Merge branch 'x86/vt-d' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
70 static struct workqueue_struct *md_wq;
71 static struct workqueue_struct *md_misc_wq;
72
73 static int remove_and_add_spares(struct mddev *mddev,
74 struct md_rdev *this);
75
76 /*
77 * Default number of read corrections we'll attempt on an rdev
78 * before ejecting it from the array. We divide the read error
79 * count by 2 for every hour elapsed between read errors.
80 */
81 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
82 /*
83 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
84 * is 1000 KB/sec, so the extra system load does not show up that much.
85 * Increase it if you want to have more _guaranteed_ speed. Note that
86 * the RAID driver will use the maximum available bandwidth if the IO
87 * subsystem is idle. There is also an 'absolute maximum' reconstruction
88 * speed limit - in case reconstruction slows down your system despite
89 * idle IO detection.
90 *
91 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
92 * or /sys/block/mdX/md/sync_speed_{min,max}
93 */
94
95 static int sysctl_speed_limit_min = 1000;
96 static int sysctl_speed_limit_max = 200000;
97 static inline int speed_min(struct mddev *mddev)
98 {
99 return mddev->sync_speed_min ?
100 mddev->sync_speed_min : sysctl_speed_limit_min;
101 }
102
103 static inline int speed_max(struct mddev *mddev)
104 {
105 return mddev->sync_speed_max ?
106 mddev->sync_speed_max : sysctl_speed_limit_max;
107 }
108
109 static struct ctl_table_header *raid_table_header;
110
111 static struct ctl_table raid_table[] = {
112 {
113 .procname = "speed_limit_min",
114 .data = &sysctl_speed_limit_min,
115 .maxlen = sizeof(int),
116 .mode = S_IRUGO|S_IWUSR,
117 .proc_handler = proc_dointvec,
118 },
119 {
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 { }
127 };
128
129 static struct ctl_table raid_dir_table[] = {
130 {
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = S_IRUGO|S_IXUGO,
134 .child = raid_table,
135 },
136 { }
137 };
138
139 static struct ctl_table raid_root_table[] = {
140 {
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { }
147 };
148
149 static const struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /* bio_clone_mddev
154 * like bio_clone, but with a local bio set
155 */
156
157 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
158 struct mddev *mddev)
159 {
160 struct bio *b;
161
162 if (!mddev || !mddev->bio_set)
163 return bio_alloc(gfp_mask, nr_iovecs);
164
165 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
166 if (!b)
167 return NULL;
168 return b;
169 }
170 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
171
172 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
173 struct mddev *mddev)
174 {
175 if (!mddev || !mddev->bio_set)
176 return bio_clone(bio, gfp_mask);
177
178 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
179 }
180 EXPORT_SYMBOL_GPL(bio_clone_mddev);
181
182 /*
183 * We have a system wide 'event count' that is incremented
184 * on any 'interesting' event, and readers of /proc/mdstat
185 * can use 'poll' or 'select' to find out when the event
186 * count increases.
187 *
188 * Events are:
189 * start array, stop array, error, add device, remove device,
190 * start build, activate spare
191 */
192 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
193 static atomic_t md_event_count;
194 void md_new_event(struct mddev *mddev)
195 {
196 atomic_inc(&md_event_count);
197 wake_up(&md_event_waiters);
198 }
199 EXPORT_SYMBOL_GPL(md_new_event);
200
201 /* Alternate version that can be called from interrupts
202 * when calling sysfs_notify isn't needed.
203 */
204 static void md_new_event_inintr(struct mddev *mddev)
205 {
206 atomic_inc(&md_event_count);
207 wake_up(&md_event_waiters);
208 }
209
210 /*
211 * Enables to iterate over all existing md arrays
212 * all_mddevs_lock protects this list.
213 */
214 static LIST_HEAD(all_mddevs);
215 static DEFINE_SPINLOCK(all_mddevs_lock);
216
217 /*
218 * iterates through all used mddevs in the system.
219 * We take care to grab the all_mddevs_lock whenever navigating
220 * the list, and to always hold a refcount when unlocked.
221 * Any code which breaks out of this loop while own
222 * a reference to the current mddev and must mddev_put it.
223 */
224 #define for_each_mddev(_mddev,_tmp) \
225 \
226 for (({ spin_lock(&all_mddevs_lock); \
227 _tmp = all_mddevs.next; \
228 _mddev = NULL;}); \
229 ({ if (_tmp != &all_mddevs) \
230 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
231 spin_unlock(&all_mddevs_lock); \
232 if (_mddev) mddev_put(_mddev); \
233 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
234 _tmp != &all_mddevs;}); \
235 ({ spin_lock(&all_mddevs_lock); \
236 _tmp = _tmp->next;}) \
237 )
238
239 /* Rather than calling directly into the personality make_request function,
240 * IO requests come here first so that we can check if the device is
241 * being suspended pending a reconfiguration.
242 * We hold a refcount over the call to ->make_request. By the time that
243 * call has finished, the bio has been linked into some internal structure
244 * and so is visible to ->quiesce(), so we don't need the refcount any more.
245 */
246 static void md_make_request(struct request_queue *q, struct bio *bio)
247 {
248 const int rw = bio_data_dir(bio);
249 struct mddev *mddev = q->queuedata;
250 int cpu;
251 unsigned int sectors;
252
253 if (mddev == NULL || mddev->pers == NULL
254 || !mddev->ready) {
255 bio_io_error(bio);
256 return;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
260 return;
261 }
262 smp_rmb(); /* Ensure implications of 'active' are visible */
263 rcu_read_lock();
264 if (mddev->suspended) {
265 DEFINE_WAIT(__wait);
266 for (;;) {
267 prepare_to_wait(&mddev->sb_wait, &__wait,
268 TASK_UNINTERRUPTIBLE);
269 if (!mddev->suspended)
270 break;
271 rcu_read_unlock();
272 schedule();
273 rcu_read_lock();
274 }
275 finish_wait(&mddev->sb_wait, &__wait);
276 }
277 atomic_inc(&mddev->active_io);
278 rcu_read_unlock();
279
280 /*
281 * save the sectors now since our bio can
282 * go away inside make_request
283 */
284 sectors = bio_sectors(bio);
285 mddev->pers->make_request(mddev, bio);
286
287 cpu = part_stat_lock();
288 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
289 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
290 part_stat_unlock();
291
292 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
293 wake_up(&mddev->sb_wait);
294 }
295
296 /* mddev_suspend makes sure no new requests are submitted
297 * to the device, and that any requests that have been submitted
298 * are completely handled.
299 * Once ->stop is called and completes, the module will be completely
300 * unused.
301 */
302 void mddev_suspend(struct mddev *mddev)
303 {
304 BUG_ON(mddev->suspended);
305 mddev->suspended = 1;
306 synchronize_rcu();
307 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
308 mddev->pers->quiesce(mddev, 1);
309
310 del_timer_sync(&mddev->safemode_timer);
311 }
312 EXPORT_SYMBOL_GPL(mddev_suspend);
313
314 void mddev_resume(struct mddev *mddev)
315 {
316 mddev->suspended = 0;
317 wake_up(&mddev->sb_wait);
318 mddev->pers->quiesce(mddev, 0);
319
320 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
321 md_wakeup_thread(mddev->thread);
322 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
323 }
324 EXPORT_SYMBOL_GPL(mddev_resume);
325
326 int mddev_congested(struct mddev *mddev, int bits)
327 {
328 return mddev->suspended;
329 }
330 EXPORT_SYMBOL(mddev_congested);
331
332 /*
333 * Generic flush handling for md
334 */
335
336 static void md_end_flush(struct bio *bio, int err)
337 {
338 struct md_rdev *rdev = bio->bi_private;
339 struct mddev *mddev = rdev->mddev;
340
341 rdev_dec_pending(rdev, mddev);
342
343 if (atomic_dec_and_test(&mddev->flush_pending)) {
344 /* The pre-request flush has finished */
345 queue_work(md_wq, &mddev->flush_work);
346 }
347 bio_put(bio);
348 }
349
350 static void md_submit_flush_data(struct work_struct *ws);
351
352 static void submit_flushes(struct work_struct *ws)
353 {
354 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
355 struct md_rdev *rdev;
356
357 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
358 atomic_set(&mddev->flush_pending, 1);
359 rcu_read_lock();
360 rdev_for_each_rcu(rdev, mddev)
361 if (rdev->raid_disk >= 0 &&
362 !test_bit(Faulty, &rdev->flags)) {
363 /* Take two references, one is dropped
364 * when request finishes, one after
365 * we reclaim rcu_read_lock
366 */
367 struct bio *bi;
368 atomic_inc(&rdev->nr_pending);
369 atomic_inc(&rdev->nr_pending);
370 rcu_read_unlock();
371 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
372 bi->bi_end_io = md_end_flush;
373 bi->bi_private = rdev;
374 bi->bi_bdev = rdev->bdev;
375 atomic_inc(&mddev->flush_pending);
376 submit_bio(WRITE_FLUSH, bi);
377 rcu_read_lock();
378 rdev_dec_pending(rdev, mddev);
379 }
380 rcu_read_unlock();
381 if (atomic_dec_and_test(&mddev->flush_pending))
382 queue_work(md_wq, &mddev->flush_work);
383 }
384
385 static void md_submit_flush_data(struct work_struct *ws)
386 {
387 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
388 struct bio *bio = mddev->flush_bio;
389
390 if (bio->bi_iter.bi_size == 0)
391 /* an empty barrier - all done */
392 bio_endio(bio, 0);
393 else {
394 bio->bi_rw &= ~REQ_FLUSH;
395 mddev->pers->make_request(mddev, bio);
396 }
397
398 mddev->flush_bio = NULL;
399 wake_up(&mddev->sb_wait);
400 }
401
402 void md_flush_request(struct mddev *mddev, struct bio *bio)
403 {
404 spin_lock_irq(&mddev->write_lock);
405 wait_event_lock_irq(mddev->sb_wait,
406 !mddev->flush_bio,
407 mddev->write_lock);
408 mddev->flush_bio = bio;
409 spin_unlock_irq(&mddev->write_lock);
410
411 INIT_WORK(&mddev->flush_work, submit_flushes);
412 queue_work(md_wq, &mddev->flush_work);
413 }
414 EXPORT_SYMBOL(md_flush_request);
415
416 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
417 {
418 struct mddev *mddev = cb->data;
419 md_wakeup_thread(mddev->thread);
420 kfree(cb);
421 }
422 EXPORT_SYMBOL(md_unplug);
423
424 static inline struct mddev *mddev_get(struct mddev *mddev)
425 {
426 atomic_inc(&mddev->active);
427 return mddev;
428 }
429
430 static void mddev_delayed_delete(struct work_struct *ws);
431
432 static void mddev_put(struct mddev *mddev)
433 {
434 struct bio_set *bs = NULL;
435
436 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
437 return;
438 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
439 mddev->ctime == 0 && !mddev->hold_active) {
440 /* Array is not configured at all, and not held active,
441 * so destroy it */
442 list_del_init(&mddev->all_mddevs);
443 bs = mddev->bio_set;
444 mddev->bio_set = NULL;
445 if (mddev->gendisk) {
446 /* We did a probe so need to clean up. Call
447 * queue_work inside the spinlock so that
448 * flush_workqueue() after mddev_find will
449 * succeed in waiting for the work to be done.
450 */
451 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
452 queue_work(md_misc_wq, &mddev->del_work);
453 } else
454 kfree(mddev);
455 }
456 spin_unlock(&all_mddevs_lock);
457 if (bs)
458 bioset_free(bs);
459 }
460
461 void mddev_init(struct mddev *mddev)
462 {
463 mutex_init(&mddev->open_mutex);
464 mutex_init(&mddev->reconfig_mutex);
465 mutex_init(&mddev->bitmap_info.mutex);
466 INIT_LIST_HEAD(&mddev->disks);
467 INIT_LIST_HEAD(&mddev->all_mddevs);
468 init_timer(&mddev->safemode_timer);
469 atomic_set(&mddev->active, 1);
470 atomic_set(&mddev->openers, 0);
471 atomic_set(&mddev->active_io, 0);
472 spin_lock_init(&mddev->write_lock);
473 atomic_set(&mddev->flush_pending, 0);
474 init_waitqueue_head(&mddev->sb_wait);
475 init_waitqueue_head(&mddev->recovery_wait);
476 mddev->reshape_position = MaxSector;
477 mddev->reshape_backwards = 0;
478 mddev->last_sync_action = "none";
479 mddev->resync_min = 0;
480 mddev->resync_max = MaxSector;
481 mddev->level = LEVEL_NONE;
482 }
483 EXPORT_SYMBOL_GPL(mddev_init);
484
485 static struct mddev *mddev_find(dev_t unit)
486 {
487 struct mddev *mddev, *new = NULL;
488
489 if (unit && MAJOR(unit) != MD_MAJOR)
490 unit &= ~((1<<MdpMinorShift)-1);
491
492 retry:
493 spin_lock(&all_mddevs_lock);
494
495 if (unit) {
496 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
497 if (mddev->unit == unit) {
498 mddev_get(mddev);
499 spin_unlock(&all_mddevs_lock);
500 kfree(new);
501 return mddev;
502 }
503
504 if (new) {
505 list_add(&new->all_mddevs, &all_mddevs);
506 spin_unlock(&all_mddevs_lock);
507 new->hold_active = UNTIL_IOCTL;
508 return new;
509 }
510 } else if (new) {
511 /* find an unused unit number */
512 static int next_minor = 512;
513 int start = next_minor;
514 int is_free = 0;
515 int dev = 0;
516 while (!is_free) {
517 dev = MKDEV(MD_MAJOR, next_minor);
518 next_minor++;
519 if (next_minor > MINORMASK)
520 next_minor = 0;
521 if (next_minor == start) {
522 /* Oh dear, all in use. */
523 spin_unlock(&all_mddevs_lock);
524 kfree(new);
525 return NULL;
526 }
527
528 is_free = 1;
529 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
530 if (mddev->unit == dev) {
531 is_free = 0;
532 break;
533 }
534 }
535 new->unit = dev;
536 new->md_minor = MINOR(dev);
537 new->hold_active = UNTIL_STOP;
538 list_add(&new->all_mddevs, &all_mddevs);
539 spin_unlock(&all_mddevs_lock);
540 return new;
541 }
542 spin_unlock(&all_mddevs_lock);
543
544 new = kzalloc(sizeof(*new), GFP_KERNEL);
545 if (!new)
546 return NULL;
547
548 new->unit = unit;
549 if (MAJOR(unit) == MD_MAJOR)
550 new->md_minor = MINOR(unit);
551 else
552 new->md_minor = MINOR(unit) >> MdpMinorShift;
553
554 mddev_init(new);
555
556 goto retry;
557 }
558
559 static inline int __must_check mddev_lock(struct mddev *mddev)
560 {
561 return mutex_lock_interruptible(&mddev->reconfig_mutex);
562 }
563
564 /* Sometimes we need to take the lock in a situation where
565 * failure due to interrupts is not acceptable.
566 */
567 static inline void mddev_lock_nointr(struct mddev *mddev)
568 {
569 mutex_lock(&mddev->reconfig_mutex);
570 }
571
572 static inline int mddev_is_locked(struct mddev *mddev)
573 {
574 return mutex_is_locked(&mddev->reconfig_mutex);
575 }
576
577 static inline int mddev_trylock(struct mddev *mddev)
578 {
579 return mutex_trylock(&mddev->reconfig_mutex);
580 }
581
582 static struct attribute_group md_redundancy_group;
583
584 static void mddev_unlock(struct mddev *mddev)
585 {
586 if (mddev->to_remove) {
587 /* These cannot be removed under reconfig_mutex as
588 * an access to the files will try to take reconfig_mutex
589 * while holding the file unremovable, which leads to
590 * a deadlock.
591 * So hold set sysfs_active while the remove in happeing,
592 * and anything else which might set ->to_remove or my
593 * otherwise change the sysfs namespace will fail with
594 * -EBUSY if sysfs_active is still set.
595 * We set sysfs_active under reconfig_mutex and elsewhere
596 * test it under the same mutex to ensure its correct value
597 * is seen.
598 */
599 struct attribute_group *to_remove = mddev->to_remove;
600 mddev->to_remove = NULL;
601 mddev->sysfs_active = 1;
602 mutex_unlock(&mddev->reconfig_mutex);
603
604 if (mddev->kobj.sd) {
605 if (to_remove != &md_redundancy_group)
606 sysfs_remove_group(&mddev->kobj, to_remove);
607 if (mddev->pers == NULL ||
608 mddev->pers->sync_request == NULL) {
609 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
610 if (mddev->sysfs_action)
611 sysfs_put(mddev->sysfs_action);
612 mddev->sysfs_action = NULL;
613 }
614 }
615 mddev->sysfs_active = 0;
616 } else
617 mutex_unlock(&mddev->reconfig_mutex);
618
619 /* As we've dropped the mutex we need a spinlock to
620 * make sure the thread doesn't disappear
621 */
622 spin_lock(&pers_lock);
623 md_wakeup_thread(mddev->thread);
624 spin_unlock(&pers_lock);
625 }
626
627 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
628 {
629 struct md_rdev *rdev;
630
631 rdev_for_each_rcu(rdev, mddev)
632 if (rdev->desc_nr == nr)
633 return rdev;
634
635 return NULL;
636 }
637
638 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
639 {
640 struct md_rdev *rdev;
641
642 rdev_for_each(rdev, mddev)
643 if (rdev->bdev->bd_dev == dev)
644 return rdev;
645
646 return NULL;
647 }
648
649 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
650 {
651 struct md_rdev *rdev;
652
653 rdev_for_each_rcu(rdev, mddev)
654 if (rdev->bdev->bd_dev == dev)
655 return rdev;
656
657 return NULL;
658 }
659
660 static struct md_personality *find_pers(int level, char *clevel)
661 {
662 struct md_personality *pers;
663 list_for_each_entry(pers, &pers_list, list) {
664 if (level != LEVEL_NONE && pers->level == level)
665 return pers;
666 if (strcmp(pers->name, clevel)==0)
667 return pers;
668 }
669 return NULL;
670 }
671
672 /* return the offset of the super block in 512byte sectors */
673 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
674 {
675 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
676 return MD_NEW_SIZE_SECTORS(num_sectors);
677 }
678
679 static int alloc_disk_sb(struct md_rdev *rdev)
680 {
681 rdev->sb_page = alloc_page(GFP_KERNEL);
682 if (!rdev->sb_page) {
683 printk(KERN_ALERT "md: out of memory.\n");
684 return -ENOMEM;
685 }
686
687 return 0;
688 }
689
690 void md_rdev_clear(struct md_rdev *rdev)
691 {
692 if (rdev->sb_page) {
693 put_page(rdev->sb_page);
694 rdev->sb_loaded = 0;
695 rdev->sb_page = NULL;
696 rdev->sb_start = 0;
697 rdev->sectors = 0;
698 }
699 if (rdev->bb_page) {
700 put_page(rdev->bb_page);
701 rdev->bb_page = NULL;
702 }
703 kfree(rdev->badblocks.page);
704 rdev->badblocks.page = NULL;
705 }
706 EXPORT_SYMBOL_GPL(md_rdev_clear);
707
708 static void super_written(struct bio *bio, int error)
709 {
710 struct md_rdev *rdev = bio->bi_private;
711 struct mddev *mddev = rdev->mddev;
712
713 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
714 printk("md: super_written gets error=%d, uptodate=%d\n",
715 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
716 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
717 md_error(mddev, rdev);
718 }
719
720 if (atomic_dec_and_test(&mddev->pending_writes))
721 wake_up(&mddev->sb_wait);
722 bio_put(bio);
723 }
724
725 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
726 sector_t sector, int size, struct page *page)
727 {
728 /* write first size bytes of page to sector of rdev
729 * Increment mddev->pending_writes before returning
730 * and decrement it on completion, waking up sb_wait
731 * if zero is reached.
732 * If an error occurred, call md_error
733 */
734 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
735
736 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
737 bio->bi_iter.bi_sector = sector;
738 bio_add_page(bio, page, size, 0);
739 bio->bi_private = rdev;
740 bio->bi_end_io = super_written;
741
742 atomic_inc(&mddev->pending_writes);
743 submit_bio(WRITE_FLUSH_FUA, bio);
744 }
745
746 void md_super_wait(struct mddev *mddev)
747 {
748 /* wait for all superblock writes that were scheduled to complete */
749 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
750 }
751
752 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
753 struct page *page, int rw, bool metadata_op)
754 {
755 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
756 int ret;
757
758 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
759 rdev->meta_bdev : rdev->bdev;
760 if (metadata_op)
761 bio->bi_iter.bi_sector = sector + rdev->sb_start;
762 else if (rdev->mddev->reshape_position != MaxSector &&
763 (rdev->mddev->reshape_backwards ==
764 (sector >= rdev->mddev->reshape_position)))
765 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
766 else
767 bio->bi_iter.bi_sector = sector + rdev->data_offset;
768 bio_add_page(bio, page, size, 0);
769 submit_bio_wait(rw, bio);
770
771 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
772 bio_put(bio);
773 return ret;
774 }
775 EXPORT_SYMBOL_GPL(sync_page_io);
776
777 static int read_disk_sb(struct md_rdev *rdev, int size)
778 {
779 char b[BDEVNAME_SIZE];
780
781 if (rdev->sb_loaded)
782 return 0;
783
784 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
785 goto fail;
786 rdev->sb_loaded = 1;
787 return 0;
788
789 fail:
790 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
791 bdevname(rdev->bdev,b));
792 return -EINVAL;
793 }
794
795 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
796 {
797 return sb1->set_uuid0 == sb2->set_uuid0 &&
798 sb1->set_uuid1 == sb2->set_uuid1 &&
799 sb1->set_uuid2 == sb2->set_uuid2 &&
800 sb1->set_uuid3 == sb2->set_uuid3;
801 }
802
803 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 int ret;
806 mdp_super_t *tmp1, *tmp2;
807
808 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
809 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
810
811 if (!tmp1 || !tmp2) {
812 ret = 0;
813 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
814 goto abort;
815 }
816
817 *tmp1 = *sb1;
818 *tmp2 = *sb2;
819
820 /*
821 * nr_disks is not constant
822 */
823 tmp1->nr_disks = 0;
824 tmp2->nr_disks = 0;
825
826 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
827 abort:
828 kfree(tmp1);
829 kfree(tmp2);
830 return ret;
831 }
832
833 static u32 md_csum_fold(u32 csum)
834 {
835 csum = (csum & 0xffff) + (csum >> 16);
836 return (csum & 0xffff) + (csum >> 16);
837 }
838
839 static unsigned int calc_sb_csum(mdp_super_t *sb)
840 {
841 u64 newcsum = 0;
842 u32 *sb32 = (u32*)sb;
843 int i;
844 unsigned int disk_csum, csum;
845
846 disk_csum = sb->sb_csum;
847 sb->sb_csum = 0;
848
849 for (i = 0; i < MD_SB_BYTES/4 ; i++)
850 newcsum += sb32[i];
851 csum = (newcsum & 0xffffffff) + (newcsum>>32);
852
853 #ifdef CONFIG_ALPHA
854 /* This used to use csum_partial, which was wrong for several
855 * reasons including that different results are returned on
856 * different architectures. It isn't critical that we get exactly
857 * the same return value as before (we always csum_fold before
858 * testing, and that removes any differences). However as we
859 * know that csum_partial always returned a 16bit value on
860 * alphas, do a fold to maximise conformity to previous behaviour.
861 */
862 sb->sb_csum = md_csum_fold(disk_csum);
863 #else
864 sb->sb_csum = disk_csum;
865 #endif
866 return csum;
867 }
868
869 /*
870 * Handle superblock details.
871 * We want to be able to handle multiple superblock formats
872 * so we have a common interface to them all, and an array of
873 * different handlers.
874 * We rely on user-space to write the initial superblock, and support
875 * reading and updating of superblocks.
876 * Interface methods are:
877 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
878 * loads and validates a superblock on dev.
879 * if refdev != NULL, compare superblocks on both devices
880 * Return:
881 * 0 - dev has a superblock that is compatible with refdev
882 * 1 - dev has a superblock that is compatible and newer than refdev
883 * so dev should be used as the refdev in future
884 * -EINVAL superblock incompatible or invalid
885 * -othererror e.g. -EIO
886 *
887 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
888 * Verify that dev is acceptable into mddev.
889 * The first time, mddev->raid_disks will be 0, and data from
890 * dev should be merged in. Subsequent calls check that dev
891 * is new enough. Return 0 or -EINVAL
892 *
893 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
894 * Update the superblock for rdev with data in mddev
895 * This does not write to disc.
896 *
897 */
898
899 struct super_type {
900 char *name;
901 struct module *owner;
902 int (*load_super)(struct md_rdev *rdev,
903 struct md_rdev *refdev,
904 int minor_version);
905 int (*validate_super)(struct mddev *mddev,
906 struct md_rdev *rdev);
907 void (*sync_super)(struct mddev *mddev,
908 struct md_rdev *rdev);
909 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
910 sector_t num_sectors);
911 int (*allow_new_offset)(struct md_rdev *rdev,
912 unsigned long long new_offset);
913 };
914
915 /*
916 * Check that the given mddev has no bitmap.
917 *
918 * This function is called from the run method of all personalities that do not
919 * support bitmaps. It prints an error message and returns non-zero if mddev
920 * has a bitmap. Otherwise, it returns 0.
921 *
922 */
923 int md_check_no_bitmap(struct mddev *mddev)
924 {
925 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
926 return 0;
927 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
928 mdname(mddev), mddev->pers->name);
929 return 1;
930 }
931 EXPORT_SYMBOL(md_check_no_bitmap);
932
933 /*
934 * load_super for 0.90.0
935 */
936 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
937 {
938 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
939 mdp_super_t *sb;
940 int ret;
941
942 /*
943 * Calculate the position of the superblock (512byte sectors),
944 * it's at the end of the disk.
945 *
946 * It also happens to be a multiple of 4Kb.
947 */
948 rdev->sb_start = calc_dev_sboffset(rdev);
949
950 ret = read_disk_sb(rdev, MD_SB_BYTES);
951 if (ret) return ret;
952
953 ret = -EINVAL;
954
955 bdevname(rdev->bdev, b);
956 sb = page_address(rdev->sb_page);
957
958 if (sb->md_magic != MD_SB_MAGIC) {
959 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
960 b);
961 goto abort;
962 }
963
964 if (sb->major_version != 0 ||
965 sb->minor_version < 90 ||
966 sb->minor_version > 91) {
967 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
968 sb->major_version, sb->minor_version,
969 b);
970 goto abort;
971 }
972
973 if (sb->raid_disks <= 0)
974 goto abort;
975
976 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
977 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
978 b);
979 goto abort;
980 }
981
982 rdev->preferred_minor = sb->md_minor;
983 rdev->data_offset = 0;
984 rdev->new_data_offset = 0;
985 rdev->sb_size = MD_SB_BYTES;
986 rdev->badblocks.shift = -1;
987
988 if (sb->level == LEVEL_MULTIPATH)
989 rdev->desc_nr = -1;
990 else
991 rdev->desc_nr = sb->this_disk.number;
992
993 if (!refdev) {
994 ret = 1;
995 } else {
996 __u64 ev1, ev2;
997 mdp_super_t *refsb = page_address(refdev->sb_page);
998 if (!uuid_equal(refsb, sb)) {
999 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1000 b, bdevname(refdev->bdev,b2));
1001 goto abort;
1002 }
1003 if (!sb_equal(refsb, sb)) {
1004 printk(KERN_WARNING "md: %s has same UUID"
1005 " but different superblock to %s\n",
1006 b, bdevname(refdev->bdev, b2));
1007 goto abort;
1008 }
1009 ev1 = md_event(sb);
1010 ev2 = md_event(refsb);
1011 if (ev1 > ev2)
1012 ret = 1;
1013 else
1014 ret = 0;
1015 }
1016 rdev->sectors = rdev->sb_start;
1017 /* Limit to 4TB as metadata cannot record more than that.
1018 * (not needed for Linear and RAID0 as metadata doesn't
1019 * record this size)
1020 */
1021 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1022 rdev->sectors = (2ULL << 32) - 2;
1023
1024 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1025 /* "this cannot possibly happen" ... */
1026 ret = -EINVAL;
1027
1028 abort:
1029 return ret;
1030 }
1031
1032 /*
1033 * validate_super for 0.90.0
1034 */
1035 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1036 {
1037 mdp_disk_t *desc;
1038 mdp_super_t *sb = page_address(rdev->sb_page);
1039 __u64 ev1 = md_event(sb);
1040
1041 rdev->raid_disk = -1;
1042 clear_bit(Faulty, &rdev->flags);
1043 clear_bit(In_sync, &rdev->flags);
1044 clear_bit(Bitmap_sync, &rdev->flags);
1045 clear_bit(WriteMostly, &rdev->flags);
1046
1047 if (mddev->raid_disks == 0) {
1048 mddev->major_version = 0;
1049 mddev->minor_version = sb->minor_version;
1050 mddev->patch_version = sb->patch_version;
1051 mddev->external = 0;
1052 mddev->chunk_sectors = sb->chunk_size >> 9;
1053 mddev->ctime = sb->ctime;
1054 mddev->utime = sb->utime;
1055 mddev->level = sb->level;
1056 mddev->clevel[0] = 0;
1057 mddev->layout = sb->layout;
1058 mddev->raid_disks = sb->raid_disks;
1059 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1060 mddev->events = ev1;
1061 mddev->bitmap_info.offset = 0;
1062 mddev->bitmap_info.space = 0;
1063 /* bitmap can use 60 K after the 4K superblocks */
1064 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1065 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1066 mddev->reshape_backwards = 0;
1067
1068 if (mddev->minor_version >= 91) {
1069 mddev->reshape_position = sb->reshape_position;
1070 mddev->delta_disks = sb->delta_disks;
1071 mddev->new_level = sb->new_level;
1072 mddev->new_layout = sb->new_layout;
1073 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1074 if (mddev->delta_disks < 0)
1075 mddev->reshape_backwards = 1;
1076 } else {
1077 mddev->reshape_position = MaxSector;
1078 mddev->delta_disks = 0;
1079 mddev->new_level = mddev->level;
1080 mddev->new_layout = mddev->layout;
1081 mddev->new_chunk_sectors = mddev->chunk_sectors;
1082 }
1083
1084 if (sb->state & (1<<MD_SB_CLEAN))
1085 mddev->recovery_cp = MaxSector;
1086 else {
1087 if (sb->events_hi == sb->cp_events_hi &&
1088 sb->events_lo == sb->cp_events_lo) {
1089 mddev->recovery_cp = sb->recovery_cp;
1090 } else
1091 mddev->recovery_cp = 0;
1092 }
1093
1094 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1095 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1096 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1097 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1098
1099 mddev->max_disks = MD_SB_DISKS;
1100
1101 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1102 mddev->bitmap_info.file == NULL) {
1103 mddev->bitmap_info.offset =
1104 mddev->bitmap_info.default_offset;
1105 mddev->bitmap_info.space =
1106 mddev->bitmap_info.default_space;
1107 }
1108
1109 } else if (mddev->pers == NULL) {
1110 /* Insist on good event counter while assembling, except
1111 * for spares (which don't need an event count) */
1112 ++ev1;
1113 if (sb->disks[rdev->desc_nr].state & (
1114 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1115 if (ev1 < mddev->events)
1116 return -EINVAL;
1117 } else if (mddev->bitmap) {
1118 /* if adding to array with a bitmap, then we can accept an
1119 * older device ... but not too old.
1120 */
1121 if (ev1 < mddev->bitmap->events_cleared)
1122 return 0;
1123 if (ev1 < mddev->events)
1124 set_bit(Bitmap_sync, &rdev->flags);
1125 } else {
1126 if (ev1 < mddev->events)
1127 /* just a hot-add of a new device, leave raid_disk at -1 */
1128 return 0;
1129 }
1130
1131 if (mddev->level != LEVEL_MULTIPATH) {
1132 desc = sb->disks + rdev->desc_nr;
1133
1134 if (desc->state & (1<<MD_DISK_FAULTY))
1135 set_bit(Faulty, &rdev->flags);
1136 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1137 desc->raid_disk < mddev->raid_disks */) {
1138 set_bit(In_sync, &rdev->flags);
1139 rdev->raid_disk = desc->raid_disk;
1140 rdev->saved_raid_disk = desc->raid_disk;
1141 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1142 /* active but not in sync implies recovery up to
1143 * reshape position. We don't know exactly where
1144 * that is, so set to zero for now */
1145 if (mddev->minor_version >= 91) {
1146 rdev->recovery_offset = 0;
1147 rdev->raid_disk = desc->raid_disk;
1148 }
1149 }
1150 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1151 set_bit(WriteMostly, &rdev->flags);
1152 } else /* MULTIPATH are always insync */
1153 set_bit(In_sync, &rdev->flags);
1154 return 0;
1155 }
1156
1157 /*
1158 * sync_super for 0.90.0
1159 */
1160 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 mdp_super_t *sb;
1163 struct md_rdev *rdev2;
1164 int next_spare = mddev->raid_disks;
1165
1166 /* make rdev->sb match mddev data..
