Merge branch 'for-3.6/core' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
76
77 /*
78 * Default number of read corrections we'll attempt on an rdev
79 * before ejecting it from the array. We divide the read error
80 * count by 2 for every hour elapsed between read errors.
81 */
82 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
83 /*
84 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
85 * is 1000 KB/sec, so the extra system load does not show up that much.
86 * Increase it if you want to have more _guaranteed_ speed. Note that
87 * the RAID driver will use the maximum available bandwidth if the IO
88 * subsystem is idle. There is also an 'absolute maximum' reconstruction
89 * speed limit - in case reconstruction slows down your system despite
90 * idle IO detection.
91 *
92 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
93 * or /sys/block/mdX/md/sync_speed_{min,max}
94 */
95
96 static int sysctl_speed_limit_min = 1000;
97 static int sysctl_speed_limit_max = 200000;
98 static inline int speed_min(struct mddev *mddev)
99 {
100 return mddev->sync_speed_min ?
101 mddev->sync_speed_min : sysctl_speed_limit_min;
102 }
103
104 static inline int speed_max(struct mddev *mddev)
105 {
106 return mddev->sync_speed_max ?
107 mddev->sync_speed_max : sysctl_speed_limit_max;
108 }
109
110 static struct ctl_table_header *raid_table_header;
111
112 static ctl_table raid_table[] = {
113 {
114 .procname = "speed_limit_min",
115 .data = &sysctl_speed_limit_min,
116 .maxlen = sizeof(int),
117 .mode = S_IRUGO|S_IWUSR,
118 .proc_handler = proc_dointvec,
119 },
120 {
121 .procname = "speed_limit_max",
122 .data = &sysctl_speed_limit_max,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 { }
128 };
129
130 static ctl_table raid_dir_table[] = {
131 {
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = S_IRUGO|S_IXUGO,
135 .child = raid_table,
136 },
137 { }
138 };
139
140 static ctl_table raid_root_table[] = {
141 {
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { }
148 };
149
150 static const struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /* bio_clone_mddev
155 * like bio_clone, but with a local bio set
156 */
157
158 static void mddev_bio_destructor(struct bio *bio)
159 {
160 struct mddev *mddev, **mddevp;
161
162 mddevp = (void*)bio;
163 mddev = mddevp[-1];
164
165 bio_free(bio, mddev->bio_set);
166 }
167
168 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
169 struct mddev *mddev)
170 {
171 struct bio *b;
172 struct mddev **mddevp;
173
174 if (!mddev || !mddev->bio_set)
175 return bio_alloc(gfp_mask, nr_iovecs);
176
177 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
178 mddev->bio_set);
179 if (!b)
180 return NULL;
181 mddevp = (void*)b;
182 mddevp[-1] = mddev;
183 b->bi_destructor = mddev_bio_destructor;
184 return b;
185 }
186 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
187
188 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
189 struct mddev *mddev)
190 {
191 struct bio *b;
192 struct mddev **mddevp;
193
194 if (!mddev || !mddev->bio_set)
195 return bio_clone(bio, gfp_mask);
196
197 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
198 mddev->bio_set);
199 if (!b)
200 return NULL;
201 mddevp = (void*)b;
202 mddevp[-1] = mddev;
203 b->bi_destructor = mddev_bio_destructor;
204 __bio_clone(b, bio);
205 if (bio_integrity(bio)) {
206 int ret;
207
208 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
209
210 if (ret < 0) {
211 bio_put(b);
212 return NULL;
213 }
214 }
215
216 return b;
217 }
218 EXPORT_SYMBOL_GPL(bio_clone_mddev);
219
220 void md_trim_bio(struct bio *bio, int offset, int size)
221 {
222 /* 'bio' is a cloned bio which we need to trim to match
223 * the given offset and size.
224 * This requires adjusting bi_sector, bi_size, and bi_io_vec
225 */
226 int i;
227 struct bio_vec *bvec;
228 int sofar = 0;
229
230 size <<= 9;
231 if (offset == 0 && size == bio->bi_size)
232 return;
233
234 bio->bi_sector += offset;
235 bio->bi_size = size;
236 offset <<= 9;
237 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
238
239 while (bio->bi_idx < bio->bi_vcnt &&
240 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
241 /* remove this whole bio_vec */
242 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
243 bio->bi_idx++;
244 }
245 if (bio->bi_idx < bio->bi_vcnt) {
246 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
247 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
248 }
249 /* avoid any complications with bi_idx being non-zero*/
250 if (bio->bi_idx) {
251 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
252 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
253 bio->bi_vcnt -= bio->bi_idx;
254 bio->bi_idx = 0;
255 }
256 /* Make sure vcnt and last bv are not too big */
257 bio_for_each_segment(bvec, bio, i) {
258 if (sofar + bvec->bv_len > size)
259 bvec->bv_len = size - sofar;
260 if (bvec->bv_len == 0) {
261 bio->bi_vcnt = i;
262 break;
263 }
264 sofar += bvec->bv_len;
265 }
266 }
267 EXPORT_SYMBOL_GPL(md_trim_bio);
268
269 /*
270 * We have a system wide 'event count' that is incremented
271 * on any 'interesting' event, and readers of /proc/mdstat
272 * can use 'poll' or 'select' to find out when the event
273 * count increases.
274 *
275 * Events are:
276 * start array, stop array, error, add device, remove device,
277 * start build, activate spare
278 */
279 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
280 static atomic_t md_event_count;
281 void md_new_event(struct mddev *mddev)
282 {
283 atomic_inc(&md_event_count);
284 wake_up(&md_event_waiters);
285 }
286 EXPORT_SYMBOL_GPL(md_new_event);
287
288 /* Alternate version that can be called from interrupts
289 * when calling sysfs_notify isn't needed.
290 */
291 static void md_new_event_inintr(struct mddev *mddev)
292 {
293 atomic_inc(&md_event_count);
294 wake_up(&md_event_waiters);
295 }
296
297 /*
298 * Enables to iterate over all existing md arrays
299 * all_mddevs_lock protects this list.
300 */
301 static LIST_HEAD(all_mddevs);
302 static DEFINE_SPINLOCK(all_mddevs_lock);
303
304
305 /*
306 * iterates through all used mddevs in the system.
307 * We take care to grab the all_mddevs_lock whenever navigating
308 * the list, and to always hold a refcount when unlocked.
309 * Any code which breaks out of this loop while own
310 * a reference to the current mddev and must mddev_put it.
311 */
312 #define for_each_mddev(_mddev,_tmp) \
313 \
314 for (({ spin_lock(&all_mddevs_lock); \
315 _tmp = all_mddevs.next; \
316 _mddev = NULL;}); \
317 ({ if (_tmp != &all_mddevs) \
318 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
319 spin_unlock(&all_mddevs_lock); \
320 if (_mddev) mddev_put(_mddev); \
321 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
322 _tmp != &all_mddevs;}); \
323 ({ spin_lock(&all_mddevs_lock); \
324 _tmp = _tmp->next;}) \
325 )
326
327
328 /* Rather than calling directly into the personality make_request function,
329 * IO requests come here first so that we can check if the device is
330 * being suspended pending a reconfiguration.
331 * We hold a refcount over the call to ->make_request. By the time that
332 * call has finished, the bio has been linked into some internal structure
333 * and so is visible to ->quiesce(), so we don't need the refcount any more.
334 */
335 static void md_make_request(struct request_queue *q, struct bio *bio)
336 {
337 const int rw = bio_data_dir(bio);
338 struct mddev *mddev = q->queuedata;
339 int cpu;
340 unsigned int sectors;
341
342 if (mddev == NULL || mddev->pers == NULL
343 || !mddev->ready) {
344 bio_io_error(bio);
345 return;
346 }
347 smp_rmb(); /* Ensure implications of 'active' are visible */
348 rcu_read_lock();
349 if (mddev->suspended) {
350 DEFINE_WAIT(__wait);
351 for (;;) {
352 prepare_to_wait(&mddev->sb_wait, &__wait,
353 TASK_UNINTERRUPTIBLE);
354 if (!mddev->suspended)
355 break;
356 rcu_read_unlock();
357 schedule();
358 rcu_read_lock();
359 }
360 finish_wait(&mddev->sb_wait, &__wait);
361 }
362 atomic_inc(&mddev->active_io);
363 rcu_read_unlock();
364
365 /*
366 * save the sectors now since our bio can
367 * go away inside make_request
368 */
369 sectors = bio_sectors(bio);
370 mddev->pers->make_request(mddev, bio);
371
372 cpu = part_stat_lock();
373 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
374 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
375 part_stat_unlock();
376
377 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
378 wake_up(&mddev->sb_wait);
379 }
380
381 /* mddev_suspend makes sure no new requests are submitted
382 * to the device, and that any requests that have been submitted
383 * are completely handled.
384 * Once ->stop is called and completes, the module will be completely
385 * unused.
386 */
387 void mddev_suspend(struct mddev *mddev)
388 {
389 BUG_ON(mddev->suspended);
390 mddev->suspended = 1;
391 synchronize_rcu();
392 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
393 mddev->pers->quiesce(mddev, 1);
394
395 del_timer_sync(&mddev->safemode_timer);
396 }
397 EXPORT_SYMBOL_GPL(mddev_suspend);
398
399 void mddev_resume(struct mddev *mddev)
400 {
401 mddev->suspended = 0;
402 wake_up(&mddev->sb_wait);
403 mddev->pers->quiesce(mddev, 0);
404
405 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
406 md_wakeup_thread(mddev->thread);
407 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
408 }
409 EXPORT_SYMBOL_GPL(mddev_resume);
410
411 int mddev_congested(struct mddev *mddev, int bits)
412 {
413 return mddev->suspended;
414 }
415 EXPORT_SYMBOL(mddev_congested);
416
417 /*
418 * Generic flush handling for md
419 */
420
421 static void md_end_flush(struct bio *bio, int err)
422 {
423 struct md_rdev *rdev = bio->bi_private;
424 struct mddev *mddev = rdev->mddev;
425
426 rdev_dec_pending(rdev, mddev);
427
428 if (atomic_dec_and_test(&mddev->flush_pending)) {
429 /* The pre-request flush has finished */
430 queue_work(md_wq, &mddev->flush_work);
431 }
432 bio_put(bio);
433 }
434
435 static void md_submit_flush_data(struct work_struct *ws);
436
437 static void submit_flushes(struct work_struct *ws)
438 {
439 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
440 struct md_rdev *rdev;
441
442 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
443 atomic_set(&mddev->flush_pending, 1);
444 rcu_read_lock();
445 rdev_for_each_rcu(rdev, mddev)
446 if (rdev->raid_disk >= 0 &&
447 !test_bit(Faulty, &rdev->flags)) {
448 /* Take two references, one is dropped
449 * when request finishes, one after
450 * we reclaim rcu_read_lock
451 */
452 struct bio *bi;
453 atomic_inc(&rdev->nr_pending);
454 atomic_inc(&rdev->nr_pending);
455 rcu_read_unlock();
456 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
457 bi->bi_end_io = md_end_flush;
458 bi->bi_private = rdev;
459 bi->bi_bdev = rdev->bdev;
460 atomic_inc(&mddev->flush_pending);
461 submit_bio(WRITE_FLUSH, bi);
462 rcu_read_lock();
463 rdev_dec_pending(rdev, mddev);
464 }
465 rcu_read_unlock();
466 if (atomic_dec_and_test(&mddev->flush_pending))
467 queue_work(md_wq, &mddev->flush_work);
468 }
469
470 static void md_submit_flush_data(struct work_struct *ws)
471 {
472 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
473 struct bio *bio = mddev->flush_bio;
474
475 if (bio->bi_size == 0)
476 /* an empty barrier - all done */
477 bio_endio(bio, 0);
478 else {
479 bio->bi_rw &= ~REQ_FLUSH;
480 mddev->pers->make_request(mddev, bio);
481 }
482
483 mddev->flush_bio = NULL;
484 wake_up(&mddev->sb_wait);
485 }
486
487 void md_flush_request(struct mddev *mddev, struct bio *bio)
488 {
489 spin_lock_irq(&mddev->write_lock);
490 wait_event_lock_irq(mddev->sb_wait,
491 !mddev->flush_bio,
492 mddev->write_lock, /*nothing*/);
493 mddev->flush_bio = bio;
494 spin_unlock_irq(&mddev->write_lock);
495
496 INIT_WORK(&mddev->flush_work, submit_flushes);
497 queue_work(md_wq, &mddev->flush_work);
498 }
499 EXPORT_SYMBOL(md_flush_request);
500
501 /* Support for plugging.
502 * This mirrors the plugging support in request_queue, but does not
503 * require having a whole queue or request structures.
504 * We allocate an md_plug_cb for each md device and each thread it gets
505 * plugged on. This links tot the private plug_handle structure in the
506 * personality data where we keep a count of the number of outstanding
507 * plugs so other code can see if a plug is active.
508 */
509 struct md_plug_cb {
510 struct blk_plug_cb cb;
511 struct mddev *mddev;
512 };
513
514 static void plugger_unplug(struct blk_plug_cb *cb)
515 {
516 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
517 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
518 md_wakeup_thread(mdcb->mddev->thread);
519 kfree(mdcb);
520 }
521
522 /* Check that an unplug wakeup will come shortly.
523 * If not, wakeup the md thread immediately
524 */
525 int mddev_check_plugged(struct mddev *mddev)
526 {
527 struct blk_plug *plug = current->plug;
528 struct md_plug_cb *mdcb;
529
530 if (!plug)
531 return 0;
532
533 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
534 if (mdcb->cb.callback == plugger_unplug &&
535 mdcb->mddev == mddev) {
536 /* Already on the list, move to top */
537 if (mdcb != list_first_entry(&plug->cb_list,
538 struct md_plug_cb,
539 cb.list))
540 list_move(&mdcb->cb.list, &plug->cb_list);
541 return 1;
542 }
543 }
544 /* Not currently on the callback list */
545 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
546 if (!mdcb)
547 return 0;
548
549 mdcb->mddev = mddev;
550 mdcb->cb.callback = plugger_unplug;
551 atomic_inc(&mddev->plug_cnt);
552 list_add(&mdcb->cb.list, &plug->cb_list);
553 return 1;
554 }
555 EXPORT_SYMBOL_GPL(mddev_check_plugged);
556
557 static inline struct mddev *mddev_get(struct mddev *mddev)
558 {
559 atomic_inc(&mddev->active);
560 return mddev;
561 }
562
563 static void mddev_delayed_delete(struct work_struct *ws);
564
565 static void mddev_put(struct mddev *mddev)
566 {
567 struct bio_set *bs = NULL;
568
569 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
570 return;
571 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
572 mddev->ctime == 0 && !mddev->hold_active) {
573 /* Array is not configured at all, and not held active,
574 * so destroy it */
575 list_del_init(&mddev->all_mddevs);
576 bs = mddev->bio_set;
577 mddev->bio_set = NULL;
578 if (mddev->gendisk) {
579 /* We did a probe so need to clean up. Call
580 * queue_work inside the spinlock so that
581 * flush_workqueue() after mddev_find will
582 * succeed in waiting for the work to be done.
583 */
584 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
585 queue_work(md_misc_wq, &mddev->del_work);
586 } else
587 kfree(mddev);
588 }
589 spin_unlock(&all_mddevs_lock);
590 if (bs)
591 bioset_free(bs);
592 }
593
594 void mddev_init(struct mddev *mddev)
595 {
596 mutex_init(&mddev->open_mutex);
597 mutex_init(&mddev->reconfig_mutex);
598 mutex_init(&mddev->bitmap_info.mutex);
599 INIT_LIST_HEAD(&mddev->disks);
600 INIT_LIST_HEAD(&mddev->all_mddevs);
601 init_timer(&mddev->safemode_timer);
602 atomic_set(&mddev->active, 1);
603 atomic_set(&mddev->openers, 0);
604 atomic_set(&mddev->active_io, 0);
605 atomic_set(&mddev->plug_cnt, 0);
606 spin_lock_init(&mddev->write_lock);
607 atomic_set(&mddev->flush_pending, 0);
608 init_waitqueue_head(&mddev->sb_wait);
609 init_waitqueue_head(&mddev->recovery_wait);
610 mddev->reshape_position = MaxSector;
611 mddev->reshape_backwards = 0;
612 mddev->resync_min = 0;
613 mddev->resync_max = MaxSector;
614 mddev->level = LEVEL_NONE;
615 }
616 EXPORT_SYMBOL_GPL(mddev_init);
617
618 static struct mddev * mddev_find(dev_t unit)
619 {
620 struct mddev *mddev, *new = NULL;
621
622 if (unit && MAJOR(unit) != MD_MAJOR)
623 unit &= ~((1<<MdpMinorShift)-1);
624
625 retry:
626 spin_lock(&all_mddevs_lock);
627
628 if (unit) {
629 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
630 if (mddev->unit == unit) {
631 mddev_get(mddev);
632 spin_unlock(&all_mddevs_lock);
633 kfree(new);
634 return mddev;
635 }
636
637 if (new) {
638 list_add(&new->all_mddevs, &all_mddevs);
639 spin_unlock(&all_mddevs_lock);
640 new->hold_active = UNTIL_IOCTL;
641 return new;
642 }
643 } else if (new) {
644 /* find an unused unit number */
645 static int next_minor = 512;
646 int start = next_minor;
647 int is_free = 0;
648 int dev = 0;
649 while (!is_free) {
650 dev = MKDEV(MD_MAJOR, next_minor);
651 next_minor++;
652 if (next_minor > MINORMASK)
653 next_minor = 0;
654 if (next_minor == start) {
655 /* Oh dear, all in use. */
656 spin_unlock(&all_mddevs_lock);
657 kfree(new);
658 return NULL;
659 }
660
661 is_free = 1;
662 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
663 if (mddev->unit == dev) {
664 is_free = 0;
665 break;
666 }
667 }
668 new->unit = dev;
669 new->md_minor = MINOR(dev);
670 new->hold_active = UNTIL_STOP;
671 list_add(&new->all_mddevs, &all_mddevs);
672 spin_unlock(&all_mddevs_lock);
673 return new;
674 }
675 spin_unlock(&all_mddevs_lock);
676
677 new = kzalloc(sizeof(*new), GFP_KERNEL);
678 if (!new)
679 return NULL;
680
681 new->unit = unit;
682 if (MAJOR(unit) == MD_MAJOR)
683 new->md_minor = MINOR(unit);
684 else
685 new->md_minor = MINOR(unit) >> MdpMinorShift;
686
687 mddev_init(new);
688
689 goto retry;
690 }
691
692 static inline int mddev_lock(struct mddev * mddev)
693 {
694 return mutex_lock_interruptible(&mddev->reconfig_mutex);
695 }
696
697 static inline int mddev_is_locked(struct mddev *mddev)
698 {
699 return mutex_is_locked(&mddev->reconfig_mutex);
700 }
701
702 static inline int mddev_trylock(struct mddev * mddev)
703 {
704 return mutex_trylock(&mddev->reconfig_mutex);
705 }
706
707 static struct attribute_group md_redundancy_group;
708
709 static void mddev_unlock(struct mddev * mddev)
710 {
711 if (mddev->to_remove) {
712 /* These cannot be removed under reconfig_mutex as
713 * an access to the files will try to take reconfig_mutex
714 * while holding the file unremovable, which leads to
715 * a deadlock.
716 * So hold set sysfs_active while the remove in happeing,
717 * and anything else which might set ->to_remove or my
718 * otherwise change the sysfs namespace will fail with
719 * -EBUSY if sysfs_active is still set.
720 * We set sysfs_active under reconfig_mutex and elsewhere
721 * test it under the same mutex to ensure its correct value
722 * is seen.
723 */
724 struct attribute_group *to_remove = mddev->to_remove;
725 mddev->to_remove = NULL;
726 mddev->sysfs_active = 1;
727 mutex_unlock(&mddev->reconfig_mutex);
728
729 if (mddev->kobj.sd) {
730 if (to_remove != &md_redundancy_group)
731 sysfs_remove_group(&mddev->kobj, to_remove);
732 if (mddev->pers == NULL ||
733 mddev->pers->sync_request == NULL) {
734 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
735 if (mddev->sysfs_action)
736 sysfs_put(mddev->sysfs_action);
737 mddev->sysfs_action = NULL;
738 }
739 }
740 mddev->sysfs_active = 0;
741 } else
742 mutex_unlock(&mddev->reconfig_mutex);
743
744 /* As we've dropped the mutex we need a spinlock to
745 * make sure the thread doesn't disappear
746 */
747 spin_lock(&pers_lock);
748 md_wakeup_thread(mddev->thread);
749 spin_unlock(&pers_lock);
750 }
751
752 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
753 {
754 struct md_rdev *rdev;
755
756 rdev_for_each(rdev, mddev)
757 if (rdev->desc_nr == nr)
758 return rdev;
759
760 return NULL;
761 }
762
763 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
764 {
765 struct md_rdev *rdev;
766
767 rdev_for_each(rdev, mddev)
768 if (rdev->bdev->bd_dev == dev)
769 return rdev;
770
771 return NULL;
772 }
773
774 static struct md_personality *find_pers(int level, char *clevel)
775 {
776 struct md_personality *pers;
777 list_for_each_entry(pers, &pers_list, list) {
778 if (level != LEVEL_NONE && pers->level == level)
779 return pers;
780 if (strcmp(pers->name, clevel)==0)
781 return pers;
782 }
783 return NULL;
784 }
785
786 /* return the offset of the super block in 512byte sectors */
787 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
788 {
789 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
790 return MD_NEW_SIZE_SECTORS(num_sectors);
791 }
792
793 static int alloc_disk_sb(struct md_rdev * rdev)
794 {
795 if (rdev->sb_page)
796 MD_BUG();
797
798 rdev->sb_page = alloc_page(GFP_KERNEL);
799 if (!rdev->sb_page) {
800 printk(KERN_ALERT "md: out of memory.\n");
801 return -ENOMEM;
802 }
803
804 return 0;
805 }
806
807 void md_rdev_clear(struct md_rdev *rdev)
808 {
809 if (rdev->sb_page) {
810 put_page(rdev->sb_page);
811 rdev->sb_loaded = 0;
812 rdev->sb_page = NULL;
813 rdev->sb_start = 0;
814 rdev->sectors = 0;
815 }
816 if (rdev->bb_page) {
817 put_page(rdev->bb_page);
818 rdev->bb_page = NULL;
819 }
820 kfree(rdev->badblocks.page);
821 rdev->badblocks.page = NULL;
822 }
823 EXPORT_SYMBOL_GPL(md_rdev_clear);
824
825 static void super_written(struct bio *bio, int error)
826 {
827 struct md_rdev *rdev = bio->bi_private;
828 struct mddev *mddev = rdev->mddev;
829
830 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
831 printk("md: super_written gets error=%d, uptodate=%d\n",
832 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
833 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
834 md_error(mddev, rdev);
835 }
836
837 if (atomic_dec_and_test(&mddev->pending_writes))
838 wake_up(&mddev->sb_wait);
839 bio_put(bio);
840 }
841
842 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
843 sector_t sector, int size, struct page *page)
844 {
845 /* write first size bytes of page to sector of rdev
846 * Increment mddev->pending_writes before returning
847 * and decrement it on completion, waking up sb_wait
848 * if zero is reached.
849 * If an error occurred, call md_error
850 */
851 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
852
853 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
854 bio->bi_sector = sector;
855 bio_add_page(bio, page, size, 0);
856 bio->bi_private = rdev;
857 bio->bi_end_io = super_written;
858
859 atomic_inc(&mddev->pending_writes);
860 submit_bio(WRITE_FLUSH_FUA, bio);
861 }
862
863 void md_super_wait(struct mddev *mddev)
864 {
865 /* wait for all superblock writes that were scheduled to complete */
866 DEFINE_WAIT(wq);
867 for(;;) {
868 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
869 if (atomic_read(&mddev->pending_writes)==0)
870 break;
871 schedule();
872 }
873 finish_wait(&mddev->sb_wait, &wq);
874 }
875
876 static void bi_complete(struct bio *bio, int error)
877 {
878 complete((struct completion*)bio->bi_private);
879 }
880
881 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
882 struct page *page, int rw, bool metadata_op)
883 {
884 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
885 struct completion event;
886 int ret;
887
888 rw |= REQ_SYNC;
889
890 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
891 rdev->meta_bdev : rdev->bdev;
892 if (metadata_op)
893 bio->bi_sector = sector + rdev->sb_start;
894 else if (rdev->mddev->reshape_position != MaxSector &&
895 (rdev->mddev->reshape_backwards ==
896 (sector >= rdev->mddev->reshape_position)))
897 bio->bi_sector = sector + rdev->new_data_offset;
898 else
899 bio->bi_sector = sector + rdev->data_offset;
900 bio_add_page(bio, page, size, 0);
901 init_completion(&event);
902 bio->bi_private = &event;
903 bio->bi_end_io = bi_complete;
904 submit_bio(rw, bio);
905 wait_for_completion(&event);
906
907 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
908 bio_put(bio);
909 return ret;
910 }
911 EXPORT_SYMBOL_GPL(sync_page_io);
912
913 static int read_disk_sb(struct md_rdev * rdev, int size)
914 {
915 char b[BDEVNAME_SIZE];
916 if (!rdev->sb_page) {
917 MD_BUG();
918 return -EINVAL;
919 }
920 if (rdev->sb_loaded)
921 return 0;
922
923
924 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
925 goto fail;
926 rdev->sb_loaded = 1;
927 return 0;
928
929 fail:
930 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
931 bdevname(rdev->bdev,b));
932 return -EINVAL;
933 }
934
935 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 {
937 return sb1->set_uuid0 == sb2->set_uuid0 &&
938 sb1->set_uuid1 == sb2->set_uuid1 &&
939 sb1->set_uuid2 == sb2->set_uuid2 &&
940 sb1->set_uuid3 == sb2->set_uuid3;
941 }
942
943 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
944 {
945 int ret;
946 mdp_super_t *tmp1, *tmp2;
947
948 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
949 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
950
951 if (!tmp1 || !tmp2) {
952 ret = 0;
953 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
954 goto abort;
955 }
956
957 *tmp1 = *sb1;
958 *tmp2 = *sb2;
959
960 /*
961 * nr_disks is not constant
962 */
963 tmp1->nr_disks = 0;
964 tmp2->nr_disks = 0;
965
966 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
967 abort:
968 kfree(tmp1);
969 kfree(tmp2);
970 return ret;
971 }
972
973
974 static u32 md_csum_fold(u32 csum)
975 {
976 csum = (csum & 0xffff) + (csum >> 16);
977 return (csum & 0xffff) + (csum >> 16);
978 }
979
980 static unsigned int calc_sb_csum(mdp_super_t * sb)
981 {
982 u64 newcsum = 0;
983 u32 *sb32 = (u32*)sb;
984 int i;
985 unsigned int disk_csum, csum;
986
987 disk_csum = sb->sb_csum;
988 sb->sb_csum = 0;
989
990 for (i = 0; i < MD_SB_BYTES/4 ; i++)
991 newcsum += sb32[i];
992 csum = (newcsum & 0xffffffff) + (newcsum>>32);
993
994
995 #ifdef CONFIG_ALPHA
996 /* This used to use csum_partial, which was wrong for several
997 * reasons including that different results are returned on
998 * different architectures. It isn't critical that we get exactly
999 * the same return value as before (we always csum_fold before
1000 * testing, and that removes any differences). However as we
1001 * know that csum_partial always returned a 16bit value on
1002 * alphas, do a fold to maximise conformity to previous behaviour.
1003 */
1004 sb->sb_csum = md_csum_fold(disk_csum);
1005 #else
1006 sb->sb_csum = disk_csum;
1007 #endif
1008 return csum;
1009 }
1010
1011
1012 /*
1013 * Handle superblock details.
1014 * We want to be able to handle multiple superblock formats
1015 * so we have a common interface to them all, and an array of
1016 * different handlers.
1017 * We rely on user-space to write the initial superblock, and support
1018 * reading and updating of superblocks.
1019 * Interface methods are:
1020 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1021 * loads and validates a superblock on dev.
1022 * if refdev != NULL, compare superblocks on both devices
1023 * Return:
1024 * 0 - dev has a superblock that is compatible with refdev
1025 * 1 - dev has a superblock that is compatible and newer than refdev
1026 * so dev should be used as the refdev in future
1027 * -EINVAL superblock incompatible or invalid
1028 * -othererror e.g. -EIO
1029 *
1030 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1031 * Verify that dev is acceptable into mddev.
1032 * The first time, mddev->raid_disks will be 0, and data from
1033 * dev should be merged in. Subsequent calls check that dev
1034 * is new enough. Return 0 or -EINVAL
1035 *
1036 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1037 * Update the superblock for rdev with data in mddev
1038 * This does not write to disc.
1039 *
1040 */
1041
1042 struct super_type {
1043 char *name;
1044 struct module *owner;
1045 int (*load_super)(struct md_rdev *rdev,
1046 struct md_rdev *refdev,
1047 int minor_version);
1048 int (*validate_super)(struct mddev *mddev,
1049 struct md_rdev *rdev);
1050 void (*sync_super)(struct mddev *mddev,
1051 struct md_rdev *rdev);
1052 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1053 sector_t num_sectors);
1054 int (*allow_new_offset)(struct md_rdev *rdev,
1055 unsigned long long new_offset);
1056 };
1057
1058 /*
1059 * Check that the given mddev has no bitmap.
1060 *
1061 * This function is called from the run method of all personalities that do not
1062 * support bitmaps. It prints an error message and returns non-zero if mddev
1063 * has a bitmap. Otherwise, it returns 0.
1064 *
1065 */
1066 int md_check_no_bitmap(struct mddev *mddev)
1067 {
1068 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1069 return 0;
1070 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1071 mdname(mddev), mddev->pers->name);
1072 return 1;
1073 }
1074 EXPORT_SYMBOL(md_check_no_bitmap);
1075
1076 /*
1077 * load_super for 0.90.0
1078 */
1079 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1080 {
1081 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1082 mdp_super_t *sb;
1083 int ret;
1084
1085 /*
1086 * Calculate the position of the superblock (512byte sectors),
1087 * it's at the end of the disk.
1088 *
1089 * It also happens to be a multiple of 4Kb.
1090 */
1091 rdev->sb_start = calc_dev_sboffset(rdev);
1092
1093 ret = read_disk_sb(rdev, MD_SB_BYTES);
1094 if (ret) return ret;
1095
1096 ret = -EINVAL;
1097
1098 bdevname(rdev->bdev, b);
1099 sb = page_address(rdev->sb_page);
1100
1101 if (sb->md_magic != MD_SB_MAGIC) {
1102 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1103 b);
1104 goto abort;
1105 }
1106
1107 if (sb->major_version != 0 ||
1108 sb->minor_version < 90 ||
1109 sb->minor_version > 91) {
1110 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1111 sb->major_version, sb->minor_version,
1112 b);
1113 goto abort;
1114 }
1115
1116 if (sb->raid_disks <= 0)
1117 goto abort;
1118
1119 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1120 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1121 b);
1122 goto abort;
1123 }
1124
1125 rdev->preferred_minor = sb->md_minor;
1126 rdev->data_offset = 0;
1127 rdev->new_data_offset = 0;
1128 rdev->sb_size = MD_SB_BYTES;
1129 rdev->badblocks.shift = -1;
1130
1131 if (sb->level == LEVEL_MULTIPATH)
1132 rdev->desc_nr = -1;
1133 else
1134 rdev->desc_nr = sb->this_disk.number;
1135
1136 if (!refdev) {
1137 ret = 1;
1138 } else {
1139 __u64 ev1, ev2;
1140 mdp_super_t *refsb = page_address(refdev->sb_page);
1141 if (!uuid_equal(refsb, sb)) {
1142 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1143 b, bdevname(refdev->bdev,b2));
1144 goto abort;
1145 }
1146 if (!sb_equal(refsb, sb)) {
1147 printk(KERN_WARNING "md: %s has same UUID"
1148 " but different superblock to %s\n",
1149 b, bdevname(refdev->bdev, b2));
1150 goto abort;
1151 }
1152 ev1 = md_event(sb);
1153 ev2 = md_event(refsb);
1154 if (ev1 > ev2)
1155 ret = 1;
1156 else
1157 ret = 0;
1158 }
1159 rdev->sectors = rdev->sb_start;
1160 /* Limit to 4TB as metadata cannot record more than that */
1161 if (rdev->sectors >= (2ULL << 32))
1162 rdev->sectors = (2ULL << 32) - 2;
1163
1164 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1165 /* "this cannot possibly happen" ... */
1166 ret = -EINVAL;
1167
1168 abort:
1169 return ret;
1170 }
1171
1172 /*
1173 * validate_super for 0.90.0
1174 */
1175 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1176 {
1177 mdp_disk_t *desc;
1178 mdp_super_t *sb = page_address(rdev->sb_page);
1179 __u64 ev1 = md_event(sb);
1180
1181 rdev->raid_disk = -1;
1182 clear_bit(Faulty, &rdev->flags);
1183 clear_bit(In_sync, &rdev->flags);
1184 clear_bit(WriteMostly, &rdev->flags);
1185
1186 if (mddev->raid_disks == 0) {
1187 mddev->major_version = 0;
1188 mddev->minor_version = sb->minor_version;
1189 mddev->patch_version = sb->patch_version;
1190 mddev->external = 0;
1191 mddev->chunk_sectors = sb->chunk_size >> 9;
1192 mddev->ctime = sb->ctime;
1193 mddev->utime = sb->utime;
1194 mddev->level = sb->level;
1195 mddev->clevel[0] = 0;
1196 mddev->layout = sb->layout;
1197 mddev->raid_disks = sb->raid_disks;
1198 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1199 mddev->events = ev1;
1200 mddev->bitmap_info.offset = 0;
1201 mddev->bitmap_info.space = 0;
1202 /* bitmap can use 60 K after the 4K superblocks */
1203 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1204 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1205 mddev->reshape_backwards = 0;
1206
1207 if (mddev->minor_version >= 91) {
1208 mddev->reshape_position = sb->reshape_position;
1209 mddev->delta_disks = sb->delta_disks;
1210 mddev->new_level = sb->new_level;
1211 mddev->new_layout = sb->new_layout;
1212 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1213 if (mddev->delta_disks < 0)
1214 mddev->reshape_backwards = 1;
1215 } else {
1216 mddev->reshape_position = MaxSector;
1217 mddev->delta_disks = 0;
1218 mddev->new_level = mddev->level;
1219 mddev->new_layout = mddev->layout;
1220 mddev->new_chunk_sectors = mddev->chunk_sectors;
1221 }
1222
1223 if (sb->state & (1<<MD_SB_CLEAN))
1224 mddev->recovery_cp = MaxSector;
1225 else {
1226 if (sb->events_hi == sb->cp_events_hi &&
1227 sb->events_lo == sb->cp_events_lo) {
1228 mddev->recovery_cp = sb->recovery_cp;
1229 } else
1230 mddev->recovery_cp = 0;
1231 }
1232
1233 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1234 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1235 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1236 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1237
1238 mddev->max_disks = MD_SB_DISKS;
1239
1240 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1241 mddev->bitmap_info.file == NULL) {
1242 mddev->bitmap_info.offset =
1243 mddev->bitmap_info.default_offset;
1244 mddev->bitmap_info.space =
1245 mddev->bitmap_info.space;
1246 }
1247
1248 } else if (mddev->pers == NULL) {
1249 /* Insist on good event counter while assembling, except
1250 * for spares (which don't need an event count) */
1251 ++ev1;
1252 if (sb->disks[rdev->desc_nr].state & (
1253 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1254 if (ev1 < mddev->events)
1255 return -EINVAL;
1256 } else if (mddev->bitmap) {
1257 /* if adding to array with a bitmap, then we can accept an
1258 * older device ... but not too old.
