md: Export and rename kick_rdev_from_array
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 generic_start_io_acct(rw, sectors, &mddev->gendisk->part0);
294
295 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
296 wake_up(&mddev->sb_wait);
297 }
298
299 /* mddev_suspend makes sure no new requests are submitted
300 * to the device, and that any requests that have been submitted
301 * are completely handled.
302 * Once mddev_detach() is called and completes, the module will be
303 * completely unused.
304 */
305 void mddev_suspend(struct mddev *mddev)
306 {
307 BUG_ON(mddev->suspended);
308 mddev->suspended = 1;
309 synchronize_rcu();
310 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
311 mddev->pers->quiesce(mddev, 1);
312
313 del_timer_sync(&mddev->safemode_timer);
314 }
315 EXPORT_SYMBOL_GPL(mddev_suspend);
316
317 void mddev_resume(struct mddev *mddev)
318 {
319 mddev->suspended = 0;
320 wake_up(&mddev->sb_wait);
321 mddev->pers->quiesce(mddev, 0);
322
323 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
324 md_wakeup_thread(mddev->thread);
325 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
326 }
327 EXPORT_SYMBOL_GPL(mddev_resume);
328
329 int mddev_congested(struct mddev *mddev, int bits)
330 {
331 struct md_personality *pers = mddev->pers;
332 int ret = 0;
333
334 rcu_read_lock();
335 if (mddev->suspended)
336 ret = 1;
337 else if (pers && pers->congested)
338 ret = pers->congested(mddev, bits);
339 rcu_read_unlock();
340 return ret;
341 }
342 EXPORT_SYMBOL_GPL(mddev_congested);
343 static int md_congested(void *data, int bits)
344 {
345 struct mddev *mddev = data;
346 return mddev_congested(mddev, bits);
347 }
348
349 static int md_mergeable_bvec(struct request_queue *q,
350 struct bvec_merge_data *bvm,
351 struct bio_vec *biovec)
352 {
353 struct mddev *mddev = q->queuedata;
354 int ret;
355 rcu_read_lock();
356 if (mddev->suspended) {
357 /* Must always allow one vec */
358 if (bvm->bi_size == 0)
359 ret = biovec->bv_len;
360 else
361 ret = 0;
362 } else {
363 struct md_personality *pers = mddev->pers;
364 if (pers && pers->mergeable_bvec)
365 ret = pers->mergeable_bvec(mddev, bvm, biovec);
366 else
367 ret = biovec->bv_len;
368 }
369 rcu_read_unlock();
370 return ret;
371 }
372 /*
373 * Generic flush handling for md
374 */
375
376 static void md_end_flush(struct bio *bio, int err)
377 {
378 struct md_rdev *rdev = bio->bi_private;
379 struct mddev *mddev = rdev->mddev;
380
381 rdev_dec_pending(rdev, mddev);
382
383 if (atomic_dec_and_test(&mddev->flush_pending)) {
384 /* The pre-request flush has finished */
385 queue_work(md_wq, &mddev->flush_work);
386 }
387 bio_put(bio);
388 }
389
390 static void md_submit_flush_data(struct work_struct *ws);
391
392 static void submit_flushes(struct work_struct *ws)
393 {
394 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
395 struct md_rdev *rdev;
396
397 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
398 atomic_set(&mddev->flush_pending, 1);
399 rcu_read_lock();
400 rdev_for_each_rcu(rdev, mddev)
401 if (rdev->raid_disk >= 0 &&
402 !test_bit(Faulty, &rdev->flags)) {
403 /* Take two references, one is dropped
404 * when request finishes, one after
405 * we reclaim rcu_read_lock
406 */
407 struct bio *bi;
408 atomic_inc(&rdev->nr_pending);
409 atomic_inc(&rdev->nr_pending);
410 rcu_read_unlock();
411 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
412 bi->bi_end_io = md_end_flush;
413 bi->bi_private = rdev;
414 bi->bi_bdev = rdev->bdev;
415 atomic_inc(&mddev->flush_pending);
416 submit_bio(WRITE_FLUSH, bi);
417 rcu_read_lock();
418 rdev_dec_pending(rdev, mddev);
419 }
420 rcu_read_unlock();
421 if (atomic_dec_and_test(&mddev->flush_pending))
422 queue_work(md_wq, &mddev->flush_work);
423 }
424
425 static void md_submit_flush_data(struct work_struct *ws)
426 {
427 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
428 struct bio *bio = mddev->flush_bio;
429
430 if (bio->bi_iter.bi_size == 0)
431 /* an empty barrier - all done */
432 bio_endio(bio, 0);
433 else {
434 bio->bi_rw &= ~REQ_FLUSH;
435 mddev->pers->make_request(mddev, bio);
436 }
437
438 mddev->flush_bio = NULL;
439 wake_up(&mddev->sb_wait);
440 }
441
442 void md_flush_request(struct mddev *mddev, struct bio *bio)
443 {
444 spin_lock_irq(&mddev->lock);
445 wait_event_lock_irq(mddev->sb_wait,
446 !mddev->flush_bio,
447 mddev->lock);
448 mddev->flush_bio = bio;
449 spin_unlock_irq(&mddev->lock);
450
451 INIT_WORK(&mddev->flush_work, submit_flushes);
452 queue_work(md_wq, &mddev->flush_work);
453 }
454 EXPORT_SYMBOL(md_flush_request);
455
456 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
457 {
458 struct mddev *mddev = cb->data;
459 md_wakeup_thread(mddev->thread);
460 kfree(cb);
461 }
462 EXPORT_SYMBOL(md_unplug);
463
464 static inline struct mddev *mddev_get(struct mddev *mddev)
465 {
466 atomic_inc(&mddev->active);
467 return mddev;
468 }
469
470 static void mddev_delayed_delete(struct work_struct *ws);
471
472 static void mddev_put(struct mddev *mddev)
473 {
474 struct bio_set *bs = NULL;
475
476 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
477 return;
478 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
479 mddev->ctime == 0 && !mddev->hold_active) {
480 /* Array is not configured at all, and not held active,
481 * so destroy it */
482 list_del_init(&mddev->all_mddevs);
483 bs = mddev->bio_set;
484 mddev->bio_set = NULL;
485 if (mddev->gendisk) {
486 /* We did a probe so need to clean up. Call
487 * queue_work inside the spinlock so that
488 * flush_workqueue() after mddev_find will
489 * succeed in waiting for the work to be done.
490 */
491 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
492 queue_work(md_misc_wq, &mddev->del_work);
493 } else
494 kfree(mddev);
495 }
496 spin_unlock(&all_mddevs_lock);
497 if (bs)
498 bioset_free(bs);
499 }
500
501 void mddev_init(struct mddev *mddev)
502 {
503 mutex_init(&mddev->open_mutex);
504 mutex_init(&mddev->reconfig_mutex);
505 mutex_init(&mddev->bitmap_info.mutex);
506 INIT_LIST_HEAD(&mddev->disks);
507 INIT_LIST_HEAD(&mddev->all_mddevs);
508 init_timer(&mddev->safemode_timer);
509 atomic_set(&mddev->active, 1);
510 atomic_set(&mddev->openers, 0);
511 atomic_set(&mddev->active_io, 0);
512 spin_lock_init(&mddev->lock);
513 atomic_set(&mddev->flush_pending, 0);
514 init_waitqueue_head(&mddev->sb_wait);
515 init_waitqueue_head(&mddev->recovery_wait);
516 mddev->reshape_position = MaxSector;
517 mddev->reshape_backwards = 0;
518 mddev->last_sync_action = "none";
519 mddev->resync_min = 0;
520 mddev->resync_max = MaxSector;
521 mddev->level = LEVEL_NONE;
522 }
523 EXPORT_SYMBOL_GPL(mddev_init);
524
525 static struct mddev *mddev_find(dev_t unit)
526 {
527 struct mddev *mddev, *new = NULL;
528
529 if (unit && MAJOR(unit) != MD_MAJOR)
530 unit &= ~((1<<MdpMinorShift)-1);
531
532 retry:
533 spin_lock(&all_mddevs_lock);
534
535 if (unit) {
536 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
537 if (mddev->unit == unit) {
538 mddev_get(mddev);
539 spin_unlock(&all_mddevs_lock);
540 kfree(new);
541 return mddev;
542 }
543
544 if (new) {
545 list_add(&new->all_mddevs, &all_mddevs);
546 spin_unlock(&all_mddevs_lock);
547 new->hold_active = UNTIL_IOCTL;
548 return new;
549 }
550 } else if (new) {
551 /* find an unused unit number */
552 static int next_minor = 512;
553 int start = next_minor;
554 int is_free = 0;
555 int dev = 0;
556 while (!is_free) {
557 dev = MKDEV(MD_MAJOR, next_minor);
558 next_minor++;
559 if (next_minor > MINORMASK)
560 next_minor = 0;
561 if (next_minor == start) {
562 /* Oh dear, all in use. */
563 spin_unlock(&all_mddevs_lock);
564 kfree(new);
565 return NULL;
566 }
567
568 is_free = 1;
569 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
570 if (mddev->unit == dev) {
571 is_free = 0;
572 break;
573 }
574 }
575 new->unit = dev;
576 new->md_minor = MINOR(dev);
577 new->hold_active = UNTIL_STOP;
578 list_add(&new->all_mddevs, &all_mddevs);
579 spin_unlock(&all_mddevs_lock);
580 return new;
581 }
582 spin_unlock(&all_mddevs_lock);
583
584 new = kzalloc(sizeof(*new), GFP_KERNEL);
585 if (!new)
586 return NULL;
587
588 new->unit = unit;
589 if (MAJOR(unit) == MD_MAJOR)
590 new->md_minor = MINOR(unit);
591 else
592 new->md_minor = MINOR(unit) >> MdpMinorShift;
593
594 mddev_init(new);
595
596 goto retry;
597 }
598
599 static struct attribute_group md_redundancy_group;
600
601 void mddev_unlock(struct mddev *mddev)
602 {
603 if (mddev->to_remove) {
604 /* These cannot be removed under reconfig_mutex as
605 * an access to the files will try to take reconfig_mutex
606 * while holding the file unremovable, which leads to
607 * a deadlock.
608 * So hold set sysfs_active while the remove in happeing,
609 * and anything else which might set ->to_remove or my
610 * otherwise change the sysfs namespace will fail with
611 * -EBUSY if sysfs_active is still set.
612 * We set sysfs_active under reconfig_mutex and elsewhere
613 * test it under the same mutex to ensure its correct value
614 * is seen.
615 */
616 struct attribute_group *to_remove = mddev->to_remove;
617 mddev->to_remove = NULL;
618 mddev->sysfs_active = 1;
619 mutex_unlock(&mddev->reconfig_mutex);
620
621 if (mddev->kobj.sd) {
622 if (to_remove != &md_redundancy_group)
623 sysfs_remove_group(&mddev->kobj, to_remove);
624 if (mddev->pers == NULL ||
625 mddev->pers->sync_request == NULL) {
626 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
627 if (mddev->sysfs_action)
628 sysfs_put(mddev->sysfs_action);
629 mddev->sysfs_action = NULL;
630 }
631 }
632 mddev->sysfs_active = 0;
633 } else
634 mutex_unlock(&mddev->reconfig_mutex);
635
636 /* As we've dropped the mutex we need a spinlock to
637 * make sure the thread doesn't disappear
638 */
639 spin_lock(&pers_lock);
640 md_wakeup_thread(mddev->thread);
641 spin_unlock(&pers_lock);
642 }
643 EXPORT_SYMBOL_GPL(mddev_unlock);
644
645 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
646 {
647 struct md_rdev *rdev;
648
649 rdev_for_each_rcu(rdev, mddev)
650 if (rdev->desc_nr == nr)
651 return rdev;
652
653 return NULL;
654 }
655
656 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
657 {
658 struct md_rdev *rdev;
659
660 rdev_for_each(rdev, mddev)
661 if (rdev->bdev->bd_dev == dev)
662 return rdev;
663
664 return NULL;
665 }
666
667 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
668 {
669 struct md_rdev *rdev;
670
671 rdev_for_each_rcu(rdev, mddev)
672 if (rdev->bdev->bd_dev == dev)
673 return rdev;
674
675 return NULL;
676 }
677
678 static struct md_personality *find_pers(int level, char *clevel)
679 {
680 struct md_personality *pers;
681 list_for_each_entry(pers, &pers_list, list) {
682 if (level != LEVEL_NONE && pers->level == level)
683 return pers;
684 if (strcmp(pers->name, clevel)==0)
685 return pers;
686 }
687 return NULL;
688 }
689
690 /* return the offset of the super block in 512byte sectors */
691 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
692 {
693 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
694 return MD_NEW_SIZE_SECTORS(num_sectors);
695 }
696
697 static int alloc_disk_sb(struct md_rdev *rdev)
698 {
699 rdev->sb_page = alloc_page(GFP_KERNEL);
700 if (!rdev->sb_page) {
701 printk(KERN_ALERT "md: out of memory.\n");
702 return -ENOMEM;
703 }
704
705 return 0;
706 }
707
708 void md_rdev_clear(struct md_rdev *rdev)
709 {
710 if (rdev->sb_page) {
711 put_page(rdev->sb_page);
712 rdev->sb_loaded = 0;
713 rdev->sb_page = NULL;
714 rdev->sb_start = 0;
715 rdev->sectors = 0;
716 }
717 if (rdev->bb_page) {
718 put_page(rdev->bb_page);
719 rdev->bb_page = NULL;
720 }
721 kfree(rdev->badblocks.page);
722 rdev->badblocks.page = NULL;
723 }
724 EXPORT_SYMBOL_GPL(md_rdev_clear);
725
726 static void super_written(struct bio *bio, int error)
727 {
728 struct md_rdev *rdev = bio->bi_private;
729 struct mddev *mddev = rdev->mddev;
730
731 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
732 printk("md: super_written gets error=%d, uptodate=%d\n",
733 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
734 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
735 md_error(mddev, rdev);
736 }
737
738 if (atomic_dec_and_test(&mddev->pending_writes))
739 wake_up(&mddev->sb_wait);
740 bio_put(bio);
741 }
742
743 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
744 sector_t sector, int size, struct page *page)
745 {
746 /* write first size bytes of page to sector of rdev
747 * Increment mddev->pending_writes before returning
748 * and decrement it on completion, waking up sb_wait
749 * if zero is reached.
750 * If an error occurred, call md_error
751 */
752 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
753
754 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
755 bio->bi_iter.bi_sector = sector;
756 bio_add_page(bio, page, size, 0);
757 bio->bi_private = rdev;
758 bio->bi_end_io = super_written;
759
760 atomic_inc(&mddev->pending_writes);
761 submit_bio(WRITE_FLUSH_FUA, bio);
762 }
763
764 void md_super_wait(struct mddev *mddev)
765 {
766 /* wait for all superblock writes that were scheduled to complete */
767 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
768 }
769
770 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
771 struct page *page, int rw, bool metadata_op)
772 {
773 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
774 int ret;
775
776 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
777 rdev->meta_bdev : rdev->bdev;
778 if (metadata_op)
779 bio->bi_iter.bi_sector = sector + rdev->sb_start;
780 else if (rdev->mddev->reshape_position != MaxSector &&
781 (rdev->mddev->reshape_backwards ==
782 (sector >= rdev->mddev->reshape_position)))
783 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
784 else
785 bio->bi_iter.bi_sector = sector + rdev->data_offset;
786 bio_add_page(bio, page, size, 0);
787 submit_bio_wait(rw, bio);
788
789 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
790 bio_put(bio);
791 return ret;
792 }
793 EXPORT_SYMBOL_GPL(sync_page_io);
794
795 static int read_disk_sb(struct md_rdev *rdev, int size)
796 {
797 char b[BDEVNAME_SIZE];
798
799 if (rdev->sb_loaded)
800 return 0;
801
802 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
803 goto fail;
804 rdev->sb_loaded = 1;
805 return 0;
806
807 fail:
808 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
809 bdevname(rdev->bdev,b));
810 return -EINVAL;
811 }
812
813 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
814 {
815 return sb1->set_uuid0 == sb2->set_uuid0 &&
816 sb1->set_uuid1 == sb2->set_uuid1 &&
817 sb1->set_uuid2 == sb2->set_uuid2 &&
818 sb1->set_uuid3 == sb2->set_uuid3;
819 }
820
821 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
822 {
823 int ret;
824 mdp_super_t *tmp1, *tmp2;
825
826 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
827 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
828
829 if (!tmp1 || !tmp2) {
830 ret = 0;
831 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
832 goto abort;
833 }
834
835 *tmp1 = *sb1;
836 *tmp2 = *sb2;
837
838 /*
839 * nr_disks is not constant
840 */
841 tmp1->nr_disks = 0;
842 tmp2->nr_disks = 0;
843
844 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
845 abort:
846 kfree(tmp1);
847 kfree(tmp2);
848 return ret;
849 }
850
851 static u32 md_csum_fold(u32 csum)
852 {
853 csum = (csum & 0xffff) + (csum >> 16);
854 return (csum & 0xffff) + (csum >> 16);
855 }
856
857 static unsigned int calc_sb_csum(mdp_super_t *sb)
858 {
859 u64 newcsum = 0;
860 u32 *sb32 = (u32*)sb;
861 int i;
862 unsigned int disk_csum, csum;
863
864 disk_csum = sb->sb_csum;
865 sb->sb_csum = 0;
866
867 for (i = 0; i < MD_SB_BYTES/4 ; i++)
868 newcsum += sb32[i];
869 csum = (newcsum & 0xffffffff) + (newcsum>>32);
870
871 #ifdef CONFIG_ALPHA
872 /* This used to use csum_partial, which was wrong for several
873 * reasons including that different results are returned on
874 * different architectures. It isn't critical that we get exactly
875 * the same return value as before (we always csum_fold before
876 * testing, and that removes any differences). However as we
877 * know that csum_partial always returned a 16bit value on
878 * alphas, do a fold to maximise conformity to previous behaviour.
879 */
880 sb->sb_csum = md_csum_fold(disk_csum);
881 #else
882 sb->sb_csum = disk_csum;
883 #endif
884 return csum;
885 }
886
887 /*
888 * Handle superblock details.
889 * We want to be able to handle multiple superblock formats
890 * so we have a common interface to them all, and an array of
891 * different handlers.
892 * We rely on user-space to write the initial superblock, and support
893 * reading and updating of superblocks.
894 * Interface methods are:
895 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
896 * loads and validates a superblock on dev.
897 * if refdev != NULL, compare superblocks on both devices
898 * Return:
899 * 0 - dev has a superblock that is compatible with refdev
900 * 1 - dev has a superblock that is compatible and newer than refdev
901 * so dev should be used as the refdev in future
902 * -EINVAL superblock incompatible or invalid
903 * -othererror e.g. -EIO
904 *
905 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
906 * Verify that dev is acceptable into mddev.
907 * The first time, mddev->raid_disks will be 0, and data from
908 * dev should be merged in. Subsequent calls check that dev
909 * is new enough. Return 0 or -EINVAL
910 *
911 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
912 * Update the superblock for rdev with data in mddev
913 * This does not write to disc.
914 *
915 */
916
917 struct super_type {
918 char *name;
919 struct module *owner;
920 int (*load_super)(struct md_rdev *rdev,
921 struct md_rdev *refdev,
922 int minor_version);
923 int (*validate_super)(struct mddev *mddev,
924 struct md_rdev *rdev);
925 void (*sync_super)(struct mddev *mddev,
926 struct md_rdev *rdev);
927 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
928 sector_t num_sectors);
929 int (*allow_new_offset)(struct md_rdev *rdev,
930 unsigned long long new_offset);
931 };
932
933 /*
934 * Check that the given mddev has no bitmap.
935 *
936 * This function is called from the run method of all personalities that do not
937 * support bitmaps. It prints an error message and returns non-zero if mddev
938 * has a bitmap. Otherwise, it returns 0.
939 *
940 */
941 int md_check_no_bitmap(struct mddev *mddev)
942 {
943 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
944 return 0;
945 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
946 mdname(mddev), mddev->pers->name);
947 return 1;
948 }
949 EXPORT_SYMBOL(md_check_no_bitmap);
950
951 /*
952 * load_super for 0.90.0
953 */
954 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
955 {
956 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
957 mdp_super_t *sb;
958 int ret;
959
960 /*
961 * Calculate the position of the superblock (512byte sectors),
962 * it's at the end of the disk.
963 *
964 * It also happens to be a multiple of 4Kb.
965 */
966 rdev->sb_start = calc_dev_sboffset(rdev);
967
968 ret = read_disk_sb(rdev, MD_SB_BYTES);
969 if (ret) return ret;
970
971 ret = -EINVAL;
972
973 bdevname(rdev->bdev, b);
974 sb = page_address(rdev->sb_page);
975
976 if (sb->md_magic != MD_SB_MAGIC) {
977 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
978 b);
979 goto abort;
980 }
981
982 if (sb->major_version != 0 ||
983 sb->minor_version < 90 ||
984 sb->minor_version > 91) {
985 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
986 sb->major_version, sb->minor_version,
987 b);
988 goto abort;
989 }
990
991 if (sb->raid_disks <= 0)
992 goto abort;
993
994 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
995 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
996 b);
997 goto abort;
998 }
999
1000 rdev->preferred_minor = sb->md_minor;
1001 rdev->data_offset = 0;
1002 rdev->new_data_offset = 0;
1003 rdev->sb_size = MD_SB_BYTES;
1004 rdev->badblocks.shift = -1;
1005
1006 if (sb->level == LEVEL_MULTIPATH)
1007 rdev->desc_nr = -1;
1008 else
1009 rdev->desc_nr = sb->this_disk.number;
1010
1011 if (!refdev) {
1012 ret = 1;
1013 } else {
1014 __u64 ev1, ev2;
1015 mdp_super_t *refsb = page_address(refdev->sb_page);
1016 if (!uuid_equal(refsb, sb)) {
1017 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1018 b, bdevname(refdev->bdev,b2));
1019 goto abort;
1020 }
1021 if (!sb_equal(refsb, sb)) {
1022 printk(KERN_WARNING "md: %s has same UUID"
1023 " but different superblock to %s\n",
1024 b, bdevname(refdev->bdev, b2));
1025 goto abort;
1026 }
1027 ev1 = md_event(sb);
1028 ev2 = md_event(refsb);
1029 if (ev1 > ev2)
1030 ret = 1;
1031 else
1032 ret = 0;
1033 }
1034 rdev->sectors = rdev->sb_start;
1035 /* Limit to 4TB as metadata cannot record more than that.
1036 * (not needed for Linear and RAID0 as metadata doesn't
1037 * record this size)
1038 */
1039 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1040 rdev->sectors = (2ULL << 32) - 2;
1041
1042 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1043 /* "this cannot possibly happen" ... */
1044 ret = -EINVAL;
1045
1046 abort:
1047 return ret;
1048 }
1049
1050 /*
1051 * validate_super for 0.90.0
1052 */
1053 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1054 {
1055 mdp_disk_t *desc;
1056 mdp_super_t *sb = page_address(rdev->sb_page);
1057 __u64 ev1 = md_event(sb);
1058
1059 rdev->raid_disk = -1;
1060 clear_bit(Faulty, &rdev->flags);
1061 clear_bit(In_sync, &rdev->flags);
1062 clear_bit(Bitmap_sync, &rdev->flags);
1063 clear_bit(WriteMostly, &rdev->flags);
1064
1065 if (mddev->raid_disks == 0) {
1066 mddev->major_version = 0;
1067 mddev->minor_version = sb->minor_version;
1068 mddev->patch_version = sb->patch_version;
1069 mddev->external = 0;
1070 mddev->chunk_sectors = sb->chunk_size >> 9;
1071 mddev->ctime = sb->ctime;
1072 mddev->utime = sb->utime;
1073 mddev->level = sb->level;
1074 mddev->clevel[0] = 0;
1075 mddev->layout = sb->layout;
1076 mddev->raid_disks = sb->raid_disks;
1077 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1078 mddev->events = ev1;
1079 mddev->bitmap_info.offset = 0;
1080 mddev->bitmap_info.space = 0;
1081 /* bitmap can use 60 K after the 4K superblocks */
1082 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1083 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1084 mddev->reshape_backwards = 0;
1085
1086 if (mddev->minor_version >= 91) {
1087 mddev->reshape_position = sb->reshape_position;
1088 mddev->delta_disks = sb->delta_disks;
1089 mddev->new_level = sb->new_level;
1090 mddev->new_layout = sb->new_layout;
1091 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1092 if (mddev->delta_disks < 0)
1093 mddev->reshape_backwards = 1;
1094 } else {
1095 mddev->reshape_position = MaxSector;
1096 mddev->delta_disks = 0;
1097 mddev->new_level = mddev->level;
1098 mddev->new_layout = mddev->layout;
1099 mddev->new_chunk_sectors = mddev->chunk_sectors;
1100 }
1101
1102 if (sb->state & (1<<MD_SB_CLEAN))
1103 mddev->recovery_cp = MaxSector;
1104 else {
1105 if (sb->events_hi == sb->cp_events_hi &&
1106 sb->events_lo == sb->cp_events_lo) {
1107 mddev->recovery_cp = sb->recovery_cp;
1108 } else
1109 mddev->recovery_cp = 0;
1110 }
1111
1112 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1113 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1114 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1115 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1116
1117 mddev->max_disks = MD_SB_DISKS;
1118
1119 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1120 mddev->bitmap_info.file == NULL) {
1121 mddev->bitmap_info.offset =
1122 mddev->bitmap_info.default_offset;
1123 mddev->bitmap_info.space =
1124 mddev->bitmap_info.default_space;
1125 }
1126
1127 } else if (mddev->pers == NULL) {
1128 /* Insist on good event counter while assembling, except
1129 * for spares (which don't need an event count) */
1130 ++ev1;
1131 if (sb->disks[rdev->desc_nr].state & (
1132 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1133 if (ev1 < mddev->events)
1134 return -EINVAL;
1135 } else if (mddev->bitmap) {
1136 /* if adding to array with a bitmap, then we can accept an
1137 * older device ... but not too old.
