 case SET_ARRAY_INFO:
6506 case SET_BITMAP_FILE:
6507 case SET_DISK_FAULTY:
6508 case STOP_ARRAY:
6509 case STOP_ARRAY_RO:
6510 case CLUSTERED_DISK_NACK:
6511 return true;
6512 default:
6513 return false;
6514 }
6515 }
6516
6517 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6518 unsigned int cmd, unsigned long arg)
6519 {
6520 int err = 0;
6521 void __user *argp = (void __user *)arg;
6522 struct mddev *mddev = NULL;
6523 int ro;
6524
6525 if (!md_ioctl_valid(cmd))
6526 return -ENOTTY;
6527
6528 switch (cmd) {
6529 case RAID_VERSION:
6530 case GET_ARRAY_INFO:
6531 case GET_DISK_INFO:
6532 break;
6533 default:
6534 if (!capable(CAP_SYS_ADMIN))
6535 return -EACCES;
6536 }
6537
6538 /*
6539 * Commands dealing with the RAID driver but not any
6540 * particular array:
6541 */
6542 switch (cmd) {
6543 case RAID_VERSION:
6544 err = get_version(argp);
6545 goto out;
6546
6547 #ifndef MODULE
6548 case RAID_AUTORUN:
6549 err = 0;
6550 autostart_arrays(arg);
6551 goto out;
6552 #endif
6553 default:;
6554 }
6555
6556 /*
6557 * Commands creating/starting a new array:
6558 */
6559
6560 mddev = bdev->bd_disk->private_data;
6561
6562 if (!mddev) {
6563 BUG();
6564 goto out;
6565 }
6566
6567 /* Some actions do not requires the mutex */
6568 switch (cmd) {
6569 case GET_ARRAY_INFO:
6570 if (!mddev->raid_disks && !mddev->external)
6571 err = -ENODEV;
6572 else
6573 err = get_array_info(mddev, argp);
6574 goto out;
6575
6576 case GET_DISK_INFO:
6577 if (!mddev->raid_disks && !mddev->external)
6578 err = -ENODEV;
6579 else
6580 err = get_disk_info(mddev, argp);
6581 goto out;
6582
6583 case SET_DISK_FAULTY:
6584 err = set_disk_faulty(mddev, new_decode_dev(arg));
6585 goto out;
6586
6587 case GET_BITMAP_FILE:
6588 err = get_bitmap_file(mddev, argp);
6589 goto out;
6590
6591 }
6592
6593 if (cmd == ADD_NEW_DISK)
6594 /* need to ensure md_delayed_delete() has completed */
6595 flush_workqueue(md_misc_wq);
6596
6597 if (cmd == HOT_REMOVE_DISK)
6598 /* need to ensure recovery thread has run */
6599 wait_event_interruptible_timeout(mddev->sb_wait,
6600 !test_bit(MD_RECOVERY_NEEDED,
6601 &mddev->flags),
6602 msecs_to_jiffies(5000));
6603 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6604 /* Need to flush page cache, and ensure no-one else opens
6605 * and writes
6606 */
6607 mutex_lock(&mddev->open_mutex);
6608 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6609 mutex_unlock(&mddev->open_mutex);
6610 err = -EBUSY;
6611 goto out;
6612 }
6613 set_bit(MD_STILL_CLOSED, &mddev->flags);
6614 mutex_unlock(&mddev->open_mutex);
6615 sync_blockdev(bdev);
6616 }
6617 err = mddev_lock(mddev);
6618 if (err) {
6619 printk(KERN_INFO
6620 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6621 err, cmd);
6622 goto out;
6623 }
6624
6625 if (cmd == SET_ARRAY_INFO) {
6626 mdu_array_info_t info;
6627 if (!arg)
6628 memset(&info, 0, sizeof(info));
6629 else if (copy_from_user(&info, argp, sizeof(info))) {
6630 err = -EFAULT;
6631 goto unlock;
6632 }
6633 if (mddev->pers) {
6634 err = update_array_info(mddev, &info);
6635 if (err) {
6636 printk(KERN_WARNING "md: couldn't update"
6637 " array info. %d\n", err);
6638 goto unlock;
6639 }
6640 goto unlock;
6641 }
6642 if (!list_empty(&mddev->disks)) {
6643 printk(KERN_WARNING
6644 "md: array %s already has disks!\n",
6645 mdname(mddev));
6646 err = -EBUSY;
6647 goto unlock;
6648 }
6649 if (mddev->raid_disks) {
6650 printk(KERN_WARNING
6651 "md: array %s already initialised!\n",
6652 mdname(mddev));
6653 err = -EBUSY;
6654 goto unlock;
6655 }
6656 err = set_array_info(mddev, &info);
6657 if (err) {
6658 printk(KERN_WARNING "md: couldn't set"
6659 " array info. %d\n", err);
6660 goto unlock;
6661 }
6662 goto unlock;
6663 }
6664
6665 /*
6666 * Commands querying/configuring an existing array:
6667 */
6668 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6669 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6670 if ((!mddev->raid_disks && !mddev->external)
6671 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6672 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6673 && cmd != GET_BITMAP_FILE) {
6674 err = -ENODEV;
6675 goto unlock;
6676 }
6677
6678 /*
6679 * Commands even a read-only array can execute:
6680 */
6681 switch (cmd) {
6682 case RESTART_ARRAY_RW:
6683 err = restart_array(mddev);
6684 goto unlock;
6685
6686 case STOP_ARRAY:
6687 err = do_md_stop(mddev, 0, bdev);
6688 goto unlock;
6689
6690 case STOP_ARRAY_RO:
6691 err = md_set_readonly(mddev, bdev);
6692 goto unlock;
6693
6694 case HOT_REMOVE_DISK:
6695 err = hot_remove_disk(mddev, new_decode_dev(arg));
6696 goto unlock;
6697
6698 case ADD_NEW_DISK:
6699 /* We can support ADD_NEW_DISK on read-only arrays
6700 * on if we are re-adding a preexisting device.
6701 * So require mddev->pers and MD_DISK_SYNC.
6702 */
6703 if (mddev->pers) {
6704 mdu_disk_info_t info;
6705 if (copy_from_user(&info, argp, sizeof(info)))
6706 err = -EFAULT;
6707 else if (!(info.state & (1<<MD_DISK_SYNC)))
6708 /* Need to clear read-only for this */
6709 break;
6710 else
6711 err = add_new_disk(mddev, &info);
6712 goto unlock;
6713 }
6714 break;
6715
6716 case BLKROSET:
6717 if (get_user(ro, (int __user *)(arg))) {
6718 err = -EFAULT;
6719 goto unlock;
6720 }
6721 err = -EINVAL;
6722
6723 /* if the bdev is going readonly the value of mddev->ro
6724 * does not matter, no writes are coming
6725 */
6726 if (ro)
6727 goto unlock;
6728
6729 /* are we are already prepared for writes? */
6730 if (mddev->ro != 1)
6731 goto unlock;
6732
6733 /* transitioning to readauto need only happen for
6734 * arrays that call md_write_start
6735 */
6736 if (mddev->pers) {
6737 err = restart_array(mddev);
6738 if (err == 0) {
6739 mddev->ro = 2;
6740 set_disk_ro(mddev->gendisk, 0);
6741 }
6742 }
6743 goto unlock;
6744 }
6745
6746 /*
6747 * The remaining ioctls are changing the state of the
6748 * superblock, so we do not allow them on read-only arrays.
6749 */
6750 if (mddev->ro && mddev->pers) {
6751 if (mddev->ro == 2) {
6752 mddev->ro = 0;
6753 sysfs_notify_dirent_safe(mddev->sysfs_state);
6754 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6755 /* mddev_unlock will wake thread */
6756 /* If a device failed while we were read-only, we
6757 * need to make sure the metadata is updated now.
6758 */
6759 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6760 mddev_unlock(mddev);
6761 wait_event(mddev->sb_wait,
6762 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6763 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6764 mddev_lock_nointr(mddev);
6765 }
6766 } else {
6767 err = -EROFS;
6768 goto unlock;
6769 }
6770 }
6771
6772 switch (cmd) {
6773 case ADD_NEW_DISK:
6774 {
6775 mdu_disk_info_t info;
6776 if (copy_from_user(&info, argp, sizeof(info)))
6777 err = -EFAULT;
6778 else
6779 err = add_new_disk(mddev, &info);
6780 goto unlock;
6781 }
6782
6783 case CLUSTERED_DISK_NACK:
6784 if (mddev_is_clustered(mddev))
6785 md_cluster_ops->new_disk_ack(mddev, false);
6786 else
6787 err = -EINVAL;
6788 goto unlock;
6789
6790 case HOT_ADD_DISK:
6791 err = hot_add_disk(mddev, new_decode_dev(arg));
6792 goto unlock;
6793
6794 case RUN_ARRAY:
6795 err = do_md_run(mddev);
6796 goto unlock;
6797
6798 case SET_BITMAP_FILE:
6799 err = set_bitmap_file(mddev, (int)arg);
6800 goto unlock;
6801
6802 default:
6803 err = -EINVAL;
6804 goto unlock;
6805 }
6806
6807 unlock:
6808 if (mddev->hold_active == UNTIL_IOCTL &&
6809 err != -EINVAL)
6810 mddev->hold_active = 0;
6811 mddev_unlock(mddev);
6812 out:
6813 return err;
6814 }
6815 #ifdef CONFIG_COMPAT
6816 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6817 unsigned int cmd, unsigned long arg)
6818 {
6819 switch (cmd) {
6820 case HOT_REMOVE_DISK:
6821 case HOT_ADD_DISK:
6822 case SET_DISK_FAULTY:
6823 case SET_BITMAP_FILE:
6824 /* These take in integer arg, do not convert */
6825 break;
6826 default:
6827 arg = (unsigned long)compat_ptr(arg);
6828 break;
6829 }
6830
6831 return md_ioctl(bdev, mode, cmd, arg);
6832 }
6833 #endif /* CONFIG_COMPAT */
6834
6835 static int md_open(struct block_device *bdev, fmode_t mode)
6836 {
6837 /*
6838 * Succeed if we can lock the mddev, which confirms that
6839 * it isn't being stopped right now.