1259 */
1260 if (ev1 < mddev->bitmap->events_cleared)
1261 return 0;
1262 } else {
1263 if (ev1 < mddev->events)
1264 /* just a hot-add of a new device, leave raid_disk at -1 */
1265 return 0;
1266 }
1267
1268 if (mddev->level != LEVEL_MULTIPATH) {
1269 desc = sb->disks + rdev->desc_nr;
1270
1271 if (desc->state & (1<<MD_DISK_FAULTY))
1272 set_bit(Faulty, &rdev->flags);
1273 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1274 desc->raid_disk < mddev->raid_disks */) {
1275 set_bit(In_sync, &rdev->flags);
1276 rdev->raid_disk = desc->raid_disk;
1277 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1278 /* active but not in sync implies recovery up to
1279 * reshape position. We don't know exactly where
1280 * that is, so set to zero for now */
1281 if (mddev->minor_version >= 91) {
1282 rdev->recovery_offset = 0;
1283 rdev->raid_disk = desc->raid_disk;
1284 }
1285 }
1286 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1287 set_bit(WriteMostly, &rdev->flags);
1288 } else /* MULTIPATH are always insync */
1289 set_bit(In_sync, &rdev->flags);
1290 return 0;
1291 }
1292
1293 /*
1294 * sync_super for 0.90.0
1295 */
1296 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1297 {
1298 mdp_super_t *sb;
1299 struct md_rdev *rdev2;
1300 int next_spare = mddev->raid_disks;
1301
1302
1303 /* make rdev->sb match mddev data..
1304 *
1305 * 1/ zero out disks
1306 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1307 * 3/ any empty disks < next_spare become removed
1308 *
1309 * disks[0] gets initialised to REMOVED because
1310 * we cannot be sure from other fields if it has
1311 * been initialised or not.
1312 */
1313 int i;
1314 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1315
1316 rdev->sb_size = MD_SB_BYTES;
1317
1318 sb = page_address(rdev->sb_page);
1319
1320 memset(sb, 0, sizeof(*sb));
1321
1322 sb->md_magic = MD_SB_MAGIC;
1323 sb->major_version = mddev->major_version;
1324 sb->patch_version = mddev->patch_version;
1325 sb->gvalid_words = 0; /* ignored */
1326 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1327 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1328 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1329 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1330
1331 sb->ctime = mddev->ctime;
1332 sb->level = mddev->level;
1333 sb->size = mddev->dev_sectors / 2;
1334 sb->raid_disks = mddev->raid_disks;
1335 sb->md_minor = mddev->md_minor;
1336 sb->not_persistent = 0;
1337 sb->utime = mddev->utime;
1338 sb->state = 0;
1339 sb->events_hi = (mddev->events>>32);
1340 sb->events_lo = (u32)mddev->events;
1341
1342 if (mddev->reshape_position == MaxSector)
1343 sb->minor_version = 90;
1344 else {
1345 sb->minor_version = 91;
1346 sb->reshape_position = mddev->reshape_position;
1347 sb->new_level = mddev->new_level;
1348 sb->delta_disks = mddev->delta_disks;
1349 sb->new_layout = mddev->new_layout;
1350 sb->new_chunk = mddev->new_chunk_sectors << 9;
1351 }
1352 mddev->minor_version = sb->minor_version;
1353 if (mddev->in_sync)
1354 {
1355 sb->recovery_cp = mddev->recovery_cp;
1356 sb->cp_events_hi = (mddev->events>>32);
1357 sb->cp_events_lo = (u32)mddev->events;
1358 if (mddev->recovery_cp == MaxSector)
1359 sb->state = (1<< MD_SB_CLEAN);
1360 } else
1361 sb->recovery_cp = 0;
1362
1363 sb->layout = mddev->layout;
1364 sb->chunk_size = mddev->chunk_sectors << 9;
1365
1366 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1367 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1368
1369 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1370 rdev_for_each(rdev2, mddev) {
1371 mdp_disk_t *d;
1372 int desc_nr;
1373 int is_active = test_bit(In_sync, &rdev2->flags);
1374
1375 if (rdev2->raid_disk >= 0 &&
1376 sb->minor_version >= 91)
1377 /* we have nowhere to store the recovery_offset,
1378 * but if it is not below the reshape_position,
1379 * we can piggy-back on that.
1380 */
1381 is_active = 1;
1382 if (rdev2->raid_disk < 0 ||
1383 test_bit(Faulty, &rdev2->flags))
1384 is_active = 0;
1385 if (is_active)
1386 desc_nr = rdev2->raid_disk;
1387 else
1388 desc_nr = next_spare++;
1389 rdev2->desc_nr = desc_nr;
1390 d = &sb->disks[rdev2->desc_nr];
1391 nr_disks++;
1392 d->number = rdev2->desc_nr;
1393 d->major = MAJOR(rdev2->bdev->bd_dev);
1394 d->minor = MINOR(rdev2->bdev->bd_dev);
1395 if (is_active)
1396 d->raid_disk = rdev2->raid_disk;
1397 else
1398 d->raid_disk = rdev2->desc_nr; /* compatibility */
1399 if (test_bit(Faulty, &rdev2->flags))
1400 d->state = (1<<MD_DISK_FAULTY);
1401 else if (is_active) {
1402 d->state = (1<<MD_DISK_ACTIVE);
1403 if (test_bit(In_sync, &rdev2->flags))
1404 d->state |= (1<<MD_DISK_SYNC);
1405 active++;
1406 working++;
1407 } else {
1408 d->state = 0;
1409 spare++;
1410 working++;
1411 }
1412 if (test_bit(WriteMostly, &rdev2->flags))
1413 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1414 }
1415 /* now set the "removed" and "faulty" bits on any missing devices */
1416 for (i=0 ; i < mddev->raid_disks ; i++) {
1417 mdp_disk_t *d = &sb->disks[i];
1418 if (d->state == 0 && d->number == 0) {
1419 d->number = i;
1420 d->raid_disk = i;
1421 d->state = (1<<MD_DISK_REMOVED);
1422 d->state |= (1<<MD_DISK_FAULTY);
1423 failed++;
1424 }
1425 }
1426 sb->nr_disks = nr_disks;
1427 sb->active_disks = active;
1428 sb->working_disks = working;
1429 sb->failed_disks = failed;
1430 sb->spare_disks = spare;
1431
1432 sb->this_disk = sb->disks[rdev->desc_nr];
1433 sb->sb_csum = calc_sb_csum(sb);
1434 }
1435
1436 /*
1437 * rdev_size_change for 0.90.0
1438 */
1439 static unsigned long long
1440 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1441 {
1442 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1443 return 0; /* component must fit device */
1444 if (rdev->mddev->bitmap_info.offset)
1445 return 0; /* can't move bitmap */
1446 rdev->sb_start = calc_dev_sboffset(rdev);
1447 if (!num_sectors || num_sectors > rdev->sb_start)
1448 num_sectors = rdev->sb_start;
1449 /* Limit to 4TB as metadata cannot record more than that.
1450 * 4TB == 2^32 KB, or 2*2^32 sectors.
1451 */
1452 if (num_sectors >= (2ULL << 32))
1453 num_sectors = (2ULL << 32) - 2;
1454 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1455 rdev->sb_page);
1456 md_super_wait(rdev->mddev);
1457 return num_sectors;
1458 }
1459
1460 static int
1461 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1462 {
1463 /* non-zero offset changes not possible with v0.90 */
1464 return new_offset == 0;
1465 }
1466
1467 /*
1468 * version 1 superblock
1469 */
1470
1471 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1472 {
1473 __le32 disk_csum;
1474 u32 csum;
1475 unsigned long long newcsum;
1476 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1477 __le32 *isuper = (__le32*)sb;
1478 int i;
1479
1480 disk_csum = sb->sb_csum;
1481 sb->sb_csum = 0;
1482 newcsum = 0;
1483 for (i=0; size>=4; size -= 4 )
1484 newcsum += le32_to_cpu(*isuper++);
1485
1486 if (size == 2)
1487 newcsum += le16_to_cpu(*(__le16*) isuper);
1488
1489 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1490 sb->sb_csum = disk_csum;
1491 return cpu_to_le32(csum);
1492 }
1493
1494 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1495 int acknowledged);
1496 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1497 {
1498 struct mdp_superblock_1 *sb;
1499 int ret;
1500 sector_t sb_start;
1501 sector_t sectors;
1502 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1503 int bmask;
1504
1505 /*
1506 * Calculate the position of the superblock in 512byte sectors.
1507 * It is always aligned to a 4K boundary and
1508 * depeding on minor_version, it can be:
1509 * 0: At least 8K, but less than 12K, from end of device
1510 * 1: At start of device
1511 * 2: 4K from start of device.
1512 */
1513 switch(minor_version) {
1514 case 0:
1515 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1516 sb_start -= 8*2;
1517 sb_start &= ~(sector_t)(4*2-1);
1518 break;
1519 case 1:
1520 sb_start = 0;
1521 break;
1522 case 2:
1523 sb_start = 8;
1524 break;
1525 default:
1526 return -EINVAL;
1527 }
1528 rdev->sb_start = sb_start;
1529
1530 /* superblock is rarely larger than 1K, but it can be larger,
1531 * and it is safe to read 4k, so we do that
1532 */
1533 ret = read_disk_sb(rdev, 4096);
1534 if (ret) return ret;
1535
1536
1537 sb = page_address(rdev->sb_page);
1538
1539 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1540 sb->major_version != cpu_to_le32(1) ||
1541 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1542 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1543 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1544 return -EINVAL;
1545
1546 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1547 printk("md: invalid superblock checksum on %s\n",
1548 bdevname(rdev->bdev,b));
1549 return -EINVAL;
1550 }
1551 if (le64_to_cpu(sb->data_size) < 10) {
1552 printk("md: data_size too small on %s\n",
1553 bdevname(rdev->bdev,b));
1554 return -EINVAL;
1555 }
1556 if (sb->pad0 ||
1557 sb->pad3[0] ||
1558 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1559 /* Some padding is non-zero, might be a new feature */
1560 return -EINVAL;
1561
1562 rdev->preferred_minor = 0xffff;
1563 rdev->data_offset = le64_to_cpu(sb->data_offset);
1564 rdev->new_data_offset = rdev->data_offset;
1565 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1566 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1567 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1568 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1569
1570 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1571 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1572 if (rdev->sb_size & bmask)
1573 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1574
1575 if (minor_version
1576 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1577 return -EINVAL;
1578 if (minor_version
1579 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1580 return -EINVAL;
1581
1582 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1583 rdev->desc_nr = -1;
1584 else
1585 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1586
1587 if (!rdev->bb_page) {
1588 rdev->bb_page = alloc_page(GFP_KERNEL);
1589 if (!rdev->bb_page)
1590 return -ENOMEM;
1591 }
1592 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1593 rdev->badblocks.count == 0) {
1594 /* need to load the bad block list.
1595 * Currently we limit it to one page.
1596 */
1597 s32 offset;
1598 sector_t bb_sector;
1599 u64 *bbp;
1600 int i;
1601 int sectors = le16_to_cpu(sb->bblog_size);
1602 if (sectors > (PAGE_SIZE / 512))
1603 return -EINVAL;
1604 offset = le32_to_cpu(sb->bblog_offset);
1605 if (offset == 0)
1606 return -EINVAL;
1607 bb_sector = (long long)offset;
1608 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1609 rdev->bb_page, READ, true))
1610 return -EIO;
1611 bbp = (u64 *)page_address(rdev->bb_page);
1612 rdev->badblocks.shift = sb->bblog_shift;
1613 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1614 u64 bb = le64_to_cpu(*bbp);
1615 int count = bb & (0x3ff);
1616 u64 sector = bb >> 10;
1617 sector <<= sb->bblog_shift;
1618 count <<= sb->bblog_shift;
1619 if (bb + 1 == 0)
1620 break;
1621 if (md_set_badblocks(&rdev->badblocks,
1622 sector, count, 1) == 0)
1623 return -EINVAL;
1624 }
1625 } else if (sb->bblog_offset == 0)
1626 rdev->badblocks.shift = -1;
1627
1628 if (!refdev) {
1629 ret = 1;
1630 } else {
1631 __u64 ev1, ev2;
1632 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1633
1634 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1635 sb->level != refsb->level ||
1636 sb->layout != refsb->layout ||
1637 sb->chunksize != refsb->chunksize) {
1638 printk(KERN_WARNING "md: %s has strangely different"
1639 " superblock to %s\n",
1640 bdevname(rdev->bdev,b),
1641 bdevname(refdev->bdev,b2));
1642 return -EINVAL;
1643 }
1644 ev1 = le64_to_cpu(sb->events);
1645 ev2 = le64_to_cpu(refsb->events);
1646
1647 if (ev1 > ev2)
1648 ret = 1;
1649 else
1650 ret = 0;
1651 }
1652 if (minor_version) {
1653 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1654 sectors -= rdev->data_offset;
1655 } else
1656 sectors = rdev->sb_start;
1657 if (sectors < le64_to_cpu(sb->data_size))
1658 return -EINVAL;
1659 rdev->sectors = le64_to_cpu(sb->data_size);
1660 return ret;
1661 }
1662
1663 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1664 {
1665 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1666 __u64 ev1 = le64_to_cpu(sb->events);
1667
1668 rdev->raid_disk = -1;
1669 clear_bit(Faulty, &rdev->flags);
1670 clear_bit(In_sync, &rdev->flags);
1671 clear_bit(WriteMostly, &rdev->flags);
1672
1673 if (mddev->raid_disks == 0) {
1674 mddev->major_version = 1;
1675 mddev->patch_version = 0;
1676 mddev->external = 0;
1677 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1678 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1679 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1680 mddev->level = le32_to_cpu(sb->level);
1681 mddev->clevel[0] = 0;
1682 mddev->layout = le32_to_cpu(sb->layout);
1683 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1684 mddev->dev_sectors = le64_to_cpu(sb->size);
1685 mddev->events = ev1;
1686 mddev->bitmap_info.offset = 0;
1687 mddev->bitmap_info.space = 0;
1688 /* Default location for bitmap is 1K after superblock
1689 * using 3K - total of 4K
1690 */
1691 mddev->bitmap_info.default_offset = 1024 >> 9;
1692 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1693 mddev->reshape_backwards = 0;
1694
1695 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1696 memcpy(mddev->uuid, sb->set_uuid, 16);
1697
1698 mddev->max_disks = (4096-256)/2;
1699
1700 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1701 mddev->bitmap_info.file == NULL) {
1702 mddev->bitmap_info.offset =
1703 (__s32)le32_to_cpu(sb->bitmap_offset);
1704 /* Metadata doesn't record how much space is available.
1705 * For 1.0, we assume we can use up to the superblock
1706 * if before, else to 4K beyond superblock.
1707 * For others, assume no change is possible.
1708 */
1709 if (mddev->minor_version > 0)
1710 mddev->bitmap_info.space = 0;
1711 else if (mddev->bitmap_info.offset > 0)
1712 mddev->bitmap_info.space =
1713 8 - mddev->bitmap_info.offset;
1714 else
1715 mddev->bitmap_info.space =
1716 -mddev->bitmap_info.offset;
1717 }
1718
1719 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1720 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1721 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1722 mddev->new_level = le32_to_cpu(sb->new_level);
1723 mddev->new_layout = le32_to_cpu(sb->new_layout);
1724 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1725 if (mddev->delta_disks < 0 ||
1726 (mddev->delta_disks == 0 &&
1727 (le32_to_cpu(sb->feature_map)
1728 & MD_FEATURE_RESHAPE_BACKWARDS)))
1729 mddev->reshape_backwards = 1;
1730 } else {
1731 mddev->reshape_position = MaxSector;
1732 mddev->delta_disks = 0;
1733 mddev->new_level = mddev->level;
1734 mddev->new_layout = mddev->layout;
1735 mddev->new_chunk_sectors = mddev->chunk_sectors;
1736 }
1737
1738 } else if (mddev->pers == NULL) {
1739 /* Insist of good event counter while assembling, except for
1740 * spares (which don't need an event count) */
1741 ++ev1;
1742 if (rdev->desc_nr >= 0 &&
1743 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1744 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1745 if (ev1 < mddev->events)
1746 return -EINVAL;
1747 } else if (mddev->bitmap) {
1748 /* If adding to array with a bitmap, then we can accept an
1749 * older device, but not too old.
1750 */
1751 if (ev1 < mddev->bitmap->events_cleared)
1752 return 0;
1753 } else {
1754 if (ev1 < mddev->events)
1755 /* just a hot-add of a new device, leave raid_disk at -1 */
1756 return 0;
1757 }
1758 if (mddev->level != LEVEL_MULTIPATH) {
1759 int role;
1760 if (rdev->desc_nr < 0 ||
1761 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1762 role = 0xffff;
1763 rdev->desc_nr = -1;
1764 } else
1765 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1766 switch(role) {
1767 case 0xffff: /* spare */
1768 break;
1769 case 0xfffe: /* faulty */
1770 set_bit(Faulty, &rdev->flags);
1771 break;
1772 default:
1773 if ((le32_to_cpu(sb->feature_map) &
1774 MD_FEATURE_RECOVERY_OFFSET))
1775 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1776 else
1777 set_bit(In_sync, &rdev->flags);
1778 rdev->raid_disk = role;
1779 break;
1780 }
1781 if (sb->devflags & WriteMostly1)
1782 set_bit(WriteMostly, &rdev->flags);
1783 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1784 set_bit(Replacement, &rdev->flags);
1785 } else /* MULTIPATH are always insync */
1786 set_bit(In_sync, &rdev->flags);
1787
1788 return 0;
1789 }
1790
1791 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1792 {
1793 struct mdp_superblock_1 *sb;
1794 struct md_rdev *rdev2;
1795 int max_dev, i;
1796 /* make rdev->sb match mddev and rdev data. */
1797
1798 sb = page_address(rdev->sb_page);
1799
1800 sb->feature_map = 0;
1801 sb->pad0 = 0;
1802 sb->recovery_offset = cpu_to_le64(0);
1803 memset(sb->pad3, 0, sizeof(sb->pad3));
1804
1805 sb->utime = cpu_to_le64((__u64)mddev->utime);
1806 sb->events = cpu_to_le64(mddev->events);
1807 if (mddev->in_sync)
1808 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1809 else
1810 sb->resync_offset = cpu_to_le64(0);
1811
1812 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1813
1814 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1815 sb->size = cpu_to_le64(mddev->dev_sectors);
1816 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1817 sb->level = cpu_to_le32(mddev->level);
1818 sb->layout = cpu_to_le32(mddev->layout);
1819
1820 if (test_bit(WriteMostly, &rdev->flags))
1821 sb->devflags |= WriteMostly1;
1822 else
1823 sb->devflags &= ~WriteMostly1;
1824 sb->data_offset = cpu_to_le64(rdev->data_offset);
1825 sb->data_size = cpu_to_le64(rdev->sectors);
1826
1827 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1828 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1829 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1830 }
1831
1832 if (rdev->raid_disk >= 0 &&
1833 !test_bit(In_sync, &rdev->flags)) {
1834 sb->feature_map |=
1835 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1836 sb->recovery_offset =
1837 cpu_to_le64(rdev->recovery_offset);
1838 }
1839 if (test_bit(Replacement, &rdev->flags))
1840 sb->feature_map |=
1841 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1842
1843 if (mddev->reshape_position != MaxSector) {
1844 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1845 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1846 sb->new_layout = cpu_to_le32(mddev->new_layout);
1847 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1848 sb->new_level = cpu_to_le32(mddev->new_level);
1849 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1850 if (mddev->delta_disks == 0 &&
1851 mddev->reshape_backwards)
1852 sb->feature_map
1853 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1854 if (rdev->new_data_offset != rdev->data_offset) {
1855 sb->feature_map
1856 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1857 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1858 - rdev->data_offset));
1859 }
1860 }
1861
1862 if (rdev->badblocks.count == 0)
1863 /* Nothing to do for bad blocks*/ ;
1864 else if (sb->bblog_offset == 0)
1865 /* Cannot record bad blocks on this device */
1866 md_error(mddev, rdev);
1867 else {
1868 struct badblocks *bb = &rdev->badblocks;
1869 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1870 u64 *p = bb->page;
1871 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1872 if (bb->changed) {
1873 unsigned seq;
1874
1875 retry:
1876 seq = read_seqbegin(&bb->lock);
1877
1878 memset(bbp, 0xff, PAGE_SIZE);
1879
1880 for (i = 0 ; i < bb->count ; i++) {
1881 u64 internal_bb = *p++;
1882 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1883 | BB_LEN(internal_bb));
1884 *bbp++ = cpu_to_le64(store_bb);
1885 }
1886 bb->changed = 0;
1887 if (read_seqretry(&bb->lock, seq))
1888 goto retry;
1889
1890 bb->sector = (rdev->sb_start +
1891 (int)le32_to_cpu(sb->bblog_offset));
1892 bb->size = le16_to_cpu(sb->bblog_size);
1893 }
1894 }
1895
1896 max_dev = 0;
1897 rdev_for_each(rdev2, mddev)
1898 if (rdev2->desc_nr+1 > max_dev)
1899 max_dev = rdev2->desc_nr+1;
1900
1901 if (max_dev > le32_to_cpu(sb->max_dev)) {
1902 int bmask;
1903 sb->max_dev = cpu_to_le32(max_dev);
1904 rdev->sb_size = max_dev * 2 + 256;
1905 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1906 if (rdev->sb_size & bmask)
1907 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1908 } else
1909 max_dev = le32_to_cpu(sb->max_dev);
1910
1911 for (i=0; i<max_dev;i++)
1912 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1913
1914 rdev_for_each(rdev2, mddev) {
1915 i = rdev2->desc_nr;
1916 if (test_bit(Faulty, &rdev2->flags))
1917 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1918 else if (test_bit(In_sync, &rdev2->flags))
1919 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1920 else if (rdev2->raid_disk >= 0)
1921 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1922 else
1923 sb->dev_roles[i] = cpu_to_le16(0xffff);
1924 }
1925
1926 sb->sb_csum = calc_sb_1_csum(sb);
1927 }
1928
1929 static unsigned long long
1930 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1931 {
1932 struct mdp_superblock_1 *sb;
1933 sector_t max_sectors;
1934 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1935 return 0; /* component must fit device */
1936 if (rdev->data_offset != rdev->new_data_offset)
1937 return 0; /* too confusing */
1938 if (rdev->sb_start < rdev->data_offset) {
1939 /* minor versions 1 and 2; superblock before data */
1940 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1941 max_sectors -= rdev->data_offset;
1942 if (!num_sectors || num_sectors > max_sectors)
1943 num_sectors = max_sectors;
1944 } else if (rdev->mddev->bitmap_info.offset) {
1945 /* minor version 0 with bitmap we can't move */
1946 return 0;
1947 } else {
1948 /* minor version 0; superblock after data */
1949 sector_t sb_start;
1950 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1951 sb_start &= ~(sector_t)(4*2 - 1);
1952 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1953 if (!num_sectors || num_sectors > max_sectors)
1954 num_sectors = max_sectors;
1955 rdev->sb_start = sb_start;
1956 }
1957 sb = page_address(rdev->sb_page);
1958 sb->data_size = cpu_to_le64(num_sectors);
1959 sb->super_offset = rdev->sb_start;
1960 sb->sb_csum = calc_sb_1_csum(sb);
1961 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1962 rdev->sb_page);
1963 md_super_wait(rdev->mddev);
1964 return num_sectors;
1965
1966 }
1967
1968 static int
1969 super_1_allow_new_offset(struct md_rdev *rdev,
1970 unsigned long long new_offset)
1971 {
1972 /* All necessary checks on new >= old have been done */
1973 struct bitmap *bitmap;
1974 if (new_offset >= rdev->data_offset)
1975 return 1;
1976
1977 /* with 1.0 metadata, there is no metadata to tread on
1978 * so we can always move back */
1979 if (rdev->mddev->minor_version == 0)
1980 return 1;
1981
1982 /* otherwise we must be sure not to step on
1983 * any metadata, so stay:
1984 * 36K beyond start of superblock
1985 * beyond end of badblocks
1986 * beyond write-intent bitmap
1987 */
1988 if (rdev->sb_start + (32+4)*2 > new_offset)
1989 return 0;
1990 bitmap = rdev->mddev->bitmap;
1991 if (bitmap && !rdev->mddev->bitmap_info.file &&
1992 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1993 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1994 return 0;
1995 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1996 return 0;
1997
1998 return 1;
1999 }
2000
2001 static struct super_type super_types[] = {
2002 [0] = {
2003 .name = "0.90.0",
2004 .owner = THIS_MODULE,
2005 .load_super = super_90_load,
2006 .validate_super = super_90_validate,
2007 .sync_super = super_90_sync,
2008 .rdev_size_change = super_90_rdev_size_change,
2009 .allow_new_offset = super_90_allow_new_offset,
2010 },
2011 [1] = {
2012 .name = "md-1",
2013 .owner = THIS_MODULE,
2014 .load_super = super_1_load,
2015 .validate_super = super_1_validate,
2016 .sync_super = super_1_sync,
2017 .rdev_size_change = super_1_rdev_size_change,
2018 .allow_new_offset = super_1_allow_new_offset,
2019 },
2020 };
2021
2022 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
2023 {
2024 if (mddev->sync_super) {
2025 mddev->sync_super(mddev, rdev);
2026 return;
2027 }
2028
2029 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
2030
2031 super_types[mddev->major_version].sync_super(mddev, rdev);
2032 }
2033
2034 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
2035 {
2036 struct md_rdev *rdev, *rdev2;
2037
2038 rcu_read_lock();
2039 rdev_for_each_rcu(rdev, mddev1)
2040 rdev_for_each_rcu(rdev2, mddev2)
2041 if (rdev->bdev->bd_contains ==
2042 rdev2->bdev->bd_contains) {
2043 rcu_read_unlock();
2044 return 1;
2045 }
2046 rcu_read_unlock();
2047 return 0;
2048 }
2049
2050 static LIST_HEAD(pending_raid_disks);
2051
2052 /*
2053 * Try to register data integrity profile for an mddev
2054 *
2055 * This is called when an array is started and after a disk has been kicked
2056 * from the array. It only succeeds if all working and active component devices
2057 * are integrity capable with matching profiles.
2058 */
2059 int md_integrity_register(struct mddev *mddev)
2060 {
2061 struct md_rdev *rdev, *reference = NULL;
2062
2063 if (list_empty(&mddev->disks))
2064 return 0; /* nothing to do */
2065 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2066 return 0; /* shouldn't register, or already is */
2067 rdev_for_each(rdev, mddev) {
2068 /* skip spares and non-functional disks */
2069 if (test_bit(Faulty, &rdev->flags))
2070 continue;
2071 if (rdev->raid_disk < 0)
2072 continue;
2073 if (!reference) {
2074 /* Use the first rdev as the reference */
2075 reference = rdev;
2076 continue;
2077 }
2078 /* does this rdev's profile match the reference profile? */
2079 if (blk_integrity_compare(reference->bdev->bd_disk,
2080 rdev->bdev->bd_disk) < 0)
2081 return -EINVAL;
2082 }
2083 if (!reference || !bdev_get_integrity(reference->bdev))
2084 return 0;
2085 /*
2086 * All component devices are integrity capable and have matching
2087 * profiles, register the common profile for the md device.
2088 */
2089 if (blk_integrity_register(mddev->gendisk,
2090 bdev_get_integrity(reference->bdev)) != 0) {
2091 printk(KERN_ERR "md: failed to register integrity for %s\n",
2092 mdname(mddev));
2093 return -EINVAL;
2094 }
2095 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2096 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2097 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2098 mdname(mddev));
2099 return -EINVAL;
2100 }
2101 return 0;
2102 }
2103 EXPORT_SYMBOL(md_integrity_register);
2104
2105 /* Disable data integrity if non-capable/non-matching disk is being added */
2106 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2107 {
2108 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
2109 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
2110
2111 if (!bi_mddev) /* nothing to do */
2112 return;
2113 if (rdev->raid_disk < 0) /* skip spares */
2114 return;
2115 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2116 rdev->bdev->bd_disk) >= 0)
2117 return;
2118 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2119 blk_integrity_unregister(mddev->gendisk);
2120 }
2121 EXPORT_SYMBOL(md_integrity_add_rdev);
2122
2123 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2124 {
2125 char b[BDEVNAME_SIZE];
2126 struct kobject *ko;
2127 char *s;
2128 int err;
2129
2130 if (rdev->mddev) {
2131 MD_BUG();
2132 return -EINVAL;
2133 }
2134
2135 /* prevent duplicates */
2136 if (find_rdev(mddev, rdev->bdev->bd_dev))
2137 return -EEXIST;
2138
2139 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2140 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2141 rdev->sectors < mddev->dev_sectors)) {
2142 if (mddev->pers) {
2143 /* Cannot change size, so fail
2144 * If mddev->level <= 0, then we don't care
2145 * about aligning sizes (e.g. linear)
2146 */
2147 if (mddev->level > 0)
2148 return -ENOSPC;
2149 } else
2150 mddev->dev_sectors = rdev->sectors;
2151 }
2152
2153 /* Verify rdev->desc_nr is unique.
2154 * If it is -1, assign a free number, else
2155 * check number is not in use
2156 */
2157 if (rdev->desc_nr < 0) {
2158 int choice = 0;
2159 if (mddev->pers) choice = mddev->raid_disks;
2160 while (find_rdev_nr(mddev, choice))
2161 choice++;
2162 rdev->desc_nr = choice;
2163 } else {
2164 if (find_rdev_nr(mddev, rdev->desc_nr))
2165 return -EBUSY;
2166 }
2167 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2168 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2169 mdname(mddev), mddev->max_disks);
2170 return -EBUSY;
2171 }
2172 bdevname(rdev->bdev,b);
2173 while ( (s=strchr(b, '/')) != NULL)
2174 *s = '!';
2175
2176 rdev->mddev = mddev;
2177 printk(KERN_INFO "md: bind<%s>\n", b);
2178
2179 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2180 goto fail;
2181
2182 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2183 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2184 /* failure here is OK */;
2185 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2186
2187 list_add_rcu(&rdev->same_set, &mddev->disks);
2188 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2189
2190 /* May as well allow recovery to be retried once */
2191 mddev->recovery_disabled++;
2192
2193 return 0;
2194
2195 fail:
2196 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2197 b, mdname(mddev));
2198 return err;
2199 }
2200
2201 static void md_delayed_delete(struct work_struct *ws)
2202 {
2203 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2204 kobject_del(&rdev->kobj);
2205 kobject_put(&rdev->kobj);
2206 }
2207
2208 static void unbind_rdev_from_array(struct md_rdev * rdev)
2209 {
2210 char b[BDEVNAME_SIZE];
2211 if (!rdev->mddev) {
2212 MD_BUG();
2213 return;
2214 }
2215 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2216 list_del_rcu(&rdev->same_set);
2217 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2218 rdev->mddev = NULL;
2219 sysfs_remove_link(&rdev->kobj, "block");
2220 sysfs_put(rdev->sysfs_state);
2221 rdev->sysfs_state = NULL;
2222 rdev->badblocks.count = 0;
2223 /* We need to delay this, otherwise we can deadlock when
2224 * writing to 'remove' to "dev/state". We also need
2225 * to delay it due to rcu usage.