1138 */
1139 if (ev1 < mddev->bitmap->events_cleared)
1140 return 0;
1141 if (ev1 < mddev->events)
1142 set_bit(Bitmap_sync, &rdev->flags);
1143 } else {
1144 if (ev1 < mddev->events)
1145 /* just a hot-add of a new device, leave raid_disk at -1 */
1146 return 0;
1147 }
1148
1149 if (mddev->level != LEVEL_MULTIPATH) {
1150 desc = sb->disks + rdev->desc_nr;
1151
1152 if (desc->state & (1<<MD_DISK_FAULTY))
1153 set_bit(Faulty, &rdev->flags);
1154 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1155 desc->raid_disk < mddev->raid_disks */) {
1156 set_bit(In_sync, &rdev->flags);
1157 rdev->raid_disk = desc->raid_disk;
1158 rdev->saved_raid_disk = desc->raid_disk;
1159 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1160 /* active but not in sync implies recovery up to
1161 * reshape position. We don't know exactly where
1162 * that is, so set to zero for now */
1163 if (mddev->minor_version >= 91) {
1164 rdev->recovery_offset = 0;
1165 rdev->raid_disk = desc->raid_disk;
1166 }
1167 }
1168 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1169 set_bit(WriteMostly, &rdev->flags);
1170 } else /* MULTIPATH are always insync */
1171 set_bit(In_sync, &rdev->flags);
1172 return 0;
1173 }
1174
1175 /*
1176 * sync_super for 0.90.0
1177 */
1178 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1179 {
1180 mdp_super_t *sb;
1181 struct md_rdev *rdev2;
1182 int next_spare = mddev->raid_disks;
1183
1184 /* make rdev->sb match mddev data..
1185 *
1186 * 1/ zero out disks
1187 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1188 * 3/ any empty disks < next_spare become removed
1189 *
1190 * disks[0] gets initialised to REMOVED because
1191 * we cannot be sure from other fields if it has
1192 * been initialised or not.
1193 */
1194 int i;
1195 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1196
1197 rdev->sb_size = MD_SB_BYTES;
1198
1199 sb = page_address(rdev->sb_page);
1200
1201 memset(sb, 0, sizeof(*sb));
1202
1203 sb->md_magic = MD_SB_MAGIC;
1204 sb->major_version = mddev->major_version;
1205 sb->patch_version = mddev->patch_version;
1206 sb->gvalid_words = 0; /* ignored */
1207 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1208 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1209 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1210 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1211
1212 sb->ctime = mddev->ctime;
1213 sb->level = mddev->level;
1214 sb->size = mddev->dev_sectors / 2;
1215 sb->raid_disks = mddev->raid_disks;
1216 sb->md_minor = mddev->md_minor;
1217 sb->not_persistent = 0;
1218 sb->utime = mddev->utime;
1219 sb->state = 0;
1220 sb->events_hi = (mddev->events>>32);
1221 sb->events_lo = (u32)mddev->events;
1222
1223 if (mddev->reshape_position == MaxSector)
1224 sb->minor_version = 90;
1225 else {
1226 sb->minor_version = 91;
1227 sb->reshape_position = mddev->reshape_position;
1228 sb->new_level = mddev->new_level;
1229 sb->delta_disks = mddev->delta_disks;
1230 sb->new_layout = mddev->new_layout;
1231 sb->new_chunk = mddev->new_chunk_sectors << 9;
1232 }
1233 mddev->minor_version = sb->minor_version;
1234 if (mddev->in_sync)
1235 {
1236 sb->recovery_cp = mddev->recovery_cp;
1237 sb->cp_events_hi = (mddev->events>>32);
1238 sb->cp_events_lo = (u32)mddev->events;
1239 if (mddev->recovery_cp == MaxSector)
1240 sb->state = (1<< MD_SB_CLEAN);
1241 } else
1242 sb->recovery_cp = 0;
1243
1244 sb->layout = mddev->layout;
1245 sb->chunk_size = mddev->chunk_sectors << 9;
1246
1247 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1248 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1249
1250 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1251 rdev_for_each(rdev2, mddev) {
1252 mdp_disk_t *d;
1253 int desc_nr;
1254 int is_active = test_bit(In_sync, &rdev2->flags);
1255
1256 if (rdev2->raid_disk >= 0 &&
1257 sb->minor_version >= 91)
1258 /* we have nowhere to store the recovery_offset,
1259 * but if it is not below the reshape_position,
1260 * we can piggy-back on that.
1261 */
1262 is_active = 1;
1263 if (rdev2->raid_disk < 0 ||
1264 test_bit(Faulty, &rdev2->flags))
1265 is_active = 0;
1266 if (is_active)
1267 desc_nr = rdev2->raid_disk;
1268 else
1269 desc_nr = next_spare++;
1270 rdev2->desc_nr = desc_nr;
1271 d = &sb->disks[rdev2->desc_nr];
1272 nr_disks++;
1273 d->number = rdev2->desc_nr;
1274 d->major = MAJOR(rdev2->bdev->bd_dev);
1275 d->minor = MINOR(rdev2->bdev->bd_dev);
1276 if (is_active)
1277 d->raid_disk = rdev2->raid_disk;
1278 else
1279 d->raid_disk = rdev2->desc_nr; /* compatibility */
1280 if (test_bit(Faulty, &rdev2->flags))
1281 d->state = (1<<MD_DISK_FAULTY);
1282 else if (is_active) {
1283 d->state = (1<<MD_DISK_ACTIVE);
1284 if (test_bit(In_sync, &rdev2->flags))
1285 d->state |= (1<<MD_DISK_SYNC);
1286 active++;
1287 working++;
1288 } else {
1289 d->state = 0;
1290 spare++;
1291 working++;
1292 }
1293 if (test_bit(WriteMostly, &rdev2->flags))
1294 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1295 }
1296 /* now set the "removed" and "faulty" bits on any missing devices */
1297 for (i=0 ; i < mddev->raid_disks ; i++) {
1298 mdp_disk_t *d = &sb->disks[i];
1299 if (d->state == 0 && d->number == 0) {
1300 d->number = i;
1301 d->raid_disk = i;
1302 d->state = (1<<MD_DISK_REMOVED);
1303 d->state |= (1<<MD_DISK_FAULTY);
1304 failed++;
1305 }
1306 }
1307 sb->nr_disks = nr_disks;
1308 sb->active_disks = active;
1309 sb->working_disks = working;
1310 sb->failed_disks = failed;
1311 sb->spare_disks = spare;
1312
1313 sb->this_disk = sb->disks[rdev->desc_nr];
1314 sb->sb_csum = calc_sb_csum(sb);
1315 }
1316
1317 /*
1318 * rdev_size_change for 0.90.0
1319 */
1320 static unsigned long long
1321 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1322 {
1323 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1324 return 0; /* component must fit device */
1325 if (rdev->mddev->bitmap_info.offset)
1326 return 0; /* can't move bitmap */
1327 rdev->sb_start = calc_dev_sboffset(rdev);
1328 if (!num_sectors || num_sectors > rdev->sb_start)
1329 num_sectors = rdev->sb_start;
1330 /* Limit to 4TB as metadata cannot record more than that.
1331 * 4TB == 2^32 KB, or 2*2^32 sectors.
1332 */
1333 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1334 num_sectors = (2ULL << 32) - 2;
1335 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1336 rdev->sb_page);
1337 md_super_wait(rdev->mddev);
1338 return num_sectors;
1339 }
1340
1341 static int
1342 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1343 {
1344 /* non-zero offset changes not possible with v0.90 */
1345 return new_offset == 0;
1346 }
1347
1348 /*
1349 * version 1 superblock
1350 */
1351
1352 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1353 {
1354 __le32 disk_csum;
1355 u32 csum;
1356 unsigned long long newcsum;
1357 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1358 __le32 *isuper = (__le32*)sb;
1359
1360 disk_csum = sb->sb_csum;
1361 sb->sb_csum = 0;
1362 newcsum = 0;
1363 for (; size >= 4; size -= 4)
1364 newcsum += le32_to_cpu(*isuper++);
1365
1366 if (size == 2)
1367 newcsum += le16_to_cpu(*(__le16*) isuper);
1368
1369 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1370 sb->sb_csum = disk_csum;
1371 return cpu_to_le32(csum);
1372 }
1373
1374 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1375 int acknowledged);
1376 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1377 {
1378 struct mdp_superblock_1 *sb;
1379 int ret;
1380 sector_t sb_start;
1381 sector_t sectors;
1382 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1383 int bmask;
1384
1385 /*
1386 * Calculate the position of the superblock in 512byte sectors.
1387 * It is always aligned to a 4K boundary and
1388 * depeding on minor_version, it can be:
1389 * 0: At least 8K, but less than 12K, from end of device
1390 * 1: At start of device
1391 * 2: 4K from start of device.
1392 */
1393 switch(minor_version) {
1394 case 0:
1395 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1396 sb_start -= 8*2;
1397 sb_start &= ~(sector_t)(4*2-1);
1398 break;
1399 case 1:
1400 sb_start = 0;
1401 break;
1402 case 2:
1403 sb_start = 8;
1404 break;
1405 default:
1406 return -EINVAL;
1407 }
1408 rdev->sb_start = sb_start;
1409
1410 /* superblock is rarely larger than 1K, but it can be larger,
1411 * and it is safe to read 4k, so we do that
1412 */
1413 ret = read_disk_sb(rdev, 4096);
1414 if (ret) return ret;
1415
1416 sb = page_address(rdev->sb_page);
1417
1418 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419 sb->major_version != cpu_to_le32(1) ||
1420 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 return -EINVAL;
1424
1425 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426 printk("md: invalid superblock checksum on %s\n",
1427 bdevname(rdev->bdev,b));
1428 return -EINVAL;
1429 }
1430 if (le64_to_cpu(sb->data_size) < 10) {
1431 printk("md: data_size too small on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (sb->pad0 ||
1436 sb->pad3[0] ||
1437 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1438 /* Some padding is non-zero, might be a new feature */
1439 return -EINVAL;
1440
1441 rdev->preferred_minor = 0xffff;
1442 rdev->data_offset = le64_to_cpu(sb->data_offset);
1443 rdev->new_data_offset = rdev->data_offset;
1444 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1445 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1446 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1447 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1448
1449 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1450 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1451 if (rdev->sb_size & bmask)
1452 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453
1454 if (minor_version
1455 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456 return -EINVAL;
1457 if (minor_version
1458 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459 return -EINVAL;
1460
1461 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462 rdev->desc_nr = -1;
1463 else
1464 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1465
1466 if (!rdev->bb_page) {
1467 rdev->bb_page = alloc_page(GFP_KERNEL);
1468 if (!rdev->bb_page)
1469 return -ENOMEM;
1470 }
1471 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1472 rdev->badblocks.count == 0) {
1473 /* need to load the bad block list.
1474 * Currently we limit it to one page.
1475 */
1476 s32 offset;
1477 sector_t bb_sector;
1478 u64 *bbp;
1479 int i;
1480 int sectors = le16_to_cpu(sb->bblog_size);
1481 if (sectors > (PAGE_SIZE / 512))
1482 return -EINVAL;
1483 offset = le32_to_cpu(sb->bblog_offset);
1484 if (offset == 0)
1485 return -EINVAL;
1486 bb_sector = (long long)offset;
1487 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1488 rdev->bb_page, READ, true))
1489 return -EIO;
1490 bbp = (u64 *)page_address(rdev->bb_page);
1491 rdev->badblocks.shift = sb->bblog_shift;
1492 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1493 u64 bb = le64_to_cpu(*bbp);
1494 int count = bb & (0x3ff);
1495 u64 sector = bb >> 10;
1496 sector <<= sb->bblog_shift;
1497 count <<= sb->bblog_shift;
1498 if (bb + 1 == 0)
1499 break;
1500 if (md_set_badblocks(&rdev->badblocks,
1501 sector, count, 1) == 0)
1502 return -EINVAL;
1503 }
1504 } else if (sb->bblog_offset != 0)
1505 rdev->badblocks.shift = 0;
1506
1507 if (!refdev) {
1508 ret = 1;
1509 } else {
1510 __u64 ev1, ev2;
1511 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1512
1513 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1514 sb->level != refsb->level ||
1515 sb->layout != refsb->layout ||
1516 sb->chunksize != refsb->chunksize) {
1517 printk(KERN_WARNING "md: %s has strangely different"
1518 " superblock to %s\n",
1519 bdevname(rdev->bdev,b),
1520 bdevname(refdev->bdev,b2));
1521 return -EINVAL;
1522 }
1523 ev1 = le64_to_cpu(sb->events);
1524 ev2 = le64_to_cpu(refsb->events);
1525
1526 if (ev1 > ev2)
1527 ret = 1;
1528 else
1529 ret = 0;
1530 }
1531 if (minor_version) {
1532 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1533 sectors -= rdev->data_offset;
1534 } else
1535 sectors = rdev->sb_start;
1536 if (sectors < le64_to_cpu(sb->data_size))
1537 return -EINVAL;
1538 rdev->sectors = le64_to_cpu(sb->data_size);
1539 return ret;
1540 }
1541
1542 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1543 {
1544 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1545 __u64 ev1 = le64_to_cpu(sb->events);
1546
1547 rdev->raid_disk = -1;
1548 clear_bit(Faulty, &rdev->flags);
1549 clear_bit(In_sync, &rdev->flags);
1550 clear_bit(Bitmap_sync, &rdev->flags);
1551 clear_bit(WriteMostly, &rdev->flags);
1552
1553 if (mddev->raid_disks == 0) {
1554 mddev->major_version = 1;
1555 mddev->patch_version = 0;
1556 mddev->external = 0;
1557 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1558 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1559 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1560 mddev->level = le32_to_cpu(sb->level);
1561 mddev->clevel[0] = 0;
1562 mddev->layout = le32_to_cpu(sb->layout);
1563 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1564 mddev->dev_sectors = le64_to_cpu(sb->size);
1565 mddev->events = ev1;
1566 mddev->bitmap_info.offset = 0;
1567 mddev->bitmap_info.space = 0;
1568 /* Default location for bitmap is 1K after superblock
1569 * using 3K - total of 4K
1570 */
1571 mddev->bitmap_info.default_offset = 1024 >> 9;
1572 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1573 mddev->reshape_backwards = 0;
1574
1575 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1576 memcpy(mddev->uuid, sb->set_uuid, 16);
1577
1578 mddev->max_disks = (4096-256)/2;
1579
1580 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1581 mddev->bitmap_info.file == NULL) {
1582 mddev->bitmap_info.offset =
1583 (__s32)le32_to_cpu(sb->bitmap_offset);
1584 /* Metadata doesn't record how much space is available.
1585 * For 1.0, we assume we can use up to the superblock
1586 * if before, else to 4K beyond superblock.
1587 * For others, assume no change is possible.
1588 */
1589 if (mddev->minor_version > 0)
1590 mddev->bitmap_info.space = 0;
1591 else if (mddev->bitmap_info.offset > 0)
1592 mddev->bitmap_info.space =
1593 8 - mddev->bitmap_info.offset;
1594 else
1595 mddev->bitmap_info.space =
1596 -mddev->bitmap_info.offset;
1597 }
1598
1599 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1600 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1601 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1602 mddev->new_level = le32_to_cpu(sb->new_level);
1603 mddev->new_layout = le32_to_cpu(sb->new_layout);
1604 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1605 if (mddev->delta_disks < 0 ||
1606 (mddev->delta_disks == 0 &&
1607 (le32_to_cpu(sb->feature_map)
1608 & MD_FEATURE_RESHAPE_BACKWARDS)))
1609 mddev->reshape_backwards = 1;
1610 } else {
1611 mddev->reshape_position = MaxSector;
1612 mddev->delta_disks = 0;
1613 mddev->new_level = mddev->level;
1614 mddev->new_layout = mddev->layout;
1615 mddev->new_chunk_sectors = mddev->chunk_sectors;
1616 }
1617
1618 } else if (mddev->pers == NULL) {
1619 /* Insist of good event counter while assembling, except for
1620 * spares (which don't need an event count) */
1621 ++ev1;
1622 if (rdev->desc_nr >= 0 &&
1623 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1624 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1625 if (ev1 < mddev->events)
1626 return -EINVAL;
1627 } else if (mddev->bitmap) {
1628 /* If adding to array with a bitmap, then we can accept an
1629 * older device, but not too old.
1630 */
1631 if (ev1 < mddev->bitmap->events_cleared)
1632 return 0;
1633 if (ev1 < mddev->events)
1634 set_bit(Bitmap_sync, &rdev->flags);
1635 } else {
1636 if (ev1 < mddev->events)
1637 /* just a hot-add of a new device, leave raid_disk at -1 */
1638 return 0;
1639 }
1640 if (mddev->level != LEVEL_MULTIPATH) {
1641 int role;
1642 if (rdev->desc_nr < 0 ||
1643 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1644 role = 0xffff;
1645 rdev->desc_nr = -1;
1646 } else
1647 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1648 switch(role) {
1649 case 0xffff: /* spare */
1650 break;
1651 case 0xfffe: /* faulty */
1652 set_bit(Faulty, &rdev->flags);
1653 break;
1654 default:
1655 rdev->saved_raid_disk = role;
1656 if ((le32_to_cpu(sb->feature_map) &
1657 MD_FEATURE_RECOVERY_OFFSET)) {
1658 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1659 if (!(le32_to_cpu(sb->feature_map) &
1660 MD_FEATURE_RECOVERY_BITMAP))
1661 rdev->saved_raid_disk = -1;
1662 } else
1663 set_bit(In_sync, &rdev->flags);
1664 rdev->raid_disk = role;
1665 break;
1666 }
1667 if (sb->devflags & WriteMostly1)
1668 set_bit(WriteMostly, &rdev->flags);
1669 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1670 set_bit(Replacement, &rdev->flags);
1671 } else /* MULTIPATH are always insync */
1672 set_bit(In_sync, &rdev->flags);
1673
1674 return 0;
1675 }
1676
1677 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679 struct mdp_superblock_1 *sb;
1680 struct md_rdev *rdev2;
1681 int max_dev, i;
1682 /* make rdev->sb match mddev and rdev data. */
1683
1684 sb = page_address(rdev->sb_page);
1685
1686 sb->feature_map = 0;
1687 sb->pad0 = 0;
1688 sb->recovery_offset = cpu_to_le64(0);
1689 memset(sb->pad3, 0, sizeof(sb->pad3));
1690
1691 sb->utime = cpu_to_le64((__u64)mddev->utime);
1692 sb->events = cpu_to_le64(mddev->events);
1693 if (mddev->in_sync)
1694 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1695 else
1696 sb->resync_offset = cpu_to_le64(0);
1697
1698 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1699
1700 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1701 sb->size = cpu_to_le64(mddev->dev_sectors);
1702 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1703 sb->level = cpu_to_le32(mddev->level);
1704 sb->layout = cpu_to_le32(mddev->layout);
1705
1706 if (test_bit(WriteMostly, &rdev->flags))
1707 sb->devflags |= WriteMostly1;
1708 else
1709 sb->devflags &= ~WriteMostly1;
1710 sb->data_offset = cpu_to_le64(rdev->data_offset);
1711 sb->data_size = cpu_to_le64(rdev->sectors);
1712
1713 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1714 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1715 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1716 }
1717
1718 if (rdev->raid_disk >= 0 &&
1719 !test_bit(In_sync, &rdev->flags)) {
1720 sb->feature_map |=
1721 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1722 sb->recovery_offset =
1723 cpu_to_le64(rdev->recovery_offset);
1724 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1727 }
1728 if (test_bit(Replacement, &rdev->flags))
1729 sb->feature_map |=
1730 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1731
1732 if (mddev->reshape_position != MaxSector) {
1733 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1734 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1735 sb->new_layout = cpu_to_le32(mddev->new_layout);
1736 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1737 sb->new_level = cpu_to_le32(mddev->new_level);
1738 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1739 if (mddev->delta_disks == 0 &&
1740 mddev->reshape_backwards)
1741 sb->feature_map
1742 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1743 if (rdev->new_data_offset != rdev->data_offset) {
1744 sb->feature_map
1745 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1746 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1747 - rdev->data_offset));
1748 }
1749 }
1750
1751 if (rdev->badblocks.count == 0)
1752 /* Nothing to do for bad blocks*/ ;
1753 else if (sb->bblog_offset == 0)
1754 /* Cannot record bad blocks on this device */
1755 md_error(mddev, rdev);
1756 else {
1757 struct badblocks *bb = &rdev->badblocks;
1758 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1759 u64 *p = bb->page;
1760 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1761 if (bb->changed) {
1762 unsigned seq;
1763
1764 retry:
1765 seq = read_seqbegin(&bb->lock);
1766
1767 memset(bbp, 0xff, PAGE_SIZE);
1768
1769 for (i = 0 ; i < bb->count ; i++) {
1770 u64 internal_bb = p[i];
1771 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1772 | BB_LEN(internal_bb));
1773 bbp[i] = cpu_to_le64(store_bb);
1774 }
1775 bb->changed = 0;
1776 if (read_seqretry(&bb->lock, seq))
1777 goto retry;
1778
1779 bb->sector = (rdev->sb_start +
1780 (int)le32_to_cpu(sb->bblog_offset));
1781 bb->size = le16_to_cpu(sb->bblog_size);
1782 }
1783 }
1784
1785 max_dev = 0;
1786 rdev_for_each(rdev2, mddev)
1787 if (rdev2->desc_nr+1 > max_dev)
1788 max_dev = rdev2->desc_nr+1;
1789
1790 if (max_dev > le32_to_cpu(sb->max_dev)) {
1791 int bmask;
1792 sb->max_dev = cpu_to_le32(max_dev);
1793 rdev->sb_size = max_dev * 2 + 256;
1794 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1795 if (rdev->sb_size & bmask)
1796 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1797 } else
1798 max_dev = le32_to_cpu(sb->max_dev);
1799
1800 for (i=0; i<max_dev;i++)
1801 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1802
1803 rdev_for_each(rdev2, mddev) {
1804 i = rdev2->desc_nr;
1805 if (test_bit(Faulty, &rdev2->flags))
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807 else if (test_bit(In_sync, &rdev2->flags))
1808 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1809 else if (rdev2->raid_disk >= 0)
1810 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1811 else
1812 sb->dev_roles[i] = cpu_to_le16(0xffff);
1813 }
1814
1815 sb->sb_csum = calc_sb_1_csum(sb);
1816 }
1817
1818 static unsigned long long
1819 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1820 {
1821 struct mdp_superblock_1 *sb;
1822 sector_t max_sectors;
1823 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1824 return 0; /* component must fit device */
1825 if (rdev->data_offset != rdev->new_data_offset)
1826 return 0; /* too confusing */
1827 if (rdev->sb_start < rdev->data_offset) {
1828 /* minor versions 1 and 2; superblock before data */
1829 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1830 max_sectors -= rdev->data_offset;
1831 if (!num_sectors || num_sectors > max_sectors)
1832 num_sectors = max_sectors;
1833 } else if (rdev->mddev->bitmap_info.offset) {
1834 /* minor version 0 with bitmap we can't move */
1835 return 0;
1836 } else {
1837 /* minor version 0; superblock after data */
1838 sector_t sb_start;
1839 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1840 sb_start &= ~(sector_t)(4*2 - 1);
1841 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1842 if (!num_sectors || num_sectors > max_sectors)
1843 num_sectors = max_sectors;
1844 rdev->sb_start = sb_start;
1845 }
1846 sb = page_address(rdev->sb_page);
1847 sb->data_size = cpu_to_le64(num_sectors);
1848 sb->super_offset = rdev->sb_start;
1849 sb->sb_csum = calc_sb_1_csum(sb);
1850 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1851 rdev->sb_page);
1852 md_super_wait(rdev->mddev);
1853 return num_sectors;
1854
1855 }
1856
1857 static int
1858 super_1_allow_new_offset(struct md_rdev *rdev,
1859 unsigned long long new_offset)
1860 {
1861 /* All necessary checks on new >= old have been done */
1862 struct bitmap *bitmap;
1863 if (new_offset >= rdev->data_offset)
1864 return 1;
1865
1866 /* with 1.0 metadata, there is no metadata to tread on
1867 * so we can always move back */
1868 if (rdev->mddev->minor_version == 0)
1869 return 1;
1870
1871 /* otherwise we must be sure not to step on
1872 * any metadata, so stay:
1873 * 36K beyond start of superblock
1874 * beyond end of badblocks
1875 * beyond write-intent bitmap
1876 */
1877 if (rdev->sb_start + (32+4)*2 > new_offset)
1878 return 0;
1879 bitmap = rdev->mddev->bitmap;
1880 if (bitmap && !rdev->mddev->bitmap_info.file &&
1881 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1882 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1883 return 0;
1884 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1885 return 0;
1886
1887 return 1;
1888 }
1889
1890 static struct super_type super_types[] = {
1891 [0] = {
1892 .name = "0.90.0",
1893 .owner = THIS_MODULE,
1894 .load_super = super_90_load,
1895 .validate_super = super_90_validate,
1896 .sync_super = super_90_sync,
1897 .rdev_size_change = super_90_rdev_size_change,
1898 .allow_new_offset = super_90_allow_new_offset,
1899 },
1900 [1] = {
1901 .name = "md-1",
1902 .owner = THIS_MODULE,
1903 .load_super = super_1_load,
1904 .validate_super = super_1_validate,
1905 .sync_super = super_1_sync,
1906 .rdev_size_change = super_1_rdev_size_change,
1907 .allow_new_offset = super_1_allow_new_offset,
1908 },
1909 };
1910
1911 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1912 {
1913 if (mddev->sync_super) {
1914 mddev->sync_super(mddev, rdev);
1915 return;
1916 }
1917
1918 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1919
1920 super_types[mddev->major_version].sync_super(mddev, rdev);
1921 }
1922
1923 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1924 {
1925 struct md_rdev *rdev, *rdev2;
1926
1927 rcu_read_lock();
1928 rdev_for_each_rcu(rdev, mddev1)
1929 rdev_for_each_rcu(rdev2, mddev2)
1930 if (rdev->bdev->bd_contains ==
1931 rdev2->bdev->bd_contains) {
1932 rcu_read_unlock();
1933 return 1;
1934 }
1935 rcu_read_unlock();
1936 return 0;
1937 }
1938
1939 static LIST_HEAD(pending_raid_disks);
1940
1941 /*
1942 * Try to register data integrity profile for an mddev
1943 *
1944 * This is called when an array is started and after a disk has been kicked
1945 * from the array. It only succeeds if all working and active component devices
1946 * are integrity capable with matching profiles.