6840 */
6841 struct mddev *mddev = mddev_find(bdev->bd_dev);
6842 int err;
6843
6844 if (!mddev)
6845 return -ENODEV;
6846
6847 if (mddev->gendisk != bdev->bd_disk) {
6848 /* we are racing with mddev_put which is discarding this
6849 * bd_disk.
6850 */
6851 mddev_put(mddev);
6852 /* Wait until bdev->bd_disk is definitely gone */
6853 flush_workqueue(md_misc_wq);
6854 /* Then retry the open from the top */
6855 return -ERESTARTSYS;
6856 }
6857 BUG_ON(mddev != bdev->bd_disk->private_data);
6858
6859 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6860 goto out;
6861
6862 err = 0;
6863 atomic_inc(&mddev->openers);
6864 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6865 mutex_unlock(&mddev->open_mutex);
6866
6867 check_disk_change(bdev);
6868 out:
6869 return err;
6870 }
6871
6872 static void md_release(struct gendisk *disk, fmode_t mode)
6873 {
6874 struct mddev *mddev = disk->private_data;
6875
6876 BUG_ON(!mddev);
6877 atomic_dec(&mddev->openers);
6878 mddev_put(mddev);
6879 }
6880
6881 static int md_media_changed(struct gendisk *disk)
6882 {
6883 struct mddev *mddev = disk->private_data;
6884
6885 return mddev->changed;
6886 }
6887
6888 static int md_revalidate(struct gendisk *disk)
6889 {
6890 struct mddev *mddev = disk->private_data;
6891
6892 mddev->changed = 0;
6893 return 0;
6894 }
6895 static const struct block_device_operations md_fops =
6896 {
6897 .owner = THIS_MODULE,
6898 .open = md_open,
6899 .release = md_release,
6900 .ioctl = md_ioctl,
6901 #ifdef CONFIG_COMPAT
6902 .compat_ioctl = md_compat_ioctl,
6903 #endif
6904 .getgeo = md_getgeo,
6905 .media_changed = md_media_changed,
6906 .revalidate_disk= md_revalidate,
6907 };
6908
6909 static int md_thread(void *arg)
6910 {
6911 struct md_thread *thread = arg;
6912
6913 /*
6914 * md_thread is a 'system-thread', it's priority should be very
6915 * high. We avoid resource deadlocks individually in each
6916 * raid personality. (RAID5 does preallocation) We also use RR and
6917 * the very same RT priority as kswapd, thus we will never get
6918 * into a priority inversion deadlock.
6919 *
6920 * we definitely have to have equal or higher priority than
6921 * bdflush, otherwise bdflush will deadlock if there are too
6922 * many dirty RAID5 blocks.
6923 */
6924
6925 allow_signal(SIGKILL);
6926 while (!kthread_should_stop()) {
6927
6928 /* We need to wait INTERRUPTIBLE so that
6929 * we don't add to the load-average.
6930 * That means we need to be sure no signals are
6931 * pending
6932 */
6933 if (signal_pending(current))
6934 flush_signals(current);
6935
6936 wait_event_interruptible_timeout
6937 (thread->wqueue,
6938 test_bit(THREAD_WAKEUP, &thread->flags)
6939 || kthread_should_stop(),
6940 thread->timeout);
6941
6942 clear_bit(THREAD_WAKEUP, &thread->flags);
6943 if (!kthread_should_stop())
6944 thread->run(thread);
6945 }
6946
6947 return 0;
6948 }
6949
6950 void md_wakeup_thread(struct md_thread *thread)
6951 {
6952 if (thread) {
6953 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6954 set_bit(THREAD_WAKEUP, &thread->flags);
6955 wake_up(&thread->wqueue);
6956 }
6957 }
6958 EXPORT_SYMBOL(md_wakeup_thread);
6959
6960 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6961 struct mddev *mddev, const char *name)
6962 {
6963 struct md_thread *thread;
6964
6965 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6966 if (!thread)
6967 return NULL;
6968
6969 init_waitqueue_head(&thread->wqueue);
6970
6971 thread->run = run;
6972 thread->mddev = mddev;
6973 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6974 thread->tsk = kthread_run(md_thread, thread,
6975 "%s_%s",
6976 mdname(thread->mddev),
6977 name);
6978 if (IS_ERR(thread->tsk)) {
6979 kfree(thread);
6980 return NULL;
6981 }
6982 return thread;
6983 }
6984 EXPORT_SYMBOL(md_register_thread);
6985
6986 void md_unregister_thread(struct md_thread **threadp)
6987 {
6988 struct md_thread *thread = *threadp;
6989 if (!thread)
6990 return;
6991 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6992 /* Locking ensures that mddev_unlock does not wake_up a
6993 * non-existent thread
6994 */
6995 spin_lock(&pers_lock);
6996 *threadp = NULL;
6997 spin_unlock(&pers_lock);
6998
6999 kthread_stop(thread->tsk);
7000 kfree(thread);
7001 }
7002 EXPORT_SYMBOL(md_unregister_thread);
7003
7004 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7005 {
7006 if (!rdev || test_bit(Faulty, &rdev->flags))
7007 return;
7008
7009 if (!mddev->pers || !mddev->pers->error_handler)
7010 return;
7011 mddev->pers->error_handler(mddev,rdev);
7012 if (mddev->degraded)
7013 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7014 sysfs_notify_dirent_safe(rdev->sysfs_state);
7015 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7017 md_wakeup_thread(mddev->thread);
7018 if (mddev->event_work.func)
7019 queue_work(md_misc_wq, &mddev->event_work);
7020 md_new_event_inintr(mddev);
7021 }
7022 EXPORT_SYMBOL(md_error);
7023
7024 /* seq_file implementation /proc/mdstat */
7025
7026 static void status_unused(struct seq_file *seq)
7027 {
7028 int i = 0;
7029 struct md_rdev *rdev;
7030
7031 seq_printf(seq, "unused devices: ");
7032
7033 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7034 char b[BDEVNAME_SIZE];
7035 i++;
7036 seq_printf(seq, "%s ",
7037 bdevname(rdev->bdev,b));
7038 }
7039 if (!i)
7040 seq_printf(seq, "<none>");
7041
7042 seq_printf(seq, "\n");
7043 }
7044
7045 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7046 {
7047 sector_t max_sectors, resync, res;
7048 unsigned long dt, db;
7049 sector_t rt;
7050 int scale;
7051 unsigned int per_milli;
7052
7053 if (mddev->curr_resync <= 3)
7054 resync = 0;
7055 else
7056 resync = mddev->curr_resync
7057 - atomic_read(&mddev->recovery_active);
7058
7059 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7060 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7061 max_sectors = mddev->resync_max_sectors;
7062 else
7063 max_sectors = mddev->dev_sectors;
7064
7065 WARN_ON(max_sectors == 0);
7066 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7067 * in a sector_t, and (max_sectors>>scale) will fit in a
7068 * u32, as those are the requirements for sector_div.
7069 * Thus 'scale' must be at least 10
7070 */
7071 scale = 10;
7072 if (sizeof(sector_t) > sizeof(unsigned long)) {
7073 while ( max_sectors/2 > (1ULL<<(scale+32)))
7074 scale++;
7075 }
7076 res = (resync>>scale)*1000;
7077 sector_div(res, (u32)((max_sectors>>scale)+1));
7078
7079 per_milli = res;
7080 {
7081 int i, x = per_milli/50, y = 20-x;
7082 seq_printf(seq, "[");
7083 for (i = 0; i < x; i++)
7084 seq_printf(seq, "=");
7085 seq_printf(seq, ">");
7086 for (i = 0; i < y; i++)
7087 seq_printf(seq, ".");
7088 seq_printf(seq, "] ");
7089 }
7090 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7091 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7092 "reshape" :
7093 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7094 "check" :
7095 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7096 "resync" : "recovery"))),
7097 per_milli/10, per_milli % 10,
7098 (unsigned long long) resync/2,
7099 (unsigned long long) max_sectors/2);
7100
7101 /*
7102 * dt: time from mark until now
7103 * db: blocks written from mark until now
7104 * rt: remaining time
7105 *
7106 * rt is a sector_t, so could be 32bit or 64bit.
7107 * So we divide before multiply in case it is 32bit and close
7108 * to the limit.
7109 * We scale the divisor (db) by 32 to avoid losing precision
7110 * near the end of resync when the number of remaining sectors
7111 * is close to 'db'.
7112 * We then divide rt by 32 after multiplying by db to compensate.
7113 * The '+1' avoids division by zero if db is very small.