1167 *
1168 * 1/ zero out disks
1169 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1170 * 3/ any empty disks < next_spare become removed
1171 *
1172 * disks[0] gets initialised to REMOVED because
1173 * we cannot be sure from other fields if it has
1174 * been initialised or not.
1175 */
1176 int i;
1177 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1178
1179 rdev->sb_size = MD_SB_BYTES;
1180
1181 sb = page_address(rdev->sb_page);
1182
1183 memset(sb, 0, sizeof(*sb));
1184
1185 sb->md_magic = MD_SB_MAGIC;
1186 sb->major_version = mddev->major_version;
1187 sb->patch_version = mddev->patch_version;
1188 sb->gvalid_words = 0; /* ignored */
1189 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1190 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1191 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1192 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1193
1194 sb->ctime = mddev->ctime;
1195 sb->level = mddev->level;
1196 sb->size = mddev->dev_sectors / 2;
1197 sb->raid_disks = mddev->raid_disks;
1198 sb->md_minor = mddev->md_minor;
1199 sb->not_persistent = 0;
1200 sb->utime = mddev->utime;
1201 sb->state = 0;
1202 sb->events_hi = (mddev->events>>32);
1203 sb->events_lo = (u32)mddev->events;
1204
1205 if (mddev->reshape_position == MaxSector)
1206 sb->minor_version = 90;
1207 else {
1208 sb->minor_version = 91;
1209 sb->reshape_position = mddev->reshape_position;
1210 sb->new_level = mddev->new_level;
1211 sb->delta_disks = mddev->delta_disks;
1212 sb->new_layout = mddev->new_layout;
1213 sb->new_chunk = mddev->new_chunk_sectors << 9;
1214 }
1215 mddev->minor_version = sb->minor_version;
1216 if (mddev->in_sync)
1217 {
1218 sb->recovery_cp = mddev->recovery_cp;
1219 sb->cp_events_hi = (mddev->events>>32);
1220 sb->cp_events_lo = (u32)mddev->events;
1221 if (mddev->recovery_cp == MaxSector)
1222 sb->state = (1<< MD_SB_CLEAN);
1223 } else
1224 sb->recovery_cp = 0;
1225
1226 sb->layout = mddev->layout;
1227 sb->chunk_size = mddev->chunk_sectors << 9;
1228
1229 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1230 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1231
1232 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1233 rdev_for_each(rdev2, mddev) {
1234 mdp_disk_t *d;
1235 int desc_nr;
1236 int is_active = test_bit(In_sync, &rdev2->flags);
1237
1238 if (rdev2->raid_disk >= 0 &&
1239 sb->minor_version >= 91)
1240 /* we have nowhere to store the recovery_offset,
1241 * but if it is not below the reshape_position,
1242 * we can piggy-back on that.
1243 */
1244 is_active = 1;
1245 if (rdev2->raid_disk < 0 ||
1246 test_bit(Faulty, &rdev2->flags))
1247 is_active = 0;
1248 if (is_active)
1249 desc_nr = rdev2->raid_disk;
1250 else
1251 desc_nr = next_spare++;
1252 rdev2->desc_nr = desc_nr;
1253 d = &sb->disks[rdev2->desc_nr];
1254 nr_disks++;
1255 d->number = rdev2->desc_nr;
1256 d->major = MAJOR(rdev2->bdev->bd_dev);
1257 d->minor = MINOR(rdev2->bdev->bd_dev);
1258 if (is_active)
1259 d->raid_disk = rdev2->raid_disk;
1260 else
1261 d->raid_disk = rdev2->desc_nr; /* compatibility */
1262 if (test_bit(Faulty, &rdev2->flags))
1263 d->state = (1<<MD_DISK_FAULTY);
1264 else if (is_active) {
1265 d->state = (1<<MD_DISK_ACTIVE);
1266 if (test_bit(In_sync, &rdev2->flags))
1267 d->state |= (1<<MD_DISK_SYNC);
1268 active++;
1269 working++;
1270 } else {
1271 d->state = 0;
1272 spare++;
1273 working++;
1274 }
1275 if (test_bit(WriteMostly, &rdev2->flags))
1276 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1277 }
1278 /* now set the "removed" and "faulty" bits on any missing devices */
1279 for (i=0 ; i < mddev->raid_disks ; i++) {
1280 mdp_disk_t *d = &sb->disks[i];
1281 if (d->state == 0 && d->number == 0) {
1282 d->number = i;
1283 d->raid_disk = i;
1284 d->state = (1<<MD_DISK_REMOVED);
1285 d->state |= (1<<MD_DISK_FAULTY);
1286 failed++;
1287 }
1288 }
1289 sb->nr_disks = nr_disks;
1290 sb->active_disks = active;
1291 sb->working_disks = working;
1292 sb->failed_disks = failed;
1293 sb->spare_disks = spare;
1294
1295 sb->this_disk = sb->disks[rdev->desc_nr];
1296 sb->sb_csum = calc_sb_csum(sb);
1297 }
1298
1299 /*
1300 * rdev_size_change for 0.90.0
1301 */
1302 static unsigned long long
1303 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1304 {
1305 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1306 return 0; /* component must fit device */
1307 if (rdev->mddev->bitmap_info.offset)
1308 return 0; /* can't move bitmap */
1309 rdev->sb_start = calc_dev_sboffset(rdev);
1310 if (!num_sectors || num_sectors > rdev->sb_start)
1311 num_sectors = rdev->sb_start;
1312 /* Limit to 4TB as metadata cannot record more than that.
1313 * 4TB == 2^32 KB, or 2*2^32 sectors.
1314 */
1315 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1316 num_sectors = (2ULL << 32) - 2;
1317 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1318 rdev->sb_page);
1319 md_super_wait(rdev->mddev);
1320 return num_sectors;
1321 }
1322
1323 static int
1324 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1325 {
1326 /* non-zero offset changes not possible with v0.90 */
1327 return new_offset == 0;
1328 }
1329
1330 /*
1331 * version 1 superblock
1332 */
1333
1334 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1335 {
1336 __le32 disk_csum;
1337 u32 csum;
1338 unsigned long long newcsum;
1339 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1340 __le32 *isuper = (__le32*)sb;
1341
1342 disk_csum = sb->sb_csum;
1343 sb->sb_csum = 0;
1344 newcsum = 0;
1345 for (; size >= 4; size -= 4)
1346 newcsum += le32_to_cpu(*isuper++);
1347
1348 if (size == 2)
1349 newcsum += le16_to_cpu(*(__le16*) isuper);
1350
1351 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1352 sb->sb_csum = disk_csum;
1353 return cpu_to_le32(csum);
1354 }
1355
1356 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1357 int acknowledged);
1358 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1359 {
1360 struct mdp_superblock_1 *sb;
1361 int ret;
1362 sector_t sb_start;
1363 sector_t sectors;
1364 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1365 int bmask;
1366
1367 /*
1368 * Calculate the position of the superblock in 512byte sectors.
1369 * It is always aligned to a 4K boundary and
1370 * depeding on minor_version, it can be:
1371 * 0: At least 8K, but less than 12K, from end of device
1372 * 1: At start of device
1373 * 2: 4K from start of device.
1374 */
1375 switch(minor_version) {
1376 case 0:
1377 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1378 sb_start -= 8*2;
1379 sb_start &= ~(sector_t)(4*2-1);
1380 break;
1381 case 1:
1382 sb_start = 0;
1383 break;
1384 case 2:
1385 sb_start = 8;
1386 break;
1387 default:
1388 return -EINVAL;
1389 }
1390 rdev->sb_start = sb_start;
1391
1392 /* superblock is rarely larger than 1K, but it can be larger,
1393 * and it is safe to read 4k, so we do that
1394 */
1395 ret = read_disk_sb(rdev, 4096);
1396 if (ret) return ret;
1397
1398 sb = page_address(rdev->sb_page);
1399
1400 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1401 sb->major_version != cpu_to_le32(1) ||
1402 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1403 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1404 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1405 return -EINVAL;
1406
1407 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1408 printk("md: invalid superblock checksum on %s\n",
1409 bdevname(rdev->bdev,b));
1410 return -EINVAL;
1411 }
1412 if (le64_to_cpu(sb->data_size) < 10) {
1413 printk("md: data_size too small on %s\n",
1414 bdevname(rdev->bdev,b));
1415 return -EINVAL;
1416 }
1417 if (sb->pad0 ||
1418 sb->pad3[0] ||
1419 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1420 /* Some padding is non-zero, might be a new feature */
1421 return -EINVAL;
1422
1423 rdev->preferred_minor = 0xffff;
1424 rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 rdev->new_data_offset = rdev->data_offset;
1426 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1427 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1428 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1429 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1430
1431 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1432 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1433 if (rdev->sb_size & bmask)
1434 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1435
1436 if (minor_version
1437 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1438 return -EINVAL;
1439 if (minor_version
1440 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1441 return -EINVAL;
1442
1443 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1444 rdev->desc_nr = -1;
1445 else
1446 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1447
1448 if (!rdev->bb_page) {
1449 rdev->bb_page = alloc_page(GFP_KERNEL);
1450 if (!rdev->bb_page)
1451 return -ENOMEM;
1452 }
1453 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1454 rdev->badblocks.count == 0) {
1455 /* need to load the bad block list.
1456 * Currently we limit it to one page.
1457 */
1458 s32 offset;
1459 sector_t bb_sector;
1460 u64 *bbp;
1461 int i;
1462 int sectors = le16_to_cpu(sb->bblog_size);
1463 if (sectors > (PAGE_SIZE / 512))
1464 return -EINVAL;
1465 offset = le32_to_cpu(sb->bblog_offset);
1466 if (offset == 0)
1467 return -EINVAL;
1468 bb_sector = (long long)offset;
1469 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1470 rdev->bb_page, READ, true))
1471 return -EIO;
1472 bbp = (u64 *)page_address(rdev->bb_page);
1473 rdev->badblocks.shift = sb->bblog_shift;
1474 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1475 u64 bb = le64_to_cpu(*bbp);
1476 int count = bb & (0x3ff);
1477 u64 sector = bb >> 10;
1478 sector <<= sb->bblog_shift;
1479 count <<= sb->bblog_shift;
1480 if (bb + 1 == 0)
1481 break;
1482 if (md_set_badblocks(&rdev->badblocks,
1483 sector, count, 1) == 0)
1484 return -EINVAL;
1485 }
1486 } else if (sb->bblog_offset != 0)
1487 rdev->badblocks.shift = 0;
1488
1489 if (!refdev) {
1490 ret = 1;
1491 } else {
1492 __u64 ev1, ev2;
1493 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1494
1495 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1496 sb->level != refsb->level ||
1497 sb->layout != refsb->layout ||
1498 sb->chunksize != refsb->chunksize) {
1499 printk(KERN_WARNING "md: %s has strangely different"
1500 " superblock to %s\n",
1501 bdevname(rdev->bdev,b),
1502 bdevname(refdev->bdev,b2));
1503 return -EINVAL;
1504 }
1505 ev1 = le64_to_cpu(sb->events);
1506 ev2 = le64_to_cpu(refsb->events);
1507
1508 if (ev1 > ev2)
1509 ret = 1;
1510 else
1511 ret = 0;
1512 }
1513 if (minor_version) {
1514 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1515 sectors -= rdev->data_offset;
1516 } else
1517 sectors = rdev->sb_start;
1518 if (sectors < le64_to_cpu(sb->data_size))
1519 return -EINVAL;
1520 rdev->sectors = le64_to_cpu(sb->data_size);
1521 return ret;
1522 }
1523
1524 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1525 {
1526 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1527 __u64 ev1 = le64_to_cpu(sb->events);
1528
1529 rdev->raid_disk = -1;
1530 clear_bit(Faulty, &rdev->flags);
1531 clear_bit(In_sync, &rdev->flags);
1532 clear_bit(Bitmap_sync, &rdev->flags);
1533 clear_bit(WriteMostly, &rdev->flags);
1534
1535 if (mddev->raid_disks == 0) {
1536 mddev->major_version = 1;
1537 mddev->patch_version = 0;
1538 mddev->external = 0;
1539 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1540 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1541 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1542 mddev->level = le32_to_cpu(sb->level);
1543 mddev->clevel[0] = 0;
1544 mddev->layout = le32_to_cpu(sb->layout);
1545 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1546 mddev->dev_sectors = le64_to_cpu(sb->size);
1547 mddev->events = ev1;
1548 mddev->bitmap_info.offset = 0;
1549 mddev->bitmap_info.space = 0;
1550 /* Default location for bitmap is 1K after superblock
1551 * using 3K - total of 4K
1552 */
1553 mddev->bitmap_info.default_offset = 1024 >> 9;
1554 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1555 mddev->reshape_backwards = 0;
1556
1557 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1558 memcpy(mddev->uuid, sb->set_uuid, 16);
1559
1560 mddev->max_disks = (4096-256)/2;
1561
1562 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1563 mddev->bitmap_info.file == NULL) {
1564 mddev->bitmap_info.offset =
1565 (__s32)le32_to_cpu(sb->bitmap_offset);
1566 /* Metadata doesn't record how much space is available.
1567 * For 1.0, we assume we can use up to the superblock
1568 * if before, else to 4K beyond superblock.
1569 * For others, assume no change is possible.
1570 */
1571 if (mddev->minor_version > 0)
1572 mddev->bitmap_info.space = 0;
1573 else if (mddev->bitmap_info.offset > 0)
1574 mddev->bitmap_info.space =
1575 8 - mddev->bitmap_info.offset;
1576 else
1577 mddev->bitmap_info.space =
1578 -mddev->bitmap_info.offset;
1579 }
1580
1581 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1582 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1583 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1584 mddev->new_level = le32_to_cpu(sb->new_level);
1585 mddev->new_layout = le32_to_cpu(sb->new_layout);
1586 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1587 if (mddev->delta_disks < 0 ||
1588 (mddev->delta_disks == 0 &&
1589 (le32_to_cpu(sb->feature_map)
1590 & MD_FEATURE_RESHAPE_BACKWARDS)))
1591 mddev->reshape_backwards = 1;
1592 } else {
1593 mddev->reshape_position = MaxSector;
1594 mddev->delta_disks = 0;
1595 mddev->new_level = mddev->level;
1596 mddev->new_layout = mddev->layout;
1597 mddev->new_chunk_sectors = mddev->chunk_sectors;
1598 }
1599
1600 } else if (mddev->pers == NULL) {
1601 /* Insist of good event counter while assembling, except for
1602 * spares (which don't need an event count) */
1603 ++ev1;
1604 if (rdev->desc_nr >= 0 &&
1605 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1606 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1607 if (ev1 < mddev->events)
1608 return -EINVAL;
1609 } else if (mddev->bitmap) {
1610 /* If adding to array with a bitmap, then we can accept an
1611 * older device, but not too old.
1612 */
1613 if (ev1 < mddev->bitmap->events_cleared)
1614 return 0;
1615 if (ev1 < mddev->events)
1616 set_bit(Bitmap_sync, &rdev->flags);
1617 } else {
1618 if (ev1 < mddev->events)
1619 /* just a hot-add of a new device, leave raid_disk at -1 */
1620 return 0;
1621 }
1622 if (mddev->level != LEVEL_MULTIPATH) {
1623 int role;
1624 if (rdev->desc_nr < 0 ||
1625 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1626 role = 0xffff;
1627 rdev->desc_nr = -1;
1628 } else
1629 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1630 switch(role) {
1631 case 0xffff: /* spare */
1632 break;
1633 case 0xfffe: /* faulty */
1634 set_bit(Faulty, &rdev->flags);
1635 break;
1636 default:
1637 rdev->saved_raid_disk = role;
1638 if ((le32_to_cpu(sb->feature_map) &
1639 MD_FEATURE_RECOVERY_OFFSET)) {
1640 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1641 if (!(le32_to_cpu(sb->feature_map) &
1642 MD_FEATURE_RECOVERY_BITMAP))
1643 rdev->saved_raid_disk = -1;
1644 } else
1645 set_bit(In_sync, &rdev->flags);
1646 rdev->raid_disk = role;
1647 break;
1648 }
1649 if (sb->devflags & WriteMostly1)
1650 set_bit(WriteMostly, &rdev->flags);
1651 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1652 set_bit(Replacement, &rdev->flags);
1653 } else /* MULTIPATH are always insync */
1654 set_bit(In_sync, &rdev->flags);
1655
1656 return 0;
1657 }
1658
1659 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1660 {
1661 struct mdp_superblock_1 *sb;
1662 struct md_rdev *rdev2;
1663 int max_dev, i;
1664 /* make rdev->sb match mddev and rdev data. */
1665
1666 sb = page_address(rdev->sb_page);
1667
1668 sb->feature_map = 0;
1669 sb->pad0 = 0;
1670 sb->recovery_offset = cpu_to_le64(0);
1671 memset(sb->pad3, 0, sizeof(sb->pad3));
1672
1673 sb->utime = cpu_to_le64((__u64)mddev->utime);
1674 sb->events = cpu_to_le64(mddev->events);
1675 if (mddev->in_sync)
1676 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1677 else
1678 sb->resync_offset = cpu_to_le64(0);
1679
1680 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1681
1682 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1683 sb->size = cpu_to_le64(mddev->dev_sectors);
1684 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1685 sb->level = cpu_to_le32(mddev->level);
1686 sb->layout = cpu_to_le32(mddev->layout);
1687
1688 if (test_bit(WriteMostly, &rdev->flags))
1689 sb->devflags |= WriteMostly1;
1690 else
1691 sb->devflags &= ~WriteMostly1;
1692 sb->data_offset = cpu_to_le64(rdev->data_offset);
1693 sb->data_size = cpu_to_le64(rdev->sectors);
1694
1695 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1696 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1697 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1698 }
1699
1700 if (rdev->raid_disk >= 0 &&
1701 !test_bit(In_sync, &rdev->flags)) {
1702 sb->feature_map |=
1703 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1704 sb->recovery_offset =
1705 cpu_to_le64(rdev->recovery_offset);
1706 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1707 sb->feature_map |=
1708 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1709 }
1710 if (test_bit(Replacement, &rdev->flags))
1711 sb->feature_map |=
1712 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1713
1714 if (mddev->reshape_position != MaxSector) {
1715 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1716 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1717 sb->new_layout = cpu_to_le32(mddev->new_layout);
1718 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1719 sb->new_level = cpu_to_le32(mddev->new_level);
1720 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1721 if (mddev->delta_disks == 0 &&
1722 mddev->reshape_backwards)
1723 sb->feature_map
1724 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1725 if (rdev->new_data_offset != rdev->data_offset) {
1726 sb->feature_map
1727 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1728 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1729 - rdev->data_offset));
1730 }
1731 }
1732
1733 if (rdev->badblocks.count == 0)
1734 /* Nothing to do for bad blocks*/ ;
1735 else if (sb->bblog_offset == 0)
1736 /* Cannot record bad blocks on this device */
1737 md_error(mddev, rdev);
1738 else {
1739 struct badblocks *bb = &rdev->badblocks;
1740 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1741 u64 *p = bb->page;
1742 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1743 if (bb->changed) {
1744 unsigned seq;
1745
1746 retry:
1747 seq = read_seqbegin(&bb->lock);
1748
1749 memset(bbp, 0xff, PAGE_SIZE);
1750
1751 for (i = 0 ; i < bb->count ; i++) {
1752 u64 internal_bb = p[i];
1753 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1754 | BB_LEN(internal_bb));
1755 bbp[i] = cpu_to_le64(store_bb);
1756 }
1757 bb->changed = 0;
1758 if (read_seqretry(&bb->lock, seq))
1759 goto retry;
1760
1761 bb->sector = (rdev->sb_start +
1762 (int)le32_to_cpu(sb->bblog_offset));
1763 bb->size = le16_to_cpu(sb->bblog_size);
1764 }
1765 }
1766
1767 max_dev = 0;
1768 rdev_for_each(rdev2, mddev)
1769 if (rdev2->desc_nr+1 > max_dev)
1770 max_dev = rdev2->desc_nr+1;
1771
1772 if (max_dev > le32_to_cpu(sb->max_dev)) {
1773 int bmask;
1774 sb->max_dev = cpu_to_le32(max_dev);
1775 rdev->sb_size = max_dev * 2 + 256;
1776 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1777 if (rdev->sb_size & bmask)
1778 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1779 } else
1780 max_dev = le32_to_cpu(sb->max_dev);
1781
1782 for (i=0; i<max_dev;i++)
1783 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1784
1785 rdev_for_each(rdev2, mddev) {
1786 i = rdev2->desc_nr;
1787 if (test_bit(Faulty, &rdev2->flags))
1788 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1789 else if (test_bit(In_sync, &rdev2->flags))
1790 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1791 else if (rdev2->raid_disk >= 0)
1792 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1793 else
1794 sb->dev_roles[i] = cpu_to_le16(0xffff);
1795 }
1796
1797 sb->sb_csum = calc_sb_1_csum(sb);
1798 }
1799
1800 static unsigned long long
1801 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1802 {
1803 struct mdp_superblock_1 *sb;
1804 sector_t max_sectors;
1805 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1806 return 0; /* component must fit device */
1807 if (rdev->data_offset != rdev->new_data_offset)
1808 return 0; /* too confusing */
1809 if (rdev->sb_start < rdev->data_offset) {
1810 /* minor versions 1 and 2; superblock before data */
1811 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1812 max_sectors -= rdev->data_offset;
1813 if (!num_sectors || num_sectors > max_sectors)
1814 num_sectors = max_sectors;
1815 } else if (rdev->mddev->bitmap_info.offset) {
1816 /* minor version 0 with bitmap we can't move */
1817 return 0;
1818 } else {
1819 /* minor version 0; superblock after data */
1820 sector_t sb_start;
1821 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1822 sb_start &= ~(sector_t)(4*2 - 1);
1823 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1824 if (!num_sectors || num_sectors > max_sectors)
1825 num_sectors = max_sectors;
1826 rdev->sb_start = sb_start;
1827 }
1828 sb = page_address(rdev->sb_page);
1829 sb->data_size = cpu_to_le64(num_sectors);
1830 sb->super_offset = rdev->sb_start;
1831 sb->sb_csum = calc_sb_1_csum(sb);
1832 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1833 rdev->sb_page);
1834 md_super_wait(rdev->mddev);
1835 return num_sectors;
1836
1837 }
1838
1839 static int
1840 super_1_allow_new_offset(struct md_rdev *rdev,
1841 unsigned long long new_offset)
1842 {
1843 /* All necessary checks on new >= old have been done */
1844 struct bitmap *bitmap;
1845 if (new_offset >= rdev->data_offset)
1846 return 1;
1847
1848 /* with 1.0 metadata, there is no metadata to tread on
1849 * so we can always move back */
1850 if (rdev->mddev->minor_version == 0)
1851 return 1;
1852
1853 /* otherwise we must be sure not to step on
1854 * any metadata, so stay:
1855 * 36K beyond start of superblock
1856 * beyond end of badblocks
1857 * beyond write-intent bitmap
1858 */
1859 if (rdev->sb_start + (32+4)*2 > new_offset)
1860 return 0;
1861 bitmap = rdev->mddev->bitmap;
1862 if (bitmap && !rdev->mddev->bitmap_info.file &&
1863 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1864 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1865 return 0;
1866 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1867 return 0;
1868
1869 return 1;
1870 }
1871
1872 static struct super_type super_types[] = {
1873 [0] = {
1874 .name = "0.90.0",
1875 .owner = THIS_MODULE,
1876 .load_super = super_90_load,
1877 .validate_super = super_90_validate,
1878 .sync_super = super_90_sync,
1879 .rdev_size_change = super_90_rdev_size_change,
1880 .allow_new_offset = super_90_allow_new_offset,
1881 },
1882 [1] = {
1883 .name = "md-1",
1884 .owner = THIS_MODULE,
1885 .load_super = super_1_load,
1886 .validate_super = super_1_validate,
1887 .sync_super = super_1_sync,
1888 .rdev_size_change = super_1_rdev_size_change,
1889 .allow_new_offset = super_1_allow_new_offset,
1890 },
1891 };
1892
1893 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1894 {
1895 if (mddev->sync_super) {
1896 mddev->sync_super(mddev, rdev);
1897 return;
1898 }
1899
1900 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1901
1902 super_types[mddev->major_version].sync_super(mddev, rdev);
1903 }
1904
1905 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1906 {
1907 struct md_rdev *rdev, *rdev2;
1908
1909 rcu_read_lock();
1910 rdev_for_each_rcu(rdev, mddev1)
1911 rdev_for_each_rcu(rdev2, mddev2)
1912 if (rdev->bdev->bd_contains ==
1913 rdev2->bdev->bd_contains) {
1914 rcu_read_unlock();
1915 return 1;
1916 }
1917 rcu_read_unlock();
1918 return 0;
1919 }
1920
1921 static LIST_HEAD(pending_raid_disks);
1922
1923 /*
1924 * Try to register data integrity profile for an mddev
1925 *
1926 * This is called when an array is started and after a disk has been kicked
1927 * from the array. It only succeeds if all working and active component devices
1928 * are integrity capable with matching profiles.
1929 */
1930 int md_integrity_register(struct mddev *mddev)
1931 {
1932 struct md_rdev *rdev, *reference = NULL;
1933
1934 if (list_empty(&mddev->disks))
1935 return 0; /* nothing to do */
1936 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1937 return 0; /* shouldn't register, or already is */
1938 rdev_for_each(rdev, mddev) {
1939 /* skip spares and non-functional disks */
1940 if (test_bit(Faulty, &rdev->flags))
1941 continue;
1942 if (rdev->raid_disk < 0)
1943 continue;
1944 if (!reference) {
1945 /* Use the first rdev as the reference */
1946 reference = rdev;
1947 continue;
1948 }
1949 /* does this rdev's profile match the reference profile? */
1950 if (blk_integrity_compare(reference->bdev->bd_disk,
1951 rdev->bdev->bd_disk) < 0)
1952 return -EINVAL;
1953 }
1954 if (!reference || !bdev_get_integrity(reference->bdev))
1955 return 0;
1956 /*
1957 * All component devices are integrity capable and have matching
1958 * profiles, register the common profile for the md device.
1959 */
1960 if (blk_integrity_register(mddev->gendisk,
1961 bdev_get_integrity(reference->bdev)) != 0) {
1962 printk(KERN_ERR "md: failed to register integrity for %s\n",
1963 mdname(mddev));
1964 return -EINVAL;
1965 }
1966 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1967 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1968 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1969 mdname(mddev));
1970 return -EINVAL;
1971 }
1972 return 0;
1973 }
1974 EXPORT_SYMBOL(md_integrity_register);
1975
1976 /* Disable data integrity if non-capable/non-matching disk is being added */
1977 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1978 {
1979 struct blk_integrity *bi_rdev;
1980 struct blk_integrity *bi_mddev;
1981
1982 if (!mddev->gendisk)
1983 return;
1984
1985 bi_rdev = bdev_get_integrity(rdev->bdev);
1986 bi_mddev = blk_get_integrity(mddev->gendisk);
1987
1988 if (!bi_mddev) /* nothing to do */
1989 return;
1990 if (rdev->raid_disk < 0) /* skip spares */
1991 return;
1992 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1993 rdev->bdev->bd_disk) >= 0)
1994 return;
1995 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1996 blk_integrity_unregister(mddev->gendisk);
1997 }
1998 EXPORT_SYMBOL(md_integrity_add_rdev);
1999
2000 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 char b[BDEVNAME_SIZE];
2003 struct kobject *ko;
2004 char *s;
2005 int err;
2006
2007 /* prevent duplicates */
2008 if (find_rdev(mddev, rdev->bdev->bd_dev))
2009 return -EEXIST;
2010
2011 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2012 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2013 rdev->sectors < mddev->dev_sectors)) {
2014 if (mddev->pers) {
2015 /* Cannot change size, so fail
2016 * If mddev->level <= 0, then we don't care
2017 * about aligning sizes (e.g. linear)
2018 */
2019 if (mddev->level > 0)
2020 return -ENOSPC;
2021 } else
2022 mddev->dev_sectors = rdev->sectors;
2023 }
2024
2025 /* Verify rdev->desc_nr is unique.
2026 * If it is -1, assign a free number, else
2027 * check number is not in use
2028 */
2029 rcu_read_lock();
2030 if (rdev->desc_nr < 0) {
2031 int choice = 0;
2032 if (mddev->pers)
2033 choice = mddev->raid_disks;
2034 while (find_rdev_nr_rcu(mddev, choice))
2035 choice++;
2036 rdev->desc_nr = choice;
2037 } else {
2038 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2039 rcu_read_unlock();
2040 return -EBUSY;
2041 }
2042 }
2043 rcu_read_unlock();
2044 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2045 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2046 mdname(mddev), mddev->max_disks);
2047 return -EBUSY;
2048 }
2049 bdevname(rdev->bdev,b);
2050 while ( (s=strchr(b, '/')) != NULL)
2051 *s = '!';
2052
2053 rdev->mddev = mddev;
2054 printk(KERN_INFO "md: bind<%s>\n", b);
2055
2056 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2057 goto fail;
2058
2059 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2060 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2061 /* failure here is OK */;
2062 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2063
2064 list_add_rcu(&rdev->same_set, &mddev->disks);
2065 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2066
2067 /* May as well allow recovery to be retried once */
2068 mddev->recovery_disabled++;
2069
2070 return 0;
2071
2072 fail:
2073 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2074 b, mdname(mddev));
2075 return err;
2076 }
2077
2078 static void md_delayed_delete(struct work_struct *ws)
2079 {
2080 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2081 kobject_del(&rdev->kobj);
2082 kobject_put(&rdev->kobj);
2083 }
2084
2085 static void unbind_rdev_from_array(struct md_rdev *rdev)
2086 {
2087 char b[BDEVNAME_SIZE];
2088
2089 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2090 list_del_rcu(&rdev->same_set);
2091 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2092 rdev->mddev = NULL;
2093 sysfs_remove_link(&rdev->kobj, "block");
2094 sysfs_put(rdev->sysfs_state);
2095 rdev->sysfs_state = NULL;
2096 rdev->badblocks.count = 0;
2097 /* We need to delay this, otherwise we can deadlock when
2098 * writing to 'remove' to "dev/state". We also need
2099 * to delay it due to rcu usage.
2100 */
2101 synchronize_rcu();
2102 INIT_WORK(&rdev->del_work, md_delayed_delete);
2103 kobject_get(&rdev->kobj);
2104 queue_work(md_misc_wq, &rdev->del_work);
2105 }
2106
2107 /*
2108 * prevent the device from being mounted, repartitioned or
2109 * otherwise reused by a RAID array (or any other kernel
2110 * subsystem), by bd_claiming the device.
2111 */
2112 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2113 {
2114 int err = 0;
2115 struct block_device *bdev;
2116 char b[BDEVNAME_SIZE];
2117
2118 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2119 shared ? (struct md_rdev *)lock_rdev : rdev);
2120 if (IS_ERR(bdev)) {
2121 printk(KERN_ERR "md: could not open %s.\n",
2122 __bdevname(dev, b));
2123 return PTR_ERR(bdev);
2124 }
2125 rdev->bdev = bdev;
2126 return err;
2127 }
2128
2129 static void unlock_rdev(struct md_rdev *rdev)
2130 {
2131 struct block_device *bdev = rdev->bdev;
2132 rdev->bdev = NULL;
2133 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2134 }
2135
2136 void md_autodetect_dev(dev_t dev);
2137
2138 static void export_rdev(struct md_rdev *rdev)
2139 {
2140 char b[BDEVNAME_SIZE];
2141
2142 printk(KERN_INFO "md: export_rdev(%s)\n",
2143 bdevname(rdev->bdev,b));
2144 md_rdev_clear(rdev);
2145 #ifndef MODULE
2146 if (test_bit(AutoDetected, &rdev->flags))
2147 md_autodetect_dev(rdev->bdev->bd_dev);
2148 #endif
2149 unlock_rdev(rdev);
2150 kobject_put(&rdev->kobj);
2151 }
2152
2153 static void kick_rdev_from_array(struct md_rdev *rdev)
2154 {
2155 unbind_rdev_from_array(rdev);
2156 export_rdev(rdev);
2157 }
2158
2159 static void export_array(struct mddev *mddev)
2160 {
2161 struct md_rdev *rdev;
2162
2163 while (!list_empty(&mddev->disks)) {
2164 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2165 same_set);
2166 kick_rdev_from_array(rdev);
2167 }
2168 mddev->raid_disks = 0;
2169 mddev->major_version = 0;
2170 }
2171
2172 static void sync_sbs(struct mddev *mddev, int nospares)
2173 {
2174 /* Update each superblock (in-memory image), but
2175 * if we are allowed to, skip spares which already
2176 * have the right event counter, or have one earlier
2177 * (which would mean they aren't being marked as dirty
2178 * with the rest of the array)
2179 */
2180 struct md_rdev *rdev;
2181 rdev_for_each(rdev, mddev) {
2182 if (rdev->sb_events == mddev->events ||
2183 (nospares &&
2184 rdev->raid_disk < 0 &&
2185 rdev->sb_events+1 == mddev->events)) {
2186 /* Don't update this superblock */
2187 rdev->sb_loaded = 2;
2188 } else {
2189 sync_super(mddev, rdev);
2190 rdev->sb_loaded = 1;
2191 }
2192 }
2193 }
2194
2195 static void md_update_sb(struct mddev *mddev, int force_change)
2196 {
2197 struct md_rdev *rdev;
2198 int sync_req;
2199 int nospares = 0;
2200 int any_badblocks_changed = 0;
2201
2202 if (mddev->ro) {
2203 if (force_change)
2204 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2205 return;
2206 }
2207 repeat:
2208 /* First make sure individual recovery_offsets are correct */
2209 rdev_for_each(rdev, mddev) {
2210 if (rdev->raid_disk >= 0 &&
2211 mddev->delta_disks >= 0 &&
2212 !test_bit(In_sync, &rdev->flags) &&
2213 mddev->curr_resync_completed > rdev->recovery_offset)
2214 rdev->recovery_offset = mddev->curr_resync_completed;
2215
2216 }
2217 if (!mddev->persistent) {
2218 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2219 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2220 if (!mddev->external) {
2221 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2222 rdev_for_each(rdev, mddev) {
2223 if (rdev->badblocks.changed) {
2224 rdev->badblocks.changed = 0;
2225 md_ack_all_badblocks(&rdev->badblocks);
2226 md_error(mddev, rdev);
2227 }
2228 clear_bit(Blocked, &rdev->flags);
2229 clear_bit(BlockedBadBlocks, &rdev->flags);
2230 wake_up(&rdev->blocked_wait);
2231 }
2232 }
2233 wake_up(&mddev->sb_wait);
2234 return;
2235 }
2236
2237 spin_lock_irq(&mddev->write_lock);
2238
2239 mddev->utime = get_seconds();
2240
2241 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2242 force_change = 1;
2243 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2244 /* just a clean<-> dirty transition, possibly leave spares alone,
2245 * though if events isn't the right even/odd, we will have to do
2246 * spares after all
2247 */
2248 nospares = 1;
2249 if (force_change)
2250 nospares = 0;
2251 if (mddev->degraded)
2252 /* If the array is degraded, then skipping spares is both
2253 * dangerous and fairly pointless.