1947 */
1948 int md_integrity_register(struct mddev *mddev)
1949 {
1950 struct md_rdev *rdev, *reference = NULL;
1951
1952 if (list_empty(&mddev->disks))
1953 return 0; /* nothing to do */
1954 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1955 return 0; /* shouldn't register, or already is */
1956 rdev_for_each(rdev, mddev) {
1957 /* skip spares and non-functional disks */
1958 if (test_bit(Faulty, &rdev->flags))
1959 continue;
1960 if (rdev->raid_disk < 0)
1961 continue;
1962 if (!reference) {
1963 /* Use the first rdev as the reference */
1964 reference = rdev;
1965 continue;
1966 }
1967 /* does this rdev's profile match the reference profile? */
1968 if (blk_integrity_compare(reference->bdev->bd_disk,
1969 rdev->bdev->bd_disk) < 0)
1970 return -EINVAL;
1971 }
1972 if (!reference || !bdev_get_integrity(reference->bdev))
1973 return 0;
1974 /*
1975 * All component devices are integrity capable and have matching
1976 * profiles, register the common profile for the md device.
1977 */
1978 if (blk_integrity_register(mddev->gendisk,
1979 bdev_get_integrity(reference->bdev)) != 0) {
1980 printk(KERN_ERR "md: failed to register integrity for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1983 }
1984 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1985 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1986 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1987 mdname(mddev));
1988 return -EINVAL;
1989 }
1990 return 0;
1991 }
1992 EXPORT_SYMBOL(md_integrity_register);
1993
1994 /* Disable data integrity if non-capable/non-matching disk is being added */
1995 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1996 {
1997 struct blk_integrity *bi_rdev;
1998 struct blk_integrity *bi_mddev;
1999
2000 if (!mddev->gendisk)
2001 return;
2002
2003 bi_rdev = bdev_get_integrity(rdev->bdev);
2004 bi_mddev = blk_get_integrity(mddev->gendisk);
2005
2006 if (!bi_mddev) /* nothing to do */
2007 return;
2008 if (rdev->raid_disk < 0) /* skip spares */
2009 return;
2010 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2011 rdev->bdev->bd_disk) >= 0)
2012 return;
2013 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2014 blk_integrity_unregister(mddev->gendisk);
2015 }
2016 EXPORT_SYMBOL(md_integrity_add_rdev);
2017
2018 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2019 {
2020 char b[BDEVNAME_SIZE];
2021 struct kobject *ko;
2022 char *s;
2023 int err;
2024
2025 /* prevent duplicates */
2026 if (find_rdev(mddev, rdev->bdev->bd_dev))
2027 return -EEXIST;
2028
2029 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2030 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2031 rdev->sectors < mddev->dev_sectors)) {
2032 if (mddev->pers) {
2033 /* Cannot change size, so fail
2034 * If mddev->level <= 0, then we don't care
2035 * about aligning sizes (e.g. linear)
2036 */
2037 if (mddev->level > 0)
2038 return -ENOSPC;
2039 } else
2040 mddev->dev_sectors = rdev->sectors;
2041 }
2042
2043 /* Verify rdev->desc_nr is unique.
2044 * If it is -1, assign a free number, else
2045 * check number is not in use
2046 */
2047 rcu_read_lock();
2048 if (rdev->desc_nr < 0) {
2049 int choice = 0;
2050 if (mddev->pers)
2051 choice = mddev->raid_disks;
2052 while (find_rdev_nr_rcu(mddev, choice))
2053 choice++;
2054 rdev->desc_nr = choice;
2055 } else {
2056 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2057 rcu_read_unlock();
2058 return -EBUSY;
2059 }
2060 }
2061 rcu_read_unlock();
2062 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2063 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2064 mdname(mddev), mddev->max_disks);
2065 return -EBUSY;
2066 }
2067 bdevname(rdev->bdev,b);
2068 while ( (s=strchr(b, '/')) != NULL)
2069 *s = '!';
2070
2071 rdev->mddev = mddev;
2072 printk(KERN_INFO "md: bind<%s>\n", b);
2073
2074 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2075 goto fail;
2076
2077 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2078 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2079 /* failure here is OK */;
2080 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2081
2082 list_add_rcu(&rdev->same_set, &mddev->disks);
2083 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2084
2085 /* May as well allow recovery to be retried once */
2086 mddev->recovery_disabled++;
2087
2088 return 0;
2089
2090 fail:
2091 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2092 b, mdname(mddev));
2093 return err;
2094 }
2095
2096 static void md_delayed_delete(struct work_struct *ws)
2097 {
2098 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2099 kobject_del(&rdev->kobj);
2100 kobject_put(&rdev->kobj);
2101 }
2102
2103 static void unbind_rdev_from_array(struct md_rdev *rdev)
2104 {
2105 char b[BDEVNAME_SIZE];
2106
2107 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2108 list_del_rcu(&rdev->same_set);
2109 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2110 rdev->mddev = NULL;
2111 sysfs_remove_link(&rdev->kobj, "block");
2112 sysfs_put(rdev->sysfs_state);
2113 rdev->sysfs_state = NULL;
2114 rdev->badblocks.count = 0;
2115 /* We need to delay this, otherwise we can deadlock when
2116 * writing to 'remove' to "dev/state". We also need
2117 * to delay it due to rcu usage.
2118 */
2119 synchronize_rcu();
2120 INIT_WORK(&rdev->del_work, md_delayed_delete);
2121 kobject_get(&rdev->kobj);
2122 queue_work(md_misc_wq, &rdev->del_work);
2123 }
2124
2125 /*
2126 * prevent the device from being mounted, repartitioned or
2127 * otherwise reused by a RAID array (or any other kernel
2128 * subsystem), by bd_claiming the device.
2129 */
2130 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2131 {
2132 int err = 0;
2133 struct block_device *bdev;
2134 char b[BDEVNAME_SIZE];
2135
2136 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2137 shared ? (struct md_rdev *)lock_rdev : rdev);
2138 if (IS_ERR(bdev)) {
2139 printk(KERN_ERR "md: could not open %s.\n",
2140 __bdevname(dev, b));
2141 return PTR_ERR(bdev);
2142 }
2143 rdev->bdev = bdev;
2144 return err;
2145 }
2146
2147 static void unlock_rdev(struct md_rdev *rdev)
2148 {
2149 struct block_device *bdev = rdev->bdev;
2150 rdev->bdev = NULL;
2151 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2152 }
2153
2154 void md_autodetect_dev(dev_t dev);
2155
2156 static void export_rdev(struct md_rdev *rdev)
2157 {
2158 char b[BDEVNAME_SIZE];
2159
2160 printk(KERN_INFO "md: export_rdev(%s)\n",
2161 bdevname(rdev->bdev,b));
2162 md_rdev_clear(rdev);
2163 #ifndef MODULE
2164 if (test_bit(AutoDetected, &rdev->flags))
2165 md_autodetect_dev(rdev->bdev->bd_dev);
2166 #endif
2167 unlock_rdev(rdev);
2168 kobject_put(&rdev->kobj);
2169 }
2170
2171 void md_kick_rdev_from_array(struct md_rdev *rdev)
2172 {
2173 unbind_rdev_from_array(rdev);
2174 export_rdev(rdev);
2175 }
2176 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2177
2178 static void export_array(struct mddev *mddev)
2179 {
2180 struct md_rdev *rdev;
2181
2182 while (!list_empty(&mddev->disks)) {
2183 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2184 same_set);
2185 md_kick_rdev_from_array(rdev);
2186 }
2187 mddev->raid_disks = 0;
2188 mddev->major_version = 0;
2189 }
2190
2191 static void sync_sbs(struct mddev *mddev, int nospares)
2192 {
2193 /* Update each superblock (in-memory image), but
2194 * if we are allowed to, skip spares which already
2195 * have the right event counter, or have one earlier
2196 * (which would mean they aren't being marked as dirty
2197 * with the rest of the array)
2198 */
2199 struct md_rdev *rdev;
2200 rdev_for_each(rdev, mddev) {
2201 if (rdev->sb_events == mddev->events ||
2202 (nospares &&
2203 rdev->raid_disk < 0 &&
2204 rdev->sb_events+1 == mddev->events)) {
2205 /* Don't update this superblock */
2206 rdev->sb_loaded = 2;
2207 } else {
2208 sync_super(mddev, rdev);
2209 rdev->sb_loaded = 1;
2210 }
2211 }
2212 }
2213
2214 void md_update_sb(struct mddev *mddev, int force_change)
2215 {
2216 struct md_rdev *rdev;
2217 int sync_req;
2218 int nospares = 0;
2219 int any_badblocks_changed = 0;
2220
2221 if (mddev->ro) {
2222 if (force_change)
2223 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2224 return;
2225 }
2226 repeat:
2227 /* First make sure individual recovery_offsets are correct */
2228 rdev_for_each(rdev, mddev) {
2229 if (rdev->raid_disk >= 0 &&
2230 mddev->delta_disks >= 0 &&
2231 !test_bit(In_sync, &rdev->flags) &&
2232 mddev->curr_resync_completed > rdev->recovery_offset)
2233 rdev->recovery_offset = mddev->curr_resync_completed;
2234
2235 }
2236 if (!mddev->persistent) {
2237 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2238 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2239 if (!mddev->external) {
2240 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2241 rdev_for_each(rdev, mddev) {
2242 if (rdev->badblocks.changed) {
2243 rdev->badblocks.changed = 0;
2244 md_ack_all_badblocks(&rdev->badblocks);
2245 md_error(mddev, rdev);
2246 }
2247 clear_bit(Blocked, &rdev->flags);
2248 clear_bit(BlockedBadBlocks, &rdev->flags);
2249 wake_up(&rdev->blocked_wait);
2250 }
2251 }
2252 wake_up(&mddev->sb_wait);
2253 return;
2254 }
2255
2256 spin_lock(&mddev->lock);
2257
2258 mddev->utime = get_seconds();
2259
2260 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2261 force_change = 1;
2262 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2263 /* just a clean<-> dirty transition, possibly leave spares alone,
2264 * though if events isn't the right even/odd, we will have to do
2265 * spares after all
2266 */
2267 nospares = 1;
2268 if (force_change)
2269 nospares = 0;
2270 if (mddev->degraded)
2271 /* If the array is degraded, then skipping spares is both
2272 * dangerous and fairly pointless.
2273 * Dangerous because a device that was removed from the array
2274 * might have a event_count that still looks up-to-date,
2275 * so it can be re-added without a resync.
2276 * Pointless because if there are any spares to skip,
2277 * then a recovery will happen and soon that array won't
2278 * be degraded any more and the spare can go back to sleep then.
2279 */
2280 nospares = 0;
2281
2282 sync_req = mddev->in_sync;
2283
2284 /* If this is just a dirty<->clean transition, and the array is clean
2285 * and 'events' is odd, we can roll back to the previous clean state */
2286 if (nospares
2287 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2288 && mddev->can_decrease_events
2289 && mddev->events != 1) {
2290 mddev->events--;
2291 mddev->can_decrease_events = 0;
2292 } else {
2293 /* otherwise we have to go forward and ... */
2294 mddev->events ++;
2295 mddev->can_decrease_events = nospares;
2296 }
2297
2298 /*
2299 * This 64-bit counter should never wrap.
2300 * Either we are in around ~1 trillion A.C., assuming
2301 * 1 reboot per second, or we have a bug...
2302 */
2303 WARN_ON(mddev->events == 0);
2304
2305 rdev_for_each(rdev, mddev) {
2306 if (rdev->badblocks.changed)
2307 any_badblocks_changed++;
2308 if (test_bit(Faulty, &rdev->flags))
2309 set_bit(FaultRecorded, &rdev->flags);
2310 }
2311
2312 sync_sbs(mddev, nospares);
2313 spin_unlock(&mddev->lock);
2314
2315 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2316 mdname(mddev), mddev->in_sync);
2317
2318 bitmap_update_sb(mddev->bitmap);
2319 rdev_for_each(rdev, mddev) {
2320 char b[BDEVNAME_SIZE];
2321
2322 if (rdev->sb_loaded != 1)
2323 continue; /* no noise on spare devices */
2324
2325 if (!test_bit(Faulty, &rdev->flags)) {
2326 md_super_write(mddev,rdev,
2327 rdev->sb_start, rdev->sb_size,
2328 rdev->sb_page);
2329 pr_debug("md: (write) %s's sb offset: %llu\n",
2330 bdevname(rdev->bdev, b),
2331 (unsigned long long)rdev->sb_start);
2332 rdev->sb_events = mddev->events;
2333 if (rdev->badblocks.size) {
2334 md_super_write(mddev, rdev,
2335 rdev->badblocks.sector,
2336 rdev->badblocks.size << 9,
2337 rdev->bb_page);
2338 rdev->badblocks.size = 0;
2339 }
2340
2341 } else
2342 pr_debug("md: %s (skipping faulty)\n",
2343 bdevname(rdev->bdev, b));
2344
2345 if (mddev->level == LEVEL_MULTIPATH)
2346 /* only need to write one superblock... */
2347 break;
2348 }
2349 md_super_wait(mddev);
2350 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2351
2352 spin_lock(&mddev->lock);
2353 if (mddev->in_sync != sync_req ||
2354 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2355 /* have to write it out again */
2356 spin_unlock(&mddev->lock);
2357 goto repeat;
2358 }
2359 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2360 spin_unlock(&mddev->lock);
2361 wake_up(&mddev->sb_wait);
2362 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2363 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2364
2365 rdev_for_each(rdev, mddev) {
2366 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2367 clear_bit(Blocked, &rdev->flags);
2368
2369 if (any_badblocks_changed)
2370 md_ack_all_badblocks(&rdev->badblocks);
2371 clear_bit(BlockedBadBlocks, &rdev->flags);
2372 wake_up(&rdev->blocked_wait);
2373 }
2374 }
2375 EXPORT_SYMBOL(md_update_sb);
2376
2377 /* words written to sysfs files may, or may not, be \n terminated.
2378 * We want to accept with case. For this we use cmd_match.
2379 */
2380 static int cmd_match(const char *cmd, const char *str)
2381 {
2382 /* See if cmd, written into a sysfs file, matches
2383 * str. They must either be the same, or cmd can
2384 * have a trailing newline
2385 */
2386 while (*cmd && *str && *cmd == *str) {
2387 cmd++;
2388 str++;
2389 }
2390 if (*cmd == '\n')
2391 cmd++;
2392 if (*str || *cmd)
2393 return 0;
2394 return 1;
2395 }
2396
2397 struct rdev_sysfs_entry {
2398 struct attribute attr;
2399 ssize_t (*show)(struct md_rdev *, char *);
2400 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2401 };
2402
2403 static ssize_t
2404 state_show(struct md_rdev *rdev, char *page)
2405 {
2406 char *sep = "";
2407 size_t len = 0;
2408 unsigned long flags = ACCESS_ONCE(rdev->flags);
2409
2410 if (test_bit(Faulty, &flags) ||
2411 rdev->badblocks.unacked_exist) {
2412 len+= sprintf(page+len, "%sfaulty",sep);
2413 sep = ",";
2414 }
2415 if (test_bit(In_sync, &flags)) {
2416 len += sprintf(page+len, "%sin_sync",sep);
2417 sep = ",";
2418 }
2419 if (test_bit(WriteMostly, &flags)) {
2420 len += sprintf(page+len, "%swrite_mostly",sep);
2421 sep = ",";
2422 }
2423 if (test_bit(Blocked, &flags) ||
2424 (rdev->badblocks.unacked_exist
2425 && !test_bit(Faulty, &flags))) {
2426 len += sprintf(page+len, "%sblocked", sep);
2427 sep = ",";
2428 }
2429 if (!test_bit(Faulty, &flags) &&
2430 !test_bit(In_sync, &flags)) {
2431 len += sprintf(page+len, "%sspare", sep);
2432 sep = ",";
2433 }
2434 if (test_bit(WriteErrorSeen, &flags)) {
2435 len += sprintf(page+len, "%swrite_error", sep);
2436 sep = ",";
2437 }
2438 if (test_bit(WantReplacement, &flags)) {
2439 len += sprintf(page+len, "%swant_replacement", sep);
2440 sep = ",";
2441 }
2442 if (test_bit(Replacement, &flags)) {
2443 len += sprintf(page+len, "%sreplacement", sep);
2444 sep = ",";
2445 }
2446
2447 return len+sprintf(page+len, "\n");
2448 }
2449
2450 static ssize_t
2451 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2452 {
2453 /* can write
2454 * faulty - simulates an error
2455 * remove - disconnects the device
2456 * writemostly - sets write_mostly
2457 * -writemostly - clears write_mostly
2458 * blocked - sets the Blocked flags
2459 * -blocked - clears the Blocked and possibly simulates an error
2460 * insync - sets Insync providing device isn't active
2461 * -insync - clear Insync for a device with a slot assigned,
2462 * so that it gets rebuilt based on bitmap
2463 * write_error - sets WriteErrorSeen
2464 * -write_error - clears WriteErrorSeen
2465 */
2466 int err = -EINVAL;
2467 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2468 md_error(rdev->mddev, rdev);
2469 if (test_bit(Faulty, &rdev->flags))
2470 err = 0;
2471 else
2472 err = -EBUSY;
2473 } else if (cmd_match(buf, "remove")) {
2474 if (rdev->raid_disk >= 0)
2475 err = -EBUSY;
2476 else {
2477 struct mddev *mddev = rdev->mddev;
2478 if (mddev_is_clustered(mddev))
2479 md_cluster_ops->metadata_update_start(mddev);
2480 md_kick_rdev_from_array(rdev);
2481 if (mddev->pers)
2482 md_update_sb(mddev, 1);
2483 md_new_event(mddev);
2484 if (mddev_is_clustered(mddev))
2485 md_cluster_ops->metadata_update_finish(mddev);
2486 err = 0;
2487 }
2488 } else if (cmd_match(buf, "writemostly")) {
2489 set_bit(WriteMostly, &rdev->flags);
2490 err = 0;
2491 } else if (cmd_match(buf, "-writemostly")) {
2492 clear_bit(WriteMostly, &rdev->flags);
2493 err = 0;
2494 } else if (cmd_match(buf, "blocked")) {
2495 set_bit(Blocked, &rdev->flags);
2496 err = 0;
2497 } else if (cmd_match(buf, "-blocked")) {
2498 if (!test_bit(Faulty, &rdev->flags) &&
2499 rdev->badblocks.unacked_exist) {
2500 /* metadata handler doesn't understand badblocks,
2501 * so we need to fail the device
2502 */
2503 md_error(rdev->mddev, rdev);
2504 }
2505 clear_bit(Blocked, &rdev->flags);
2506 clear_bit(BlockedBadBlocks, &rdev->flags);
2507 wake_up(&rdev->blocked_wait);
2508 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2509 md_wakeup_thread(rdev->mddev->thread);
2510
2511 err = 0;
2512 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2513 set_bit(In_sync, &rdev->flags);
2514 err = 0;
2515 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2516 if (rdev->mddev->pers == NULL) {
2517 clear_bit(In_sync, &rdev->flags);
2518 rdev->saved_raid_disk = rdev->raid_disk;
2519 rdev->raid_disk = -1;
2520 err = 0;
2521 }
2522 } else if (cmd_match(buf, "write_error")) {
2523 set_bit(WriteErrorSeen, &rdev->flags);
2524 err = 0;
2525 } else if (cmd_match(buf, "-write_error")) {
2526 clear_bit(WriteErrorSeen, &rdev->flags);
2527 err = 0;
2528 } else if (cmd_match(buf, "want_replacement")) {
2529 /* Any non-spare device that is not a replacement can
2530 * become want_replacement at any time, but we then need to
2531 * check if recovery is needed.
2532 */
2533 if (rdev->raid_disk >= 0 &&
2534 !test_bit(Replacement, &rdev->flags))
2535 set_bit(WantReplacement, &rdev->flags);
2536 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2537 md_wakeup_thread(rdev->mddev->thread);
2538 err = 0;
2539 } else if (cmd_match(buf, "-want_replacement")) {
2540 /* Clearing 'want_replacement' is always allowed.
2541 * Once replacements starts it is too late though.
2542 */
2543 err = 0;
2544 clear_bit(WantReplacement, &rdev->flags);
2545 } else if (cmd_match(buf, "replacement")) {
2546 /* Can only set a device as a replacement when array has not
2547 * yet been started. Once running, replacement is automatic
2548 * from spares, or by assigning 'slot'.