7114 */
7115 dt = ((jiffies - mddev->resync_mark) / HZ);
7116 if (!dt) dt++;
7117 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7118 - mddev->resync_mark_cnt;
7119
7120 rt = max_sectors - resync; /* number of remaining sectors */
7121 sector_div(rt, db/32+1);
7122 rt *= dt;
7123 rt >>= 5;
7124
7125 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7126 ((unsigned long)rt % 60)/6);
7127
7128 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7129 }
7130
7131 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7132 {
7133 struct list_head *tmp;
7134 loff_t l = *pos;
7135 struct mddev *mddev;
7136
7137 if (l >= 0x10000)
7138 return NULL;
7139 if (!l--)
7140 /* header */
7141 return (void*)1;
7142
7143 spin_lock(&all_mddevs_lock);
7144 list_for_each(tmp,&all_mddevs)
7145 if (!l--) {
7146 mddev = list_entry(tmp, struct mddev, all_mddevs);
7147 mddev_get(mddev);
7148 spin_unlock(&all_mddevs_lock);
7149 return mddev;
7150 }
7151 spin_unlock(&all_mddevs_lock);
7152 if (!l--)
7153 return (void*)2;/* tail */
7154 return NULL;
7155 }
7156
7157 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7158 {
7159 struct list_head *tmp;
7160 struct mddev *next_mddev, *mddev = v;
7161
7162 ++*pos;
7163 if (v == (void*)2)
7164 return NULL;
7165
7166 spin_lock(&all_mddevs_lock);
7167 if (v == (void*)1)
7168 tmp = all_mddevs.next;
7169 else
7170 tmp = mddev->all_mddevs.next;
7171 if (tmp != &all_mddevs)
7172 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7173 else {
7174 next_mddev = (void*)2;
7175 *pos = 0x10000;
7176 }
7177 spin_unlock(&all_mddevs_lock);
7178
7179 if (v != (void*)1)
7180 mddev_put(mddev);
7181 return next_mddev;
7182
7183 }
7184
7185 static void md_seq_stop(struct seq_file *seq, void *v)
7186 {
7187 struct mddev *mddev = v;
7188
7189 if (mddev && v != (void*)1 && v != (void*)2)
7190 mddev_put(mddev);
7191 }
7192
7193 static int md_seq_show(struct seq_file *seq, void *v)
7194 {
7195 struct mddev *mddev = v;
7196 sector_t sectors;
7197 struct md_rdev *rdev;
7198
7199 if (v == (void*)1) {
7200 struct md_personality *pers;
7201 seq_printf(seq, "Personalities : ");
7202 spin_lock(&pers_lock);
7203 list_for_each_entry(pers, &pers_list, list)
7204 seq_printf(seq, "[%s] ", pers->name);
7205
7206 spin_unlock(&pers_lock);
7207 seq_printf(seq, "\n");
7208 seq->poll_event = atomic_read(&md_event_count);
7209 return 0;
7210 }
7211 if (v == (void*)2) {
7212 status_unused(seq);
7213 return 0;
7214 }
7215
7216 spin_lock(&mddev->lock);
7217 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7218 seq_printf(seq, "%s : %sactive", mdname(mddev),
7219 mddev->pers ? "" : "in");
7220 if (mddev->pers) {
7221 if (mddev->ro==1)
7222 seq_printf(seq, " (read-only)");
7223 if (mddev->ro==2)
7224 seq_printf(seq, " (auto-read-only)");
7225 seq_printf(seq, " %s", mddev->pers->name);
7226 }
7227
7228 sectors = 0;
7229 rcu_read_lock();
7230 rdev_for_each_rcu(rdev, mddev) {
7231 char b[BDEVNAME_SIZE];
7232 seq_printf(seq, " %s[%d]",
7233 bdevname(rdev->bdev,b), rdev->desc_nr);
7234 if (test_bit(WriteMostly, &rdev->flags))
7235 seq_printf(seq, "(W)");
7236 if (test_bit(Faulty, &rdev->flags)) {
7237 seq_printf(seq, "(F)");
7238 continue;
7239 }
7240 if (rdev->raid_disk < 0)
7241 seq_printf(seq, "(S)"); /* spare */
7242 if (test_bit(Replacement, &rdev->flags))
7243 seq_printf(seq, "(R)");
7244 sectors += rdev->sectors;
7245 }
7246 rcu_read_unlock();
7247
7248 if (!list_empty(&mddev->disks)) {
7249 if (mddev->pers)
7250 seq_printf(seq, "\n %llu blocks",
7251 (unsigned long long)
7252 mddev->array_sectors / 2);
7253 else
7254 seq_printf(seq, "\n %llu blocks",
7255 (unsigned long long)sectors / 2);
7256 }
7257 if (mddev->persistent) {
7258 if (mddev->major_version != 0 ||
7259 mddev->minor_version != 90) {
7260 seq_printf(seq," super %d.%d",
7261 mddev->major_version,
7262 mddev->minor_version);
7263 }
7264 } else if (mddev->external)
7265 seq_printf(seq, " super external:%s",
7266 mddev->metadata_type);
7267 else
7268 seq_printf(seq, " super non-persistent");
7269
7270 if (mddev->pers) {
7271 mddev->pers->status(seq, mddev);
7272 seq_printf(seq, "\n ");
7273 if (mddev->pers->sync_request) {
7274 if (mddev->curr_resync > 2) {
7275 status_resync(seq, mddev);
7276 seq_printf(seq, "\n ");
7277 } else if (mddev->curr_resync >= 1)
7278 seq_printf(seq, "\tresync=DELAYED\n ");
7279 else if (mddev->recovery_cp < MaxSector)
7280 seq_printf(seq, "\tresync=PENDING\n ");
7281 }
7282 } else
7283 seq_printf(seq, "\n ");
7284
7285 bitmap_status(seq, mddev->bitmap);
7286
7287 seq_printf(seq, "\n");
7288 }
7289 spin_unlock(&mddev->lock);
7290
7291 return 0;
7292 }
7293
7294 static const struct seq_operations md_seq_ops = {
7295 .start = md_seq_start,
7296 .next = md_seq_next,
7297 .stop = md_seq_stop,
7298 .show = md_seq_show,
7299 };
7300
7301 static int md_seq_open(struct inode *inode, struct file *file)
7302 {
7303 struct seq_file *seq;
7304 int error;
7305
7306 error = seq_open(file, &md_seq_ops);
7307 if (error)
7308 return error;
7309
7310 seq = file->private_data;
7311 seq->poll_event = atomic_read(&md_event_count);
7312 return error;
7313 }
7314
7315 static int md_unloading;
7316 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7317 {
7318 struct seq_file *seq = filp->private_data;
7319 int mask;
7320
7321 if (md_unloading)
7322 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7323 poll_wait(filp, &md_event_waiters, wait);
7324
7325 /* always allow read */
7326 mask = POLLIN | POLLRDNORM;
7327
7328 if (seq->poll_event != atomic_read(&md_event_count))
7329 mask |= POLLERR | POLLPRI;
7330 return mask;
7331 }
7332
7333 static const struct file_operations md_seq_fops = {
7334 .owner = THIS_MODULE,
7335 .open = md_seq_open,
7336 .read = seq_read,
7337 .llseek = seq_lseek,
7338 .release = seq_release_private,
7339 .poll = mdstat_poll,
7340 };
7341
7342 int register_md_personality(struct md_personality *p)
7343 {
7344 printk(KERN_INFO "md: %s personality registered for level %d\n",
7345 p->name, p->level);
7346 spin_lock(&pers_lock);
7347 list_add_tail(&p->list, &pers_list);
7348 spin_unlock(&pers_lock);
7349 return 0;
7350 }
7351 EXPORT_SYMBOL(register_md_personality);
7352
7353 int unregister_md_personality(struct md_personality *p)
7354 {
7355 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7356 spin_lock(&pers_lock);
7357 list_del_init(&p->list);
7358 spin_unlock(&pers_lock);
7359 return 0;
7360 }
7361 EXPORT_SYMBOL(unregister_md_personality);
7362
7363 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7364 {
7365 if (md_cluster_ops != NULL)
7366 return -EALREADY;
7367 spin_lock(&pers_lock);
7368 md_cluster_ops = ops;
7369 md_cluster_mod = module;
7370 spin_unlock(&pers_lock);
7371 return 0;
7372 }
7373 EXPORT_SYMBOL(register_md_cluster_operations);
7374
7375 int unregister_md_cluster_operations(void)
7376 {
7377 spin_lock(&pers_lock);
7378 md_cluster_ops = NULL;
7379 spin_unlock(&pers_lock);
7380 return 0;
7381 }
7382 EXPORT_SYMBOL(unregister_md_cluster_operations);
7383
7384 int md_setup_cluster(struct mddev *mddev, int nodes)
7385 {
7386 int err;
7387
7388 err = request_module("md-cluster");
7389 if (err) {
7390 pr_err("md-cluster module not found.\n");
7391 return err;
7392 }
7393
7394 spin_lock(&pers_lock);
7395 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7396 spin_unlock(&pers_lock);
7397 return -ENOENT;
7398 }
7399 spin_unlock(&pers_lock);
7400
7401 return md_cluster_ops->join(mddev, nodes);
7402 }
7403
7404 void md_cluster_stop(struct mddev *mddev)
7405 {
7406 if (!md_cluster_ops)
7407 return;
7408 md_cluster_ops->leave(mddev);
7409 module_put(md_cluster_mod);
7410 }
7411
7412 static int is_mddev_idle(struct mddev *mddev, int init)
7413 {
7414 struct md_rdev *rdev;
7415 int idle;
7416 int curr_events;
7417
7418 idle = 1;
7419 rcu_read_lock();
7420 rdev_for_each_rcu(rdev, mddev) {
7421 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7422 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7423 (int)part_stat_read(&disk->part0, sectors[1]) -
7424 atomic_read(&disk->sync_io);
7425 /* sync IO will cause sync_io to increase before the disk_stats
7426 * as sync_io is counted when a request starts, and
7427 * disk_stats is counted when it completes.
7428 * So resync activity will cause curr_events to be smaller than
7429 * when there was no such activity.
7430 * non-sync IO will cause disk_stat to increase without
7431 * increasing sync_io so curr_events will (eventually)
7432 * be larger than it was before. Once it becomes
7433 * substantially larger, the test below will cause
7434 * the array to appear non-idle, and resync will slow
7435 * down.
7436 * If there is a lot of outstanding resync activity when
7437 * we set last_event to curr_events, then all that activity
7438 * completing might cause the array to appear non-idle
7439 * and resync will be slowed down even though there might
7440 * not have been non-resync activity. This will only
7441 * happen once though. 'last_events' will soon reflect
7442 * the state where there is little or no outstanding
7443 * resync requests, and further resync activity will
7444 * always make curr_events less than last_events.