2226 */
2227 synchronize_rcu();
2228 INIT_WORK(&rdev->del_work, md_delayed_delete);
2229 kobject_get(&rdev->kobj);
2230 queue_work(md_misc_wq, &rdev->del_work);
2231 }
2232
2233 /*
2234 * prevent the device from being mounted, repartitioned or
2235 * otherwise reused by a RAID array (or any other kernel
2236 * subsystem), by bd_claiming the device.
2237 */
2238 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2239 {
2240 int err = 0;
2241 struct block_device *bdev;
2242 char b[BDEVNAME_SIZE];
2243
2244 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2245 shared ? (struct md_rdev *)lock_rdev : rdev);
2246 if (IS_ERR(bdev)) {
2247 printk(KERN_ERR "md: could not open %s.\n",
2248 __bdevname(dev, b));
2249 return PTR_ERR(bdev);
2250 }
2251 rdev->bdev = bdev;
2252 return err;
2253 }
2254
2255 static void unlock_rdev(struct md_rdev *rdev)
2256 {
2257 struct block_device *bdev = rdev->bdev;
2258 rdev->bdev = NULL;
2259 if (!bdev)
2260 MD_BUG();
2261 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2262 }
2263
2264 void md_autodetect_dev(dev_t dev);
2265
2266 static void export_rdev(struct md_rdev * rdev)
2267 {
2268 char b[BDEVNAME_SIZE];
2269 printk(KERN_INFO "md: export_rdev(%s)\n",
2270 bdevname(rdev->bdev,b));
2271 if (rdev->mddev)
2272 MD_BUG();
2273 md_rdev_clear(rdev);
2274 #ifndef MODULE
2275 if (test_bit(AutoDetected, &rdev->flags))
2276 md_autodetect_dev(rdev->bdev->bd_dev);
2277 #endif
2278 unlock_rdev(rdev);
2279 kobject_put(&rdev->kobj);
2280 }
2281
2282 static void kick_rdev_from_array(struct md_rdev * rdev)
2283 {
2284 unbind_rdev_from_array(rdev);
2285 export_rdev(rdev);
2286 }
2287
2288 static void export_array(struct mddev *mddev)
2289 {
2290 struct md_rdev *rdev, *tmp;
2291
2292 rdev_for_each_safe(rdev, tmp, mddev) {
2293 if (!rdev->mddev) {
2294 MD_BUG();
2295 continue;
2296 }
2297 kick_rdev_from_array(rdev);
2298 }
2299 if (!list_empty(&mddev->disks))
2300 MD_BUG();
2301 mddev->raid_disks = 0;
2302 mddev->major_version = 0;
2303 }
2304
2305 static void print_desc(mdp_disk_t *desc)
2306 {
2307 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2308 desc->major,desc->minor,desc->raid_disk,desc->state);
2309 }
2310
2311 static void print_sb_90(mdp_super_t *sb)
2312 {
2313 int i;
2314
2315 printk(KERN_INFO
2316 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2317 sb->major_version, sb->minor_version, sb->patch_version,
2318 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2319 sb->ctime);
2320 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2321 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2322 sb->md_minor, sb->layout, sb->chunk_size);
2323 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2324 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2325 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2326 sb->failed_disks, sb->spare_disks,
2327 sb->sb_csum, (unsigned long)sb->events_lo);
2328
2329 printk(KERN_INFO);
2330 for (i = 0; i < MD_SB_DISKS; i++) {
2331 mdp_disk_t *desc;
2332
2333 desc = sb->disks + i;
2334 if (desc->number || desc->major || desc->minor ||
2335 desc->raid_disk || (desc->state && (desc->state != 4))) {
2336 printk(" D %2d: ", i);
2337 print_desc(desc);
2338 }
2339 }
2340 printk(KERN_INFO "md: THIS: ");
2341 print_desc(&sb->this_disk);
2342 }
2343
2344 static void print_sb_1(struct mdp_superblock_1 *sb)
2345 {
2346 __u8 *uuid;
2347
2348 uuid = sb->set_uuid;
2349 printk(KERN_INFO
2350 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2351 "md: Name: \"%s\" CT:%llu\n",
2352 le32_to_cpu(sb->major_version),
2353 le32_to_cpu(sb->feature_map),
2354 uuid,
2355 sb->set_name,
2356 (unsigned long long)le64_to_cpu(sb->ctime)
2357 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2358
2359 uuid = sb->device_uuid;
2360 printk(KERN_INFO
2361 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2362 " RO:%llu\n"
2363 "md: Dev:%08x UUID: %pU\n"
2364 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2365 "md: (MaxDev:%u) \n",
2366 le32_to_cpu(sb->level),
2367 (unsigned long long)le64_to_cpu(sb->size),
2368 le32_to_cpu(sb->raid_disks),
2369 le32_to_cpu(sb->layout),
2370 le32_to_cpu(sb->chunksize),
2371 (unsigned long long)le64_to_cpu(sb->data_offset),
2372 (unsigned long long)le64_to_cpu(sb->data_size),
2373 (unsigned long long)le64_to_cpu(sb->super_offset),
2374 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2375 le32_to_cpu(sb->dev_number),
2376 uuid,
2377 sb->devflags,
2378 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2379 (unsigned long long)le64_to_cpu(sb->events),
2380 (unsigned long long)le64_to_cpu(sb->resync_offset),
2381 le32_to_cpu(sb->sb_csum),
2382 le32_to_cpu(sb->max_dev)
2383 );
2384 }
2385
2386 static void print_rdev(struct md_rdev *rdev, int major_version)
2387 {
2388 char b[BDEVNAME_SIZE];
2389 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2390 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2391 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2392 rdev->desc_nr);
2393 if (rdev->sb_loaded) {
2394 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2395 switch (major_version) {
2396 case 0:
2397 print_sb_90(page_address(rdev->sb_page));
2398 break;
2399 case 1:
2400 print_sb_1(page_address(rdev->sb_page));
2401 break;
2402 }
2403 } else
2404 printk(KERN_INFO "md: no rdev superblock!\n");
2405 }
2406
2407 static void md_print_devices(void)
2408 {
2409 struct list_head *tmp;
2410 struct md_rdev *rdev;
2411 struct mddev *mddev;
2412 char b[BDEVNAME_SIZE];
2413
2414 printk("\n");
2415 printk("md: **********************************\n");
2416 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2417 printk("md: **********************************\n");
2418 for_each_mddev(mddev, tmp) {
2419
2420 if (mddev->bitmap)
2421 bitmap_print_sb(mddev->bitmap);
2422 else
2423 printk("%s: ", mdname(mddev));
2424 rdev_for_each(rdev, mddev)
2425 printk("<%s>", bdevname(rdev->bdev,b));
2426 printk("\n");
2427
2428 rdev_for_each(rdev, mddev)
2429 print_rdev(rdev, mddev->major_version);
2430 }
2431 printk("md: **********************************\n");
2432 printk("\n");
2433 }
2434
2435
2436 static void sync_sbs(struct mddev * mddev, int nospares)
2437 {
2438 /* Update each superblock (in-memory image), but
2439 * if we are allowed to, skip spares which already
2440 * have the right event counter, or have one earlier
2441 * (which would mean they aren't being marked as dirty
2442 * with the rest of the array)
2443 */
2444 struct md_rdev *rdev;
2445 rdev_for_each(rdev, mddev) {
2446 if (rdev->sb_events == mddev->events ||
2447 (nospares &&
2448 rdev->raid_disk < 0 &&
2449 rdev->sb_events+1 == mddev->events)) {
2450 /* Don't update this superblock */
2451 rdev->sb_loaded = 2;
2452 } else {
2453 sync_super(mddev, rdev);
2454 rdev->sb_loaded = 1;
2455 }
2456 }
2457 }
2458
2459 static void md_update_sb(struct mddev * mddev, int force_change)
2460 {
2461 struct md_rdev *rdev;
2462 int sync_req;
2463 int nospares = 0;
2464 int any_badblocks_changed = 0;
2465
2466 repeat:
2467 /* First make sure individual recovery_offsets are correct */
2468 rdev_for_each(rdev, mddev) {
2469 if (rdev->raid_disk >= 0 &&
2470 mddev->delta_disks >= 0 &&
2471 !test_bit(In_sync, &rdev->flags) &&
2472 mddev->curr_resync_completed > rdev->recovery_offset)
2473 rdev->recovery_offset = mddev->curr_resync_completed;
2474
2475 }
2476 if (!mddev->persistent) {
2477 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2478 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2479 if (!mddev->external) {
2480 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2481 rdev_for_each(rdev, mddev) {
2482 if (rdev->badblocks.changed) {
2483 rdev->badblocks.changed = 0;
2484 md_ack_all_badblocks(&rdev->badblocks);
2485 md_error(mddev, rdev);
2486 }
2487 clear_bit(Blocked, &rdev->flags);
2488 clear_bit(BlockedBadBlocks, &rdev->flags);
2489 wake_up(&rdev->blocked_wait);
2490 }
2491 }
2492 wake_up(&mddev->sb_wait);
2493 return;
2494 }
2495
2496 spin_lock_irq(&mddev->write_lock);
2497
2498 mddev->utime = get_seconds();
2499
2500 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2501 force_change = 1;
2502 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2503 /* just a clean<-> dirty transition, possibly leave spares alone,
2504 * though if events isn't the right even/odd, we will have to do
2505 * spares after all
2506 */
2507 nospares = 1;
2508 if (force_change)
2509 nospares = 0;
2510 if (mddev->degraded)
2511 /* If the array is degraded, then skipping spares is both
2512 * dangerous and fairly pointless.
2513 * Dangerous because a device that was removed from the array
2514 * might have a event_count that still looks up-to-date,
2515 * so it can be re-added without a resync.
2516 * Pointless because if there are any spares to skip,
2517 * then a recovery will happen and soon that array won't
2518 * be degraded any more and the spare can go back to sleep then.
2519 */
2520 nospares = 0;
2521
2522 sync_req = mddev->in_sync;
2523
2524 /* If this is just a dirty<->clean transition, and the array is clean
2525 * and 'events' is odd, we can roll back to the previous clean state */
2526 if (nospares
2527 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2528 && mddev->can_decrease_events
2529 && mddev->events != 1) {
2530 mddev->events--;
2531 mddev->can_decrease_events = 0;
2532 } else {
2533 /* otherwise we have to go forward and ... */
2534 mddev->events ++;
2535 mddev->can_decrease_events = nospares;
2536 }
2537
2538 if (!mddev->events) {
2539 /*
2540 * oops, this 64-bit counter should never wrap.
2541 * Either we are in around ~1 trillion A.C., assuming
2542 * 1 reboot per second, or we have a bug:
2543 */
2544 MD_BUG();
2545 mddev->events --;
2546 }
2547
2548 rdev_for_each(rdev, mddev) {
2549 if (rdev->badblocks.changed)
2550 any_badblocks_changed++;
2551 if (test_bit(Faulty, &rdev->flags))
2552 set_bit(FaultRecorded, &rdev->flags);
2553 }
2554
2555 sync_sbs(mddev, nospares);
2556 spin_unlock_irq(&mddev->write_lock);
2557
2558 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2559 mdname(mddev), mddev->in_sync);
2560
2561 bitmap_update_sb(mddev->bitmap);
2562 rdev_for_each(rdev, mddev) {
2563 char b[BDEVNAME_SIZE];
2564
2565 if (rdev->sb_loaded != 1)
2566 continue; /* no noise on spare devices */
2567
2568 if (!test_bit(Faulty, &rdev->flags) &&
2569 rdev->saved_raid_disk == -1) {
2570 md_super_write(mddev,rdev,
2571 rdev->sb_start, rdev->sb_size,
2572 rdev->sb_page);
2573 pr_debug("md: (write) %s's sb offset: %llu\n",
2574 bdevname(rdev->bdev, b),
2575 (unsigned long long)rdev->sb_start);
2576 rdev->sb_events = mddev->events;
2577 if (rdev->badblocks.size) {
2578 md_super_write(mddev, rdev,
2579 rdev->badblocks.sector,
2580 rdev->badblocks.size << 9,
2581 rdev->bb_page);
2582 rdev->badblocks.size = 0;
2583 }
2584
2585 } else if (test_bit(Faulty, &rdev->flags))
2586 pr_debug("md: %s (skipping faulty)\n",
2587 bdevname(rdev->bdev, b));
2588 else
2589 pr_debug("(skipping incremental s/r ");
2590
2591 if (mddev->level == LEVEL_MULTIPATH)
2592 /* only need to write one superblock... */
2593 break;
2594 }
2595 md_super_wait(mddev);
2596 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2597
2598 spin_lock_irq(&mddev->write_lock);
2599 if (mddev->in_sync != sync_req ||
2600 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2601 /* have to write it out again */
2602 spin_unlock_irq(&mddev->write_lock);
2603 goto repeat;
2604 }
2605 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2606 spin_unlock_irq(&mddev->write_lock);
2607 wake_up(&mddev->sb_wait);
2608 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2609 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2610
2611 rdev_for_each(rdev, mddev) {
2612 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2613 clear_bit(Blocked, &rdev->flags);
2614
2615 if (any_badblocks_changed)
2616 md_ack_all_badblocks(&rdev->badblocks);
2617 clear_bit(BlockedBadBlocks, &rdev->flags);
2618 wake_up(&rdev->blocked_wait);
2619 }
2620 }
2621
2622 /* words written to sysfs files may, or may not, be \n terminated.
2623 * We want to accept with case. For this we use cmd_match.
2624 */
2625 static int cmd_match(const char *cmd, const char *str)
2626 {
2627 /* See if cmd, written into a sysfs file, matches
2628 * str. They must either be the same, or cmd can
2629 * have a trailing newline
2630 */
2631 while (*cmd && *str && *cmd == *str) {
2632 cmd++;
2633 str++;
2634 }
2635 if (*cmd == '\n')
2636 cmd++;
2637 if (*str || *cmd)
2638 return 0;
2639 return 1;
2640 }
2641
2642 struct rdev_sysfs_entry {
2643 struct attribute attr;
2644 ssize_t (*show)(struct md_rdev *, char *);
2645 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2646 };
2647
2648 static ssize_t
2649 state_show(struct md_rdev *rdev, char *page)
2650 {
2651 char *sep = "";
2652 size_t len = 0;
2653
2654 if (test_bit(Faulty, &rdev->flags) ||
2655 rdev->badblocks.unacked_exist) {
2656 len+= sprintf(page+len, "%sfaulty",sep);
2657 sep = ",";
2658 }
2659 if (test_bit(In_sync, &rdev->flags)) {
2660 len += sprintf(page+len, "%sin_sync",sep);
2661 sep = ",";
2662 }
2663 if (test_bit(WriteMostly, &rdev->flags)) {
2664 len += sprintf(page+len, "%swrite_mostly",sep);
2665 sep = ",";
2666 }
2667 if (test_bit(Blocked, &rdev->flags) ||
2668 (rdev->badblocks.unacked_exist
2669 && !test_bit(Faulty, &rdev->flags))) {
2670 len += sprintf(page+len, "%sblocked", sep);
2671 sep = ",";
2672 }
2673 if (!test_bit(Faulty, &rdev->flags) &&
2674 !test_bit(In_sync, &rdev->flags)) {
2675 len += sprintf(page+len, "%sspare", sep);
2676 sep = ",";
2677 }
2678 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2679 len += sprintf(page+len, "%swrite_error", sep);
2680 sep = ",";
2681 }
2682 if (test_bit(WantReplacement, &rdev->flags)) {
2683 len += sprintf(page+len, "%swant_replacement", sep);
2684 sep = ",";
2685 }
2686 if (test_bit(Replacement, &rdev->flags)) {
2687 len += sprintf(page+len, "%sreplacement", sep);
2688 sep = ",";
2689 }
2690
2691 return len+sprintf(page+len, "\n");
2692 }
2693
2694 static ssize_t
2695 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2696 {
2697 /* can write
2698 * faulty - simulates an error
2699 * remove - disconnects the device
2700 * writemostly - sets write_mostly
2701 * -writemostly - clears write_mostly
2702 * blocked - sets the Blocked flags
2703 * -blocked - clears the Blocked and possibly simulates an error
2704 * insync - sets Insync providing device isn't active
2705 * write_error - sets WriteErrorSeen
2706 * -write_error - clears WriteErrorSeen
2707 */
2708 int err = -EINVAL;
2709 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2710 md_error(rdev->mddev, rdev);
2711 if (test_bit(Faulty, &rdev->flags))
2712 err = 0;
2713 else
2714 err = -EBUSY;
2715 } else if (cmd_match(buf, "remove")) {
2716 if (rdev->raid_disk >= 0)
2717 err = -EBUSY;
2718 else {
2719 struct mddev *mddev = rdev->mddev;
2720 kick_rdev_from_array(rdev);
2721 if (mddev->pers)
2722 md_update_sb(mddev, 1);
2723 md_new_event(mddev);
2724 err = 0;
2725 }
2726 } else if (cmd_match(buf, "writemostly")) {
2727 set_bit(WriteMostly, &rdev->flags);
2728 err = 0;
2729 } else if (cmd_match(buf, "-writemostly")) {
2730 clear_bit(WriteMostly, &rdev->flags);
2731 err = 0;
2732 } else if (cmd_match(buf, "blocked")) {
2733 set_bit(Blocked, &rdev->flags);
2734 err = 0;
2735 } else if (cmd_match(buf, "-blocked")) {
2736 if (!test_bit(Faulty, &rdev->flags) &&
2737 rdev->badblocks.unacked_exist) {
2738 /* metadata handler doesn't understand badblocks,
2739 * so we need to fail the device
2740 */
2741 md_error(rdev->mddev, rdev);
2742 }
2743 clear_bit(Blocked, &rdev->flags);
2744 clear_bit(BlockedBadBlocks, &rdev->flags);
2745 wake_up(&rdev->blocked_wait);
2746 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2747 md_wakeup_thread(rdev->mddev->thread);
2748
2749 err = 0;
2750 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2751 set_bit(In_sync, &rdev->flags);
2752 err = 0;
2753 } else if (cmd_match(buf, "write_error")) {
2754 set_bit(WriteErrorSeen, &rdev->flags);
2755 err = 0;
2756 } else if (cmd_match(buf, "-write_error")) {
2757 clear_bit(WriteErrorSeen, &rdev->flags);
2758 err = 0;
2759 } else if (cmd_match(buf, "want_replacement")) {
2760 /* Any non-spare device that is not a replacement can
2761 * become want_replacement at any time, but we then need to
2762 * check if recovery is needed.
2763 */
2764 if (rdev->raid_disk >= 0 &&
2765 !test_bit(Replacement, &rdev->flags))
2766 set_bit(WantReplacement, &rdev->flags);
2767 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2768 md_wakeup_thread(rdev->mddev->thread);
2769 err = 0;
2770 } else if (cmd_match(buf, "-want_replacement")) {
2771 /* Clearing 'want_replacement' is always allowed.
2772 * Once replacements starts it is too late though.
2773 */
2774 err = 0;
2775 clear_bit(WantReplacement, &rdev->flags);
2776 } else if (cmd_match(buf, "replacement")) {
2777 /* Can only set a device as a replacement when array has not
2778 * yet been started. Once running, replacement is automatic
2779 * from spares, or by assigning 'slot'.
2780 */
2781 if (rdev->mddev->pers)
2782 err = -EBUSY;
2783 else {
2784 set_bit(Replacement, &rdev->flags);
2785 err = 0;
2786 }
2787 } else if (cmd_match(buf, "-replacement")) {
2788 /* Similarly, can only clear Replacement before start */
2789 if (rdev->mddev->pers)
2790 err = -EBUSY;
2791 else {
2792 clear_bit(Replacement, &rdev->flags);
2793 err = 0;
2794 }
2795 }
2796 if (!err)
2797 sysfs_notify_dirent_safe(rdev->sysfs_state);
2798 return err ? err : len;
2799 }
2800 static struct rdev_sysfs_entry rdev_state =
2801 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2802
2803 static ssize_t
2804 errors_show(struct md_rdev *rdev, char *page)
2805 {
2806 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2807 }
2808
2809 static ssize_t
2810 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2811 {
2812 char *e;
2813 unsigned long n = simple_strtoul(buf, &e, 10);
2814 if (*buf && (*e == 0 || *e == '\n')) {
2815 atomic_set(&rdev->corrected_errors, n);
2816 return len;
2817 }
2818 return -EINVAL;
2819 }
2820 static struct rdev_sysfs_entry rdev_errors =
2821 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2822
2823 static ssize_t
2824 slot_show(struct md_rdev *rdev, char *page)
2825 {
2826 if (rdev->raid_disk < 0)
2827 return sprintf(page, "none\n");
2828 else
2829 return sprintf(page, "%d\n", rdev->raid_disk);
2830 }
2831
2832 static ssize_t
2833 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2834 {
2835 char *e;
2836 int err;
2837 int slot = simple_strtoul(buf, &e, 10);
2838 if (strncmp(buf, "none", 4)==0)
2839 slot = -1;
2840 else if (e==buf || (*e && *e!= '\n'))
2841 return -EINVAL;
2842 if (rdev->mddev->pers && slot == -1) {
2843 /* Setting 'slot' on an active array requires also
2844 * updating the 'rd%d' link, and communicating
2845 * with the personality with ->hot_*_disk.
2846 * For now we only support removing
2847 * failed/spare devices. This normally happens automatically,
2848 * but not when the metadata is externally managed.
2849 */
2850 if (rdev->raid_disk == -1)
2851 return -EEXIST;
2852 /* personality does all needed checks */
2853 if (rdev->mddev->pers->hot_remove_disk == NULL)
2854 return -EINVAL;
2855 err = rdev->mddev->pers->
2856 hot_remove_disk(rdev->mddev, rdev);
2857 if (err)
2858 return err;
2859 sysfs_unlink_rdev(rdev->mddev, rdev);
2860 rdev->raid_disk = -1;
2861 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2862 md_wakeup_thread(rdev->mddev->thread);
2863 } else if (rdev->mddev->pers) {
2864 /* Activating a spare .. or possibly reactivating
2865 * if we ever get bitmaps working here.
2866 */
2867
2868 if (rdev->raid_disk != -1)
2869 return -EBUSY;
2870
2871 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2872 return -EBUSY;
2873
2874 if (rdev->mddev->pers->hot_add_disk == NULL)
2875 return -EINVAL;
2876
2877 if (slot >= rdev->mddev->raid_disks &&
2878 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2879 return -ENOSPC;
2880
2881 rdev->raid_disk = slot;
2882 if (test_bit(In_sync, &rdev->flags))
2883 rdev->saved_raid_disk = slot;
2884 else
2885 rdev->saved_raid_disk = -1;
2886 clear_bit(In_sync, &rdev->flags);
2887 err = rdev->mddev->pers->
2888 hot_add_disk(rdev->mddev, rdev);
2889 if (err) {
2890 rdev->raid_disk = -1;
2891 return err;
2892 } else
2893 sysfs_notify_dirent_safe(rdev->sysfs_state);
2894 if (sysfs_link_rdev(rdev->mddev, rdev))
2895 /* failure here is OK */;
2896 /* don't wakeup anyone, leave that to userspace. */
2897 } else {
2898 if (slot >= rdev->mddev->raid_disks &&
2899 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2900 return -ENOSPC;
2901 rdev->raid_disk = slot;
2902 /* assume it is working */
2903 clear_bit(Faulty, &rdev->flags);
2904 clear_bit(WriteMostly, &rdev->flags);
2905 set_bit(In_sync, &rdev->flags);
2906 sysfs_notify_dirent_safe(rdev->sysfs_state);
2907 }
2908 return len;
2909 }
2910
2911
2912 static struct rdev_sysfs_entry rdev_slot =
2913 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2914
2915 static ssize_t
2916 offset_show(struct md_rdev *rdev, char *page)
2917 {
2918 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2919 }
2920
2921 static ssize_t
2922 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2923 {
2924 unsigned long long offset;
2925 if (strict_strtoull(buf, 10, &offset) < 0)
2926 return -EINVAL;
2927 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2928 return -EBUSY;
2929 if (rdev->sectors && rdev->mddev->external)
2930 /* Must set offset before size, so overlap checks
2931 * can be sane */
2932 return -EBUSY;
2933 rdev->data_offset = offset;
2934 rdev->new_data_offset = offset;
2935 return len;
2936 }
2937
2938 static struct rdev_sysfs_entry rdev_offset =
2939 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2940
2941 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2942 {
2943 return sprintf(page, "%llu\n",
2944 (unsigned long long)rdev->new_data_offset);
2945 }
2946
2947 static ssize_t new_offset_store(struct md_rdev *rdev,
2948 const char *buf, size_t len)
2949 {
2950 unsigned long long new_offset;
2951 struct mddev *mddev = rdev->mddev;
2952
2953 if (strict_strtoull(buf, 10, &new_offset) < 0)
2954 return -EINVAL;
2955
2956 if (mddev->sync_thread)
2957 return -EBUSY;
2958 if (new_offset == rdev->data_offset)
2959 /* reset is always permitted */
2960 ;
2961 else if (new_offset > rdev->data_offset) {
2962 /* must not push array size beyond rdev_sectors */
2963 if (new_offset - rdev->data_offset
2964 + mddev->dev_sectors > rdev->sectors)
2965 return -E2BIG;
2966 }
2967 /* Metadata worries about other space details. */
2968
2969 /* decreasing the offset is inconsistent with a backwards
2970 * reshape.
2971 */
2972 if (new_offset < rdev->data_offset &&
2973 mddev->reshape_backwards)
2974 return -EINVAL;
2975 /* Increasing offset is inconsistent with forwards
2976 * reshape. reshape_direction should be set to
2977 * 'backwards' first.
2978 */
2979 if (new_offset > rdev->data_offset &&
2980 !mddev->reshape_backwards)
2981 return -EINVAL;
2982
2983 if (mddev->pers && mddev->persistent &&
2984 !super_types[mddev->major_version]
2985 .allow_new_offset(rdev, new_offset))
2986 return -E2BIG;
2987 rdev->new_data_offset = new_offset;
2988 if (new_offset > rdev->data_offset)
2989 mddev->reshape_backwards = 1;
2990 else if (new_offset < rdev->data_offset)
2991 mddev->reshape_backwards = 0;
2992
2993 return len;
2994 }
2995 static struct rdev_sysfs_entry rdev_new_offset =
2996 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2997
2998 static ssize_t
2999 rdev_size_show(struct md_rdev *rdev, char *page)
3000 {
3001 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
3002 }
3003
3004 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
3005 {
3006 /* check if two start/length pairs overlap */
3007 if (s1+l1 <= s2)
3008 return 0;
3009 if (s2+l2 <= s1)
3010 return 0;
3011 return 1;
3012 }
3013
3014 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
3015 {
3016 unsigned long long blocks;
3017 sector_t new;
3018
3019 if (strict_strtoull(buf, 10, &blocks) < 0)
3020 return -EINVAL;
3021
3022 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
3023 return -EINVAL; /* sector conversion overflow */
3024
3025 new = blocks * 2;
3026 if (new != blocks * 2)
3027 return -EINVAL; /* unsigned long long to sector_t overflow */
3028
3029 *sectors = new;
3030 return 0;
3031 }
3032
3033 static ssize_t
3034 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
3035 {
3036 struct mddev *my_mddev = rdev->mddev;
3037 sector_t oldsectors = rdev->sectors;
3038 sector_t sectors;
3039
3040 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3041 return -EINVAL;
3042 if (rdev->data_offset != rdev->new_data_offset)
3043 return -EINVAL; /* too confusing */
3044 if (my_mddev->pers && rdev->raid_disk >= 0) {
3045 if (my_mddev->persistent) {
3046 sectors = super_types[my_mddev->major_version].
3047 rdev_size_change(rdev, sectors);
3048 if (!sectors)
3049 return -EBUSY;
3050 } else if (!sectors)
3051 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3052 rdev->data_offset;
3053 }
3054 if (sectors < my_mddev->dev_sectors)
3055 return -EINVAL; /* component must fit device */
3056
3057 rdev->sectors = sectors;
3058 if (sectors > oldsectors && my_mddev->external) {
3059 /* need to check that all other rdevs with the same ->bdev
3060 * do not overlap. We need to unlock the mddev to avoid
3061 * a deadlock. We have already changed rdev->sectors, and if
3062 * we have to change it back, we will have the lock again.
3063 */
3064 struct mddev *mddev;
3065 int overlap = 0;
3066 struct list_head *tmp;
3067
3068 mddev_unlock(my_mddev);
3069 for_each_mddev(mddev, tmp) {
3070 struct md_rdev *rdev2;
3071
3072 mddev_lock(mddev);
3073 rdev_for_each(rdev2, mddev)
3074 if (rdev->bdev == rdev2->bdev &&
3075 rdev != rdev2 &&
3076 overlaps(rdev->data_offset, rdev->sectors,
3077 rdev2->data_offset,
3078 rdev2->sectors)) {
3079 overlap = 1;
3080 break;
3081 }
3082 mddev_unlock(mddev);
3083 if (overlap) {
3084 mddev_put(mddev);
3085 break;
3086 }
3087 }
3088 mddev_lock(my_mddev);
3089 if (overlap) {
3090 /* Someone else could have slipped in a size
3091 * change here, but doing so is just silly.
3092 * We put oldsectors back because we *know* it is
3093 * safe, and trust userspace not to race with
3094 * itself
3095 */
3096 rdev->sectors = oldsectors;
3097 return -EBUSY;
3098 }
3099 }
3100 return len;
3101 }
3102
3103 static struct rdev_sysfs_entry rdev_size =
3104 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3105
3106
3107 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3108 {
3109 unsigned long long recovery_start = rdev->recovery_offset;
3110
3111 if (test_bit(In_sync, &rdev->flags) ||
3112 recovery_start == MaxSector)
3113 return sprintf(page, "none\n");
3114
3115 return sprintf(page, "%llu\n", recovery_start);
3116 }
3117
3118 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3119 {
3120 unsigned long long recovery_start;
3121
3122 if (cmd_match(buf, "none"))
3123 recovery_start = MaxSector;
3124 else if (strict_strtoull(buf, 10, &recovery_start))
3125 return -EINVAL;
3126
3127 if (rdev->mddev->pers &&
3128 rdev->raid_disk >= 0)
3129 return -EBUSY;
3130
3131 rdev->recovery_offset = recovery_start;
3132 if (recovery_start == MaxSector)
3133 set_bit(In_sync, &rdev->flags);
3134 else
3135 clear_bit(In_sync, &rdev->flags);
3136 return len;
3137 }
3138
3139 static struct rdev_sysfs_entry rdev_recovery_start =
3140 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3141
3142
3143 static ssize_t
3144 badblocks_show(struct badblocks *bb, char *page, int unack);
3145 static ssize_t
3146 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3147
3148 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3149 {
3150 return badblocks_show(&rdev->badblocks, page, 0);
3151 }
3152 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3153 {
3154 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3155 /* Maybe that ack was all we needed */
3156 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3157 wake_up(&rdev->blocked_wait);
3158 return rv;
3159 }
3160 static struct rdev_sysfs_entry rdev_bad_blocks =
3161 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3162
3163
3164 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3165 {
3166 return badblocks_show(&rdev->badblocks, page, 1);
3167 }
3168 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3169 {
3170 return badblocks_store(&rdev->badblocks, page, len, 1);
3171 }
3172 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3173 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3174
3175 static struct attribute *rdev_default_attrs[] = {
3176 &rdev_state.attr,
3177 &rdev_errors.attr,
3178 &rdev_slot.attr,
3179 &rdev_offset.attr,
3180 &rdev_new_offset.attr,
3181 &rdev_size.attr,
3182 &rdev_recovery_start.attr,
3183 &rdev_bad_blocks.attr,
3184 &rdev_unack_bad_blocks.attr,
3185 NULL,
3186 };
3187 static ssize_t
3188 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3189 {
3190 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3191 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3192 struct mddev *mddev = rdev->mddev;
3193 ssize_t rv;
3194
3195 if (!entry->show)
3196 return -EIO;
3197
3198 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3199 if (!rv) {
3200 if (rdev->mddev == NULL)
3201 rv = -EBUSY;
3202 else
3203 rv = entry->show(rdev, page);
3204 mddev_unlock(mddev);
3205 }
3206 return rv;
3207 }
3208
3209 static ssize_t
3210 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3211 const char *page, size_t length)
3212 {
3213 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3214 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3215 ssize_t rv;
3216 struct mddev *mddev = rdev->mddev;
3217
3218 if (!entry->store)
3219 return -EIO;
3220 if (!capable(CAP_SYS_ADMIN))
3221 return -EACCES;
3222 rv = mddev ? mddev_lock(mddev): -EBUSY;
3223 if (!rv) {
3224 if (rdev->mddev == NULL)
3225 rv = -EBUSY;
3226 else
3227 rv = entry->store(rdev, page, length);
3228 mddev_unlock(mddev);
3229 }
3230 return rv;
3231 }
3232
3233 static void rdev_free(struct kobject *ko)
3234 {
3235 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3236 kfree(rdev);
3237 }
3238 static const struct sysfs_ops rdev_sysfs_ops = {
3239 .show = rdev_attr_show,
3240 .store = rdev_attr_store,
3241 };
3242 static struct kobj_type rdev_ktype = {
3243 .release = rdev_free,
3244 .sysfs_ops = &rdev_sysfs_ops,
3245 .default_attrs = rdev_default_attrs,
3246 };
3247
3248 int md_rdev_init(struct md_rdev *rdev)
3249 {
3250 rdev->desc_nr = -1;
3251 rdev->saved_raid_disk = -1;
3252 rdev->raid_disk = -1;
3253 rdev->flags = 0;
3254 rdev->data_offset = 0;
3255 rdev->new_data_offset = 0;
3256 rdev->sb_events = 0;
3257 rdev->last_read_error.tv_sec = 0;
3258 rdev->last_read_error.tv_nsec = 0;
3259 rdev->sb_loaded = 0;
3260 rdev->bb_page = NULL;
3261 atomic_set(&rdev->nr_pending, 0);
3262 atomic_set(&rdev->read_errors, 0);
3263 atomic_set(&rdev->corrected_errors, 0);
3264
3265 INIT_LIST_HEAD(&rdev->same_set);
3266 init_waitqueue_head(&rdev->blocked_wait);
3267
3268 /* Add space to store bad block list.