2549 */
2550 if (rdev->mddev->pers)
2551 err = -EBUSY;
2552 else {
2553 set_bit(Replacement, &rdev->flags);
2554 err = 0;
2555 }
2556 } else if (cmd_match(buf, "-replacement")) {
2557 /* Similarly, can only clear Replacement before start */
2558 if (rdev->mddev->pers)
2559 err = -EBUSY;
2560 else {
2561 clear_bit(Replacement, &rdev->flags);
2562 err = 0;
2563 }
2564 }
2565 if (!err)
2566 sysfs_notify_dirent_safe(rdev->sysfs_state);
2567 return err ? err : len;
2568 }
2569 static struct rdev_sysfs_entry rdev_state =
2570 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2571
2572 static ssize_t
2573 errors_show(struct md_rdev *rdev, char *page)
2574 {
2575 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2576 }
2577
2578 static ssize_t
2579 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2580 {
2581 char *e;
2582 unsigned long n = simple_strtoul(buf, &e, 10);
2583 if (*buf && (*e == 0 || *e == '\n')) {
2584 atomic_set(&rdev->corrected_errors, n);
2585 return len;
2586 }
2587 return -EINVAL;
2588 }
2589 static struct rdev_sysfs_entry rdev_errors =
2590 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2591
2592 static ssize_t
2593 slot_show(struct md_rdev *rdev, char *page)
2594 {
2595 if (rdev->raid_disk < 0)
2596 return sprintf(page, "none\n");
2597 else
2598 return sprintf(page, "%d\n", rdev->raid_disk);
2599 }
2600
2601 static ssize_t
2602 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2603 {
2604 char *e;
2605 int err;
2606 int slot = simple_strtoul(buf, &e, 10);
2607 if (strncmp(buf, "none", 4)==0)
2608 slot = -1;
2609 else if (e==buf || (*e && *e!= '\n'))
2610 return -EINVAL;
2611 if (rdev->mddev->pers && slot == -1) {
2612 /* Setting 'slot' on an active array requires also
2613 * updating the 'rd%d' link, and communicating
2614 * with the personality with ->hot_*_disk.
2615 * For now we only support removing
2616 * failed/spare devices. This normally happens automatically,
2617 * but not when the metadata is externally managed.
2618 */
2619 if (rdev->raid_disk == -1)
2620 return -EEXIST;
2621 /* personality does all needed checks */
2622 if (rdev->mddev->pers->hot_remove_disk == NULL)
2623 return -EINVAL;
2624 clear_bit(Blocked, &rdev->flags);
2625 remove_and_add_spares(rdev->mddev, rdev);
2626 if (rdev->raid_disk >= 0)
2627 return -EBUSY;
2628 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2629 md_wakeup_thread(rdev->mddev->thread);
2630 } else if (rdev->mddev->pers) {
2631 /* Activating a spare .. or possibly reactivating
2632 * if we ever get bitmaps working here.
2633 */
2634
2635 if (rdev->raid_disk != -1)
2636 return -EBUSY;
2637
2638 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2639 return -EBUSY;
2640
2641 if (rdev->mddev->pers->hot_add_disk == NULL)
2642 return -EINVAL;
2643
2644 if (slot >= rdev->mddev->raid_disks &&
2645 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2646 return -ENOSPC;
2647
2648 rdev->raid_disk = slot;
2649 if (test_bit(In_sync, &rdev->flags))
2650 rdev->saved_raid_disk = slot;
2651 else
2652 rdev->saved_raid_disk = -1;
2653 clear_bit(In_sync, &rdev->flags);
2654 clear_bit(Bitmap_sync, &rdev->flags);
2655 err = rdev->mddev->pers->
2656 hot_add_disk(rdev->mddev, rdev);
2657 if (err) {
2658 rdev->raid_disk = -1;
2659 return err;
2660 } else
2661 sysfs_notify_dirent_safe(rdev->sysfs_state);
2662 if (sysfs_link_rdev(rdev->mddev, rdev))
2663 /* failure here is OK */;
2664 /* don't wakeup anyone, leave that to userspace. */
2665 } else {
2666 if (slot >= rdev->mddev->raid_disks &&
2667 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2668 return -ENOSPC;
2669 rdev->raid_disk = slot;
2670 /* assume it is working */
2671 clear_bit(Faulty, &rdev->flags);
2672 clear_bit(WriteMostly, &rdev->flags);
2673 set_bit(In_sync, &rdev->flags);
2674 sysfs_notify_dirent_safe(rdev->sysfs_state);
2675 }
2676 return len;
2677 }
2678
2679 static struct rdev_sysfs_entry rdev_slot =
2680 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2681
2682 static ssize_t
2683 offset_show(struct md_rdev *rdev, char *page)
2684 {
2685 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2686 }
2687
2688 static ssize_t
2689 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2690 {
2691 unsigned long long offset;
2692 if (kstrtoull(buf, 10, &offset) < 0)
2693 return -EINVAL;
2694 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2695 return -EBUSY;
2696 if (rdev->sectors && rdev->mddev->external)
2697 /* Must set offset before size, so overlap checks
2698 * can be sane */
2699 return -EBUSY;
2700 rdev->data_offset = offset;
2701 rdev->new_data_offset = offset;
2702 return len;
2703 }
2704
2705 static struct rdev_sysfs_entry rdev_offset =
2706 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2707
2708 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2709 {
2710 return sprintf(page, "%llu\n",
2711 (unsigned long long)rdev->new_data_offset);
2712 }
2713
2714 static ssize_t new_offset_store(struct md_rdev *rdev,
2715 const char *buf, size_t len)
2716 {
2717 unsigned long long new_offset;
2718 struct mddev *mddev = rdev->mddev;
2719
2720 if (kstrtoull(buf, 10, &new_offset) < 0)
2721 return -EINVAL;
2722
2723 if (mddev->sync_thread ||
2724 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2725 return -EBUSY;
2726 if (new_offset == rdev->data_offset)
2727 /* reset is always permitted */
2728 ;
2729 else if (new_offset > rdev->data_offset) {
2730 /* must not push array size beyond rdev_sectors */
2731 if (new_offset - rdev->data_offset
2732 + mddev->dev_sectors > rdev->sectors)
2733 return -E2BIG;
2734 }
2735 /* Metadata worries about other space details. */
2736
2737 /* decreasing the offset is inconsistent with a backwards
2738 * reshape.
2739 */
2740 if (new_offset < rdev->data_offset &&
2741 mddev->reshape_backwards)
2742 return -EINVAL;
2743 /* Increasing offset is inconsistent with forwards
2744 * reshape. reshape_direction should be set to
2745 * 'backwards' first.
2746 */
2747 if (new_offset > rdev->data_offset &&
2748 !mddev->reshape_backwards)
2749 return -EINVAL;
2750
2751 if (mddev->pers && mddev->persistent &&
2752 !super_types[mddev->major_version]
2753 .allow_new_offset(rdev, new_offset))
2754 return -E2BIG;
2755 rdev->new_data_offset = new_offset;
2756 if (new_offset > rdev->data_offset)
2757 mddev->reshape_backwards = 1;
2758 else if (new_offset < rdev->data_offset)
2759 mddev->reshape_backwards = 0;
2760
2761 return len;
2762 }
2763 static struct rdev_sysfs_entry rdev_new_offset =
2764 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2765
2766 static ssize_t
2767 rdev_size_show(struct md_rdev *rdev, char *page)
2768 {
2769 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2770 }
2771
2772 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2773 {
2774 /* check if two start/length pairs overlap */
2775 if (s1+l1 <= s2)
2776 return 0;
2777 if (s2+l2 <= s1)
2778 return 0;
2779 return 1;
2780 }
2781
2782 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2783 {
2784 unsigned long long blocks;
2785 sector_t new;
2786
2787 if (kstrtoull(buf, 10, &blocks) < 0)
2788 return -EINVAL;
2789
2790 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2791 return -EINVAL; /* sector conversion overflow */
2792
2793 new = blocks * 2;
2794 if (new != blocks * 2)
2795 return -EINVAL; /* unsigned long long to sector_t overflow */
2796
2797 *sectors = new;
2798 return 0;
2799 }
2800
2801 static ssize_t
2802 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2803 {
2804 struct mddev *my_mddev = rdev->mddev;
2805 sector_t oldsectors = rdev->sectors;
2806 sector_t sectors;
2807
2808 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2809 return -EINVAL;
2810 if (rdev->data_offset != rdev->new_data_offset)
2811 return -EINVAL; /* too confusing */
2812 if (my_mddev->pers && rdev->raid_disk >= 0) {
2813 if (my_mddev->persistent) {
2814 sectors = super_types[my_mddev->major_version].
2815 rdev_size_change(rdev, sectors);
2816 if (!sectors)
2817 return -EBUSY;
2818 } else if (!sectors)
2819 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2820 rdev->data_offset;
2821 if (!my_mddev->pers->resize)
2822 /* Cannot change size for RAID0 or Linear etc */
2823 return -EINVAL;
2824 }
2825 if (sectors < my_mddev->dev_sectors)
2826 return -EINVAL; /* component must fit device */
2827
2828 rdev->sectors = sectors;
2829 if (sectors > oldsectors && my_mddev->external) {
2830 /* Need to check that all other rdevs with the same
2831 * ->bdev do not overlap. 'rcu' is sufficient to walk
2832 * the rdev lists safely.
2833 * This check does not provide a hard guarantee, it
2834 * just helps avoid dangerous mistakes.
2835 */
2836 struct mddev *mddev;
2837 int overlap = 0;
2838 struct list_head *tmp;
2839
2840 rcu_read_lock();
2841 for_each_mddev(mddev, tmp) {
2842 struct md_rdev *rdev2;
2843
2844 rdev_for_each(rdev2, mddev)
2845 if (rdev->bdev == rdev2->bdev &&
2846 rdev != rdev2 &&
2847 overlaps(rdev->data_offset, rdev->sectors,
2848 rdev2->data_offset,
2849 rdev2->sectors)) {
2850 overlap = 1;
2851 break;
2852 }
2853 if (overlap) {
2854 mddev_put(mddev);
2855 break;
2856 }
2857 }
2858 rcu_read_unlock();
2859 if (overlap) {
2860 /* Someone else could have slipped in a size
2861 * change here, but doing so is just silly.
2862 * We put oldsectors back because we *know* it is
2863 * safe, and trust userspace not to race with
2864 * itself
2865 */
2866 rdev->sectors = oldsectors;
2867 return -EBUSY;
2868 }
2869 }
2870 return len;
2871 }
2872
2873 static struct rdev_sysfs_entry rdev_size =
2874 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2875
2876 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2877 {
2878 unsigned long long recovery_start = rdev->recovery_offset;
2879
2880 if (test_bit(In_sync, &rdev->flags) ||
2881 recovery_start == MaxSector)
2882 return sprintf(page, "none\n");
2883
2884 return sprintf(page, "%llu\n", recovery_start);
2885 }
2886
2887 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2888 {
2889 unsigned long long recovery_start;
2890
2891 if (cmd_match(buf, "none"))
2892 recovery_start = MaxSector;
2893 else if (kstrtoull(buf, 10, &recovery_start))
2894 return -EINVAL;
2895
2896 if (rdev->mddev->pers &&
2897 rdev->raid_disk >= 0)
2898 return -EBUSY;
2899
2900 rdev->recovery_offset = recovery_start;
2901 if (recovery_start == MaxSector)
2902 set_bit(In_sync, &rdev->flags);
2903 else
2904 clear_bit(In_sync, &rdev->flags);
2905 return len;
2906 }
2907
2908 static struct rdev_sysfs_entry rdev_recovery_start =
2909 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2910
2911 static ssize_t
2912 badblocks_show(struct badblocks *bb, char *page, int unack);
2913 static ssize_t
2914 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2915
2916 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2917 {
2918 return badblocks_show(&rdev->badblocks, page, 0);
2919 }
2920 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2921 {
2922 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2923 /* Maybe that ack was all we needed */
2924 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2925 wake_up(&rdev->blocked_wait);
2926 return rv;
2927 }
2928 static struct rdev_sysfs_entry rdev_bad_blocks =
2929 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2930
2931 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2932 {
2933 return badblocks_show(&rdev->badblocks, page, 1);
2934 }
2935 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2936 {
2937 return badblocks_store(&rdev->badblocks, page, len, 1);
2938 }
2939 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2940 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2941
2942 static struct attribute *rdev_default_attrs[] = {
2943 &rdev_state.attr,
2944 &rdev_errors.attr,
2945 &rdev_slot.attr,
2946 &rdev_offset.attr,
2947 &rdev_new_offset.attr,
2948 &rdev_size.attr,
2949 &rdev_recovery_start.attr,
2950 &rdev_bad_blocks.attr,
2951 &rdev_unack_bad_blocks.attr,
2952 NULL,
2953 };
2954 static ssize_t
2955 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2956 {
2957 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2958 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2959
2960 if (!entry->show)
2961 return -EIO;
2962 if (!rdev->mddev)
2963 return -EBUSY;
2964 return entry->show(rdev, page);
2965 }
2966
2967 static ssize_t
2968 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2969 const char *page, size_t length)
2970 {
2971 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2972 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2973 ssize_t rv;
2974 struct mddev *mddev = rdev->mddev;
2975
2976 if (!entry->store)
2977 return -EIO;
2978 if (!capable(CAP_SYS_ADMIN))
2979 return -EACCES;
2980 rv = mddev ? mddev_lock(mddev): -EBUSY;
2981 if (!rv) {
2982 if (rdev->mddev == NULL)
2983 rv = -EBUSY;
2984 else
2985 rv = entry->store(rdev, page, length);
2986 mddev_unlock(mddev);
2987 }
2988 return rv;
2989 }
2990
2991 static void rdev_free(struct kobject *ko)
2992 {
2993 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
2994 kfree(rdev);
2995 }
2996 static const struct sysfs_ops rdev_sysfs_ops = {
2997 .show = rdev_attr_show,
2998 .store = rdev_attr_store,
2999 };
3000 static struct kobj_type rdev_ktype = {
3001 .release = rdev_free,
3002 .sysfs_ops = &rdev_sysfs_ops,
3003 .default_attrs = rdev_default_attrs,
3004 };
3005
3006 int md_rdev_init(struct md_rdev *rdev)
3007 {
3008 rdev->desc_nr = -1;
3009 rdev->saved_raid_disk = -1;
3010 rdev->raid_disk = -1;
3011 rdev->flags = 0;
3012 rdev->data_offset = 0;
3013 rdev->new_data_offset = 0;
3014 rdev->sb_events = 0;
3015 rdev->last_read_error.tv_sec = 0;
3016 rdev->last_read_error.tv_nsec = 0;
3017 rdev->sb_loaded = 0;
3018 rdev->bb_page = NULL;
3019 atomic_set(&rdev->nr_pending, 0);
3020 atomic_set(&rdev->read_errors, 0);
3021 atomic_set(&rdev->corrected_errors, 0);
3022
3023 INIT_LIST_HEAD(&rdev->same_set);
3024 init_waitqueue_head(&rdev->blocked_wait);
3025
3026 /* Add space to store bad block list.
3027 * This reserves the space even on arrays where it cannot
3028 * be used - I wonder if that matters
3029 */
3030 rdev->badblocks.count = 0;
3031 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3032 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3033 seqlock_init(&rdev->badblocks.lock);
3034 if (rdev->badblocks.page == NULL)
3035 return -ENOMEM;
3036
3037 return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(md_rdev_init);
3040 /*
3041 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3042 *
3043 * mark the device faulty if:
3044 *
3045 * - the device is nonexistent (zero size)
3046 * - the device has no valid superblock
3047 *
3048 * a faulty rdev _never_ has rdev->sb set.
3049 */
3050 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3051 {
3052 char b[BDEVNAME_SIZE];
3053 int err;
3054 struct md_rdev *rdev;
3055 sector_t size;
3056
3057 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3058 if (!rdev) {
3059 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3060 return ERR_PTR(-ENOMEM);
3061 }
3062
3063 err = md_rdev_init(rdev);
3064 if (err)
3065 goto abort_free;
3066 err = alloc_disk_sb(rdev);
3067 if (err)
3068 goto abort_free;
3069
3070 err = lock_rdev(rdev, newdev, super_format == -2);
3071 if (err)
3072 goto abort_free;
3073
3074 kobject_init(&rdev->kobj, &rdev_ktype);
3075
3076 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3077 if (!size) {
3078 printk(KERN_WARNING
3079 "md: %s has zero or unknown size, marking faulty!\n",
3080 bdevname(rdev->bdev,b));
3081 err = -EINVAL;
3082 goto abort_free;
3083 }
3084
3085 if (super_format >= 0) {
3086 err = super_types[super_format].
3087 load_super(rdev, NULL, super_minor);
3088 if (err == -EINVAL) {
3089 printk(KERN_WARNING
3090 "md: %s does not have a valid v%d.%d "
3091 "superblock, not importing!\n",
3092 bdevname(rdev->bdev,b),
3093 super_format, super_minor);
3094 goto abort_free;
3095 }
3096 if (err < 0) {
3097 printk(KERN_WARNING
3098 "md: could not read %s's sb, not importing!\n",
3099 bdevname(rdev->bdev,b));
3100 goto abort_free;
3101 }
3102 }
3103
3104 return rdev;
3105
3106 abort_free:
3107 if (rdev->bdev)
3108 unlock_rdev(rdev);
3109 md_rdev_clear(rdev);
3110 kfree(rdev);
3111 return ERR_PTR(err);
3112 }
3113
3114 /*
3115 * Check a full RAID array for plausibility
3116 */
3117
3118 static void analyze_sbs(struct mddev *mddev)
3119 {
3120 int i;
3121 struct md_rdev *rdev, *freshest, *tmp;
3122 char b[BDEVNAME_SIZE];
3123
3124 freshest = NULL;
3125 rdev_for_each_safe(rdev, tmp, mddev)
3126 switch (super_types[mddev->major_version].
3127 load_super(rdev, freshest, mddev->minor_version)) {
3128 case 1:
3129 freshest = rdev;
3130 break;
3131 case 0:
3132 break;
3133 default:
3134 printk( KERN_ERR \
3135 "md: fatal superblock inconsistency in %s"
3136 " -- removing from array\n",
3137 bdevname(rdev->bdev,b));
3138 md_kick_rdev_from_array(rdev);
3139 }
3140
3141 super_types[mddev->major_version].
3142 validate_super(mddev, freshest);
3143
3144 i = 0;
3145 rdev_for_each_safe(rdev, tmp, mddev) {
3146 if (mddev->max_disks &&
3147 (rdev->desc_nr >= mddev->max_disks ||
3148 i > mddev->max_disks)) {
3149 printk(KERN_WARNING
3150 "md: %s: %s: only %d devices permitted\n",
3151 mdname(mddev), bdevname(rdev->bdev, b),
3152 mddev->max_disks);
3153 md_kick_rdev_from_array(rdev);
3154 continue;
3155 }
3156 if (rdev != freshest) {
3157 if (super_types[mddev->major_version].
3158 validate_super(mddev, rdev)) {
3159 printk(KERN_WARNING "md: kicking non-fresh %s"
3160 " from array!\n",
3161 bdevname(rdev->bdev,b));
3162 md_kick_rdev_from_array(rdev);
3163 continue;
3164 }
3165 /* No device should have a Candidate flag
3166 * when reading devices
3167 */
3168 if (test_bit(Candidate, &rdev->flags)) {
3169 pr_info("md: kicking Cluster Candidate %s from array!\n",
3170 bdevname(rdev->bdev, b));
3171 md_kick_rdev_from_array(rdev);
3172 }
3173 }
3174 if (mddev->level == LEVEL_MULTIPATH) {
3175 rdev->desc_nr = i++;
3176 rdev->raid_disk = rdev->desc_nr;
3177 set_bit(In_sync, &rdev->flags);
3178 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3179 rdev->raid_disk = -1;
3180 clear_bit(In_sync, &rdev->flags);
3181 }
3182 }
3183 }
3184
3185 /* Read a fixed-point number.
3186 * Numbers in sysfs attributes should be in "standard" units where
3187 * possible, so time should be in seconds.
3188 * However we internally use a a much smaller unit such as
3189 * milliseconds or jiffies.
3190 * This function takes a decimal number with a possible fractional
3191 * component, and produces an integer which is the result of
3192 * multiplying that number by 10^'scale'.
3193 * all without any floating-point arithmetic.
3194 */
3195 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3196 {
3197 unsigned long result = 0;
3198 long decimals = -1;
3199 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3200 if (*cp == '.')
3201 decimals = 0;
3202 else if (decimals < scale) {
3203 unsigned int value;
3204 value = *cp - '0';
3205 result = result * 10 + value;
3206 if (decimals >= 0)
3207 decimals++;
3208 }
3209 cp++;
3210 }
3211 if (*cp == '\n')
3212 cp++;
3213 if (*cp)
3214 return -EINVAL;
3215 if (decimals < 0)
3216 decimals = 0;
3217 while (decimals < scale) {
3218 result *= 10;
3219 decimals ++;
3220 }
3221 *res = result;
3222 return 0;
3223 }
3224
3225 static void md_safemode_timeout(unsigned long data);
3226
3227 static ssize_t
3228 safe_delay_show(struct mddev *mddev, char *page)
3229 {
3230 int msec = (mddev->safemode_delay*1000)/HZ;
3231 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3232 }
3233 static ssize_t
3234 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3235 {
3236 unsigned long msec;
3237
3238 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3239 return -EINVAL;
3240 if (msec == 0)
3241 mddev->safemode_delay = 0;
3242 else {
3243 unsigned long old_delay = mddev->safemode_delay;
3244 unsigned long new_delay = (msec*HZ)/1000;
3245
3246 if (new_delay == 0)
3247 new_delay = 1;
3248 mddev->safemode_delay = new_delay;
3249 if (new_delay < old_delay || old_delay == 0)
3250 mod_timer(&mddev->safemode_timer, jiffies+1);
3251 }
3252 return len;
3253 }
3254 static struct md_sysfs_entry md_safe_delay =
3255 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3256
3257 static ssize_t
3258 level_show(struct mddev *mddev, char *page)
3259 {
3260 struct md_personality *p;
3261 int ret;
3262 spin_lock(&mddev->lock);
3263 p = mddev->pers;
3264 if (p)
3265 ret = sprintf(page, "%s\n", p->name);
3266 else if (mddev->clevel[0])
3267 ret = sprintf(page, "%s\n", mddev->clevel);
3268 else if (mddev->level != LEVEL_NONE)
3269 ret = sprintf(page, "%d\n", mddev->level);
3270 else
3271 ret = 0;
3272 spin_unlock(&mddev->lock);
3273 return ret;
3274 }
3275
3276 static ssize_t
3277 level_store(struct mddev *mddev, const char *buf, size_t len)
3278 {
3279 char clevel[16];
3280 ssize_t rv;
3281 size_t slen = len;
3282 struct md_personality *pers, *oldpers;
3283 long level;
3284 void *priv, *oldpriv;
3285 struct md_rdev *rdev;
3286
3287 if (slen == 0 || slen >= sizeof(clevel))
3288 return -EINVAL;
3289
3290 rv = mddev_lock(mddev);
3291 if (rv)
3292 return rv;
3293
3294 if (mddev->pers == NULL) {
3295 strncpy(mddev->clevel, buf, slen);
3296 if (mddev->clevel[slen-1] == '\n')
3297 slen--;
3298 mddev->clevel[slen] = 0;
3299 mddev->level = LEVEL_NONE;
3300 rv = len;
3301 goto out_unlock;
3302 }
3303 rv = -EROFS;
3304 if (mddev->ro)
3305 goto out_unlock;
3306
3307 /* request to change the personality. Need to ensure:
3308 * - array is not engaged in resync/recovery/reshape
3309 * - old personality can be suspended
3310 * - new personality will access other array.