7445 *
7446 */
7447 if (init || curr_events - rdev->last_events > 64) {
7448 rdev->last_events = curr_events;
7449 idle = 0;
7450 }
7451 }
7452 rcu_read_unlock();
7453 return idle;
7454 }
7455
7456 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7457 {
7458 /* another "blocks" (512byte) blocks have been synced */
7459 atomic_sub(blocks, &mddev->recovery_active);
7460 wake_up(&mddev->recovery_wait);
7461 if (!ok) {
7462 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7463 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7464 md_wakeup_thread(mddev->thread);
7465 // stop recovery, signal do_sync ....
7466 }
7467 }
7468 EXPORT_SYMBOL(md_done_sync);
7469
7470 /* md_write_start(mddev, bi)
7471 * If we need to update some array metadata (e.g. 'active' flag
7472 * in superblock) before writing, schedule a superblock update
7473 * and wait for it to complete.
7474 */
7475 void md_write_start(struct mddev *mddev, struct bio *bi)
7476 {
7477 int did_change = 0;
7478 if (bio_data_dir(bi) != WRITE)
7479 return;
7480
7481 BUG_ON(mddev->ro == 1);
7482 if (mddev->ro == 2) {
7483 /* need to switch to read/write */
7484 mddev->ro = 0;
7485 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7486 md_wakeup_thread(mddev->thread);
7487 md_wakeup_thread(mddev->sync_thread);
7488 did_change = 1;
7489 }
7490 atomic_inc(&mddev->writes_pending);
7491 if (mddev->safemode == 1)
7492 mddev->safemode = 0;
7493 if (mddev->in_sync) {
7494 spin_lock(&mddev->lock);
7495 if (mddev->in_sync) {
7496 mddev->in_sync = 0;
7497 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7498 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7499 md_wakeup_thread(mddev->thread);
7500 did_change = 1;
7501 }
7502 spin_unlock(&mddev->lock);
7503 }
7504 if (did_change)
7505 sysfs_notify_dirent_safe(mddev->sysfs_state);
7506 wait_event(mddev->sb_wait,
7507 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7508 }
7509 EXPORT_SYMBOL(md_write_start);
7510
7511 void md_write_end(struct mddev *mddev)
7512 {
7513 if (atomic_dec_and_test(&mddev->writes_pending)) {
7514 if (mddev->safemode == 2)
7515 md_wakeup_thread(mddev->thread);
7516 else if (mddev->safemode_delay)
7517 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7518 }
7519 }
7520 EXPORT_SYMBOL(md_write_end);
7521
7522 /* md_allow_write(mddev)
7523 * Calling this ensures that the array is marked 'active' so that writes
7524 * may proceed without blocking. It is important to call this before
7525 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7526 * Must be called with mddev_lock held.
7527 *
7528 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7529 * is dropped, so return -EAGAIN after notifying userspace.
7530 */
7531 int md_allow_write(struct mddev *mddev)
7532 {
7533 if (!mddev->pers)
7534 return 0;
7535 if (mddev->ro)
7536 return 0;
7537 if (!mddev->pers->sync_request)
7538 return 0;
7539
7540 spin_lock(&mddev->lock);
7541 if (mddev->in_sync) {
7542 mddev->in_sync = 0;
7543 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7544 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7545 if (mddev->safemode_delay &&
7546 mddev->safemode == 0)
7547 mddev->safemode = 1;
7548 spin_unlock(&mddev->lock);
7549 if (mddev_is_clustered(mddev))
7550 md_cluster_ops->metadata_update_start(mddev);
7551 md_update_sb(mddev, 0);
7552 if (mddev_is_clustered(mddev))
7553 md_cluster_ops->metadata_update_finish(mddev);
7554 sysfs_notify_dirent_safe(mddev->sysfs_state);
7555 } else
7556 spin_unlock(&mddev->lock);
7557
7558 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7559 return -EAGAIN;
7560 else
7561 return 0;
7562 }
7563 EXPORT_SYMBOL_GPL(md_allow_write);
7564
7565 #define SYNC_MARKS 10
7566 #define SYNC_MARK_STEP (3*HZ)
7567 #define UPDATE_FREQUENCY (5*60*HZ)
7568 void md_do_sync(struct md_thread *thread)
7569 {
7570 struct mddev *mddev = thread->mddev;
7571 struct mddev *mddev2;
7572 unsigned int currspeed = 0,
7573 window;
7574 sector_t max_sectors,j, io_sectors, recovery_done;
7575 unsigned long mark[SYNC_MARKS];
7576 unsigned long update_time;
7577 sector_t mark_cnt[SYNC_MARKS];
7578 int last_mark,m;
7579 struct list_head *tmp;
7580 sector_t last_check;
7581 int skipped = 0;
7582 struct md_rdev *rdev;
7583 char *desc, *action = NULL;
7584 struct blk_plug plug;
7585
7586 /* just incase thread restarts... */
7587 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7588 return;
7589 if (mddev->ro) {/* never try to sync a read-only array */
7590 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7591 return;
7592 }
7593
7594 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7595 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7596 desc = "data-check";
7597 action = "check";
7598 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7599 desc = "requested-resync";
7600 action = "repair";
7601 } else
7602 desc = "resync";
7603 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7604 desc = "reshape";
7605 else
7606 desc = "recovery";
7607
7608 mddev->last_sync_action = action ?: desc;
7609
7610 /* we overload curr_resync somewhat here.
7611 * 0 == not engaged in resync at all
7612 * 2 == checking that there is no conflict with another sync
7613 * 1 == like 2, but have yielded to allow conflicting resync to
7614 * commense
7615 * other == active in resync - this many blocks
7616 *
7617 * Before starting a resync we must have set curr_resync to
7618 * 2, and then checked that every "conflicting" array has curr_resync
7619 * less than ours. When we find one that is the same or higher
7620 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7621 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7622 * This will mean we have to start checking from the beginning again.
7623 *
7624 */
7625
7626 do {
7627 mddev->curr_resync = 2;
7628
7629 try_again:
7630 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7631 goto skip;
7632 for_each_mddev(mddev2, tmp) {
7633 if (mddev2 == mddev)
7634 continue;
7635 if (!mddev->parallel_resync
7636 && mddev2->curr_resync
7637 && match_mddev_units(mddev, mddev2)) {
7638 DEFINE_WAIT(wq);
7639 if (mddev < mddev2 && mddev->curr_resync == 2) {
7640 /* arbitrarily yield */
7641 mddev->curr_resync = 1;
7642 wake_up(&resync_wait);
7643 }
7644 if (mddev > mddev2 && mddev->curr_resync == 1)
7645 /* no need to wait here, we can wait the next
7646 * time 'round when curr_resync == 2
7647 */
7648 continue;
7649 /* We need to wait 'interruptible' so as not to
7650 * contribute to the load average, and not to
7651 * be caught by 'softlockup'
7652 */
7653 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7654 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7655 mddev2->curr_resync >= mddev->curr_resync) {
7656 printk(KERN_INFO "md: delaying %s of %s"
7657 " until %s has finished (they"
7658 " share one or more physical units)\n",
7659 desc, mdname(mddev), mdname(mddev2));
7660 mddev_put(mddev2);
7661 if (signal_pending(current))
7662 flush_signals(current);
7663 schedule();
7664 finish_wait(&resync_wait, &wq);
7665 goto try_again;
7666 }
7667 finish_wait(&resync_wait, &wq);
7668 }
7669 }
7670 } while (mddev->curr_resync < 2);
7671
7672 j = 0;
7673 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7674 /* resync follows the size requested by the personality,
7675 * which defaults to physical size, but can be virtual size
7676 */
7677 max_sectors = mddev->resync_max_sectors;
7678 atomic64_set(&mddev->resync_mismatches, 0);
7679 /* we don't use the checkpoint if there's a bitmap */
7680 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7681 j = mddev->resync_min;
7682 else if (!mddev->bitmap)
7683 j = mddev->recovery_cp;
7684
7685 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7686 max_sectors = mddev->resync_max_sectors;
7687 else {
7688 /* recovery follows the physical size of devices */
7689 max_sectors = mddev->dev_sectors;
7690 j = MaxSector;
7691 rcu_read_lock();
7692 rdev_for_each_rcu(rdev, mddev)
7693 if (rdev->raid_disk >= 0 &&
7694 !test_bit(Faulty, &rdev->flags) &&
7695 !test_bit(In_sync, &rdev->flags) &&
7696 rdev->recovery_offset < j)
7697 j = rdev->recovery_offset;
7698 rcu_read_unlock();
7699
7700 /* If there is a bitmap, we need to make sure all
7701 * writes that started before we added a spare
7702 * complete before we start doing a recovery.
7703 * Otherwise the write might complete and (via
7704 * bitmap_endwrite) set a bit in the bitmap after the
7705 * recovery has checked that bit and skipped that
7706 * region.