2254 * Dangerous because a device that was removed from the array
2255 * might have a event_count that still looks up-to-date,
2256 * so it can be re-added without a resync.
2257 * Pointless because if there are any spares to skip,
2258 * then a recovery will happen and soon that array won't
2259 * be degraded any more and the spare can go back to sleep then.
2260 */
2261 nospares = 0;
2262
2263 sync_req = mddev->in_sync;
2264
2265 /* If this is just a dirty<->clean transition, and the array is clean
2266 * and 'events' is odd, we can roll back to the previous clean state */
2267 if (nospares
2268 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2269 && mddev->can_decrease_events
2270 && mddev->events != 1) {
2271 mddev->events--;
2272 mddev->can_decrease_events = 0;
2273 } else {
2274 /* otherwise we have to go forward and ... */
2275 mddev->events ++;
2276 mddev->can_decrease_events = nospares;
2277 }
2278
2279 /*
2280 * This 64-bit counter should never wrap.
2281 * Either we are in around ~1 trillion A.C., assuming
2282 * 1 reboot per second, or we have a bug...
2283 */
2284 WARN_ON(mddev->events == 0);
2285
2286 rdev_for_each(rdev, mddev) {
2287 if (rdev->badblocks.changed)
2288 any_badblocks_changed++;
2289 if (test_bit(Faulty, &rdev->flags))
2290 set_bit(FaultRecorded, &rdev->flags);
2291 }
2292
2293 sync_sbs(mddev, nospares);
2294 spin_unlock_irq(&mddev->write_lock);
2295
2296 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2297 mdname(mddev), mddev->in_sync);
2298
2299 bitmap_update_sb(mddev->bitmap);
2300 rdev_for_each(rdev, mddev) {
2301 char b[BDEVNAME_SIZE];
2302
2303 if (rdev->sb_loaded != 1)
2304 continue; /* no noise on spare devices */
2305
2306 if (!test_bit(Faulty, &rdev->flags)) {
2307 md_super_write(mddev,rdev,
2308 rdev->sb_start, rdev->sb_size,
2309 rdev->sb_page);
2310 pr_debug("md: (write) %s's sb offset: %llu\n",
2311 bdevname(rdev->bdev, b),
2312 (unsigned long long)rdev->sb_start);
2313 rdev->sb_events = mddev->events;
2314 if (rdev->badblocks.size) {
2315 md_super_write(mddev, rdev,
2316 rdev->badblocks.sector,
2317 rdev->badblocks.size << 9,
2318 rdev->bb_page);
2319 rdev->badblocks.size = 0;
2320 }
2321
2322 } else
2323 pr_debug("md: %s (skipping faulty)\n",
2324 bdevname(rdev->bdev, b));
2325
2326 if (mddev->level == LEVEL_MULTIPATH)
2327 /* only need to write one superblock... */
2328 break;
2329 }
2330 md_super_wait(mddev);
2331 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2332
2333 spin_lock_irq(&mddev->write_lock);
2334 if (mddev->in_sync != sync_req ||
2335 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2336 /* have to write it out again */
2337 spin_unlock_irq(&mddev->write_lock);
2338 goto repeat;
2339 }
2340 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2341 spin_unlock_irq(&mddev->write_lock);
2342 wake_up(&mddev->sb_wait);
2343 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2344 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2345
2346 rdev_for_each(rdev, mddev) {
2347 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2348 clear_bit(Blocked, &rdev->flags);
2349
2350 if (any_badblocks_changed)
2351 md_ack_all_badblocks(&rdev->badblocks);
2352 clear_bit(BlockedBadBlocks, &rdev->flags);
2353 wake_up(&rdev->blocked_wait);
2354 }
2355 }
2356
2357 /* words written to sysfs files may, or may not, be \n terminated.
2358 * We want to accept with case. For this we use cmd_match.
2359 */
2360 static int cmd_match(const char *cmd, const char *str)
2361 {
2362 /* See if cmd, written into a sysfs file, matches
2363 * str. They must either be the same, or cmd can
2364 * have a trailing newline
2365 */
2366 while (*cmd && *str && *cmd == *str) {
2367 cmd++;
2368 str++;
2369 }
2370 if (*cmd == '\n')
2371 cmd++;
2372 if (*str || *cmd)
2373 return 0;
2374 return 1;
2375 }
2376
2377 struct rdev_sysfs_entry {
2378 struct attribute attr;
2379 ssize_t (*show)(struct md_rdev *, char *);
2380 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2381 };
2382
2383 static ssize_t
2384 state_show(struct md_rdev *rdev, char *page)
2385 {
2386 char *sep = "";
2387 size_t len = 0;
2388
2389 if (test_bit(Faulty, &rdev->flags) ||
2390 rdev->badblocks.unacked_exist) {
2391 len+= sprintf(page+len, "%sfaulty",sep);
2392 sep = ",";
2393 }
2394 if (test_bit(In_sync, &rdev->flags)) {
2395 len += sprintf(page+len, "%sin_sync",sep);
2396 sep = ",";
2397 }
2398 if (test_bit(WriteMostly, &rdev->flags)) {
2399 len += sprintf(page+len, "%swrite_mostly",sep);
2400 sep = ",";
2401 }
2402 if (test_bit(Blocked, &rdev->flags) ||
2403 (rdev->badblocks.unacked_exist
2404 && !test_bit(Faulty, &rdev->flags))) {
2405 len += sprintf(page+len, "%sblocked", sep);
2406 sep = ",";
2407 }
2408 if (!test_bit(Faulty, &rdev->flags) &&
2409 !test_bit(In_sync, &rdev->flags)) {
2410 len += sprintf(page+len, "%sspare", sep);
2411 sep = ",";
2412 }
2413 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2414 len += sprintf(page+len, "%swrite_error", sep);
2415 sep = ",";
2416 }
2417 if (test_bit(WantReplacement, &rdev->flags)) {
2418 len += sprintf(page+len, "%swant_replacement", sep);
2419 sep = ",";
2420 }
2421 if (test_bit(Replacement, &rdev->flags)) {
2422 len += sprintf(page+len, "%sreplacement", sep);
2423 sep = ",";
2424 }
2425
2426 return len+sprintf(page+len, "\n");
2427 }
2428
2429 static ssize_t
2430 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2431 {
2432 /* can write
2433 * faulty - simulates an error
2434 * remove - disconnects the device
2435 * writemostly - sets write_mostly
2436 * -writemostly - clears write_mostly
2437 * blocked - sets the Blocked flags
2438 * -blocked - clears the Blocked and possibly simulates an error
2439 * insync - sets Insync providing device isn't active
2440 * -insync - clear Insync for a device with a slot assigned,
2441 * so that it gets rebuilt based on bitmap
2442 * write_error - sets WriteErrorSeen
2443 * -write_error - clears WriteErrorSeen
2444 */
2445 int err = -EINVAL;
2446 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2447 md_error(rdev->mddev, rdev);
2448 if (test_bit(Faulty, &rdev->flags))
2449 err = 0;
2450 else
2451 err = -EBUSY;
2452 } else if (cmd_match(buf, "remove")) {
2453 if (rdev->raid_disk >= 0)
2454 err = -EBUSY;
2455 else {
2456 struct mddev *mddev = rdev->mddev;
2457 kick_rdev_from_array(rdev);
2458 if (mddev->pers)
2459 md_update_sb(mddev, 1);
2460 md_new_event(mddev);
2461 err = 0;
2462 }
2463 } else if (cmd_match(buf, "writemostly")) {
2464 set_bit(WriteMostly, &rdev->flags);
2465 err = 0;
2466 } else if (cmd_match(buf, "-writemostly")) {
2467 clear_bit(WriteMostly, &rdev->flags);
2468 err = 0;
2469 } else if (cmd_match(buf, "blocked")) {
2470 set_bit(Blocked, &rdev->flags);
2471 err = 0;
2472 } else if (cmd_match(buf, "-blocked")) {
2473 if (!test_bit(Faulty, &rdev->flags) &&
2474 rdev->badblocks.unacked_exist) {
2475 /* metadata handler doesn't understand badblocks,
2476 * so we need to fail the device
2477 */
2478 md_error(rdev->mddev, rdev);
2479 }
2480 clear_bit(Blocked, &rdev->flags);
2481 clear_bit(BlockedBadBlocks, &rdev->flags);
2482 wake_up(&rdev->blocked_wait);
2483 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2484 md_wakeup_thread(rdev->mddev->thread);
2485
2486 err = 0;
2487 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2488 set_bit(In_sync, &rdev->flags);
2489 err = 0;
2490 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2491 if (rdev->mddev->pers == NULL) {
2492 clear_bit(In_sync, &rdev->flags);
2493 rdev->saved_raid_disk = rdev->raid_disk;
2494 rdev->raid_disk = -1;
2495 err = 0;
2496 }
2497 } else if (cmd_match(buf, "write_error")) {
2498 set_bit(WriteErrorSeen, &rdev->flags);
2499 err = 0;
2500 } else if (cmd_match(buf, "-write_error")) {
2501 clear_bit(WriteErrorSeen, &rdev->flags);
2502 err = 0;
2503 } else if (cmd_match(buf, "want_replacement")) {
2504 /* Any non-spare device that is not a replacement can
2505 * become want_replacement at any time, but we then need to
2506 * check if recovery is needed.
2507 */
2508 if (rdev->raid_disk >= 0 &&
2509 !test_bit(Replacement, &rdev->flags))
2510 set_bit(WantReplacement, &rdev->flags);
2511 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2512 md_wakeup_thread(rdev->mddev->thread);
2513 err = 0;
2514 } else if (cmd_match(buf, "-want_replacement")) {
2515 /* Clearing 'want_replacement' is always allowed.
2516 * Once replacements starts it is too late though.
2517 */
2518 err = 0;
2519 clear_bit(WantReplacement, &rdev->flags);
2520 } else if (cmd_match(buf, "replacement")) {
2521 /* Can only set a device as a replacement when array has not
2522 * yet been started. Once running, replacement is automatic
2523 * from spares, or by assigning 'slot'.
2524 */
2525 if (rdev->mddev->pers)
2526 err = -EBUSY;
2527 else {
2528 set_bit(Replacement, &rdev->flags);
2529 err = 0;
2530 }
2531 } else if (cmd_match(buf, "-replacement")) {
2532 /* Similarly, can only clear Replacement before start */
2533 if (rdev->mddev->pers)
2534 err = -EBUSY;
2535 else {
2536 clear_bit(Replacement, &rdev->flags);
2537 err = 0;
2538 }
2539 }
2540 if (!err)
2541 sysfs_notify_dirent_safe(rdev->sysfs_state);
2542 return err ? err : len;
2543 }
2544 static struct rdev_sysfs_entry rdev_state =
2545 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2546
2547 static ssize_t
2548 errors_show(struct md_rdev *rdev, char *page)
2549 {
2550 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2551 }
2552
2553 static ssize_t
2554 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2555 {
2556 char *e;
2557 unsigned long n = simple_strtoul(buf, &e, 10);
2558 if (*buf && (*e == 0 || *e == '\n')) {
2559 atomic_set(&rdev->corrected_errors, n);
2560 return len;
2561 }
2562 return -EINVAL;
2563 }
2564 static struct rdev_sysfs_entry rdev_errors =
2565 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2566
2567 static ssize_t
2568 slot_show(struct md_rdev *rdev, char *page)
2569 {
2570 if (rdev->raid_disk < 0)
2571 return sprintf(page, "none\n");
2572 else
2573 return sprintf(page, "%d\n", rdev->raid_disk);
2574 }
2575
2576 static ssize_t
2577 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2578 {
2579 char *e;
2580 int err;
2581 int slot = simple_strtoul(buf, &e, 10);
2582 if (strncmp(buf, "none", 4)==0)
2583 slot = -1;
2584 else if (e==buf || (*e && *e!= '\n'))
2585 return -EINVAL;
2586 if (rdev->mddev->pers && slot == -1) {
2587 /* Setting 'slot' on an active array requires also
2588 * updating the 'rd%d' link, and communicating
2589 * with the personality with ->hot_*_disk.
2590 * For now we only support removing
2591 * failed/spare devices. This normally happens automatically,
2592 * but not when the metadata is externally managed.
2593 */
2594 if (rdev->raid_disk == -1)
2595 return -EEXIST;
2596 /* personality does all needed checks */
2597 if (rdev->mddev->pers->hot_remove_disk == NULL)
2598 return -EINVAL;
2599 clear_bit(Blocked, &rdev->flags);
2600 remove_and_add_spares(rdev->mddev, rdev);
2601 if (rdev->raid_disk >= 0)
2602 return -EBUSY;
2603 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2604 md_wakeup_thread(rdev->mddev->thread);
2605 } else if (rdev->mddev->pers) {
2606 /* Activating a spare .. or possibly reactivating
2607 * if we ever get bitmaps working here.
2608 */
2609
2610 if (rdev->raid_disk != -1)
2611 return -EBUSY;
2612
2613 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2614 return -EBUSY;
2615
2616 if (rdev->mddev->pers->hot_add_disk == NULL)
2617 return -EINVAL;
2618
2619 if (slot >= rdev->mddev->raid_disks &&
2620 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2621 return -ENOSPC;
2622
2623 rdev->raid_disk = slot;
2624 if (test_bit(In_sync, &rdev->flags))
2625 rdev->saved_raid_disk = slot;
2626 else
2627 rdev->saved_raid_disk = -1;
2628 clear_bit(In_sync, &rdev->flags);
2629 clear_bit(Bitmap_sync, &rdev->flags);
2630 err = rdev->mddev->pers->
2631 hot_add_disk(rdev->mddev, rdev);
2632 if (err) {
2633 rdev->raid_disk = -1;
2634 return err;
2635 } else
2636 sysfs_notify_dirent_safe(rdev->sysfs_state);
2637 if (sysfs_link_rdev(rdev->mddev, rdev))
2638 /* failure here is OK */;
2639 /* don't wakeup anyone, leave that to userspace. */
2640 } else {
2641 if (slot >= rdev->mddev->raid_disks &&
2642 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2643 return -ENOSPC;
2644 rdev->raid_disk = slot;
2645 /* assume it is working */
2646 clear_bit(Faulty, &rdev->flags);
2647 clear_bit(WriteMostly, &rdev->flags);
2648 set_bit(In_sync, &rdev->flags);
2649 sysfs_notify_dirent_safe(rdev->sysfs_state);
2650 }
2651 return len;
2652 }
2653
2654 static struct rdev_sysfs_entry rdev_slot =
2655 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2656
2657 static ssize_t
2658 offset_show(struct md_rdev *rdev, char *page)
2659 {
2660 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2661 }
2662
2663 static ssize_t
2664 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2665 {
2666 unsigned long long offset;
2667 if (kstrtoull(buf, 10, &offset) < 0)
2668 return -EINVAL;
2669 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2670 return -EBUSY;
2671 if (rdev->sectors && rdev->mddev->external)
2672 /* Must set offset before size, so overlap checks
2673 * can be sane */
2674 return -EBUSY;
2675 rdev->data_offset = offset;
2676 rdev->new_data_offset = offset;
2677 return len;
2678 }
2679
2680 static struct rdev_sysfs_entry rdev_offset =
2681 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2682
2683 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2684 {
2685 return sprintf(page, "%llu\n",
2686 (unsigned long long)rdev->new_data_offset);
2687 }
2688
2689 static ssize_t new_offset_store(struct md_rdev *rdev,
2690 const char *buf, size_t len)
2691 {
2692 unsigned long long new_offset;
2693 struct mddev *mddev = rdev->mddev;
2694
2695 if (kstrtoull(buf, 10, &new_offset) < 0)
2696 return -EINVAL;
2697
2698 if (mddev->sync_thread)
2699 return -EBUSY;
2700 if (new_offset == rdev->data_offset)
2701 /* reset is always permitted */
2702 ;
2703 else if (new_offset > rdev->data_offset) {
2704 /* must not push array size beyond rdev_sectors */
2705 if (new_offset - rdev->data_offset
2706 + mddev->dev_sectors > rdev->sectors)
2707 return -E2BIG;
2708 }
2709 /* Metadata worries about other space details. */
2710
2711 /* decreasing the offset is inconsistent with a backwards
2712 * reshape.
2713 */
2714 if (new_offset < rdev->data_offset &&
2715 mddev->reshape_backwards)
2716 return -EINVAL;
2717 /* Increasing offset is inconsistent with forwards
2718 * reshape. reshape_direction should be set to
2719 * 'backwards' first.
2720 */
2721 if (new_offset > rdev->data_offset &&
2722 !mddev->reshape_backwards)
2723 return -EINVAL;
2724
2725 if (mddev->pers && mddev->persistent &&
2726 !super_types[mddev->major_version]
2727 .allow_new_offset(rdev, new_offset))
2728 return -E2BIG;
2729 rdev->new_data_offset = new_offset;
2730 if (new_offset > rdev->data_offset)
2731 mddev->reshape_backwards = 1;
2732 else if (new_offset < rdev->data_offset)
2733 mddev->reshape_backwards = 0;
2734
2735 return len;
2736 }
2737 static struct rdev_sysfs_entry rdev_new_offset =
2738 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2739
2740 static ssize_t
2741 rdev_size_show(struct md_rdev *rdev, char *page)
2742 {
2743 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2744 }
2745
2746 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2747 {
2748 /* check if two start/length pairs overlap */
2749 if (s1+l1 <= s2)
2750 return 0;
2751 if (s2+l2 <= s1)
2752 return 0;
2753 return 1;
2754 }
2755
2756 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2757 {
2758 unsigned long long blocks;
2759 sector_t new;
2760
2761 if (kstrtoull(buf, 10, &blocks) < 0)
2762 return -EINVAL;
2763
2764 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2765 return -EINVAL; /* sector conversion overflow */
2766
2767 new = blocks * 2;
2768 if (new != blocks * 2)
2769 return -EINVAL; /* unsigned long long to sector_t overflow */
2770
2771 *sectors = new;
2772 return 0;
2773 }
2774
2775 static ssize_t
2776 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2777 {
2778 struct mddev *my_mddev = rdev->mddev;
2779 sector_t oldsectors = rdev->sectors;
2780 sector_t sectors;
2781
2782 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2783 return -EINVAL;
2784 if (rdev->data_offset != rdev->new_data_offset)
2785 return -EINVAL; /* too confusing */
2786 if (my_mddev->pers && rdev->raid_disk >= 0) {
2787 if (my_mddev->persistent) {
2788 sectors = super_types[my_mddev->major_version].
2789 rdev_size_change(rdev, sectors);
2790 if (!sectors)
2791 return -EBUSY;
2792 } else if (!sectors)
2793 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2794 rdev->data_offset;
2795 if (!my_mddev->pers->resize)
2796 /* Cannot change size for RAID0 or Linear etc */
2797 return -EINVAL;
2798 }
2799 if (sectors < my_mddev->dev_sectors)
2800 return -EINVAL; /* component must fit device */
2801
2802 rdev->sectors = sectors;
2803 if (sectors > oldsectors && my_mddev->external) {
2804 /* Need to check that all other rdevs with the same
2805 * ->bdev do not overlap. 'rcu' is sufficient to walk
2806 * the rdev lists safely.
2807 * This check does not provide a hard guarantee, it
2808 * just helps avoid dangerous mistakes.
2809 */
2810 struct mddev *mddev;
2811 int overlap = 0;
2812 struct list_head *tmp;
2813
2814 rcu_read_lock();
2815 for_each_mddev(mddev, tmp) {
2816 struct md_rdev *rdev2;
2817
2818 rdev_for_each(rdev2, mddev)
2819 if (rdev->bdev == rdev2->bdev &&
2820 rdev != rdev2 &&
2821 overlaps(rdev->data_offset, rdev->sectors,
2822 rdev2->data_offset,
2823 rdev2->sectors)) {
2824 overlap = 1;
2825 break;
2826 }
2827 if (overlap) {
2828 mddev_put(mddev);
2829 break;
2830 }
2831 }
2832 rcu_read_unlock();
2833 if (overlap) {
2834 /* Someone else could have slipped in a size
2835 * change here, but doing so is just silly.
2836 * We put oldsectors back because we *know* it is
2837 * safe, and trust userspace not to race with
2838 * itself
2839 */
2840 rdev->sectors = oldsectors;
2841 return -EBUSY;
2842 }
2843 }
2844 return len;
2845 }
2846
2847 static struct rdev_sysfs_entry rdev_size =
2848 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2849
2850 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2851 {
2852 unsigned long long recovery_start = rdev->recovery_offset;
2853
2854 if (test_bit(In_sync, &rdev->flags) ||
2855 recovery_start == MaxSector)
2856 return sprintf(page, "none\n");
2857
2858 return sprintf(page, "%llu\n", recovery_start);
2859 }
2860
2861 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2862 {
2863 unsigned long long recovery_start;
2864
2865 if (cmd_match(buf, "none"))
2866 recovery_start = MaxSector;
2867 else if (kstrtoull(buf, 10, &recovery_start))
2868 return -EINVAL;
2869
2870 if (rdev->mddev->pers &&
2871 rdev->raid_disk >= 0)
2872 return -EBUSY;
2873
2874 rdev->recovery_offset = recovery_start;
2875 if (recovery_start == MaxSector)
2876 set_bit(In_sync, &rdev->flags);
2877 else
2878 clear_bit(In_sync, &rdev->flags);
2879 return len;
2880 }
2881
2882 static struct rdev_sysfs_entry rdev_recovery_start =
2883 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2884
2885 static ssize_t
2886 badblocks_show(struct badblocks *bb, char *page, int unack);
2887 static ssize_t
2888 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2889
2890 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2891 {
2892 return badblocks_show(&rdev->badblocks, page, 0);
2893 }
2894 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2895 {
2896 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2897 /* Maybe that ack was all we needed */
2898 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2899 wake_up(&rdev->blocked_wait);
2900 return rv;
2901 }
2902 static struct rdev_sysfs_entry rdev_bad_blocks =
2903 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2904
2905 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2906 {
2907 return badblocks_show(&rdev->badblocks, page, 1);
2908 }
2909 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2910 {
2911 return badblocks_store(&rdev->badblocks, page, len, 1);
2912 }
2913 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2914 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2915
2916 static struct attribute *rdev_default_attrs[] = {
2917 &rdev_state.attr,
2918 &rdev_errors.attr,
2919 &rdev_slot.attr,
2920 &rdev_offset.attr,
2921 &rdev_new_offset.attr,
2922 &rdev_size.attr,
2923 &rdev_recovery_start.attr,
2924 &rdev_bad_blocks.attr,
2925 &rdev_unack_bad_blocks.attr,
2926 NULL,
2927 };
2928 static ssize_t
2929 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2930 {
2931 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2932 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2933 struct mddev *mddev = rdev->mddev;
2934 ssize_t rv;
2935
2936 if (!entry->show)
2937 return -EIO;
2938
2939 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2940 if (!rv) {
2941 if (rdev->mddev == NULL)
2942 rv = -EBUSY;
2943 else
2944 rv = entry->show(rdev, page);
2945 mddev_unlock(mddev);
2946 }
2947 return rv;
2948 }
2949
2950 static ssize_t
2951 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2952 const char *page, size_t length)
2953 {
2954 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2955 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2956 ssize_t rv;
2957 struct mddev *mddev = rdev->mddev;
2958
2959 if (!entry->store)
2960 return -EIO;
2961 if (!capable(CAP_SYS_ADMIN))
2962 return -EACCES;
2963 rv = mddev ? mddev_lock(mddev): -EBUSY;
2964 if (!rv) {
2965 if (rdev->mddev == NULL)
2966 rv = -EBUSY;
2967 else
2968 rv = entry->store(rdev, page, length);
2969 mddev_unlock(mddev);
2970 }
2971 return rv;
2972 }
2973
2974 static void rdev_free(struct kobject *ko)
2975 {
2976 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2977 kfree(rdev);
2978 }
2979 static const struct sysfs_ops rdev_sysfs_ops = {
2980 .show = rdev_attr_show,
2981 .store = rdev_attr_store,
2982 };
2983 static struct kobj_type rdev_ktype = {
2984 .release = rdev_free,
2985 .sysfs_ops = &rdev_sysfs_ops,
2986 .default_attrs = rdev_default_attrs,
2987 };
2988
2989 int md_rdev_init(struct md_rdev *rdev)
2990 {
2991 rdev->desc_nr = -1;
2992 rdev->saved_raid_disk = -1;
2993 rdev->raid_disk = -1;
2994 rdev->flags = 0;
2995 rdev->data_offset = 0;
2996 rdev->new_data_offset = 0;
2997 rdev->sb_events = 0;
2998 rdev->last_read_error.tv_sec = 0;
2999 rdev->last_read_error.tv_nsec = 0;
3000 rdev->sb_loaded = 0;
3001 rdev->bb_page = NULL;
3002 atomic_set(&rdev->nr_pending, 0);
3003 atomic_set(&rdev->read_errors, 0);
3004 atomic_set(&rdev->corrected_errors, 0);
3005
3006 INIT_LIST_HEAD(&rdev->same_set);
3007 init_waitqueue_head(&rdev->blocked_wait);
3008
3009 /* Add space to store bad block list.
3010 * This reserves the space even on arrays where it cannot
3011 * be used - I wonder if that matters
3012 */
3013 rdev->badblocks.count = 0;
3014 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3015 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3016 seqlock_init(&rdev->badblocks.lock);
3017 if (rdev->badblocks.page == NULL)
3018 return -ENOMEM;
3019
3020 return 0;
3021 }
3022 EXPORT_SYMBOL_GPL(md_rdev_init);
3023 /*
3024 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3025 *
3026 * mark the device faulty if:
3027 *
3028 * - the device is nonexistent (zero size)
3029 * - the device has no valid superblock
3030 *
3031 * a faulty rdev _never_ has rdev->sb set.
3032 */
3033 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3034 {
3035 char b[BDEVNAME_SIZE];
3036 int err;
3037 struct md_rdev *rdev;
3038 sector_t size;
3039
3040 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3041 if (!rdev) {
3042 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3043 return ERR_PTR(-ENOMEM);
3044 }
3045
3046 err = md_rdev_init(rdev);
3047 if (err)
3048 goto abort_free;
3049 err = alloc_disk_sb(rdev);
3050 if (err)
3051 goto abort_free;
3052
3053 err = lock_rdev(rdev, newdev, super_format == -2);
3054 if (err)
3055 goto abort_free;
3056
3057 kobject_init(&rdev->kobj, &rdev_ktype);
3058
3059 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3060 if (!size) {
3061 printk(KERN_WARNING
3062 "md: %s has zero or unknown size, marking faulty!\n",
3063 bdevname(rdev->bdev,b));
3064 err = -EINVAL;
3065 goto abort_free;
3066 }
3067
3068 if (super_format >= 0) {
3069 err = super_types[super_format].
3070 load_super(rdev, NULL, super_minor);
3071 if (err == -EINVAL) {
3072 printk(KERN_WARNING
3073 "md: %s does not have a valid v%d.%d "
3074 "superblock, not importing!\n",
3075 bdevname(rdev->bdev,b),
3076 super_format, super_minor);
3077 goto abort_free;
3078 }
3079 if (err < 0) {
3080 printk(KERN_WARNING
3081 "md: could not read %s's sb, not importing!\n",
3082 bdevname(rdev->bdev,b));
3083 goto abort_free;
3084 }
3085 }
3086
3087 return rdev;
3088
3089 abort_free:
3090 if (rdev->bdev)
3091 unlock_rdev(rdev);
3092 md_rdev_clear(rdev);
3093 kfree(rdev);
3094 return ERR_PTR(err);
3095 }
3096
3097 /*
3098 * Check a full RAID array for plausibility
3099 */
3100
3101 static void analyze_sbs(struct mddev *mddev)
3102 {
3103 int i;
3104 struct md_rdev *rdev, *freshest, *tmp;
3105 char b[BDEVNAME_SIZE];
3106
3107 freshest = NULL;
3108 rdev_for_each_safe(rdev, tmp, mddev)
3109 switch (super_types[mddev->major_version].
3110 load_super(rdev, freshest, mddev->minor_version)) {
3111 case 1:
3112 freshest = rdev;
3113 break;
3114 case 0:
3115 break;
3116 default:
3117 printk( KERN_ERR \
3118 "md: fatal superblock inconsistency in %s"
3119 " -- removing from array\n",
3120 bdevname(rdev->bdev,b));
3121 kick_rdev_from_array(rdev);
3122 }
3123
3124 super_types[mddev->major_version].
3125 validate_super(mddev, freshest);
3126
3127 i = 0;
3128 rdev_for_each_safe(rdev, tmp, mddev) {
3129 if (mddev->max_disks &&
3130 (rdev->desc_nr >= mddev->max_disks ||
3131 i > mddev->max_disks)) {
3132 printk(KERN_WARNING
3133 "md: %s: %s: only %d devices permitted\n",
3134 mdname(mddev), bdevname(rdev->bdev, b),
3135 mddev->max_disks);
3136 kick_rdev_from_array(rdev);
3137 continue;
3138 }
3139 if (rdev != freshest)
3140 if (super_types[mddev->major_version].
3141 validate_super(mddev, rdev)) {
3142 printk(KERN_WARNING "md: kicking non-fresh %s"
3143 " from array!\n",
3144 bdevname(rdev->bdev,b));
3145 kick_rdev_from_array(rdev);
3146 continue;
3147 }
3148 if (mddev->level == LEVEL_MULTIPATH) {
3149 rdev->desc_nr = i++;
3150 rdev->raid_disk = rdev->desc_nr;
3151 set_bit(In_sync, &rdev->flags);
3152 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3153 rdev->raid_disk = -1;
3154 clear_bit(In_sync, &rdev->flags);
3155 }
3156 }
3157 }
3158
3159 /* Read a fixed-point number.
3160 * Numbers in sysfs attributes should be in "standard" units where
3161 * possible, so time should be in seconds.
3162 * However we internally use a a much smaller unit such as
3163 * milliseconds or jiffies.
3164 * This function takes a decimal number with a possible fractional
3165 * component, and produces an integer which is the result of
3166 * multiplying that number by 10^'scale'.
3167 * all without any floating-point arithmetic.
3168 */
3169 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3170 {
3171 unsigned long result = 0;
3172 long decimals = -1;
3173 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3174 if (*cp == '.')