3311 */
3312
3313 rv = -EBUSY;
3314 if (mddev->sync_thread ||
3315 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3316 mddev->reshape_position != MaxSector ||
3317 mddev->sysfs_active)
3318 goto out_unlock;
3319
3320 rv = -EINVAL;
3321 if (!mddev->pers->quiesce) {
3322 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3323 mdname(mddev), mddev->pers->name);
3324 goto out_unlock;
3325 }
3326
3327 /* Now find the new personality */
3328 strncpy(clevel, buf, slen);
3329 if (clevel[slen-1] == '\n')
3330 slen--;
3331 clevel[slen] = 0;
3332 if (kstrtol(clevel, 10, &level))
3333 level = LEVEL_NONE;
3334
3335 if (request_module("md-%s", clevel) != 0)
3336 request_module("md-level-%s", clevel);
3337 spin_lock(&pers_lock);
3338 pers = find_pers(level, clevel);
3339 if (!pers || !try_module_get(pers->owner)) {
3340 spin_unlock(&pers_lock);
3341 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3342 rv = -EINVAL;
3343 goto out_unlock;
3344 }
3345 spin_unlock(&pers_lock);
3346
3347 if (pers == mddev->pers) {
3348 /* Nothing to do! */
3349 module_put(pers->owner);
3350 rv = len;
3351 goto out_unlock;
3352 }
3353 if (!pers->takeover) {
3354 module_put(pers->owner);
3355 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3356 mdname(mddev), clevel);
3357 rv = -EINVAL;
3358 goto out_unlock;
3359 }
3360
3361 rdev_for_each(rdev, mddev)
3362 rdev->new_raid_disk = rdev->raid_disk;
3363
3364 /* ->takeover must set new_* and/or delta_disks
3365 * if it succeeds, and may set them when it fails.
3366 */
3367 priv = pers->takeover(mddev);
3368 if (IS_ERR(priv)) {
3369 mddev->new_level = mddev->level;
3370 mddev->new_layout = mddev->layout;
3371 mddev->new_chunk_sectors = mddev->chunk_sectors;
3372 mddev->raid_disks -= mddev->delta_disks;
3373 mddev->delta_disks = 0;
3374 mddev->reshape_backwards = 0;
3375 module_put(pers->owner);
3376 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3377 mdname(mddev), clevel);
3378 rv = PTR_ERR(priv);
3379 goto out_unlock;
3380 }
3381
3382 /* Looks like we have a winner */
3383 mddev_suspend(mddev);
3384 mddev_detach(mddev);
3385
3386 spin_lock(&mddev->lock);
3387 oldpers = mddev->pers;
3388 oldpriv = mddev->private;
3389 mddev->pers = pers;
3390 mddev->private = priv;
3391 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3392 mddev->level = mddev->new_level;
3393 mddev->layout = mddev->new_layout;
3394 mddev->chunk_sectors = mddev->new_chunk_sectors;
3395 mddev->delta_disks = 0;
3396 mddev->reshape_backwards = 0;
3397 mddev->degraded = 0;
3398 spin_unlock(&mddev->lock);
3399
3400 if (oldpers->sync_request == NULL &&
3401 mddev->external) {
3402 /* We are converting from a no-redundancy array
3403 * to a redundancy array and metadata is managed
3404 * externally so we need to be sure that writes
3405 * won't block due to a need to transition
3406 * clean->dirty
3407 * until external management is started.
3408 */
3409 mddev->in_sync = 0;
3410 mddev->safemode_delay = 0;
3411 mddev->safemode = 0;
3412 }
3413
3414 oldpers->free(mddev, oldpriv);
3415
3416 if (oldpers->sync_request == NULL &&
3417 pers->sync_request != NULL) {
3418 /* need to add the md_redundancy_group */
3419 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3420 printk(KERN_WARNING
3421 "md: cannot register extra attributes for %s\n",
3422 mdname(mddev));
3423 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3424 }
3425 if (oldpers->sync_request != NULL &&
3426 pers->sync_request == NULL) {
3427 /* need to remove the md_redundancy_group */
3428 if (mddev->to_remove == NULL)
3429 mddev->to_remove = &md_redundancy_group;
3430 }
3431
3432 rdev_for_each(rdev, mddev) {
3433 if (rdev->raid_disk < 0)
3434 continue;
3435 if (rdev->new_raid_disk >= mddev->raid_disks)
3436 rdev->new_raid_disk = -1;
3437 if (rdev->new_raid_disk == rdev->raid_disk)
3438 continue;
3439 sysfs_unlink_rdev(mddev, rdev);
3440 }
3441 rdev_for_each(rdev, mddev) {
3442 if (rdev->raid_disk < 0)
3443 continue;
3444 if (rdev->new_raid_disk == rdev->raid_disk)
3445 continue;
3446 rdev->raid_disk = rdev->new_raid_disk;
3447 if (rdev->raid_disk < 0)
3448 clear_bit(In_sync, &rdev->flags);
3449 else {
3450 if (sysfs_link_rdev(mddev, rdev))
3451 printk(KERN_WARNING "md: cannot register rd%d"
3452 " for %s after level change\n",
3453 rdev->raid_disk, mdname(mddev));
3454 }
3455 }
3456
3457 if (pers->sync_request == NULL) {
3458 /* this is now an array without redundancy, so
3459 * it must always be in_sync
3460 */
3461 mddev->in_sync = 1;
3462 del_timer_sync(&mddev->safemode_timer);
3463 }
3464 blk_set_stacking_limits(&mddev->queue->limits);
3465 pers->run(mddev);
3466 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3467 mddev_resume(mddev);
3468 if (!mddev->thread)
3469 md_update_sb(mddev, 1);
3470 sysfs_notify(&mddev->kobj, NULL, "level");
3471 md_new_event(mddev);
3472 rv = len;
3473 out_unlock:
3474 mddev_unlock(mddev);
3475 return rv;
3476 }
3477
3478 static struct md_sysfs_entry md_level =
3479 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3480
3481 static ssize_t
3482 layout_show(struct mddev *mddev, char *page)
3483 {
3484 /* just a number, not meaningful for all levels */
3485 if (mddev->reshape_position != MaxSector &&
3486 mddev->layout != mddev->new_layout)
3487 return sprintf(page, "%d (%d)\n",
3488 mddev->new_layout, mddev->layout);
3489 return sprintf(page, "%d\n", mddev->layout);
3490 }
3491
3492 static ssize_t
3493 layout_store(struct mddev *mddev, const char *buf, size_t len)
3494 {
3495 char *e;
3496 unsigned long n = simple_strtoul(buf, &e, 10);
3497 int err;
3498
3499 if (!*buf || (*e && *e != '\n'))
3500 return -EINVAL;
3501 err = mddev_lock(mddev);
3502 if (err)
3503 return err;
3504
3505 if (mddev->pers) {
3506 if (mddev->pers->check_reshape == NULL)
3507 err = -EBUSY;
3508 else if (mddev->ro)
3509 err = -EROFS;
3510 else {
3511 mddev->new_layout = n;
3512 err = mddev->pers->check_reshape(mddev);
3513 if (err)
3514 mddev->new_layout = mddev->layout;
3515 }
3516 } else {
3517 mddev->new_layout = n;
3518 if (mddev->reshape_position == MaxSector)
3519 mddev->layout = n;
3520 }
3521 mddev_unlock(mddev);
3522 return err ?: len;
3523 }
3524 static struct md_sysfs_entry md_layout =
3525 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3526
3527 static ssize_t
3528 raid_disks_show(struct mddev *mddev, char *page)
3529 {
3530 if (mddev->raid_disks == 0)
3531 return 0;
3532 if (mddev->reshape_position != MaxSector &&
3533 mddev->delta_disks != 0)
3534 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3535 mddev->raid_disks - mddev->delta_disks);
3536 return sprintf(page, "%d\n", mddev->raid_disks);
3537 }
3538
3539 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3540
3541 static ssize_t
3542 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3543 {
3544 char *e;
3545 int err;
3546 unsigned long n = simple_strtoul(buf, &e, 10);
3547
3548 if (!*buf || (*e && *e != '\n'))
3549 return -EINVAL;
3550
3551 err = mddev_lock(mddev);
3552 if (err)
3553 return err;
3554 if (mddev->pers)
3555 err = update_raid_disks(mddev, n);
3556 else if (mddev->reshape_position != MaxSector) {
3557 struct md_rdev *rdev;
3558 int olddisks = mddev->raid_disks - mddev->delta_disks;
3559
3560 err = -EINVAL;
3561 rdev_for_each(rdev, mddev) {
3562 if (olddisks < n &&
3563 rdev->data_offset < rdev->new_data_offset)
3564 goto out_unlock;
3565 if (olddisks > n &&
3566 rdev->data_offset > rdev->new_data_offset)
3567 goto out_unlock;
3568 }
3569 err = 0;
3570 mddev->delta_disks = n - olddisks;
3571 mddev->raid_disks = n;
3572 mddev->reshape_backwards = (mddev->delta_disks < 0);
3573 } else
3574 mddev->raid_disks = n;
3575 out_unlock:
3576 mddev_unlock(mddev);
3577 return err ? err : len;
3578 }
3579 static struct md_sysfs_entry md_raid_disks =
3580 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3581
3582 static ssize_t
3583 chunk_size_show(struct mddev *mddev, char *page)
3584 {
3585 if (mddev->reshape_position != MaxSector &&
3586 mddev->chunk_sectors != mddev->new_chunk_sectors)
3587 return sprintf(page, "%d (%d)\n",
3588 mddev->new_chunk_sectors << 9,
3589 mddev->chunk_sectors << 9);
3590 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3591 }
3592
3593 static ssize_t
3594 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3595 {
3596 int err;
3597 char *e;
3598 unsigned long n = simple_strtoul(buf, &e, 10);
3599
3600 if (!*buf || (*e && *e != '\n'))
3601 return -EINVAL;
3602
3603 err = mddev_lock(mddev);
3604 if (err)
3605 return err;
3606 if (mddev->pers) {
3607 if (mddev->pers->check_reshape == NULL)
3608 err = -EBUSY;
3609 else if (mddev->ro)
3610 err = -EROFS;
3611 else {
3612 mddev->new_chunk_sectors = n >> 9;
3613 err = mddev->pers->check_reshape(mddev);
3614 if (err)
3615 mddev->new_chunk_sectors = mddev->chunk_sectors;
3616 }
3617 } else {
3618 mddev->new_chunk_sectors = n >> 9;
3619 if (mddev->reshape_position == MaxSector)
3620 mddev->chunk_sectors = n >> 9;
3621 }
3622 mddev_unlock(mddev);
3623 return err ?: len;
3624 }
3625 static struct md_sysfs_entry md_chunk_size =
3626 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3627
3628 static ssize_t
3629 resync_start_show(struct mddev *mddev, char *page)
3630 {
3631 if (mddev->recovery_cp == MaxSector)
3632 return sprintf(page, "none\n");
3633 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3634 }
3635
3636 static ssize_t
3637 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3638 {
3639 int err;
3640 char *e;
3641 unsigned long long n = simple_strtoull(buf, &e, 10);
3642
3643 err = mddev_lock(mddev);
3644 if (err)
3645 return err;
3646 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3647 err = -EBUSY;
3648 else if (cmd_match(buf, "none"))
3649 n = MaxSector;
3650 else if (!*buf || (*e && *e != '\n'))
3651 err = -EINVAL;
3652
3653 if (!err) {
3654 mddev->recovery_cp = n;
3655 if (mddev->pers)
3656 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3657 }
3658 mddev_unlock(mddev);
3659 return err ?: len;
3660 }
3661 static struct md_sysfs_entry md_resync_start =
3662 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3663
3664 /*
3665 * The array state can be:
3666 *
3667 * clear
3668 * No devices, no size, no level
3669 * Equivalent to STOP_ARRAY ioctl
3670 * inactive
3671 * May have some settings, but array is not active
3672 * all IO results in error
3673 * When written, doesn't tear down array, but just stops it
3674 * suspended (not supported yet)
3675 * All IO requests will block. The array can be reconfigured.
3676 * Writing this, if accepted, will block until array is quiescent
3677 * readonly
3678 * no resync can happen. no superblocks get written.
3679 * write requests fail
3680 * read-auto
3681 * like readonly, but behaves like 'clean' on a write request.
3682 *
3683 * clean - no pending writes, but otherwise active.
3684 * When written to inactive array, starts without resync
3685 * If a write request arrives then
3686 * if metadata is known, mark 'dirty' and switch to 'active'.
3687 * if not known, block and switch to write-pending
3688 * If written to an active array that has pending writes, then fails.
3689 * active
3690 * fully active: IO and resync can be happening.
3691 * When written to inactive array, starts with resync
3692 *
3693 * write-pending
3694 * clean, but writes are blocked waiting for 'active' to be written.
3695 *
3696 * active-idle
3697 * like active, but no writes have been seen for a while (100msec).
3698 *
3699 */
3700 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3701 write_pending, active_idle, bad_word};
3702 static char *array_states[] = {
3703 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3704 "write-pending", "active-idle", NULL };
3705
3706 static int match_word(const char *word, char **list)
3707 {
3708 int n;
3709 for (n=0; list[n]; n++)
3710 if (cmd_match(word, list[n]))
3711 break;
3712 return n;
3713 }
3714
3715 static ssize_t
3716 array_state_show(struct mddev *mddev, char *page)
3717 {
3718 enum array_state st = inactive;
3719
3720 if (mddev->pers)
3721 switch(mddev->ro) {
3722 case 1:
3723 st = readonly;
3724 break;
3725 case 2:
3726 st = read_auto;
3727 break;
3728 case 0:
3729 if (mddev->in_sync)
3730 st = clean;
3731 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3732 st = write_pending;
3733 else if (mddev->safemode)
3734 st = active_idle;
3735 else
3736 st = active;
3737 }
3738 else {
3739 if (list_empty(&mddev->disks) &&
3740 mddev->raid_disks == 0 &&
3741 mddev->dev_sectors == 0)
3742 st = clear;
3743 else
3744 st = inactive;
3745 }
3746 return sprintf(page, "%s\n", array_states[st]);
3747 }
3748
3749 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3750 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3751 static int do_md_run(struct mddev *mddev);
3752 static int restart_array(struct mddev *mddev);
3753
3754 static ssize_t
3755 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3756 {
3757 int err;
3758 enum array_state st = match_word(buf, array_states);
3759
3760 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3761 /* don't take reconfig_mutex when toggling between
3762 * clean and active
3763 */
3764 spin_lock(&mddev->lock);
3765 if (st == active) {
3766 restart_array(mddev);
3767 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3768 wake_up(&mddev->sb_wait);
3769 err = 0;
3770 } else /* st == clean */ {
3771 restart_array(mddev);
3772 if (atomic_read(&mddev->writes_pending) == 0) {
3773 if (mddev->in_sync == 0) {
3774 mddev->in_sync = 1;
3775 if (mddev->safemode == 1)
3776 mddev->safemode = 0;
3777 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3778 }
3779 err = 0;
3780 } else
3781 err = -EBUSY;
3782 }
3783 spin_unlock(&mddev->lock);
3784 return err;
3785 }
3786 err = mddev_lock(mddev);
3787 if (err)
3788 return err;
3789 err = -EINVAL;
3790 switch(st) {
3791 case bad_word:
3792 break;
3793 case clear:
3794 /* stopping an active array */
3795 err = do_md_stop(mddev, 0, NULL);
3796 break;
3797 case inactive:
3798 /* stopping an active array */
3799 if (mddev->pers)
3800 err = do_md_stop(mddev, 2, NULL);
3801 else
3802 err = 0; /* already inactive */
3803 break;
3804 case suspended:
3805 break; /* not supported yet */
3806 case readonly:
3807 if (mddev->pers)
3808 err = md_set_readonly(mddev, NULL);
3809 else {
3810 mddev->ro = 1;
3811 set_disk_ro(mddev->gendisk, 1);
3812 err = do_md_run(mddev);
3813 }
3814 break;
3815 case read_auto:
3816 if (mddev->pers) {
3817 if (mddev->ro == 0)
3818 err = md_set_readonly(mddev, NULL);
3819 else if (mddev->ro == 1)
3820 err = restart_array(mddev);
3821 if (err == 0) {
3822 mddev->ro = 2;
3823 set_disk_ro(mddev->gendisk, 0);
3824 }
3825 } else {
3826 mddev->ro = 2;
3827 err = do_md_run(mddev);
3828 }
3829 break;
3830 case clean:
3831 if (mddev->pers) {
3832 restart_array(mddev);
3833 spin_lock(&mddev->lock);
3834 if (atomic_read(&mddev->writes_pending) == 0) {
3835 if (mddev->in_sync == 0) {
3836 mddev->in_sync = 1;
3837 if (mddev->safemode == 1)
3838 mddev->safemode = 0;
3839 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3840 }
3841 err = 0;
3842 } else
3843 err = -EBUSY;
3844 spin_unlock(&mddev->lock);
3845 } else
3846 err = -EINVAL;
3847 break;
3848 case active:
3849 if (mddev->pers) {
3850 restart_array(mddev);
3851 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3852 wake_up(&mddev->sb_wait);
3853 err = 0;
3854 } else {
3855 mddev->ro = 0;
3856 set_disk_ro(mddev->gendisk, 0);
3857 err = do_md_run(mddev);
3858 }
3859 break;
3860 case write_pending:
3861 case active_idle:
3862 /* these cannot be set */
3863 break;
3864 }
3865
3866 if (!err) {
3867 if (mddev->hold_active == UNTIL_IOCTL)
3868 mddev->hold_active = 0;
3869 sysfs_notify_dirent_safe(mddev->sysfs_state);
3870 }
3871 mddev_unlock(mddev);
3872 return err ?: len;
3873 }
3874 static struct md_sysfs_entry md_array_state =
3875 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3876
3877 static ssize_t
3878 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3879 return sprintf(page, "%d\n",
3880 atomic_read(&mddev->max_corr_read_errors));
3881 }
3882
3883 static ssize_t
3884 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3885 {
3886 char *e;
3887 unsigned long n = simple_strtoul(buf, &e, 10);
3888
3889 if (*buf && (*e == 0 || *e == '\n')) {
3890 atomic_set(&mddev->max_corr_read_errors, n);
3891 return len;
3892 }
3893 return -EINVAL;
3894 }
3895
3896 static struct md_sysfs_entry max_corr_read_errors =
3897 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3898 max_corrected_read_errors_store);
3899
3900 static ssize_t
3901 null_show(struct mddev *mddev, char *page)
3902 {
3903 return -EINVAL;
3904 }
3905
3906 static ssize_t
3907 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3908 {
3909 /* buf must be %d:%d\n? giving major and minor numbers */
3910 /* The new device is added to the array.
3911 * If the array has a persistent superblock, we read the
3912 * superblock to initialise info and check validity.
3913 * Otherwise, only checking done is that in bind_rdev_to_array,
3914 * which mainly checks size.
3915 */
3916 char *e;
3917 int major = simple_strtoul(buf, &e, 10);
3918 int minor;
3919 dev_t dev;
3920 struct md_rdev *rdev;
3921 int err;
3922
3923 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3924 return -EINVAL;
3925 minor = simple_strtoul(e+1, &e, 10);
3926 if (*e && *e != '\n')
3927 return -EINVAL;
3928 dev = MKDEV(major, minor);
3929 if (major != MAJOR(dev) ||
3930 minor != MINOR(dev))
3931 return -EOVERFLOW;
3932
3933 flush_workqueue(md_misc_wq);
3934
3935 err = mddev_lock(mddev);
3936 if (err)
3937 return err;
3938 if (mddev->persistent) {
3939 rdev = md_import_device(dev, mddev->major_version,
3940 mddev->minor_version);
3941 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3942 struct md_rdev *rdev0
3943 = list_entry(mddev->disks.next,
3944 struct md_rdev, same_set);
3945 err = super_types[mddev->major_version]
3946 .load_super(rdev, rdev0, mddev->minor_version);
3947 if (err < 0)
3948 goto out;
3949 }
3950 } else if (mddev->external)
3951 rdev = md_import_device(dev, -2, -1);
3952 else
3953 rdev = md_import_device(dev, -1, -1);
3954
3955 if (IS_ERR(rdev))
3956 return PTR_ERR(rdev);
3957 err = bind_rdev_to_array(rdev, mddev);
3958 out:
3959 if (err)
3960 export_rdev(rdev);
3961 mddev_unlock(mddev);
3962 return err ? err : len;
3963 }
3964
3965 static struct md_sysfs_entry md_new_device =
3966 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3967
3968 static ssize_t
3969 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3970 {
3971 char *end;
3972 unsigned long chunk, end_chunk;
3973 int err;
3974
3975 err = mddev_lock(mddev);
3976 if (err)
3977 return err;
3978 if (!mddev->bitmap)
3979 goto out;
3980 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3981 while (*buf) {
3982 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3983 if (buf == end) break;
3984 if (*end == '-') { /* range */
3985 buf = end + 1;
3986 end_chunk = simple_strtoul(buf, &end, 0);
3987 if (buf == end) break;
3988 }
3989 if (*end && !isspace(*end)) break;
3990 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3991 buf = skip_spaces(end);
3992 }
3993 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3994 out:
3995 mddev_unlock(mddev);
3996 return len;
3997 }
3998
3999 static struct md_sysfs_entry md_bitmap =
4000 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4001
4002 static ssize_t
4003 size_show(struct mddev *mddev, char *page)
4004 {
4005 return sprintf(page, "%llu\n",
4006 (unsigned long long)mddev->dev_sectors / 2);
4007 }
4008
4009 static int update_size(struct mddev *mddev, sector_t num_sectors);
4010
4011 static ssize_t
4012 size_store(struct mddev *mddev, const char *buf, size_t len)
4013 {
4014 /* If array is inactive, we can reduce the component size, but
4015 * not increase it (except from 0).
4016 * If array is active, we can try an on-line resize
4017 */
4018 sector_t sectors;
4019 int err = strict_blocks_to_sectors(buf, &sectors);
4020
4021 if (err < 0)
4022 return err;
4023 err = mddev_lock(mddev);
4024 if (err)
4025 return err;
4026 if (mddev->pers) {
4027 if (mddev_is_clustered(mddev))
4028 md_cluster_ops->metadata_update_start(mddev);
4029 err = update_size(mddev, sectors);
4030 md_update_sb(mddev, 1);
4031 if (mddev_is_clustered(mddev))
4032 md_cluster_ops->metadata_update_finish(mddev);
4033 } else {
4034 if (mddev->dev_sectors == 0 ||
4035 mddev->dev_sectors > sectors)
4036 mddev->dev_sectors = sectors;
4037 else
4038 err = -ENOSPC;
4039 }
4040 mddev_unlock(mddev);
4041 return err ? err : len;
4042 }
4043
4044 static struct md_sysfs_entry md_size =
4045 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4046
4047 /* Metadata version.
4048 * This is one of
4049 * 'none' for arrays with no metadata (good luck...)
4050 * 'external' for arrays with externally managed metadata,
4051 * or N.M for internally known formats
4052 */
4053 static ssize_t
4054 metadata_show(struct mddev *mddev, char *page)
4055 {
4056 if (mddev->persistent)
4057 return sprintf(page, "%d.%d\n",
4058 mddev->major_version, mddev->minor_version);
4059 else if (mddev->external)
4060 return sprintf(page, "external:%s\n", mddev->metadata_type);
4061 else
4062 return sprintf(page, "none\n");
4063 }
4064
4065 static ssize_t
4066 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4067 {
4068 int major, minor;
4069 char *e;
4070 int err;
4071 /* Changing the details of 'external' metadata is
4072 * always permitted. Otherwise there must be
4073 * no devices attached to the array.
4074 */
4075
4076 err = mddev_lock(mddev);
4077 if (err)
4078 return err;
4079 err = -EBUSY;
4080 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4081 ;
4082 else if (!list_empty(&mddev->disks))
4083 goto out_unlock;
4084
4085 err = 0;
4086 if (cmd_match(buf, "none")) {
4087 mddev->persistent = 0;
4088 mddev->external = 0;
4089 mddev->major_version = 0;
4090 mddev->minor_version = 90;
4091 goto out_unlock;
4092 }
4093 if (strncmp(buf, "external:", 9) == 0) {
4094 size_t namelen = len-9;
4095 if (namelen >= sizeof(mddev->metadata_type))
4096 namelen = sizeof(mddev->metadata_type)-1;
4097 strncpy(mddev->metadata_type, buf+9, namelen);
4098 mddev->metadata_type[namelen] = 0;
4099 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4100 mddev->metadata_type[--namelen] = 0;
4101 mddev->persistent = 0;
4102 mddev->external = 1;
4103 mddev->major_version = 0;
4104 mddev->minor_version = 90;
4105 goto out_unlock;
4106 }
4107 major = simple_strtoul(buf, &e, 10);
4108 err = -EINVAL;
4109 if (e==buf || *e != '.')