3269 * This reserves the space even on arrays where it cannot
3270 * be used - I wonder if that matters
3271 */
3272 rdev->badblocks.count = 0;
3273 rdev->badblocks.shift = 0;
3274 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3275 seqlock_init(&rdev->badblocks.lock);
3276 if (rdev->badblocks.page == NULL)
3277 return -ENOMEM;
3278
3279 return 0;
3280 }
3281 EXPORT_SYMBOL_GPL(md_rdev_init);
3282 /*
3283 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3284 *
3285 * mark the device faulty if:
3286 *
3287 * - the device is nonexistent (zero size)
3288 * - the device has no valid superblock
3289 *
3290 * a faulty rdev _never_ has rdev->sb set.
3291 */
3292 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3293 {
3294 char b[BDEVNAME_SIZE];
3295 int err;
3296 struct md_rdev *rdev;
3297 sector_t size;
3298
3299 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3300 if (!rdev) {
3301 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3302 return ERR_PTR(-ENOMEM);
3303 }
3304
3305 err = md_rdev_init(rdev);
3306 if (err)
3307 goto abort_free;
3308 err = alloc_disk_sb(rdev);
3309 if (err)
3310 goto abort_free;
3311
3312 err = lock_rdev(rdev, newdev, super_format == -2);
3313 if (err)
3314 goto abort_free;
3315
3316 kobject_init(&rdev->kobj, &rdev_ktype);
3317
3318 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3319 if (!size) {
3320 printk(KERN_WARNING
3321 "md: %s has zero or unknown size, marking faulty!\n",
3322 bdevname(rdev->bdev,b));
3323 err = -EINVAL;
3324 goto abort_free;
3325 }
3326
3327 if (super_format >= 0) {
3328 err = super_types[super_format].
3329 load_super(rdev, NULL, super_minor);
3330 if (err == -EINVAL) {
3331 printk(KERN_WARNING
3332 "md: %s does not have a valid v%d.%d "
3333 "superblock, not importing!\n",
3334 bdevname(rdev->bdev,b),
3335 super_format, super_minor);
3336 goto abort_free;
3337 }
3338 if (err < 0) {
3339 printk(KERN_WARNING
3340 "md: could not read %s's sb, not importing!\n",
3341 bdevname(rdev->bdev,b));
3342 goto abort_free;
3343 }
3344 }
3345 if (super_format == -1)
3346 /* hot-add for 0.90, or non-persistent: so no badblocks */
3347 rdev->badblocks.shift = -1;
3348
3349 return rdev;
3350
3351 abort_free:
3352 if (rdev->bdev)
3353 unlock_rdev(rdev);
3354 md_rdev_clear(rdev);
3355 kfree(rdev);
3356 return ERR_PTR(err);
3357 }
3358
3359 /*
3360 * Check a full RAID array for plausibility
3361 */
3362
3363
3364 static void analyze_sbs(struct mddev * mddev)
3365 {
3366 int i;
3367 struct md_rdev *rdev, *freshest, *tmp;
3368 char b[BDEVNAME_SIZE];
3369
3370 freshest = NULL;
3371 rdev_for_each_safe(rdev, tmp, mddev)
3372 switch (super_types[mddev->major_version].
3373 load_super(rdev, freshest, mddev->minor_version)) {
3374 case 1:
3375 freshest = rdev;
3376 break;
3377 case 0:
3378 break;
3379 default:
3380 printk( KERN_ERR \
3381 "md: fatal superblock inconsistency in %s"
3382 " -- removing from array\n",
3383 bdevname(rdev->bdev,b));
3384 kick_rdev_from_array(rdev);
3385 }
3386
3387
3388 super_types[mddev->major_version].
3389 validate_super(mddev, freshest);
3390
3391 i = 0;
3392 rdev_for_each_safe(rdev, tmp, mddev) {
3393 if (mddev->max_disks &&
3394 (rdev->desc_nr >= mddev->max_disks ||
3395 i > mddev->max_disks)) {
3396 printk(KERN_WARNING
3397 "md: %s: %s: only %d devices permitted\n",
3398 mdname(mddev), bdevname(rdev->bdev, b),
3399 mddev->max_disks);
3400 kick_rdev_from_array(rdev);
3401 continue;
3402 }
3403 if (rdev != freshest)
3404 if (super_types[mddev->major_version].
3405 validate_super(mddev, rdev)) {
3406 printk(KERN_WARNING "md: kicking non-fresh %s"
3407 " from array!\n",
3408 bdevname(rdev->bdev,b));
3409 kick_rdev_from_array(rdev);
3410 continue;
3411 }
3412 if (mddev->level == LEVEL_MULTIPATH) {
3413 rdev->desc_nr = i++;
3414 rdev->raid_disk = rdev->desc_nr;
3415 set_bit(In_sync, &rdev->flags);
3416 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3417 rdev->raid_disk = -1;
3418 clear_bit(In_sync, &rdev->flags);
3419 }
3420 }
3421 }
3422
3423 /* Read a fixed-point number.
3424 * Numbers in sysfs attributes should be in "standard" units where
3425 * possible, so time should be in seconds.
3426 * However we internally use a a much smaller unit such as
3427 * milliseconds or jiffies.
3428 * This function takes a decimal number with a possible fractional
3429 * component, and produces an integer which is the result of
3430 * multiplying that number by 10^'scale'.
3431 * all without any floating-point arithmetic.
3432 */
3433 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3434 {
3435 unsigned long result = 0;
3436 long decimals = -1;
3437 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3438 if (*cp == '.')
3439 decimals = 0;
3440 else if (decimals < scale) {
3441 unsigned int value;
3442 value = *cp - '0';
3443 result = result * 10 + value;
3444 if (decimals >= 0)
3445 decimals++;
3446 }
3447 cp++;
3448 }
3449 if (*cp == '\n')
3450 cp++;
3451 if (*cp)
3452 return -EINVAL;
3453 if (decimals < 0)
3454 decimals = 0;
3455 while (decimals < scale) {
3456 result *= 10;
3457 decimals ++;
3458 }
3459 *res = result;
3460 return 0;
3461 }
3462
3463
3464 static void md_safemode_timeout(unsigned long data);
3465
3466 static ssize_t
3467 safe_delay_show(struct mddev *mddev, char *page)
3468 {
3469 int msec = (mddev->safemode_delay*1000)/HZ;
3470 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3471 }
3472 static ssize_t
3473 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3474 {
3475 unsigned long msec;
3476
3477 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3478 return -EINVAL;
3479 if (msec == 0)
3480 mddev->safemode_delay = 0;
3481 else {
3482 unsigned long old_delay = mddev->safemode_delay;
3483 mddev->safemode_delay = (msec*HZ)/1000;
3484 if (mddev->safemode_delay == 0)
3485 mddev->safemode_delay = 1;
3486 if (mddev->safemode_delay < old_delay)
3487 md_safemode_timeout((unsigned long)mddev);
3488 }
3489 return len;
3490 }
3491 static struct md_sysfs_entry md_safe_delay =
3492 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3493
3494 static ssize_t
3495 level_show(struct mddev *mddev, char *page)
3496 {
3497 struct md_personality *p = mddev->pers;
3498 if (p)
3499 return sprintf(page, "%s\n", p->name);
3500 else if (mddev->clevel[0])
3501 return sprintf(page, "%s\n", mddev->clevel);
3502 else if (mddev->level != LEVEL_NONE)
3503 return sprintf(page, "%d\n", mddev->level);
3504 else
3505 return 0;
3506 }
3507
3508 static ssize_t
3509 level_store(struct mddev *mddev, const char *buf, size_t len)
3510 {
3511 char clevel[16];
3512 ssize_t rv = len;
3513 struct md_personality *pers;
3514 long level;
3515 void *priv;
3516 struct md_rdev *rdev;
3517
3518 if (mddev->pers == NULL) {
3519 if (len == 0)
3520 return 0;
3521 if (len >= sizeof(mddev->clevel))
3522 return -ENOSPC;
3523 strncpy(mddev->clevel, buf, len);
3524 if (mddev->clevel[len-1] == '\n')
3525 len--;
3526 mddev->clevel[len] = 0;
3527 mddev->level = LEVEL_NONE;
3528 return rv;
3529 }
3530
3531 /* request to change the personality. Need to ensure:
3532 * - array is not engaged in resync/recovery/reshape
3533 * - old personality can be suspended
3534 * - new personality will access other array.
3535 */
3536
3537 if (mddev->sync_thread ||
3538 mddev->reshape_position != MaxSector ||
3539 mddev->sysfs_active)
3540 return -EBUSY;
3541
3542 if (!mddev->pers->quiesce) {
3543 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3544 mdname(mddev), mddev->pers->name);
3545 return -EINVAL;
3546 }
3547
3548 /* Now find the new personality */
3549 if (len == 0 || len >= sizeof(clevel))
3550 return -EINVAL;
3551 strncpy(clevel, buf, len);
3552 if (clevel[len-1] == '\n')
3553 len--;
3554 clevel[len] = 0;
3555 if (strict_strtol(clevel, 10, &level))
3556 level = LEVEL_NONE;
3557
3558 if (request_module("md-%s", clevel) != 0)
3559 request_module("md-level-%s", clevel);
3560 spin_lock(&pers_lock);
3561 pers = find_pers(level, clevel);
3562 if (!pers || !try_module_get(pers->owner)) {
3563 spin_unlock(&pers_lock);
3564 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3565 return -EINVAL;
3566 }
3567 spin_unlock(&pers_lock);
3568
3569 if (pers == mddev->pers) {
3570 /* Nothing to do! */
3571 module_put(pers->owner);
3572 return rv;
3573 }
3574 if (!pers->takeover) {
3575 module_put(pers->owner);
3576 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3577 mdname(mddev), clevel);
3578 return -EINVAL;
3579 }
3580
3581 rdev_for_each(rdev, mddev)
3582 rdev->new_raid_disk = rdev->raid_disk;
3583
3584 /* ->takeover must set new_* and/or delta_disks
3585 * if it succeeds, and may set them when it fails.
3586 */
3587 priv = pers->takeover(mddev);
3588 if (IS_ERR(priv)) {
3589 mddev->new_level = mddev->level;
3590 mddev->new_layout = mddev->layout;
3591 mddev->new_chunk_sectors = mddev->chunk_sectors;
3592 mddev->raid_disks -= mddev->delta_disks;
3593 mddev->delta_disks = 0;
3594 mddev->reshape_backwards = 0;
3595 module_put(pers->owner);
3596 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3597 mdname(mddev), clevel);
3598 return PTR_ERR(priv);
3599 }
3600
3601 /* Looks like we have a winner */
3602 mddev_suspend(mddev);
3603 mddev->pers->stop(mddev);
3604
3605 if (mddev->pers->sync_request == NULL &&
3606 pers->sync_request != NULL) {
3607 /* need to add the md_redundancy_group */
3608 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3609 printk(KERN_WARNING
3610 "md: cannot register extra attributes for %s\n",
3611 mdname(mddev));
3612 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3613 }
3614 if (mddev->pers->sync_request != NULL &&
3615 pers->sync_request == NULL) {
3616 /* need to remove the md_redundancy_group */
3617 if (mddev->to_remove == NULL)
3618 mddev->to_remove = &md_redundancy_group;
3619 }
3620
3621 if (mddev->pers->sync_request == NULL &&
3622 mddev->external) {
3623 /* We are converting from a no-redundancy array
3624 * to a redundancy array and metadata is managed
3625 * externally so we need to be sure that writes
3626 * won't block due to a need to transition
3627 * clean->dirty
3628 * until external management is started.
3629 */
3630 mddev->in_sync = 0;
3631 mddev->safemode_delay = 0;
3632 mddev->safemode = 0;
3633 }
3634
3635 rdev_for_each(rdev, mddev) {
3636 if (rdev->raid_disk < 0)
3637 continue;
3638 if (rdev->new_raid_disk >= mddev->raid_disks)
3639 rdev->new_raid_disk = -1;
3640 if (rdev->new_raid_disk == rdev->raid_disk)
3641 continue;
3642 sysfs_unlink_rdev(mddev, rdev);
3643 }
3644 rdev_for_each(rdev, mddev) {
3645 if (rdev->raid_disk < 0)
3646 continue;
3647 if (rdev->new_raid_disk == rdev->raid_disk)
3648 continue;
3649 rdev->raid_disk = rdev->new_raid_disk;
3650 if (rdev->raid_disk < 0)
3651 clear_bit(In_sync, &rdev->flags);
3652 else {
3653 if (sysfs_link_rdev(mddev, rdev))
3654 printk(KERN_WARNING "md: cannot register rd%d"
3655 " for %s after level change\n",
3656 rdev->raid_disk, mdname(mddev));
3657 }
3658 }
3659
3660 module_put(mddev->pers->owner);
3661 mddev->pers = pers;
3662 mddev->private = priv;
3663 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3664 mddev->level = mddev->new_level;
3665 mddev->layout = mddev->new_layout;
3666 mddev->chunk_sectors = mddev->new_chunk_sectors;
3667 mddev->delta_disks = 0;
3668 mddev->reshape_backwards = 0;
3669 mddev->degraded = 0;
3670 if (mddev->pers->sync_request == NULL) {
3671 /* this is now an array without redundancy, so
3672 * it must always be in_sync
3673 */
3674 mddev->in_sync = 1;
3675 del_timer_sync(&mddev->safemode_timer);
3676 }
3677 pers->run(mddev);
3678 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3679 mddev_resume(mddev);
3680 sysfs_notify(&mddev->kobj, NULL, "level");
3681 md_new_event(mddev);
3682 return rv;
3683 }
3684
3685 static struct md_sysfs_entry md_level =
3686 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3687
3688
3689 static ssize_t
3690 layout_show(struct mddev *mddev, char *page)
3691 {
3692 /* just a number, not meaningful for all levels */
3693 if (mddev->reshape_position != MaxSector &&
3694 mddev->layout != mddev->new_layout)
3695 return sprintf(page, "%d (%d)\n",
3696 mddev->new_layout, mddev->layout);
3697 return sprintf(page, "%d\n", mddev->layout);
3698 }
3699
3700 static ssize_t
3701 layout_store(struct mddev *mddev, const char *buf, size_t len)
3702 {
3703 char *e;
3704 unsigned long n = simple_strtoul(buf, &e, 10);
3705
3706 if (!*buf || (*e && *e != '\n'))
3707 return -EINVAL;
3708
3709 if (mddev->pers) {
3710 int err;
3711 if (mddev->pers->check_reshape == NULL)
3712 return -EBUSY;
3713 mddev->new_layout = n;
3714 err = mddev->pers->check_reshape(mddev);
3715 if (err) {
3716 mddev->new_layout = mddev->layout;
3717 return err;
3718 }
3719 } else {
3720 mddev->new_layout = n;
3721 if (mddev->reshape_position == MaxSector)
3722 mddev->layout = n;
3723 }
3724 return len;
3725 }
3726 static struct md_sysfs_entry md_layout =
3727 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3728
3729
3730 static ssize_t
3731 raid_disks_show(struct mddev *mddev, char *page)
3732 {
3733 if (mddev->raid_disks == 0)
3734 return 0;
3735 if (mddev->reshape_position != MaxSector &&
3736 mddev->delta_disks != 0)
3737 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3738 mddev->raid_disks - mddev->delta_disks);
3739 return sprintf(page, "%d\n", mddev->raid_disks);
3740 }
3741
3742 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3743
3744 static ssize_t
3745 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3746 {
3747 char *e;
3748 int rv = 0;
3749 unsigned long n = simple_strtoul(buf, &e, 10);
3750
3751 if (!*buf || (*e && *e != '\n'))
3752 return -EINVAL;
3753
3754 if (mddev->pers)
3755 rv = update_raid_disks(mddev, n);
3756 else if (mddev->reshape_position != MaxSector) {
3757 struct md_rdev *rdev;
3758 int olddisks = mddev->raid_disks - mddev->delta_disks;
3759
3760 rdev_for_each(rdev, mddev) {
3761 if (olddisks < n &&
3762 rdev->data_offset < rdev->new_data_offset)
3763 return -EINVAL;
3764 if (olddisks > n &&
3765 rdev->data_offset > rdev->new_data_offset)
3766 return -EINVAL;
3767 }
3768 mddev->delta_disks = n - olddisks;
3769 mddev->raid_disks = n;
3770 mddev->reshape_backwards = (mddev->delta_disks < 0);
3771 } else
3772 mddev->raid_disks = n;
3773 return rv ? rv : len;
3774 }
3775 static struct md_sysfs_entry md_raid_disks =
3776 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3777
3778 static ssize_t
3779 chunk_size_show(struct mddev *mddev, char *page)
3780 {
3781 if (mddev->reshape_position != MaxSector &&
3782 mddev->chunk_sectors != mddev->new_chunk_sectors)
3783 return sprintf(page, "%d (%d)\n",
3784 mddev->new_chunk_sectors << 9,
3785 mddev->chunk_sectors << 9);
3786 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3787 }
3788
3789 static ssize_t
3790 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3791 {
3792 char *e;
3793 unsigned long n = simple_strtoul(buf, &e, 10);
3794
3795 if (!*buf || (*e && *e != '\n'))
3796 return -EINVAL;
3797
3798 if (mddev->pers) {
3799 int err;
3800 if (mddev->pers->check_reshape == NULL)
3801 return -EBUSY;
3802 mddev->new_chunk_sectors = n >> 9;
3803 err = mddev->pers->check_reshape(mddev);
3804 if (err) {
3805 mddev->new_chunk_sectors = mddev->chunk_sectors;
3806 return err;
3807 }
3808 } else {
3809 mddev->new_chunk_sectors = n >> 9;
3810 if (mddev->reshape_position == MaxSector)
3811 mddev->chunk_sectors = n >> 9;
3812 }
3813 return len;
3814 }
3815 static struct md_sysfs_entry md_chunk_size =
3816 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3817
3818 static ssize_t
3819 resync_start_show(struct mddev *mddev, char *page)
3820 {
3821 if (mddev->recovery_cp == MaxSector)
3822 return sprintf(page, "none\n");
3823 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3824 }
3825
3826 static ssize_t
3827 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3828 {
3829 char *e;
3830 unsigned long long n = simple_strtoull(buf, &e, 10);
3831
3832 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3833 return -EBUSY;
3834 if (cmd_match(buf, "none"))
3835 n = MaxSector;
3836 else if (!*buf || (*e && *e != '\n'))
3837 return -EINVAL;
3838
3839 mddev->recovery_cp = n;
3840 return len;
3841 }
3842 static struct md_sysfs_entry md_resync_start =
3843 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3844
3845 /*
3846 * The array state can be:
3847 *
3848 * clear
3849 * No devices, no size, no level
3850 * Equivalent to STOP_ARRAY ioctl
3851 * inactive
3852 * May have some settings, but array is not active
3853 * all IO results in error
3854 * When written, doesn't tear down array, but just stops it
3855 * suspended (not supported yet)
3856 * All IO requests will block. The array can be reconfigured.
3857 * Writing this, if accepted, will block until array is quiescent
3858 * readonly
3859 * no resync can happen. no superblocks get written.
3860 * write requests fail
3861 * read-auto
3862 * like readonly, but behaves like 'clean' on a write request.
3863 *
3864 * clean - no pending writes, but otherwise active.
3865 * When written to inactive array, starts without resync
3866 * If a write request arrives then
3867 * if metadata is known, mark 'dirty' and switch to 'active'.
3868 * if not known, block and switch to write-pending
3869 * If written to an active array that has pending writes, then fails.
3870 * active
3871 * fully active: IO and resync can be happening.
3872 * When written to inactive array, starts with resync
3873 *
3874 * write-pending
3875 * clean, but writes are blocked waiting for 'active' to be written.
3876 *
3877 * active-idle
3878 * like active, but no writes have been seen for a while (100msec).
3879 *
3880 */
3881 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3882 write_pending, active_idle, bad_word};
3883 static char *array_states[] = {
3884 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3885 "write-pending", "active-idle", NULL };
3886
3887 static int match_word(const char *word, char **list)
3888 {
3889 int n;
3890 for (n=0; list[n]; n++)
3891 if (cmd_match(word, list[n]))
3892 break;
3893 return n;
3894 }
3895
3896 static ssize_t
3897 array_state_show(struct mddev *mddev, char *page)
3898 {
3899 enum array_state st = inactive;
3900
3901 if (mddev->pers)
3902 switch(mddev->ro) {
3903 case 1:
3904 st = readonly;
3905 break;
3906 case 2:
3907 st = read_auto;
3908 break;
3909 case 0:
3910 if (mddev->in_sync)
3911 st = clean;
3912 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3913 st = write_pending;
3914 else if (mddev->safemode)
3915 st = active_idle;
3916 else
3917 st = active;
3918 }
3919 else {
3920 if (list_empty(&mddev->disks) &&
3921 mddev->raid_disks == 0 &&
3922 mddev->dev_sectors == 0)
3923 st = clear;
3924 else
3925 st = inactive;
3926 }
3927 return sprintf(page, "%s\n", array_states[st]);
3928 }
3929
3930 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3931 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3932 static int do_md_run(struct mddev * mddev);
3933 static int restart_array(struct mddev *mddev);
3934
3935 static ssize_t
3936 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3937 {
3938 int err = -EINVAL;
3939 enum array_state st = match_word(buf, array_states);
3940 switch(st) {
3941 case bad_word:
3942 break;
3943 case clear:
3944 /* stopping an active array */
3945 err = do_md_stop(mddev, 0, NULL);
3946 break;
3947 case inactive:
3948 /* stopping an active array */
3949 if (mddev->pers)
3950 err = do_md_stop(mddev, 2, NULL);
3951 else
3952 err = 0; /* already inactive */
3953 break;
3954 case suspended:
3955 break; /* not supported yet */
3956 case readonly:
3957 if (mddev->pers)
3958 err = md_set_readonly(mddev, NULL);
3959 else {
3960 mddev->ro = 1;
3961 set_disk_ro(mddev->gendisk, 1);
3962 err = do_md_run(mddev);
3963 }
3964 break;
3965 case read_auto:
3966 if (mddev->pers) {
3967 if (mddev->ro == 0)
3968 err = md_set_readonly(mddev, NULL);
3969 else if (mddev->ro == 1)
3970 err = restart_array(mddev);
3971 if (err == 0) {
3972 mddev->ro = 2;
3973 set_disk_ro(mddev->gendisk, 0);
3974 }
3975 } else {
3976 mddev->ro = 2;
3977 err = do_md_run(mddev);
3978 }
3979 break;
3980 case clean:
3981 if (mddev->pers) {
3982 restart_array(mddev);
3983 spin_lock_irq(&mddev->write_lock);
3984 if (atomic_read(&mddev->writes_pending) == 0) {
3985 if (mddev->in_sync == 0) {
3986 mddev->in_sync = 1;
3987 if (mddev->safemode == 1)
3988 mddev->safemode = 0;
3989 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3990 }
3991 err = 0;
3992 } else
3993 err = -EBUSY;
3994 spin_unlock_irq(&mddev->write_lock);
3995 } else
3996 err = -EINVAL;
3997 break;
3998 case active:
3999 if (mddev->pers) {
4000 restart_array(mddev);
4001 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4002 wake_up(&mddev->sb_wait);
4003 err = 0;
4004 } else {
4005 mddev->ro = 0;
4006 set_disk_ro(mddev->gendisk, 0);
4007 err = do_md_run(mddev);
4008 }
4009 break;
4010 case write_pending:
4011 case active_idle:
4012 /* these cannot be set */
4013 break;
4014 }
4015 if (err)
4016 return err;
4017 else {
4018 if (mddev->hold_active == UNTIL_IOCTL)
4019 mddev->hold_active = 0;
4020 sysfs_notify_dirent_safe(mddev->sysfs_state);
4021 return len;
4022 }
4023 }
4024 static struct md_sysfs_entry md_array_state =
4025 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4026
4027 static ssize_t
4028 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4029 return sprintf(page, "%d\n",
4030 atomic_read(&mddev->max_corr_read_errors));
4031 }
4032
4033 static ssize_t
4034 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4035 {
4036 char *e;
4037 unsigned long n = simple_strtoul(buf, &e, 10);
4038
4039 if (*buf && (*e == 0 || *e == '\n')) {
4040 atomic_set(&mddev->max_corr_read_errors, n);
4041 return len;
4042 }
4043 return -EINVAL;
4044 }
4045
4046 static struct md_sysfs_entry max_corr_read_errors =
4047 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4048 max_corrected_read_errors_store);
4049
4050 static ssize_t
4051 null_show(struct mddev *mddev, char *page)
4052 {
4053 return -EINVAL;
4054 }
4055
4056 static ssize_t
4057 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4058 {
4059 /* buf must be %d:%d\n? giving major and minor numbers */
4060 /* The new device is added to the array.
4061 * If the array has a persistent superblock, we read the
4062 * superblock to initialise info and check validity.
4063 * Otherwise, only checking done is that in bind_rdev_to_array,
4064 * which mainly checks size.
4065 */
4066 char *e;
4067 int major = simple_strtoul(buf, &e, 10);
4068 int minor;
4069 dev_t dev;
4070 struct md_rdev *rdev;
4071 int err;
4072
4073 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4074 return -EINVAL;
4075 minor = simple_strtoul(e+1, &e, 10);
4076 if (*e && *e != '\n')
4077 return -EINVAL;
4078 dev = MKDEV(major, minor);
4079 if (major != MAJOR(dev) ||
4080 minor != MINOR(dev))
4081 return -EOVERFLOW;
4082
4083
4084 if (mddev->persistent) {
4085 rdev = md_import_device(dev, mddev->major_version,
4086 mddev->minor_version);
4087 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4088 struct md_rdev *rdev0
4089 = list_entry(mddev->disks.next,
4090 struct md_rdev, same_set);
4091 err = super_types[mddev->major_version]
4092 .load_super(rdev, rdev0, mddev->minor_version);
4093 if (err < 0)
4094 goto out;
4095 }
4096 } else if (mddev->external)
4097 rdev = md_import_device(dev, -2, -1);
4098 else
4099 rdev = md_import_device(dev, -1, -1);
4100
4101 if (IS_ERR(rdev))
4102 return PTR_ERR(rdev);
4103 err = bind_rdev_to_array(rdev, mddev);
4104 out:
4105 if (err)
4106 export_rdev(rdev);
4107 return err ? err : len;
4108 }
4109
4110 static struct md_sysfs_entry md_new_device =
4111 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4112
4113 static ssize_t
4114 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4115 {
4116 char *end;
4117 unsigned long chunk, end_chunk;
4118
4119 if (!mddev->bitmap)
4120 goto out;
4121 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4122 while (*buf) {
4123 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4124 if (buf == end) break;
4125 if (*end == '-') { /* range */
4126 buf = end + 1;
4127 end_chunk = simple_strtoul(buf, &end, 0);
4128 if (buf == end) break;
4129 }
4130 if (*end && !isspace(*end)) break;
4131 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4132 buf = skip_spaces(end);
4133 }
4134 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4135 out:
4136 return len;
4137 }
4138
4139 static struct md_sysfs_entry md_bitmap =
4140 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4141
4142 static ssize_t
4143 size_show(struct mddev *mddev, char *page)
4144 {
4145 return sprintf(page, "%llu\n",
4146 (unsigned long long)mddev->dev_sectors / 2);
4147 }
4148
4149 static int update_size(struct mddev *mddev, sector_t num_sectors);
4150
4151 static ssize_t
4152 size_store(struct mddev *mddev, const char *buf, size_t len)
4153 {
4154 /* If array is inactive, we can reduce the component size, but
4155 * not increase it (except from 0).
4156 * If array is active, we can try an on-line resize
4157 */
4158 sector_t sectors;
4159 int err = strict_blocks_to_sectors(buf, &sectors);
4160
4161 if (err < 0)
4162 return err;
4163 if (mddev->pers) {
4164 err = update_size(mddev, sectors);
4165 md_update_sb(mddev, 1);
4166 } else {
4167 if (mddev->dev_sectors == 0 ||
4168 mddev->dev_sectors > sectors)
4169 mddev->dev_sectors = sectors;
4170 else
4171 err = -ENOSPC;
4172 }
4173 return err ? err : len;
4174 }
4175
4176 static struct md_sysfs_entry md_size =
4177 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4178
4179
4180 /* Metdata version.
4181 * This is one of
4182 * 'none' for arrays with no metadata (good luck...)
4183 * 'external' for arrays with externally managed metadata,
4184 * or N.M for internally known formats
4185 */
4186 static ssize_t
4187 metadata_show(struct mddev *mddev, char *page)
4188 {
4189 if (mddev->persistent)
4190 return sprintf(page, "%d.%d\n",
4191 mddev->major_version, mddev->minor_version);
4192 else if (mddev->external)
4193 return sprintf(page, "external:%s\n", mddev->metadata_type);
4194 else
4195 return sprintf(page, "none\n");
4196 }
4197
4198 static ssize_t
4199 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4200 {
4201 int major, minor;
4202 char *e;
4203 /* Changing the details of 'external' metadata is
4204 * always permitted. Otherwise there must be
4205 * no devices attached to the array.
4206 */
4207 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4208 ;
4209 else if (!list_empty(&mddev->disks))
4210 return -EBUSY;
4211
4212 if (cmd_match(buf, "none")) {
4213 mddev->persistent = 0;
4214 mddev->external = 0;
4215 mddev->major_version = 0;
4216 mddev->minor_version = 90;
4217 return len;
4218 }
4219 if (strncmp(buf, "external:", 9) == 0) {
4220 size_t namelen = len-9;
4221 if (namelen >= sizeof(mddev->metadata_type))
4222 namelen = sizeof(mddev->metadata_type)-1;
4223 strncpy(mddev->metadata_type, buf+9, namelen);
4224 mddev->metadata_type[namelen] = 0;
4225 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4226 mddev->metadata_type[--namelen] = 0;
4227 mddev->persistent = 0;
4228 mddev->external = 1;
4229 mddev->major_version = 0;
4230 mddev->minor_version = 90;
4231 return len;
4232 }
4233 major = simple_strtoul(buf, &e, 10);
4234 if (e==buf || *e != '.')