3175 decimals = 0;
3176 else if (decimals < scale) {
3177 unsigned int value;
3178 value = *cp - '0';
3179 result = result * 10 + value;
3180 if (decimals >= 0)
3181 decimals++;
3182 }
3183 cp++;
3184 }
3185 if (*cp == '\n')
3186 cp++;
3187 if (*cp)
3188 return -EINVAL;
3189 if (decimals < 0)
3190 decimals = 0;
3191 while (decimals < scale) {
3192 result *= 10;
3193 decimals ++;
3194 }
3195 *res = result;
3196 return 0;
3197 }
3198
3199 static void md_safemode_timeout(unsigned long data);
3200
3201 static ssize_t
3202 safe_delay_show(struct mddev *mddev, char *page)
3203 {
3204 int msec = (mddev->safemode_delay*1000)/HZ;
3205 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3206 }
3207 static ssize_t
3208 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3209 {
3210 unsigned long msec;
3211
3212 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3213 return -EINVAL;
3214 if (msec == 0)
3215 mddev->safemode_delay = 0;
3216 else {
3217 unsigned long old_delay = mddev->safemode_delay;
3218 mddev->safemode_delay = (msec*HZ)/1000;
3219 if (mddev->safemode_delay == 0)
3220 mddev->safemode_delay = 1;
3221 if (mddev->safemode_delay < old_delay || old_delay == 0)
3222 md_safemode_timeout((unsigned long)mddev);
3223 }
3224 return len;
3225 }
3226 static struct md_sysfs_entry md_safe_delay =
3227 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3228
3229 static ssize_t
3230 level_show(struct mddev *mddev, char *page)
3231 {
3232 struct md_personality *p = mddev->pers;
3233 if (p)
3234 return sprintf(page, "%s\n", p->name);
3235 else if (mddev->clevel[0])
3236 return sprintf(page, "%s\n", mddev->clevel);
3237 else if (mddev->level != LEVEL_NONE)
3238 return sprintf(page, "%d\n", mddev->level);
3239 else
3240 return 0;
3241 }
3242
3243 static ssize_t
3244 level_store(struct mddev *mddev, const char *buf, size_t len)
3245 {
3246 char clevel[16];
3247 ssize_t rv = len;
3248 struct md_personality *pers;
3249 long level;
3250 void *priv;
3251 struct md_rdev *rdev;
3252
3253 if (mddev->pers == NULL) {
3254 if (len == 0)
3255 return 0;
3256 if (len >= sizeof(mddev->clevel))
3257 return -ENOSPC;
3258 strncpy(mddev->clevel, buf, len);
3259 if (mddev->clevel[len-1] == '\n')
3260 len--;
3261 mddev->clevel[len] = 0;
3262 mddev->level = LEVEL_NONE;
3263 return rv;
3264 }
3265 if (mddev->ro)
3266 return -EROFS;
3267
3268 /* request to change the personality. Need to ensure:
3269 * - array is not engaged in resync/recovery/reshape
3270 * - old personality can be suspended
3271 * - new personality will access other array.
3272 */
3273
3274 if (mddev->sync_thread ||
3275 mddev->reshape_position != MaxSector ||
3276 mddev->sysfs_active)
3277 return -EBUSY;
3278
3279 if (!mddev->pers->quiesce) {
3280 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3281 mdname(mddev), mddev->pers->name);
3282 return -EINVAL;
3283 }
3284
3285 /* Now find the new personality */
3286 if (len == 0 || len >= sizeof(clevel))
3287 return -EINVAL;
3288 strncpy(clevel, buf, len);
3289 if (clevel[len-1] == '\n')
3290 len--;
3291 clevel[len] = 0;
3292 if (kstrtol(clevel, 10, &level))
3293 level = LEVEL_NONE;
3294
3295 if (request_module("md-%s", clevel) != 0)
3296 request_module("md-level-%s", clevel);
3297 spin_lock(&pers_lock);
3298 pers = find_pers(level, clevel);
3299 if (!pers || !try_module_get(pers->owner)) {
3300 spin_unlock(&pers_lock);
3301 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3302 return -EINVAL;
3303 }
3304 spin_unlock(&pers_lock);
3305
3306 if (pers == mddev->pers) {
3307 /* Nothing to do! */
3308 module_put(pers->owner);
3309 return rv;
3310 }
3311 if (!pers->takeover) {
3312 module_put(pers->owner);
3313 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3314 mdname(mddev), clevel);
3315 return -EINVAL;
3316 }
3317
3318 rdev_for_each(rdev, mddev)
3319 rdev->new_raid_disk = rdev->raid_disk;
3320
3321 /* ->takeover must set new_* and/or delta_disks
3322 * if it succeeds, and may set them when it fails.
3323 */
3324 priv = pers->takeover(mddev);
3325 if (IS_ERR(priv)) {
3326 mddev->new_level = mddev->level;
3327 mddev->new_layout = mddev->layout;
3328 mddev->new_chunk_sectors = mddev->chunk_sectors;
3329 mddev->raid_disks -= mddev->delta_disks;
3330 mddev->delta_disks = 0;
3331 mddev->reshape_backwards = 0;
3332 module_put(pers->owner);
3333 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3334 mdname(mddev), clevel);
3335 return PTR_ERR(priv);
3336 }
3337
3338 /* Looks like we have a winner */
3339 mddev_suspend(mddev);
3340 mddev->pers->stop(mddev);
3341
3342 if (mddev->pers->sync_request == NULL &&
3343 pers->sync_request != NULL) {
3344 /* need to add the md_redundancy_group */
3345 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3346 printk(KERN_WARNING
3347 "md: cannot register extra attributes for %s\n",
3348 mdname(mddev));
3349 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3350 }
3351 if (mddev->pers->sync_request != NULL &&
3352 pers->sync_request == NULL) {
3353 /* need to remove the md_redundancy_group */
3354 if (mddev->to_remove == NULL)
3355 mddev->to_remove = &md_redundancy_group;
3356 }
3357
3358 if (mddev->pers->sync_request == NULL &&
3359 mddev->external) {
3360 /* We are converting from a no-redundancy array
3361 * to a redundancy array and metadata is managed
3362 * externally so we need to be sure that writes
3363 * won't block due to a need to transition
3364 * clean->dirty
3365 * until external management is started.
3366 */
3367 mddev->in_sync = 0;
3368 mddev->safemode_delay = 0;
3369 mddev->safemode = 0;
3370 }
3371
3372 rdev_for_each(rdev, mddev) {
3373 if (rdev->raid_disk < 0)
3374 continue;
3375 if (rdev->new_raid_disk >= mddev->raid_disks)
3376 rdev->new_raid_disk = -1;
3377 if (rdev->new_raid_disk == rdev->raid_disk)
3378 continue;
3379 sysfs_unlink_rdev(mddev, rdev);
3380 }
3381 rdev_for_each(rdev, mddev) {
3382 if (rdev->raid_disk < 0)
3383 continue;
3384 if (rdev->new_raid_disk == rdev->raid_disk)
3385 continue;
3386 rdev->raid_disk = rdev->new_raid_disk;
3387 if (rdev->raid_disk < 0)
3388 clear_bit(In_sync, &rdev->flags);
3389 else {
3390 if (sysfs_link_rdev(mddev, rdev))
3391 printk(KERN_WARNING "md: cannot register rd%d"
3392 " for %s after level change\n",
3393 rdev->raid_disk, mdname(mddev));
3394 }
3395 }
3396
3397 module_put(mddev->pers->owner);
3398 mddev->pers = pers;
3399 mddev->private = priv;
3400 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3401 mddev->level = mddev->new_level;
3402 mddev->layout = mddev->new_layout;
3403 mddev->chunk_sectors = mddev->new_chunk_sectors;
3404 mddev->delta_disks = 0;
3405 mddev->reshape_backwards = 0;
3406 mddev->degraded = 0;
3407 if (mddev->pers->sync_request == NULL) {
3408 /* this is now an array without redundancy, so
3409 * it must always be in_sync
3410 */
3411 mddev->in_sync = 1;
3412 del_timer_sync(&mddev->safemode_timer);
3413 }
3414 blk_set_stacking_limits(&mddev->queue->limits);
3415 pers->run(mddev);
3416 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3417 mddev_resume(mddev);
3418 if (!mddev->thread)
3419 md_update_sb(mddev, 1);
3420 sysfs_notify(&mddev->kobj, NULL, "level");
3421 md_new_event(mddev);
3422 return rv;
3423 }
3424
3425 static struct md_sysfs_entry md_level =
3426 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3427
3428 static ssize_t
3429 layout_show(struct mddev *mddev, char *page)
3430 {
3431 /* just a number, not meaningful for all levels */
3432 if (mddev->reshape_position != MaxSector &&
3433 mddev->layout != mddev->new_layout)
3434 return sprintf(page, "%d (%d)\n",
3435 mddev->new_layout, mddev->layout);
3436 return sprintf(page, "%d\n", mddev->layout);
3437 }
3438
3439 static ssize_t
3440 layout_store(struct mddev *mddev, const char *buf, size_t len)
3441 {
3442 char *e;
3443 unsigned long n = simple_strtoul(buf, &e, 10);
3444
3445 if (!*buf || (*e && *e != '\n'))
3446 return -EINVAL;
3447
3448 if (mddev->pers) {
3449 int err;
3450 if (mddev->pers->check_reshape == NULL)
3451 return -EBUSY;
3452 if (mddev->ro)
3453 return -EROFS;
3454 mddev->new_layout = n;
3455 err = mddev->pers->check_reshape(mddev);
3456 if (err) {
3457 mddev->new_layout = mddev->layout;
3458 return err;
3459 }
3460 } else {
3461 mddev->new_layout = n;
3462 if (mddev->reshape_position == MaxSector)
3463 mddev->layout = n;
3464 }
3465 return len;
3466 }
3467 static struct md_sysfs_entry md_layout =
3468 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3469
3470 static ssize_t
3471 raid_disks_show(struct mddev *mddev, char *page)
3472 {
3473 if (mddev->raid_disks == 0)
3474 return 0;
3475 if (mddev->reshape_position != MaxSector &&
3476 mddev->delta_disks != 0)
3477 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3478 mddev->raid_disks - mddev->delta_disks);
3479 return sprintf(page, "%d\n", mddev->raid_disks);
3480 }
3481
3482 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3483
3484 static ssize_t
3485 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3486 {
3487 char *e;
3488 int rv = 0;
3489 unsigned long n = simple_strtoul(buf, &e, 10);
3490
3491 if (!*buf || (*e && *e != '\n'))
3492 return -EINVAL;
3493
3494 if (mddev->pers)
3495 rv = update_raid_disks(mddev, n);
3496 else if (mddev->reshape_position != MaxSector) {
3497 struct md_rdev *rdev;
3498 int olddisks = mddev->raid_disks - mddev->delta_disks;
3499
3500 rdev_for_each(rdev, mddev) {
3501 if (olddisks < n &&
3502 rdev->data_offset < rdev->new_data_offset)
3503 return -EINVAL;
3504 if (olddisks > n &&
3505 rdev->data_offset > rdev->new_data_offset)
3506 return -EINVAL;
3507 }
3508 mddev->delta_disks = n - olddisks;
3509 mddev->raid_disks = n;
3510 mddev->reshape_backwards = (mddev->delta_disks < 0);
3511 } else
3512 mddev->raid_disks = n;
3513 return rv ? rv : len;
3514 }
3515 static struct md_sysfs_entry md_raid_disks =
3516 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3517
3518 static ssize_t
3519 chunk_size_show(struct mddev *mddev, char *page)
3520 {
3521 if (mddev->reshape_position != MaxSector &&
3522 mddev->chunk_sectors != mddev->new_chunk_sectors)
3523 return sprintf(page, "%d (%d)\n",
3524 mddev->new_chunk_sectors << 9,
3525 mddev->chunk_sectors << 9);
3526 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3527 }
3528
3529 static ssize_t
3530 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3531 {
3532 char *e;
3533 unsigned long n = simple_strtoul(buf, &e, 10);
3534
3535 if (!*buf || (*e && *e != '\n'))
3536 return -EINVAL;
3537
3538 if (mddev->pers) {
3539 int err;
3540 if (mddev->pers->check_reshape == NULL)
3541 return -EBUSY;
3542 if (mddev->ro)
3543 return -EROFS;
3544 mddev->new_chunk_sectors = n >> 9;
3545 err = mddev->pers->check_reshape(mddev);
3546 if (err) {
3547 mddev->new_chunk_sectors = mddev->chunk_sectors;
3548 return err;
3549 }
3550 } else {
3551 mddev->new_chunk_sectors = n >> 9;
3552 if (mddev->reshape_position == MaxSector)
3553 mddev->chunk_sectors = n >> 9;
3554 }
3555 return len;
3556 }
3557 static struct md_sysfs_entry md_chunk_size =
3558 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3559
3560 static ssize_t
3561 resync_start_show(struct mddev *mddev, char *page)
3562 {
3563 if (mddev->recovery_cp == MaxSector)
3564 return sprintf(page, "none\n");
3565 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3566 }
3567
3568 static ssize_t
3569 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3570 {
3571 char *e;
3572 unsigned long long n = simple_strtoull(buf, &e, 10);
3573
3574 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3575 return -EBUSY;
3576 if (cmd_match(buf, "none"))
3577 n = MaxSector;
3578 else if (!*buf || (*e && *e != '\n'))
3579 return -EINVAL;
3580
3581 mddev->recovery_cp = n;
3582 if (mddev->pers)
3583 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3584 return len;
3585 }
3586 static struct md_sysfs_entry md_resync_start =
3587 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3588
3589 /*
3590 * The array state can be:
3591 *
3592 * clear
3593 * No devices, no size, no level
3594 * Equivalent to STOP_ARRAY ioctl
3595 * inactive
3596 * May have some settings, but array is not active
3597 * all IO results in error
3598 * When written, doesn't tear down array, but just stops it
3599 * suspended (not supported yet)
3600 * All IO requests will block. The array can be reconfigured.
3601 * Writing this, if accepted, will block until array is quiescent
3602 * readonly
3603 * no resync can happen. no superblocks get written.
3604 * write requests fail
3605 * read-auto
3606 * like readonly, but behaves like 'clean' on a write request.
3607 *
3608 * clean - no pending writes, but otherwise active.
3609 * When written to inactive array, starts without resync
3610 * If a write request arrives then
3611 * if metadata is known, mark 'dirty' and switch to 'active'.
3612 * if not known, block and switch to write-pending
3613 * If written to an active array that has pending writes, then fails.
3614 * active
3615 * fully active: IO and resync can be happening.
3616 * When written to inactive array, starts with resync
3617 *
3618 * write-pending
3619 * clean, but writes are blocked waiting for 'active' to be written.
3620 *
3621 * active-idle
3622 * like active, but no writes have been seen for a while (100msec).
3623 *
3624 */
3625 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3626 write_pending, active_idle, bad_word};
3627 static char *array_states[] = {
3628 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3629 "write-pending", "active-idle", NULL };
3630
3631 static int match_word(const char *word, char **list)
3632 {
3633 int n;
3634 for (n=0; list[n]; n++)
3635 if (cmd_match(word, list[n]))
3636 break;
3637 return n;
3638 }
3639
3640 static ssize_t
3641 array_state_show(struct mddev *mddev, char *page)
3642 {
3643 enum array_state st = inactive;
3644
3645 if (mddev->pers)
3646 switch(mddev->ro) {
3647 case 1:
3648 st = readonly;
3649 break;
3650 case 2:
3651 st = read_auto;
3652 break;
3653 case 0:
3654 if (mddev->in_sync)
3655 st = clean;
3656 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3657 st = write_pending;
3658 else if (mddev->safemode)
3659 st = active_idle;
3660 else
3661 st = active;
3662 }
3663 else {
3664 if (list_empty(&mddev->disks) &&
3665 mddev->raid_disks == 0 &&
3666 mddev->dev_sectors == 0)
3667 st = clear;
3668 else
3669 st = inactive;
3670 }
3671 return sprintf(page, "%s\n", array_states[st]);
3672 }
3673
3674 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3675 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3676 static int do_md_run(struct mddev *mddev);
3677 static int restart_array(struct mddev *mddev);
3678
3679 static ssize_t
3680 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3681 {
3682 int err = -EINVAL;
3683 enum array_state st = match_word(buf, array_states);
3684 switch(st) {
3685 case bad_word:
3686 break;
3687 case clear:
3688 /* stopping an active array */
3689 err = do_md_stop(mddev, 0, NULL);
3690 break;
3691 case inactive:
3692 /* stopping an active array */
3693 if (mddev->pers)
3694 err = do_md_stop(mddev, 2, NULL);
3695 else
3696 err = 0; /* already inactive */
3697 break;
3698 case suspended:
3699 break; /* not supported yet */
3700 case readonly:
3701 if (mddev->pers)
3702 err = md_set_readonly(mddev, NULL);
3703 else {
3704 mddev->ro = 1;
3705 set_disk_ro(mddev->gendisk, 1);
3706 err = do_md_run(mddev);
3707 }
3708 break;
3709 case read_auto:
3710 if (mddev->pers) {
3711 if (mddev->ro == 0)
3712 err = md_set_readonly(mddev, NULL);
3713 else if (mddev->ro == 1)
3714 err = restart_array(mddev);
3715 if (err == 0) {
3716 mddev->ro = 2;
3717 set_disk_ro(mddev->gendisk, 0);
3718 }
3719 } else {
3720 mddev->ro = 2;
3721 err = do_md_run(mddev);
3722 }
3723 break;
3724 case clean:
3725 if (mddev->pers) {
3726 restart_array(mddev);
3727 spin_lock_irq(&mddev->write_lock);
3728 if (atomic_read(&mddev->writes_pending) == 0) {
3729 if (mddev->in_sync == 0) {
3730 mddev->in_sync = 1;
3731 if (mddev->safemode == 1)
3732 mddev->safemode = 0;
3733 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3734 }
3735 err = 0;
3736 } else
3737 err = -EBUSY;
3738 spin_unlock_irq(&mddev->write_lock);
3739 } else
3740 err = -EINVAL;
3741 break;
3742 case active:
3743 if (mddev->pers) {
3744 restart_array(mddev);
3745 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3746 wake_up(&mddev->sb_wait);
3747 err = 0;
3748 } else {
3749 mddev->ro = 0;
3750 set_disk_ro(mddev->gendisk, 0);
3751 err = do_md_run(mddev);
3752 }
3753 break;
3754 case write_pending:
3755 case active_idle:
3756 /* these cannot be set */
3757 break;
3758 }
3759 if (err)
3760 return err;
3761 else {
3762 if (mddev->hold_active == UNTIL_IOCTL)
3763 mddev->hold_active = 0;
3764 sysfs_notify_dirent_safe(mddev->sysfs_state);
3765 return len;
3766 }
3767 }
3768 static struct md_sysfs_entry md_array_state =
3769 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3770
3771 static ssize_t
3772 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3773 return sprintf(page, "%d\n",
3774 atomic_read(&mddev->max_corr_read_errors));
3775 }
3776
3777 static ssize_t
3778 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3779 {
3780 char *e;
3781 unsigned long n = simple_strtoul(buf, &e, 10);
3782
3783 if (*buf && (*e == 0 || *e == '\n')) {
3784 atomic_set(&mddev->max_corr_read_errors, n);
3785 return len;
3786 }
3787 return -EINVAL;
3788 }
3789
3790 static struct md_sysfs_entry max_corr_read_errors =
3791 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3792 max_corrected_read_errors_store);
3793
3794 static ssize_t
3795 null_show(struct mddev *mddev, char *page)
3796 {
3797 return -EINVAL;
3798 }
3799
3800 static ssize_t
3801 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3802 {
3803 /* buf must be %d:%d\n? giving major and minor numbers */
3804 /* The new device is added to the array.
3805 * If the array has a persistent superblock, we read the
3806 * superblock to initialise info and check validity.
3807 * Otherwise, only checking done is that in bind_rdev_to_array,
3808 * which mainly checks size.
3809 */
3810 char *e;
3811 int major = simple_strtoul(buf, &e, 10);
3812 int minor;
3813 dev_t dev;
3814 struct md_rdev *rdev;
3815 int err;
3816
3817 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3818 return -EINVAL;
3819 minor = simple_strtoul(e+1, &e, 10);
3820 if (*e && *e != '\n')
3821 return -EINVAL;
3822 dev = MKDEV(major, minor);
3823 if (major != MAJOR(dev) ||
3824 minor != MINOR(dev))
3825 return -EOVERFLOW;
3826
3827 if (mddev->persistent) {
3828 rdev = md_import_device(dev, mddev->major_version,
3829 mddev->minor_version);
3830 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3831 struct md_rdev *rdev0
3832 = list_entry(mddev->disks.next,
3833 struct md_rdev, same_set);
3834 err = super_types[mddev->major_version]
3835 .load_super(rdev, rdev0, mddev->minor_version);
3836 if (err < 0)
3837 goto out;
3838 }
3839 } else if (mddev->external)
3840 rdev = md_import_device(dev, -2, -1);
3841 else
3842 rdev = md_import_device(dev, -1, -1);
3843
3844 if (IS_ERR(rdev))
3845 return PTR_ERR(rdev);
3846 err = bind_rdev_to_array(rdev, mddev);
3847 out:
3848 if (err)
3849 export_rdev(rdev);
3850 return err ? err : len;
3851 }
3852
3853 static struct md_sysfs_entry md_new_device =
3854 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3855
3856 static ssize_t
3857 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3858 {
3859 char *end;
3860 unsigned long chunk, end_chunk;
3861
3862 if (!mddev->bitmap)
3863 goto out;
3864 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3865 while (*buf) {
3866 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3867 if (buf == end) break;
3868 if (*end == '-') { /* range */
3869 buf = end + 1;
3870 end_chunk = simple_strtoul(buf, &end, 0);
3871 if (buf == end) break;
3872 }
3873 if (*end && !isspace(*end)) break;
3874 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3875 buf = skip_spaces(end);
3876 }
3877 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3878 out:
3879 return len;
3880 }
3881
3882 static struct md_sysfs_entry md_bitmap =
3883 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3884
3885 static ssize_t
3886 size_show(struct mddev *mddev, char *page)
3887 {
3888 return sprintf(page, "%llu\n",
3889 (unsigned long long)mddev->dev_sectors / 2);
3890 }
3891
3892 static int update_size(struct mddev *mddev, sector_t num_sectors);
3893
3894 static ssize_t
3895 size_store(struct mddev *mddev, const char *buf, size_t len)
3896 {
3897 /* If array is inactive, we can reduce the component size, but
3898 * not increase it (except from 0).
3899 * If array is active, we can try an on-line resize
3900 */
3901 sector_t sectors;
3902 int err = strict_blocks_to_sectors(buf, &sectors);
3903
3904 if (err < 0)
3905 return err;
3906 if (mddev->pers) {
3907 err = update_size(mddev, sectors);
3908 md_update_sb(mddev, 1);
3909 } else {
3910 if (mddev->dev_sectors == 0 ||
3911 mddev->dev_sectors > sectors)
3912 mddev->dev_sectors = sectors;
3913 else
3914 err = -ENOSPC;
3915 }
3916 return err ? err : len;
3917 }
3918
3919 static struct md_sysfs_entry md_size =
3920 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3921
3922 /* Metadata version.
3923 * This is one of
3924 * 'none' for arrays with no metadata (good luck...)
3925 * 'external' for arrays with externally managed metadata,
3926 * or N.M for internally known formats
3927 */
3928 static ssize_t
3929 metadata_show(struct mddev *mddev, char *page)
3930 {
3931 if (mddev->persistent)
3932 return sprintf(page, "%d.%d\n",
3933 mddev->major_version, mddev->minor_version);
3934 else if (mddev->external)
3935 return sprintf(page, "external:%s\n", mddev->metadata_type);
3936 else
3937 return sprintf(page, "none\n");
3938 }
3939
3940 static ssize_t
3941 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3942 {
3943 int major, minor;
3944 char *e;
3945 /* Changing the details of 'external' metadata is
3946 * always permitted. Otherwise there must be
3947 * no devices attached to the array.
3948 */
3949 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3950 ;
3951 else if (!list_empty(&mddev->disks))
3952 return -EBUSY;
3953
3954 if (cmd_match(buf, "none")) {
3955 mddev->persistent = 0;
3956 mddev->external = 0;
3957 mddev->major_version = 0;
3958 mddev->minor_version = 90;
3959 return len;
3960 }
3961 if (strncmp(buf, "external:", 9) == 0) {
3962 size_t namelen = len-9;
3963 if (namelen >= sizeof(mddev->metadata_type))
3964 namelen = sizeof(mddev->metadata_type)-1;
3965 strncpy(mddev->metadata_type, buf+9, namelen);
3966 mddev->metadata_type[namelen] = 0;
3967 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3968 mddev->metadata_type[--namelen] = 0;
3969 mddev->persistent = 0;
3970 mddev->external = 1;
3971 mddev->major_version = 0;
3972 mddev->minor_version = 90;
3973 return len;
3974 }
3975 major = simple_strtoul(buf, &e, 10);
3976 if (e==buf || *e != '.')
3977 return -EINVAL;
3978 buf = e+1;
3979 minor = simple_strtoul(buf, &e, 10);
3980 if (e==buf || (*e && *e != '\n') )
3981 return -EINVAL;
3982 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3983 return -ENOENT;
3984 mddev->major_version = major;
3985 mddev->minor_version = minor;
3986 mddev->persistent = 1;
3987 mddev->external = 0;
3988 return len;
3989 }
3990
3991 static struct md_sysfs_entry md_metadata =
3992 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3993
3994 static ssize_t
3995 action_show(struct mddev *mddev, char *page)
3996 {
3997 char *type = "idle";
3998 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3999 type = "frozen";
4000 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4001 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4002 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4003 type = "reshape";
4004 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4005 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4006 type = "resync";
4007 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4008 type = "check";
4009 else
4010 type = "repair";
4011 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4012 type = "recover";
4013 }
4014 return sprintf(page, "%s\n", type);
4015 }
4016
4017 static ssize_t
4018 action_store(struct mddev *mddev, const char *page, size_t len)
4019 {
4020 if (!mddev->pers || !mddev->pers->sync_request)
4021 return -EINVAL;
4022
4023 if (cmd_match(page, "frozen"))
4024 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4025 else
4026 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4027
4028 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4029 if (mddev->sync_thread) {
4030 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4031 md_reap_sync_thread(mddev);
4032 }
4033 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4034 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4035 return -EBUSY;
4036 else if (cmd_match(page, "resync"))
4037 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4038 else if (cmd_match(page, "recover")) {
4039 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4040 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4041 } else if (cmd_match(page, "reshape")) {
4042 int err;
4043 if (mddev->pers->start_reshape == NULL)
4044 return -EINVAL;
4045 err = mddev->pers->start_reshape(mddev);
4046 if (err)
4047 return err;
4048 sysfs_notify(&mddev->kobj, NULL, "degraded");
4049 } else {
4050 if (cmd_match(page, "check"))
4051 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4052 else if (!cmd_match(page, "repair"))
4053 return -EINVAL;
4054 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4055 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4056 }
4057 if (mddev->ro == 2) {
4058 /* A write to sync_action is enough to justify
4059 * canceling read-auto mode
4060 */
4061 mddev->ro = 0;
4062 md_wakeup_thread(mddev->sync_thread);
4063 }
4064 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4065 md_wakeup_thread(mddev->thread);
4066 sysfs_notify_dirent_safe(mddev->sysfs_action);
4067 return len;
4068 }
4069
4070 static struct md_sysfs_entry md_scan_mode =
4071 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4072
4073 static ssize_t
4074 last_sync_action_show(struct mddev *mddev, char *page)
4075 {
4076 return sprintf(page, "%s\n", mddev->last_sync_action);
4077 }
4078
4079 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4080
4081 static ssize_t
4082 mismatch_cnt_show(struct mddev *mddev, char *page)
4083 {
4084 return sprintf(page, "%llu\n",
4085 (unsigned long long)
4086 atomic64_read(&mddev->resync_mismatches));
4087 }
4088
4089 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4090
4091 static ssize_t
4092 sync_min_show(struct mddev *mddev, char *page)
4093 {
4094 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4095 mddev->sync_speed_min ? "local": "system");
4096 }
4097
4098 static ssize_t
4099 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4100 {
4101 int min;
4102 char *e;
4103 if (strncmp(buf, "system", 6)==0) {
4104 mddev->sync_speed_min = 0;
4105 return len;
4106 }
4107 min = simple_strtoul(buf, &e, 10);
4108 if (buf == e || (*e && *e != '\n') || min <= 0)
4109 return -EINVAL;
4110 mddev->sync_speed_min = min;
4111 return len;
4112 }
4113
4114 static struct md_sysfs_entry md_sync_min =
4115 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4116
4117 static ssize_t
4118 sync_max_show(struct mddev *mddev, char *page)
4119 {
4120 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4121 mddev->sync_speed_max ? "local": "system");
4122 }
4123
4124 static ssize_t
4125 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4126 {
4127 int max;
4128 char *e;
4129 if (strncmp(buf, "system", 6)==0) {
4130 mddev->sync_speed_max = 0;
4131 return len;
4132 }
4133 max = simple_strtoul(buf, &e, 10);
4134 if (buf == e || (*e && *e != '\n') || max <= 0)
4135 return -EINVAL;
4136 mddev->sync_speed_max = max;
4137 return len;
4138 }
4139
4140 static struct md_sysfs_entry md_sync_max =
4141 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4142
4143 static ssize_t
4144 degraded_show(struct mddev *mddev, char *page)
4145 {
4146 return sprintf(page, "%d\n", mddev->degraded);
4147 }
4148 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4149
4150 static ssize_t
4151 sync_force_parallel_show(struct mddev *mddev, char *page)
4152 {
4153 return sprintf(page, "%d\n", mddev->parallel_resync);
4154 }
4155
4156 static ssize_t
4157 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4158 {
4159 long n;
4160
4161 if (kstrtol(buf, 10, &n))
4162 return -EINVAL;
4163
4164 if (n != 0 && n != 1)
4165 return -EINVAL;
4166
4167 mddev->parallel_resync = n;
4168
4169 if (mddev->sync_thread)
4170 wake_up(&resync_wait);
4171
4172 return len;
4173 }
4174
4175 /* force parallel resync, even with shared block devices */
4176 static struct md_sysfs_entry md_sync_force_parallel =
4177 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4178 sync_force_parallel_show, sync_force_parallel_store);
4179
4180 static ssize_t
4181 sync_speed_show(struct mddev *mddev, char *page)
4182 {
4183 unsigned long resync, dt, db;
4184 if (mddev->curr_resync == 0)
4185 return sprintf(page, "none\n");
4186 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4187 dt = (jiffies - mddev->resync_mark) / HZ;
4188 if (!dt) dt++;
4189 db = resync - mddev->resync_mark_cnt;
4190 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4191 }
4192
4193 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4194
4195 static ssize_t
4196 sync_completed_show(struct mddev *mddev, char *page)
4197 {
4198 unsigned long long max_sectors, resync;
4199
4200 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4201 return sprintf(page, "none\n");
4202
4203 if (mddev->curr_resync == 1 ||
4204 mddev->curr_resync == 2)
4205 return sprintf(page, "delayed\n");
4206
4207 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4208 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4209 max_sectors = mddev->resync_max_sectors;
4210 else
4211 max_sectors = mddev->dev_sectors;
4212
4213 resync = mddev->curr_resync_completed;
4214 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4215 }
4216
4217 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4218
4219 static ssize_t
4220 min_sync_show(struct mddev *mddev, char *page)
4221 {
4222 return sprintf(page, "%llu\n",
4223 (unsigned long long)mddev->resync_min);
4224 }
4225 static ssize_t
4226 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4227 {
4228 unsigned long long min;
4229 if (kstrtoull(buf, 10, &min))
4230 return -EINVAL;
4231 if (min > mddev->resync_max)
4232 return -EINVAL;
4233 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4234 return -EBUSY;
4235
4236 /* Must be a multiple of chunk_size */
4237 if (mddev->chunk_sectors) {
4238 sector_t temp = min;
4239 if (sector_div(temp, mddev->chunk_sectors))
4240 return -EINVAL;
4241 }
4242 mddev->resync_min = min;
4243
4244 return len;
4245 }
4246
4247 static struct md_sysfs_entry md_min_sync =
4248 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4249
4250 static ssize_t
4251 max_sync_show(struct mddev *mddev, char *page)
4252 {
4253 if (mddev->resync_max == MaxSector)
4254 return sprintf(page, "max\n");
4255 else
4256 return sprintf(page, "%llu\n",
4257 (unsigned long long)mddev->resync_max);
4258 }
4259 static ssize_t
4260 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4261 {
4262 if (strncmp(buf, "max", 3) == 0)
4263 mddev->resync_max = MaxSector;
4264 else {
4265 unsigned long long max;
4266 if (kstrtoull(buf, 10, &max))
4267 return -EINVAL;
4268 if (max < mddev->resync_min)
4269 return -EINVAL;
4270 if (max < mddev->resync_max &&
4271 mddev->ro == 0 &&
4272 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4273 return -EBUSY;
4274
4275 /* Must be a multiple of chunk_size */
4276 if (mddev->chunk_sectors) {
4277 sector_t temp = max;
4278 if (sector_div(temp, mddev->chunk_sectors))
4279 return -EINVAL;
4280 }
4281 mddev->resync_max = max;
4282 }
4283 wake_up(&mddev->recovery_wait);
4284 return len;
4285 }
4286
4287 static struct md_sysfs_entry md_max_sync =
4288 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4289
4290 static ssize_t
4291 suspend_lo_show(struct mddev *mddev, char *page)
4292 {
4293 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4294 }
4295
4296 static ssize_t
4297 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4298 {
4299 char *e;
4300 unsigned long long new = simple_strtoull(buf, &e, 10);
4301 unsigned long long old = mddev->suspend_lo;
4302
4303 if (mddev->pers == NULL ||
4304 mddev->pers->quiesce == NULL)
4305 return -EINVAL;
4306 if (buf == e || (*e && *e != '\n'))
4307 return -EINVAL;
4308
4309 mddev->suspend_lo = new;
4310 if (new >= old)
4311 /* Shrinking suspended region */
4312 mddev->pers->quiesce(mddev, 2);
4313 else {
4314 /* Expanding suspended region - need to wait */
4315 mddev->pers->quiesce(mddev, 1);
4316 mddev->pers->quiesce(mddev, 0);
4317 }
4318 return len;
4319 }
4320 static struct md_sysfs_entry md_suspend_lo =
4321 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4322
4323 static ssize_t
4324 suspend_hi_show(struct mddev *mddev, char *page)
4325 {
4326 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4327 }
4328
4329 static ssize_t
4330 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4331 {
4332 char *e;
4333 unsigned long long new = simple_strtoull(buf, &e, 10);
4334 unsigned long long old = mddev->suspend_hi;
4335
4336 if (mddev->pers == NULL ||
4337 mddev->pers->quiesce == NULL)
4338 return -EINVAL;
4339 if (buf == e || (*e && *e != '\n'))
4340 return -EINVAL;
4341
4342 mddev->suspend_hi = new;
4343 if (new <= old)
4344 /* Shrinking suspended region */
4345 mddev->pers->quiesce(mddev, 2);
4346 else {
4347 /* Expanding suspended region - need to wait */
4348 mddev->pers->quiesce(mddev, 1);
4349 mddev->pers->quiesce(mddev, 0);
4350 }
4351 return len;
4352 }
4353 static struct md_sysfs_entry md_suspend_hi =
4354 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4355
4356 static ssize_t
4357 reshape_position_show(struct mddev *mddev, char *page)
4358 {
4359 if (mddev->reshape_position != MaxSector)
4360 return sprintf(page, "%llu\n",
4361 (unsigned long long)mddev->reshape_position);
4362 strcpy(page, "none\n");
4363 return 5;
4364 }
4365
4366 static ssize_t
4367 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4368 {
4369 struct md_rdev *rdev;
4370 char *e;
4371 unsigned long long new = simple_strtoull(buf, &e, 10);
4372 if (mddev->pers)
4373 return -EBUSY;
4374 if (buf == e || (*e && *e != '\n'))
4375 return -EINVAL;
4376 mddev->reshape_position = new;
4377 mddev->delta_disks = 0;
4378 mddev->reshape_backwards = 0;
4379 mddev->new_level = mddev->level;
4380 mddev->new_layout = mddev->layout;
4381 mddev->new_chunk_sectors = mddev->chunk_sectors;
4382 rdev_for_each(rdev, mddev)
4383 rdev->new_data_offset = rdev->data_offset;
4384 return len;
4385 }
4386
4387 static struct md_sysfs_entry md_reshape_position =
4388 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4389 reshape_position_store);
4390
4391 static ssize_t
4392 reshape_direction_show(struct mddev *mddev, char *page)
4393 {
4394 return sprintf(page, "%s\n",
4395 mddev->reshape_backwards ? "backwards" : "forwards");
4396 }
4397
4398 static ssize_t
4399 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4400 {
4401 int backwards = 0;
4402 if (cmd_match(buf, "forwards"))
4403 backwards = 0;
4404 else if (cmd_match(buf, "backwards"))
4405 backwards = 1;
4406 else
4407 return -EINVAL;
4408 if (mddev->reshape_backwards == backwards)
4409 return len;
4410
4411 /* check if we are allowed to change */
4412 if (mddev->delta_disks)
4413 return -EBUSY;
4414
4415 if (mddev->persistent &&
4416 mddev->major_version == 0)
4417 return -EINVAL;
4418
4419 mddev->reshape_backwards = backwards;
4420 return len;
4421 }
4422
4423 static struct md_sysfs_entry md_reshape_direction =
4424 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4425 reshape_direction_store);
4426
4427 static ssize_t
4428 array_size_show(struct mddev *mddev, char *page)
4429 {
4430 if (mddev->external_size)
4431 return sprintf(page, "%llu\n",
4432 (unsigned long long)mddev->array_sectors/2);
4433 else
4434 return sprintf(page, "default\n");
4435 }
4436
4437 static ssize_t
4438 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4439 {
4440 sector_t sectors;
4441
4442 if (strncmp(buf, "default", 7) == 0) {
4443 if (mddev->pers)
4444 sectors = mddev->pers->size(mddev, 0, 0);
4445 else
4446 sectors = mddev->array_sectors;
4447
4448 mddev->external_size = 0;
4449 } else {
4450 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4451 return -EINVAL;
4452 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4453 return -E2BIG;
4454
4455 mddev->external_size = 1;
4456 }
4457
4458 mddev->array_sectors = sectors;
4459 if (mddev->pers) {
4460 set_capacity(mddev->gendisk, mddev->array_sectors);
4461 revalidate_disk(mddev->gendisk);
4462 }
4463 return len;
4464 }
4465
4466 static struct md_sysfs_entry md_array_size =
4467 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4468 array_size_store);
4469
4470 static struct attribute *md_default_attrs[] = {
4471 &md_level.attr,
4472 &md_layout.attr,
4473 &md_raid_disks.attr,
4474 &md_chunk_size.attr,
4475 &md_size.attr,
4476 &md_resync_start.attr,
4477 &md_metadata.attr,
4478 &md_new_device.attr,
4479 &md_safe_delay.attr,
4480 &md_array_state.attr,
4481 &md_reshape_position.attr,
4482 &md_reshape_direction.attr,
4483 &md_array_size.attr,
4484 &max_corr_read_errors.attr,
4485 NULL,
4486 };
4487
4488 static struct attribute *md_redundancy_attrs[] = {
4489 &md_scan_mode.attr,
4490 &md_last_scan_mode.attr,
4491 &md_mismatches.attr,
4492 &md_sync_min.attr,
4493 &md_sync_max.attr,
4494 &md_sync_speed.attr,
4495 &md_sync_force_parallel.attr,
4496 &md_sync_completed.attr,
4497 &md_min_sync.attr,
4498 &md_max_sync.attr,
4499 &md_suspend_lo.attr,
4500 &md_suspend_hi.attr,
4501 &md_bitmap.attr,
4502 &md_degraded.attr,
4503 NULL,
4504 };
4505 static struct attribute_group md_redundancy_group = {
4506 .name = NULL,
4507 .attrs = md_redundancy_attrs,
4508 };
4509
4510 static ssize_t
4511 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4512 {
4513 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4514 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4515 ssize_t rv;
4516
4517 if (!entry->show)
4518 return -EIO;
4519 spin_lock(&all_mddevs_lock);
4520 if (list_empty(&mddev->all_mddevs)) {
4521 spin_unlock(&all_mddevs_lock);
4522 return -EBUSY;
4523 }
4524 mddev_get(mddev);
4525 spin_unlock(&all_mddevs_lock);
4526
4527 rv = mddev_lock(mddev);
4528 if (!rv) {
4529 rv = entry->show(mddev, page);
4530 mddev_unlock(mddev);
4531 }
4532 mddev_put(mddev);
4533 return rv;
4534 }
4535
4536 static ssize_t
4537 md_attr_store(struct kobject *kobj, struct attribute *attr,
4538 const char *page, size_t length)
4539 {
4540 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4541 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4542 ssize_t rv;
4543
4544 if (!entry->store)
4545 return -EIO;
4546 if (!capable(CAP_SYS_ADMIN))
4547 return -EACCES;
4548 spin_lock(&all_mddevs_lock);
4549 if (list_empty(&mddev->all_mddevs)) {
4550 spin_unlock(&all_mddevs_lock);
4551 return -EBUSY;
4552 }
4553 mddev_get(mddev);
4554 spin_unlock(&all_mddevs_lock);
4555 if (entry->store == new_dev_store)
4556 flush_workqueue(md_misc_wq);
4557 rv = mddev_lock(mddev);
4558 if (!rv) {
4559 rv = entry->store(mddev, page, length);
4560 mddev_unlock(mddev);
4561 }
4562 mddev_put(mddev);
4563 return rv;
4564 }
4565
4566 static void md_free(struct kobject *ko)
4567 {
4568 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4569
4570 if (mddev->sysfs_state)
4571 sysfs_put(mddev->sysfs_state);
4572
4573 if (mddev->gendisk) {
4574 del_gendisk(mddev->gendisk);
4575 put_disk(mddev->gendisk);
4576 }
4577 if (mddev->queue)
4578 blk_cleanup_queue(mddev->queue);
4579
4580 kfree(mddev);
4581 }
4582
4583 static const struct sysfs_ops md_sysfs_ops = {
4584 .show = md_attr_show,
4585 .store = md_attr_store,
4586 };
4587 static struct kobj_type md_ktype = {
4588 .release = md_free,
4589 .sysfs_ops = &md_sysfs_ops,
4590 .default_attrs = md_default_attrs,
4591 };
4592
4593 int mdp_major = 0;
4594
4595 static void mddev_delayed_delete(struct work_struct *ws)
4596 {
4597 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4598
4599 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4600 kobject_del(&mddev->kobj);
4601 kobject_put(&mddev->kobj);
4602 }
4603
4604 static int md_alloc(dev_t dev, char *name)
4605 {
4606 static DEFINE_MUTEX(disks_mutex);
4607 struct mddev *mddev = mddev_find(dev);
4608 struct gendisk *disk;
4609 int partitioned;
4610 int shift;
4611 int unit;
4612 int error;
4613
4614 if (!mddev)
4615 return -ENODEV;
4616
4617 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4618 shift = partitioned ? MdpMinorShift : 0;
4619 unit = MINOR(mddev->unit) >> shift;
4620
4621 /* wait for any previous instance of this device to be
4622 * completely removed (mddev_delayed_delete).