4110 goto out_unlock;
4111 buf = e+1;
4112 minor = simple_strtoul(buf, &e, 10);
4113 if (e==buf || (*e && *e != '\n') )
4114 goto out_unlock;
4115 err = -ENOENT;
4116 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4117 goto out_unlock;
4118 mddev->major_version = major;
4119 mddev->minor_version = minor;
4120 mddev->persistent = 1;
4121 mddev->external = 0;
4122 err = 0;
4123 out_unlock:
4124 mddev_unlock(mddev);
4125 return err ?: len;
4126 }
4127
4128 static struct md_sysfs_entry md_metadata =
4129 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4130
4131 static ssize_t
4132 action_show(struct mddev *mddev, char *page)
4133 {
4134 char *type = "idle";
4135 unsigned long recovery = mddev->recovery;
4136 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4137 type = "frozen";
4138 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4139 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4140 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4141 type = "reshape";
4142 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4143 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4144 type = "resync";
4145 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4146 type = "check";
4147 else
4148 type = "repair";
4149 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4150 type = "recover";
4151 }
4152 return sprintf(page, "%s\n", type);
4153 }
4154
4155 static ssize_t
4156 action_store(struct mddev *mddev, const char *page, size_t len)
4157 {
4158 if (!mddev->pers || !mddev->pers->sync_request)
4159 return -EINVAL;
4160
4161 if (cmd_match(page, "frozen"))
4162 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4163 else
4164 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4165
4166 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4167 flush_workqueue(md_misc_wq);
4168 if (mddev->sync_thread) {
4169 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4170 if (mddev_lock(mddev) == 0) {
4171 md_reap_sync_thread(mddev);
4172 mddev_unlock(mddev);
4173 }
4174 }
4175 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4176 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4177 return -EBUSY;
4178 else if (cmd_match(page, "resync"))
4179 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4180 else if (cmd_match(page, "recover")) {
4181 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4182 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4183 } else if (cmd_match(page, "reshape")) {
4184 int err;
4185 if (mddev->pers->start_reshape == NULL)
4186 return -EINVAL;
4187 err = mddev_lock(mddev);
4188 if (!err) {
4189 err = mddev->pers->start_reshape(mddev);
4190 mddev_unlock(mddev);
4191 }
4192 if (err)
4193 return err;
4194 sysfs_notify(&mddev->kobj, NULL, "degraded");
4195 } else {
4196 if (cmd_match(page, "check"))
4197 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4198 else if (!cmd_match(page, "repair"))
4199 return -EINVAL;
4200 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4201 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4202 }
4203 if (mddev->ro == 2) {
4204 /* A write to sync_action is enough to justify
4205 * canceling read-auto mode
4206 */
4207 mddev->ro = 0;
4208 md_wakeup_thread(mddev->sync_thread);
4209 }
4210 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4211 md_wakeup_thread(mddev->thread);
4212 sysfs_notify_dirent_safe(mddev->sysfs_action);
4213 return len;
4214 }
4215
4216 static struct md_sysfs_entry md_scan_mode =
4217 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4218
4219 static ssize_t
4220 last_sync_action_show(struct mddev *mddev, char *page)
4221 {
4222 return sprintf(page, "%s\n", mddev->last_sync_action);
4223 }
4224
4225 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4226
4227 static ssize_t
4228 mismatch_cnt_show(struct mddev *mddev, char *page)
4229 {
4230 return sprintf(page, "%llu\n",
4231 (unsigned long long)
4232 atomic64_read(&mddev->resync_mismatches));
4233 }
4234
4235 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4236
4237 static ssize_t
4238 sync_min_show(struct mddev *mddev, char *page)
4239 {
4240 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4241 mddev->sync_speed_min ? "local": "system");
4242 }
4243
4244 static ssize_t
4245 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4246 {
4247 int min;
4248 char *e;
4249 if (strncmp(buf, "system", 6)==0) {
4250 mddev->sync_speed_min = 0;
4251 return len;
4252 }
4253 min = simple_strtoul(buf, &e, 10);
4254 if (buf == e || (*e && *e != '\n') || min <= 0)
4255 return -EINVAL;
4256 mddev->sync_speed_min = min;
4257 return len;
4258 }
4259
4260 static struct md_sysfs_entry md_sync_min =
4261 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4262
4263 static ssize_t
4264 sync_max_show(struct mddev *mddev, char *page)
4265 {
4266 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4267 mddev->sync_speed_max ? "local": "system");
4268 }
4269
4270 static ssize_t
4271 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4272 {
4273 int max;
4274 char *e;
4275 if (strncmp(buf, "system", 6)==0) {
4276 mddev->sync_speed_max = 0;
4277 return len;
4278 }
4279 max = simple_strtoul(buf, &e, 10);
4280 if (buf == e || (*e && *e != '\n') || max <= 0)
4281 return -EINVAL;
4282 mddev->sync_speed_max = max;
4283 return len;
4284 }
4285
4286 static struct md_sysfs_entry md_sync_max =
4287 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4288
4289 static ssize_t
4290 degraded_show(struct mddev *mddev, char *page)
4291 {
4292 return sprintf(page, "%d\n", mddev->degraded);
4293 }
4294 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4295
4296 static ssize_t
4297 sync_force_parallel_show(struct mddev *mddev, char *page)
4298 {
4299 return sprintf(page, "%d\n", mddev->parallel_resync);
4300 }
4301
4302 static ssize_t
4303 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4304 {
4305 long n;
4306
4307 if (kstrtol(buf, 10, &n))
4308 return -EINVAL;
4309
4310 if (n != 0 && n != 1)
4311 return -EINVAL;
4312
4313 mddev->parallel_resync = n;
4314
4315 if (mddev->sync_thread)
4316 wake_up(&resync_wait);
4317
4318 return len;
4319 }
4320
4321 /* force parallel resync, even with shared block devices */
4322 static struct md_sysfs_entry md_sync_force_parallel =
4323 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4324 sync_force_parallel_show, sync_force_parallel_store);
4325
4326 static ssize_t
4327 sync_speed_show(struct mddev *mddev, char *page)
4328 {
4329 unsigned long resync, dt, db;
4330 if (mddev->curr_resync == 0)
4331 return sprintf(page, "none\n");
4332 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4333 dt = (jiffies - mddev->resync_mark) / HZ;
4334 if (!dt) dt++;
4335 db = resync - mddev->resync_mark_cnt;
4336 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4337 }
4338
4339 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4340
4341 static ssize_t
4342 sync_completed_show(struct mddev *mddev, char *page)
4343 {
4344 unsigned long long max_sectors, resync;
4345
4346 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4347 return sprintf(page, "none\n");
4348
4349 if (mddev->curr_resync == 1 ||
4350 mddev->curr_resync == 2)
4351 return sprintf(page, "delayed\n");
4352
4353 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4354 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4355 max_sectors = mddev->resync_max_sectors;
4356 else
4357 max_sectors = mddev->dev_sectors;
4358
4359 resync = mddev->curr_resync_completed;
4360 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4361 }
4362
4363 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4364
4365 static ssize_t
4366 min_sync_show(struct mddev *mddev, char *page)
4367 {
4368 return sprintf(page, "%llu\n",
4369 (unsigned long long)mddev->resync_min);
4370 }
4371 static ssize_t
4372 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4373 {
4374 unsigned long long min;
4375 int err;
4376 int chunk;
4377
4378 if (kstrtoull(buf, 10, &min))
4379 return -EINVAL;
4380
4381 spin_lock(&mddev->lock);
4382 err = -EINVAL;
4383 if (min > mddev->resync_max)
4384 goto out_unlock;
4385
4386 err = -EBUSY;
4387 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4388 goto out_unlock;
4389
4390 /* Must be a multiple of chunk_size */
4391 chunk = mddev->chunk_sectors;
4392 if (chunk) {
4393 sector_t temp = min;
4394
4395 err = -EINVAL;
4396 if (sector_div(temp, chunk))
4397 goto out_unlock;
4398 }
4399 mddev->resync_min = min;
4400 err = 0;
4401
4402 out_unlock:
4403 spin_unlock(&mddev->lock);
4404 return err ?: len;
4405 }
4406
4407 static struct md_sysfs_entry md_min_sync =
4408 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4409
4410 static ssize_t
4411 max_sync_show(struct mddev *mddev, char *page)
4412 {
4413 if (mddev->resync_max == MaxSector)
4414 return sprintf(page, "max\n");
4415 else
4416 return sprintf(page, "%llu\n",
4417 (unsigned long long)mddev->resync_max);
4418 }
4419 static ssize_t
4420 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4421 {
4422 int err;
4423 spin_lock(&mddev->lock);
4424 if (strncmp(buf, "max", 3) == 0)
4425 mddev->resync_max = MaxSector;
4426 else {
4427 unsigned long long max;
4428 int chunk;
4429
4430 err = -EINVAL;
4431 if (kstrtoull(buf, 10, &max))
4432 goto out_unlock;
4433 if (max < mddev->resync_min)
4434 goto out_unlock;
4435
4436 err = -EBUSY;
4437 if (max < mddev->resync_max &&
4438 mddev->ro == 0 &&
4439 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440 goto out_unlock;
4441
4442 /* Must be a multiple of chunk_size */
4443 chunk = mddev->chunk_sectors;
4444 if (chunk) {
4445 sector_t temp = max;
4446
4447 err = -EINVAL;
4448 if (sector_div(temp, chunk))
4449 goto out_unlock;
4450 }
4451 mddev->resync_max = max;
4452 }
4453 wake_up(&mddev->recovery_wait);
4454 err = 0;
4455 out_unlock:
4456 spin_unlock(&mddev->lock);
4457 return err ?: len;
4458 }
4459
4460 static struct md_sysfs_entry md_max_sync =
4461 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4462
4463 static ssize_t
4464 suspend_lo_show(struct mddev *mddev, char *page)
4465 {
4466 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4467 }
4468
4469 static ssize_t
4470 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4471 {
4472 char *e;
4473 unsigned long long new = simple_strtoull(buf, &e, 10);
4474 unsigned long long old;
4475 int err;
4476
4477 if (buf == e || (*e && *e != '\n'))
4478 return -EINVAL;
4479
4480 err = mddev_lock(mddev);
4481 if (err)
4482 return err;
4483 err = -EINVAL;
4484 if (mddev->pers == NULL ||
4485 mddev->pers->quiesce == NULL)
4486 goto unlock;
4487 old = mddev->suspend_lo;
4488 mddev->suspend_lo = new;
4489 if (new >= old)
4490 /* Shrinking suspended region */
4491 mddev->pers->quiesce(mddev, 2);
4492 else {
4493 /* Expanding suspended region - need to wait */
4494 mddev->pers->quiesce(mddev, 1);
4495 mddev->pers->quiesce(mddev, 0);
4496 }
4497 err = 0;
4498 unlock:
4499 mddev_unlock(mddev);
4500 return err ?: len;
4501 }
4502 static struct md_sysfs_entry md_suspend_lo =
4503 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4504
4505 static ssize_t
4506 suspend_hi_show(struct mddev *mddev, char *page)
4507 {
4508 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4509 }
4510
4511 static ssize_t
4512 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4513 {
4514 char *e;
4515 unsigned long long new = simple_strtoull(buf, &e, 10);
4516 unsigned long long old;
4517 int err;
4518
4519 if (buf == e || (*e && *e != '\n'))
4520 return -EINVAL;
4521
4522 err = mddev_lock(mddev);
4523 if (err)
4524 return err;
4525 err = -EINVAL;
4526 if (mddev->pers == NULL ||
4527 mddev->pers->quiesce == NULL)
4528 goto unlock;
4529 old = mddev->suspend_hi;
4530 mddev->suspend_hi = new;
4531 if (new <= old)
4532 /* Shrinking suspended region */
4533 mddev->pers->quiesce(mddev, 2);
4534 else {
4535 /* Expanding suspended region - need to wait */
4536 mddev->pers->quiesce(mddev, 1);
4537 mddev->pers->quiesce(mddev, 0);
4538 }
4539 err = 0;
4540 unlock:
4541 mddev_unlock(mddev);
4542 return err ?: len;
4543 }
4544 static struct md_sysfs_entry md_suspend_hi =
4545 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4546
4547 static ssize_t
4548 reshape_position_show(struct mddev *mddev, char *page)
4549 {
4550 if (mddev->reshape_position != MaxSector)
4551 return sprintf(page, "%llu\n",
4552 (unsigned long long)mddev->reshape_position);
4553 strcpy(page, "none\n");
4554 return 5;
4555 }
4556
4557 static ssize_t
4558 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4559 {
4560 struct md_rdev *rdev;
4561 char *e;
4562 int err;
4563 unsigned long long new = simple_strtoull(buf, &e, 10);
4564
4565 if (buf == e || (*e && *e != '\n'))
4566 return -EINVAL;
4567 err = mddev_lock(mddev);
4568 if (err)
4569 return err;
4570 err = -EBUSY;
4571 if (mddev->pers)
4572 goto unlock;
4573 mddev->reshape_position = new;
4574 mddev->delta_disks = 0;
4575 mddev->reshape_backwards = 0;
4576 mddev->new_level = mddev->level;
4577 mddev->new_layout = mddev->layout;
4578 mddev->new_chunk_sectors = mddev->chunk_sectors;
4579 rdev_for_each(rdev, mddev)
4580 rdev->new_data_offset = rdev->data_offset;
4581 err = 0;
4582 unlock:
4583 mddev_unlock(mddev);
4584 return err ?: len;
4585 }
4586
4587 static struct md_sysfs_entry md_reshape_position =
4588 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4589 reshape_position_store);
4590
4591 static ssize_t
4592 reshape_direction_show(struct mddev *mddev, char *page)
4593 {
4594 return sprintf(page, "%s\n",
4595 mddev->reshape_backwards ? "backwards" : "forwards");
4596 }
4597
4598 static ssize_t
4599 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4600 {
4601 int backwards = 0;
4602 int err;
4603
4604 if (cmd_match(buf, "forwards"))
4605 backwards = 0;
4606 else if (cmd_match(buf, "backwards"))
4607 backwards = 1;
4608 else
4609 return -EINVAL;
4610 if (mddev->reshape_backwards == backwards)
4611 return len;
4612
4613 err = mddev_lock(mddev);
4614 if (err)
4615 return err;
4616 /* check if we are allowed to change */
4617 if (mddev->delta_disks)
4618 err = -EBUSY;
4619 else if (mddev->persistent &&
4620 mddev->major_version == 0)
4621 err = -EINVAL;
4622 else
4623 mddev->reshape_backwards = backwards;
4624 mddev_unlock(mddev);
4625 return err ?: len;
4626 }
4627
4628 static struct md_sysfs_entry md_reshape_direction =
4629 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4630 reshape_direction_store);
4631
4632 static ssize_t
4633 array_size_show(struct mddev *mddev, char *page)
4634 {
4635 if (mddev->external_size)
4636 return sprintf(page, "%llu\n",
4637 (unsigned long long)mddev->array_sectors/2);
4638 else
4639 return sprintf(page, "default\n");
4640 }
4641
4642 static ssize_t
4643 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4644 {
4645 sector_t sectors;
4646 int err;
4647
4648 err = mddev_lock(mddev);
4649 if (err)
4650 return err;
4651
4652 if (strncmp(buf, "default", 7) == 0) {
4653 if (mddev->pers)
4654 sectors = mddev->pers->size(mddev, 0, 0);
4655 else
4656 sectors = mddev->array_sectors;
4657
4658 mddev->external_size = 0;
4659 } else {
4660 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4661 err = -EINVAL;
4662 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4663 err = -E2BIG;
4664 else
4665 mddev->external_size = 1;
4666 }
4667
4668 if (!err) {
4669 mddev->array_sectors = sectors;
4670 if (mddev->pers) {
4671 set_capacity(mddev->gendisk, mddev->array_sectors);
4672 revalidate_disk(mddev->gendisk);
4673 }
4674 }
4675 mddev_unlock(mddev);
4676 return err ?: len;
4677 }
4678
4679 static struct md_sysfs_entry md_array_size =
4680 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4681 array_size_store);
4682
4683 static struct attribute *md_default_attrs[] = {
4684 &md_level.attr,
4685 &md_layout.attr,
4686 &md_raid_disks.attr,
4687 &md_chunk_size.attr,
4688 &md_size.attr,
4689 &md_resync_start.attr,
4690 &md_metadata.attr,
4691 &md_new_device.attr,
4692 &md_safe_delay.attr,
4693 &md_array_state.attr,
4694 &md_reshape_position.attr,
4695 &md_reshape_direction.attr,
4696 &md_array_size.attr,
4697 &max_corr_read_errors.attr,
4698 NULL,
4699 };
4700
4701 static struct attribute *md_redundancy_attrs[] = {
4702 &md_scan_mode.attr,
4703 &md_last_scan_mode.attr,
4704 &md_mismatches.attr,
4705 &md_sync_min.attr,
4706 &md_sync_max.attr,
4707 &md_sync_speed.attr,
4708 &md_sync_force_parallel.attr,
4709 &md_sync_completed.attr,
4710 &md_min_sync.attr,
4711 &md_max_sync.attr,
4712 &md_suspend_lo.attr,
4713 &md_suspend_hi.attr,
4714 &md_bitmap.attr,
4715 &md_degraded.attr,
4716 NULL,
4717 };
4718 static struct attribute_group md_redundancy_group = {
4719 .name = NULL,
4720 .attrs = md_redundancy_attrs,
4721 };
4722
4723 static ssize_t
4724 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4725 {
4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4728 ssize_t rv;
4729
4730 if (!entry->show)
4731 return -EIO;
4732 spin_lock(&all_mddevs_lock);
4733 if (list_empty(&mddev->all_mddevs)) {
4734 spin_unlock(&all_mddevs_lock);
4735 return -EBUSY;
4736 }
4737 mddev_get(mddev);
4738 spin_unlock(&all_mddevs_lock);
4739
4740 rv = entry->show(mddev, page);
4741 mddev_put(mddev);
4742 return rv;
4743 }
4744
4745 static ssize_t
4746 md_attr_store(struct kobject *kobj, struct attribute *attr,
4747 const char *page, size_t length)
4748 {
4749 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4750 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4751 ssize_t rv;
4752
4753 if (!entry->store)
4754 return -EIO;
4755 if (!capable(CAP_SYS_ADMIN))
4756 return -EACCES;
4757 spin_lock(&all_mddevs_lock);
4758 if (list_empty(&mddev->all_mddevs)) {
4759 spin_unlock(&all_mddevs_lock);
4760 return -EBUSY;
4761 }
4762 mddev_get(mddev);
4763 spin_unlock(&all_mddevs_lock);
4764 rv = entry->store(mddev, page, length);
4765 mddev_put(mddev);
4766 return rv;
4767 }
4768
4769 static void md_free(struct kobject *ko)
4770 {
4771 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4772
4773 if (mddev->sysfs_state)
4774 sysfs_put(mddev->sysfs_state);
4775
4776 if (mddev->gendisk) {
4777 del_gendisk(mddev->gendisk);
4778 put_disk(mddev->gendisk);
4779 }
4780 if (mddev->queue)
4781 blk_cleanup_queue(mddev->queue);
4782
4783 kfree(mddev);
4784 }
4785
4786 static const struct sysfs_ops md_sysfs_ops = {
4787 .show = md_attr_show,
4788 .store = md_attr_store,
4789 };
4790 static struct kobj_type md_ktype = {
4791 .release = md_free,
4792 .sysfs_ops = &md_sysfs_ops,
4793 .default_attrs = md_default_attrs,
4794 };
4795
4796 int mdp_major = 0;
4797
4798 static void mddev_delayed_delete(struct work_struct *ws)
4799 {
4800 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4801
4802 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4803 kobject_del(&mddev->kobj);
4804 kobject_put(&mddev->kobj);
4805 }
4806
4807 static int md_alloc(dev_t dev, char *name)
4808 {
4809 static DEFINE_MUTEX(disks_mutex);
4810 struct mddev *mddev = mddev_find(dev);
4811 struct gendisk *disk;
4812 int partitioned;
4813 int shift;
4814 int unit;
4815 int error;
4816
4817 if (!mddev)
4818 return -ENODEV;
4819
4820 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4821 shift = partitioned ? MdpMinorShift : 0;
4822 unit = MINOR(mddev->unit) >> shift;
4823
4824 /* wait for any previous instance of this device to be
4825 * completely removed (mddev_delayed_delete).
4826 */
4827 flush_workqueue(md_misc_wq);
4828
4829 mutex_lock(&disks_mutex);
4830 error = -EEXIST;
4831 if (mddev->gendisk)
4832 goto abort;
4833
4834 if (name) {
4835 /* Need to ensure that 'name' is not a duplicate.
4836 */
4837 struct mddev *mddev2;
4838 spin_lock(&all_mddevs_lock);
4839
4840 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4841 if (mddev2->gendisk &&
4842 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4843 spin_unlock(&all_mddevs_lock);
4844 goto abort;
4845 }
4846 spin_unlock(&all_mddevs_lock);
4847 }
4848
4849 error = -ENOMEM;
4850 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4851 if (!mddev->queue)
4852 goto abort;
4853 mddev->queue->queuedata = mddev;
4854
4855 blk_queue_make_request(mddev->queue, md_make_request);
4856 blk_set_stacking_limits(&mddev->queue->limits);
4857
4858 disk = alloc_disk(1 << shift);
4859 if (!disk) {
4860 blk_cleanup_queue(mddev->queue);
4861 mddev->queue = NULL;
4862 goto abort;
4863 }
4864 disk->major = MAJOR(mddev->unit);
4865 disk->first_minor = unit << shift;
4866 if (name)
4867 strcpy(disk->disk_name, name);
4868 else if (partitioned)
4869 sprintf(disk->disk_name, "md_d%d", unit);
4870 else
4871 sprintf(disk->disk_name, "md%d", unit);
4872 disk->fops = &md_fops;
4873 disk->private_data = mddev;
4874 disk->queue = mddev->queue;
4875 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4876 /* Allow extended partitions. This makes the
4877 * 'mdp' device redundant, but we can't really
4878 * remove it now.
4879 */
4880 disk->flags |= GENHD_FL_EXT_DEVT;
4881 mddev->gendisk = disk;
4882 /* As soon as we call add_disk(), another thread could get
4883 * through to md_open, so make sure it doesn't get too far
4884 */
4885 mutex_lock(&mddev->open_mutex);
4886 add_disk(disk);
4887
4888 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4889 &disk_to_dev(disk)->kobj, "%s", "md");
4890 if (error) {
4891 /* This isn't possible, but as kobject_init_and_add is marked
4892 * __must_check, we must do something with the result
4893 */
4894 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4895 disk->disk_name);
4896 error = 0;
4897 }
4898 if (mddev->kobj.sd &&
4899 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4900 printk(KERN_DEBUG "pointless warning\n");
4901 mutex_unlock(&mddev->open_mutex);
4902 abort:
4903 mutex_unlock(&disks_mutex);
4904 if (!error && mddev->kobj.sd) {
4905 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4906 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4907 }
4908 mddev_put(mddev);
4909 return error;
4910 }
4911
4912 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4913 {
4914 md_alloc(dev, NULL);
4915 return NULL;
4916 }
4917
4918 static int add_named_array(const char *val, struct kernel_param *kp)
4919 {
4920 /* val must be "md_*" where * is not all digits.
4921 * We allocate an array with a large free minor number, and
4922 * set the name to val. val must not already be an active name.
4923 */
4924 int len = strlen(val);
4925 char buf[DISK_NAME_LEN];
4926
4927 while (len && val[len-1] == '\n')
4928 len--;
4929 if (len >= DISK_NAME_LEN)
4930 return -E2BIG;
4931 strlcpy(buf, val, len+1);
4932 if (strncmp(buf, "md_", 3) != 0)
4933 return -EINVAL;
4934 return md_alloc(0, buf);
4935 }
4936
4937 static void md_safemode_timeout(unsigned long data)
4938 {
4939 struct mddev *mddev = (struct mddev *) data;
4940
4941 if (!atomic_read(&mddev->writes_pending)) {
4942 mddev->safemode = 1;
4943 if (mddev->external)
4944 sysfs_notify_dirent_safe(mddev->sysfs_state);
4945 }
4946 md_wakeup_thread(mddev->thread);
4947 }
4948
4949 static int start_dirty_degraded;
4950
4951 int md_run(struct mddev *mddev)
4952 {
4953 int err;
4954 struct md_rdev *rdev;
4955 struct md_personality *pers;
4956
4957 if (list_empty(&mddev->disks))
4958 /* cannot run an array with no devices.. */
4959 return -EINVAL;
4960
4961 if (mddev->pers)
4962 return -EBUSY;
4963 /* Cannot run until previous stop completes properly */
4964 if (mddev->sysfs_active)
4965 return -EBUSY;
4966
4967 /*
4968 * Analyze all RAID superblock(s)
4969 */
4970 if (!mddev->raid_disks) {
4971 if (!mddev->persistent)
4972 return -EINVAL;
4973 analyze_sbs(mddev);
4974 }
4975
4976 if (mddev->level != LEVEL_NONE)
4977 request_module("md-level-%d", mddev->level);
4978 else if (mddev->clevel[0])
4979 request_module("md-%s", mddev->clevel);
4980
4981 /*
4982 * Drop all container device buffers, from now on
4983 * the only valid external interface is through the md
4984 * device.