4235 return -EINVAL;
4236 buf = e+1;
4237 minor = simple_strtoul(buf, &e, 10);
4238 if (e==buf || (*e && *e != '\n') )
4239 return -EINVAL;
4240 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4241 return -ENOENT;
4242 mddev->major_version = major;
4243 mddev->minor_version = minor;
4244 mddev->persistent = 1;
4245 mddev->external = 0;
4246 return len;
4247 }
4248
4249 static struct md_sysfs_entry md_metadata =
4250 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4251
4252 static ssize_t
4253 action_show(struct mddev *mddev, char *page)
4254 {
4255 char *type = "idle";
4256 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4257 type = "frozen";
4258 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4259 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4260 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4261 type = "reshape";
4262 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4263 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4264 type = "resync";
4265 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4266 type = "check";
4267 else
4268 type = "repair";
4269 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4270 type = "recover";
4271 }
4272 return sprintf(page, "%s\n", type);
4273 }
4274
4275 static void reap_sync_thread(struct mddev *mddev);
4276
4277 static ssize_t
4278 action_store(struct mddev *mddev, const char *page, size_t len)
4279 {
4280 if (!mddev->pers || !mddev->pers->sync_request)
4281 return -EINVAL;
4282
4283 if (cmd_match(page, "frozen"))
4284 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4285 else
4286 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4287
4288 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4289 if (mddev->sync_thread) {
4290 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4291 reap_sync_thread(mddev);
4292 }
4293 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4294 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4295 return -EBUSY;
4296 else if (cmd_match(page, "resync"))
4297 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4298 else if (cmd_match(page, "recover")) {
4299 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4300 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4301 } else if (cmd_match(page, "reshape")) {
4302 int err;
4303 if (mddev->pers->start_reshape == NULL)
4304 return -EINVAL;
4305 err = mddev->pers->start_reshape(mddev);
4306 if (err)
4307 return err;
4308 sysfs_notify(&mddev->kobj, NULL, "degraded");
4309 } else {
4310 if (cmd_match(page, "check"))
4311 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4312 else if (!cmd_match(page, "repair"))
4313 return -EINVAL;
4314 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4315 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4316 }
4317 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4318 md_wakeup_thread(mddev->thread);
4319 sysfs_notify_dirent_safe(mddev->sysfs_action);
4320 return len;
4321 }
4322
4323 static ssize_t
4324 mismatch_cnt_show(struct mddev *mddev, char *page)
4325 {
4326 return sprintf(page, "%llu\n",
4327 (unsigned long long) mddev->resync_mismatches);
4328 }
4329
4330 static struct md_sysfs_entry md_scan_mode =
4331 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4332
4333
4334 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4335
4336 static ssize_t
4337 sync_min_show(struct mddev *mddev, char *page)
4338 {
4339 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4340 mddev->sync_speed_min ? "local": "system");
4341 }
4342
4343 static ssize_t
4344 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4345 {
4346 int min;
4347 char *e;
4348 if (strncmp(buf, "system", 6)==0) {
4349 mddev->sync_speed_min = 0;
4350 return len;
4351 }
4352 min = simple_strtoul(buf, &e, 10);
4353 if (buf == e || (*e && *e != '\n') || min <= 0)
4354 return -EINVAL;
4355 mddev->sync_speed_min = min;
4356 return len;
4357 }
4358
4359 static struct md_sysfs_entry md_sync_min =
4360 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4361
4362 static ssize_t
4363 sync_max_show(struct mddev *mddev, char *page)
4364 {
4365 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4366 mddev->sync_speed_max ? "local": "system");
4367 }
4368
4369 static ssize_t
4370 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4371 {
4372 int max;
4373 char *e;
4374 if (strncmp(buf, "system", 6)==0) {
4375 mddev->sync_speed_max = 0;
4376 return len;
4377 }
4378 max = simple_strtoul(buf, &e, 10);
4379 if (buf == e || (*e && *e != '\n') || max <= 0)
4380 return -EINVAL;
4381 mddev->sync_speed_max = max;
4382 return len;
4383 }
4384
4385 static struct md_sysfs_entry md_sync_max =
4386 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4387
4388 static ssize_t
4389 degraded_show(struct mddev *mddev, char *page)
4390 {
4391 return sprintf(page, "%d\n", mddev->degraded);
4392 }
4393 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4394
4395 static ssize_t
4396 sync_force_parallel_show(struct mddev *mddev, char *page)
4397 {
4398 return sprintf(page, "%d\n", mddev->parallel_resync);
4399 }
4400
4401 static ssize_t
4402 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4403 {
4404 long n;
4405
4406 if (strict_strtol(buf, 10, &n))
4407 return -EINVAL;
4408
4409 if (n != 0 && n != 1)
4410 return -EINVAL;
4411
4412 mddev->parallel_resync = n;
4413
4414 if (mddev->sync_thread)
4415 wake_up(&resync_wait);
4416
4417 return len;
4418 }
4419
4420 /* force parallel resync, even with shared block devices */
4421 static struct md_sysfs_entry md_sync_force_parallel =
4422 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4423 sync_force_parallel_show, sync_force_parallel_store);
4424
4425 static ssize_t
4426 sync_speed_show(struct mddev *mddev, char *page)
4427 {
4428 unsigned long resync, dt, db;
4429 if (mddev->curr_resync == 0)
4430 return sprintf(page, "none\n");
4431 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4432 dt = (jiffies - mddev->resync_mark) / HZ;
4433 if (!dt) dt++;
4434 db = resync - mddev->resync_mark_cnt;
4435 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4436 }
4437
4438 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4439
4440 static ssize_t
4441 sync_completed_show(struct mddev *mddev, char *page)
4442 {
4443 unsigned long long max_sectors, resync;
4444
4445 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4446 return sprintf(page, "none\n");
4447
4448 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4449 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4450 max_sectors = mddev->resync_max_sectors;
4451 else
4452 max_sectors = mddev->dev_sectors;
4453
4454 resync = mddev->curr_resync_completed;
4455 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4456 }
4457
4458 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4459
4460 static ssize_t
4461 min_sync_show(struct mddev *mddev, char *page)
4462 {
4463 return sprintf(page, "%llu\n",
4464 (unsigned long long)mddev->resync_min);
4465 }
4466 static ssize_t
4467 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4468 {
4469 unsigned long long min;
4470 if (strict_strtoull(buf, 10, &min))
4471 return -EINVAL;
4472 if (min > mddev->resync_max)
4473 return -EINVAL;
4474 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4475 return -EBUSY;
4476
4477 /* Must be a multiple of chunk_size */
4478 if (mddev->chunk_sectors) {
4479 sector_t temp = min;
4480 if (sector_div(temp, mddev->chunk_sectors))
4481 return -EINVAL;
4482 }
4483 mddev->resync_min = min;
4484
4485 return len;
4486 }
4487
4488 static struct md_sysfs_entry md_min_sync =
4489 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4490
4491 static ssize_t
4492 max_sync_show(struct mddev *mddev, char *page)
4493 {
4494 if (mddev->resync_max == MaxSector)
4495 return sprintf(page, "max\n");
4496 else
4497 return sprintf(page, "%llu\n",
4498 (unsigned long long)mddev->resync_max);
4499 }
4500 static ssize_t
4501 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4502 {
4503 if (strncmp(buf, "max", 3) == 0)
4504 mddev->resync_max = MaxSector;
4505 else {
4506 unsigned long long max;
4507 if (strict_strtoull(buf, 10, &max))
4508 return -EINVAL;
4509 if (max < mddev->resync_min)
4510 return -EINVAL;
4511 if (max < mddev->resync_max &&
4512 mddev->ro == 0 &&
4513 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4514 return -EBUSY;
4515
4516 /* Must be a multiple of chunk_size */
4517 if (mddev->chunk_sectors) {
4518 sector_t temp = max;
4519 if (sector_div(temp, mddev->chunk_sectors))
4520 return -EINVAL;
4521 }
4522 mddev->resync_max = max;
4523 }
4524 wake_up(&mddev->recovery_wait);
4525 return len;
4526 }
4527
4528 static struct md_sysfs_entry md_max_sync =
4529 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4530
4531 static ssize_t
4532 suspend_lo_show(struct mddev *mddev, char *page)
4533 {
4534 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4535 }
4536
4537 static ssize_t
4538 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4539 {
4540 char *e;
4541 unsigned long long new = simple_strtoull(buf, &e, 10);
4542 unsigned long long old = mddev->suspend_lo;
4543
4544 if (mddev->pers == NULL ||
4545 mddev->pers->quiesce == NULL)
4546 return -EINVAL;
4547 if (buf == e || (*e && *e != '\n'))
4548 return -EINVAL;
4549
4550 mddev->suspend_lo = new;
4551 if (new >= old)
4552 /* Shrinking suspended region */
4553 mddev->pers->quiesce(mddev, 2);
4554 else {
4555 /* Expanding suspended region - need to wait */
4556 mddev->pers->quiesce(mddev, 1);
4557 mddev->pers->quiesce(mddev, 0);
4558 }
4559 return len;
4560 }
4561 static struct md_sysfs_entry md_suspend_lo =
4562 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4563
4564
4565 static ssize_t
4566 suspend_hi_show(struct mddev *mddev, char *page)
4567 {
4568 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4569 }
4570
4571 static ssize_t
4572 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4573 {
4574 char *e;
4575 unsigned long long new = simple_strtoull(buf, &e, 10);
4576 unsigned long long old = mddev->suspend_hi;
4577
4578 if (mddev->pers == NULL ||
4579 mddev->pers->quiesce == NULL)
4580 return -EINVAL;
4581 if (buf == e || (*e && *e != '\n'))
4582 return -EINVAL;
4583
4584 mddev->suspend_hi = new;
4585 if (new <= old)
4586 /* Shrinking suspended region */
4587 mddev->pers->quiesce(mddev, 2);
4588 else {
4589 /* Expanding suspended region - need to wait */
4590 mddev->pers->quiesce(mddev, 1);
4591 mddev->pers->quiesce(mddev, 0);
4592 }
4593 return len;
4594 }
4595 static struct md_sysfs_entry md_suspend_hi =
4596 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4597
4598 static ssize_t
4599 reshape_position_show(struct mddev *mddev, char *page)
4600 {
4601 if (mddev->reshape_position != MaxSector)
4602 return sprintf(page, "%llu\n",
4603 (unsigned long long)mddev->reshape_position);
4604 strcpy(page, "none\n");
4605 return 5;
4606 }
4607
4608 static ssize_t
4609 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4610 {
4611 struct md_rdev *rdev;
4612 char *e;
4613 unsigned long long new = simple_strtoull(buf, &e, 10);
4614 if (mddev->pers)
4615 return -EBUSY;
4616 if (buf == e || (*e && *e != '\n'))
4617 return -EINVAL;
4618 mddev->reshape_position = new;
4619 mddev->delta_disks = 0;
4620 mddev->reshape_backwards = 0;
4621 mddev->new_level = mddev->level;
4622 mddev->new_layout = mddev->layout;
4623 mddev->new_chunk_sectors = mddev->chunk_sectors;
4624 rdev_for_each(rdev, mddev)
4625 rdev->new_data_offset = rdev->data_offset;
4626 return len;
4627 }
4628
4629 static struct md_sysfs_entry md_reshape_position =
4630 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4631 reshape_position_store);
4632
4633 static ssize_t
4634 reshape_direction_show(struct mddev *mddev, char *page)
4635 {
4636 return sprintf(page, "%s\n",
4637 mddev->reshape_backwards ? "backwards" : "forwards");
4638 }
4639
4640 static ssize_t
4641 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4642 {
4643 int backwards = 0;
4644 if (cmd_match(buf, "forwards"))
4645 backwards = 0;
4646 else if (cmd_match(buf, "backwards"))
4647 backwards = 1;
4648 else
4649 return -EINVAL;
4650 if (mddev->reshape_backwards == backwards)
4651 return len;
4652
4653 /* check if we are allowed to change */
4654 if (mddev->delta_disks)
4655 return -EBUSY;
4656
4657 if (mddev->persistent &&
4658 mddev->major_version == 0)
4659 return -EINVAL;
4660
4661 mddev->reshape_backwards = backwards;
4662 return len;
4663 }
4664
4665 static struct md_sysfs_entry md_reshape_direction =
4666 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4667 reshape_direction_store);
4668
4669 static ssize_t
4670 array_size_show(struct mddev *mddev, char *page)
4671 {
4672 if (mddev->external_size)
4673 return sprintf(page, "%llu\n",
4674 (unsigned long long)mddev->array_sectors/2);
4675 else
4676 return sprintf(page, "default\n");
4677 }
4678
4679 static ssize_t
4680 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4681 {
4682 sector_t sectors;
4683
4684 if (strncmp(buf, "default", 7) == 0) {
4685 if (mddev->pers)
4686 sectors = mddev->pers->size(mddev, 0, 0);
4687 else
4688 sectors = mddev->array_sectors;
4689
4690 mddev->external_size = 0;
4691 } else {
4692 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4693 return -EINVAL;
4694 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4695 return -E2BIG;
4696
4697 mddev->external_size = 1;
4698 }
4699
4700 mddev->array_sectors = sectors;
4701 if (mddev->pers) {
4702 set_capacity(mddev->gendisk, mddev->array_sectors);
4703 revalidate_disk(mddev->gendisk);
4704 }
4705 return len;
4706 }
4707
4708 static struct md_sysfs_entry md_array_size =
4709 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4710 array_size_store);
4711
4712 static struct attribute *md_default_attrs[] = {
4713 &md_level.attr,
4714 &md_layout.attr,
4715 &md_raid_disks.attr,
4716 &md_chunk_size.attr,
4717 &md_size.attr,
4718 &md_resync_start.attr,
4719 &md_metadata.attr,
4720 &md_new_device.attr,
4721 &md_safe_delay.attr,
4722 &md_array_state.attr,
4723 &md_reshape_position.attr,
4724 &md_reshape_direction.attr,
4725 &md_array_size.attr,
4726 &max_corr_read_errors.attr,
4727 NULL,
4728 };
4729
4730 static struct attribute *md_redundancy_attrs[] = {
4731 &md_scan_mode.attr,
4732 &md_mismatches.attr,
4733 &md_sync_min.attr,
4734 &md_sync_max.attr,
4735 &md_sync_speed.attr,
4736 &md_sync_force_parallel.attr,
4737 &md_sync_completed.attr,
4738 &md_min_sync.attr,
4739 &md_max_sync.attr,
4740 &md_suspend_lo.attr,
4741 &md_suspend_hi.attr,
4742 &md_bitmap.attr,
4743 &md_degraded.attr,
4744 NULL,
4745 };
4746 static struct attribute_group md_redundancy_group = {
4747 .name = NULL,
4748 .attrs = md_redundancy_attrs,
4749 };
4750
4751
4752 static ssize_t
4753 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4754 {
4755 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4756 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4757 ssize_t rv;
4758
4759 if (!entry->show)
4760 return -EIO;
4761 spin_lock(&all_mddevs_lock);
4762 if (list_empty(&mddev->all_mddevs)) {
4763 spin_unlock(&all_mddevs_lock);
4764 return -EBUSY;
4765 }
4766 mddev_get(mddev);
4767 spin_unlock(&all_mddevs_lock);
4768
4769 rv = mddev_lock(mddev);
4770 if (!rv) {
4771 rv = entry->show(mddev, page);
4772 mddev_unlock(mddev);
4773 }
4774 mddev_put(mddev);
4775 return rv;
4776 }
4777
4778 static ssize_t
4779 md_attr_store(struct kobject *kobj, struct attribute *attr,
4780 const char *page, size_t length)
4781 {
4782 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4783 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4784 ssize_t rv;
4785
4786 if (!entry->store)
4787 return -EIO;
4788 if (!capable(CAP_SYS_ADMIN))
4789 return -EACCES;
4790 spin_lock(&all_mddevs_lock);
4791 if (list_empty(&mddev->all_mddevs)) {
4792 spin_unlock(&all_mddevs_lock);
4793 return -EBUSY;
4794 }
4795 mddev_get(mddev);
4796 spin_unlock(&all_mddevs_lock);
4797 rv = mddev_lock(mddev);
4798 if (!rv) {
4799 rv = entry->store(mddev, page, length);
4800 mddev_unlock(mddev);
4801 }
4802 mddev_put(mddev);
4803 return rv;
4804 }
4805
4806 static void md_free(struct kobject *ko)
4807 {
4808 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4809
4810 if (mddev->sysfs_state)
4811 sysfs_put(mddev->sysfs_state);
4812
4813 if (mddev->gendisk) {
4814 del_gendisk(mddev->gendisk);
4815 put_disk(mddev->gendisk);
4816 }
4817 if (mddev->queue)
4818 blk_cleanup_queue(mddev->queue);
4819
4820 kfree(mddev);
4821 }
4822
4823 static const struct sysfs_ops md_sysfs_ops = {
4824 .show = md_attr_show,
4825 .store = md_attr_store,
4826 };
4827 static struct kobj_type md_ktype = {
4828 .release = md_free,
4829 .sysfs_ops = &md_sysfs_ops,
4830 .default_attrs = md_default_attrs,
4831 };
4832
4833 int mdp_major = 0;
4834
4835 static void mddev_delayed_delete(struct work_struct *ws)
4836 {
4837 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4838
4839 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4840 kobject_del(&mddev->kobj);
4841 kobject_put(&mddev->kobj);
4842 }
4843
4844 static int md_alloc(dev_t dev, char *name)
4845 {
4846 static DEFINE_MUTEX(disks_mutex);
4847 struct mddev *mddev = mddev_find(dev);
4848 struct gendisk *disk;
4849 int partitioned;
4850 int shift;
4851 int unit;
4852 int error;
4853
4854 if (!mddev)
4855 return -ENODEV;
4856
4857 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4858 shift = partitioned ? MdpMinorShift : 0;
4859 unit = MINOR(mddev->unit) >> shift;
4860
4861 /* wait for any previous instance of this device to be
4862 * completely removed (mddev_delayed_delete).
4863 */
4864 flush_workqueue(md_misc_wq);
4865
4866 mutex_lock(&disks_mutex);
4867 error = -EEXIST;
4868 if (mddev->gendisk)
4869 goto abort;
4870
4871 if (name) {
4872 /* Need to ensure that 'name' is not a duplicate.
4873 */
4874 struct mddev *mddev2;
4875 spin_lock(&all_mddevs_lock);
4876
4877 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4878 if (mddev2->gendisk &&
4879 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4880 spin_unlock(&all_mddevs_lock);
4881 goto abort;
4882 }
4883 spin_unlock(&all_mddevs_lock);
4884 }
4885
4886 error = -ENOMEM;
4887 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4888 if (!mddev->queue)
4889 goto abort;
4890 mddev->queue->queuedata = mddev;
4891
4892 blk_queue_make_request(mddev->queue, md_make_request);
4893 blk_set_stacking_limits(&mddev->queue->limits);
4894
4895 disk = alloc_disk(1 << shift);
4896 if (!disk) {
4897 blk_cleanup_queue(mddev->queue);
4898 mddev->queue = NULL;
4899 goto abort;
4900 }
4901 disk->major = MAJOR(mddev->unit);
4902 disk->first_minor = unit << shift;
4903 if (name)
4904 strcpy(disk->disk_name, name);
4905 else if (partitioned)
4906 sprintf(disk->disk_name, "md_d%d", unit);
4907 else
4908 sprintf(disk->disk_name, "md%d", unit);
4909 disk->fops = &md_fops;
4910 disk->private_data = mddev;
4911 disk->queue = mddev->queue;
4912 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4913 /* Allow extended partitions. This makes the
4914 * 'mdp' device redundant, but we can't really
4915 * remove it now.
4916 */
4917 disk->flags |= GENHD_FL_EXT_DEVT;
4918 mddev->gendisk = disk;
4919 /* As soon as we call add_disk(), another thread could get
4920 * through to md_open, so make sure it doesn't get too far
4921 */
4922 mutex_lock(&mddev->open_mutex);
4923 add_disk(disk);
4924
4925 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4926 &disk_to_dev(disk)->kobj, "%s", "md");
4927 if (error) {
4928 /* This isn't possible, but as kobject_init_and_add is marked
4929 * __must_check, we must do something with the result
4930 */
4931 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4932 disk->disk_name);
4933 error = 0;
4934 }
4935 if (mddev->kobj.sd &&
4936 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4937 printk(KERN_DEBUG "pointless warning\n");
4938 mutex_unlock(&mddev->open_mutex);
4939 abort:
4940 mutex_unlock(&disks_mutex);
4941 if (!error && mddev->kobj.sd) {
4942 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4943 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4944 }
4945 mddev_put(mddev);
4946 return error;
4947 }
4948
4949 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4950 {
4951 md_alloc(dev, NULL);
4952 return NULL;
4953 }
4954
4955 static int add_named_array(const char *val, struct kernel_param *kp)
4956 {
4957 /* val must be "md_*" where * is not all digits.
4958 * We allocate an array with a large free minor number, and
4959 * set the name to val. val must not already be an active name.
4960 */
4961 int len = strlen(val);
4962 char buf[DISK_NAME_LEN];
4963
4964 while (len && val[len-1] == '\n')
4965 len--;
4966 if (len >= DISK_NAME_LEN)
4967 return -E2BIG;
4968 strlcpy(buf, val, len+1);
4969 if (strncmp(buf, "md_", 3) != 0)
4970 return -EINVAL;
4971 return md_alloc(0, buf);
4972 }
4973
4974 static void md_safemode_timeout(unsigned long data)
4975 {
4976 struct mddev *mddev = (struct mddev *) data;
4977
4978 if (!atomic_read(&mddev->writes_pending)) {
4979 mddev->safemode = 1;
4980 if (mddev->external)
4981 sysfs_notify_dirent_safe(mddev->sysfs_state);
4982 }
4983 md_wakeup_thread(mddev->thread);
4984 }
4985
4986 static int start_dirty_degraded;
4987
4988 int md_run(struct mddev *mddev)
4989 {
4990 int err;
4991 struct md_rdev *rdev;
4992 struct md_personality *pers;
4993
4994 if (list_empty(&mddev->disks))
4995 /* cannot run an array with no devices.. */
4996 return -EINVAL;
4997
4998 if (mddev->pers)
4999 return -EBUSY;
5000 /* Cannot run until previous stop completes properly */
5001 if (mddev->sysfs_active)
5002 return -EBUSY;
5003
5004 /*
5005 * Analyze all RAID superblock(s)
5006 */
5007 if (!mddev->raid_disks) {
5008 if (!mddev->persistent)
5009 return -EINVAL;
5010 analyze_sbs(mddev);
5011 }
5012
5013 if (mddev->level != LEVEL_NONE)
5014 request_module("md-level-%d", mddev->level);
5015 else if (mddev->clevel[0])
5016 request_module("md-%s", mddev->clevel);
5017
5018 /*
5019 * Drop all container device buffers, from now on
5020 * the only valid external interface is through the md
5021 * device.
5022 */
5023 rdev_for_each(rdev, mddev) {
5024 if (test_bit(Faulty, &rdev->flags))
5025 continue;
5026 sync_blockdev(rdev->bdev);
5027 invalidate_bdev(rdev->bdev);
5028
5029 /* perform some consistency tests on the device.
5030 * We don't want the data to overlap the metadata,
5031 * Internal Bitmap issues have been handled elsewhere.
5032 */
5033 if (rdev->meta_bdev) {
5034 /* Nothing to check */;
5035 } else if (rdev->data_offset < rdev->sb_start) {
5036 if (mddev->dev_sectors &&
5037 rdev->data_offset + mddev->dev_sectors
5038 > rdev->sb_start) {
5039 printk("md: %s: data overlaps metadata\n",
5040 mdname(mddev));
5041 return -EINVAL;
5042 }
5043 } else {
5044 if (rdev->sb_start + rdev->sb_size/512
5045 > rdev->data_offset) {
5046 printk("md: %s: metadata overlaps data\n",
5047 mdname(mddev));
5048 return -EINVAL;
5049 }
5050 }
5051 sysfs_notify_dirent_safe(rdev->sysfs_state);
5052 }
5053
5054 if (mddev->bio_set == NULL)
5055 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
5056 sizeof(struct mddev *));
5057
5058 spin_lock(&pers_lock);
5059 pers = find_pers(mddev->level, mddev->clevel);
5060 if (!pers || !try_module_get(pers->owner)) {
5061 spin_unlock(&pers_lock);
5062 if (mddev->level != LEVEL_NONE)
5063 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5064 mddev->level);
5065 else
5066 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5067 mddev->clevel);
5068 return -EINVAL;
5069 }
5070 mddev->pers = pers;
5071 spin_unlock(&pers_lock);
5072 if (mddev->level != pers->level) {
5073 mddev->level = pers->level;
5074 mddev->new_level = pers->level;
5075 }
5076 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5077
5078 if (mddev->reshape_position != MaxSector &&
5079 pers->start_reshape == NULL) {
5080 /* This personality cannot handle reshaping... */
5081 mddev->pers = NULL;
5082 module_put(pers->owner);
5083 return -EINVAL;
5084 }
5085
5086 if (pers->sync_request) {
5087 /* Warn if this is a potentially silly
5088 * configuration.
5089 */
5090 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5091 struct md_rdev *rdev2;
5092 int warned = 0;
5093
5094 rdev_for_each(rdev, mddev)
5095 rdev_for_each(rdev2, mddev) {
5096 if (rdev < rdev2 &&
5097 rdev->bdev->bd_contains ==
5098 rdev2->bdev->bd_contains) {
5099 printk(KERN_WARNING
5100 "%s: WARNING: %s appears to be"
5101 " on the same physical disk as"
5102 " %s.\n",
5103 mdname(mddev),
5104 bdevname(rdev->bdev,b),
5105 bdevname(rdev2->bdev,b2));
5106 warned = 1;
5107 }
5108 }
5109
5110 if (warned)
5111 printk(KERN_WARNING
5112 "True protection against single-disk"
5113 " failure might be compromised.\n");
5114 }
5115
5116 mddev->recovery = 0;
5117 /* may be over-ridden by personality */
5118 mddev->resync_max_sectors = mddev->dev_sectors;
5119
5120 mddev->ok_start_degraded = start_dirty_degraded;
5121
5122 if (start_readonly && mddev->ro == 0)
5123 mddev->ro = 2; /* read-only, but switch on first write */
5124
5125 err = mddev->pers->run(mddev);
5126 if (err)
5127 printk(KERN_ERR "md: pers->run() failed ...\n");
5128 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5129 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5130 " but 'external_size' not in effect?\n", __func__);
5131 printk(KERN_ERR
5132 "md: invalid array_size %llu > default size %llu\n",
5133 (unsigned long long)mddev->array_sectors / 2,
5134 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5135 err = -EINVAL;
5136 mddev->pers->stop(mddev);
5137 }
5138 if (err == 0 && mddev->pers->sync_request &&
5139 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5140 err = bitmap_create(mddev);
5141 if (err) {
5142 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5143 mdname(mddev), err);
5144 mddev->pers->stop(mddev);
5145 }
5146 }
5147 if (err) {
5148 module_put(mddev->pers->owner);
5149 mddev->pers = NULL;
5150 bitmap_destroy(mddev);
5151 return err;
5152 }
5153 if (mddev->pers->sync_request) {
5154 if (mddev->kobj.sd &&
5155 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5156 printk(KERN_WARNING
5157 "md: cannot register extra attributes for %s\n",
5158 mdname(mddev));
5159 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5160 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5161 mddev->ro = 0;
5162
5163 atomic_set(&mddev->writes_pending,0);
5164 atomic_set(&mddev->max_corr_read_errors,
5165 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5166 mddev->safemode = 0;
5167 mddev->safemode_timer.function = md_safemode_timeout;
5168 mddev->safemode_timer.data = (unsigned long) mddev;
5169 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5170 mddev->in_sync = 1;
5171 smp_wmb();
5172 mddev->ready = 1;
5173 rdev_for_each(rdev, mddev)
5174 if (rdev->raid_disk >= 0)
5175 if (sysfs_link_rdev(mddev, rdev))
5176 /* failure here is OK */;
5177
5178 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5179
5180 if (mddev->flags)
5181 md_update_sb(mddev, 0);
5182
5183 md_new_event(mddev);
5184 sysfs_notify_dirent_safe(mddev->sysfs_state);
5185 sysfs_notify_dirent_safe(mddev->sysfs_action);
5186 sysfs_notify(&mddev->kobj, NULL, "degraded");
5187 return 0;
5188 }
5189 EXPORT_SYMBOL_GPL(md_run);
5190
5191 static int do_md_run(struct mddev *mddev)
5192 {
5193 int err;
5194
5195 err = md_run(mddev);
5196 if (err)
5197 goto out;
5198 err = bitmap_load(mddev);
5199 if (err) {
5200 bitmap_destroy(mddev);
5201 goto out;
5202 }
5203
5204 md_wakeup_thread(mddev->thread);
5205 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5206
5207 set_capacity(mddev->gendisk, mddev->array_sectors);
5208 revalidate_disk(mddev->gendisk);
5209 mddev->changed = 1;
5210 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5211 out:
5212 return err;
5213 }
5214
5215 static int restart_array(struct mddev *mddev)
5216 {
5217 struct gendisk *disk = mddev->gendisk;
5218
5219 /* Complain if it has no devices */
5220 if (list_empty(&mddev->disks))
5221 return -ENXIO;
5222 if (!mddev->pers)
5223 return -EINVAL;
5224 if (!mddev->ro)
5225 return -EBUSY;
5226 mddev->safemode = 0;
5227 mddev->ro = 0;
5228 set_disk_ro(disk, 0);
5229 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5230 mdname(mddev));
5231 /* Kick recovery or resync if necessary */
5232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5233 md_wakeup_thread(mddev->thread);
5234 md_wakeup_thread(mddev->sync_thread);
5235 sysfs_notify_dirent_safe(mddev->sysfs_state);
5236 return 0;
5237 }
5238
5239 /* similar to deny_write_access, but accounts for our holding a reference
5240 * to the file ourselves */
5241 static int deny_bitmap_write_access(struct file * file)
5242 {
5243 struct inode *inode = file->f_mapping->host;
5244
5245 spin_lock(&inode->i_lock);
5246 if (atomic_read(&inode->i_writecount) > 1) {
5247 spin_unlock(&inode->i_lock);
5248 return -ETXTBSY;
5249 }
5250 atomic_set(&inode->i_writecount, -1);
5251 spin_unlock(&inode->i_lock);
5252
5253 return 0;
5254 }
5255
5256 void restore_bitmap_write_access(struct file *file)
5257 {
5258 struct inode *inode = file->f_mapping->host;
5259
5260 spin_lock(&inode->i_lock);
5261 atomic_set(&inode->i_writecount, 1);
5262 spin_unlock(&inode->i_lock);
5263 }
5264
5265 static void md_clean(struct mddev *mddev)
5266 {
5267 mddev->array_sectors = 0;
5268 mddev->external_size = 0;
5269 mddev->dev_sectors = 0;
5270 mddev->raid_disks = 0;
5271 mddev->recovery_cp = 0;
5272 mddev->resync_min = 0;
5273 mddev->resync_max = MaxSector;
5274 mddev->reshape_position = MaxSector;
5275 mddev->external = 0;
5276 mddev->persistent = 0;
5277 mddev->level = LEVEL_NONE;
5278 mddev->clevel[0] = 0;
5279 mddev->flags = 0;
5280 mddev->ro = 0;
5281 mddev->metadata_type[0] = 0;
5282 mddev->chunk_sectors = 0;
5283 mddev->ctime = mddev->utime = 0;
5284 mddev->layout = 0;
5285 mddev->max_disks = 0;
5286 mddev->events = 0;
5287 mddev->can_decrease_events = 0;
5288 mddev->delta_disks = 0;
5289 mddev->reshape_backwards = 0;
5290 mddev->new_level = LEVEL_NONE;
5291 mddev->new_layout = 0;
5292 mddev->new_chunk_sectors = 0;
5293 mddev->curr_resync = 0;
5294 mddev->resync_mismatches = 0;
5295 mddev->suspend_lo = mddev->suspend_hi = 0;
5296 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5297 mddev->recovery = 0;
5298 mddev->in_sync = 0;
5299 mddev->changed = 0;
5300 mddev->degraded = 0;
5301 mddev->safemode = 0;
5302 mddev->merge_check_needed = 0;
5303 mddev->bitmap_info.offset = 0;
5304 mddev->bitmap_info.default_offset = 0;
5305 mddev->bitmap_info.default_space = 0;
5306 mddev->bitmap_info.chunksize = 0;
5307 mddev->bitmap_info.daemon_sleep = 0;
5308 mddev->bitmap_info.max_write_behind = 0;
5309 }
5310
5311 static void __md_stop_writes(struct mddev *mddev)
5312 {
5313 if (mddev->sync_thread) {
5314 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5315 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5316 reap_sync_thread(mddev);
5317 }
5318
5319 del_timer_sync(&mddev->safemode_timer);
5320
5321 bitmap_flush(mddev);
5322 md_super_wait(mddev);
5323
5324 if (!mddev->in_sync || mddev->flags) {
5325 /* mark array as shutdown cleanly */
5326 mddev->in_sync = 1;
5327 md_update_sb(mddev, 1);
5328 }
5329 }
5330
5331 void md_stop_writes(struct mddev *mddev)
5332 {
5333 mddev_lock(mddev);
5334 __md_stop_writes(mddev);
5335 mddev_unlock(mddev);
5336 }
5337 EXPORT_SYMBOL_GPL(md_stop_writes);
5338
5339 void md_stop(struct mddev *mddev)
5340 {
5341 mddev->ready = 0;
5342 mddev->pers->stop(mddev);
5343 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5344 mddev->to_remove = &md_redundancy_group;
5345 module_put(mddev->pers->owner);
5346 mddev->pers = NULL;
5347 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5348 }
5349 EXPORT_SYMBOL_GPL(md_stop);
5350
5351 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5352 {
5353 int err = 0;
5354 mutex_lock(&mddev->open_mutex);
5355 if (atomic_read(&mddev->openers) > !!bdev) {
5356 printk("md: %s still in use.\n",mdname(mddev));
5357 err = -EBUSY;
5358 goto out;
5359 }
5360 if (bdev)
5361 sync_blockdev(bdev);
5362 if (mddev->pers) {
5363 __md_stop_writes(mddev);
5364
5365 err = -ENXIO;
5366 if (mddev->ro==1)
5367 goto out;
5368 mddev->ro = 1;
5369 set_disk_ro(mddev->gendisk, 1);
5370 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5371 sysfs_notify_dirent_safe(mddev->sysfs_state);
5372 err = 0;
5373 }
5374 out:
5375 mutex_unlock(&mddev->open_mutex);
5376 return err;
5377 }
5378
5379 /* mode:
5380 * 0 - completely stop and dis-assemble array
5381 * 2 - stop but do not disassemble array
5382 */
5383 static int do_md_stop(struct mddev * mddev, int mode,
5384 struct block_device *bdev)
5385 {
5386 struct gendisk *disk = mddev->gendisk;
5387 struct md_rdev *rdev;
5388
5389 mutex_lock(&mddev->open_mutex);
5390 if (atomic_read(&mddev->openers) > !!bdev ||
5391 mddev->sysfs_active) {
5392 printk("md: %s still in use.\n",mdname(mddev));
5393 mutex_unlock(&mddev->open_mutex);
5394 return -EBUSY;
5395 }
5396 if (bdev)
5397 /* It is possible IO was issued on some other
5398 * open file which was closed before we took ->open_mutex.
5399 * As that was not the last close __blkdev_put will not
5400 * have called sync_blockdev, so we must.