4623 */
4624 flush_workqueue(md_misc_wq);
4625
4626 mutex_lock(&disks_mutex);
4627 error = -EEXIST;
4628 if (mddev->gendisk)
4629 goto abort;
4630
4631 if (name) {
4632 /* Need to ensure that 'name' is not a duplicate.
4633 */
4634 struct mddev *mddev2;
4635 spin_lock(&all_mddevs_lock);
4636
4637 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4638 if (mddev2->gendisk &&
4639 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4640 spin_unlock(&all_mddevs_lock);
4641 goto abort;
4642 }
4643 spin_unlock(&all_mddevs_lock);
4644 }
4645
4646 error = -ENOMEM;
4647 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4648 if (!mddev->queue)
4649 goto abort;
4650 mddev->queue->queuedata = mddev;
4651
4652 blk_queue_make_request(mddev->queue, md_make_request);
4653 blk_set_stacking_limits(&mddev->queue->limits);
4654
4655 disk = alloc_disk(1 << shift);
4656 if (!disk) {
4657 blk_cleanup_queue(mddev->queue);
4658 mddev->queue = NULL;
4659 goto abort;
4660 }
4661 disk->major = MAJOR(mddev->unit);
4662 disk->first_minor = unit << shift;
4663 if (name)
4664 strcpy(disk->disk_name, name);
4665 else if (partitioned)
4666 sprintf(disk->disk_name, "md_d%d", unit);
4667 else
4668 sprintf(disk->disk_name, "md%d", unit);
4669 disk->fops = &md_fops;
4670 disk->private_data = mddev;
4671 disk->queue = mddev->queue;
4672 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4673 /* Allow extended partitions. This makes the
4674 * 'mdp' device redundant, but we can't really
4675 * remove it now.
4676 */
4677 disk->flags |= GENHD_FL_EXT_DEVT;
4678 mddev->gendisk = disk;
4679 /* As soon as we call add_disk(), another thread could get
4680 * through to md_open, so make sure it doesn't get too far
4681 */
4682 mutex_lock(&mddev->open_mutex);
4683 add_disk(disk);
4684
4685 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4686 &disk_to_dev(disk)->kobj, "%s", "md");
4687 if (error) {
4688 /* This isn't possible, but as kobject_init_and_add is marked
4689 * __must_check, we must do something with the result
4690 */
4691 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4692 disk->disk_name);
4693 error = 0;
4694 }
4695 if (mddev->kobj.sd &&
4696 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4697 printk(KERN_DEBUG "pointless warning\n");
4698 mutex_unlock(&mddev->open_mutex);
4699 abort:
4700 mutex_unlock(&disks_mutex);
4701 if (!error && mddev->kobj.sd) {
4702 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4703 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4704 }
4705 mddev_put(mddev);
4706 return error;
4707 }
4708
4709 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4710 {
4711 md_alloc(dev, NULL);
4712 return NULL;
4713 }
4714
4715 static int add_named_array(const char *val, struct kernel_param *kp)
4716 {
4717 /* val must be "md_*" where * is not all digits.
4718 * We allocate an array with a large free minor number, and
4719 * set the name to val. val must not already be an active name.
4720 */
4721 int len = strlen(val);
4722 char buf[DISK_NAME_LEN];
4723
4724 while (len && val[len-1] == '\n')
4725 len--;
4726 if (len >= DISK_NAME_LEN)
4727 return -E2BIG;
4728 strlcpy(buf, val, len+1);
4729 if (strncmp(buf, "md_", 3) != 0)
4730 return -EINVAL;
4731 return md_alloc(0, buf);
4732 }
4733
4734 static void md_safemode_timeout(unsigned long data)
4735 {
4736 struct mddev *mddev = (struct mddev *) data;
4737
4738 if (!atomic_read(&mddev->writes_pending)) {
4739 mddev->safemode = 1;
4740 if (mddev->external)
4741 sysfs_notify_dirent_safe(mddev->sysfs_state);
4742 }
4743 md_wakeup_thread(mddev->thread);
4744 }
4745
4746 static int start_dirty_degraded;
4747
4748 int md_run(struct mddev *mddev)
4749 {
4750 int err;
4751 struct md_rdev *rdev;
4752 struct md_personality *pers;
4753
4754 if (list_empty(&mddev->disks))
4755 /* cannot run an array with no devices.. */
4756 return -EINVAL;
4757
4758 if (mddev->pers)
4759 return -EBUSY;
4760 /* Cannot run until previous stop completes properly */
4761 if (mddev->sysfs_active)
4762 return -EBUSY;
4763
4764 /*
4765 * Analyze all RAID superblock(s)
4766 */
4767 if (!mddev->raid_disks) {
4768 if (!mddev->persistent)
4769 return -EINVAL;
4770 analyze_sbs(mddev);
4771 }
4772
4773 if (mddev->level != LEVEL_NONE)
4774 request_module("md-level-%d", mddev->level);
4775 else if (mddev->clevel[0])
4776 request_module("md-%s", mddev->clevel);
4777
4778 /*
4779 * Drop all container device buffers, from now on
4780 * the only valid external interface is through the md
4781 * device.
4782 */
4783 rdev_for_each(rdev, mddev) {
4784 if (test_bit(Faulty, &rdev->flags))
4785 continue;
4786 sync_blockdev(rdev->bdev);
4787 invalidate_bdev(rdev->bdev);
4788
4789 /* perform some consistency tests on the device.
4790 * We don't want the data to overlap the metadata,
4791 * Internal Bitmap issues have been handled elsewhere.
4792 */
4793 if (rdev->meta_bdev) {
4794 /* Nothing to check */;
4795 } else if (rdev->data_offset < rdev->sb_start) {
4796 if (mddev->dev_sectors &&
4797 rdev->data_offset + mddev->dev_sectors
4798 > rdev->sb_start) {
4799 printk("md: %s: data overlaps metadata\n",
4800 mdname(mddev));
4801 return -EINVAL;
4802 }
4803 } else {
4804 if (rdev->sb_start + rdev->sb_size/512
4805 > rdev->data_offset) {
4806 printk("md: %s: metadata overlaps data\n",
4807 mdname(mddev));
4808 return -EINVAL;
4809 }
4810 }
4811 sysfs_notify_dirent_safe(rdev->sysfs_state);
4812 }
4813
4814 if (mddev->bio_set == NULL)
4815 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4816
4817 spin_lock(&pers_lock);
4818 pers = find_pers(mddev->level, mddev->clevel);
4819 if (!pers || !try_module_get(pers->owner)) {
4820 spin_unlock(&pers_lock);
4821 if (mddev->level != LEVEL_NONE)
4822 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4823 mddev->level);
4824 else
4825 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4826 mddev->clevel);
4827 return -EINVAL;
4828 }
4829 mddev->pers = pers;
4830 spin_unlock(&pers_lock);
4831 if (mddev->level != pers->level) {
4832 mddev->level = pers->level;
4833 mddev->new_level = pers->level;
4834 }
4835 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4836
4837 if (mddev->reshape_position != MaxSector &&
4838 pers->start_reshape == NULL) {
4839 /* This personality cannot handle reshaping... */
4840 mddev->pers = NULL;
4841 module_put(pers->owner);
4842 return -EINVAL;
4843 }
4844
4845 if (pers->sync_request) {
4846 /* Warn if this is a potentially silly
4847 * configuration.
4848 */
4849 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4850 struct md_rdev *rdev2;
4851 int warned = 0;
4852
4853 rdev_for_each(rdev, mddev)
4854 rdev_for_each(rdev2, mddev) {
4855 if (rdev < rdev2 &&
4856 rdev->bdev->bd_contains ==
4857 rdev2->bdev->bd_contains) {
4858 printk(KERN_WARNING
4859 "%s: WARNING: %s appears to be"
4860 " on the same physical disk as"
4861 " %s.\n",
4862 mdname(mddev),
4863 bdevname(rdev->bdev,b),
4864 bdevname(rdev2->bdev,b2));
4865 warned = 1;
4866 }
4867 }
4868
4869 if (warned)
4870 printk(KERN_WARNING
4871 "True protection against single-disk"
4872 " failure might be compromised.\n");
4873 }
4874
4875 mddev->recovery = 0;
4876 /* may be over-ridden by personality */
4877 mddev->resync_max_sectors = mddev->dev_sectors;
4878
4879 mddev->ok_start_degraded = start_dirty_degraded;
4880
4881 if (start_readonly && mddev->ro == 0)
4882 mddev->ro = 2; /* read-only, but switch on first write */
4883
4884 err = mddev->pers->run(mddev);
4885 if (err)
4886 printk(KERN_ERR "md: pers->run() failed ...\n");
4887 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4888 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4889 " but 'external_size' not in effect?\n", __func__);
4890 printk(KERN_ERR
4891 "md: invalid array_size %llu > default size %llu\n",
4892 (unsigned long long)mddev->array_sectors / 2,
4893 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4894 err = -EINVAL;
4895 mddev->pers->stop(mddev);
4896 }
4897 if (err == 0 && mddev->pers->sync_request &&
4898 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
4899 err = bitmap_create(mddev);
4900 if (err) {
4901 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4902 mdname(mddev), err);
4903 mddev->pers->stop(mddev);
4904 }
4905 }
4906 if (err) {
4907 module_put(mddev->pers->owner);
4908 mddev->pers = NULL;
4909 bitmap_destroy(mddev);
4910 return err;
4911 }
4912 if (mddev->pers->sync_request) {
4913 if (mddev->kobj.sd &&
4914 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4915 printk(KERN_WARNING
4916 "md: cannot register extra attributes for %s\n",
4917 mdname(mddev));
4918 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4919 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4920 mddev->ro = 0;
4921
4922 atomic_set(&mddev->writes_pending,0);
4923 atomic_set(&mddev->max_corr_read_errors,
4924 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4925 mddev->safemode = 0;
4926 mddev->safemode_timer.function = md_safemode_timeout;
4927 mddev->safemode_timer.data = (unsigned long) mddev;
4928 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4929 mddev->in_sync = 1;
4930 smp_wmb();
4931 mddev->ready = 1;
4932 rdev_for_each(rdev, mddev)
4933 if (rdev->raid_disk >= 0)
4934 if (sysfs_link_rdev(mddev, rdev))
4935 /* failure here is OK */;
4936
4937 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4938
4939 if (mddev->flags & MD_UPDATE_SB_FLAGS)
4940 md_update_sb(mddev, 0);
4941
4942 md_new_event(mddev);
4943 sysfs_notify_dirent_safe(mddev->sysfs_state);
4944 sysfs_notify_dirent_safe(mddev->sysfs_action);
4945 sysfs_notify(&mddev->kobj, NULL, "degraded");
4946 return 0;
4947 }
4948 EXPORT_SYMBOL_GPL(md_run);
4949
4950 static int do_md_run(struct mddev *mddev)
4951 {
4952 int err;
4953
4954 err = md_run(mddev);
4955 if (err)
4956 goto out;
4957 err = bitmap_load(mddev);
4958 if (err) {
4959 bitmap_destroy(mddev);
4960 goto out;
4961 }
4962
4963 md_wakeup_thread(mddev->thread);
4964 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4965
4966 set_capacity(mddev->gendisk, mddev->array_sectors);
4967 revalidate_disk(mddev->gendisk);
4968 mddev->changed = 1;
4969 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4970 out:
4971 return err;
4972 }
4973
4974 static int restart_array(struct mddev *mddev)
4975 {
4976 struct gendisk *disk = mddev->gendisk;
4977
4978 /* Complain if it has no devices */
4979 if (list_empty(&mddev->disks))
4980 return -ENXIO;
4981 if (!mddev->pers)
4982 return -EINVAL;
4983 if (!mddev->ro)
4984 return -EBUSY;
4985 mddev->safemode = 0;
4986 mddev->ro = 0;
4987 set_disk_ro(disk, 0);
4988 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4989 mdname(mddev));
4990 /* Kick recovery or resync if necessary */
4991 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4992 md_wakeup_thread(mddev->thread);
4993 md_wakeup_thread(mddev->sync_thread);
4994 sysfs_notify_dirent_safe(mddev->sysfs_state);
4995 return 0;
4996 }
4997
4998 static void md_clean(struct mddev *mddev)
4999 {
5000 mddev->array_sectors = 0;
5001 mddev->external_size = 0;
5002 mddev->dev_sectors = 0;
5003 mddev->raid_disks = 0;
5004 mddev->recovery_cp = 0;
5005 mddev->resync_min = 0;
5006 mddev->resync_max = MaxSector;
5007 mddev->reshape_position = MaxSector;
5008 mddev->external = 0;
5009 mddev->persistent = 0;
5010 mddev->level = LEVEL_NONE;
5011 mddev->clevel[0] = 0;
5012 mddev->flags = 0;
5013 mddev->ro = 0;
5014 mddev->metadata_type[0] = 0;
5015 mddev->chunk_sectors = 0;
5016 mddev->ctime = mddev->utime = 0;
5017 mddev->layout = 0;
5018 mddev->max_disks = 0;
5019 mddev->events = 0;
5020 mddev->can_decrease_events = 0;
5021 mddev->delta_disks = 0;
5022 mddev->reshape_backwards = 0;
5023 mddev->new_level = LEVEL_NONE;
5024 mddev->new_layout = 0;
5025 mddev->new_chunk_sectors = 0;
5026 mddev->curr_resync = 0;
5027 atomic64_set(&mddev->resync_mismatches, 0);
5028 mddev->suspend_lo = mddev->suspend_hi = 0;
5029 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5030 mddev->recovery = 0;
5031 mddev->in_sync = 0;
5032 mddev->changed = 0;
5033 mddev->degraded = 0;
5034 mddev->safemode = 0;
5035 mddev->merge_check_needed = 0;
5036 mddev->bitmap_info.offset = 0;
5037 mddev->bitmap_info.default_offset = 0;
5038 mddev->bitmap_info.default_space = 0;
5039 mddev->bitmap_info.chunksize = 0;
5040 mddev->bitmap_info.daemon_sleep = 0;
5041 mddev->bitmap_info.max_write_behind = 0;
5042 }
5043
5044 static void __md_stop_writes(struct mddev *mddev)
5045 {
5046 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5047 if (mddev->sync_thread) {
5048 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5049 md_reap_sync_thread(mddev);
5050 }
5051
5052 del_timer_sync(&mddev->safemode_timer);
5053
5054 bitmap_flush(mddev);
5055 md_super_wait(mddev);
5056
5057 if (mddev->ro == 0 &&
5058 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5059 /* mark array as shutdown cleanly */
5060 mddev->in_sync = 1;
5061 md_update_sb(mddev, 1);
5062 }
5063 }
5064
5065 void md_stop_writes(struct mddev *mddev)
5066 {
5067 mddev_lock_nointr(mddev);
5068 __md_stop_writes(mddev);
5069 mddev_unlock(mddev);
5070 }
5071 EXPORT_SYMBOL_GPL(md_stop_writes);
5072
5073 static void __md_stop(struct mddev *mddev)
5074 {
5075 mddev->ready = 0;
5076 mddev->pers->stop(mddev);
5077 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5078 mddev->to_remove = &md_redundancy_group;
5079 module_put(mddev->pers->owner);
5080 mddev->pers = NULL;
5081 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5082 }
5083
5084 void md_stop(struct mddev *mddev)
5085 {
5086 /* stop the array and free an attached data structures.
5087 * This is called from dm-raid
5088 */
5089 __md_stop(mddev);
5090 bitmap_destroy(mddev);
5091 if (mddev->bio_set)
5092 bioset_free(mddev->bio_set);
5093 }
5094
5095 EXPORT_SYMBOL_GPL(md_stop);
5096
5097 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5098 {
5099 int err = 0;
5100 int did_freeze = 0;
5101
5102 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5103 did_freeze = 1;
5104 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5105 md_wakeup_thread(mddev->thread);
5106 }
5107 if (mddev->sync_thread) {
5108 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5109 /* Thread might be blocked waiting for metadata update
5110 * which will now never happen */
5111 wake_up_process(mddev->sync_thread->tsk);
5112 }
5113 mddev_unlock(mddev);
5114 wait_event(resync_wait, mddev->sync_thread == NULL);
5115 mddev_lock_nointr(mddev);
5116
5117 mutex_lock(&mddev->open_mutex);
5118 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5119 mddev->sync_thread ||
5120 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5121 printk("md: %s still in use.\n",mdname(mddev));
5122 if (did_freeze) {
5123 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5124 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5125 md_wakeup_thread(mddev->thread);
5126 }
5127 err = -EBUSY;
5128 goto out;
5129 }
5130 if (mddev->pers) {
5131 __md_stop_writes(mddev);
5132
5133 err = -ENXIO;
5134 if (mddev->ro==1)
5135 goto out;
5136 mddev->ro = 1;
5137 set_disk_ro(mddev->gendisk, 1);
5138 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5139 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5140 md_wakeup_thread(mddev->thread);
5141 sysfs_notify_dirent_safe(mddev->sysfs_state);
5142 err = 0;
5143 }
5144 out:
5145 mutex_unlock(&mddev->open_mutex);
5146 return err;
5147 }
5148
5149 /* mode:
5150 * 0 - completely stop and dis-assemble array
5151 * 2 - stop but do not disassemble array
5152 */
5153 static int do_md_stop(struct mddev *mddev, int mode,
5154 struct block_device *bdev)
5155 {
5156 struct gendisk *disk = mddev->gendisk;
5157 struct md_rdev *rdev;
5158 int did_freeze = 0;
5159
5160 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5161 did_freeze = 1;
5162 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5163 md_wakeup_thread(mddev->thread);
5164 }
5165 if (mddev->sync_thread) {
5166 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5167 /* Thread might be blocked waiting for metadata update
5168 * which will now never happen */
5169 wake_up_process(mddev->sync_thread->tsk);
5170 }
5171 mddev_unlock(mddev);
5172 wait_event(resync_wait, mddev->sync_thread == NULL);
5173 mddev_lock_nointr(mddev);
5174
5175 mutex_lock(&mddev->open_mutex);
5176 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5177 mddev->sysfs_active ||
5178 mddev->sync_thread ||
5179 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5180 printk("md: %s still in use.\n",mdname(mddev));
5181 mutex_unlock(&mddev->open_mutex);
5182 if (did_freeze) {
5183 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5184 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5185 md_wakeup_thread(mddev->thread);
5186 }
5187 return -EBUSY;
5188 }
5189 if (mddev->pers) {
5190 if (mddev->ro)
5191 set_disk_ro(disk, 0);
5192
5193 __md_stop_writes(mddev);
5194 __md_stop(mddev);
5195 mddev->queue->merge_bvec_fn = NULL;
5196 mddev->queue->backing_dev_info.congested_fn = NULL;
5197
5198 /* tell userspace to handle 'inactive' */
5199 sysfs_notify_dirent_safe(mddev->sysfs_state);
5200
5201 rdev_for_each(rdev, mddev)
5202 if (rdev->raid_disk >= 0)
5203 sysfs_unlink_rdev(mddev, rdev);
5204
5205 set_capacity(disk, 0);
5206 mutex_unlock(&mddev->open_mutex);
5207 mddev->changed = 1;
5208 revalidate_disk(disk);
5209
5210 if (mddev->ro)
5211 mddev->ro = 0;
5212 } else
5213 mutex_unlock(&mddev->open_mutex);
5214 /*
5215 * Free resources if final stop
5216 */
5217 if (mode == 0) {
5218 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5219
5220 bitmap_destroy(mddev);
5221 if (mddev->bitmap_info.file) {
5222 fput(mddev->bitmap_info.file);
5223 mddev->bitmap_info.file = NULL;
5224 }
5225 mddev->bitmap_info.offset = 0;
5226
5227 export_array(mddev);
5228
5229 md_clean(mddev);
5230 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5231 if (mddev->hold_active == UNTIL_STOP)
5232 mddev->hold_active = 0;
5233 }
5234 blk_integrity_unregister(disk);
5235 md_new_event(mddev);
5236 sysfs_notify_dirent_safe(mddev->sysfs_state);
5237 return 0;
5238 }
5239
5240 #ifndef MODULE
5241 static void autorun_array(struct mddev *mddev)
5242 {
5243 struct md_rdev *rdev;
5244 int err;
5245
5246 if (list_empty(&mddev->disks))
5247 return;
5248
5249 printk(KERN_INFO "md: running: ");
5250
5251 rdev_for_each(rdev, mddev) {
5252 char b[BDEVNAME_SIZE];
5253 printk("<%s>", bdevname(rdev->bdev,b));
5254 }
5255 printk("\n");
5256
5257 err = do_md_run(mddev);
5258 if (err) {
5259 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5260 do_md_stop(mddev, 0, NULL);
5261 }
5262 }
5263
5264 /*
5265 * lets try to run arrays based on all disks that have arrived
5266 * until now. (those are in pending_raid_disks)
5267 *
5268 * the method: pick the first pending disk, collect all disks with
5269 * the same UUID, remove all from the pending list and put them into
5270 * the 'same_array' list. Then order this list based on superblock
5271 * update time (freshest comes first), kick out 'old' disks and
5272 * compare superblocks. If everything's fine then run it.
5273 *
5274 * If "unit" is allocated, then bump its reference count
5275 */
5276 static void autorun_devices(int part)
5277 {
5278 struct md_rdev *rdev0, *rdev, *tmp;
5279 struct mddev *mddev;
5280 char b[BDEVNAME_SIZE];
5281
5282 printk(KERN_INFO "md: autorun ...\n");
5283 while (!list_empty(&pending_raid_disks)) {
5284 int unit;
5285 dev_t dev;
5286 LIST_HEAD(candidates);
5287 rdev0 = list_entry(pending_raid_disks.next,
5288 struct md_rdev, same_set);
5289
5290 printk(KERN_INFO "md: considering %s ...\n",
5291 bdevname(rdev0->bdev,b));
5292 INIT_LIST_HEAD(&candidates);
5293 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5294 if (super_90_load(rdev, rdev0, 0) >= 0) {
5295 printk(KERN_INFO "md: adding %s ...\n",
5296 bdevname(rdev->bdev,b));
5297 list_move(&rdev->same_set, &candidates);
5298 }
5299 /*
5300 * now we have a set of devices, with all of them having
5301 * mostly sane superblocks. It's time to allocate the
5302 * mddev.
5303 */
5304 if (part) {
5305 dev = MKDEV(mdp_major,
5306 rdev0->preferred_minor << MdpMinorShift);
5307 unit = MINOR(dev) >> MdpMinorShift;
5308 } else {
5309 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5310 unit = MINOR(dev);
5311 }
5312 if (rdev0->preferred_minor != unit) {
5313 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5314 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5315 break;
5316 }
5317
5318 md_probe(dev, NULL, NULL);
5319 mddev = mddev_find(dev);
5320 if (!mddev || !mddev->gendisk) {
5321 if (mddev)
5322 mddev_put(mddev);
5323 printk(KERN_ERR
5324 "md: cannot allocate memory for md drive.\n");
5325 break;
5326 }
5327 if (mddev_lock(mddev))
5328 printk(KERN_WARNING "md: %s locked, cannot run\n",
5329 mdname(mddev));
5330 else if (mddev->raid_disks || mddev->major_version
5331 || !list_empty(&mddev->disks)) {
5332 printk(KERN_WARNING
5333 "md: %s already running, cannot run %s\n",
5334 mdname(mddev), bdevname(rdev0->bdev,b));
5335 mddev_unlock(mddev);
5336 } else {
5337 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5338 mddev->persistent = 1;
5339 rdev_for_each_list(rdev, tmp, &candidates) {
5340 list_del_init(&rdev->same_set);
5341 if (bind_rdev_to_array(rdev, mddev))
5342 export_rdev(rdev);
5343 }
5344 autorun_array(mddev);
5345 mddev_unlock(mddev);
5346 }
5347 /* on success, candidates will be empty, on error
5348 * it won't...