7707 */
7708 if (mddev->bitmap) {
7709 mddev->pers->quiesce(mddev, 1);
7710 mddev->pers->quiesce(mddev, 0);
7711 }
7712 }
7713
7714 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7715 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7716 " %d KB/sec/disk.\n", speed_min(mddev));
7717 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7718 "(but not more than %d KB/sec) for %s.\n",
7719 speed_max(mddev), desc);
7720
7721 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7722
7723 io_sectors = 0;
7724 for (m = 0; m < SYNC_MARKS; m++) {
7725 mark[m] = jiffies;
7726 mark_cnt[m] = io_sectors;
7727 }
7728 last_mark = 0;
7729 mddev->resync_mark = mark[last_mark];
7730 mddev->resync_mark_cnt = mark_cnt[last_mark];
7731
7732 /*
7733 * Tune reconstruction:
7734 */
7735 window = 32*(PAGE_SIZE/512);
7736 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7737 window/2, (unsigned long long)max_sectors/2);
7738
7739 atomic_set(&mddev->recovery_active, 0);
7740 last_check = 0;
7741
7742 if (j>2) {
7743 printk(KERN_INFO
7744 "md: resuming %s of %s from checkpoint.\n",
7745 desc, mdname(mddev));
7746 mddev->curr_resync = j;
7747 } else
7748 mddev->curr_resync = 3; /* no longer delayed */
7749 mddev->curr_resync_completed = j;
7750 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7751 md_new_event(mddev);
7752 update_time = jiffies;
7753
7754 if (mddev_is_clustered(mddev))
7755 md_cluster_ops->resync_start(mddev, j, max_sectors);
7756
7757 blk_start_plug(&plug);
7758 while (j < max_sectors) {
7759 sector_t sectors;
7760
7761 skipped = 0;
7762
7763 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7764 ((mddev->curr_resync > mddev->curr_resync_completed &&
7765 (mddev->curr_resync - mddev->curr_resync_completed)
7766 > (max_sectors >> 4)) ||
7767 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7768 (j - mddev->curr_resync_completed)*2
7769 >= mddev->resync_max - mddev->curr_resync_completed
7770 )) {
7771 /* time to update curr_resync_completed */
7772 wait_event(mddev->recovery_wait,
7773 atomic_read(&mddev->recovery_active) == 0);
7774 mddev->curr_resync_completed = j;
7775 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7776 j > mddev->recovery_cp)
7777 mddev->recovery_cp = j;
7778 update_time = jiffies;
7779 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7780 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7781 }
7782
7783 while (j >= mddev->resync_max &&
7784 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7785 /* As this condition is controlled by user-space,
7786 * we can block indefinitely, so use '_interruptible'
7787 * to avoid triggering warnings.
7788 */
7789 flush_signals(current); /* just in case */
7790 wait_event_interruptible(mddev->recovery_wait,
7791 mddev->resync_max > j
7792 || test_bit(MD_RECOVERY_INTR,
7793 &mddev->recovery));
7794 }
7795
7796 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7797 break;
7798
7799 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7800 currspeed < speed_min(mddev));
7801 if (sectors == 0) {
7802 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7803 break;
7804 }
7805
7806 if (!skipped) { /* actual IO requested */
7807 io_sectors += sectors;
7808 atomic_add(sectors, &mddev->recovery_active);
7809 }
7810
7811 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7812 break;
7813
7814 j += sectors;
7815 if (j > 2)
7816 mddev->curr_resync = j;
7817 if (mddev_is_clustered(mddev))
7818 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7819 mddev->curr_mark_cnt = io_sectors;
7820 if (last_check == 0)
7821 /* this is the earliest that rebuild will be
7822 * visible in /proc/mdstat
7823 */
7824 md_new_event(mddev);
7825
7826 if (last_check + window > io_sectors || j == max_sectors)
7827 continue;
7828
7829 last_check = io_sectors;
7830 repeat:
7831 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7832 /* step marks */
7833 int next = (last_mark+1) % SYNC_MARKS;
7834
7835 mddev->resync_mark = mark[next];
7836 mddev->resync_mark_cnt = mark_cnt[next];
7837 mark[next] = jiffies;
7838 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7839 last_mark = next;
7840 }
7841
7842 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7843 break;
7844
7845 /*
7846 * this loop exits only if either when we are slower than
7847 * the 'hard' speed limit, or the system was IO-idle for
7848 * a jiffy.
7849 * the system might be non-idle CPU-wise, but we only care
7850 * about not overloading the IO subsystem. (things like an
7851 * e2fsck being done on the RAID array should execute fast)
7852 */
7853 cond_resched();
7854
7855 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7856 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7857 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7858
7859 if (currspeed > speed_min(mddev)) {
7860 if ((currspeed > speed_max(mddev)) ||
7861 !is_mddev_idle(mddev, 0)) {
7862 msleep(500);
7863 goto repeat;
7864 }
7865 }
7866 }
7867 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7868 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7869 ? "interrupted" : "done");
7870 /*
7871 * this also signals 'finished resyncing' to md_stop
7872 */
7873 blk_finish_plug(&plug);
7874 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7875
7876 /* tell personality that we are finished */
7877 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7878
7879 if (mddev_is_clustered(mddev))
7880 md_cluster_ops->resync_finish(mddev);
7881
7882 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7883 mddev->curr_resync > 2) {
7884 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7885 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7886 if (mddev->curr_resync >= mddev->recovery_cp) {
7887 printk(KERN_INFO
7888 "md: checkpointing %s of %s.\n",
7889 desc, mdname(mddev));
7890 if (test_bit(MD_RECOVERY_ERROR,
7891 &mddev->recovery))
7892 mddev->recovery_cp =
7893 mddev->curr_resync_completed;
7894 else
7895 mddev->recovery_cp =
7896 mddev->curr_resync;
7897 }
7898 } else
7899 mddev->recovery_cp = MaxSector;
7900 } else {
7901 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7902 mddev->curr_resync = MaxSector;
7903 rcu_read_lock();
7904 rdev_for_each_rcu(rdev, mddev)
7905 if (rdev->raid_disk >= 0 &&
7906 mddev->delta_disks >= 0 &&
7907 !test_bit(Faulty, &rdev->flags) &&
7908 !test_bit(In_sync, &rdev->flags) &&
7909 rdev->recovery_offset < mddev->curr_resync)
7910 rdev->recovery_offset = mddev->curr_resync;
7911 rcu_read_unlock();
7912 }
7913 }
7914 skip:
7915 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7916
7917 spin_lock(&mddev->lock);
7918 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7919 /* We completed so min/max setting can be forgotten if used. */
7920 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7921 mddev->resync_min = 0;
7922 mddev->resync_max = MaxSector;
7923 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7924 mddev->resync_min = mddev->curr_resync_completed;
7925 mddev->curr_resync = 0;
7926 spin_unlock(&mddev->lock);
7927
7928 wake_up(&resync_wait);
7929 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7930 md_wakeup_thread(mddev->thread);
7931 return;
7932 }
7933 EXPORT_SYMBOL_GPL(md_do_sync);
7934
7935 static int remove_and_add_spares(struct mddev *mddev,
7936 struct md_rdev *this)
7937 {
7938 struct md_rdev *rdev;
7939 int spares = 0;
7940 int removed = 0;
7941
7942 rdev_for_each(rdev, mddev)
7943 if ((this == NULL || rdev == this) &&
7944 rdev->raid_disk >= 0 &&
7945 !test_bit(Blocked, &rdev->flags) &&
7946 (test_bit(Faulty, &rdev->flags) ||
7947 ! test_bit(In_sync, &rdev->flags)) &&
7948 atomic_read(&rdev->nr_pending)==0) {
7949 if (mddev->pers->hot_remove_disk(
7950 mddev, rdev) == 0) {
7951 sysfs_unlink_rdev(mddev, rdev);
7952 rdev->raid_disk = -1;
7953 removed++;
7954 }
7955 }
7956 if (removed && mddev->kobj.sd)
7957 sysfs_notify(&mddev->kobj, NULL, "degraded");
7958
7959 if (this)
7960 goto no_add;
7961
7962 rdev_for_each(rdev, mddev) {
7963 if (rdev->raid_disk >= 0 &&
7964 !test_bit(In_sync, &rdev->flags) &&
7965 !test_bit(Faulty, &rdev->flags))
7966 spares++;
7967 if (rdev->raid_disk >= 0)
7968 continue;
7969 if (test_bit(Faulty, &rdev->flags))
7970 continue;
7971 if (mddev->ro &&
7972 ! (rdev->saved_raid_disk >= 0 &&
7973 !test_bit(Bitmap_sync, &rdev->flags)))
7974 continue;
7975
7976 if (rdev->saved_raid_disk < 0)
7977 rdev->recovery_offset = 0;
7978 if (mddev->pers->
7979 hot_add_disk(mddev, rdev) == 0) {
7980 if (sysfs_link_rdev(mddev, rdev))
7981 /* failure here is OK */;
7982 spares++;
7983 md_new_event(mddev);
7984 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7985 }
7986 }
7987 no_add:
7988 if (removed)
7989 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7990 return spares;
7991 }
7992
7993 static void md_start_sync(struct work_struct *ws)
7994 {
7995 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7996
7997 mddev->sync_thread = md_register_thread(md_do_sync,
7998 mddev,
7999 "resync");
8000 if (!mddev->sync_thread) {
8001 printk(KERN_ERR "%s: could not start resync"
8002 " thread...\n",
8003 mdname(mddev));
8004 /* leave the spares where they are, it shouldn't hurt */
8005 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8006 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8007 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8008 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8009 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8010 wake_up(&resync_wait);
8011 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8012 &mddev->recovery))
8013 if (mddev->sysfs_action)
8014 sysfs_notify_dirent_safe(mddev->sysfs_action);
8015 } else
8016 md_wakeup_thread(mddev->sync_thread);
8017 sysfs_notify_dirent_safe(mddev->sysfs_action);
8018 md_new_event(mddev);
8019 }
8020
8021 /*
8022 * This routine is regularly called by all per-raid-array threads to
8023 * deal with generic issues like resync and super-block update.
8024 * Raid personalities that don't have a thread (linear/raid0) do not
8025 * need this as they never do any recovery or update the superblock.
8026 *
8027 * It does not do any resync itself, but rather "forks" off other threads
8028 * to do that as needed.
8029 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8030 * "->recovery" and create a thread at ->sync_thread.
8031 * When the thread finishes it sets MD_RECOVERY_DONE
8032 * and wakeups up this thread which will reap the thread and finish up.
8033 * This thread also removes any faulty devices (with nr_pending == 0).
8034 *
8035 * The overall approach is:
8036 * 1/ if the superblock needs updating, update it.
8037 * 2/ If a recovery thread is running, don't do anything else.
8038 * 3/ If recovery has finished, clean up, possibly marking spares active.