5401 */
5402 sync_blockdev(bdev);
5403
5404 if (mddev->pers) {
5405 if (mddev->ro)
5406 set_disk_ro(disk, 0);
5407
5408 __md_stop_writes(mddev);
5409 md_stop(mddev);
5410 mddev->queue->merge_bvec_fn = NULL;
5411 mddev->queue->backing_dev_info.congested_fn = NULL;
5412
5413 /* tell userspace to handle 'inactive' */
5414 sysfs_notify_dirent_safe(mddev->sysfs_state);
5415
5416 rdev_for_each(rdev, mddev)
5417 if (rdev->raid_disk >= 0)
5418 sysfs_unlink_rdev(mddev, rdev);
5419
5420 set_capacity(disk, 0);
5421 mutex_unlock(&mddev->open_mutex);
5422 mddev->changed = 1;
5423 revalidate_disk(disk);
5424
5425 if (mddev->ro)
5426 mddev->ro = 0;
5427 } else
5428 mutex_unlock(&mddev->open_mutex);
5429 /*
5430 * Free resources if final stop
5431 */
5432 if (mode == 0) {
5433 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5434
5435 bitmap_destroy(mddev);
5436 if (mddev->bitmap_info.file) {
5437 restore_bitmap_write_access(mddev->bitmap_info.file);
5438 fput(mddev->bitmap_info.file);
5439 mddev->bitmap_info.file = NULL;
5440 }
5441 mddev->bitmap_info.offset = 0;
5442
5443 export_array(mddev);
5444
5445 md_clean(mddev);
5446 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5447 if (mddev->hold_active == UNTIL_STOP)
5448 mddev->hold_active = 0;
5449 }
5450 blk_integrity_unregister(disk);
5451 md_new_event(mddev);
5452 sysfs_notify_dirent_safe(mddev->sysfs_state);
5453 return 0;
5454 }
5455
5456 #ifndef MODULE
5457 static void autorun_array(struct mddev *mddev)
5458 {
5459 struct md_rdev *rdev;
5460 int err;
5461
5462 if (list_empty(&mddev->disks))
5463 return;
5464
5465 printk(KERN_INFO "md: running: ");
5466
5467 rdev_for_each(rdev, mddev) {
5468 char b[BDEVNAME_SIZE];
5469 printk("<%s>", bdevname(rdev->bdev,b));
5470 }
5471 printk("\n");
5472
5473 err = do_md_run(mddev);
5474 if (err) {
5475 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5476 do_md_stop(mddev, 0, NULL);
5477 }
5478 }
5479
5480 /*
5481 * lets try to run arrays based on all disks that have arrived
5482 * until now. (those are in pending_raid_disks)
5483 *
5484 * the method: pick the first pending disk, collect all disks with
5485 * the same UUID, remove all from the pending list and put them into
5486 * the 'same_array' list. Then order this list based on superblock
5487 * update time (freshest comes first), kick out 'old' disks and
5488 * compare superblocks. If everything's fine then run it.
5489 *
5490 * If "unit" is allocated, then bump its reference count
5491 */
5492 static void autorun_devices(int part)
5493 {
5494 struct md_rdev *rdev0, *rdev, *tmp;
5495 struct mddev *mddev;
5496 char b[BDEVNAME_SIZE];
5497
5498 printk(KERN_INFO "md: autorun ...\n");
5499 while (!list_empty(&pending_raid_disks)) {
5500 int unit;
5501 dev_t dev;
5502 LIST_HEAD(candidates);
5503 rdev0 = list_entry(pending_raid_disks.next,
5504 struct md_rdev, same_set);
5505
5506 printk(KERN_INFO "md: considering %s ...\n",
5507 bdevname(rdev0->bdev,b));
5508 INIT_LIST_HEAD(&candidates);
5509 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5510 if (super_90_load(rdev, rdev0, 0) >= 0) {
5511 printk(KERN_INFO "md: adding %s ...\n",
5512 bdevname(rdev->bdev,b));
5513 list_move(&rdev->same_set, &candidates);
5514 }
5515 /*
5516 * now we have a set of devices, with all of them having
5517 * mostly sane superblocks. It's time to allocate the
5518 * mddev.
5519 */
5520 if (part) {
5521 dev = MKDEV(mdp_major,
5522 rdev0->preferred_minor << MdpMinorShift);
5523 unit = MINOR(dev) >> MdpMinorShift;
5524 } else {
5525 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5526 unit = MINOR(dev);
5527 }
5528 if (rdev0->preferred_minor != unit) {
5529 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5530 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5531 break;
5532 }
5533
5534 md_probe(dev, NULL, NULL);
5535 mddev = mddev_find(dev);
5536 if (!mddev || !mddev->gendisk) {
5537 if (mddev)
5538 mddev_put(mddev);
5539 printk(KERN_ERR
5540 "md: cannot allocate memory for md drive.\n");
5541 break;
5542 }
5543 if (mddev_lock(mddev))
5544 printk(KERN_WARNING "md: %s locked, cannot run\n",
5545 mdname(mddev));
5546 else if (mddev->raid_disks || mddev->major_version
5547 || !list_empty(&mddev->disks)) {
5548 printk(KERN_WARNING
5549 "md: %s already running, cannot run %s\n",
5550 mdname(mddev), bdevname(rdev0->bdev,b));
5551 mddev_unlock(mddev);
5552 } else {
5553 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5554 mddev->persistent = 1;
5555 rdev_for_each_list(rdev, tmp, &candidates) {
5556 list_del_init(&rdev->same_set);
5557 if (bind_rdev_to_array(rdev, mddev))
5558 export_rdev(rdev);
5559 }
5560 autorun_array(mddev);
5561 mddev_unlock(mddev);
5562 }
5563 /* on success, candidates will be empty, on error
5564 * it won't...
5565 */
5566 rdev_for_each_list(rdev, tmp, &candidates) {
5567 list_del_init(&rdev->same_set);
5568 export_rdev(rdev);
5569 }
5570 mddev_put(mddev);
5571 }
5572 printk(KERN_INFO "md: ... autorun DONE.\n");
5573 }
5574 #endif /* !MODULE */
5575
5576 static int get_version(void __user * arg)
5577 {
5578 mdu_version_t ver;
5579
5580 ver.major = MD_MAJOR_VERSION;
5581 ver.minor = MD_MINOR_VERSION;
5582 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5583
5584 if (copy_to_user(arg, &ver, sizeof(ver)))
5585 return -EFAULT;
5586
5587 return 0;
5588 }
5589
5590 static int get_array_info(struct mddev * mddev, void __user * arg)
5591 {
5592 mdu_array_info_t info;
5593 int nr,working,insync,failed,spare;
5594 struct md_rdev *rdev;
5595
5596 nr=working=insync=failed=spare=0;
5597 rdev_for_each(rdev, mddev) {
5598 nr++;
5599 if (test_bit(Faulty, &rdev->flags))
5600 failed++;
5601 else {
5602 working++;
5603 if (test_bit(In_sync, &rdev->flags))
5604 insync++;
5605 else
5606 spare++;
5607 }
5608 }
5609
5610 info.major_version = mddev->major_version;
5611 info.minor_version = mddev->minor_version;
5612 info.patch_version = MD_PATCHLEVEL_VERSION;
5613 info.ctime = mddev->ctime;
5614 info.level = mddev->level;
5615 info.size = mddev->dev_sectors / 2;
5616 if (info.size != mddev->dev_sectors / 2) /* overflow */
5617 info.size = -1;
5618 info.nr_disks = nr;
5619 info.raid_disks = mddev->raid_disks;
5620 info.md_minor = mddev->md_minor;
5621 info.not_persistent= !mddev->persistent;
5622
5623 info.utime = mddev->utime;
5624 info.state = 0;
5625 if (mddev->in_sync)
5626 info.state = (1<<MD_SB_CLEAN);
5627 if (mddev->bitmap && mddev->bitmap_info.offset)
5628 info.state = (1<<MD_SB_BITMAP_PRESENT);
5629 info.active_disks = insync;
5630 info.working_disks = working;
5631 info.failed_disks = failed;
5632 info.spare_disks = spare;
5633
5634 info.layout = mddev->layout;
5635 info.chunk_size = mddev->chunk_sectors << 9;
5636
5637 if (copy_to_user(arg, &info, sizeof(info)))
5638 return -EFAULT;
5639
5640 return 0;
5641 }
5642
5643 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5644 {
5645 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5646 char *ptr, *buf = NULL;
5647 int err = -ENOMEM;
5648
5649 if (md_allow_write(mddev))
5650 file = kmalloc(sizeof(*file), GFP_NOIO);
5651 else
5652 file = kmalloc(sizeof(*file), GFP_KERNEL);
5653
5654 if (!file)
5655 goto out;
5656
5657 /* bitmap disabled, zero the first byte and copy out */
5658 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5659 file->pathname[0] = '\0';
5660 goto copy_out;
5661 }
5662
5663 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5664 if (!buf)
5665 goto out;
5666
5667 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5668 buf, sizeof(file->pathname));
5669 if (IS_ERR(ptr))
5670 goto out;
5671
5672 strcpy(file->pathname, ptr);
5673
5674 copy_out:
5675 err = 0;
5676 if (copy_to_user(arg, file, sizeof(*file)))
5677 err = -EFAULT;
5678 out:
5679 kfree(buf);
5680 kfree(file);
5681 return err;
5682 }
5683
5684 static int get_disk_info(struct mddev * mddev, void __user * arg)
5685 {
5686 mdu_disk_info_t info;
5687 struct md_rdev *rdev;
5688
5689 if (copy_from_user(&info, arg, sizeof(info)))
5690 return -EFAULT;
5691
5692 rdev = find_rdev_nr(mddev, info.number);
5693 if (rdev) {
5694 info.major = MAJOR(rdev->bdev->bd_dev);
5695 info.minor = MINOR(rdev->bdev->bd_dev);
5696 info.raid_disk = rdev->raid_disk;
5697 info.state = 0;
5698 if (test_bit(Faulty, &rdev->flags))
5699 info.state |= (1<<MD_DISK_FAULTY);
5700 else if (test_bit(In_sync, &rdev->flags)) {
5701 info.state |= (1<<MD_DISK_ACTIVE);
5702 info.state |= (1<<MD_DISK_SYNC);
5703 }
5704 if (test_bit(WriteMostly, &rdev->flags))
5705 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5706 } else {
5707 info.major = info.minor = 0;
5708 info.raid_disk = -1;
5709 info.state = (1<<MD_DISK_REMOVED);
5710 }
5711
5712 if (copy_to_user(arg, &info, sizeof(info)))
5713 return -EFAULT;
5714
5715 return 0;
5716 }
5717
5718 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5719 {
5720 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5721 struct md_rdev *rdev;
5722 dev_t dev = MKDEV(info->major,info->minor);
5723
5724 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5725 return -EOVERFLOW;
5726
5727 if (!mddev->raid_disks) {
5728 int err;
5729 /* expecting a device which has a superblock */
5730 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5731 if (IS_ERR(rdev)) {
5732 printk(KERN_WARNING
5733 "md: md_import_device returned %ld\n",
5734 PTR_ERR(rdev));
5735 return PTR_ERR(rdev);
5736 }
5737 if (!list_empty(&mddev->disks)) {
5738 struct md_rdev *rdev0
5739 = list_entry(mddev->disks.next,
5740 struct md_rdev, same_set);
5741 err = super_types[mddev->major_version]
5742 .load_super(rdev, rdev0, mddev->minor_version);
5743 if (err < 0) {
5744 printk(KERN_WARNING
5745 "md: %s has different UUID to %s\n",
5746 bdevname(rdev->bdev,b),
5747 bdevname(rdev0->bdev,b2));
5748 export_rdev(rdev);
5749 return -EINVAL;
5750 }
5751 }
5752 err = bind_rdev_to_array(rdev, mddev);
5753 if (err)
5754 export_rdev(rdev);
5755 return err;
5756 }
5757
5758 /*
5759 * add_new_disk can be used once the array is assembled
5760 * to add "hot spares". They must already have a superblock
5761 * written
5762 */
5763 if (mddev->pers) {
5764 int err;
5765 if (!mddev->pers->hot_add_disk) {
5766 printk(KERN_WARNING
5767 "%s: personality does not support diskops!\n",
5768 mdname(mddev));
5769 return -EINVAL;
5770 }
5771 if (mddev->persistent)
5772 rdev = md_import_device(dev, mddev->major_version,
5773 mddev->minor_version);
5774 else
5775 rdev = md_import_device(dev, -1, -1);
5776 if (IS_ERR(rdev)) {
5777 printk(KERN_WARNING
5778 "md: md_import_device returned %ld\n",
5779 PTR_ERR(rdev));
5780 return PTR_ERR(rdev);
5781 }
5782 /* set saved_raid_disk if appropriate */
5783 if (!mddev->persistent) {
5784 if (info->state & (1<<MD_DISK_SYNC) &&
5785 info->raid_disk < mddev->raid_disks) {
5786 rdev->raid_disk = info->raid_disk;
5787 set_bit(In_sync, &rdev->flags);
5788 } else
5789 rdev->raid_disk = -1;
5790 } else
5791 super_types[mddev->major_version].
5792 validate_super(mddev, rdev);
5793 if ((info->state & (1<<MD_DISK_SYNC)) &&
5794 rdev->raid_disk != info->raid_disk) {
5795 /* This was a hot-add request, but events doesn't
5796 * match, so reject it.
5797 */
5798 export_rdev(rdev);
5799 return -EINVAL;
5800 }
5801
5802 if (test_bit(In_sync, &rdev->flags))
5803 rdev->saved_raid_disk = rdev->raid_disk;
5804 else
5805 rdev->saved_raid_disk = -1;
5806
5807 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5808 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5809 set_bit(WriteMostly, &rdev->flags);
5810 else
5811 clear_bit(WriteMostly, &rdev->flags);
5812
5813 rdev->raid_disk = -1;
5814 err = bind_rdev_to_array(rdev, mddev);
5815 if (!err && !mddev->pers->hot_remove_disk) {
5816 /* If there is hot_add_disk but no hot_remove_disk
5817 * then added disks for geometry changes,
5818 * and should be added immediately.
5819 */
5820 super_types[mddev->major_version].
5821 validate_super(mddev, rdev);
5822 err = mddev->pers->hot_add_disk(mddev, rdev);
5823 if (err)
5824 unbind_rdev_from_array(rdev);
5825 }
5826 if (err)
5827 export_rdev(rdev);
5828 else
5829 sysfs_notify_dirent_safe(rdev->sysfs_state);
5830
5831 md_update_sb(mddev, 1);
5832 if (mddev->degraded)
5833 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5834 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5835 if (!err)
5836 md_new_event(mddev);
5837 md_wakeup_thread(mddev->thread);
5838 return err;
5839 }
5840
5841 /* otherwise, add_new_disk is only allowed
5842 * for major_version==0 superblocks
5843 */
5844 if (mddev->major_version != 0) {
5845 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5846 mdname(mddev));
5847 return -EINVAL;
5848 }
5849
5850 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5851 int err;
5852 rdev = md_import_device(dev, -1, 0);
5853 if (IS_ERR(rdev)) {
5854 printk(KERN_WARNING
5855 "md: error, md_import_device() returned %ld\n",
5856 PTR_ERR(rdev));
5857 return PTR_ERR(rdev);
5858 }
5859 rdev->desc_nr = info->number;
5860 if (info->raid_disk < mddev->raid_disks)
5861 rdev->raid_disk = info->raid_disk;
5862 else
5863 rdev->raid_disk = -1;
5864
5865 if (rdev->raid_disk < mddev->raid_disks)
5866 if (info->state & (1<<MD_DISK_SYNC))
5867 set_bit(In_sync, &rdev->flags);
5868
5869 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5870 set_bit(WriteMostly, &rdev->flags);
5871
5872 if (!mddev->persistent) {
5873 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5874 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5875 } else
5876 rdev->sb_start = calc_dev_sboffset(rdev);
5877 rdev->sectors = rdev->sb_start;
5878
5879 err = bind_rdev_to_array(rdev, mddev);
5880 if (err) {
5881 export_rdev(rdev);
5882 return err;
5883 }
5884 }
5885
5886 return 0;
5887 }
5888
5889 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5890 {
5891 char b[BDEVNAME_SIZE];
5892 struct md_rdev *rdev;
5893
5894 rdev = find_rdev(mddev, dev);
5895 if (!rdev)
5896 return -ENXIO;
5897
5898 if (rdev->raid_disk >= 0)
5899 goto busy;
5900
5901 kick_rdev_from_array(rdev);
5902 md_update_sb(mddev, 1);
5903 md_new_event(mddev);
5904
5905 return 0;
5906 busy:
5907 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5908 bdevname(rdev->bdev,b), mdname(mddev));
5909 return -EBUSY;
5910 }
5911
5912 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5913 {
5914 char b[BDEVNAME_SIZE];
5915 int err;
5916 struct md_rdev *rdev;
5917
5918 if (!mddev->pers)
5919 return -ENODEV;
5920
5921 if (mddev->major_version != 0) {
5922 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5923 " version-0 superblocks.\n",
5924 mdname(mddev));
5925 return -EINVAL;
5926 }
5927 if (!mddev->pers->hot_add_disk) {
5928 printk(KERN_WARNING
5929 "%s: personality does not support diskops!\n",
5930 mdname(mddev));
5931 return -EINVAL;
5932 }
5933
5934 rdev = md_import_device(dev, -1, 0);
5935 if (IS_ERR(rdev)) {
5936 printk(KERN_WARNING
5937 "md: error, md_import_device() returned %ld\n",
5938 PTR_ERR(rdev));
5939 return -EINVAL;
5940 }
5941
5942 if (mddev->persistent)
5943 rdev->sb_start = calc_dev_sboffset(rdev);
5944 else
5945 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5946
5947 rdev->sectors = rdev->sb_start;
5948
5949 if (test_bit(Faulty, &rdev->flags)) {
5950 printk(KERN_WARNING
5951 "md: can not hot-add faulty %s disk to %s!\n",
5952 bdevname(rdev->bdev,b), mdname(mddev));
5953 err = -EINVAL;
5954 goto abort_export;
5955 }
5956 clear_bit(In_sync, &rdev->flags);
5957 rdev->desc_nr = -1;
5958 rdev->saved_raid_disk = -1;
5959 err = bind_rdev_to_array(rdev, mddev);
5960 if (err)
5961 goto abort_export;
5962
5963 /*
5964 * The rest should better be atomic, we can have disk failures
5965 * noticed in interrupt contexts ...
5966 */
5967
5968 rdev->raid_disk = -1;
5969
5970 md_update_sb(mddev, 1);
5971
5972 /*
5973 * Kick recovery, maybe this spare has to be added to the
5974 * array immediately.
5975 */
5976 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5977 md_wakeup_thread(mddev->thread);
5978 md_new_event(mddev);
5979 return 0;
5980
5981 abort_export:
5982 export_rdev(rdev);
5983 return err;
5984 }
5985
5986 static int set_bitmap_file(struct mddev *mddev, int fd)
5987 {
5988 int err;
5989
5990 if (mddev->pers) {
5991 if (!mddev->pers->quiesce)
5992 return -EBUSY;
5993 if (mddev->recovery || mddev->sync_thread)
5994 return -EBUSY;
5995 /* we should be able to change the bitmap.. */
5996 }
5997
5998
5999 if (fd >= 0) {
6000 if (mddev->bitmap)
6001 return -EEXIST; /* cannot add when bitmap is present */
6002 mddev->bitmap_info.file = fget(fd);
6003
6004 if (mddev->bitmap_info.file == NULL) {
6005 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6006 mdname(mddev));
6007 return -EBADF;
6008 }
6009
6010 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6011 if (err) {
6012 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6013 mdname(mddev));
6014 fput(mddev->bitmap_info.file);
6015 mddev->bitmap_info.file = NULL;
6016 return err;
6017 }
6018 mddev->bitmap_info.offset = 0; /* file overrides offset */
6019 } else if (mddev->bitmap == NULL)
6020 return -ENOENT; /* cannot remove what isn't there */
6021 err = 0;
6022 if (mddev->pers) {
6023 mddev->pers->quiesce(mddev, 1);
6024 if (fd >= 0) {
6025 err = bitmap_create(mddev);
6026 if (!err)
6027 err = bitmap_load(mddev);
6028 }
6029 if (fd < 0 || err) {
6030 bitmap_destroy(mddev);
6031 fd = -1; /* make sure to put the file */
6032 }
6033 mddev->pers->quiesce(mddev, 0);
6034 }
6035 if (fd < 0) {
6036 if (mddev->bitmap_info.file) {
6037 restore_bitmap_write_access(mddev->bitmap_info.file);
6038 fput(mddev->bitmap_info.file);
6039 }
6040 mddev->bitmap_info.file = NULL;
6041 }
6042
6043 return err;
6044 }
6045
6046 /*
6047 * set_array_info is used two different ways
6048 * The original usage is when creating a new array.
6049 * In this usage, raid_disks is > 0 and it together with
6050 * level, size, not_persistent,layout,chunksize determine the
6051 * shape of the array.
6052 * This will always create an array with a type-0.90.0 superblock.
6053 * The newer usage is when assembling an array.
6054 * In this case raid_disks will be 0, and the major_version field is
6055 * use to determine which style super-blocks are to be found on the devices.
6056 * The minor and patch _version numbers are also kept incase the
6057 * super_block handler wishes to interpret them.
6058 */
6059 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6060 {
6061
6062 if (info->raid_disks == 0) {
6063 /* just setting version number for superblock loading */
6064 if (info->major_version < 0 ||
6065 info->major_version >= ARRAY_SIZE(super_types) ||
6066 super_types[info->major_version].name == NULL) {
6067 /* maybe try to auto-load a module? */
6068 printk(KERN_INFO
6069 "md: superblock version %d not known\n",
6070 info->major_version);
6071 return -EINVAL;
6072 }
6073 mddev->major_version = info->major_version;
6074 mddev->minor_version = info->minor_version;
6075 mddev->patch_version = info->patch_version;
6076 mddev->persistent = !info->not_persistent;
6077 /* ensure mddev_put doesn't delete this now that there
6078 * is some minimal configuration.
6079 */
6080 mddev->ctime = get_seconds();
6081 return 0;
6082 }
6083 mddev->major_version = MD_MAJOR_VERSION;
6084 mddev->minor_version = MD_MINOR_VERSION;
6085 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6086 mddev->ctime = get_seconds();
6087
6088 mddev->level = info->level;
6089 mddev->clevel[0] = 0;
6090 mddev->dev_sectors = 2 * (sector_t)info->size;
6091 mddev->raid_disks = info->raid_disks;
6092 /* don't set md_minor, it is determined by which /dev/md* was
6093 * openned
6094 */
6095 if (info->state & (1<<MD_SB_CLEAN))
6096 mddev->recovery_cp = MaxSector;
6097 else
6098 mddev->recovery_cp = 0;
6099 mddev->persistent = ! info->not_persistent;
6100 mddev->external = 0;
6101
6102 mddev->layout = info->layout;
6103 mddev->chunk_sectors = info->chunk_size >> 9;
6104
6105 mddev->max_disks = MD_SB_DISKS;
6106
6107 if (mddev->persistent)
6108 mddev->flags = 0;
6109 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6110
6111 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6112 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6113 mddev->bitmap_info.offset = 0;
6114
6115 mddev->reshape_position = MaxSector;
6116
6117 /*
6118 * Generate a 128 bit UUID
6119 */
6120 get_random_bytes(mddev->uuid, 16);
6121
6122 mddev->new_level = mddev->level;
6123 mddev->new_chunk_sectors = mddev->chunk_sectors;
6124 mddev->new_layout = mddev->layout;
6125 mddev->delta_disks = 0;
6126 mddev->reshape_backwards = 0;
6127
6128 return 0;
6129 }
6130
6131 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6132 {
6133 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6134
6135 if (mddev->external_size)
6136 return;
6137
6138 mddev->array_sectors = array_sectors;
6139 }
6140 EXPORT_SYMBOL(md_set_array_sectors);
6141
6142 static int update_size(struct mddev *mddev, sector_t num_sectors)
6143 {
6144 struct md_rdev *rdev;
6145 int rv;
6146 int fit = (num_sectors == 0);
6147
6148 if (mddev->pers->resize == NULL)
6149 return -EINVAL;
6150 /* The "num_sectors" is the number of sectors of each device that
6151 * is used. This can only make sense for arrays with redundancy.
6152 * linear and raid0 always use whatever space is available. We can only
6153 * consider changing this number if no resync or reconstruction is
6154 * happening, and if the new size is acceptable. It must fit before the
6155 * sb_start or, if that is <data_offset, it must fit before the size
6156 * of each device. If num_sectors is zero, we find the largest size
6157 * that fits.
6158 */
6159 if (mddev->sync_thread)
6160 return -EBUSY;
6161
6162 rdev_for_each(rdev, mddev) {
6163 sector_t avail = rdev->sectors;
6164
6165 if (fit && (num_sectors == 0 || num_sectors > avail))
6166 num_sectors = avail;
6167 if (avail < num_sectors)
6168 return -ENOSPC;
6169 }
6170 rv = mddev->pers->resize(mddev, num_sectors);
6171 if (!rv)
6172 revalidate_disk(mddev->gendisk);
6173 return rv;
6174 }
6175
6176 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6177 {
6178 int rv;
6179 struct md_rdev *rdev;
6180 /* change the number of raid disks */
6181 if (mddev->pers->check_reshape == NULL)
6182 return -EINVAL;
6183 if (raid_disks <= 0 ||
6184 (mddev->max_disks && raid_disks >= mddev->max_disks))
6185 return -EINVAL;
6186 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6187 return -EBUSY;
6188
6189 rdev_for_each(rdev, mddev) {
6190 if (mddev->raid_disks < raid_disks &&
6191 rdev->data_offset < rdev->new_data_offset)
6192 return -EINVAL;
6193 if (mddev->raid_disks > raid_disks &&
6194 rdev->data_offset > rdev->new_data_offset)
6195 return -EINVAL;
6196 }
6197
6198 mddev->delta_disks = raid_disks - mddev->raid_disks;
6199 if (mddev->delta_disks < 0)
6200 mddev->reshape_backwards = 1;
6201 else if (mddev->delta_disks > 0)
6202 mddev->reshape_backwards = 0;
6203
6204 rv = mddev->pers->check_reshape(mddev);
6205 if (rv < 0) {
6206 mddev->delta_disks = 0;
6207 mddev->reshape_backwards = 0;
6208 }
6209 return rv;
6210 }
6211
6212
6213 /*
6214 * update_array_info is used to change the configuration of an
6215 * on-line array.
6216 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6217 * fields in the info are checked against the array.
6218 * Any differences that cannot be handled will cause an error.
6219 * Normally, only one change can be managed at a time.
6220 */
6221 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6222 {
6223 int rv = 0;
6224 int cnt = 0;
6225 int state = 0;
6226
6227 /* calculate expected state,ignoring low bits */
6228 if (mddev->bitmap && mddev->bitmap_info.offset)
6229 state |= (1 << MD_SB_BITMAP_PRESENT);
6230
6231 if (mddev->major_version != info->major_version ||
6232 mddev->minor_version != info->minor_version ||
6233 /* mddev->patch_version != info->patch_version || */
6234 mddev->ctime != info->ctime ||
6235 mddev->level != info->level ||
6236 /* mddev->layout != info->layout || */
6237 !mddev->persistent != info->not_persistent||
6238 mddev->chunk_sectors != info->chunk_size >> 9 ||
6239 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6240 ((state^info->state) & 0xfffffe00)
6241 )
6242 return -EINVAL;
6243 /* Check there is only one change */
6244 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6245 cnt++;
6246 if (mddev->raid_disks != info->raid_disks)
6247 cnt++;
6248 if (mddev->layout != info->layout)
6249 cnt++;
6250 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6251 cnt++;
6252 if (cnt == 0)
6253 return 0;
6254 if (cnt > 1)
6255 return -EINVAL;
6256
6257 if (mddev->layout != info->layout) {
6258 /* Change layout
6259 * we don't need to do anything at the md level, the
6260 * personality will take care of it all.
6261 */
6262 if (mddev->pers->check_reshape == NULL)
6263 return -EINVAL;
6264 else {
6265 mddev->new_layout = info->layout;
6266 rv = mddev->pers->check_reshape(mddev);
6267 if (rv)
6268 mddev->new_layout = mddev->layout;
6269 return rv;
6270 }
6271 }
6272 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6273 rv = update_size(mddev, (sector_t)info->size * 2);
6274
6275 if (mddev->raid_disks != info->raid_disks)
6276 rv = update_raid_disks(mddev, info->raid_disks);
6277
6278 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6279 if (mddev->pers->quiesce == NULL)
6280 return -EINVAL;
6281 if (mddev->recovery || mddev->sync_thread)
6282 return -EBUSY;
6283 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6284 /* add the bitmap */
6285 if (mddev->bitmap)
6286 return -EEXIST;
6287 if (mddev->bitmap_info.default_offset == 0)
6288 return -EINVAL;
6289 mddev->bitmap_info.offset =
6290 mddev->bitmap_info.default_offset;
6291 mddev->bitmap_info.space =
6292 mddev->bitmap_info.default_space;
6293 mddev->pers->quiesce(mddev, 1);
6294 rv = bitmap_create(mddev);
6295 if (!rv)
6296 rv = bitmap_load(mddev);
6297 if (rv)
6298 bitmap_destroy(mddev);
6299 mddev->pers->quiesce(mddev, 0);
6300 } else {
6301 /* remove the bitmap */
6302 if (!mddev->bitmap)
6303 return -ENOENT;
6304 if (mddev->bitmap->storage.file)
6305 return -EINVAL;
6306 mddev->pers->quiesce(mddev, 1);
6307 bitmap_destroy(mddev);
6308 mddev->pers->quiesce(mddev, 0);
6309 mddev->bitmap_info.offset = 0;
6310 }
6311 }
6312 md_update_sb(mddev, 1);
6313 return rv;
6314 }
6315
6316 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6317 {
6318 struct md_rdev *rdev;
6319
6320 if (mddev->pers == NULL)
6321 return -ENODEV;
6322
6323 rdev = find_rdev(mddev, dev);
6324 if (!rdev)
6325 return -ENODEV;
6326
6327 md_error(mddev, rdev);
6328 if (!test_bit(Faulty, &rdev->flags))
6329 return -EBUSY;
6330 return 0;
6331 }
6332
6333 /*
6334 * We have a problem here : there is no easy way to give a CHS
6335 * virtual geometry. We currently pretend that we have a 2 heads
6336 * 4 sectors (with a BIG number of cylinders...). This drives
6337 * dosfs just mad... ;-)
6338 */
6339 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6340 {
6341 struct mddev *mddev = bdev->bd_disk->private_data;
6342
6343 geo->heads = 2;
6344 geo->sectors = 4;
6345 geo->cylinders = mddev->array_sectors / 8;
6346 return 0;
6347 }
6348
6349 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6350 unsigned int cmd, unsigned long arg)
6351 {
6352 int err = 0;
6353 void __user *argp = (void __user *)arg;
6354 struct mddev *mddev = NULL;
6355 int ro;
6356
6357 switch (cmd) {
6358 case RAID_VERSION:
6359 case GET_ARRAY_INFO:
6360 case GET_DISK_INFO:
6361 break;
6362 default:
6363 if (!capable(CAP_SYS_ADMIN))
6364 return -EACCES;
6365 }
6366
6367 /*
6368 * Commands dealing with the RAID driver but not any
6369 * particular array:
6370 */
6371 switch (cmd)
6372 {
6373 case RAID_VERSION:
6374 err = get_version(argp);
6375 goto done;
6376
6377 case PRINT_RAID_DEBUG:
6378 err = 0;
6379 md_print_devices();
6380 goto done;
6381
6382 #ifndef MODULE
6383 case RAID_AUTORUN:
6384 err = 0;
6385 autostart_arrays(arg);
6386 goto done;
6387 #endif
6388 default:;
6389 }
6390
6391 /*
6392 * Commands creating/starting a new array:
6393 */
6394
6395 mddev = bdev->bd_disk->private_data;
6396
6397 if (!mddev) {
6398 BUG();
6399 goto abort;
6400 }
6401
6402 err = mddev_lock(mddev);
6403 if (err) {
6404 printk(KERN_INFO
6405 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6406 err, cmd);
6407 goto abort;
6408 }
6409
6410 switch (cmd)
6411 {
6412 case SET_ARRAY_INFO:
6413 {
6414 mdu_array_info_t info;
6415 if (!arg)
6416 memset(&info, 0, sizeof(info));
6417 else if (copy_from_user(&info, argp, sizeof(info))) {
6418 err = -EFAULT;
6419 goto abort_unlock;
6420 }
6421 if (mddev->pers) {
6422 err = update_array_info(mddev, &info);
6423 if (err) {
6424 printk(KERN_WARNING "md: couldn't update"
6425 " array info. %d\n", err);
6426 goto abort_unlock;
6427 }
6428 goto done_unlock;
6429 }
6430 if (!list_empty(&mddev->disks)) {
6431 printk(KERN_WARNING
6432 "md: array %s already has disks!\n",
6433 mdname(mddev));
6434 err = -EBUSY;
6435 goto abort_unlock;
6436 }
6437 if (mddev->raid_disks) {
6438 printk(KERN_WARNING
6439 "md: array %s already initialised!\n",
6440 mdname(mddev));
6441 err = -EBUSY;
6442 goto abort_unlock;
6443 }
6444 err = set_array_info(mddev, &info);
6445 if (err) {
6446 printk(KERN_WARNING "md: couldn't set"
6447 " array info. %d\n", err);
6448 goto abort_unlock;
6449 }
6450 }
6451 goto done_unlock;
6452
6453 default:;
6454 }
6455
6456 /*
6457 * Commands querying/configuring an existing array:
6458 */
6459 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6460 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6461 if ((!mddev->raid_disks && !mddev->external)
6462 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6463 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6464 && cmd != GET_BITMAP_FILE) {
6465 err = -ENODEV;
6466 goto abort_unlock;
6467 }
6468
6469 /*
6470 * Commands even a read-only array can execute:
6471 */
6472 switch (cmd)
6473 {
6474 case GET_ARRAY_INFO:
6475 err = get_array_info(mddev, argp);
6476 goto done_unlock;
6477
6478 case GET_BITMAP_FILE:
6479 err = get_bitmap_file(mddev, argp);
6480 goto done_unlock;
6481
6482 case GET_DISK_INFO:
6483 err = get_disk_info(mddev, argp);
6484 goto done_unlock;
6485
6486 case RESTART_ARRAY_RW:
6487 err = restart_array(mddev);
6488 goto done_unlock;
6489
6490 case STOP_ARRAY:
6491 err = do_md_stop(mddev, 0, bdev);
6492 goto done_unlock;
6493
6494 case STOP_ARRAY_RO:
6495 err = md_set_readonly(mddev, bdev);
6496 goto done_unlock;
6497
6498 case BLKROSET:
6499 if (get_user(ro, (int __user *)(arg))) {
6500 err = -EFAULT;
6501 goto done_unlock;
6502 }
6503 err = -EINVAL;
6504
6505 /* if the bdev is going readonly the value of mddev->ro
6506 * does not matter, no writes are coming
6507 */
6508 if (ro)
6509 goto done_unlock;
6510
6511 /* are we are already prepared for writes? */
6512 if (mddev->ro != 1)
6513 goto done_unlock;
6514
6515 /* transitioning to readauto need only happen for
6516 * arrays that call md_write_start
6517 */
6518 if (mddev->pers) {
6519 err = restart_array(mddev);
6520 if (err == 0) {
6521 mddev->ro = 2;
6522 set_disk_ro(mddev->gendisk, 0);
6523 }
6524 }
6525 goto done_unlock;
6526 }
6527
6528 /*
6529 * The remaining ioctls are changing the state of the
6530 * superblock, so we do not allow them on read-only arrays.