4985 */
4986 rdev_for_each(rdev, mddev) {
4987 if (test_bit(Faulty, &rdev->flags))
4988 continue;
4989 sync_blockdev(rdev->bdev);
4990 invalidate_bdev(rdev->bdev);
4991
4992 /* perform some consistency tests on the device.
4993 * We don't want the data to overlap the metadata,
4994 * Internal Bitmap issues have been handled elsewhere.
4995 */
4996 if (rdev->meta_bdev) {
4997 /* Nothing to check */;
4998 } else if (rdev->data_offset < rdev->sb_start) {
4999 if (mddev->dev_sectors &&
5000 rdev->data_offset + mddev->dev_sectors
5001 > rdev->sb_start) {
5002 printk("md: %s: data overlaps metadata\n",
5003 mdname(mddev));
5004 return -EINVAL;
5005 }
5006 } else {
5007 if (rdev->sb_start + rdev->sb_size/512
5008 > rdev->data_offset) {
5009 printk("md: %s: metadata overlaps data\n",
5010 mdname(mddev));
5011 return -EINVAL;
5012 }
5013 }
5014 sysfs_notify_dirent_safe(rdev->sysfs_state);
5015 }
5016
5017 if (mddev->bio_set == NULL)
5018 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5019
5020 spin_lock(&pers_lock);
5021 pers = find_pers(mddev->level, mddev->clevel);
5022 if (!pers || !try_module_get(pers->owner)) {
5023 spin_unlock(&pers_lock);
5024 if (mddev->level != LEVEL_NONE)
5025 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5026 mddev->level);
5027 else
5028 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5029 mddev->clevel);
5030 return -EINVAL;
5031 }
5032 spin_unlock(&pers_lock);
5033 if (mddev->level != pers->level) {
5034 mddev->level = pers->level;
5035 mddev->new_level = pers->level;
5036 }
5037 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5038
5039 if (mddev->reshape_position != MaxSector &&
5040 pers->start_reshape == NULL) {
5041 /* This personality cannot handle reshaping... */
5042 module_put(pers->owner);
5043 return -EINVAL;
5044 }
5045
5046 if (pers->sync_request) {
5047 /* Warn if this is a potentially silly
5048 * configuration.
5049 */
5050 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5051 struct md_rdev *rdev2;
5052 int warned = 0;
5053
5054 rdev_for_each(rdev, mddev)
5055 rdev_for_each(rdev2, mddev) {
5056 if (rdev < rdev2 &&
5057 rdev->bdev->bd_contains ==
5058 rdev2->bdev->bd_contains) {
5059 printk(KERN_WARNING
5060 "%s: WARNING: %s appears to be"
5061 " on the same physical disk as"
5062 " %s.\n",
5063 mdname(mddev),
5064 bdevname(rdev->bdev,b),
5065 bdevname(rdev2->bdev,b2));
5066 warned = 1;
5067 }
5068 }
5069
5070 if (warned)
5071 printk(KERN_WARNING
5072 "True protection against single-disk"
5073 " failure might be compromised.\n");
5074 }
5075
5076 mddev->recovery = 0;
5077 /* may be over-ridden by personality */
5078 mddev->resync_max_sectors = mddev->dev_sectors;
5079
5080 mddev->ok_start_degraded = start_dirty_degraded;
5081
5082 if (start_readonly && mddev->ro == 0)
5083 mddev->ro = 2; /* read-only, but switch on first write */
5084
5085 err = pers->run(mddev);
5086 if (err)
5087 printk(KERN_ERR "md: pers->run() failed ...\n");
5088 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5089 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5090 " but 'external_size' not in effect?\n", __func__);
5091 printk(KERN_ERR
5092 "md: invalid array_size %llu > default size %llu\n",
5093 (unsigned long long)mddev->array_sectors / 2,
5094 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5095 err = -EINVAL;
5096 }
5097 if (err == 0 && pers->sync_request &&
5098 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5099 struct bitmap *bitmap;
5100
5101 bitmap = bitmap_create(mddev, -1);
5102 if (IS_ERR(bitmap)) {
5103 err = PTR_ERR(bitmap);
5104 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5105 mdname(mddev), err);
5106 } else
5107 mddev->bitmap = bitmap;
5108
5109 }
5110 if (err) {
5111 mddev_detach(mddev);
5112 pers->free(mddev, mddev->private);
5113 module_put(pers->owner);
5114 bitmap_destroy(mddev);
5115 return err;
5116 }
5117 if (mddev->queue) {
5118 mddev->queue->backing_dev_info.congested_data = mddev;
5119 mddev->queue->backing_dev_info.congested_fn = md_congested;
5120 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5121 }
5122 if (pers->sync_request) {
5123 if (mddev->kobj.sd &&
5124 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5125 printk(KERN_WARNING
5126 "md: cannot register extra attributes for %s\n",
5127 mdname(mddev));
5128 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5129 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5130 mddev->ro = 0;
5131
5132 atomic_set(&mddev->writes_pending,0);
5133 atomic_set(&mddev->max_corr_read_errors,
5134 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5135 mddev->safemode = 0;
5136 mddev->safemode_timer.function = md_safemode_timeout;
5137 mddev->safemode_timer.data = (unsigned long) mddev;
5138 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5139 mddev->in_sync = 1;
5140 smp_wmb();
5141 spin_lock(&mddev->lock);
5142 mddev->pers = pers;
5143 mddev->ready = 1;
5144 spin_unlock(&mddev->lock);
5145 rdev_for_each(rdev, mddev)
5146 if (rdev->raid_disk >= 0)
5147 if (sysfs_link_rdev(mddev, rdev))
5148 /* failure here is OK */;
5149
5150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5151
5152 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5153 md_update_sb(mddev, 0);
5154
5155 md_new_event(mddev);
5156 sysfs_notify_dirent_safe(mddev->sysfs_state);
5157 sysfs_notify_dirent_safe(mddev->sysfs_action);
5158 sysfs_notify(&mddev->kobj, NULL, "degraded");
5159 return 0;
5160 }
5161 EXPORT_SYMBOL_GPL(md_run);
5162
5163 static int do_md_run(struct mddev *mddev)
5164 {
5165 int err;
5166
5167 err = md_run(mddev);
5168 if (err)
5169 goto out;
5170 err = bitmap_load(mddev);
5171 if (err) {
5172 bitmap_destroy(mddev);
5173 goto out;
5174 }
5175
5176 md_wakeup_thread(mddev->thread);
5177 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5178
5179 set_capacity(mddev->gendisk, mddev->array_sectors);
5180 revalidate_disk(mddev->gendisk);
5181 mddev->changed = 1;
5182 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5183 out:
5184 return err;
5185 }
5186
5187 static int restart_array(struct mddev *mddev)
5188 {
5189 struct gendisk *disk = mddev->gendisk;
5190
5191 /* Complain if it has no devices */
5192 if (list_empty(&mddev->disks))
5193 return -ENXIO;
5194 if (!mddev->pers)
5195 return -EINVAL;
5196 if (!mddev->ro)
5197 return -EBUSY;
5198 mddev->safemode = 0;
5199 mddev->ro = 0;
5200 set_disk_ro(disk, 0);
5201 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5202 mdname(mddev));
5203 /* Kick recovery or resync if necessary */
5204 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5205 md_wakeup_thread(mddev->thread);
5206 md_wakeup_thread(mddev->sync_thread);
5207 sysfs_notify_dirent_safe(mddev->sysfs_state);
5208 return 0;
5209 }
5210
5211 static void md_clean(struct mddev *mddev)
5212 {
5213 mddev->array_sectors = 0;
5214 mddev->external_size = 0;
5215 mddev->dev_sectors = 0;
5216 mddev->raid_disks = 0;
5217 mddev->recovery_cp = 0;
5218 mddev->resync_min = 0;
5219 mddev->resync_max = MaxSector;
5220 mddev->reshape_position = MaxSector;
5221 mddev->external = 0;
5222 mddev->persistent = 0;
5223 mddev->level = LEVEL_NONE;
5224 mddev->clevel[0] = 0;
5225 mddev->flags = 0;
5226 mddev->ro = 0;
5227 mddev->metadata_type[0] = 0;
5228 mddev->chunk_sectors = 0;
5229 mddev->ctime = mddev->utime = 0;
5230 mddev->layout = 0;
5231 mddev->max_disks = 0;
5232 mddev->events = 0;
5233 mddev->can_decrease_events = 0;
5234 mddev->delta_disks = 0;
5235 mddev->reshape_backwards = 0;
5236 mddev->new_level = LEVEL_NONE;
5237 mddev->new_layout = 0;
5238 mddev->new_chunk_sectors = 0;
5239 mddev->curr_resync = 0;
5240 atomic64_set(&mddev->resync_mismatches, 0);
5241 mddev->suspend_lo = mddev->suspend_hi = 0;
5242 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5243 mddev->recovery = 0;
5244 mddev->in_sync = 0;
5245 mddev->changed = 0;
5246 mddev->degraded = 0;
5247 mddev->safemode = 0;
5248 mddev->merge_check_needed = 0;
5249 mddev->bitmap_info.offset = 0;
5250 mddev->bitmap_info.default_offset = 0;
5251 mddev->bitmap_info.default_space = 0;
5252 mddev->bitmap_info.chunksize = 0;
5253 mddev->bitmap_info.daemon_sleep = 0;
5254 mddev->bitmap_info.max_write_behind = 0;
5255 }
5256
5257 static void __md_stop_writes(struct mddev *mddev)
5258 {
5259 if (mddev_is_clustered(mddev))
5260 md_cluster_ops->metadata_update_start(mddev);
5261 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5262 flush_workqueue(md_misc_wq);
5263 if (mddev->sync_thread) {
5264 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5265 md_reap_sync_thread(mddev);
5266 }
5267
5268 del_timer_sync(&mddev->safemode_timer);
5269
5270 bitmap_flush(mddev);
5271 md_super_wait(mddev);
5272
5273 if (mddev->ro == 0 &&
5274 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5275 /* mark array as shutdown cleanly */
5276 mddev->in_sync = 1;
5277 md_update_sb(mddev, 1);
5278 }
5279 if (mddev_is_clustered(mddev))
5280 md_cluster_ops->metadata_update_finish(mddev);
5281 }
5282
5283 void md_stop_writes(struct mddev *mddev)
5284 {
5285 mddev_lock_nointr(mddev);
5286 __md_stop_writes(mddev);
5287 mddev_unlock(mddev);
5288 }
5289 EXPORT_SYMBOL_GPL(md_stop_writes);
5290
5291 static void mddev_detach(struct mddev *mddev)
5292 {
5293 struct bitmap *bitmap = mddev->bitmap;
5294 /* wait for behind writes to complete */
5295 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5296 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5297 mdname(mddev));
5298 /* need to kick something here to make sure I/O goes? */
5299 wait_event(bitmap->behind_wait,
5300 atomic_read(&bitmap->behind_writes) == 0);
5301 }
5302 if (mddev->pers && mddev->pers->quiesce) {
5303 mddev->pers->quiesce(mddev, 1);
5304 mddev->pers->quiesce(mddev, 0);
5305 }
5306 md_unregister_thread(&mddev->thread);
5307 if (mddev->queue)
5308 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5309 }
5310
5311 static void __md_stop(struct mddev *mddev)
5312 {
5313 struct md_personality *pers = mddev->pers;
5314 mddev_detach(mddev);
5315 spin_lock(&mddev->lock);
5316 mddev->ready = 0;
5317 mddev->pers = NULL;
5318 spin_unlock(&mddev->lock);
5319 pers->free(mddev, mddev->private);
5320 if (pers->sync_request && mddev->to_remove == NULL)
5321 mddev->to_remove = &md_redundancy_group;
5322 module_put(pers->owner);
5323 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5324 }
5325
5326 void md_stop(struct mddev *mddev)
5327 {
5328 /* stop the array and free an attached data structures.
5329 * This is called from dm-raid
5330 */
5331 __md_stop(mddev);
5332 bitmap_destroy(mddev);
5333 if (mddev->bio_set)
5334 bioset_free(mddev->bio_set);
5335 }
5336
5337 EXPORT_SYMBOL_GPL(md_stop);
5338
5339 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5340 {
5341 int err = 0;
5342 int did_freeze = 0;
5343
5344 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5345 did_freeze = 1;
5346 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5347 md_wakeup_thread(mddev->thread);
5348 }
5349 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5350 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5351 if (mddev->sync_thread)
5352 /* Thread might be blocked waiting for metadata update
5353 * which will now never happen */
5354 wake_up_process(mddev->sync_thread->tsk);
5355
5356 mddev_unlock(mddev);
5357 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5358 &mddev->recovery));
5359 mddev_lock_nointr(mddev);
5360
5361 mutex_lock(&mddev->open_mutex);
5362 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5363 mddev->sync_thread ||
5364 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5365 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5366 printk("md: %s still in use.\n",mdname(mddev));
5367 if (did_freeze) {
5368 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5369 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5370 md_wakeup_thread(mddev->thread);
5371 }
5372 err = -EBUSY;
5373 goto out;
5374 }
5375 if (mddev->pers) {
5376 __md_stop_writes(mddev);
5377
5378 err = -ENXIO;
5379 if (mddev->ro==1)
5380 goto out;
5381 mddev->ro = 1;
5382 set_disk_ro(mddev->gendisk, 1);
5383 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5384 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5385 md_wakeup_thread(mddev->thread);
5386 sysfs_notify_dirent_safe(mddev->sysfs_state);
5387 err = 0;
5388 }
5389 out:
5390 mutex_unlock(&mddev->open_mutex);
5391 return err;
5392 }
5393
5394 /* mode:
5395 * 0 - completely stop and dis-assemble array
5396 * 2 - stop but do not disassemble array
5397 */
5398 static int do_md_stop(struct mddev *mddev, int mode,
5399 struct block_device *bdev)
5400 {
5401 struct gendisk *disk = mddev->gendisk;
5402 struct md_rdev *rdev;
5403 int did_freeze = 0;
5404
5405 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5406 did_freeze = 1;
5407 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5408 md_wakeup_thread(mddev->thread);
5409 }
5410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5411 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5412 if (mddev->sync_thread)
5413 /* Thread might be blocked waiting for metadata update
5414 * which will now never happen */
5415 wake_up_process(mddev->sync_thread->tsk);
5416
5417 mddev_unlock(mddev);
5418 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5419 !test_bit(MD_RECOVERY_RUNNING,
5420 &mddev->recovery)));
5421 mddev_lock_nointr(mddev);
5422
5423 mutex_lock(&mddev->open_mutex);
5424 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5425 mddev->sysfs_active ||
5426 mddev->sync_thread ||
5427 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5428 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5429 printk("md: %s still in use.\n",mdname(mddev));
5430 mutex_unlock(&mddev->open_mutex);
5431 if (did_freeze) {
5432 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5433 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5434 md_wakeup_thread(mddev->thread);
5435 }
5436 return -EBUSY;
5437 }
5438 if (mddev->pers) {
5439 if (mddev->ro)
5440 set_disk_ro(disk, 0);
5441
5442 __md_stop_writes(mddev);
5443 __md_stop(mddev);
5444 mddev->queue->merge_bvec_fn = NULL;
5445 mddev->queue->backing_dev_info.congested_fn = NULL;
5446
5447 /* tell userspace to handle 'inactive' */
5448 sysfs_notify_dirent_safe(mddev->sysfs_state);
5449
5450 rdev_for_each(rdev, mddev)
5451 if (rdev->raid_disk >= 0)
5452 sysfs_unlink_rdev(mddev, rdev);
5453
5454 set_capacity(disk, 0);
5455 mutex_unlock(&mddev->open_mutex);
5456 mddev->changed = 1;
5457 revalidate_disk(disk);
5458
5459 if (mddev->ro)
5460 mddev->ro = 0;
5461 } else
5462 mutex_unlock(&mddev->open_mutex);
5463 /*
5464 * Free resources if final stop
5465 */
5466 if (mode == 0) {
5467 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5468
5469 bitmap_destroy(mddev);
5470 if (mddev->bitmap_info.file) {
5471 struct file *f = mddev->bitmap_info.file;
5472 spin_lock(&mddev->lock);
5473 mddev->bitmap_info.file = NULL;
5474 spin_unlock(&mddev->lock);
5475 fput(f);
5476 }
5477 mddev->bitmap_info.offset = 0;
5478
5479 export_array(mddev);
5480
5481 md_clean(mddev);
5482 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5483 if (mddev->hold_active == UNTIL_STOP)
5484 mddev->hold_active = 0;
5485 }
5486 blk_integrity_unregister(disk);
5487 md_new_event(mddev);
5488 sysfs_notify_dirent_safe(mddev->sysfs_state);
5489 return 0;
5490 }
5491
5492 #ifndef MODULE
5493 static void autorun_array(struct mddev *mddev)
5494 {
5495 struct md_rdev *rdev;
5496 int err;
5497
5498 if (list_empty(&mddev->disks))
5499 return;
5500
5501 printk(KERN_INFO "md: running: ");
5502
5503 rdev_for_each(rdev, mddev) {
5504 char b[BDEVNAME_SIZE];
5505 printk("<%s>", bdevname(rdev->bdev,b));
5506 }
5507 printk("\n");
5508
5509 err = do_md_run(mddev);
5510 if (err) {
5511 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5512 do_md_stop(mddev, 0, NULL);
5513 }
5514 }
5515
5516 /*
5517 * lets try to run arrays based on all disks that have arrived
5518 * until now. (those are in pending_raid_disks)
5519 *
5520 * the method: pick the first pending disk, collect all disks with
5521 * the same UUID, remove all from the pending list and put them into
5522 * the 'same_array' list. Then order this list based on superblock
5523 * update time (freshest comes first), kick out 'old' disks and
5524 * compare superblocks. If everything's fine then run it.
5525 *
5526 * If "unit" is allocated, then bump its reference count
5527 */
5528 static void autorun_devices(int part)
5529 {
5530 struct md_rdev *rdev0, *rdev, *tmp;
5531 struct mddev *mddev;
5532 char b[BDEVNAME_SIZE];
5533
5534 printk(KERN_INFO "md: autorun ...\n");
5535 while (!list_empty(&pending_raid_disks)) {
5536 int unit;
5537 dev_t dev;
5538 LIST_HEAD(candidates);
5539 rdev0 = list_entry(pending_raid_disks.next,
5540 struct md_rdev, same_set);
5541
5542 printk(KERN_INFO "md: considering %s ...\n",
5543 bdevname(rdev0->bdev,b));
5544 INIT_LIST_HEAD(&candidates);
5545 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5546 if (super_90_load(rdev, rdev0, 0) >= 0) {
5547 printk(KERN_INFO "md: adding %s ...\n",
5548 bdevname(rdev->bdev,b));
5549 list_move(&rdev->same_set, &candidates);
5550 }
5551 /*
5552 * now we have a set of devices, with all of them having
5553 * mostly sane superblocks. It's time to allocate the
5554 * mddev.
5555 */
5556 if (part) {
5557 dev = MKDEV(mdp_major,
5558 rdev0->preferred_minor << MdpMinorShift);
5559 unit = MINOR(dev) >> MdpMinorShift;
5560 } else {
5561 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5562 unit = MINOR(dev);
5563 }
5564 if (rdev0->preferred_minor != unit) {
5565 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5566 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5567 break;
5568 }
5569
5570 md_probe(dev, NULL, NULL);
5571 mddev = mddev_find(dev);
5572 if (!mddev || !mddev->gendisk) {
5573 if (mddev)
5574 mddev_put(mddev);
5575 printk(KERN_ERR
5576 "md: cannot allocate memory for md drive.\n");
5577 break;
5578 }
5579 if (mddev_lock(mddev))
5580 printk(KERN_WARNING "md: %s locked, cannot run\n",
5581 mdname(mddev));
5582 else if (mddev->raid_disks || mddev->major_version
5583 || !list_empty(&mddev->disks)) {
5584 printk(KERN_WARNING
5585 "md: %s already running, cannot run %s\n",
5586 mdname(mddev), bdevname(rdev0->bdev,b));
5587 mddev_unlock(mddev);
5588 } else {
5589 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5590 mddev->persistent = 1;
5591 rdev_for_each_list(rdev, tmp, &candidates) {
5592 list_del_init(&rdev->same_set);
5593 if (bind_rdev_to_array(rdev, mddev))
5594 export_rdev(rdev);
5595 }
5596 autorun_array(mddev);
5597 mddev_unlock(mddev);
5598 }
5599 /* on success, candidates will be empty, on error
5600 * it won't...