5349 */
5350 rdev_for_each_list(rdev, tmp, &candidates) {
5351 list_del_init(&rdev->same_set);
5352 export_rdev(rdev);
5353 }
5354 mddev_put(mddev);
5355 }
5356 printk(KERN_INFO "md: ... autorun DONE.\n");
5357 }
5358 #endif /* !MODULE */
5359
5360 static int get_version(void __user *arg)
5361 {
5362 mdu_version_t ver;
5363
5364 ver.major = MD_MAJOR_VERSION;
5365 ver.minor = MD_MINOR_VERSION;
5366 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5367
5368 if (copy_to_user(arg, &ver, sizeof(ver)))
5369 return -EFAULT;
5370
5371 return 0;
5372 }
5373
5374 static int get_array_info(struct mddev *mddev, void __user *arg)
5375 {
5376 mdu_array_info_t info;
5377 int nr,working,insync,failed,spare;
5378 struct md_rdev *rdev;
5379
5380 nr = working = insync = failed = spare = 0;
5381 rcu_read_lock();
5382 rdev_for_each_rcu(rdev, mddev) {
5383 nr++;
5384 if (test_bit(Faulty, &rdev->flags))
5385 failed++;
5386 else {
5387 working++;
5388 if (test_bit(In_sync, &rdev->flags))
5389 insync++;
5390 else
5391 spare++;
5392 }
5393 }
5394 rcu_read_unlock();
5395
5396 info.major_version = mddev->major_version;
5397 info.minor_version = mddev->minor_version;
5398 info.patch_version = MD_PATCHLEVEL_VERSION;
5399 info.ctime = mddev->ctime;
5400 info.level = mddev->level;
5401 info.size = mddev->dev_sectors / 2;
5402 if (info.size != mddev->dev_sectors / 2) /* overflow */
5403 info.size = -1;
5404 info.nr_disks = nr;
5405 info.raid_disks = mddev->raid_disks;
5406 info.md_minor = mddev->md_minor;
5407 info.not_persistent= !mddev->persistent;
5408
5409 info.utime = mddev->utime;
5410 info.state = 0;
5411 if (mddev->in_sync)
5412 info.state = (1<<MD_SB_CLEAN);
5413 if (mddev->bitmap && mddev->bitmap_info.offset)
5414 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5415 info.active_disks = insync;
5416 info.working_disks = working;
5417 info.failed_disks = failed;
5418 info.spare_disks = spare;
5419
5420 info.layout = mddev->layout;
5421 info.chunk_size = mddev->chunk_sectors << 9;
5422
5423 if (copy_to_user(arg, &info, sizeof(info)))
5424 return -EFAULT;
5425
5426 return 0;
5427 }
5428
5429 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5430 {
5431 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5432 char *ptr, *buf = NULL;
5433 int err = -ENOMEM;
5434
5435 file = kmalloc(sizeof(*file), GFP_NOIO);
5436
5437 if (!file)
5438 goto out;
5439
5440 /* bitmap disabled, zero the first byte and copy out */
5441 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5442 file->pathname[0] = '\0';
5443 goto copy_out;
5444 }
5445
5446 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5447 if (!buf)
5448 goto out;
5449
5450 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5451 buf, sizeof(file->pathname));
5452 if (IS_ERR(ptr))
5453 goto out;
5454
5455 strcpy(file->pathname, ptr);
5456
5457 copy_out:
5458 err = 0;
5459 if (copy_to_user(arg, file, sizeof(*file)))
5460 err = -EFAULT;
5461 out:
5462 kfree(buf);
5463 kfree(file);
5464 return err;
5465 }
5466
5467 static int get_disk_info(struct mddev *mddev, void __user * arg)
5468 {
5469 mdu_disk_info_t info;
5470 struct md_rdev *rdev;
5471
5472 if (copy_from_user(&info, arg, sizeof(info)))
5473 return -EFAULT;
5474
5475 rcu_read_lock();
5476 rdev = find_rdev_nr_rcu(mddev, info.number);
5477 if (rdev) {
5478 info.major = MAJOR(rdev->bdev->bd_dev);
5479 info.minor = MINOR(rdev->bdev->bd_dev);
5480 info.raid_disk = rdev->raid_disk;
5481 info.state = 0;
5482 if (test_bit(Faulty, &rdev->flags))
5483 info.state |= (1<<MD_DISK_FAULTY);
5484 else if (test_bit(In_sync, &rdev->flags)) {
5485 info.state |= (1<<MD_DISK_ACTIVE);
5486 info.state |= (1<<MD_DISK_SYNC);
5487 }
5488 if (test_bit(WriteMostly, &rdev->flags))
5489 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5490 } else {
5491 info.major = info.minor = 0;
5492 info.raid_disk = -1;
5493 info.state = (1<<MD_DISK_REMOVED);
5494 }
5495 rcu_read_unlock();
5496
5497 if (copy_to_user(arg, &info, sizeof(info)))
5498 return -EFAULT;
5499
5500 return 0;
5501 }
5502
5503 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5504 {
5505 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5506 struct md_rdev *rdev;
5507 dev_t dev = MKDEV(info->major,info->minor);
5508
5509 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5510 return -EOVERFLOW;
5511
5512 if (!mddev->raid_disks) {
5513 int err;
5514 /* expecting a device which has a superblock */
5515 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5516 if (IS_ERR(rdev)) {
5517 printk(KERN_WARNING
5518 "md: md_import_device returned %ld\n",
5519 PTR_ERR(rdev));
5520 return PTR_ERR(rdev);
5521 }
5522 if (!list_empty(&mddev->disks)) {
5523 struct md_rdev *rdev0
5524 = list_entry(mddev->disks.next,
5525 struct md_rdev, same_set);
5526 err = super_types[mddev->major_version]
5527 .load_super(rdev, rdev0, mddev->minor_version);
5528 if (err < 0) {
5529 printk(KERN_WARNING
5530 "md: %s has different UUID to %s\n",
5531 bdevname(rdev->bdev,b),
5532 bdevname(rdev0->bdev,b2));
5533 export_rdev(rdev);
5534 return -EINVAL;
5535 }
5536 }
5537 err = bind_rdev_to_array(rdev, mddev);
5538 if (err)
5539 export_rdev(rdev);
5540 return err;
5541 }
5542
5543 /*
5544 * add_new_disk can be used once the array is assembled
5545 * to add "hot spares". They must already have a superblock
5546 * written
5547 */
5548 if (mddev->pers) {
5549 int err;
5550 if (!mddev->pers->hot_add_disk) {
5551 printk(KERN_WARNING
5552 "%s: personality does not support diskops!\n",
5553 mdname(mddev));
5554 return -EINVAL;
5555 }
5556 if (mddev->persistent)
5557 rdev = md_import_device(dev, mddev->major_version,
5558 mddev->minor_version);
5559 else
5560 rdev = md_import_device(dev, -1, -1);
5561 if (IS_ERR(rdev)) {
5562 printk(KERN_WARNING
5563 "md: md_import_device returned %ld\n",
5564 PTR_ERR(rdev));
5565 return PTR_ERR(rdev);
5566 }
5567 /* set saved_raid_disk if appropriate */
5568 if (!mddev->persistent) {
5569 if (info->state & (1<<MD_DISK_SYNC) &&
5570 info->raid_disk < mddev->raid_disks) {
5571 rdev->raid_disk = info->raid_disk;
5572 set_bit(In_sync, &rdev->flags);
5573 clear_bit(Bitmap_sync, &rdev->flags);
5574 } else
5575 rdev->raid_disk = -1;
5576 rdev->saved_raid_disk = rdev->raid_disk;
5577 } else
5578 super_types[mddev->major_version].
5579 validate_super(mddev, rdev);
5580 if ((info->state & (1<<MD_DISK_SYNC)) &&
5581 rdev->raid_disk != info->raid_disk) {
5582 /* This was a hot-add request, but events doesn't
5583 * match, so reject it.
5584 */
5585 export_rdev(rdev);
5586 return -EINVAL;
5587 }
5588
5589 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5590 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5591 set_bit(WriteMostly, &rdev->flags);
5592 else
5593 clear_bit(WriteMostly, &rdev->flags);
5594
5595 rdev->raid_disk = -1;
5596 err = bind_rdev_to_array(rdev, mddev);
5597 if (!err && !mddev->pers->hot_remove_disk) {
5598 /* If there is hot_add_disk but no hot_remove_disk
5599 * then added disks for geometry changes,
5600 * and should be added immediately.
5601 */
5602 super_types[mddev->major_version].
5603 validate_super(mddev, rdev);
5604 err = mddev->pers->hot_add_disk(mddev, rdev);
5605 if (err)
5606 unbind_rdev_from_array(rdev);
5607 }
5608 if (err)
5609 export_rdev(rdev);
5610 else
5611 sysfs_notify_dirent_safe(rdev->sysfs_state);
5612
5613 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5614 if (mddev->degraded)
5615 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5616 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5617 if (!err)
5618 md_new_event(mddev);
5619 md_wakeup_thread(mddev->thread);
5620 return err;
5621 }
5622
5623 /* otherwise, add_new_disk is only allowed
5624 * for major_version==0 superblocks
5625 */
5626 if (mddev->major_version != 0) {
5627 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5628 mdname(mddev));
5629 return -EINVAL;
5630 }
5631
5632 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5633 int err;
5634 rdev = md_import_device(dev, -1, 0);
5635 if (IS_ERR(rdev)) {
5636 printk(KERN_WARNING
5637 "md: error, md_import_device() returned %ld\n",
5638 PTR_ERR(rdev));
5639 return PTR_ERR(rdev);
5640 }
5641 rdev->desc_nr = info->number;
5642 if (info->raid_disk < mddev->raid_disks)
5643 rdev->raid_disk = info->raid_disk;
5644 else
5645 rdev->raid_disk = -1;
5646
5647 if (rdev->raid_disk < mddev->raid_disks)
5648 if (info->state & (1<<MD_DISK_SYNC))
5649 set_bit(In_sync, &rdev->flags);
5650
5651 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5652 set_bit(WriteMostly, &rdev->flags);
5653
5654 if (!mddev->persistent) {
5655 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5656 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5657 } else
5658 rdev->sb_start = calc_dev_sboffset(rdev);
5659 rdev->sectors = rdev->sb_start;
5660
5661 err = bind_rdev_to_array(rdev, mddev);
5662 if (err) {
5663 export_rdev(rdev);
5664 return err;
5665 }
5666 }
5667
5668 return 0;
5669 }
5670
5671 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5672 {
5673 char b[BDEVNAME_SIZE];
5674 struct md_rdev *rdev;
5675
5676 rdev = find_rdev(mddev, dev);
5677 if (!rdev)
5678 return -ENXIO;
5679
5680 clear_bit(Blocked, &rdev->flags);
5681 remove_and_add_spares(mddev, rdev);
5682
5683 if (rdev->raid_disk >= 0)
5684 goto busy;
5685
5686 kick_rdev_from_array(rdev);
5687 md_update_sb(mddev, 1);
5688 md_new_event(mddev);
5689
5690 return 0;
5691 busy:
5692 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5693 bdevname(rdev->bdev,b), mdname(mddev));
5694 return -EBUSY;
5695 }
5696
5697 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5698 {
5699 char b[BDEVNAME_SIZE];
5700 int err;
5701 struct md_rdev *rdev;
5702
5703 if (!mddev->pers)
5704 return -ENODEV;
5705
5706 if (mddev->major_version != 0) {
5707 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5708 " version-0 superblocks.\n",
5709 mdname(mddev));
5710 return -EINVAL;
5711 }
5712 if (!mddev->pers->hot_add_disk) {
5713 printk(KERN_WARNING
5714 "%s: personality does not support diskops!\n",
5715 mdname(mddev));
5716 return -EINVAL;
5717 }
5718
5719 rdev = md_import_device(dev, -1, 0);
5720 if (IS_ERR(rdev)) {
5721 printk(KERN_WARNING
5722 "md: error, md_import_device() returned %ld\n",
5723 PTR_ERR(rdev));
5724 return -EINVAL;
5725 }
5726
5727 if (mddev->persistent)
5728 rdev->sb_start = calc_dev_sboffset(rdev);
5729 else
5730 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5731
5732 rdev->sectors = rdev->sb_start;
5733
5734 if (test_bit(Faulty, &rdev->flags)) {
5735 printk(KERN_WARNING
5736 "md: can not hot-add faulty %s disk to %s!\n",
5737 bdevname(rdev->bdev,b), mdname(mddev));
5738 err = -EINVAL;
5739 goto abort_export;
5740 }
5741 clear_bit(In_sync, &rdev->flags);
5742 rdev->desc_nr = -1;
5743 rdev->saved_raid_disk = -1;
5744 err = bind_rdev_to_array(rdev, mddev);
5745 if (err)
5746 goto abort_export;
5747
5748 /*
5749 * The rest should better be atomic, we can have disk failures
5750 * noticed in interrupt contexts ...
5751 */
5752
5753 rdev->raid_disk = -1;
5754
5755 md_update_sb(mddev, 1);
5756
5757 /*
5758 * Kick recovery, maybe this spare has to be added to the
5759 * array immediately.
5760 */
5761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5762 md_wakeup_thread(mddev->thread);
5763 md_new_event(mddev);
5764 return 0;
5765
5766 abort_export:
5767 export_rdev(rdev);
5768 return err;
5769 }
5770
5771 static int set_bitmap_file(struct mddev *mddev, int fd)
5772 {
5773 int err = 0;
5774
5775 if (mddev->pers) {
5776 if (!mddev->pers->quiesce || !mddev->thread)
5777 return -EBUSY;
5778 if (mddev->recovery || mddev->sync_thread)
5779 return -EBUSY;
5780 /* we should be able to change the bitmap.. */
5781 }
5782
5783 if (fd >= 0) {
5784 struct inode *inode;
5785 if (mddev->bitmap)
5786 return -EEXIST; /* cannot add when bitmap is present */
5787 mddev->bitmap_info.file = fget(fd);
5788
5789 if (mddev->bitmap_info.file == NULL) {
5790 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5791 mdname(mddev));
5792 return -EBADF;
5793 }
5794
5795 inode = mddev->bitmap_info.file->f_mapping->host;
5796 if (!S_ISREG(inode->i_mode)) {
5797 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5798 mdname(mddev));
5799 err = -EBADF;
5800 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5801 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5802 mdname(mddev));
5803 err = -EBADF;
5804 } else if (atomic_read(&inode->i_writecount) != 1) {
5805 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5806 mdname(mddev));
5807 err = -EBUSY;
5808 }
5809 if (err) {
5810 fput(mddev->bitmap_info.file);
5811 mddev->bitmap_info.file = NULL;
5812 return err;
5813 }
5814 mddev->bitmap_info.offset = 0; /* file overrides offset */
5815 } else if (mddev->bitmap == NULL)
5816 return -ENOENT; /* cannot remove what isn't there */
5817 err = 0;
5818 if (mddev->pers) {
5819 mddev->pers->quiesce(mddev, 1);
5820 if (fd >= 0) {
5821 err = bitmap_create(mddev);
5822 if (!err)
5823 err = bitmap_load(mddev);
5824 }
5825 if (fd < 0 || err) {
5826 bitmap_destroy(mddev);
5827 fd = -1; /* make sure to put the file */
5828 }
5829 mddev->pers->quiesce(mddev, 0);
5830 }
5831 if (fd < 0) {
5832 if (mddev->bitmap_info.file)
5833 fput(mddev->bitmap_info.file);
5834 mddev->bitmap_info.file = NULL;
5835 }
5836
5837 return err;
5838 }
5839
5840 /*
5841 * set_array_info is used two different ways
5842 * The original usage is when creating a new array.
5843 * In this usage, raid_disks is > 0 and it together with
5844 * level, size, not_persistent,layout,chunksize determine the
5845 * shape of the array.
5846 * This will always create an array with a type-0.90.0 superblock.
5847 * The newer usage is when assembling an array.
5848 * In this case raid_disks will be 0, and the major_version field is
5849 * use to determine which style super-blocks are to be found on the devices.
5850 * The minor and patch _version numbers are also kept incase the
5851 * super_block handler wishes to interpret them.
5852 */
5853 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
5854 {
5855
5856 if (info->raid_disks == 0) {
5857 /* just setting version number for superblock loading */
5858 if (info->major_version < 0 ||
5859 info->major_version >= ARRAY_SIZE(super_types) ||
5860 super_types[info->major_version].name == NULL) {
5861 /* maybe try to auto-load a module? */
5862 printk(KERN_INFO
5863 "md: superblock version %d not known\n",
5864 info->major_version);
5865 return -EINVAL;
5866 }
5867 mddev->major_version = info->major_version;
5868 mddev->minor_version = info->minor_version;
5869 mddev->patch_version = info->patch_version;
5870 mddev->persistent = !info->not_persistent;
5871 /* ensure mddev_put doesn't delete this now that there
5872 * is some minimal configuration.
5873 */
5874 mddev->ctime = get_seconds();
5875 return 0;
5876 }
5877 mddev->major_version = MD_MAJOR_VERSION;
5878 mddev->minor_version = MD_MINOR_VERSION;
5879 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5880 mddev->ctime = get_seconds();
5881
5882 mddev->level = info->level;
5883 mddev->clevel[0] = 0;
5884 mddev->dev_sectors = 2 * (sector_t)info->size;
5885 mddev->raid_disks = info->raid_disks;
5886 /* don't set md_minor, it is determined by which /dev/md* was
5887 * openned
5888 */
5889 if (info->state & (1<<MD_SB_CLEAN))
5890 mddev->recovery_cp = MaxSector;
5891 else
5892 mddev->recovery_cp = 0;
5893 mddev->persistent = ! info->not_persistent;
5894 mddev->external = 0;
5895
5896 mddev->layout = info->layout;
5897 mddev->chunk_sectors = info->chunk_size >> 9;
5898
5899 mddev->max_disks = MD_SB_DISKS;
5900
5901 if (mddev->persistent)
5902 mddev->flags = 0;
5903 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5904
5905 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5906 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
5907 mddev->bitmap_info.offset = 0;
5908
5909 mddev->reshape_position = MaxSector;
5910
5911 /*
5912 * Generate a 128 bit UUID
5913 */
5914 get_random_bytes(mddev->uuid, 16);
5915
5916 mddev->new_level = mddev->level;
5917 mddev->new_chunk_sectors = mddev->chunk_sectors;
5918 mddev->new_layout = mddev->layout;
5919 mddev->delta_disks = 0;
5920 mddev->reshape_backwards = 0;
5921
5922 return 0;
5923 }
5924
5925 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5926 {
5927 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5928
5929 if (mddev->external_size)
5930 return;
5931
5932 mddev->array_sectors = array_sectors;
5933 }
5934 EXPORT_SYMBOL(md_set_array_sectors);
5935
5936 static int update_size(struct mddev *mddev, sector_t num_sectors)
5937 {
5938 struct md_rdev *rdev;
5939 int rv;
5940 int fit = (num_sectors == 0);
5941
5942 if (mddev->pers->resize == NULL)
5943 return -EINVAL;
5944 /* The "num_sectors" is the number of sectors of each device that
5945 * is used. This can only make sense for arrays with redundancy.
5946 * linear and raid0 always use whatever space is available. We can only
5947 * consider changing this number if no resync or reconstruction is
5948 * happening, and if the new size is acceptable. It must fit before the
5949 * sb_start or, if that is <data_offset, it must fit before the size
5950 * of each device. If num_sectors is zero, we find the largest size
5951 * that fits.
5952 */
5953 if (mddev->sync_thread)
5954 return -EBUSY;
5955 if (mddev->ro)
5956 return -EROFS;
5957
5958 rdev_for_each(rdev, mddev) {
5959 sector_t avail = rdev->sectors;
5960
5961 if (fit && (num_sectors == 0 || num_sectors > avail))
5962 num_sectors = avail;
5963 if (avail < num_sectors)
5964 return -ENOSPC;
5965 }
5966 rv = mddev->pers->resize(mddev, num_sectors);
5967 if (!rv)
5968 revalidate_disk(mddev->gendisk);
5969 return rv;
5970 }
5971
5972 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5973 {
5974 int rv;
5975 struct md_rdev *rdev;
5976 /* change the number of raid disks */
5977 if (mddev->pers->check_reshape == NULL)
5978 return -EINVAL;
5979 if (mddev->ro)
5980 return -EROFS;
5981 if (raid_disks <= 0 ||
5982 (mddev->max_disks && raid_disks >= mddev->max_disks))
5983 return -EINVAL;
5984 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5985 return -EBUSY;
5986
5987 rdev_for_each(rdev, mddev) {
5988 if (mddev->raid_disks < raid_disks &&
5989 rdev->data_offset < rdev->new_data_offset)
5990 return -EINVAL;
5991 if (mddev->raid_disks > raid_disks &&
5992 rdev->data_offset > rdev->new_data_offset)
5993 return -EINVAL;
5994 }
5995
5996 mddev->delta_disks = raid_disks - mddev->raid_disks;
5997 if (mddev->delta_disks < 0)
5998 mddev->reshape_backwards = 1;
5999 else if (mddev->delta_disks > 0)
6000 mddev->reshape_backwards = 0;
6001
6002 rv = mddev->pers->check_reshape(mddev);
6003 if (rv < 0) {
6004 mddev->delta_disks = 0;
6005 mddev->reshape_backwards = 0;
6006 }
6007 return rv;
6008 }
6009
6010 /*
6011 * update_array_info is used to change the configuration of an
6012 * on-line array.
6013 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6014 * fields in the info are checked against the array.
6015 * Any differences that cannot be handled will cause an error.
6016 * Normally, only one change can be managed at a time.
6017 */
6018 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6019 {
6020 int rv = 0;
6021 int cnt = 0;
6022 int state = 0;
6023
6024 /* calculate expected state,ignoring low bits */
6025 if (mddev->bitmap && mddev->bitmap_info.offset)
6026 state |= (1 << MD_SB_BITMAP_PRESENT);
6027
6028 if (mddev->major_version != info->major_version ||
6029 mddev->minor_version != info->minor_version ||
6030 /* mddev->patch_version != info->patch_version || */
6031 mddev->ctime != info->ctime ||
6032 mddev->level != info->level ||
6033 /* mddev->layout != info->layout || */
6034 !mddev->persistent != info->not_persistent||
6035 mddev->chunk_sectors != info->chunk_size >> 9 ||
6036 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6037 ((state^info->state) & 0xfffffe00)
6038 )
6039 return -EINVAL;
6040 /* Check there is only one change */
6041 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6042 cnt++;
6043 if (mddev->raid_disks != info->raid_disks)
6044 cnt++;
6045 if (mddev->layout != info->layout)
6046 cnt++;
6047 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6048 cnt++;
6049 if (cnt == 0)
6050 return 0;
6051 if (cnt > 1)
6052 return -EINVAL;
6053
6054 if (mddev->layout != info->layout) {
6055 /* Change layout
6056 * we don't need to do anything at the md level, the
6057 * personality will take care of it all.
6058 */
6059 if (mddev->pers->check_reshape == NULL)
6060 return -EINVAL;
6061 else {
6062 mddev->new_layout = info->layout;
6063 rv = mddev->pers->check_reshape(mddev);
6064 if (rv)
6065 mddev->new_layout = mddev->layout;
6066 return rv;
6067 }
6068 }
6069 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6070 rv = update_size(mddev, (sector_t)info->size * 2);
6071
6072 if (mddev->raid_disks != info->raid_disks)
6073 rv = update_raid_disks(mddev, info->raid_disks);
6074
6075 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6076 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6077 return -EINVAL;
6078 if (mddev->recovery || mddev->sync_thread)
6079 return -EBUSY;
6080 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6081 /* add the bitmap */
6082 if (mddev->bitmap)
6083 return -EEXIST;
6084 if (mddev->bitmap_info.default_offset == 0)
6085 return -EINVAL;
6086 mddev->bitmap_info.offset =
6087 mddev->bitmap_info.default_offset;
6088 mddev->bitmap_info.space =
6089 mddev->bitmap_info.default_space;
6090 mddev->pers->quiesce(mddev, 1);
6091 rv = bitmap_create(mddev);
6092 if (!rv)
6093 rv = bitmap_load(mddev);
6094 if (rv)
6095 bitmap_destroy(mddev);
6096 mddev->pers->quiesce(mddev, 0);
6097 } else {
6098 /* remove the bitmap */
6099 if (!mddev->bitmap)
6100 return -ENOENT;
6101 if (mddev->bitmap->storage.file)
6102 return -EINVAL;
6103 mddev->pers->quiesce(mddev, 1);
6104 bitmap_destroy(mddev);
6105 mddev->pers->quiesce(mddev, 0);
6106 mddev->bitmap_info.offset = 0;
6107 }
6108 }
6109 md_update_sb(mddev, 1);
6110 return rv;
6111 }
6112
6113 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6114 {
6115 struct md_rdev *rdev;
6116 int err = 0;
6117
6118 if (mddev->pers == NULL)
6119 return -ENODEV;
6120
6121 rcu_read_lock();
6122 rdev = find_rdev_rcu(mddev, dev);
6123 if (!rdev)
6124 err = -ENODEV;
6125 else {
6126 md_error(mddev, rdev);
6127 if (!test_bit(Faulty, &rdev->flags))
6128 err = -EBUSY;
6129 }
6130 rcu_read_unlock();
6131 return err;
6132 }
6133
6134 /*
6135 * We have a problem here : there is no easy way to give a CHS
6136 * virtual geometry. We currently pretend that we have a 2 heads
6137 * 4 sectors (with a BIG number of cylinders...). This drives
6138 * dosfs just mad... ;-)
6139 */
6140 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6141 {
6142 struct mddev *mddev = bdev->bd_disk->private_data;
6143
6144 geo->heads = 2;
6145 geo->sectors = 4;
6146 geo->cylinders = mddev->array_sectors / 8;
6147 return 0;
6148 }
6149
6150 static inline bool md_ioctl_valid(unsigned int cmd)
6151 {
6152 switch (cmd) {
6153 case ADD_NEW_DISK:
6154 case BLKROSET:
6155 case GET_ARRAY_INFO:
6156 case GET_BITMAP_FILE:
6157 case GET_DISK_INFO:
6158 case HOT_ADD_DISK:
6159 case HOT_REMOVE_DISK:
6160 case RAID_AUTORUN:
6161 case RAID_VERSION:
6162 case RESTART_ARRAY_RW:
6163 case RUN_ARRAY:
6164 case SET_ARRAY_INFO:
6165 case SET_BITMAP_FILE:
6166 case SET_DISK_FAULTY:
6167 case STOP_ARRAY:
6168 case STOP_ARRAY_RO:
6169 return true;
6170 default:
6171 return false;
6172 }
6173 }
6174
6175 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6176 unsigned int cmd, unsigned long arg)
6177 {
6178 int err = 0;
6179 void __user *argp = (void __user *)arg;
6180 struct mddev *mddev = NULL;
6181 int ro;
6182
6183 if (!md_ioctl_valid(cmd))
6184 return -ENOTTY;
6185
6186 switch (cmd) {
6187 case RAID_VERSION:
6188 case GET_ARRAY_INFO:
6189 case GET_DISK_INFO:
6190 break;
6191 default:
6192 if (!capable(CAP_SYS_ADMIN))
6193 return -EACCES;
6194 }
6195
6196 /*
6197 * Commands dealing with the RAID driver but not any
6198 * particular array:
6199 */
6200 switch (cmd) {
6201 case RAID_VERSION:
6202 err = get_version(argp);
6203 goto out;
6204
6205 #ifndef MODULE
6206 case RAID_AUTORUN:
6207 err = 0;
6208 autostart_arrays(arg);
6209 goto out;
6210 #endif
6211 default:;
6212 }
6213
6214 /*
6215 * Commands creating/starting a new array:
6216 */
6217
6218 mddev = bdev->bd_disk->private_data;
6219
6220 if (!mddev) {
6221 BUG();
6222 goto out;
6223 }
6224
6225 /* Some actions do not requires the mutex */
6226 switch (cmd) {
6227 case GET_ARRAY_INFO:
6228 if (!mddev->raid_disks && !mddev->external)
6229 err = -ENODEV;
6230 else
6231 err = get_array_info(mddev, argp);
6232 goto out;
6233
6234 case GET_DISK_INFO:
6235 if (!mddev->raid_disks && !mddev->external)
6236 err = -ENODEV;
6237 else
6238 err = get_disk_info(mddev, argp);
6239 goto out;
6240
6241 case SET_DISK_FAULTY:
6242 err = set_disk_faulty(mddev, new_decode_dev(arg));
6243 goto out;
6244 }
6245
6246 if (cmd == ADD_NEW_DISK)
6247 /* need to ensure md_delayed_delete() has completed */
6248 flush_workqueue(md_misc_wq);
6249
6250 if (cmd == HOT_REMOVE_DISK)
6251 /* need to ensure recovery thread has run */
6252 wait_event_interruptible_timeout(mddev->sb_wait,
6253 !test_bit(MD_RECOVERY_NEEDED,
6254 &mddev->flags),
6255 msecs_to_jiffies(5000));
6256 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6257 /* Need to flush page cache, and ensure no-one else opens
6258 * and writes
6259 */
6260 mutex_lock(&mddev->open_mutex);
6261 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6262 mutex_unlock(&mddev->open_mutex);
6263 err = -EBUSY;
6264 goto out;
6265 }
6266 set_bit(MD_STILL_CLOSED, &mddev->flags);
6267 mutex_unlock(&mddev->open_mutex);
6268 sync_blockdev(bdev);
6269 }
6270 err = mddev_lock(mddev);
6271 if (err) {
6272 printk(KERN_INFO
6273 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6274 err, cmd);
6275 goto out;
6276 }
6277
6278 if (cmd == SET_ARRAY_INFO) {
6279 mdu_array_info_t info;
6280 if (!arg)
6281 memset(&info, 0, sizeof(info));
6282 else if (copy_from_user(&info, argp, sizeof(info))) {
6283 err = -EFAULT;
6284 goto unlock;
6285 }
6286 if (mddev->pers) {
6287 err = update_array_info(mddev, &info);
6288 if (err) {
6289 printk(KERN_WARNING "md: couldn't update"
6290 " array info. %d\n", err);
6291 goto unlock;
6292 }
6293 goto unlock;
6294 }
6295 if (!list_empty(&mddev->disks)) {
6296 printk(KERN_WARNING
6297 "md: array %s already has disks!\n",
6298 mdname(mddev));
6299 err = -EBUSY;
6300 goto unlock;
6301 }
6302 if (mddev->raid_disks) {
6303 printk(KERN_WARNING
6304 "md: array %s already initialised!\n",
6305 mdname(mddev));
6306 err = -EBUSY;
6307 goto unlock;
6308 }
6309 err = set_array_info(mddev, &info);
6310 if (err) {
6311 printk(KERN_WARNING "md: couldn't set"
6312 " array info. %d\n", err);
6313 goto unlock;
6314 }
6315 goto unlock;
6316 }
6317
6318 /*
6319 * Commands querying/configuring an existing array:
6320 */
6321 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6322 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6323 if ((!mddev->raid_disks && !mddev->external)
6324 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6325 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6326 && cmd != GET_BITMAP_FILE) {
6327 err = -ENODEV;
6328 goto unlock;
6329 }
6330
6331 /*
6332 * Commands even a read-only array can execute:
6333 */
6334 switch (cmd) {
6335 case GET_BITMAP_FILE:
6336 err = get_bitmap_file(mddev, argp);
6337 goto unlock;
6338
6339 case RESTART_ARRAY_RW:
6340 err = restart_array(mddev);
6341 goto unlock;
6342
6343 case STOP_ARRAY:
6344 err = do_md_stop(mddev, 0, bdev);
6345 goto unlock;
6346
6347 case STOP_ARRAY_RO:
6348 err = md_set_readonly(mddev, bdev);
6349 goto unlock;
6350
6351 case HOT_REMOVE_DISK:
6352 err = hot_remove_disk(mddev, new_decode_dev(arg));
6353 goto unlock;
6354
6355 case ADD_NEW_DISK:
6356 /* We can support ADD_NEW_DISK on read-only arrays
6357 * on if we are re-adding a preexisting device.
6358 * So require mddev->pers and MD_DISK_SYNC.
6359 */
6360 if (mddev->pers) {
6361 mdu_disk_info_t info;
6362 if (copy_from_user(&info, argp, sizeof(info)))
6363 err = -EFAULT;
6364 else if (!(info.state & (1<<MD_DISK_SYNC)))
6365 /* Need to clear read-only for this */
6366 break;
6367 else
6368 err = add_new_disk(mddev, &info);
6369 goto unlock;
6370 }
6371 break;
6372
6373 case BLKROSET:
6374 if (get_user(ro, (int __user *)(arg))) {
6375 err = -EFAULT;
6376 goto unlock;
6377 }
6378 err = -EINVAL;
6379
6380 /* if the bdev is going readonly the value of mddev->ro
6381 * does not matter, no writes are coming
6382 */
6383 if (ro)
6384 goto unlock;
6385
6386 /* are we are already prepared for writes? */
6387 if (mddev->ro != 1)
6388 goto unlock;
6389
6390 /* transitioning to readauto need only happen for
6391 * arrays that call md_write_start
6392 */
6393 if (mddev->pers) {
6394 err = restart_array(mddev);
6395 if (err == 0) {
6396 mddev->ro = 2;
6397 set_disk_ro(mddev->gendisk, 0);
6398 }
6399 }
6400 goto unlock;
6401 }
6402
6403 /*
6404 * The remaining ioctls are changing the state of the
6405 * superblock, so we do not allow them on read-only arrays.