6531 * However non-MD ioctls (e.g. get-size) will still come through
6532 * here and hit the 'default' below, so only disallow
6533 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6534 */
6535 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6536 if (mddev->ro == 2) {
6537 mddev->ro = 0;
6538 sysfs_notify_dirent_safe(mddev->sysfs_state);
6539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6540 md_wakeup_thread(mddev->thread);
6541 } else {
6542 err = -EROFS;
6543 goto abort_unlock;
6544 }
6545 }
6546
6547 switch (cmd)
6548 {
6549 case ADD_NEW_DISK:
6550 {
6551 mdu_disk_info_t info;
6552 if (copy_from_user(&info, argp, sizeof(info)))
6553 err = -EFAULT;
6554 else
6555 err = add_new_disk(mddev, &info);
6556 goto done_unlock;
6557 }
6558
6559 case HOT_REMOVE_DISK:
6560 err = hot_remove_disk(mddev, new_decode_dev(arg));
6561 goto done_unlock;
6562
6563 case HOT_ADD_DISK:
6564 err = hot_add_disk(mddev, new_decode_dev(arg));
6565 goto done_unlock;
6566
6567 case SET_DISK_FAULTY:
6568 err = set_disk_faulty(mddev, new_decode_dev(arg));
6569 goto done_unlock;
6570
6571 case RUN_ARRAY:
6572 err = do_md_run(mddev);
6573 goto done_unlock;
6574
6575 case SET_BITMAP_FILE:
6576 err = set_bitmap_file(mddev, (int)arg);
6577 goto done_unlock;
6578
6579 default:
6580 err = -EINVAL;
6581 goto abort_unlock;
6582 }
6583
6584 done_unlock:
6585 abort_unlock:
6586 if (mddev->hold_active == UNTIL_IOCTL &&
6587 err != -EINVAL)
6588 mddev->hold_active = 0;
6589 mddev_unlock(mddev);
6590
6591 return err;
6592 done:
6593 if (err)
6594 MD_BUG();
6595 abort:
6596 return err;
6597 }
6598 #ifdef CONFIG_COMPAT
6599 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6600 unsigned int cmd, unsigned long arg)
6601 {
6602 switch (cmd) {
6603 case HOT_REMOVE_DISK:
6604 case HOT_ADD_DISK:
6605 case SET_DISK_FAULTY:
6606 case SET_BITMAP_FILE:
6607 /* These take in integer arg, do not convert */
6608 break;
6609 default:
6610 arg = (unsigned long)compat_ptr(arg);
6611 break;
6612 }
6613
6614 return md_ioctl(bdev, mode, cmd, arg);
6615 }
6616 #endif /* CONFIG_COMPAT */
6617
6618 static int md_open(struct block_device *bdev, fmode_t mode)
6619 {
6620 /*
6621 * Succeed if we can lock the mddev, which confirms that
6622 * it isn't being stopped right now.
6623 */
6624 struct mddev *mddev = mddev_find(bdev->bd_dev);
6625 int err;
6626
6627 if (!mddev)
6628 return -ENODEV;
6629
6630 if (mddev->gendisk != bdev->bd_disk) {
6631 /* we are racing with mddev_put which is discarding this
6632 * bd_disk.
6633 */
6634 mddev_put(mddev);
6635 /* Wait until bdev->bd_disk is definitely gone */
6636 flush_workqueue(md_misc_wq);
6637 /* Then retry the open from the top */
6638 return -ERESTARTSYS;
6639 }
6640 BUG_ON(mddev != bdev->bd_disk->private_data);
6641
6642 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6643 goto out;
6644
6645 err = 0;
6646 atomic_inc(&mddev->openers);
6647 mutex_unlock(&mddev->open_mutex);
6648
6649 check_disk_change(bdev);
6650 out:
6651 return err;
6652 }
6653
6654 static int md_release(struct gendisk *disk, fmode_t mode)
6655 {
6656 struct mddev *mddev = disk->private_data;
6657
6658 BUG_ON(!mddev);
6659 atomic_dec(&mddev->openers);
6660 mddev_put(mddev);
6661
6662 return 0;
6663 }
6664
6665 static int md_media_changed(struct gendisk *disk)
6666 {
6667 struct mddev *mddev = disk->private_data;
6668
6669 return mddev->changed;
6670 }
6671
6672 static int md_revalidate(struct gendisk *disk)
6673 {
6674 struct mddev *mddev = disk->private_data;
6675
6676 mddev->changed = 0;
6677 return 0;
6678 }
6679 static const struct block_device_operations md_fops =
6680 {
6681 .owner = THIS_MODULE,
6682 .open = md_open,
6683 .release = md_release,
6684 .ioctl = md_ioctl,
6685 #ifdef CONFIG_COMPAT
6686 .compat_ioctl = md_compat_ioctl,
6687 #endif
6688 .getgeo = md_getgeo,
6689 .media_changed = md_media_changed,
6690 .revalidate_disk= md_revalidate,
6691 };
6692
6693 static int md_thread(void * arg)
6694 {
6695 struct md_thread *thread = arg;
6696
6697 /*
6698 * md_thread is a 'system-thread', it's priority should be very
6699 * high. We avoid resource deadlocks individually in each
6700 * raid personality. (RAID5 does preallocation) We also use RR and
6701 * the very same RT priority as kswapd, thus we will never get
6702 * into a priority inversion deadlock.
6703 *
6704 * we definitely have to have equal or higher priority than
6705 * bdflush, otherwise bdflush will deadlock if there are too
6706 * many dirty RAID5 blocks.
6707 */
6708
6709 allow_signal(SIGKILL);
6710 while (!kthread_should_stop()) {
6711
6712 /* We need to wait INTERRUPTIBLE so that
6713 * we don't add to the load-average.
6714 * That means we need to be sure no signals are
6715 * pending
6716 */
6717 if (signal_pending(current))
6718 flush_signals(current);
6719
6720 wait_event_interruptible_timeout
6721 (thread->wqueue,
6722 test_bit(THREAD_WAKEUP, &thread->flags)
6723 || kthread_should_stop(),
6724 thread->timeout);
6725
6726 clear_bit(THREAD_WAKEUP, &thread->flags);
6727 if (!kthread_should_stop())
6728 thread->run(thread->mddev);
6729 }
6730
6731 return 0;
6732 }
6733
6734 void md_wakeup_thread(struct md_thread *thread)
6735 {
6736 if (thread) {
6737 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6738 set_bit(THREAD_WAKEUP, &thread->flags);
6739 wake_up(&thread->wqueue);
6740 }
6741 }
6742
6743 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6744 const char *name)
6745 {
6746 struct md_thread *thread;
6747
6748 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6749 if (!thread)
6750 return NULL;
6751
6752 init_waitqueue_head(&thread->wqueue);
6753
6754 thread->run = run;
6755 thread->mddev = mddev;
6756 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6757 thread->tsk = kthread_run(md_thread, thread,
6758 "%s_%s",
6759 mdname(thread->mddev),
6760 name);
6761 if (IS_ERR(thread->tsk)) {
6762 kfree(thread);
6763 return NULL;
6764 }
6765 return thread;
6766 }
6767
6768 void md_unregister_thread(struct md_thread **threadp)
6769 {
6770 struct md_thread *thread = *threadp;
6771 if (!thread)
6772 return;
6773 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6774 /* Locking ensures that mddev_unlock does not wake_up a
6775 * non-existent thread
6776 */
6777 spin_lock(&pers_lock);
6778 *threadp = NULL;
6779 spin_unlock(&pers_lock);
6780
6781 kthread_stop(thread->tsk);
6782 kfree(thread);
6783 }
6784
6785 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6786 {
6787 if (!mddev) {
6788 MD_BUG();
6789 return;
6790 }
6791
6792 if (!rdev || test_bit(Faulty, &rdev->flags))
6793 return;
6794
6795 if (!mddev->pers || !mddev->pers->error_handler)
6796 return;
6797 mddev->pers->error_handler(mddev,rdev);
6798 if (mddev->degraded)
6799 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6800 sysfs_notify_dirent_safe(rdev->sysfs_state);
6801 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6802 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6803 md_wakeup_thread(mddev->thread);
6804 if (mddev->event_work.func)
6805 queue_work(md_misc_wq, &mddev->event_work);
6806 md_new_event_inintr(mddev);
6807 }
6808
6809 /* seq_file implementation /proc/mdstat */
6810
6811 static void status_unused(struct seq_file *seq)
6812 {
6813 int i = 0;
6814 struct md_rdev *rdev;
6815
6816 seq_printf(seq, "unused devices: ");
6817
6818 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6819 char b[BDEVNAME_SIZE];
6820 i++;
6821 seq_printf(seq, "%s ",
6822 bdevname(rdev->bdev,b));
6823 }
6824 if (!i)
6825 seq_printf(seq, "<none>");
6826
6827 seq_printf(seq, "\n");
6828 }
6829
6830
6831 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6832 {
6833 sector_t max_sectors, resync, res;
6834 unsigned long dt, db;
6835 sector_t rt;
6836 int scale;
6837 unsigned int per_milli;
6838
6839 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6840
6841 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6842 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6843 max_sectors = mddev->resync_max_sectors;
6844 else
6845 max_sectors = mddev->dev_sectors;
6846
6847 /*
6848 * Should not happen.
6849 */
6850 if (!max_sectors) {
6851 MD_BUG();
6852 return;
6853 }
6854 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6855 * in a sector_t, and (max_sectors>>scale) will fit in a
6856 * u32, as those are the requirements for sector_div.
6857 * Thus 'scale' must be at least 10
6858 */
6859 scale = 10;
6860 if (sizeof(sector_t) > sizeof(unsigned long)) {
6861 while ( max_sectors/2 > (1ULL<<(scale+32)))
6862 scale++;
6863 }
6864 res = (resync>>scale)*1000;
6865 sector_div(res, (u32)((max_sectors>>scale)+1));
6866
6867 per_milli = res;
6868 {
6869 int i, x = per_milli/50, y = 20-x;
6870 seq_printf(seq, "[");
6871 for (i = 0; i < x; i++)
6872 seq_printf(seq, "=");
6873 seq_printf(seq, ">");
6874 for (i = 0; i < y; i++)
6875 seq_printf(seq, ".");
6876 seq_printf(seq, "] ");
6877 }
6878 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6879 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6880 "reshape" :
6881 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6882 "check" :
6883 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6884 "resync" : "recovery"))),
6885 per_milli/10, per_milli % 10,
6886 (unsigned long long) resync/2,
6887 (unsigned long long) max_sectors/2);
6888
6889 /*
6890 * dt: time from mark until now
6891 * db: blocks written from mark until now
6892 * rt: remaining time
6893 *
6894 * rt is a sector_t, so could be 32bit or 64bit.
6895 * So we divide before multiply in case it is 32bit and close
6896 * to the limit.
6897 * We scale the divisor (db) by 32 to avoid losing precision
6898 * near the end of resync when the number of remaining sectors
6899 * is close to 'db'.
6900 * We then divide rt by 32 after multiplying by db to compensate.
6901 * The '+1' avoids division by zero if db is very small.
6902 */
6903 dt = ((jiffies - mddev->resync_mark) / HZ);
6904 if (!dt) dt++;
6905 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6906 - mddev->resync_mark_cnt;
6907
6908 rt = max_sectors - resync; /* number of remaining sectors */
6909 sector_div(rt, db/32+1);
6910 rt *= dt;
6911 rt >>= 5;
6912
6913 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6914 ((unsigned long)rt % 60)/6);
6915
6916 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6917 }
6918
6919 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6920 {
6921 struct list_head *tmp;
6922 loff_t l = *pos;
6923 struct mddev *mddev;
6924
6925 if (l >= 0x10000)
6926 return NULL;
6927 if (!l--)
6928 /* header */
6929 return (void*)1;
6930
6931 spin_lock(&all_mddevs_lock);
6932 list_for_each(tmp,&all_mddevs)
6933 if (!l--) {
6934 mddev = list_entry(tmp, struct mddev, all_mddevs);
6935 mddev_get(mddev);
6936 spin_unlock(&all_mddevs_lock);
6937 return mddev;
6938 }
6939 spin_unlock(&all_mddevs_lock);
6940 if (!l--)
6941 return (void*)2;/* tail */
6942 return NULL;
6943 }
6944
6945 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6946 {
6947 struct list_head *tmp;
6948 struct mddev *next_mddev, *mddev = v;
6949
6950 ++*pos;
6951 if (v == (void*)2)
6952 return NULL;
6953
6954 spin_lock(&all_mddevs_lock);
6955 if (v == (void*)1)
6956 tmp = all_mddevs.next;
6957 else
6958 tmp = mddev->all_mddevs.next;
6959 if (tmp != &all_mddevs)
6960 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6961 else {
6962 next_mddev = (void*)2;
6963 *pos = 0x10000;
6964 }
6965 spin_unlock(&all_mddevs_lock);
6966
6967 if (v != (void*)1)
6968 mddev_put(mddev);
6969 return next_mddev;
6970
6971 }
6972
6973 static void md_seq_stop(struct seq_file *seq, void *v)
6974 {
6975 struct mddev *mddev = v;
6976
6977 if (mddev && v != (void*)1 && v != (void*)2)
6978 mddev_put(mddev);
6979 }
6980
6981 static int md_seq_show(struct seq_file *seq, void *v)
6982 {
6983 struct mddev *mddev = v;
6984 sector_t sectors;
6985 struct md_rdev *rdev;
6986
6987 if (v == (void*)1) {
6988 struct md_personality *pers;
6989 seq_printf(seq, "Personalities : ");
6990 spin_lock(&pers_lock);
6991 list_for_each_entry(pers, &pers_list, list)
6992 seq_printf(seq, "[%s] ", pers->name);
6993
6994 spin_unlock(&pers_lock);
6995 seq_printf(seq, "\n");
6996 seq->poll_event = atomic_read(&md_event_count);
6997 return 0;
6998 }
6999 if (v == (void*)2) {
7000 status_unused(seq);
7001 return 0;
7002 }
7003
7004 if (mddev_lock(mddev) < 0)
7005 return -EINTR;
7006
7007 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7008 seq_printf(seq, "%s : %sactive", mdname(mddev),
7009 mddev->pers ? "" : "in");
7010 if (mddev->pers) {
7011 if (mddev->ro==1)
7012 seq_printf(seq, " (read-only)");
7013 if (mddev->ro==2)
7014 seq_printf(seq, " (auto-read-only)");
7015 seq_printf(seq, " %s", mddev->pers->name);
7016 }
7017
7018 sectors = 0;
7019 rdev_for_each(rdev, mddev) {
7020 char b[BDEVNAME_SIZE];
7021 seq_printf(seq, " %s[%d]",
7022 bdevname(rdev->bdev,b), rdev->desc_nr);
7023 if (test_bit(WriteMostly, &rdev->flags))
7024 seq_printf(seq, "(W)");
7025 if (test_bit(Faulty, &rdev->flags)) {
7026 seq_printf(seq, "(F)");
7027 continue;
7028 }
7029 if (rdev->raid_disk < 0)
7030 seq_printf(seq, "(S)"); /* spare */
7031 if (test_bit(Replacement, &rdev->flags))
7032 seq_printf(seq, "(R)");
7033 sectors += rdev->sectors;
7034 }
7035
7036 if (!list_empty(&mddev->disks)) {
7037 if (mddev->pers)
7038 seq_printf(seq, "\n %llu blocks",
7039 (unsigned long long)
7040 mddev->array_sectors / 2);
7041 else
7042 seq_printf(seq, "\n %llu blocks",
7043 (unsigned long long)sectors / 2);
7044 }
7045 if (mddev->persistent) {
7046 if (mddev->major_version != 0 ||
7047 mddev->minor_version != 90) {
7048 seq_printf(seq," super %d.%d",
7049 mddev->major_version,
7050 mddev->minor_version);
7051 }
7052 } else if (mddev->external)
7053 seq_printf(seq, " super external:%s",
7054 mddev->metadata_type);
7055 else
7056 seq_printf(seq, " super non-persistent");
7057
7058 if (mddev->pers) {
7059 mddev->pers->status(seq, mddev);
7060 seq_printf(seq, "\n ");
7061 if (mddev->pers->sync_request) {
7062 if (mddev->curr_resync > 2) {
7063 status_resync(seq, mddev);
7064 seq_printf(seq, "\n ");
7065 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
7066 seq_printf(seq, "\tresync=DELAYED\n ");
7067 else if (mddev->recovery_cp < MaxSector)
7068 seq_printf(seq, "\tresync=PENDING\n ");
7069 }
7070 } else
7071 seq_printf(seq, "\n ");
7072
7073 bitmap_status(seq, mddev->bitmap);
7074
7075 seq_printf(seq, "\n");
7076 }
7077 mddev_unlock(mddev);
7078
7079 return 0;
7080 }
7081
7082 static const struct seq_operations md_seq_ops = {
7083 .start = md_seq_start,
7084 .next = md_seq_next,
7085 .stop = md_seq_stop,
7086 .show = md_seq_show,
7087 };
7088
7089 static int md_seq_open(struct inode *inode, struct file *file)
7090 {
7091 struct seq_file *seq;
7092 int error;
7093
7094 error = seq_open(file, &md_seq_ops);
7095 if (error)
7096 return error;
7097
7098 seq = file->private_data;
7099 seq->poll_event = atomic_read(&md_event_count);
7100 return error;
7101 }
7102
7103 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7104 {
7105 struct seq_file *seq = filp->private_data;
7106 int mask;
7107
7108 poll_wait(filp, &md_event_waiters, wait);
7109
7110 /* always allow read */
7111 mask = POLLIN | POLLRDNORM;
7112
7113 if (seq->poll_event != atomic_read(&md_event_count))
7114 mask |= POLLERR | POLLPRI;
7115 return mask;
7116 }
7117
7118 static const struct file_operations md_seq_fops = {
7119 .owner = THIS_MODULE,
7120 .open = md_seq_open,
7121 .read = seq_read,
7122 .llseek = seq_lseek,
7123 .release = seq_release_private,
7124 .poll = mdstat_poll,
7125 };
7126
7127 int register_md_personality(struct md_personality *p)
7128 {
7129 spin_lock(&pers_lock);
7130 list_add_tail(&p->list, &pers_list);
7131 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7132 spin_unlock(&pers_lock);
7133 return 0;
7134 }
7135
7136 int unregister_md_personality(struct md_personality *p)
7137 {
7138 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7139 spin_lock(&pers_lock);
7140 list_del_init(&p->list);
7141 spin_unlock(&pers_lock);
7142 return 0;
7143 }
7144
7145 static int is_mddev_idle(struct mddev *mddev, int init)
7146 {
7147 struct md_rdev * rdev;
7148 int idle;
7149 int curr_events;
7150
7151 idle = 1;
7152 rcu_read_lock();
7153 rdev_for_each_rcu(rdev, mddev) {
7154 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7155 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7156 (int)part_stat_read(&disk->part0, sectors[1]) -
7157 atomic_read(&disk->sync_io);
7158 /* sync IO will cause sync_io to increase before the disk_stats
7159 * as sync_io is counted when a request starts, and
7160 * disk_stats is counted when it completes.
7161 * So resync activity will cause curr_events to be smaller than
7162 * when there was no such activity.
7163 * non-sync IO will cause disk_stat to increase without
7164 * increasing sync_io so curr_events will (eventually)
7165 * be larger than it was before. Once it becomes
7166 * substantially larger, the test below will cause
7167 * the array to appear non-idle, and resync will slow
7168 * down.
7169 * If there is a lot of outstanding resync activity when
7170 * we set last_event to curr_events, then all that activity
7171 * completing might cause the array to appear non-idle
7172 * and resync will be slowed down even though there might
7173 * not have been non-resync activity. This will only
7174 * happen once though. 'last_events' will soon reflect
7175 * the state where there is little or no outstanding
7176 * resync requests, and further resync activity will
7177 * always make curr_events less than last_events.
7178 *
7179 */
7180 if (init || curr_events - rdev->last_events > 64) {
7181 rdev->last_events = curr_events;
7182 idle = 0;
7183 }
7184 }
7185 rcu_read_unlock();
7186 return idle;
7187 }
7188
7189 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7190 {
7191 /* another "blocks" (512byte) blocks have been synced */
7192 atomic_sub(blocks, &mddev->recovery_active);
7193 wake_up(&mddev->recovery_wait);
7194 if (!ok) {
7195 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7196 md_wakeup_thread(mddev->thread);
7197 // stop recovery, signal do_sync ....
7198 }
7199 }
7200
7201
7202 /* md_write_start(mddev, bi)
7203 * If we need to update some array metadata (e.g. 'active' flag
7204 * in superblock) before writing, schedule a superblock update
7205 * and wait for it to complete.
7206 */
7207 void md_write_start(struct mddev *mddev, struct bio *bi)
7208 {
7209 int did_change = 0;
7210 if (bio_data_dir(bi) != WRITE)
7211 return;
7212
7213 BUG_ON(mddev->ro == 1);
7214 if (mddev->ro == 2) {
7215 /* need to switch to read/write */
7216 mddev->ro = 0;
7217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7218 md_wakeup_thread(mddev->thread);
7219 md_wakeup_thread(mddev->sync_thread);
7220 did_change = 1;
7221 }
7222 atomic_inc(&mddev->writes_pending);
7223 if (mddev->safemode == 1)
7224 mddev->safemode = 0;
7225 if (mddev->in_sync) {
7226 spin_lock_irq(&mddev->write_lock);
7227 if (mddev->in_sync) {
7228 mddev->in_sync = 0;
7229 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7230 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7231 md_wakeup_thread(mddev->thread);
7232 did_change = 1;
7233 }
7234 spin_unlock_irq(&mddev->write_lock);
7235 }
7236 if (did_change)
7237 sysfs_notify_dirent_safe(mddev->sysfs_state);
7238 wait_event(mddev->sb_wait,
7239 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7240 }
7241
7242 void md_write_end(struct mddev *mddev)
7243 {
7244 if (atomic_dec_and_test(&mddev->writes_pending)) {
7245 if (mddev->safemode == 2)
7246 md_wakeup_thread(mddev->thread);
7247 else if (mddev->safemode_delay)
7248 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7249 }
7250 }
7251
7252 /* md_allow_write(mddev)
7253 * Calling this ensures that the array is marked 'active' so that writes
7254 * may proceed without blocking. It is important to call this before
7255 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7256 * Must be called with mddev_lock held.
7257 *
7258 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7259 * is dropped, so return -EAGAIN after notifying userspace.
7260 */
7261 int md_allow_write(struct mddev *mddev)
7262 {
7263 if (!mddev->pers)
7264 return 0;
7265 if (mddev->ro)
7266 return 0;
7267 if (!mddev->pers->sync_request)
7268 return 0;
7269
7270 spin_lock_irq(&mddev->write_lock);
7271 if (mddev->in_sync) {
7272 mddev->in_sync = 0;
7273 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7274 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7275 if (mddev->safemode_delay &&
7276 mddev->safemode == 0)
7277 mddev->safemode = 1;
7278 spin_unlock_irq(&mddev->write_lock);
7279 md_update_sb(mddev, 0);
7280 sysfs_notify_dirent_safe(mddev->sysfs_state);
7281 } else
7282 spin_unlock_irq(&mddev->write_lock);
7283
7284 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7285 return -EAGAIN;
7286 else
7287 return 0;
7288 }
7289 EXPORT_SYMBOL_GPL(md_allow_write);
7290
7291 #define SYNC_MARKS 10
7292 #define SYNC_MARK_STEP (3*HZ)
7293 void md_do_sync(struct mddev *mddev)
7294 {
7295 struct mddev *mddev2;
7296 unsigned int currspeed = 0,
7297 window;
7298 sector_t max_sectors,j, io_sectors;
7299 unsigned long mark[SYNC_MARKS];
7300 sector_t mark_cnt[SYNC_MARKS];
7301 int last_mark,m;
7302 struct list_head *tmp;
7303 sector_t last_check;
7304 int skipped = 0;
7305 struct md_rdev *rdev;
7306 char *desc;
7307 struct blk_plug plug;
7308
7309 /* just incase thread restarts... */
7310 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7311 return;
7312 if (mddev->ro) /* never try to sync a read-only array */
7313 return;
7314
7315 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7316 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7317 desc = "data-check";
7318 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7319 desc = "requested-resync";
7320 else
7321 desc = "resync";
7322 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7323 desc = "reshape";
7324 else
7325 desc = "recovery";
7326
7327 /* we overload curr_resync somewhat here.
7328 * 0 == not engaged in resync at all
7329 * 2 == checking that there is no conflict with another sync
7330 * 1 == like 2, but have yielded to allow conflicting resync to
7331 * commense
7332 * other == active in resync - this many blocks
7333 *
7334 * Before starting a resync we must have set curr_resync to
7335 * 2, and then checked that every "conflicting" array has curr_resync
7336 * less than ours. When we find one that is the same or higher
7337 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7338 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7339 * This will mean we have to start checking from the beginning again.
7340 *
7341 */
7342
7343 do {
7344 mddev->curr_resync = 2;
7345
7346 try_again:
7347 if (kthread_should_stop())
7348 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7349
7350 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7351 goto skip;
7352 for_each_mddev(mddev2, tmp) {
7353 if (mddev2 == mddev)
7354 continue;
7355 if (!mddev->parallel_resync
7356 && mddev2->curr_resync
7357 && match_mddev_units(mddev, mddev2)) {
7358 DEFINE_WAIT(wq);
7359 if (mddev < mddev2 && mddev->curr_resync == 2) {
7360 /* arbitrarily yield */
7361 mddev->curr_resync = 1;
7362 wake_up(&resync_wait);
7363 }
7364 if (mddev > mddev2 && mddev->curr_resync == 1)
7365 /* no need to wait here, we can wait the next
7366 * time 'round when curr_resync == 2
7367 */
7368 continue;
7369 /* We need to wait 'interruptible' so as not to
7370 * contribute to the load average, and not to
7371 * be caught by 'softlockup'
7372 */
7373 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7374 if (!kthread_should_stop() &&
7375 mddev2->curr_resync >= mddev->curr_resync) {
7376 printk(KERN_INFO "md: delaying %s of %s"
7377 " until %s has finished (they"
7378 " share one or more physical units)\n",
7379 desc, mdname(mddev), mdname(mddev2));
7380 mddev_put(mddev2);
7381 if (signal_pending(current))
7382 flush_signals(current);
7383 schedule();
7384 finish_wait(&resync_wait, &wq);
7385 goto try_again;
7386 }
7387 finish_wait(&resync_wait, &wq);
7388 }
7389 }
7390 } while (mddev->curr_resync < 2);
7391
7392 j = 0;
7393 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7394 /* resync follows the size requested by the personality,
7395 * which defaults to physical size, but can be virtual size
7396 */
7397 max_sectors = mddev->resync_max_sectors;
7398 mddev->resync_mismatches = 0;
7399 /* we don't use the checkpoint if there's a bitmap */
7400 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7401 j = mddev->resync_min;
7402 else if (!mddev->bitmap)
7403 j = mddev->recovery_cp;
7404
7405 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7406 max_sectors = mddev->resync_max_sectors;
7407 else {
7408 /* recovery follows the physical size of devices */
7409 max_sectors = mddev->dev_sectors;
7410 j = MaxSector;
7411 rcu_read_lock();
7412 rdev_for_each_rcu(rdev, mddev)
7413 if (rdev->raid_disk >= 0 &&
7414 !test_bit(Faulty, &rdev->flags) &&
7415 !test_bit(In_sync, &rdev->flags) &&
7416 rdev->recovery_offset < j)
7417 j = rdev->recovery_offset;
7418 rcu_read_unlock();
7419 }
7420
7421 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7422 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7423 " %d KB/sec/disk.\n", speed_min(mddev));
7424 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7425 "(but not more than %d KB/sec) for %s.\n",
7426 speed_max(mddev), desc);
7427
7428 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7429
7430 io_sectors = 0;
7431 for (m = 0; m < SYNC_MARKS; m++) {
7432 mark[m] = jiffies;
7433 mark_cnt[m] = io_sectors;
7434 }
7435 last_mark = 0;
7436 mddev->resync_mark = mark[last_mark];
7437 mddev->resync_mark_cnt = mark_cnt[last_mark];
7438
7439 /*
7440 * Tune reconstruction:
7441 */
7442 window = 32*(PAGE_SIZE/512);
7443 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7444 window/2, (unsigned long long)max_sectors/2);
7445
7446 atomic_set(&mddev->recovery_active, 0);
7447 last_check = 0;
7448
7449 if (j>2) {
7450 printk(KERN_INFO
7451 "md: resuming %s of %s from checkpoint.\n",
7452 desc, mdname(mddev));
7453 mddev->curr_resync = j;
7454 }
7455 mddev->curr_resync_completed = j;
7456
7457 blk_start_plug(&plug);
7458 while (j < max_sectors) {
7459 sector_t sectors;
7460
7461 skipped = 0;
7462
7463 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7464 ((mddev->curr_resync > mddev->curr_resync_completed &&
7465 (mddev->curr_resync - mddev->curr_resync_completed)
7466 > (max_sectors >> 4)) ||
7467 (j - mddev->curr_resync_completed)*2
7468 >= mddev->resync_max - mddev->curr_resync_completed
7469 )) {
7470 /* time to update curr_resync_completed */
7471 wait_event(mddev->recovery_wait,
7472 atomic_read(&mddev->recovery_active) == 0);
7473 mddev->curr_resync_completed = j;
7474 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7475 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7476 }
7477
7478 while (j >= mddev->resync_max && !kthread_should_stop()) {
7479 /* As this condition is controlled by user-space,
7480 * we can block indefinitely, so use '_interruptible'
7481 * to avoid triggering warnings.
7482 */
7483 flush_signals(current); /* just in case */
7484 wait_event_interruptible(mddev->recovery_wait,
7485 mddev->resync_max > j
7486 || kthread_should_stop());
7487 }
7488
7489 if (kthread_should_stop())
7490 goto interrupted;
7491
7492 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7493 currspeed < speed_min(mddev));
7494 if (sectors == 0) {
7495 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7496 goto out;
7497 }
7498
7499 if (!skipped) { /* actual IO requested */
7500 io_sectors += sectors;
7501 atomic_add(sectors, &mddev->recovery_active);
7502 }
7503
7504 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7505 break;
7506
7507 j += sectors;
7508 if (j>1) mddev->curr_resync = j;
7509 mddev->curr_mark_cnt = io_sectors;
7510 if (last_check == 0)
7511 /* this is the earliest that rebuild will be
7512 * visible in /proc/mdstat
7513 */
7514 md_new_event(mddev);
7515
7516 if (last_check + window > io_sectors || j == max_sectors)
7517 continue;
7518
7519 last_check = io_sectors;
7520 repeat:
7521 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7522 /* step marks */
7523 int next = (last_mark+1) % SYNC_MARKS;
7524
7525 mddev->resync_mark = mark[next];
7526 mddev->resync_mark_cnt = mark_cnt[next];
7527 mark[next] = jiffies;
7528 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7529 last_mark = next;
7530 }
7531
7532
7533 if (kthread_should_stop())
7534 goto interrupted;
7535
7536
7537 /*
7538 * this loop exits only if either when we are slower than
7539 * the 'hard' speed limit, or the system was IO-idle for
7540 * a jiffy.