8039 * 4/ If there are any faulty devices, remove them.
8040 * 5/ If array is degraded, try to add spares devices
8041 * 6/ If array has spares or is not in-sync, start a resync thread.
8042 */
8043 void md_check_recovery(struct mddev *mddev)
8044 {
8045 if (mddev->suspended)
8046 return;
8047
8048 if (mddev->bitmap)
8049 bitmap_daemon_work(mddev);
8050
8051 if (signal_pending(current)) {
8052 if (mddev->pers->sync_request && !mddev->external) {
8053 printk(KERN_INFO "md: %s in immediate safe mode\n",
8054 mdname(mddev));
8055 mddev->safemode = 2;
8056 }
8057 flush_signals(current);
8058 }
8059
8060 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8061 return;
8062 if ( ! (
8063 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8064 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8065 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8066 (mddev->external == 0 && mddev->safemode == 1) ||
8067 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8068 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8069 ))
8070 return;
8071
8072 if (mddev_trylock(mddev)) {
8073 int spares = 0;
8074
8075 if (mddev->ro) {
8076 /* On a read-only array we can:
8077 * - remove failed devices
8078 * - add already-in_sync devices if the array itself
8079 * is in-sync.
8080 * As we only add devices that are already in-sync,
8081 * we can activate the spares immediately.
8082 */
8083 remove_and_add_spares(mddev, NULL);
8084 /* There is no thread, but we need to call
8085 * ->spare_active and clear saved_raid_disk
8086 */
8087 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8088 md_reap_sync_thread(mddev);
8089 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8090 goto unlock;
8091 }
8092
8093 if (!mddev->external) {
8094 int did_change = 0;
8095 spin_lock(&mddev->lock);
8096 if (mddev->safemode &&
8097 !atomic_read(&mddev->writes_pending) &&
8098 !mddev->in_sync &&
8099 mddev->recovery_cp == MaxSector) {
8100 mddev->in_sync = 1;
8101 did_change = 1;
8102 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8103 }
8104 if (mddev->safemode == 1)
8105 mddev->safemode = 0;
8106 spin_unlock(&mddev->lock);
8107 if (did_change)
8108 sysfs_notify_dirent_safe(mddev->sysfs_state);
8109 }
8110
8111 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8112 if (mddev_is_clustered(mddev))
8113 md_cluster_ops->metadata_update_start(mddev);
8114 md_update_sb(mddev, 0);
8115 if (mddev_is_clustered(mddev))
8116 md_cluster_ops->metadata_update_finish(mddev);
8117 }
8118
8119 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8120 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8121 /* resync/recovery still happening */
8122 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8123 goto unlock;
8124 }
8125 if (mddev->sync_thread) {
8126 md_reap_sync_thread(mddev);
8127 goto unlock;
8128 }
8129 /* Set RUNNING before clearing NEEDED to avoid
8130 * any transients in the value of "sync_action".
8131 */
8132 mddev->curr_resync_completed = 0;
8133 spin_lock(&mddev->lock);
8134 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8135 spin_unlock(&mddev->lock);
8136 /* Clear some bits that don't mean anything, but
8137 * might be left set
8138 */
8139 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8140 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8141
8142 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8143 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8144 goto not_running;
8145 /* no recovery is running.
8146 * remove any failed drives, then
8147 * add spares if possible.
8148 * Spares are also removed and re-added, to allow
8149 * the personality to fail the re-add.
8150 */
8151
8152 if (mddev->reshape_position != MaxSector) {
8153 if (mddev->pers->check_reshape == NULL ||
8154 mddev->pers->check_reshape(mddev) != 0)
8155 /* Cannot proceed */
8156 goto not_running;
8157 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8158 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8159 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8160 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8161 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8162 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8163 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8164 } else if (mddev->recovery_cp < MaxSector) {
8165 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8166 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8167 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8168 /* nothing to be done ... */
8169 goto not_running;
8170
8171 if (mddev->pers->sync_request) {
8172 if (spares) {
8173 /* We are adding a device or devices to an array
8174 * which has the bitmap stored on all devices.
8175 * So make sure all bitmap pages get written
8176 */
8177 bitmap_write_all(mddev->bitmap);
8178 }
8179 INIT_WORK(&mddev->del_work, md_start_sync);
8180 queue_work(md_misc_wq, &mddev->del_work);
8181 goto unlock;
8182 }
8183 not_running:
8184 if (!mddev->sync_thread) {
8185 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8186 wake_up(&resync_wait);
8187 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8188 &mddev->recovery))
8189 if (mddev->sysfs_action)
8190 sysfs_notify_dirent_safe(mddev->sysfs_action);
8191 }
8192 unlock:
8193 wake_up(&mddev->sb_wait);
8194 mddev_unlock(mddev);
8195 }
8196 }
8197 EXPORT_SYMBOL(md_check_recovery);
8198
8199 void md_reap_sync_thread(struct mddev *mddev)
8200 {
8201 struct md_rdev *rdev;
8202
8203 /* resync has finished, collect result */
8204 md_unregister_thread(&mddev->sync_thread);
8205 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8206 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8207 /* success...*/
8208 /* activate any spares */
8209 if (mddev->pers->spare_active(mddev)) {
8210 sysfs_notify(&mddev->kobj, NULL,
8211 "degraded");
8212 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8213 }
8214 }
8215 if (mddev_is_clustered(mddev))
8216 md_cluster_ops->metadata_update_start(mddev);
8217 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8218 mddev->pers->finish_reshape)
8219 mddev->pers->finish_reshape(mddev);
8220
8221 /* If array is no-longer degraded, then any saved_raid_disk
8222 * information must be scrapped.
8223 */
8224 if (!mddev->degraded)
8225 rdev_for_each(rdev, mddev)
8226 rdev->saved_raid_disk = -1;
8227
8228 md_update_sb(mddev, 1);
8229 if (mddev_is_clustered(mddev))
8230 md_cluster_ops->metadata_update_finish(mddev);
8231 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8232 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8233 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8234 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8235 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8236 wake_up(&resync_wait);
8237 /* flag recovery needed just to double check */
8238 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8239 sysfs_notify_dirent_safe(mddev->sysfs_action);
8240 md_new_event(mddev);
8241 if (mddev->event_work.func)
8242 queue_work(md_misc_wq, &mddev->event_work);
8243 }
8244 EXPORT_SYMBOL(md_reap_sync_thread);
8245
8246 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8247 {
8248 sysfs_notify_dirent_safe(rdev->sysfs_state);
8249 wait_event_timeout(rdev->blocked_wait,
8250 !test_bit(Blocked, &rdev->flags) &&
8251 !test_bit(BlockedBadBlocks, &rdev->flags),
8252 msecs_to_jiffies(5000));
8253 rdev_dec_pending(rdev, mddev);
8254 }
8255 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8256
8257 void md_finish_reshape(struct mddev *mddev)
8258 {
8259 /* called be personality module when reshape completes. */
8260 struct md_rdev *rdev;
8261
8262 rdev_for_each(rdev, mddev) {
8263 if (rdev->data_offset > rdev->new_data_offset)
8264 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8265 else
8266 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8267 rdev->data_offset = rdev->new_data_offset;
8268 }
8269 }
8270 EXPORT_SYMBOL(md_finish_reshape);
8271
8272 /* Bad block management.
8273 * We can record which blocks on each device are 'bad' and so just
8274 * fail those blocks, or that stripe, rather than the whole device.
8275 * Entries in the bad-block table are 64bits wide. This comprises:
8276 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8277 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8278 * A 'shift' can be set so that larger blocks are tracked and
8279 * consequently larger devices can be covered.
8280 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8281 *
8282 * Locking of the bad-block table uses a seqlock so md_is_badblock
8283 * might need to retry if it is very unlucky.
8284 * We will sometimes want to check for bad blocks in a bi_end_io function,
8285 * so we use the write_seqlock_irq variant.
8286 *
8287 * When looking for a bad block we specify a range and want to
8288 * know if any block in the range is bad. So we binary-search
8289 * to the last range that starts at-or-before the given endpoint,
8290 * (or "before the sector after the target range")
8291 * then see if it ends after the given start.
8292 * We return
8293 * 0 if there are no known bad blocks in the range
8294 * 1 if there are known bad block which are all acknowledged
8295 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8296 * plus the start/length of the first bad section we overlap.
8297 */
8298 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8299 sector_t *first_bad, int *bad_sectors)
8300 {
8301 int hi;
8302 int lo;
8303 u64 *p = bb->page;
8304 int rv;
8305 sector_t target = s + sectors;
8306 unsigned seq;
8307
8308 if (bb->shift > 0) {
8309 /* round the start down, and the end up */
8310 s >>= bb->shift;
8311 target += (1<<bb->shift) - 1;
8312 target >>= bb->shift;
8313 sectors = target - s;
8314 }
8315 /* 'target' is now the first block after the bad range */
8316
8317 retry:
8318 seq = read_seqbegin(&bb->lock);
8319 lo = 0;
8320 rv = 0;
8321 hi = bb->count;
8322
8323 /* Binary search between lo and hi for 'target'
8324 * i.e. for the last range that starts before 'target'
8325 */
8326 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8327 * are known not to be the last range before target.
8328 * VARIANT: hi-lo is the number of possible
8329 * ranges, and decreases until it reaches 1
8330 */
8331 while (hi - lo > 1) {
8332 int mid = (lo + hi) / 2;
8333 sector_t a = BB_OFFSET(p[mid]);
8334 if (a < target)
8335 /* This could still be the one, earlier ranges
8336 * could not. */
8337 lo = mid;
8338 else
8339 /* This and later ranges are definitely out. */
8340 hi = mid;
8341 }
8342 /* 'lo' might be the last that started before target, but 'hi' isn't */
8343 if (hi > lo) {
8344 /* need to check all range that end after 's' to see if
8345 * any are unacknowledged.