6406 */
6407 if (mddev->ro && mddev->pers) {
6408 if (mddev->ro == 2) {
6409 mddev->ro = 0;
6410 sysfs_notify_dirent_safe(mddev->sysfs_state);
6411 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6412 /* mddev_unlock will wake thread */
6413 /* If a device failed while we were read-only, we
6414 * need to make sure the metadata is updated now.
6415 */
6416 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6417 mddev_unlock(mddev);
6418 wait_event(mddev->sb_wait,
6419 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6420 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6421 mddev_lock_nointr(mddev);
6422 }
6423 } else {
6424 err = -EROFS;
6425 goto unlock;
6426 }
6427 }
6428
6429 switch (cmd) {
6430 case ADD_NEW_DISK:
6431 {
6432 mdu_disk_info_t info;
6433 if (copy_from_user(&info, argp, sizeof(info)))
6434 err = -EFAULT;
6435 else
6436 err = add_new_disk(mddev, &info);
6437 goto unlock;
6438 }
6439
6440 case HOT_ADD_DISK:
6441 err = hot_add_disk(mddev, new_decode_dev(arg));
6442 goto unlock;
6443
6444 case RUN_ARRAY:
6445 err = do_md_run(mddev);
6446 goto unlock;
6447
6448 case SET_BITMAP_FILE:
6449 err = set_bitmap_file(mddev, (int)arg);
6450 goto unlock;
6451
6452 default:
6453 err = -EINVAL;
6454 goto unlock;
6455 }
6456
6457 unlock:
6458 if (mddev->hold_active == UNTIL_IOCTL &&
6459 err != -EINVAL)
6460 mddev->hold_active = 0;
6461 mddev_unlock(mddev);
6462 out:
6463 return err;
6464 }
6465 #ifdef CONFIG_COMPAT
6466 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6467 unsigned int cmd, unsigned long arg)
6468 {
6469 switch (cmd) {
6470 case HOT_REMOVE_DISK:
6471 case HOT_ADD_DISK:
6472 case SET_DISK_FAULTY:
6473 case SET_BITMAP_FILE:
6474 /* These take in integer arg, do not convert */
6475 break;
6476 default:
6477 arg = (unsigned long)compat_ptr(arg);
6478 break;
6479 }
6480
6481 return md_ioctl(bdev, mode, cmd, arg);
6482 }
6483 #endif /* CONFIG_COMPAT */
6484
6485 static int md_open(struct block_device *bdev, fmode_t mode)
6486 {
6487 /*
6488 * Succeed if we can lock the mddev, which confirms that
6489 * it isn't being stopped right now.
6490 */
6491 struct mddev *mddev = mddev_find(bdev->bd_dev);
6492 int err;
6493
6494 if (!mddev)
6495 return -ENODEV;
6496
6497 if (mddev->gendisk != bdev->bd_disk) {
6498 /* we are racing with mddev_put which is discarding this
6499 * bd_disk.
6500 */
6501 mddev_put(mddev);
6502 /* Wait until bdev->bd_disk is definitely gone */
6503 flush_workqueue(md_misc_wq);
6504 /* Then retry the open from the top */
6505 return -ERESTARTSYS;
6506 }
6507 BUG_ON(mddev != bdev->bd_disk->private_data);
6508
6509 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6510 goto out;
6511
6512 err = 0;
6513 atomic_inc(&mddev->openers);
6514 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6515 mutex_unlock(&mddev->open_mutex);
6516
6517 check_disk_change(bdev);
6518 out:
6519 return err;
6520 }
6521
6522 static void md_release(struct gendisk *disk, fmode_t mode)
6523 {
6524 struct mddev *mddev = disk->private_data;
6525
6526 BUG_ON(!mddev);
6527 atomic_dec(&mddev->openers);
6528 mddev_put(mddev);
6529 }
6530
6531 static int md_media_changed(struct gendisk *disk)
6532 {
6533 struct mddev *mddev = disk->private_data;
6534
6535 return mddev->changed;
6536 }
6537
6538 static int md_revalidate(struct gendisk *disk)
6539 {
6540 struct mddev *mddev = disk->private_data;
6541
6542 mddev->changed = 0;
6543 return 0;
6544 }
6545 static const struct block_device_operations md_fops =
6546 {
6547 .owner = THIS_MODULE,
6548 .open = md_open,
6549 .release = md_release,
6550 .ioctl = md_ioctl,
6551 #ifdef CONFIG_COMPAT
6552 .compat_ioctl = md_compat_ioctl,
6553 #endif
6554 .getgeo = md_getgeo,
6555 .media_changed = md_media_changed,
6556 .revalidate_disk= md_revalidate,
6557 };
6558
6559 static int md_thread(void *arg)
6560 {
6561 struct md_thread *thread = arg;
6562
6563 /*
6564 * md_thread is a 'system-thread', it's priority should be very
6565 * high. We avoid resource deadlocks individually in each
6566 * raid personality. (RAID5 does preallocation) We also use RR and
6567 * the very same RT priority as kswapd, thus we will never get
6568 * into a priority inversion deadlock.
6569 *
6570 * we definitely have to have equal or higher priority than
6571 * bdflush, otherwise bdflush will deadlock if there are too
6572 * many dirty RAID5 blocks.
6573 */
6574
6575 allow_signal(SIGKILL);
6576 while (!kthread_should_stop()) {
6577
6578 /* We need to wait INTERRUPTIBLE so that
6579 * we don't add to the load-average.
6580 * That means we need to be sure no signals are
6581 * pending
6582 */
6583 if (signal_pending(current))
6584 flush_signals(current);
6585
6586 wait_event_interruptible_timeout
6587 (thread->wqueue,
6588 test_bit(THREAD_WAKEUP, &thread->flags)
6589 || kthread_should_stop(),
6590 thread->timeout);
6591
6592 clear_bit(THREAD_WAKEUP, &thread->flags);
6593 if (!kthread_should_stop())
6594 thread->run(thread);
6595 }
6596
6597 return 0;
6598 }
6599
6600 void md_wakeup_thread(struct md_thread *thread)
6601 {
6602 if (thread) {
6603 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6604 set_bit(THREAD_WAKEUP, &thread->flags);
6605 wake_up(&thread->wqueue);
6606 }
6607 }
6608 EXPORT_SYMBOL(md_wakeup_thread);
6609
6610 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6611 struct mddev *mddev, const char *name)
6612 {
6613 struct md_thread *thread;
6614
6615 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6616 if (!thread)
6617 return NULL;
6618
6619 init_waitqueue_head(&thread->wqueue);
6620
6621 thread->run = run;
6622 thread->mddev = mddev;
6623 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6624 thread->tsk = kthread_run(md_thread, thread,
6625 "%s_%s",
6626 mdname(thread->mddev),
6627 name);
6628 if (IS_ERR(thread->tsk)) {
6629 kfree(thread);
6630 return NULL;
6631 }
6632 return thread;
6633 }
6634 EXPORT_SYMBOL(md_register_thread);
6635
6636 void md_unregister_thread(struct md_thread **threadp)
6637 {
6638 struct md_thread *thread = *threadp;
6639 if (!thread)
6640 return;
6641 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6642 /* Locking ensures that mddev_unlock does not wake_up a
6643 * non-existent thread
6644 */
6645 spin_lock(&pers_lock);
6646 *threadp = NULL;
6647 spin_unlock(&pers_lock);
6648
6649 kthread_stop(thread->tsk);
6650 kfree(thread);
6651 }
6652 EXPORT_SYMBOL(md_unregister_thread);
6653
6654 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6655 {
6656 if (!rdev || test_bit(Faulty, &rdev->flags))
6657 return;
6658
6659 if (!mddev->pers || !mddev->pers->error_handler)
6660 return;
6661 mddev->pers->error_handler(mddev,rdev);
6662 if (mddev->degraded)
6663 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6664 sysfs_notify_dirent_safe(rdev->sysfs_state);
6665 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6666 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6667 md_wakeup_thread(mddev->thread);
6668 if (mddev->event_work.func)
6669 queue_work(md_misc_wq, &mddev->event_work);
6670 md_new_event_inintr(mddev);
6671 }
6672 EXPORT_SYMBOL(md_error);
6673
6674 /* seq_file implementation /proc/mdstat */
6675
6676 static void status_unused(struct seq_file *seq)
6677 {
6678 int i = 0;
6679 struct md_rdev *rdev;
6680
6681 seq_printf(seq, "unused devices: ");
6682
6683 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6684 char b[BDEVNAME_SIZE];
6685 i++;
6686 seq_printf(seq, "%s ",
6687 bdevname(rdev->bdev,b));
6688 }
6689 if (!i)
6690 seq_printf(seq, "<none>");
6691
6692 seq_printf(seq, "\n");
6693 }
6694
6695 static void status_resync(struct seq_file *seq, struct mddev *mddev)
6696 {
6697 sector_t max_sectors, resync, res;
6698 unsigned long dt, db;
6699 sector_t rt;
6700 int scale;
6701 unsigned int per_milli;
6702
6703 if (mddev->curr_resync <= 3)
6704 resync = 0;
6705 else
6706 resync = mddev->curr_resync
6707 - atomic_read(&mddev->recovery_active);
6708
6709 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6710 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6711 max_sectors = mddev->resync_max_sectors;
6712 else
6713 max_sectors = mddev->dev_sectors;
6714
6715 WARN_ON(max_sectors == 0);
6716 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6717 * in a sector_t, and (max_sectors>>scale) will fit in a
6718 * u32, as those are the requirements for sector_div.
6719 * Thus 'scale' must be at least 10
6720 */
6721 scale = 10;
6722 if (sizeof(sector_t) > sizeof(unsigned long)) {
6723 while ( max_sectors/2 > (1ULL<<(scale+32)))
6724 scale++;
6725 }
6726 res = (resync>>scale)*1000;
6727 sector_div(res, (u32)((max_sectors>>scale)+1));
6728
6729 per_milli = res;
6730 {
6731 int i, x = per_milli/50, y = 20-x;
6732 seq_printf(seq, "[");
6733 for (i = 0; i < x; i++)
6734 seq_printf(seq, "=");
6735 seq_printf(seq, ">");
6736 for (i = 0; i < y; i++)
6737 seq_printf(seq, ".");
6738 seq_printf(seq, "] ");
6739 }
6740 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6741 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6742 "reshape" :
6743 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6744 "check" :
6745 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6746 "resync" : "recovery"))),
6747 per_milli/10, per_milli % 10,
6748 (unsigned long long) resync/2,
6749 (unsigned long long) max_sectors/2);
6750
6751 /*
6752 * dt: time from mark until now
6753 * db: blocks written from mark until now
6754 * rt: remaining time
6755 *
6756 * rt is a sector_t, so could be 32bit or 64bit.
6757 * So we divide before multiply in case it is 32bit and close
6758 * to the limit.
6759 * We scale the divisor (db) by 32 to avoid losing precision
6760 * near the end of resync when the number of remaining sectors
6761 * is close to 'db'.
6762 * We then divide rt by 32 after multiplying by db to compensate.
6763 * The '+1' avoids division by zero if db is very small.
6764 */
6765 dt = ((jiffies - mddev->resync_mark) / HZ);
6766 if (!dt) dt++;
6767 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6768 - mddev->resync_mark_cnt;
6769
6770 rt = max_sectors - resync; /* number of remaining sectors */
6771 sector_div(rt, db/32+1);
6772 rt *= dt;
6773 rt >>= 5;
6774
6775 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6776 ((unsigned long)rt % 60)/6);
6777
6778 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6779 }
6780
6781 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6782 {
6783 struct list_head *tmp;
6784 loff_t l = *pos;
6785 struct mddev *mddev;
6786
6787 if (l >= 0x10000)
6788 return NULL;
6789 if (!l--)
6790 /* header */
6791 return (void*)1;
6792
6793 spin_lock(&all_mddevs_lock);
6794 list_for_each(tmp,&all_mddevs)
6795 if (!l--) {
6796 mddev = list_entry(tmp, struct mddev, all_mddevs);
6797 mddev_get(mddev);
6798 spin_unlock(&all_mddevs_lock);
6799 return mddev;
6800 }
6801 spin_unlock(&all_mddevs_lock);
6802 if (!l--)
6803 return (void*)2;/* tail */
6804 return NULL;
6805 }
6806
6807 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6808 {
6809 struct list_head *tmp;
6810 struct mddev *next_mddev, *mddev = v;
6811
6812 ++*pos;
6813 if (v == (void*)2)
6814 return NULL;
6815
6816 spin_lock(&all_mddevs_lock);
6817 if (v == (void*)1)
6818 tmp = all_mddevs.next;
6819 else
6820 tmp = mddev->all_mddevs.next;
6821 if (tmp != &all_mddevs)
6822 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6823 else {
6824 next_mddev = (void*)2;
6825 *pos = 0x10000;
6826 }
6827 spin_unlock(&all_mddevs_lock);
6828
6829 if (v != (void*)1)
6830 mddev_put(mddev);
6831 return next_mddev;
6832
6833 }
6834
6835 static void md_seq_stop(struct seq_file *seq, void *v)
6836 {
6837 struct mddev *mddev = v;
6838
6839 if (mddev && v != (void*)1 && v != (void*)2)
6840 mddev_put(mddev);
6841 }
6842
6843 static int md_seq_show(struct seq_file *seq, void *v)
6844 {
6845 struct mddev *mddev = v;
6846 sector_t sectors;
6847 struct md_rdev *rdev;
6848
6849 if (v == (void*)1) {
6850 struct md_personality *pers;
6851 seq_printf(seq, "Personalities : ");
6852 spin_lock(&pers_lock);
6853 list_for_each_entry(pers, &pers_list, list)
6854 seq_printf(seq, "[%s] ", pers->name);
6855
6856 spin_unlock(&pers_lock);
6857 seq_printf(seq, "\n");
6858 seq->poll_event = atomic_read(&md_event_count);
6859 return 0;
6860 }
6861 if (v == (void*)2) {
6862 status_unused(seq);
6863 return 0;
6864 }
6865
6866 if (mddev_lock(mddev) < 0)
6867 return -EINTR;
6868
6869 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6870 seq_printf(seq, "%s : %sactive", mdname(mddev),
6871 mddev->pers ? "" : "in");
6872 if (mddev->pers) {
6873 if (mddev->ro==1)
6874 seq_printf(seq, " (read-only)");
6875 if (mddev->ro==2)
6876 seq_printf(seq, " (auto-read-only)");
6877 seq_printf(seq, " %s", mddev->pers->name);
6878 }
6879
6880 sectors = 0;
6881 rdev_for_each(rdev, mddev) {
6882 char b[BDEVNAME_SIZE];
6883 seq_printf(seq, " %s[%d]",
6884 bdevname(rdev->bdev,b), rdev->desc_nr);
6885 if (test_bit(WriteMostly, &rdev->flags))
6886 seq_printf(seq, "(W)");
6887 if (test_bit(Faulty, &rdev->flags)) {
6888 seq_printf(seq, "(F)");
6889 continue;
6890 }
6891 if (rdev->raid_disk < 0)
6892 seq_printf(seq, "(S)"); /* spare */
6893 if (test_bit(Replacement, &rdev->flags))
6894 seq_printf(seq, "(R)");
6895 sectors += rdev->sectors;
6896 }
6897
6898 if (!list_empty(&mddev->disks)) {
6899 if (mddev->pers)
6900 seq_printf(seq, "\n %llu blocks",
6901 (unsigned long long)
6902 mddev->array_sectors / 2);
6903 else
6904 seq_printf(seq, "\n %llu blocks",
6905 (unsigned long long)sectors / 2);
6906 }
6907 if (mddev->persistent) {
6908 if (mddev->major_version != 0 ||
6909 mddev->minor_version != 90) {
6910 seq_printf(seq," super %d.%d",
6911 mddev->major_version,
6912 mddev->minor_version);
6913 }
6914 } else if (mddev->external)
6915 seq_printf(seq, " super external:%s",
6916 mddev->metadata_type);
6917 else
6918 seq_printf(seq, " super non-persistent");
6919
6920 if (mddev->pers) {
6921 mddev->pers->status(seq, mddev);
6922 seq_printf(seq, "\n ");
6923 if (mddev->pers->sync_request) {
6924 if (mddev->curr_resync > 2) {
6925 status_resync(seq, mddev);
6926 seq_printf(seq, "\n ");
6927 } else if (mddev->curr_resync >= 1)
6928 seq_printf(seq, "\tresync=DELAYED\n ");
6929 else if (mddev->recovery_cp < MaxSector)
6930 seq_printf(seq, "\tresync=PENDING\n ");
6931 }
6932 } else
6933 seq_printf(seq, "\n ");
6934
6935 bitmap_status(seq, mddev->bitmap);
6936
6937 seq_printf(seq, "\n");
6938 }
6939 mddev_unlock(mddev);
6940
6941 return 0;
6942 }
6943
6944 static const struct seq_operations md_seq_ops = {
6945 .start = md_seq_start,
6946 .next = md_seq_next,
6947 .stop = md_seq_stop,
6948 .show = md_seq_show,
6949 };
6950
6951 static int md_seq_open(struct inode *inode, struct file *file)
6952 {
6953 struct seq_file *seq;
6954 int error;
6955
6956 error = seq_open(file, &md_seq_ops);
6957 if (error)
6958 return error;
6959
6960 seq = file->private_data;
6961 seq->poll_event = atomic_read(&md_event_count);
6962 return error;
6963 }
6964
6965 static int md_unloading;
6966 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6967 {
6968 struct seq_file *seq = filp->private_data;
6969 int mask;
6970
6971 if (md_unloading)
6972 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
6973 poll_wait(filp, &md_event_waiters, wait);
6974
6975 /* always allow read */
6976 mask = POLLIN | POLLRDNORM;
6977
6978 if (seq->poll_event != atomic_read(&md_event_count))
6979 mask |= POLLERR | POLLPRI;
6980 return mask;
6981 }
6982
6983 static const struct file_operations md_seq_fops = {
6984 .owner = THIS_MODULE,
6985 .open = md_seq_open,
6986 .read = seq_read,
6987 .llseek = seq_lseek,
6988 .release = seq_release_private,
6989 .poll = mdstat_poll,
6990 };
6991
6992 int register_md_personality(struct md_personality *p)
6993 {
6994 printk(KERN_INFO "md: %s personality registered for level %d\n",
6995 p->name, p->level);
6996 spin_lock(&pers_lock);
6997 list_add_tail(&p->list, &pers_list);
6998 spin_unlock(&pers_lock);
6999 return 0;
7000 }
7001 EXPORT_SYMBOL(register_md_personality);
7002
7003 int unregister_md_personality(struct md_personality *p)
7004 {
7005 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7006 spin_lock(&pers_lock);
7007 list_del_init(&p->list);
7008 spin_unlock(&pers_lock);
7009 return 0;
7010 }
7011 EXPORT_SYMBOL(unregister_md_personality);
7012
7013 static int is_mddev_idle(struct mddev *mddev, int init)
7014 {
7015 struct md_rdev *rdev;
7016 int idle;
7017 int curr_events;
7018
7019 idle = 1;
7020 rcu_read_lock();
7021 rdev_for_each_rcu(rdev, mddev) {
7022 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7023 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7024 (int)part_stat_read(&disk->part0, sectors[1]) -
7025 atomic_read(&disk->sync_io);
7026 /* sync IO will cause sync_io to increase before the disk_stats
7027 * as sync_io is counted when a request starts, and
7028 * disk_stats is counted when it completes.
7029 * So resync activity will cause curr_events to be smaller than
7030 * when there was no such activity.
7031 * non-sync IO will cause disk_stat to increase without
7032 * increasing sync_io so curr_events will (eventually)
7033 * be larger than it was before. Once it becomes
7034 * substantially larger, the test below will cause
7035 * the array to appear non-idle, and resync will slow
7036 * down.
7037 * If there is a lot of outstanding resync activity when
7038 * we set last_event to curr_events, then all that activity
7039 * completing might cause the array to appear non-idle
7040 * and resync will be slowed down even though there might
7041 * not have been non-resync activity. This will only
7042 * happen once though. 'last_events' will soon reflect
7043 * the state where there is little or no outstanding
7044 * resync requests, and further resync activity will
7045 * always make curr_events less than last_events.
7046 *
7047 */
7048 if (init || curr_events - rdev->last_events > 64) {
7049 rdev->last_events = curr_events;
7050 idle = 0;
7051 }
7052 }
7053 rcu_read_unlock();
7054 return idle;
7055 }
7056
7057 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7058 {
7059 /* another "blocks" (512byte) blocks have been synced */
7060 atomic_sub(blocks, &mddev->recovery_active);
7061 wake_up(&mddev->recovery_wait);
7062 if (!ok) {
7063 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7064 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7065 md_wakeup_thread(mddev->thread);
7066 // stop recovery, signal do_sync ....
7067 }
7068 }
7069 EXPORT_SYMBOL(md_done_sync);
7070
7071 /* md_write_start(mddev, bi)
7072 * If we need to update some array metadata (e.g. 'active' flag
7073 * in superblock) before writing, schedule a superblock update
7074 * and wait for it to complete.
7075 */
7076 void md_write_start(struct mddev *mddev, struct bio *bi)
7077 {
7078 int did_change = 0;
7079 if (bio_data_dir(bi) != WRITE)
7080 return;
7081
7082 BUG_ON(mddev->ro == 1);
7083 if (mddev->ro == 2) {
7084 /* need to switch to read/write */
7085 mddev->ro = 0;
7086 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7087 md_wakeup_thread(mddev->thread);
7088 md_wakeup_thread(mddev->sync_thread);
7089 did_change = 1;
7090 }
7091 atomic_inc(&mddev->writes_pending);
7092 if (mddev->safemode == 1)
7093 mddev->safemode = 0;
7094 if (mddev->in_sync) {
7095 spin_lock_irq(&mddev->write_lock);
7096 if (mddev->in_sync) {
7097 mddev->in_sync = 0;
7098 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7099 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7100 md_wakeup_thread(mddev->thread);
7101 did_change = 1;
7102 }
7103 spin_unlock_irq(&mddev->write_lock);
7104 }
7105 if (did_change)
7106 sysfs_notify_dirent_safe(mddev->sysfs_state);
7107 wait_event(mddev->sb_wait,
7108 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7109 }
7110 EXPORT_SYMBOL(md_write_start);
7111
7112 void md_write_end(struct mddev *mddev)
7113 {
7114 if (atomic_dec_and_test(&mddev->writes_pending)) {
7115 if (mddev->safemode == 2)
7116 md_wakeup_thread(mddev->thread);
7117 else if (mddev->safemode_delay)
7118 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7119 }
7120 }
7121 EXPORT_SYMBOL(md_write_end);
7122
7123 /* md_allow_write(mddev)
7124 * Calling this ensures that the array is marked 'active' so that writes
7125 * may proceed without blocking. It is important to call this before
7126 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7127 * Must be called with mddev_lock held.
7128 *
7129 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7130 * is dropped, so return -EAGAIN after notifying userspace.
7131 */
7132 int md_allow_write(struct mddev *mddev)
7133 {
7134 if (!mddev->pers)
7135 return 0;
7136 if (mddev->ro)
7137 return 0;
7138 if (!mddev->pers->sync_request)
7139 return 0;
7140
7141 spin_lock_irq(&mddev->write_lock);
7142 if (mddev->in_sync) {
7143 mddev->in_sync = 0;
7144 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7145 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7146 if (mddev->safemode_delay &&
7147 mddev->safemode == 0)
7148 mddev->safemode = 1;
7149 spin_unlock_irq(&mddev->write_lock);
7150 md_update_sb(mddev, 0);
7151 sysfs_notify_dirent_safe(mddev->sysfs_state);
7152 } else
7153 spin_unlock_irq(&mddev->write_lock);
7154
7155 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7156 return -EAGAIN;
7157 else
7158 return 0;
7159 }
7160 EXPORT_SYMBOL_GPL(md_allow_write);
7161
7162 #define SYNC_MARKS 10
7163 #define SYNC_MARK_STEP (3*HZ)
7164 #define UPDATE_FREQUENCY (5*60*HZ)
7165 void md_do_sync(struct md_thread *thread)
7166 {
7167 struct mddev *mddev = thread->mddev;
7168 struct mddev *mddev2;
7169 unsigned int currspeed = 0,
7170 window;
7171 sector_t max_sectors,j, io_sectors, recovery_done;
7172 unsigned long mark[SYNC_MARKS];
7173 unsigned long update_time;
7174 sector_t mark_cnt[SYNC_MARKS];
7175 int last_mark,m;
7176 struct list_head *tmp;
7177 sector_t last_check;
7178 int skipped = 0;
7179 struct md_rdev *rdev;
7180 char *desc, *action = NULL;
7181 struct blk_plug plug;
7182
7183 /* just incase thread restarts... */
7184 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7185 return;
7186 if (mddev->ro) {/* never try to sync a read-only array */
7187 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7188 return;
7189 }
7190
7191 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7192 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7193 desc = "data-check";
7194 action = "check";
7195 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7196 desc = "requested-resync";
7197 action = "repair";
7198 } else
7199 desc = "resync";
7200 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7201 desc = "reshape";
7202 else
7203 desc = "recovery";
7204
7205 mddev->last_sync_action = action ?: desc;
7206
7207 /* we overload curr_resync somewhat here.
7208 * 0 == not engaged in resync at all
7209 * 2 == checking that there is no conflict with another sync
7210 * 1 == like 2, but have yielded to allow conflicting resync to
7211 * commense
7212 * other == active in resync - this many blocks
7213 *
7214 * Before starting a resync we must have set curr_resync to
7215 * 2, and then checked that every "conflicting" array has curr_resync
7216 * less than ours. When we find one that is the same or higher
7217 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7218 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7219 * This will mean we have to start checking from the beginning again.
7220 *
7221 */
7222
7223 do {
7224 mddev->curr_resync = 2;
7225
7226 try_again:
7227 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7228 goto skip;
7229 for_each_mddev(mddev2, tmp) {
7230 if (mddev2 == mddev)
7231 continue;
7232 if (!mddev->parallel_resync
7233 && mddev2->curr_resync
7234 && match_mddev_units(mddev, mddev2)) {
7235 DEFINE_WAIT(wq);
7236 if (mddev < mddev2 && mddev->curr_resync == 2) {
7237 /* arbitrarily yield */
7238 mddev->curr_resync = 1;
7239 wake_up(&resync_wait);
7240 }
7241 if (mddev > mddev2 && mddev->curr_resync == 1)
7242 /* no need to wait here, we can wait the next
7243 * time 'round when curr_resync == 2
7244 */
7245 continue;
7246 /* We need to wait 'interruptible' so as not to
7247 * contribute to the load average, and not to
7248 * be caught by 'softlockup'
7249 */
7250 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7251 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7252 mddev2->curr_resync >= mddev->curr_resync) {
7253 printk(KERN_INFO "md: delaying %s of %s"
7254 " until %s has finished (they"
7255 " share one or more physical units)\n",
7256 desc, mdname(mddev), mdname(mddev2));
7257 mddev_put(mddev2);
7258 if (signal_pending(current))
7259 flush_signals(current);
7260 schedule();
7261 finish_wait(&resync_wait, &wq);
7262 goto try_again;
7263 }
7264 finish_wait(&resync_wait, &wq);
7265 }
7266 }
7267 } while (mddev->curr_resync < 2);
7268
7269 j = 0;
7270 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7271 /* resync follows the size requested by the personality,
7272 * which defaults to physical size, but can be virtual size
7273 */
7274 max_sectors = mddev->resync_max_sectors;
7275 atomic64_set(&mddev->resync_mismatches, 0);
7276 /* we don't use the checkpoint if there's a bitmap */
7277 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7278 j = mddev->resync_min;
7279 else if (!mddev->bitmap)
7280 j = mddev->recovery_cp;
7281
7282 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7283 max_sectors = mddev->resync_max_sectors;
7284 else {
7285 /* recovery follows the physical size of devices */
7286 max_sectors = mddev->dev_sectors;
7287 j = MaxSector;
7288 rcu_read_lock();
7289 rdev_for_each_rcu(rdev, mddev)
7290 if (rdev->raid_disk >= 0 &&
7291 !test_bit(Faulty, &rdev->flags) &&
7292 !test_bit(In_sync, &rdev->flags) &&
7293 rdev->recovery_offset < j)
7294 j = rdev->recovery_offset;
7295 rcu_read_unlock();
7296
7297 /* If there is a bitmap, we need to make sure all
7298 * writes that started before we added a spare
7299 * complete before we start doing a recovery.
7300 * Otherwise the write might complete and (via
7301 * bitmap_endwrite) set a bit in the bitmap after the
7302 * recovery has checked that bit and skipped that
7303 * region.
7304 */
7305 if (mddev->bitmap) {
7306 mddev->pers->quiesce(mddev, 1);
7307 mddev->pers->quiesce(mddev, 0);
7308 }
7309 }
7310
7311 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7312 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7313 " %d KB/sec/disk.\n", speed_min(mddev));
7314 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7315 "(but not more than %d KB/sec) for %s.\n",
7316 speed_max(mddev), desc);
7317
7318 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7319
7320 io_sectors = 0;
7321 for (m = 0; m < SYNC_MARKS; m++) {
7322 mark[m] = jiffies;
7323 mark_cnt[m] = io_sectors;
7324 }
7325 last_mark = 0;
7326 mddev->resync_mark = mark[last_mark];
7327 mddev->resync_mark_cnt = mark_cnt[last_mark];
7328
7329 /*
7330 * Tune reconstruction:
7331 */
7332 window = 32*(PAGE_SIZE/512);
7333 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7334 window/2, (unsigned long long)max_sectors/2);
7335
7336 atomic_set(&mddev->recovery_active, 0);
7337 last_check = 0;
7338
7339 if (j>2) {
7340 printk(KERN_INFO
7341 "md: resuming %s of %s from checkpoint.\n",
7342 desc, mdname(mddev));
7343 mddev->curr_resync = j;
7344 } else
7345 mddev->curr_resync = 3; /* no longer delayed */
7346 mddev->curr_resync_completed = j;
7347 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7348 md_new_event(mddev);
7349 update_time = jiffies;
7350
7351 blk_start_plug(&plug);
7352 while (j < max_sectors) {
7353 sector_t sectors;
7354
7355 skipped = 0;
7356
7357 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7358 ((mddev->curr_resync > mddev->curr_resync_completed &&
7359 (mddev->curr_resync - mddev->curr_resync_completed)
7360 > (max_sectors >> 4)) ||
7361 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7362 (j - mddev->curr_resync_completed)*2
7363 >= mddev->resync_max - mddev->curr_resync_completed
7364 )) {
7365 /* time to update curr_resync_completed */
7366 wait_event(mddev->recovery_wait,
7367 atomic_read(&mddev->recovery_active) == 0);
7368 mddev->curr_resync_completed = j;
7369 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7370 j > mddev->recovery_cp)
7371 mddev->recovery_cp = j;
7372 update_time = jiffies;
7373 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7374 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7375 }
7376
7377 while (j >= mddev->resync_max &&
7378 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7379 /* As this condition is controlled by user-space,
7380 * we can block indefinitely, so use '_interruptible'
7381 * to avoid triggering warnings.
7382 */
7383 flush_signals(current); /* just in case */
7384 wait_event_interruptible(mddev->recovery_wait,
7385 mddev->resync_max > j
7386 || test_bit(MD_RECOVERY_INTR,
7387 &mddev->recovery));
7388 }
7389
7390 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7391 break;
7392
7393 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7394 currspeed < speed_min(mddev));
7395 if (sectors == 0) {
7396 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7397 break;
7398 }
7399
7400 if (!skipped) { /* actual IO requested */
7401 io_sectors += sectors;
7402 atomic_add(sectors, &mddev->recovery_active);
7403 }
7404
7405 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7406 break;
7407
7408 j += sectors;
7409 if (j > 2)
7410 mddev->curr_resync = j;
7411 mddev->curr_mark_cnt = io_sectors;
7412 if (last_check == 0)
7413 /* this is the earliest that rebuild will be
7414 * visible in /proc/mdstat
7415 */
7416 md_new_event(mddev);
7417
7418 if (last_check + window > io_sectors || j == max_sectors)
7419 continue;
7420
7421 last_check = io_sectors;
7422 repeat:
7423 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7424 /* step marks */
7425 int next = (last_mark+1) % SYNC_MARKS;
7426
7427 mddev->resync_mark = mark[next];
7428 mddev->resync_mark_cnt = mark_cnt[next];
7429 mark[next] = jiffies;
7430 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7431 last_mark = next;
7432 }
7433
7434 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7435 break;
7436
7437 /*
7438 * this loop exits only if either when we are slower than
7439 * the 'hard' speed limit, or the system was IO-idle for
7440 * a jiffy.