7541 * the system might be non-idle CPU-wise, but we only care
7542 * about not overloading the IO subsystem. (things like an
7543 * e2fsck being done on the RAID array should execute fast)
7544 */
7545 cond_resched();
7546
7547 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7548 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7549
7550 if (currspeed > speed_min(mddev)) {
7551 if ((currspeed > speed_max(mddev)) ||
7552 !is_mddev_idle(mddev, 0)) {
7553 msleep(500);
7554 goto repeat;
7555 }
7556 }
7557 }
7558 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7559 /*
7560 * this also signals 'finished resyncing' to md_stop
7561 */
7562 out:
7563 blk_finish_plug(&plug);
7564 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7565
7566 /* tell personality that we are finished */
7567 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7568
7569 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7570 mddev->curr_resync > 2) {
7571 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7572 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7573 if (mddev->curr_resync >= mddev->recovery_cp) {
7574 printk(KERN_INFO
7575 "md: checkpointing %s of %s.\n",
7576 desc, mdname(mddev));
7577 mddev->recovery_cp =
7578 mddev->curr_resync_completed;
7579 }
7580 } else
7581 mddev->recovery_cp = MaxSector;
7582 } else {
7583 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7584 mddev->curr_resync = MaxSector;
7585 rcu_read_lock();
7586 rdev_for_each_rcu(rdev, mddev)
7587 if (rdev->raid_disk >= 0 &&
7588 mddev->delta_disks >= 0 &&
7589 !test_bit(Faulty, &rdev->flags) &&
7590 !test_bit(In_sync, &rdev->flags) &&
7591 rdev->recovery_offset < mddev->curr_resync)
7592 rdev->recovery_offset = mddev->curr_resync;
7593 rcu_read_unlock();
7594 }
7595 }
7596 skip:
7597 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7598
7599 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7600 /* We completed so min/max setting can be forgotten if used. */
7601 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7602 mddev->resync_min = 0;
7603 mddev->resync_max = MaxSector;
7604 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7605 mddev->resync_min = mddev->curr_resync_completed;
7606 mddev->curr_resync = 0;
7607 wake_up(&resync_wait);
7608 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7609 md_wakeup_thread(mddev->thread);
7610 return;
7611
7612 interrupted:
7613 /*
7614 * got a signal, exit.
7615 */
7616 printk(KERN_INFO
7617 "md: md_do_sync() got signal ... exiting\n");
7618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7619 goto out;
7620
7621 }
7622 EXPORT_SYMBOL_GPL(md_do_sync);
7623
7624 static int remove_and_add_spares(struct mddev *mddev)
7625 {
7626 struct md_rdev *rdev;
7627 int spares = 0;
7628 int removed = 0;
7629
7630 mddev->curr_resync_completed = 0;
7631
7632 rdev_for_each(rdev, mddev)
7633 if (rdev->raid_disk >= 0 &&
7634 !test_bit(Blocked, &rdev->flags) &&
7635 (test_bit(Faulty, &rdev->flags) ||
7636 ! test_bit(In_sync, &rdev->flags)) &&
7637 atomic_read(&rdev->nr_pending)==0) {
7638 if (mddev->pers->hot_remove_disk(
7639 mddev, rdev) == 0) {
7640 sysfs_unlink_rdev(mddev, rdev);
7641 rdev->raid_disk = -1;
7642 removed++;
7643 }
7644 }
7645 if (removed)
7646 sysfs_notify(&mddev->kobj, NULL,
7647 "degraded");
7648
7649
7650 rdev_for_each(rdev, mddev) {
7651 if (rdev->raid_disk >= 0 &&
7652 !test_bit(In_sync, &rdev->flags) &&
7653 !test_bit(Faulty, &rdev->flags))
7654 spares++;
7655 if (rdev->raid_disk < 0
7656 && !test_bit(Faulty, &rdev->flags)) {
7657 rdev->recovery_offset = 0;
7658 if (mddev->pers->
7659 hot_add_disk(mddev, rdev) == 0) {
7660 if (sysfs_link_rdev(mddev, rdev))
7661 /* failure here is OK */;
7662 spares++;
7663 md_new_event(mddev);
7664 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7665 }
7666 }
7667 }
7668 return spares;
7669 }
7670
7671 static void reap_sync_thread(struct mddev *mddev)
7672 {
7673 struct md_rdev *rdev;
7674
7675 /* resync has finished, collect result */
7676 md_unregister_thread(&mddev->sync_thread);
7677 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7678 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7679 /* success...*/
7680 /* activate any spares */
7681 if (mddev->pers->spare_active(mddev))
7682 sysfs_notify(&mddev->kobj, NULL,
7683 "degraded");
7684 }
7685 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7686 mddev->pers->finish_reshape)
7687 mddev->pers->finish_reshape(mddev);
7688
7689 /* If array is no-longer degraded, then any saved_raid_disk
7690 * information must be scrapped. Also if any device is now
7691 * In_sync we must scrape the saved_raid_disk for that device
7692 * do the superblock for an incrementally recovered device
7693 * written out.
7694 */
7695 rdev_for_each(rdev, mddev)
7696 if (!mddev->degraded ||
7697 test_bit(In_sync, &rdev->flags))
7698 rdev->saved_raid_disk = -1;
7699
7700 md_update_sb(mddev, 1);
7701 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7702 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7703 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7704 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7705 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7706 /* flag recovery needed just to double check */
7707 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7708 sysfs_notify_dirent_safe(mddev->sysfs_action);
7709 md_new_event(mddev);
7710 if (mddev->event_work.func)
7711 queue_work(md_misc_wq, &mddev->event_work);
7712 }
7713
7714 /*
7715 * This routine is regularly called by all per-raid-array threads to
7716 * deal with generic issues like resync and super-block update.
7717 * Raid personalities that don't have a thread (linear/raid0) do not
7718 * need this as they never do any recovery or update the superblock.
7719 *
7720 * It does not do any resync itself, but rather "forks" off other threads
7721 * to do that as needed.
7722 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7723 * "->recovery" and create a thread at ->sync_thread.
7724 * When the thread finishes it sets MD_RECOVERY_DONE
7725 * and wakeups up this thread which will reap the thread and finish up.
7726 * This thread also removes any faulty devices (with nr_pending == 0).
7727 *
7728 * The overall approach is:
7729 * 1/ if the superblock needs updating, update it.
7730 * 2/ If a recovery thread is running, don't do anything else.
7731 * 3/ If recovery has finished, clean up, possibly marking spares active.
7732 * 4/ If there are any faulty devices, remove them.
7733 * 5/ If array is degraded, try to add spares devices
7734 * 6/ If array has spares or is not in-sync, start a resync thread.
7735 */
7736 void md_check_recovery(struct mddev *mddev)
7737 {
7738 if (mddev->suspended)
7739 return;
7740
7741 if (mddev->bitmap)
7742 bitmap_daemon_work(mddev);
7743
7744 if (signal_pending(current)) {
7745 if (mddev->pers->sync_request && !mddev->external) {
7746 printk(KERN_INFO "md: %s in immediate safe mode\n",
7747 mdname(mddev));
7748 mddev->safemode = 2;
7749 }
7750 flush_signals(current);
7751 }
7752
7753 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7754 return;
7755 if ( ! (
7756 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7757 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7758 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7759 (mddev->external == 0 && mddev->safemode == 1) ||
7760 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7761 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7762 ))
7763 return;
7764
7765 if (mddev_trylock(mddev)) {
7766 int spares = 0;
7767
7768 if (mddev->ro) {
7769 /* Only thing we do on a ro array is remove
7770 * failed devices.
7771 */
7772 struct md_rdev *rdev;
7773 rdev_for_each(rdev, mddev)
7774 if (rdev->raid_disk >= 0 &&
7775 !test_bit(Blocked, &rdev->flags) &&
7776 test_bit(Faulty, &rdev->flags) &&
7777 atomic_read(&rdev->nr_pending)==0) {
7778 if (mddev->pers->hot_remove_disk(
7779 mddev, rdev) == 0) {
7780 sysfs_unlink_rdev(mddev, rdev);
7781 rdev->raid_disk = -1;
7782 }
7783 }
7784 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7785 goto unlock;
7786 }
7787
7788 if (!mddev->external) {
7789 int did_change = 0;
7790 spin_lock_irq(&mddev->write_lock);
7791 if (mddev->safemode &&
7792 !atomic_read(&mddev->writes_pending) &&
7793 !mddev->in_sync &&
7794 mddev->recovery_cp == MaxSector) {
7795 mddev->in_sync = 1;
7796 did_change = 1;
7797 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7798 }
7799 if (mddev->safemode == 1)
7800 mddev->safemode = 0;
7801 spin_unlock_irq(&mddev->write_lock);
7802 if (did_change)
7803 sysfs_notify_dirent_safe(mddev->sysfs_state);
7804 }
7805
7806 if (mddev->flags)
7807 md_update_sb(mddev, 0);
7808
7809 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7810 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7811 /* resync/recovery still happening */
7812 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7813 goto unlock;
7814 }
7815 if (mddev->sync_thread) {
7816 reap_sync_thread(mddev);
7817 goto unlock;
7818 }
7819 /* Set RUNNING before clearing NEEDED to avoid
7820 * any transients in the value of "sync_action".
7821 */
7822 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7823 /* Clear some bits that don't mean anything, but
7824 * might be left set
7825 */
7826 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7827 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7828
7829 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7830 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7831 goto unlock;
7832 /* no recovery is running.
7833 * remove any failed drives, then
7834 * add spares if possible.
7835 * Spare are also removed and re-added, to allow
7836 * the personality to fail the re-add.
7837 */
7838
7839 if (mddev->reshape_position != MaxSector) {
7840 if (mddev->pers->check_reshape == NULL ||
7841 mddev->pers->check_reshape(mddev) != 0)
7842 /* Cannot proceed */
7843 goto unlock;
7844 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7845 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7846 } else if ((spares = remove_and_add_spares(mddev))) {
7847 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7848 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7849 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7850 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7851 } else if (mddev->recovery_cp < MaxSector) {
7852 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7853 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7854 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7855 /* nothing to be done ... */
7856 goto unlock;
7857
7858 if (mddev->pers->sync_request) {
7859 if (spares) {
7860 /* We are adding a device or devices to an array
7861 * which has the bitmap stored on all devices.
7862 * So make sure all bitmap pages get written
7863 */
7864 bitmap_write_all(mddev->bitmap);
7865 }
7866 mddev->sync_thread = md_register_thread(md_do_sync,
7867 mddev,
7868 "resync");
7869 if (!mddev->sync_thread) {
7870 printk(KERN_ERR "%s: could not start resync"
7871 " thread...\n",
7872 mdname(mddev));
7873 /* leave the spares where they are, it shouldn't hurt */
7874 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7875 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7876 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7877 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7878 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7879 } else
7880 md_wakeup_thread(mddev->sync_thread);
7881 sysfs_notify_dirent_safe(mddev->sysfs_action);
7882 md_new_event(mddev);
7883 }
7884 unlock:
7885 if (!mddev->sync_thread) {
7886 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7887 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7888 &mddev->recovery))
7889 if (mddev->sysfs_action)
7890 sysfs_notify_dirent_safe(mddev->sysfs_action);
7891 }
7892 mddev_unlock(mddev);
7893 }
7894 }
7895
7896 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7897 {
7898 sysfs_notify_dirent_safe(rdev->sysfs_state);
7899 wait_event_timeout(rdev->blocked_wait,
7900 !test_bit(Blocked, &rdev->flags) &&
7901 !test_bit(BlockedBadBlocks, &rdev->flags),
7902 msecs_to_jiffies(5000));
7903 rdev_dec_pending(rdev, mddev);
7904 }
7905 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7906
7907 void md_finish_reshape(struct mddev *mddev)
7908 {
7909 /* called be personality module when reshape completes. */
7910 struct md_rdev *rdev;
7911
7912 rdev_for_each(rdev, mddev) {
7913 if (rdev->data_offset > rdev->new_data_offset)
7914 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7915 else
7916 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7917 rdev->data_offset = rdev->new_data_offset;
7918 }
7919 }
7920 EXPORT_SYMBOL(md_finish_reshape);
7921
7922 /* Bad block management.
7923 * We can record which blocks on each device are 'bad' and so just
7924 * fail those blocks, or that stripe, rather than the whole device.
7925 * Entries in the bad-block table are 64bits wide. This comprises:
7926 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7927 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7928 * A 'shift' can be set so that larger blocks are tracked and
7929 * consequently larger devices can be covered.
7930 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7931 *
7932 * Locking of the bad-block table uses a seqlock so md_is_badblock
7933 * might need to retry if it is very unlucky.
7934 * We will sometimes want to check for bad blocks in a bi_end_io function,
7935 * so we use the write_seqlock_irq variant.
7936 *
7937 * When looking for a bad block we specify a range and want to
7938 * know if any block in the range is bad. So we binary-search
7939 * to the last range that starts at-or-before the given endpoint,
7940 * (or "before the sector after the target range")
7941 * then see if it ends after the given start.
7942 * We return
7943 * 0 if there are no known bad blocks in the range
7944 * 1 if there are known bad block which are all acknowledged
7945 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7946 * plus the start/length of the first bad section we overlap.
7947 */
7948 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7949 sector_t *first_bad, int *bad_sectors)
7950 {
7951 int hi;
7952 int lo = 0;
7953 u64 *p = bb->page;
7954 int rv = 0;
7955 sector_t target = s + sectors;
7956 unsigned seq;
7957
7958 if (bb->shift > 0) {
7959 /* round the start down, and the end up */
7960 s >>= bb->shift;
7961 target += (1<<bb->shift) - 1;
7962 target >>= bb->shift;
7963 sectors = target - s;
7964 }
7965 /* 'target' is now the first block after the bad range */
7966
7967 retry:
7968 seq = read_seqbegin(&bb->lock);
7969
7970 hi = bb->count;
7971
7972 /* Binary search between lo and hi for 'target'
7973 * i.e. for the last range that starts before 'target'
7974 */
7975 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7976 * are known not to be the last range before target.
7977 * VARIANT: hi-lo is the number of possible
7978 * ranges, and decreases until it reaches 1
7979 */
7980 while (hi - lo > 1) {
7981 int mid = (lo + hi) / 2;
7982 sector_t a = BB_OFFSET(p[mid]);
7983 if (a < target)
7984 /* This could still be the one, earlier ranges
7985 * could not. */
7986 lo = mid;
7987 else
7988 /* This and later ranges are definitely out. */
7989 hi = mid;
7990 }
7991 /* 'lo' might be the last that started before target, but 'hi' isn't */
7992 if (hi > lo) {
7993 /* need to check all range that end after 's' to see if
7994 * any are unacknowledged.
7995 */
7996 while (lo >= 0 &&
7997 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7998 if (BB_OFFSET(p[lo]) < target) {
7999 /* starts before the end, and finishes after
8000 * the start, so they must overlap
8001 */
8002 if (rv != -1 && BB_ACK(p[lo]))
8003 rv = 1;
8004 else
8005 rv = -1;
8006 *first_bad = BB_OFFSET(p[lo]);
8007 *bad_sectors = BB_LEN(p[lo]);
8008 }
8009 lo--;
8010 }
8011 }
8012
8013 if (read_seqretry(&bb->lock, seq))
8014 goto retry;
8015
8016 return rv;
8017 }
8018 EXPORT_SYMBOL_GPL(md_is_badblock);
8019
8020 /*
8021 * Add a range of bad blocks to the table.
8022 * This might extend the table, or might contract it
8023 * if two adjacent ranges can be merged.
8024 * We binary-search to find the 'insertion' point, then
8025 * decide how best to handle it.
8026 */
8027 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8028 int acknowledged)
8029 {
8030 u64 *p;
8031 int lo, hi;
8032 int rv = 1;
8033
8034 if (bb->shift < 0)
8035 /* badblocks are disabled */
8036 return 0;
8037
8038 if (bb->shift) {
8039 /* round the start down, and the end up */
8040 sector_t next = s + sectors;
8041 s >>= bb->shift;
8042 next += (1<<bb->shift) - 1;
8043 next >>= bb->shift;
8044 sectors = next - s;
8045 }
8046
8047 write_seqlock_irq(&bb->lock);
8048
8049 p = bb->page;
8050 lo = 0;
8051 hi = bb->count;
8052 /* Find the last range that starts at-or-before 's' */
8053 while (hi - lo > 1) {
8054 int mid = (lo + hi) / 2;
8055 sector_t a = BB_OFFSET(p[mid]);
8056 if (a <= s)
8057 lo = mid;
8058 else
8059 hi = mid;
8060 }
8061 if (hi > lo && BB_OFFSET(p[lo]) > s)
8062 hi = lo;
8063
8064 if (hi > lo) {
8065 /* we found a range that might merge with the start
8066 * of our new range
8067 */
8068 sector_t a = BB_OFFSET(p[lo]);
8069 sector_t e = a + BB_LEN(p[lo]);
8070 int ack = BB_ACK(p[lo]);
8071 if (e >= s) {
8072 /* Yes, we can merge with a previous range */
8073 if (s == a && s + sectors >= e)
8074 /* new range covers old */
8075 ack = acknowledged;
8076 else
8077 ack = ack && acknowledged;
8078
8079 if (e < s + sectors)
8080 e = s + sectors;
8081 if (e - a <= BB_MAX_LEN) {
8082 p[lo] = BB_MAKE(a, e-a, ack);
8083 s = e;
8084 } else {
8085 /* does not all fit in one range,
8086 * make p[lo] maximal
8087 */
8088 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8089 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8090 s = a + BB_MAX_LEN;
8091 }
8092 sectors = e - s;
8093 }
8094 }
8095 if (sectors && hi < bb->count) {
8096 /* 'hi' points to the first range that starts after 's'.
8097 * Maybe we can merge with the start of that range */
8098 sector_t a = BB_OFFSET(p[hi]);
8099 sector_t e = a + BB_LEN(p[hi]);
8100 int ack = BB_ACK(p[hi]);
8101 if (a <= s + sectors) {
8102 /* merging is possible */
8103 if (e <= s + sectors) {
8104 /* full overlap */
8105 e = s + sectors;
8106 ack = acknowledged;
8107 } else
8108 ack = ack && acknowledged;
8109
8110 a = s;
8111 if (e - a <= BB_MAX_LEN) {
8112 p[hi] = BB_MAKE(a, e-a, ack);
8113 s = e;
8114 } else {
8115 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8116 s = a + BB_MAX_LEN;
8117 }
8118 sectors = e - s;
8119 lo = hi;
8120 hi++;
8121 }
8122 }
8123 if (sectors == 0 && hi < bb->count) {
8124 /* we might be able to combine lo and hi */
8125 /* Note: 's' is at the end of 'lo' */
8126 sector_t a = BB_OFFSET(p[hi]);
8127 int lolen = BB_LEN(p[lo]);
8128 int hilen = BB_LEN(p[hi]);
8129 int newlen = lolen + hilen - (s - a);
8130 if (s >= a && newlen < BB_MAX_LEN) {
8131 /* yes, we can combine them */
8132 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8133 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8134 memmove(p + hi, p + hi + 1,
8135 (bb->count - hi - 1) * 8);
8136 bb->count--;
8137 }
8138 }
8139 while (sectors) {
8140 /* didn't merge (it all).
8141 * Need to add a range just before 'hi' */
8142 if (bb->count >= MD_MAX_BADBLOCKS) {
8143 /* No room for more */
8144 rv = 0;
8145 break;
8146 } else {
8147 int this_sectors = sectors;
8148 memmove(p + hi + 1, p + hi,
8149 (bb->count - hi) * 8);
8150 bb->count++;
8151
8152 if (this_sectors > BB_MAX_LEN)
8153 this_sectors = BB_MAX_LEN;
8154 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8155 sectors -= this_sectors;
8156 s += this_sectors;
8157 }
8158 }
8159
8160 bb->changed = 1;
8161 if (!acknowledged)
8162 bb->unacked_exist = 1;
8163 write_sequnlock_irq(&bb->lock);
8164
8165 return rv;
8166 }
8167
8168 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8169 int is_new)
8170 {
8171 int rv;
8172 if (is_new)
8173 s += rdev->new_data_offset;
8174 else
8175 s += rdev->data_offset;
8176 rv = md_set_badblocks(&rdev->badblocks,
8177 s, sectors, 0);
8178 if (rv) {
8179 /* Make sure they get written out promptly */
8180 sysfs_notify_dirent_safe(rdev->sysfs_state);
8181 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8182 md_wakeup_thread(rdev->mddev->thread);
8183 }
8184 return rv;
8185 }
8186 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8187
8188 /*
8189 * Remove a range of bad blocks from the table.
8190 * This may involve extending the table if we spilt a region,
8191 * but it must not fail. So if the table becomes full, we just
8192 * drop the remove request.
8193 */
8194 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8195 {
8196 u64 *p;
8197 int lo, hi;
8198 sector_t target = s + sectors;
8199 int rv = 0;
8200
8201 if (bb->shift > 0) {
8202 /* When clearing we round the start up and the end down.
8203 * This should not matter as the shift should align with
8204 * the block size and no rounding should ever be needed.
8205 * However it is better the think a block is bad when it
8206 * isn't than to think a block is not bad when it is.
8207 */
8208 s += (1<<bb->shift) - 1;
8209 s >>= bb->shift;
8210 target >>= bb->shift;
8211 sectors = target - s;
8212 }
8213
8214 write_seqlock_irq(&bb->lock);
8215
8216 p = bb->page;
8217 lo = 0;
8218 hi = bb->count;
8219 /* Find the last range that starts before 'target' */
8220 while (hi - lo > 1) {
8221 int mid = (lo + hi) / 2;
8222 sector_t a = BB_OFFSET(p[mid]);
8223 if (a < target)
8224 lo = mid;
8225 else
8226 hi = mid;
8227 }
8228 if (hi > lo) {
8229 /* p[lo] is the last range that could overlap the
8230 * current range. Earlier ranges could also overlap,
8231 * but only this one can overlap the end of the range.
8232 */
8233 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8234 /* Partial overlap, leave the tail of this range */
8235 int ack = BB_ACK(p[lo]);
8236 sector_t a = BB_OFFSET(p[lo]);
8237 sector_t end = a + BB_LEN(p[lo]);
8238
8239 if (a < s) {
8240 /* we need to split this range */
8241 if (bb->count >= MD_MAX_BADBLOCKS) {
8242 rv = 0;
8243 goto out;
8244 }
8245 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8246 bb->count++;
8247 p[lo] = BB_MAKE(a, s-a, ack);
8248 lo++;
8249 }
8250 p[lo] = BB_MAKE(target, end - target, ack);
8251 /* there is no longer an overlap */
8252 hi = lo;
8253 lo--;
8254 }
8255 while (lo >= 0 &&
8256 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8257 /* This range does overlap */
8258 if (BB_OFFSET(p[lo]) < s) {
8259 /* Keep the early parts of this range. */
8260 int ack = BB_ACK(p[lo]);
8261 sector_t start = BB_OFFSET(p[lo]);
8262 p[lo] = BB_MAKE(start, s - start, ack);
8263 /* now low doesn't overlap, so.. */
8264 break;
8265 }
8266 lo--;
8267 }
8268 /* 'lo' is strictly before, 'hi' is strictly after,
8269 * anything between needs to be discarded
8270 */
8271 if (hi - lo > 1) {
8272 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8273 bb->count -= (hi - lo - 1);
8274 }
8275 }
8276
8277 bb->changed = 1;
8278 out:
8279 write_sequnlock_irq(&bb->lock);
8280 return rv;
8281 }
8282
8283 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8284 int is_new)
8285 {
8286 if (is_new)
8287 s += rdev->new_data_offset;
8288 else
8289 s += rdev->data_offset;
8290 return md_clear_badblocks(&rdev->badblocks,
8291 s, sectors);
8292 }
8293 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8294
8295 /*
8296 * Acknowledge all bad blocks in a list.
8297 * This only succeeds if ->changed is clear. It is used by
8298 * in-kernel metadata updates
8299 */
8300 void md_ack_all_badblocks(struct badblocks *bb)
8301 {
8302 if (bb->page == NULL || bb->changed)
8303 /* no point even trying */
8304 return;
8305 write_seqlock_irq(&bb->lock);
8306
8307 if (bb->changed == 0 && bb->unacked_exist) {
8308 u64 *p = bb->page;
8309 int i;
8310 for (i = 0; i < bb->count ; i++) {
8311 if (!BB_ACK(p[i])) {
8312 sector_t start = BB_OFFSET(p[i]);
8313 int len = BB_LEN(p[i]);
8314 p[i] = BB_MAKE(start, len, 1);
8315 }
8316 }
8317 bb->unacked_exist = 0;
8318 }
8319 write_sequnlock_irq(&bb->lock);
8320 }
8321 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8322
8323 /* sysfs access to bad-blocks list.
8324 * We present two files.
8325 * 'bad-blocks' lists sector numbers and lengths of ranges that
8326 * are recorded as bad. The list is truncated to fit within
8327 * the one-page limit of sysfs.
8328 * Writing "sector length" to this file adds an acknowledged
8329 * bad block list.
8330 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8331 * been acknowledged. Writing to this file adds bad blocks
8332 * without acknowledging them. This is largely for testing.
8333 */
8334
8335 static ssize_t
8336 badblocks_show(struct badblocks *bb, char *page, int unack)
8337 {
8338 size_t len;
8339 int i;
8340 u64 *p = bb->page;
8341 unsigned seq;
8342
8343 if (bb->shift < 0)
8344 return 0;
8345
8346 retry:
8347 seq = read_seqbegin(&bb->lock);
8348
8349 len = 0;
8350 i = 0;
8351
8352 while (len < PAGE_SIZE && i < bb->count) {
8353 sector_t s = BB_OFFSET(p[i]);
8354 unsigned int length = BB_LEN(p[i]);
8355 int ack = BB_ACK(p[i]);
8356 i++;
8357
8358 if (unack && ack)
8359 continue;
8360
8361 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8362 (unsigned long long)s << bb->shift,
8363 length << bb->shift);
8364 }
8365 if (unack && len == 0)
8366 bb->unacked_exist = 0;
8367
8368 if (read_seqretry(&bb->lock, seq))
8369 goto retry;
8370
8371 return len;
8372 }
8373
8374 #define DO_DEBUG 1
8375
8376 static ssize_t
8377 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8378 {
8379 unsigned long long sector;
8380 int length;
8381 char newline;
8382 #ifdef DO_DEBUG
8383 /* Allow clearing via sysfs *only* for testing/debugging.
8384 * Normally only a successful write may clear a badblock
8385 */
8386 int clear = 0;
8387 if (page[0] == '-') {
8388 clear = 1;
8389 page++;
8390 }
8391 #endif /* DO_DEBUG */
8392
8393 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8394 case 3:
8395 if (newline != '\n')
8396 return -EINVAL;
8397 case 2:
8398 if (length <= 0)
8399 return -EINVAL;
8400 break;
8401 default:
8402 return -EINVAL;
8403 }
8404
8405 #ifdef DO_DEBUG
8406 if (clear) {
8407 md_clear_badblocks(bb, sector, length);
8408 return len;
8409 }
8410 #endif /* DO_DEBUG */
8411 if (md_set_badblocks(bb, sector, length, !unack))
8412 return len;
8413 else
8414 return -ENOSPC;
8415 }
8416
8417 static int md_notify_reboot(struct notifier_block *this,
8418 unsigned long code, void *x)
8419 {
8420 struct list_head *tmp;
8421 struct mddev *mddev;
8422 int need_delay = 0;
8423
8424 for_each_mddev(mddev, tmp) {
8425 if (mddev_trylock(mddev)) {
8426 if (mddev->pers)
8427 __md_stop_writes(mddev);
8428 mddev->safemode = 2;
8429 mddev_unlock(mddev);
8430 }
8431 need_delay = 1;
8432 }
8433 /*
8434 * certain more exotic SCSI devices are known to be
8435 * volatile wrt too early system reboots. While the
8436 * right place to handle this issue is the given
8437 * driver, we do want to have a safe RAID driver ...
8438 */
8439 if (need_delay)
8440 mdelay(1000*1);
8441
8442 return NOTIFY_DONE;
8443 }
8444
8445 static struct notifier_block md_notifier = {
8446 .notifier_call = md_notify_reboot,
8447 .next = NULL,
8448 .priority = INT_MAX, /* before any real devices */
8449 };
8450
8451 static void md_geninit(void)
8452 {
8453 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8454
8455 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8456 }
8457
8458 static int __init md_init(void)
8459 {
8460 int ret = -ENOMEM;
8461
8462 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8463 if (!md_wq)
8464 goto err_wq;
8465
8466 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8467 if (!md_misc_wq)
8468 goto err_misc_wq;
8469
8470 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8471 goto err_md;
8472
8473 if ((ret = register_blkdev(0, "mdp")) < 0)
8474 goto err_mdp;
8475 mdp_major = ret;
8476
8477 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8478 md_probe, NULL, NULL);
8479 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8480 md_probe, NULL, NULL);
8481
8482 register_reboot_notifier(&md_notifier);
8483 raid_table_header = register_sysctl_table(raid_root_table);
8484
8485 md_geninit();
8486 return 0;
8487
8488 err_mdp:
8489 unregister_blkdev(MD_MAJOR, "md");
8490 err_md:
8491 destroy_workqueue(md_misc_wq);
8492 err_misc_wq:
8493 destroy_workqueue(md_wq);
8494 err_wq:
8495 return ret;
8496 }
8497
8498 #ifndef MODULE
8499
8500 /*
8501 * Searches all registered partitions for autorun RAID arrays
8502 * at boot time.
8503 */
8504
8505 static LIST_HEAD(all_detected_devices);
8506 struct detected_devices_node {
8507 struct list_head list;
8508 dev_t dev;
8509 };
8510
8511 void md_autodetect_dev(dev_t dev)
8512 {
8513 struct detected_devices_node *node_detected_dev;
8514
8515 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8516 if (node_detected_dev) {
8517 node_detected_dev->dev = dev;
8518 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8519 } else {
8520 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8521 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8522 }
8523 }
8524
8525
8526 static void autostart_arrays(int part)
8527 {
8528 struct md_rdev *rdev;
8529 struct detected_devices_node *node_detected_dev;
8530 dev_t dev;
8531 int i_scanned, i_passed;
8532
8533 i_scanned = 0;
8534 i_passed = 0;
8535
8536 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8537
8538 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8539 i_scanned++;
8540 node_detected_dev = list_entry(all_detected_devices.next,
8541 struct detected_devices_node, list);
8542 list_del(&node_detected_dev->list);
8543 dev = node_detected_dev->dev;
8544 kfree(node_detected_dev);
8545 rdev = md_import_device(dev,0, 90);
8546 if (IS_ERR(rdev))
8547 continue;
8548
8549 if (test_bit(Faulty, &rdev->flags)) {
8550 MD_BUG();
8551 continue;
8552 }
8553 set_bit(AutoDetected, &rdev->flags);
8554 list_add(&rdev->same_set, &pending_raid_disks);
8555 i_passed++;
8556 }
8557
8558 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8559 i_scanned, i_passed);
8560
8561 autorun_devices(part);
8562 }
8563
8564 #endif /* !MODULE */
8565
8566 static __exit void md_exit(void)
8567 {
8568 struct mddev *mddev;
8569 struct list_head *tmp;
8570
8571 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8572 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8573
8574 unregister_blkdev(MD_MAJOR,"md");
8575 unregister_blkdev(mdp_major, "mdp");
8576 unregister_reboot_notifier(&md_notifier);
8577 unregister_sysctl_table(raid_table_header);
8578 remove_proc_entry("mdstat", NULL);
8579 for_each_mddev(mddev, tmp) {
8580 export_array(mddev);
8581 mddev->hold_active = 0;
8582 }
8583 destroy_workqueue(md_misc_wq);
8584 destroy_workqueue(md_wq);
8585 }
8586
8587 subsys_initcall(md_init);
8588 module_exit(md_exit)
8589
8590 static int get_ro(char *buffer, struct kernel_param *kp)
8591 {
8592 return sprintf(buffer, "%d", start_readonly);
8593 }
8594 static int set_ro(const char *val, struct kernel_param *kp)
8595 {
8596 char *e;
8597 int num = simple_strtoul(val, &e, 10);
8598 if (*val && (*e == '\0' || *e == '\n')) {
8599 start_readonly = num;
8600 return 0;
8601 }
8602 return -EINVAL;
8603 }
8604
8605 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8606 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8607
8608 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8609
8610 EXPORT_SYMBOL(register_md_personality);
8611 EXPORT_SYMBOL(unregister_md_personality);
8612 EXPORT_SYMBOL(md_error);
8613 EXPORT_SYMBOL(md_done_sync);
8614 EXPORT_SYMBOL(md_write_start);
8615 EXPORT_SYMBOL(md_write_end);
8616 EXPORT_SYMBOL(md_register_thread);
8617 EXPORT_SYMBOL(md_unregister_thread);
8618 EXPORT_SYMBOL(md_wakeup_thread);
8619 EXPORT_SYMBOL(md_check_recovery);
8620 MODULE_LICENSE("GPL");
8621 MODULE_DESCRIPTION("MD RAID framework");
8622 MODULE_ALIAS("md");
8623 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.194038 seconds and 6 git commands to generate.