8346 */
8347 while (lo >= 0 &&
8348 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8349 if (BB_OFFSET(p[lo]) < target) {
8350 /* starts before the end, and finishes after
8351 * the start, so they must overlap
8352 */
8353 if (rv != -1 && BB_ACK(p[lo]))
8354 rv = 1;
8355 else
8356 rv = -1;
8357 *first_bad = BB_OFFSET(p[lo]);
8358 *bad_sectors = BB_LEN(p[lo]);
8359 }
8360 lo--;
8361 }
8362 }
8363
8364 if (read_seqretry(&bb->lock, seq))
8365 goto retry;
8366
8367 return rv;
8368 }
8369 EXPORT_SYMBOL_GPL(md_is_badblock);
8370
8371 /*
8372 * Add a range of bad blocks to the table.
8373 * This might extend the table, or might contract it
8374 * if two adjacent ranges can be merged.
8375 * We binary-search to find the 'insertion' point, then
8376 * decide how best to handle it.
8377 */
8378 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8379 int acknowledged)
8380 {
8381 u64 *p;
8382 int lo, hi;
8383 int rv = 1;
8384 unsigned long flags;
8385
8386 if (bb->shift < 0)
8387 /* badblocks are disabled */
8388 return 0;
8389
8390 if (bb->shift) {
8391 /* round the start down, and the end up */
8392 sector_t next = s + sectors;
8393 s >>= bb->shift;
8394 next += (1<<bb->shift) - 1;
8395 next >>= bb->shift;
8396 sectors = next - s;
8397 }
8398
8399 write_seqlock_irqsave(&bb->lock, flags);
8400
8401 p = bb->page;
8402 lo = 0;
8403 hi = bb->count;
8404 /* Find the last range that starts at-or-before 's' */
8405 while (hi - lo > 1) {
8406 int mid = (lo + hi) / 2;
8407 sector_t a = BB_OFFSET(p[mid]);
8408 if (a <= s)
8409 lo = mid;
8410 else
8411 hi = mid;
8412 }
8413 if (hi > lo && BB_OFFSET(p[lo]) > s)
8414 hi = lo;
8415
8416 if (hi > lo) {
8417 /* we found a range that might merge with the start
8418 * of our new range
8419 */
8420 sector_t a = BB_OFFSET(p[lo]);
8421 sector_t e = a + BB_LEN(p[lo]);
8422 int ack = BB_ACK(p[lo]);
8423 if (e >= s) {
8424 /* Yes, we can merge with a previous range */
8425 if (s == a && s + sectors >= e)
8426 /* new range covers old */
8427 ack = acknowledged;
8428 else
8429 ack = ack && acknowledged;
8430
8431 if (e < s + sectors)
8432 e = s + sectors;
8433 if (e - a <= BB_MAX_LEN) {
8434 p[lo] = BB_MAKE(a, e-a, ack);
8435 s = e;
8436 } else {
8437 /* does not all fit in one range,
8438 * make p[lo] maximal
8439 */
8440 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8441 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8442 s = a + BB_MAX_LEN;
8443 }
8444 sectors = e - s;
8445 }
8446 }
8447 if (sectors && hi < bb->count) {
8448 /* 'hi' points to the first range that starts after 's'.
8449 * Maybe we can merge with the start of that range */
8450 sector_t a = BB_OFFSET(p[hi]);
8451 sector_t e = a + BB_LEN(p[hi]);
8452 int ack = BB_ACK(p[hi]);
8453 if (a <= s + sectors) {
8454 /* merging is possible */
8455 if (e <= s + sectors) {
8456 /* full overlap */
8457 e = s + sectors;
8458 ack = acknowledged;
8459 } else
8460 ack = ack && acknowledged;
8461
8462 a = s;
8463 if (e - a <= BB_MAX_LEN) {
8464 p[hi] = BB_MAKE(a, e-a, ack);
8465 s = e;
8466 } else {
8467 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8468 s = a + BB_MAX_LEN;
8469 }
8470 sectors = e - s;
8471 lo = hi;
8472 hi++;
8473 }
8474 }
8475 if (sectors == 0 && hi < bb->count) {
8476 /* we might be able to combine lo and hi */
8477 /* Note: 's' is at the end of 'lo' */
8478 sector_t a = BB_OFFSET(p[hi]);
8479 int lolen = BB_LEN(p[lo]);
8480 int hilen = BB_LEN(p[hi]);
8481 int newlen = lolen + hilen - (s - a);
8482 if (s >= a && newlen < BB_MAX_LEN) {
8483 /* yes, we can combine them */
8484 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8485 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8486 memmove(p + hi, p + hi + 1,
8487 (bb->count - hi - 1) * 8);
8488 bb->count--;
8489 }
8490 }
8491 while (sectors) {
8492 /* didn't merge (it all).
8493 * Need to add a range just before 'hi' */
8494 if (bb->count >= MD_MAX_BADBLOCKS) {
8495 /* No room for more */
8496 rv = 0;
8497 break;
8498 } else {
8499 int this_sectors = sectors;
8500 memmove(p + hi + 1, p + hi,
8501 (bb->count - hi) * 8);
8502 bb->count++;
8503
8504 if (this_sectors > BB_MAX_LEN)
8505 this_sectors = BB_MAX_LEN;
8506 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8507 sectors -= this_sectors;
8508 s += this_sectors;
8509 }
8510 }
8511
8512 bb->changed = 1;
8513 if (!acknowledged)
8514 bb->unacked_exist = 1;
8515 write_sequnlock_irqrestore(&bb->lock, flags);
8516
8517 return rv;
8518 }
8519
8520 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8521 int is_new)
8522 {
8523 int rv;
8524 if (is_new)
8525 s += rdev->new_data_offset;
8526 else
8527 s += rdev->data_offset;
8528 rv = md_set_badblocks(&rdev->badblocks,
8529 s, sectors, 0);
8530 if (rv) {
8531 /* Make sure they get written out promptly */
8532 sysfs_notify_dirent_safe(rdev->sysfs_state);
8533 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8534 md_wakeup_thread(rdev->mddev->thread);
8535 }
8536 return rv;
8537 }
8538 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8539
8540 /*
8541 * Remove a range of bad blocks from the table.
8542 * This may involve extending the table if we spilt a region,
8543 * but it must not fail. So if the table becomes full, we just
8544 * drop the remove request.
8545 */
8546 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8547 {
8548 u64 *p;
8549 int lo, hi;
8550 sector_t target = s + sectors;
8551 int rv = 0;
8552
8553 if (bb->shift > 0) {
8554 /* When clearing we round the start up and the end down.
8555 * This should not matter as the shift should align with
8556 * the block size and no rounding should ever be needed.
8557 * However it is better the think a block is bad when it
8558 * isn't than to think a block is not bad when it is.
8559 */
8560 s += (1<<bb->shift) - 1;
8561 s >>= bb->shift;
8562 target >>= bb->shift;
8563 sectors = target - s;
8564 }
8565
8566 write_seqlock_irq(&bb->lock);
8567
8568 p = bb->page;
8569 lo = 0;
8570 hi = bb->count;
8571 /* Find the last range that starts before 'target' */
8572 while (hi - lo > 1) {
8573 int mid = (lo + hi) / 2;
8574 sector_t a = BB_OFFSET(p[mid]);
8575 if (a < target)
8576 lo = mid;
8577 else
8578 hi = mid;
8579 }
8580 if (hi > lo) {
8581 /* p[lo] is the last range that could overlap the
8582 * current range. Earlier ranges could also overlap,
8583 * but only this one can overlap the end of the range.
8584 */
8585 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8586 /* Partial overlap, leave the tail of this range */
8587 int ack = BB_ACK(p[lo]);
8588 sector_t a = BB_OFFSET(p[lo]);
8589 sector_t end = a + BB_LEN(p[lo]);
8590
8591 if (a < s) {
8592 /* we need to split this range */
8593 if (bb->count >= MD_MAX_BADBLOCKS) {
8594 rv = -ENOSPC;
8595 goto out;
8596 }
8597 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8598 bb->count++;
8599 p[lo] = BB_MAKE(a, s-a, ack);
8600 lo++;
8601 }
8602 p[lo] = BB_MAKE(target, end - target, ack);
8603 /* there is no longer an overlap */
8604 hi = lo;
8605 lo--;
8606 }
8607 while (lo >= 0 &&
8608 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8609 /* This range does overlap */
8610 if (BB_OFFSET(p[lo]) < s) {
8611 /* Keep the early parts of this range. */
8612 int ack = BB_ACK(p[lo]);
8613 sector_t start = BB_OFFSET(p[lo]);
8614 p[lo] = BB_MAKE(start, s - start, ack);
8615 /* now low doesn't overlap, so.. */
8616 break;
8617 }
8618 lo--;
8619 }
8620 /* 'lo' is strictly before, 'hi' is strictly after,
8621 * anything between needs to be discarded
8622 */
8623 if (hi - lo > 1) {
8624 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8625 bb->count -= (hi - lo - 1);
8626 }
8627 }
8628
8629 bb->changed = 1;
8630 out:
8631 write_sequnlock_irq(&bb->lock);
8632 return rv;
8633 }
8634
8635 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8636 int is_new)
8637 {
8638 if (is_new)
8639 s += rdev->new_data_offset;
8640 else
8641 s += rdev->data_offset;
8642 return md_clear_badblocks(&rdev->badblocks,
8643 s, sectors);
8644 }
8645 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8646
8647 /*
8648 * Acknowledge all bad blocks in a list.