7441 * the system might be non-idle CPU-wise, but we only care
7442 * about not overloading the IO subsystem. (things like an
7443 * e2fsck being done on the RAID array should execute fast)
7444 */
7445 cond_resched();
7446
7447 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7448 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7449 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7450
7451 if (currspeed > speed_min(mddev)) {
7452 if ((currspeed > speed_max(mddev)) ||
7453 !is_mddev_idle(mddev, 0)) {
7454 msleep(500);
7455 goto repeat;
7456 }
7457 }
7458 }
7459 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7460 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7461 ? "interrupted" : "done");
7462 /*
7463 * this also signals 'finished resyncing' to md_stop
7464 */
7465 blk_finish_plug(&plug);
7466 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7467
7468 /* tell personality that we are finished */
7469 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7470
7471 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7472 mddev->curr_resync > 2) {
7473 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7474 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7475 if (mddev->curr_resync >= mddev->recovery_cp) {
7476 printk(KERN_INFO
7477 "md: checkpointing %s of %s.\n",
7478 desc, mdname(mddev));
7479 if (test_bit(MD_RECOVERY_ERROR,
7480 &mddev->recovery))
7481 mddev->recovery_cp =
7482 mddev->curr_resync_completed;
7483 else
7484 mddev->recovery_cp =
7485 mddev->curr_resync;
7486 }
7487 } else
7488 mddev->recovery_cp = MaxSector;
7489 } else {
7490 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7491 mddev->curr_resync = MaxSector;
7492 rcu_read_lock();
7493 rdev_for_each_rcu(rdev, mddev)
7494 if (rdev->raid_disk >= 0 &&
7495 mddev->delta_disks >= 0 &&
7496 !test_bit(Faulty, &rdev->flags) &&
7497 !test_bit(In_sync, &rdev->flags) &&
7498 rdev->recovery_offset < mddev->curr_resync)
7499 rdev->recovery_offset = mddev->curr_resync;
7500 rcu_read_unlock();
7501 }
7502 }
7503 skip:
7504 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7505
7506 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7507 /* We completed so min/max setting can be forgotten if used. */
7508 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7509 mddev->resync_min = 0;
7510 mddev->resync_max = MaxSector;
7511 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7512 mddev->resync_min = mddev->curr_resync_completed;
7513 mddev->curr_resync = 0;
7514 wake_up(&resync_wait);
7515 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7516 md_wakeup_thread(mddev->thread);
7517 return;
7518 }
7519 EXPORT_SYMBOL_GPL(md_do_sync);
7520
7521 static int remove_and_add_spares(struct mddev *mddev,
7522 struct md_rdev *this)
7523 {
7524 struct md_rdev *rdev;
7525 int spares = 0;
7526 int removed = 0;
7527
7528 rdev_for_each(rdev, mddev)
7529 if ((this == NULL || rdev == this) &&
7530 rdev->raid_disk >= 0 &&
7531 !test_bit(Blocked, &rdev->flags) &&
7532 (test_bit(Faulty, &rdev->flags) ||
7533 ! test_bit(In_sync, &rdev->flags)) &&
7534 atomic_read(&rdev->nr_pending)==0) {
7535 if (mddev->pers->hot_remove_disk(
7536 mddev, rdev) == 0) {
7537 sysfs_unlink_rdev(mddev, rdev);
7538 rdev->raid_disk = -1;
7539 removed++;
7540 }
7541 }
7542 if (removed && mddev->kobj.sd)
7543 sysfs_notify(&mddev->kobj, NULL, "degraded");
7544
7545 if (this)
7546 goto no_add;
7547
7548 rdev_for_each(rdev, mddev) {
7549 if (rdev->raid_disk >= 0 &&
7550 !test_bit(In_sync, &rdev->flags) &&
7551 !test_bit(Faulty, &rdev->flags))
7552 spares++;
7553 if (rdev->raid_disk >= 0)
7554 continue;
7555 if (test_bit(Faulty, &rdev->flags))
7556 continue;
7557 if (mddev->ro &&
7558 ! (rdev->saved_raid_disk >= 0 &&
7559 !test_bit(Bitmap_sync, &rdev->flags)))
7560 continue;
7561
7562 if (rdev->saved_raid_disk < 0)
7563 rdev->recovery_offset = 0;
7564 if (mddev->pers->
7565 hot_add_disk(mddev, rdev) == 0) {
7566 if (sysfs_link_rdev(mddev, rdev))
7567 /* failure here is OK */;
7568 spares++;
7569 md_new_event(mddev);
7570 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7571 }
7572 }
7573 no_add:
7574 if (removed)
7575 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7576 return spares;
7577 }
7578
7579 static void md_start_sync(struct work_struct *ws)
7580 {
7581 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7582
7583 mddev->sync_thread = md_register_thread(md_do_sync,
7584 mddev,
7585 "resync");
7586 if (!mddev->sync_thread) {
7587 printk(KERN_ERR "%s: could not start resync"
7588 " thread...\n",
7589 mdname(mddev));
7590 /* leave the spares where they are, it shouldn't hurt */
7591 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7592 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7593 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7594 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7595 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7596 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7597 &mddev->recovery))
7598 if (mddev->sysfs_action)
7599 sysfs_notify_dirent_safe(mddev->sysfs_action);
7600 } else
7601 md_wakeup_thread(mddev->sync_thread);
7602 sysfs_notify_dirent_safe(mddev->sysfs_action);
7603 md_new_event(mddev);
7604 }
7605
7606 /*
7607 * This routine is regularly called by all per-raid-array threads to
7608 * deal with generic issues like resync and super-block update.
7609 * Raid personalities that don't have a thread (linear/raid0) do not
7610 * need this as they never do any recovery or update the superblock.
7611 *
7612 * It does not do any resync itself, but rather "forks" off other threads
7613 * to do that as needed.
7614 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7615 * "->recovery" and create a thread at ->sync_thread.
7616 * When the thread finishes it sets MD_RECOVERY_DONE
7617 * and wakeups up this thread which will reap the thread and finish up.
7618 * This thread also removes any faulty devices (with nr_pending == 0).
7619 *
7620 * The overall approach is:
7621 * 1/ if the superblock needs updating, update it.
7622 * 2/ If a recovery thread is running, don't do anything else.
7623 * 3/ If recovery has finished, clean up, possibly marking spares active.
7624 * 4/ If there are any faulty devices, remove them.
7625 * 5/ If array is degraded, try to add spares devices
7626 * 6/ If array has spares or is not in-sync, start a resync thread.
7627 */
7628 void md_check_recovery(struct mddev *mddev)
7629 {
7630 if (mddev->suspended)
7631 return;
7632
7633 if (mddev->bitmap)
7634 bitmap_daemon_work(mddev);
7635
7636 if (signal_pending(current)) {
7637 if (mddev->pers->sync_request && !mddev->external) {
7638 printk(KERN_INFO "md: %s in immediate safe mode\n",
7639 mdname(mddev));
7640 mddev->safemode = 2;
7641 }
7642 flush_signals(current);
7643 }
7644
7645 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7646 return;
7647 if ( ! (
7648 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7649 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7650 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7651 (mddev->external == 0 && mddev->safemode == 1) ||
7652 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7653 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7654 ))
7655 return;
7656
7657 if (mddev_trylock(mddev)) {
7658 int spares = 0;
7659
7660 if (mddev->ro) {
7661 /* On a read-only array we can:
7662 * - remove failed devices
7663 * - add already-in_sync devices if the array itself
7664 * is in-sync.
7665 * As we only add devices that are already in-sync,
7666 * we can activate the spares immediately.
7667 */
7668 remove_and_add_spares(mddev, NULL);
7669 /* There is no thread, but we need to call
7670 * ->spare_active and clear saved_raid_disk
7671 */
7672 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7673 md_reap_sync_thread(mddev);
7674 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7675 goto unlock;
7676 }
7677
7678 if (!mddev->external) {
7679 int did_change = 0;
7680 spin_lock_irq(&mddev->write_lock);
7681 if (mddev->safemode &&
7682 !atomic_read(&mddev->writes_pending) &&
7683 !mddev->in_sync &&
7684 mddev->recovery_cp == MaxSector) {
7685 mddev->in_sync = 1;
7686 did_change = 1;
7687 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7688 }
7689 if (mddev->safemode == 1)
7690 mddev->safemode = 0;
7691 spin_unlock_irq(&mddev->write_lock);
7692 if (did_change)
7693 sysfs_notify_dirent_safe(mddev->sysfs_state);
7694 }
7695
7696 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7697 md_update_sb(mddev, 0);
7698
7699 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7700 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7701 /* resync/recovery still happening */
7702 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7703 goto unlock;
7704 }
7705 if (mddev->sync_thread) {
7706 md_reap_sync_thread(mddev);
7707 goto unlock;
7708 }
7709 /* Set RUNNING before clearing NEEDED to avoid
7710 * any transients in the value of "sync_action".
7711 */
7712 mddev->curr_resync_completed = 0;
7713 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7714 /* Clear some bits that don't mean anything, but
7715 * might be left set
7716 */
7717 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7718 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7719
7720 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7721 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7722 goto not_running;
7723 /* no recovery is running.
7724 * remove any failed drives, then
7725 * add spares if possible.
7726 * Spares are also removed and re-added, to allow
7727 * the personality to fail the re-add.
7728 */
7729
7730 if (mddev->reshape_position != MaxSector) {
7731 if (mddev->pers->check_reshape == NULL ||
7732 mddev->pers->check_reshape(mddev) != 0)
7733 /* Cannot proceed */
7734 goto not_running;
7735 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7736 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7737 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7738 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7739 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7740 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7741 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7742 } else if (mddev->recovery_cp < MaxSector) {
7743 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7744 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7745 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7746 /* nothing to be done ... */
7747 goto not_running;
7748
7749 if (mddev->pers->sync_request) {
7750 if (spares) {
7751 /* We are adding a device or devices to an array
7752 * which has the bitmap stored on all devices.
7753 * So make sure all bitmap pages get written
7754 */
7755 bitmap_write_all(mddev->bitmap);
7756 }
7757 INIT_WORK(&mddev->del_work, md_start_sync);
7758 queue_work(md_misc_wq, &mddev->del_work);
7759 goto unlock;
7760 }
7761 not_running:
7762 if (!mddev->sync_thread) {
7763 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7764 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7765 &mddev->recovery))
7766 if (mddev->sysfs_action)
7767 sysfs_notify_dirent_safe(mddev->sysfs_action);
7768 }
7769 unlock:
7770 wake_up(&mddev->sb_wait);
7771 mddev_unlock(mddev);
7772 }
7773 }
7774 EXPORT_SYMBOL(md_check_recovery);
7775
7776 void md_reap_sync_thread(struct mddev *mddev)
7777 {
7778 struct md_rdev *rdev;
7779
7780 /* resync has finished, collect result */
7781 md_unregister_thread(&mddev->sync_thread);
7782 wake_up(&resync_wait);
7783 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7784 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7785 /* success...*/
7786 /* activate any spares */
7787 if (mddev->pers->spare_active(mddev)) {
7788 sysfs_notify(&mddev->kobj, NULL,
7789 "degraded");
7790 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7791 }
7792 }
7793 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7794 mddev->pers->finish_reshape)
7795 mddev->pers->finish_reshape(mddev);
7796
7797 /* If array is no-longer degraded, then any saved_raid_disk
7798 * information must be scrapped.
7799 */
7800 if (!mddev->degraded)
7801 rdev_for_each(rdev, mddev)
7802 rdev->saved_raid_disk = -1;
7803
7804 md_update_sb(mddev, 1);
7805 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7806 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7807 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7808 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7809 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7810 /* flag recovery needed just to double check */
7811 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7812 sysfs_notify_dirent_safe(mddev->sysfs_action);
7813 md_new_event(mddev);
7814 if (mddev->event_work.func)
7815 queue_work(md_misc_wq, &mddev->event_work);
7816 }
7817 EXPORT_SYMBOL(md_reap_sync_thread);
7818
7819 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7820 {
7821 sysfs_notify_dirent_safe(rdev->sysfs_state);
7822 wait_event_timeout(rdev->blocked_wait,
7823 !test_bit(Blocked, &rdev->flags) &&
7824 !test_bit(BlockedBadBlocks, &rdev->flags),
7825 msecs_to_jiffies(5000));
7826 rdev_dec_pending(rdev, mddev);
7827 }
7828 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7829
7830 void md_finish_reshape(struct mddev *mddev)
7831 {
7832 /* called be personality module when reshape completes. */
7833 struct md_rdev *rdev;
7834
7835 rdev_for_each(rdev, mddev) {
7836 if (rdev->data_offset > rdev->new_data_offset)
7837 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7838 else
7839 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7840 rdev->data_offset = rdev->new_data_offset;
7841 }
7842 }
7843 EXPORT_SYMBOL(md_finish_reshape);
7844
7845 /* Bad block management.
7846 * We can record which blocks on each device are 'bad' and so just
7847 * fail those blocks, or that stripe, rather than the whole device.
7848 * Entries in the bad-block table are 64bits wide. This comprises:
7849 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7850 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7851 * A 'shift' can be set so that larger blocks are tracked and
7852 * consequently larger devices can be covered.
7853 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7854 *
7855 * Locking of the bad-block table uses a seqlock so md_is_badblock
7856 * might need to retry if it is very unlucky.
7857 * We will sometimes want to check for bad blocks in a bi_end_io function,
7858 * so we use the write_seqlock_irq variant.
7859 *
7860 * When looking for a bad block we specify a range and want to
7861 * know if any block in the range is bad. So we binary-search
7862 * to the last range that starts at-or-before the given endpoint,
7863 * (or "before the sector after the target range")
7864 * then see if it ends after the given start.
7865 * We return
7866 * 0 if there are no known bad blocks in the range
7867 * 1 if there are known bad block which are all acknowledged
7868 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7869 * plus the start/length of the first bad section we overlap.
7870 */
7871 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7872 sector_t *first_bad, int *bad_sectors)
7873 {
7874 int hi;
7875 int lo;
7876 u64 *p = bb->page;
7877 int rv;
7878 sector_t target = s + sectors;
7879 unsigned seq;
7880
7881 if (bb->shift > 0) {
7882 /* round the start down, and the end up */
7883 s >>= bb->shift;
7884 target += (1<<bb->shift) - 1;
7885 target >>= bb->shift;
7886 sectors = target - s;
7887 }
7888 /* 'target' is now the first block after the bad range */
7889
7890 retry:
7891 seq = read_seqbegin(&bb->lock);
7892 lo = 0;
7893 rv = 0;
7894 hi = bb->count;
7895
7896 /* Binary search between lo and hi for 'target'
7897 * i.e. for the last range that starts before 'target'
7898 */
7899 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7900 * are known not to be the last range before target.
7901 * VARIANT: hi-lo is the number of possible
7902 * ranges, and decreases until it reaches 1
7903 */
7904 while (hi - lo > 1) {
7905 int mid = (lo + hi) / 2;
7906 sector_t a = BB_OFFSET(p[mid]);
7907 if (a < target)
7908 /* This could still be the one, earlier ranges
7909 * could not. */
7910 lo = mid;
7911 else
7912 /* This and later ranges are definitely out. */
7913 hi = mid;
7914 }
7915 /* 'lo' might be the last that started before target, but 'hi' isn't */
7916 if (hi > lo) {
7917 /* need to check all range that end after 's' to see if
7918 * any are unacknowledged.
7919 */
7920 while (lo >= 0 &&
7921 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7922 if (BB_OFFSET(p[lo]) < target) {
7923 /* starts before the end, and finishes after
7924 * the start, so they must overlap
7925 */
7926 if (rv != -1 && BB_ACK(p[lo]))
7927 rv = 1;
7928 else
7929 rv = -1;
7930 *first_bad = BB_OFFSET(p[lo]);
7931 *bad_sectors = BB_LEN(p[lo]);
7932 }
7933 lo--;
7934 }
7935 }
7936
7937 if (read_seqretry(&bb->lock, seq))
7938 goto retry;
7939
7940 return rv;
7941 }
7942 EXPORT_SYMBOL_GPL(md_is_badblock);
7943
7944 /*
7945 * Add a range of bad blocks to the table.
7946 * This might extend the table, or might contract it
7947 * if two adjacent ranges can be merged.
7948 * We binary-search to find the 'insertion' point, then
7949 * decide how best to handle it.
7950 */
7951 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7952 int acknowledged)
7953 {
7954 u64 *p;
7955 int lo, hi;
7956 int rv = 1;
7957 unsigned long flags;
7958
7959 if (bb->shift < 0)
7960 /* badblocks are disabled */
7961 return 0;
7962
7963 if (bb->shift) {
7964 /* round the start down, and the end up */
7965 sector_t next = s + sectors;
7966 s >>= bb->shift;
7967 next += (1<<bb->shift) - 1;
7968 next >>= bb->shift;
7969 sectors = next - s;
7970 }
7971
7972 write_seqlock_irqsave(&bb->lock, flags);
7973
7974 p = bb->page;
7975 lo = 0;
7976 hi = bb->count;
7977 /* Find the last range that starts at-or-before 's' */
7978 while (hi - lo > 1) {
7979 int mid = (lo + hi) / 2;
7980 sector_t a = BB_OFFSET(p[mid]);
7981 if (a <= s)
7982 lo = mid;
7983 else
7984 hi = mid;
7985 }
7986 if (hi > lo && BB_OFFSET(p[lo]) > s)
7987 hi = lo;
7988
7989 if (hi > lo) {
7990 /* we found a range that might merge with the start
7991 * of our new range
7992 */
7993 sector_t a = BB_OFFSET(p[lo]);
7994 sector_t e = a + BB_LEN(p[lo]);
7995 int ack = BB_ACK(p[lo]);
7996 if (e >= s) {
7997 /* Yes, we can merge with a previous range */
7998 if (s == a && s + sectors >= e)
7999 /* new range covers old */
8000 ack = acknowledged;
8001 else
8002 ack = ack && acknowledged;
8003
8004 if (e < s + sectors)
8005 e = s + sectors;
8006 if (e - a <= BB_MAX_LEN) {
8007 p[lo] = BB_MAKE(a, e-a, ack);
8008 s = e;
8009 } else {
8010 /* does not all fit in one range,
8011 * make p[lo] maximal
8012 */
8013 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8014 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8015 s = a + BB_MAX_LEN;
8016 }
8017 sectors = e - s;
8018 }
8019 }
8020 if (sectors && hi < bb->count) {
8021 /* 'hi' points to the first range that starts after 's'.
8022 * Maybe we can merge with the start of that range */
8023 sector_t a = BB_OFFSET(p[hi]);
8024 sector_t e = a + BB_LEN(p[hi]);
8025 int ack = BB_ACK(p[hi]);
8026 if (a <= s + sectors) {
8027 /* merging is possible */
8028 if (e <= s + sectors) {
8029 /* full overlap */
8030 e = s + sectors;
8031 ack = acknowledged;
8032 } else
8033 ack = ack && acknowledged;
8034
8035 a = s;
8036 if (e - a <= BB_MAX_LEN) {
8037 p[hi] = BB_MAKE(a, e-a, ack);
8038 s = e;
8039 } else {
8040 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8041 s = a + BB_MAX_LEN;
8042 }
8043 sectors = e - s;
8044 lo = hi;
8045 hi++;
8046 }
8047 }
8048 if (sectors == 0 && hi < bb->count) {
8049 /* we might be able to combine lo and hi */
8050 /* Note: 's' is at the end of 'lo' */
8051 sector_t a = BB_OFFSET(p[hi]);
8052 int lolen = BB_LEN(p[lo]);
8053 int hilen = BB_LEN(p[hi]);
8054 int newlen = lolen + hilen - (s - a);
8055 if (s >= a && newlen < BB_MAX_LEN) {
8056 /* yes, we can combine them */
8057 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8058 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8059 memmove(p + hi, p + hi + 1,
8060 (bb->count - hi - 1) * 8);
8061 bb->count--;
8062 }
8063 }
8064 while (sectors) {
8065 /* didn't merge (it all).
8066 * Need to add a range just before 'hi' */
8067 if (bb->count >= MD_MAX_BADBLOCKS) {
8068 /* No room for more */
8069 rv = 0;
8070 break;
8071 } else {
8072 int this_sectors = sectors;
8073 memmove(p + hi + 1, p + hi,
8074 (bb->count - hi) * 8);
8075 bb->count++;
8076
8077 if (this_sectors > BB_MAX_LEN)
8078 this_sectors = BB_MAX_LEN;
8079 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8080 sectors -= this_sectors;
8081 s += this_sectors;
8082 }
8083 }
8084
8085 bb->changed = 1;
8086 if (!acknowledged)
8087 bb->unacked_exist = 1;
8088 write_sequnlock_irqrestore(&bb->lock, flags);
8089
8090 return rv;
8091 }
8092
8093 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8094 int is_new)
8095 {
8096 int rv;
8097 if (is_new)
8098 s += rdev->new_data_offset;
8099 else
8100 s += rdev->data_offset;
8101 rv = md_set_badblocks(&rdev->badblocks,
8102 s, sectors, 0);
8103 if (rv) {
8104 /* Make sure they get written out promptly */
8105 sysfs_notify_dirent_safe(rdev->sysfs_state);
8106 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8107 md_wakeup_thread(rdev->mddev->thread);
8108 }
8109 return rv;
8110 }
8111 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8112
8113 /*
8114 * Remove a range of bad blocks from the table.
8115 * This may involve extending the table if we spilt a region,
8116 * but it must not fail. So if the table becomes full, we just
8117 * drop the remove request.
8118 */
8119 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8120 {
8121 u64 *p;
8122 int lo, hi;
8123 sector_t target = s + sectors;
8124 int rv = 0;
8125
8126 if (bb->shift > 0) {
8127 /* When clearing we round the start up and the end down.
8128 * This should not matter as the shift should align with
8129 * the block size and no rounding should ever be needed.
8130 * However it is better the think a block is bad when it
8131 * isn't than to think a block is not bad when it is.
8132 */
8133 s += (1<<bb->shift) - 1;
8134 s >>= bb->shift;
8135 target >>= bb->shift;
8136 sectors = target - s;
8137 }
8138
8139 write_seqlock_irq(&bb->lock);
8140
8141 p = bb->page;
8142 lo = 0;
8143 hi = bb->count;
8144 /* Find the last range that starts before 'target' */
8145 while (hi - lo > 1) {
8146 int mid = (lo + hi) / 2;
8147 sector_t a = BB_OFFSET(p[mid]);
8148 if (a < target)
8149 lo = mid;
8150 else
8151 hi = mid;
8152 }
8153 if (hi > lo) {
8154 /* p[lo] is the last range that could overlap the
8155 * current range. Earlier ranges could also overlap,
8156 * but only this one can overlap the end of the range.
8157 */
8158 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8159 /* Partial overlap, leave the tail of this range */
8160 int ack = BB_ACK(p[lo]);
8161 sector_t a = BB_OFFSET(p[lo]);
8162 sector_t end = a + BB_LEN(p[lo]);
8163
8164 if (a < s) {
8165 /* we need to split this range */
8166 if (bb->count >= MD_MAX_BADBLOCKS) {
8167 rv = -ENOSPC;
8168 goto out;
8169 }
8170 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8171 bb->count++;
8172 p[lo] = BB_MAKE(a, s-a, ack);
8173 lo++;
8174 }
8175 p[lo] = BB_MAKE(target, end - target, ack);
8176 /* there is no longer an overlap */
8177 hi = lo;
8178 lo--;
8179 }
8180 while (lo >= 0 &&
8181 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8182 /* This range does overlap */
8183 if (BB_OFFSET(p[lo]) < s) {
8184 /* Keep the early parts of this range. */
8185 int ack = BB_ACK(p[lo]);
8186 sector_t start = BB_OFFSET(p[lo]);
8187 p[lo] = BB_MAKE(start, s - start, ack);
8188 /* now low doesn't overlap, so.. */
8189 break;
8190 }
8191 lo--;
8192 }
8193 /* 'lo' is strictly before, 'hi' is strictly after,
8194 * anything between needs to be discarded
8195 */
8196 if (hi - lo > 1) {
8197 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8198 bb->count -= (hi - lo - 1);
8199 }
8200 }
8201
8202 bb->changed = 1;
8203 out:
8204 write_sequnlock_irq(&bb->lock);
8205 return rv;
8206 }
8207
8208 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8209 int is_new)
8210 {
8211 if (is_new)
8212 s += rdev->new_data_offset;
8213 else
8214 s += rdev->data_offset;
8215 return md_clear_badblocks(&rdev->badblocks,
8216 s, sectors);
8217 }
8218 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8219
8220 /*
8221 * Acknowledge all bad blocks in a list.
8222 * This only succeeds if ->changed is clear. It is used by
8223 * in-kernel metadata updates
8224 */
8225 void md_ack_all_badblocks(struct badblocks *bb)
8226 {
8227 if (bb->page == NULL || bb->changed)
8228 /* no point even trying */
8229 return;
8230 write_seqlock_irq(&bb->lock);
8231
8232 if (bb->changed == 0 && bb->unacked_exist) {
8233 u64 *p = bb->page;
8234 int i;
8235 for (i = 0; i < bb->count ; i++) {
8236 if (!BB_ACK(p[i])) {
8237 sector_t start = BB_OFFSET(p[i]);
8238 int len = BB_LEN(p[i]);
8239 p[i] = BB_MAKE(start, len, 1);
8240 }
8241 }
8242 bb->unacked_exist = 0;
8243 }
8244 write_sequnlock_irq(&bb->lock);
8245 }
8246 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8247
8248 /* sysfs access to bad-blocks list.
8249 * We present two files.
8250 * 'bad-blocks' lists sector numbers and lengths of ranges that
8251 * are recorded as bad. The list is truncated to fit within
8252 * the one-page limit of sysfs.
8253 * Writing "sector length" to this file adds an acknowledged
8254 * bad block list.
8255 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8256 * been acknowledged. Writing to this file adds bad blocks
8257 * without acknowledging them. This is largely for testing.
8258 */
8259
8260 static ssize_t
8261 badblocks_show(struct badblocks *bb, char *page, int unack)
8262 {
8263 size_t len;
8264 int i;
8265 u64 *p = bb->page;
8266 unsigned seq;
8267
8268 if (bb->shift < 0)
8269 return 0;
8270
8271 retry:
8272 seq = read_seqbegin(&bb->lock);
8273
8274 len = 0;
8275 i = 0;
8276
8277 while (len < PAGE_SIZE && i < bb->count) {
8278 sector_t s = BB_OFFSET(p[i]);
8279 unsigned int length = BB_LEN(p[i]);
8280 int ack = BB_ACK(p[i]);
8281 i++;
8282
8283 if (unack && ack)
8284 continue;
8285
8286 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8287 (unsigned long long)s << bb->shift,
8288 length << bb->shift);
8289 }
8290 if (unack && len == 0)
8291 bb->unacked_exist = 0;
8292
8293 if (read_seqretry(&bb->lock, seq))
8294 goto retry;
8295
8296 return len;
8297 }
8298
8299 #define DO_DEBUG 1
8300
8301 static ssize_t
8302 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8303 {
8304 unsigned long long sector;
8305 int length;
8306 char newline;
8307 #ifdef DO_DEBUG
8308 /* Allow clearing via sysfs *only* for testing/debugging.
8309 * Normally only a successful write may clear a badblock
8310 */
8311 int clear = 0;
8312 if (page[0] == '-') {
8313 clear = 1;
8314 page++;
8315 }
8316 #endif /* DO_DEBUG */
8317
8318 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8319 case 3:
8320 if (newline != '\n')
8321 return -EINVAL;
8322 case 2:
8323 if (length <= 0)
8324 return -EINVAL;
8325 break;
8326 default:
8327 return -EINVAL;
8328 }
8329
8330 #ifdef DO_DEBUG
8331 if (clear) {
8332 md_clear_badblocks(bb, sector, length);
8333 return len;
8334 }
8335 #endif /* DO_DEBUG */
8336 if (md_set_badblocks(bb, sector, length, !unack))
8337 return len;
8338 else
8339 return -ENOSPC;
8340 }
8341
8342 static int md_notify_reboot(struct notifier_block *this,
8343 unsigned long code, void *x)
8344 {
8345 struct list_head *tmp;
8346 struct mddev *mddev;
8347 int need_delay = 0;
8348
8349 for_each_mddev(mddev, tmp) {
8350 if (mddev_trylock(mddev)) {
8351 if (mddev->pers)
8352 __md_stop_writes(mddev);
8353 if (mddev->persistent)
8354 mddev->safemode = 2;
8355 mddev_unlock(mddev);
8356 }
8357 need_delay = 1;
8358 }
8359 /*
8360 * certain more exotic SCSI devices are known to be
8361 * volatile wrt too early system reboots. While the
8362 * right place to handle this issue is the given
8363 * driver, we do want to have a safe RAID driver ...
8364 */
8365 if (need_delay)
8366 mdelay(1000*1);
8367
8368 return NOTIFY_DONE;
8369 }
8370
8371 static struct notifier_block md_notifier = {
8372 .notifier_call = md_notify_reboot,
8373 .next = NULL,
8374 .priority = INT_MAX, /* before any real devices */
8375 };
8376
8377 static void md_geninit(void)
8378 {
8379 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8380
8381 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8382 }
8383
8384 static int __init md_init(void)
8385 {
8386 int ret = -ENOMEM;
8387
8388 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8389 if (!md_wq)
8390 goto err_wq;
8391
8392 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8393 if (!md_misc_wq)
8394 goto err_misc_wq;
8395
8396 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8397 goto err_md;
8398
8399 if ((ret = register_blkdev(0, "mdp")) < 0)
8400 goto err_mdp;
8401 mdp_major = ret;
8402
8403 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8404 md_probe, NULL, NULL);
8405 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8406 md_probe, NULL, NULL);
8407
8408 register_reboot_notifier(&md_notifier);
8409 raid_table_header = register_sysctl_table(raid_root_table);
8410
8411 md_geninit();
8412 return 0;
8413
8414 err_mdp:
8415 unregister_blkdev(MD_MAJOR, "md");
8416 err_md:
8417 destroy_workqueue(md_misc_wq);
8418 err_misc_wq:
8419 destroy_workqueue(md_wq);
8420 err_wq:
8421 return ret;
8422 }
8423
8424 #ifndef MODULE
8425
8426 /*
8427 * Searches all registered partitions for autorun RAID arrays
8428 * at boot time.
8429 */
8430
8431 static LIST_HEAD(all_detected_devices);
8432 struct detected_devices_node {
8433 struct list_head list;
8434 dev_t dev;
8435 };
8436
8437 void md_autodetect_dev(dev_t dev)
8438 {
8439 struct detected_devices_node *node_detected_dev;
8440
8441 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8442 if (node_detected_dev) {
8443 node_detected_dev->dev = dev;
8444 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8445 } else {
8446 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8447 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8448 }
8449 }
8450
8451 static void autostart_arrays(int part)
8452 {
8453 struct md_rdev *rdev;
8454 struct detected_devices_node *node_detected_dev;
8455 dev_t dev;
8456 int i_scanned, i_passed;
8457
8458 i_scanned = 0;
8459 i_passed = 0;
8460
8461 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8462
8463 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8464 i_scanned++;
8465 node_detected_dev = list_entry(all_detected_devices.next,
8466 struct detected_devices_node, list);
8467 list_del(&node_detected_dev->list);
8468 dev = node_detected_dev->dev;
8469 kfree(node_detected_dev);
8470 rdev = md_import_device(dev,0, 90);
8471 if (IS_ERR(rdev))
8472 continue;
8473
8474 if (test_bit(Faulty, &rdev->flags))
8475 continue;
8476
8477 set_bit(AutoDetected, &rdev->flags);
8478 list_add(&rdev->same_set, &pending_raid_disks);
8479 i_passed++;
8480 }
8481
8482 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8483 i_scanned, i_passed);
8484
8485 autorun_devices(part);
8486 }
8487
8488 #endif /* !MODULE */
8489
8490 static __exit void md_exit(void)
8491 {
8492 struct mddev *mddev;
8493 struct list_head *tmp;
8494 int delay = 1;
8495
8496 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8497 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8498
8499 unregister_blkdev(MD_MAJOR,"md");
8500 unregister_blkdev(mdp_major, "mdp");
8501 unregister_reboot_notifier(&md_notifier);
8502 unregister_sysctl_table(raid_table_header);
8503
8504 /* We cannot unload the modules while some process is
8505 * waiting for us in select() or poll() - wake them up
8506 */
8507 md_unloading = 1;
8508 while (waitqueue_active(&md_event_waiters)) {
8509 /* not safe to leave yet */
8510 wake_up(&md_event_waiters);
8511 msleep(delay);
8512 delay += delay;
8513 }
8514 remove_proc_entry("mdstat", NULL);
8515
8516 for_each_mddev(mddev, tmp) {
8517 export_array(mddev);
8518 mddev->hold_active = 0;
8519 }
8520 destroy_workqueue(md_misc_wq);
8521 destroy_workqueue(md_wq);
8522 }
8523
8524 subsys_initcall(md_init);
8525 module_exit(md_exit)
8526
8527 static int get_ro(char *buffer, struct kernel_param *kp)
8528 {
8529 return sprintf(buffer, "%d", start_readonly);
8530 }
8531 static int set_ro(const char *val, struct kernel_param *kp)
8532 {
8533 char *e;
8534 int num = simple_strtoul(val, &e, 10);
8535 if (*val && (*e == '\0' || *e == '\n')) {
8536 start_readonly = num;
8537 return 0;
8538 }
8539 return -EINVAL;
8540 }
8541
8542 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8543 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8544 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8545
8546 MODULE_LICENSE("GPL");
8547 MODULE_DESCRIPTION("MD RAID framework");
8548 MODULE_ALIAS("md");
8549 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.239448 seconds and 6 git commands to generate.