8649 * This only succeeds if ->changed is clear. It is used by
8650 * in-kernel metadata updates
8651 */
8652 void md_ack_all_badblocks(struct badblocks *bb)
8653 {
8654 if (bb->page == NULL || bb->changed)
8655 /* no point even trying */
8656 return;
8657 write_seqlock_irq(&bb->lock);
8658
8659 if (bb->changed == 0 && bb->unacked_exist) {
8660 u64 *p = bb->page;
8661 int i;
8662 for (i = 0; i < bb->count ; i++) {
8663 if (!BB_ACK(p[i])) {
8664 sector_t start = BB_OFFSET(p[i]);
8665 int len = BB_LEN(p[i]);
8666 p[i] = BB_MAKE(start, len, 1);
8667 }
8668 }
8669 bb->unacked_exist = 0;
8670 }
8671 write_sequnlock_irq(&bb->lock);
8672 }
8673 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8674
8675 /* sysfs access to bad-blocks list.
8676 * We present two files.
8677 * 'bad-blocks' lists sector numbers and lengths of ranges that
8678 * are recorded as bad. The list is truncated to fit within
8679 * the one-page limit of sysfs.
8680 * Writing "sector length" to this file adds an acknowledged
8681 * bad block list.
8682 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8683 * been acknowledged. Writing to this file adds bad blocks
8684 * without acknowledging them. This is largely for testing.
8685 */
8686
8687 static ssize_t
8688 badblocks_show(struct badblocks *bb, char *page, int unack)
8689 {
8690 size_t len;
8691 int i;
8692 u64 *p = bb->page;
8693 unsigned seq;
8694
8695 if (bb->shift < 0)
8696 return 0;
8697
8698 retry:
8699 seq = read_seqbegin(&bb->lock);
8700
8701 len = 0;
8702 i = 0;
8703
8704 while (len < PAGE_SIZE && i < bb->count) {
8705 sector_t s = BB_OFFSET(p[i]);
8706 unsigned int length = BB_LEN(p[i]);
8707 int ack = BB_ACK(p[i]);
8708 i++;
8709
8710 if (unack && ack)
8711 continue;
8712
8713 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8714 (unsigned long long)s << bb->shift,
8715 length << bb->shift);
8716 }
8717 if (unack && len == 0)
8718 bb->unacked_exist = 0;
8719
8720 if (read_seqretry(&bb->lock, seq))
8721 goto retry;
8722
8723 return len;
8724 }
8725
8726 #define DO_DEBUG 1
8727
8728 static ssize_t
8729 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8730 {
8731 unsigned long long sector;
8732 int length;
8733 char newline;
8734 #ifdef DO_DEBUG
8735 /* Allow clearing via sysfs *only* for testing/debugging.
8736 * Normally only a successful write may clear a badblock
8737 */
8738 int clear = 0;
8739 if (page[0] == '-') {
8740 clear = 1;
8741 page++;
8742 }
8743 #endif /* DO_DEBUG */
8744
8745 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8746 case 3:
8747 if (newline != '\n')
8748 return -EINVAL;
8749 case 2:
8750 if (length <= 0)
8751 return -EINVAL;
8752 break;
8753 default:
8754 return -EINVAL;
8755 }
8756
8757 #ifdef DO_DEBUG
8758 if (clear) {
8759 md_clear_badblocks(bb, sector, length);
8760 return len;
8761 }
8762 #endif /* DO_DEBUG */
8763 if (md_set_badblocks(bb, sector, length, !unack))
8764 return len;
8765 else
8766 return -ENOSPC;
8767 }
8768
8769 static int md_notify_reboot(struct notifier_block *this,
8770 unsigned long code, void *x)
8771 {
8772 struct list_head *tmp;
8773 struct mddev *mddev;
8774 int need_delay = 0;
8775
8776 for_each_mddev(mddev, tmp) {
8777 if (mddev_trylock(mddev)) {
8778 if (mddev->pers)
8779 __md_stop_writes(mddev);
8780 if (mddev->persistent)
8781 mddev->safemode = 2;
8782 mddev_unlock(mddev);
8783 }
8784 need_delay = 1;
8785 }
8786 /*
8787 * certain more exotic SCSI devices are known to be
8788 * volatile wrt too early system reboots. While the
8789 * right place to handle this issue is the given
8790 * driver, we do want to have a safe RAID driver ...
8791 */
8792 if (need_delay)
8793 mdelay(1000*1);
8794
8795 return NOTIFY_DONE;
8796 }
8797
8798 static struct notifier_block md_notifier = {
8799 .notifier_call = md_notify_reboot,
8800 .next = NULL,
8801 .priority = INT_MAX, /* before any real devices */
8802 };
8803
8804 static void md_geninit(void)
8805 {
8806 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8807
8808 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8809 }
8810
8811 static int __init md_init(void)
8812 {
8813 int ret = -ENOMEM;
8814
8815 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8816 if (!md_wq)
8817 goto err_wq;
8818
8819 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8820 if (!md_misc_wq)
8821 goto err_misc_wq;
8822
8823 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8824 goto err_md;
8825
8826 if ((ret = register_blkdev(0, "mdp")) < 0)
8827 goto err_mdp;
8828 mdp_major = ret;
8829
8830 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8831 md_probe, NULL, NULL);
8832 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8833 md_probe, NULL, NULL);
8834
8835 register_reboot_notifier(&md_notifier);
8836 raid_table_header = register_sysctl_table(raid_root_table);
8837
8838 md_geninit();
8839 return 0;
8840
8841 err_mdp:
8842 unregister_blkdev(MD_MAJOR, "md");
8843 err_md:
8844 destroy_workqueue(md_misc_wq);
8845 err_misc_wq:
8846 destroy_workqueue(md_wq);
8847 err_wq:
8848 return ret;
8849 }
8850
8851 void md_reload_sb(struct mddev *mddev)
8852 {
8853 struct md_rdev *rdev, *tmp;
8854
8855 rdev_for_each_safe(rdev, tmp, mddev) {
8856 rdev->sb_loaded = 0;
8857 ClearPageUptodate(rdev->sb_page);
8858 }
8859 mddev->raid_disks = 0;
8860 analyze_sbs(mddev);
8861 rdev_for_each_safe(rdev, tmp, mddev) {
8862 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8863 /* since we don't write to faulty devices, we figure out if the
8864 * disk is faulty by comparing events
8865 */
8866 if (mddev->events > sb->events)
8867 set_bit(Faulty, &rdev->flags);
8868 }
8869
8870 }
8871 EXPORT_SYMBOL(md_reload_sb);
8872
8873 #ifndef MODULE
8874
8875 /*
8876 * Searches all registered partitions for autorun RAID arrays
8877 * at boot time.
8878 */
8879
8880 static LIST_HEAD(all_detected_devices);
8881 struct detected_devices_node {
8882 struct list_head list;
8883 dev_t dev;
8884 };
8885
8886 void md_autodetect_dev(dev_t dev)
8887 {
8888 struct detected_devices_node *node_detected_dev;
8889
8890 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8891 if (node_detected_dev) {
8892 node_detected_dev->dev = dev;
8893 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8894 } else {
8895 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8896 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8897 }
8898 }
8899
8900 static void autostart_arrays(int part)
8901 {
8902 struct md_rdev *rdev;
8903 struct detected_devices_node *node_detected_dev;
8904 dev_t dev;
8905 int i_scanned, i_passed;
8906
8907 i_scanned = 0;
8908 i_passed = 0;
8909
8910 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8911
8912 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8913 i_scanned++;
8914 node_detected_dev = list_entry(all_detected_devices.next,
8915 struct detected_devices_node, list);
8916 list_del(&node_detected_dev->list);
8917 dev = node_detected_dev->dev;
8918 kfree(node_detected_dev);
8919 rdev = md_import_device(dev,0, 90);
8920 if (IS_ERR(rdev))
8921 continue;
8922
8923 if (test_bit(Faulty, &rdev->flags))
8924 continue;
8925
8926 set_bit(AutoDetected, &rdev->flags);
8927 list_add(&rdev->same_set, &pending_raid_disks);
8928 i_passed++;
8929 }
8930
8931 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8932 i_scanned, i_passed);
8933
8934 autorun_devices(part);
8935 }
8936
8937 #endif /* !MODULE */
8938
8939 static __exit void md_exit(void)
8940 {
8941 struct mddev *mddev;
8942 struct list_head *tmp;
8943 int delay = 1;
8944
8945 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8946 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8947
8948 unregister_blkdev(MD_MAJOR,"md");
8949 unregister_blkdev(mdp_major, "mdp");
8950 unregister_reboot_notifier(&md_notifier);
8951 unregister_sysctl_table(raid_table_header);
8952
8953 /* We cannot unload the modules while some process is
8954 * waiting for us in select() or poll() - wake them up
8955 */
8956 md_unloading = 1;
8957 while (waitqueue_active(&md_event_waiters)) {
8958 /* not safe to leave yet */
8959 wake_up(&md_event_waiters);
8960 msleep(delay);
8961 delay += delay;
8962 }
8963 remove_proc_entry("mdstat", NULL);
8964
8965 for_each_mddev(mddev, tmp) {
8966 export_array(mddev);
8967 mddev->hold_active = 0;
8968 }
8969 destroy_workqueue(md_misc_wq);
8970 destroy_workqueue(md_wq);
8971 }
8972
8973 subsys_initcall(md_init);
8974 module_exit(md_exit)
8975
8976 static int get_ro(char *buffer, struct kernel_param *kp)
8977 {
8978 return sprintf(buffer, "%d", start_readonly);
8979 }
8980 static int set_ro(const char *val, struct kernel_param *kp)
8981 {
8982 char *e;
8983 int num = simple_strtoul(val, &e, 10);
8984 if (*val && (*e == '\0' || *e == '\n')) {
8985 start_readonly = num;
8986 return 0;
8987 }
8988 return -EINVAL;
8989 }
8990
8991 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8992 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8993 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8994
8995 MODULE_LICENSE("GPL");
8996 MODULE_DESCRIPTION("MD RAID framework");
8997 MODULE_ALIAS("md");
8998 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.232849 seconds and 6 git commands to generate.