5601 */
5602 rdev_for_each_list(rdev, tmp, &candidates) {
5603 list_del_init(&rdev->same_set);
5604 export_rdev(rdev);
5605 }
5606 mddev_put(mddev);
5607 }
5608 printk(KERN_INFO "md: ... autorun DONE.\n");
5609 }
5610 #endif /* !MODULE */
5611
5612 static int get_version(void __user *arg)
5613 {
5614 mdu_version_t ver;
5615
5616 ver.major = MD_MAJOR_VERSION;
5617 ver.minor = MD_MINOR_VERSION;
5618 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5619
5620 if (copy_to_user(arg, &ver, sizeof(ver)))
5621 return -EFAULT;
5622
5623 return 0;
5624 }
5625
5626 static int get_array_info(struct mddev *mddev, void __user *arg)
5627 {
5628 mdu_array_info_t info;
5629 int nr,working,insync,failed,spare;
5630 struct md_rdev *rdev;
5631
5632 nr = working = insync = failed = spare = 0;
5633 rcu_read_lock();
5634 rdev_for_each_rcu(rdev, mddev) {
5635 nr++;
5636 if (test_bit(Faulty, &rdev->flags))
5637 failed++;
5638 else {
5639 working++;
5640 if (test_bit(In_sync, &rdev->flags))
5641 insync++;
5642 else
5643 spare++;
5644 }
5645 }
5646 rcu_read_unlock();
5647
5648 info.major_version = mddev->major_version;
5649 info.minor_version = mddev->minor_version;
5650 info.patch_version = MD_PATCHLEVEL_VERSION;
5651 info.ctime = mddev->ctime;
5652 info.level = mddev->level;
5653 info.size = mddev->dev_sectors / 2;
5654 if (info.size != mddev->dev_sectors / 2) /* overflow */
5655 info.size = -1;
5656 info.nr_disks = nr;
5657 info.raid_disks = mddev->raid_disks;
5658 info.md_minor = mddev->md_minor;
5659 info.not_persistent= !mddev->persistent;
5660
5661 info.utime = mddev->utime;
5662 info.state = 0;
5663 if (mddev->in_sync)
5664 info.state = (1<<MD_SB_CLEAN);
5665 if (mddev->bitmap && mddev->bitmap_info.offset)
5666 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5667 if (mddev_is_clustered(mddev))
5668 info.state |= (1<<MD_SB_CLUSTERED);
5669 info.active_disks = insync;
5670 info.working_disks = working;
5671 info.failed_disks = failed;
5672 info.spare_disks = spare;
5673
5674 info.layout = mddev->layout;
5675 info.chunk_size = mddev->chunk_sectors << 9;
5676
5677 if (copy_to_user(arg, &info, sizeof(info)))
5678 return -EFAULT;
5679
5680 return 0;
5681 }
5682
5683 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5684 {
5685 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5686 char *ptr;
5687 int err;
5688
5689 file = kmalloc(sizeof(*file), GFP_NOIO);
5690 if (!file)
5691 return -ENOMEM;
5692
5693 err = 0;
5694 spin_lock(&mddev->lock);
5695 /* bitmap disabled, zero the first byte and copy out */
5696 if (!mddev->bitmap_info.file)
5697 file->pathname[0] = '\0';
5698 else if ((ptr = d_path(&mddev->bitmap_info.file->f_path,
5699 file->pathname, sizeof(file->pathname))),
5700 IS_ERR(ptr))
5701 err = PTR_ERR(ptr);
5702 else
5703 memmove(file->pathname, ptr,
5704 sizeof(file->pathname)-(ptr-file->pathname));
5705 spin_unlock(&mddev->lock);
5706
5707 if (err == 0 &&
5708 copy_to_user(arg, file, sizeof(*file)))
5709 err = -EFAULT;
5710
5711 kfree(file);
5712 return err;
5713 }
5714
5715 static int get_disk_info(struct mddev *mddev, void __user * arg)
5716 {
5717 mdu_disk_info_t info;
5718 struct md_rdev *rdev;
5719
5720 if (copy_from_user(&info, arg, sizeof(info)))
5721 return -EFAULT;
5722
5723 rcu_read_lock();
5724 rdev = find_rdev_nr_rcu(mddev, info.number);
5725 if (rdev) {
5726 info.major = MAJOR(rdev->bdev->bd_dev);
5727 info.minor = MINOR(rdev->bdev->bd_dev);
5728 info.raid_disk = rdev->raid_disk;
5729 info.state = 0;
5730 if (test_bit(Faulty, &rdev->flags))
5731 info.state |= (1<<MD_DISK_FAULTY);
5732 else if (test_bit(In_sync, &rdev->flags)) {
5733 info.state |= (1<<MD_DISK_ACTIVE);
5734 info.state |= (1<<MD_DISK_SYNC);
5735 }
5736 if (test_bit(WriteMostly, &rdev->flags))
5737 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5738 } else {
5739 info.major = info.minor = 0;
5740 info.raid_disk = -1;
5741 info.state = (1<<MD_DISK_REMOVED);
5742 }
5743 rcu_read_unlock();
5744
5745 if (copy_to_user(arg, &info, sizeof(info)))
5746 return -EFAULT;
5747
5748 return 0;
5749 }
5750
5751 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5752 {
5753 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5754 struct md_rdev *rdev;
5755 dev_t dev = MKDEV(info->major,info->minor);
5756
5757 if (mddev_is_clustered(mddev) &&
5758 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5759 pr_err("%s: Cannot add to clustered mddev.\n",
5760 mdname(mddev));
5761 return -EINVAL;
5762 }
5763
5764 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5765 return -EOVERFLOW;
5766
5767 if (!mddev->raid_disks) {
5768 int err;
5769 /* expecting a device which has a superblock */
5770 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5771 if (IS_ERR(rdev)) {
5772 printk(KERN_WARNING
5773 "md: md_import_device returned %ld\n",
5774 PTR_ERR(rdev));
5775 return PTR_ERR(rdev);
5776 }
5777 if (!list_empty(&mddev->disks)) {
5778 struct md_rdev *rdev0
5779 = list_entry(mddev->disks.next,
5780 struct md_rdev, same_set);
5781 err = super_types[mddev->major_version]
5782 .load_super(rdev, rdev0, mddev->minor_version);
5783 if (err < 0) {
5784 printk(KERN_WARNING
5785 "md: %s has different UUID to %s\n",
5786 bdevname(rdev->bdev,b),
5787 bdevname(rdev0->bdev,b2));
5788 export_rdev(rdev);
5789 return -EINVAL;
5790 }
5791 }
5792 err = bind_rdev_to_array(rdev, mddev);
5793 if (err)
5794 export_rdev(rdev);
5795 return err;
5796 }
5797
5798 /*
5799 * add_new_disk can be used once the array is assembled
5800 * to add "hot spares". They must already have a superblock
5801 * written
5802 */
5803 if (mddev->pers) {
5804 int err;
5805 if (!mddev->pers->hot_add_disk) {
5806 printk(KERN_WARNING
5807 "%s: personality does not support diskops!\n",
5808 mdname(mddev));
5809 return -EINVAL;
5810 }
5811 if (mddev->persistent)
5812 rdev = md_import_device(dev, mddev->major_version,
5813 mddev->minor_version);
5814 else
5815 rdev = md_import_device(dev, -1, -1);
5816 if (IS_ERR(rdev)) {
5817 printk(KERN_WARNING
5818 "md: md_import_device returned %ld\n",
5819 PTR_ERR(rdev));
5820 return PTR_ERR(rdev);
5821 }
5822 /* set saved_raid_disk if appropriate */
5823 if (!mddev->persistent) {
5824 if (info->state & (1<<MD_DISK_SYNC) &&
5825 info->raid_disk < mddev->raid_disks) {
5826 rdev->raid_disk = info->raid_disk;
5827 set_bit(In_sync, &rdev->flags);
5828 clear_bit(Bitmap_sync, &rdev->flags);
5829 } else
5830 rdev->raid_disk = -1;
5831 rdev->saved_raid_disk = rdev->raid_disk;
5832 } else
5833 super_types[mddev->major_version].
5834 validate_super(mddev, rdev);
5835 if ((info->state & (1<<MD_DISK_SYNC)) &&
5836 rdev->raid_disk != info->raid_disk) {
5837 /* This was a hot-add request, but events doesn't
5838 * match, so reject it.
5839 */
5840 export_rdev(rdev);
5841 return -EINVAL;
5842 }
5843
5844 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5845 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5846 set_bit(WriteMostly, &rdev->flags);
5847 else
5848 clear_bit(WriteMostly, &rdev->flags);
5849
5850 /*
5851 * check whether the device shows up in other nodes
5852 */
5853 if (mddev_is_clustered(mddev)) {
5854 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5855 /* Through --cluster-confirm */
5856 set_bit(Candidate, &rdev->flags);
5857 err = md_cluster_ops->new_disk_ack(mddev, true);
5858 if (err) {
5859 export_rdev(rdev);
5860 return err;
5861 }
5862 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5863 /* --add initiated by this node */
5864 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5865 if (err) {
5866 md_cluster_ops->add_new_disk_finish(mddev);
5867 export_rdev(rdev);
5868 return err;
5869 }
5870 }
5871 }
5872
5873 rdev->raid_disk = -1;
5874 err = bind_rdev_to_array(rdev, mddev);
5875 if (!err && !mddev->pers->hot_remove_disk) {
5876 /* If there is hot_add_disk but no hot_remove_disk
5877 * then added disks for geometry changes,
5878 * and should be added immediately.
5879 */
5880 super_types[mddev->major_version].
5881 validate_super(mddev, rdev);
5882 err = mddev->pers->hot_add_disk(mddev, rdev);
5883 if (err)
5884 unbind_rdev_from_array(rdev);
5885 }
5886 if (err)
5887 export_rdev(rdev);
5888 else
5889 sysfs_notify_dirent_safe(rdev->sysfs_state);
5890
5891 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5892 if (mddev->degraded)
5893 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5894 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5895 if (!err)
5896 md_new_event(mddev);
5897 md_wakeup_thread(mddev->thread);
5898 if (mddev_is_clustered(mddev) &&
5899 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5900 md_cluster_ops->add_new_disk_finish(mddev);
5901 return err;
5902 }
5903
5904 /* otherwise, add_new_disk is only allowed
5905 * for major_version==0 superblocks
5906 */
5907 if (mddev->major_version != 0) {
5908 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5909 mdname(mddev));
5910 return -EINVAL;
5911 }
5912
5913 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5914 int err;
5915 rdev = md_import_device(dev, -1, 0);
5916 if (IS_ERR(rdev)) {
5917 printk(KERN_WARNING
5918 "md: error, md_import_device() returned %ld\n",
5919 PTR_ERR(rdev));
5920 return PTR_ERR(rdev);
5921 }
5922 rdev->desc_nr = info->number;
5923 if (info->raid_disk < mddev->raid_disks)
5924 rdev->raid_disk = info->raid_disk;
5925 else
5926 rdev->raid_disk = -1;
5927
5928 if (rdev->raid_disk < mddev->raid_disks)
5929 if (info->state & (1<<MD_DISK_SYNC))
5930 set_bit(In_sync, &rdev->flags);
5931
5932 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5933 set_bit(WriteMostly, &rdev->flags);
5934
5935 if (!mddev->persistent) {
5936 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5937 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5938 } else
5939 rdev->sb_start = calc_dev_sboffset(rdev);
5940 rdev->sectors = rdev->sb_start;
5941
5942 err = bind_rdev_to_array(rdev, mddev);
5943 if (err) {
5944 export_rdev(rdev);
5945 return err;
5946 }
5947 }
5948
5949 return 0;
5950 }
5951
5952 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
5953 {
5954 char b[BDEVNAME_SIZE];
5955 struct md_rdev *rdev;
5956
5957 rdev = find_rdev(mddev, dev);
5958 if (!rdev)
5959 return -ENXIO;
5960
5961 if (mddev_is_clustered(mddev))
5962 md_cluster_ops->metadata_update_start(mddev);
5963
5964 clear_bit(Blocked, &rdev->flags);
5965 remove_and_add_spares(mddev, rdev);
5966
5967 if (rdev->raid_disk >= 0)
5968 goto busy;
5969
5970 md_kick_rdev_from_array(rdev);
5971 md_update_sb(mddev, 1);
5972 md_new_event(mddev);
5973
5974 if (mddev_is_clustered(mddev))
5975 md_cluster_ops->metadata_update_finish(mddev);
5976
5977 return 0;
5978 busy:
5979 if (mddev_is_clustered(mddev))
5980 md_cluster_ops->metadata_update_cancel(mddev);
5981 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5982 bdevname(rdev->bdev,b), mdname(mddev));
5983 return -EBUSY;
5984 }
5985
5986 static int hot_add_disk(struct mddev *mddev, dev_t dev)
5987 {
5988 char b[BDEVNAME_SIZE];
5989 int err;
5990 struct md_rdev *rdev;
5991
5992 if (!mddev->pers)
5993 return -ENODEV;
5994
5995 if (mddev->major_version != 0) {
5996 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5997 " version-0 superblocks.\n",
5998 mdname(mddev));
5999 return -EINVAL;
6000 }
6001 if (!mddev->pers->hot_add_disk) {
6002 printk(KERN_WARNING
6003 "%s: personality does not support diskops!\n",
6004 mdname(mddev));
6005 return -EINVAL;
6006 }
6007
6008 rdev = md_import_device(dev, -1, 0);
6009 if (IS_ERR(rdev)) {
6010 printk(KERN_WARNING
6011 "md: error, md_import_device() returned %ld\n",
6012 PTR_ERR(rdev));
6013 return -EINVAL;
6014 }
6015
6016 if (mddev->persistent)
6017 rdev->sb_start = calc_dev_sboffset(rdev);
6018 else
6019 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6020
6021 rdev->sectors = rdev->sb_start;
6022
6023 if (test_bit(Faulty, &rdev->flags)) {
6024 printk(KERN_WARNING
6025 "md: can not hot-add faulty %s disk to %s!\n",
6026 bdevname(rdev->bdev,b), mdname(mddev));
6027 err = -EINVAL;
6028 goto abort_export;
6029 }
6030
6031 if (mddev_is_clustered(mddev))
6032 md_cluster_ops->metadata_update_start(mddev);
6033 clear_bit(In_sync, &rdev->flags);
6034 rdev->desc_nr = -1;
6035 rdev->saved_raid_disk = -1;
6036 err = bind_rdev_to_array(rdev, mddev);
6037 if (err)
6038 goto abort_clustered;
6039
6040 /*
6041 * The rest should better be atomic, we can have disk failures
6042 * noticed in interrupt contexts ...
6043 */
6044
6045 rdev->raid_disk = -1;
6046
6047 md_update_sb(mddev, 1);
6048
6049 if (mddev_is_clustered(mddev))
6050 md_cluster_ops->metadata_update_finish(mddev);
6051 /*
6052 * Kick recovery, maybe this spare has to be added to the
6053 * array immediately.
6054 */
6055 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6056 md_wakeup_thread(mddev->thread);
6057 md_new_event(mddev);
6058 return 0;
6059
6060 abort_clustered:
6061 if (mddev_is_clustered(mddev))
6062 md_cluster_ops->metadata_update_cancel(mddev);
6063 abort_export:
6064 export_rdev(rdev);
6065 return err;
6066 }
6067
6068 static int set_bitmap_file(struct mddev *mddev, int fd)
6069 {
6070 int err = 0;
6071
6072 if (mddev->pers) {
6073 if (!mddev->pers->quiesce || !mddev->thread)
6074 return -EBUSY;
6075 if (mddev->recovery || mddev->sync_thread)
6076 return -EBUSY;
6077 /* we should be able to change the bitmap.. */
6078 }
6079
6080 if (fd >= 0) {
6081 struct inode *inode;
6082 struct file *f;
6083
6084 if (mddev->bitmap || mddev->bitmap_info.file)
6085 return -EEXIST; /* cannot add when bitmap is present */
6086 f = fget(fd);
6087
6088 if (f == NULL) {
6089 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6090 mdname(mddev));
6091 return -EBADF;
6092 }
6093
6094 inode = f->f_mapping->host;
6095 if (!S_ISREG(inode->i_mode)) {
6096 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6097 mdname(mddev));
6098 err = -EBADF;
6099 } else if (!(f->f_mode & FMODE_WRITE)) {
6100 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6101 mdname(mddev));
6102 err = -EBADF;
6103 } else if (atomic_read(&inode->i_writecount) != 1) {
6104 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6105 mdname(mddev));
6106 err = -EBUSY;
6107 }
6108 if (err) {
6109 fput(f);
6110 return err;
6111 }
6112 mddev->bitmap_info.file = f;
6113 mddev->bitmap_info.offset = 0; /* file overrides offset */
6114 } else if (mddev->bitmap == NULL)
6115 return -ENOENT; /* cannot remove what isn't there */
6116 err = 0;
6117 if (mddev->pers) {
6118 mddev->pers->quiesce(mddev, 1);
6119 if (fd >= 0) {
6120 struct bitmap *bitmap;
6121
6122 bitmap = bitmap_create(mddev, -1);
6123 if (!IS_ERR(bitmap)) {
6124 mddev->bitmap = bitmap;
6125 err = bitmap_load(mddev);
6126 } else
6127 err = PTR_ERR(bitmap);
6128 }
6129 if (fd < 0 || err) {
6130 bitmap_destroy(mddev);
6131 fd = -1; /* make sure to put the file */
6132 }
6133 mddev->pers->quiesce(mddev, 0);
6134 }
6135 if (fd < 0) {
6136 struct file *f = mddev->bitmap_info.file;
6137 if (f) {
6138 spin_lock(&mddev->lock);
6139 mddev->bitmap_info.file = NULL;
6140 spin_unlock(&mddev->lock);
6141 fput(f);
6142 }
6143 }
6144
6145 return err;
6146 }
6147
6148 /*
6149 * set_array_info is used two different ways
6150 * The original usage is when creating a new array.
6151 * In this usage, raid_disks is > 0 and it together with
6152 * level, size, not_persistent,layout,chunksize determine the
6153 * shape of the array.
6154 * This will always create an array with a type-0.90.0 superblock.
6155 * The newer usage is when assembling an array.
6156 * In this case raid_disks will be 0, and the major_version field is
6157 * use to determine which style super-blocks are to be found on the devices.
6158 * The minor and patch _version numbers are also kept incase the
6159 * super_block handler wishes to interpret them.
6160 */
6161 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6162 {
6163
6164 if (info->raid_disks == 0) {
6165 /* just setting version number for superblock loading */
6166 if (info->major_version < 0 ||
6167 info->major_version >= ARRAY_SIZE(super_types) ||
6168 super_types[info->major_version].name == NULL) {
6169 /* maybe try to auto-load a module? */
6170 printk(KERN_INFO
6171 "md: superblock version %d not known\n",
6172 info->major_version);
6173 return -EINVAL;
6174 }
6175 mddev->major_version = info->major_version;
6176 mddev->minor_version = info->minor_version;
6177 mddev->patch_version = info->patch_version;
6178 mddev->persistent = !info->not_persistent;
6179 /* ensure mddev_put doesn't delete this now that there
6180 * is some minimal configuration.
6181 */
6182 mddev->ctime = get_seconds();
6183 return 0;
6184 }
6185 mddev->major_version = MD_MAJOR_VERSION;
6186 mddev->minor_version = MD_MINOR_VERSION;
6187 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6188 mddev->ctime = get_seconds();
6189
6190 mddev->level = info->level;
6191 mddev->clevel[0] = 0;
6192 mddev->dev_sectors = 2 * (sector_t)info->size;
6193 mddev->raid_disks = info->raid_disks;
6194 /* don't set md_minor, it is determined by which /dev/md* was
6195 * openned
6196 */
6197 if (info->state & (1<<MD_SB_CLEAN))
6198 mddev->recovery_cp = MaxSector;
6199 else
6200 mddev->recovery_cp = 0;
6201 mddev->persistent = ! info->not_persistent;
6202 mddev->external = 0;
6203
6204 mddev->layout = info->layout;
6205 mddev->chunk_sectors = info->chunk_size >> 9;
6206
6207 mddev->max_disks = MD_SB_DISKS;
6208
6209 if (mddev->persistent)
6210 mddev->flags = 0;
6211 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6212
6213 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6214 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6215 mddev->bitmap_info.offset = 0;
6216
6217 mddev->reshape_position = MaxSector;
6218
6219 /*
6220 * Generate a 128 bit UUID
6221 */
6222 get_random_bytes(mddev->uuid, 16);
6223
6224 mddev->new_level = mddev->level;
6225 mddev->new_chunk_sectors = mddev->chunk_sectors;
6226 mddev->new_layout = mddev->layout;
6227 mddev->delta_disks = 0;
6228 mddev->reshape_backwards = 0;
6229
6230 return 0;
6231 }
6232
6233 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6234 {
6235 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6236
6237 if (mddev->external_size)
6238 return;
6239
6240 mddev->array_sectors = array_sectors;
6241 }
6242 EXPORT_SYMBOL(md_set_array_sectors);
6243
6244 static int update_size(struct mddev *mddev, sector_t num_sectors)
6245 {
6246 struct md_rdev *rdev;
6247 int rv;
6248 int fit = (num_sectors == 0);
6249
6250 if (mddev->pers->resize == NULL)
6251 return -EINVAL;
6252 /* The "num_sectors" is the number of sectors of each device that
6253 * is used. This can only make sense for arrays with redundancy.
6254 * linear and raid0 always use whatever space is available. We can only
6255 * consider changing this number if no resync or reconstruction is
6256 * happening, and if the new size is acceptable. It must fit before the
6257 * sb_start or, if that is <data_offset, it must fit before the size
6258 * of each device. If num_sectors is zero, we find the largest size
6259 * that fits.
6260 */
6261 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6262 mddev->sync_thread)
6263 return -EBUSY;
6264 if (mddev->ro)
6265 return -EROFS;
6266
6267 rdev_for_each(rdev, mddev) {
6268 sector_t avail = rdev->sectors;
6269
6270 if (fit && (num_sectors == 0 || num_sectors > avail))
6271 num_sectors = avail;
6272 if (avail < num_sectors)
6273 return -ENOSPC;
6274 }
6275 rv = mddev->pers->resize(mddev, num_sectors);
6276 if (!rv)
6277 revalidate_disk(mddev->gendisk);
6278 return rv;
6279 }
6280
6281 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6282 {
6283 int rv;
6284 struct md_rdev *rdev;
6285 /* change the number of raid disks */
6286 if (mddev->pers->check_reshape == NULL)
6287 return -EINVAL;
6288 if (mddev->ro)
6289 return -EROFS;
6290 if (raid_disks <= 0 ||
6291 (mddev->max_disks && raid_disks >= mddev->max_disks))
6292 return -EINVAL;
6293 if (mddev->sync_thread ||
6294 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6295 mddev->reshape_position != MaxSector)
6296 return -EBUSY;
6297
6298 rdev_for_each(rdev, mddev) {
6299 if (mddev->raid_disks < raid_disks &&
6300 rdev->data_offset < rdev->new_data_offset)
6301 return -EINVAL;
6302 if (mddev->raid_disks > raid_disks &&
6303 rdev->data_offset > rdev->new_data_offset)
6304 return -EINVAL;
6305 }
6306
6307 mddev->delta_disks = raid_disks - mddev->raid_disks;
6308 if (mddev->delta_disks < 0)
6309 mddev->reshape_backwards = 1;
6310 else if (mddev->delta_disks > 0)
6311 mddev->reshape_backwards = 0;
6312
6313 rv = mddev->pers->check_reshape(mddev);
6314 if (rv < 0) {
6315 mddev->delta_disks = 0;
6316 mddev->reshape_backwards = 0;
6317 }
6318 return rv;
6319 }
6320
6321 /*
6322 * update_array_info is used to change the configuration of an
6323 * on-line array.
6324 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6325 * fields in the info are checked against the array.
6326 * Any differences that cannot be handled will cause an error.
6327 * Normally, only one change can be managed at a time.
6328 */
6329 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6330 {
6331 int rv = 0;
6332 int cnt = 0;
6333 int state = 0;
6334
6335 /* calculate expected state,ignoring low bits */
6336 if (mddev->bitmap && mddev->bitmap_info.offset)
6337 state |= (1 << MD_SB_BITMAP_PRESENT);
6338
6339 if (mddev->major_version != info->major_version ||
6340 mddev->minor_version != info->minor_version ||
6341 /* mddev->patch_version != info->patch_version || */
6342 mddev->ctime != info->ctime ||
6343 mddev->level != info->level ||
6344 /* mddev->layout != info->layout || */
6345 !mddev->persistent != info->not_persistent||
6346 mddev->chunk_sectors != info->chunk_size >> 9 ||
6347 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6348 ((state^info->state) & 0xfffffe00)
6349 )
6350 return -EINVAL;
6351 /* Check there is only one change */
6352 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6353 cnt++;
6354 if (mddev->raid_disks != info->raid_disks)
6355 cnt++;
6356 if (mddev->layout != info->layout)
6357 cnt++;
6358 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6359 cnt++;
6360 if (cnt == 0)
6361 return 0;
6362 if (cnt > 1)
6363 return -EINVAL;
6364
6365 if (mddev->layout != info->layout) {
6366 /* Change layout
6367 * we don't need to do anything at the md level, the
6368 * personality will take care of it all.
6369 */
6370 if (mddev->pers->check_reshape == NULL)
6371 return -EINVAL;
6372 else {
6373 mddev->new_layout = info->layout;
6374 rv = mddev->pers->check_reshape(mddev);
6375 if (rv)
6376 mddev->new_layout = mddev->layout;
6377 return rv;
6378 }
6379 }
6380 if (mddev_is_clustered(mddev))
6381 md_cluster_ops->metadata_update_start(mddev);
6382 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6383 rv = update_size(mddev, (sector_t)info->size * 2);
6384
6385 if (mddev->raid_disks != info->raid_disks)
6386 rv = update_raid_disks(mddev, info->raid_disks);
6387
6388 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6389 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6390 rv = -EINVAL;
6391 goto err;
6392 }
6393 if (mddev->recovery || mddev->sync_thread) {
6394 rv = -EBUSY;
6395 goto err;
6396 }
6397 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6398 struct bitmap *bitmap;
6399 /* add the bitmap */
6400 if (mddev->bitmap) {
6401 rv = -EEXIST;
6402 goto err;
6403 }
6404 if (mddev->bitmap_info.default_offset == 0) {
6405 rv = -EINVAL;
6406 goto err;
6407 }
6408 mddev->bitmap_info.offset =
6409 mddev->bitmap_info.default_offset;
6410 mddev->bitmap_info.space =
6411 mddev->bitmap_info.default_space;
6412 mddev->pers->quiesce(mddev, 1);
6413 bitmap = bitmap_create(mddev, -1);
6414 if (!IS_ERR(bitmap)) {
6415 mddev->bitmap = bitmap;
6416 rv = bitmap_load(mddev);
6417 } else
6418 rv = PTR_ERR(bitmap);
6419 if (rv)
6420 bitmap_destroy(mddev);
6421 mddev->pers->quiesce(mddev, 0);
6422 } else {
6423 /* remove the bitmap */
6424 if (!mddev->bitmap) {
6425 rv = -ENOENT;
6426 goto err;
6427 }
6428 if (mddev->bitmap->storage.file) {
6429 rv = -EINVAL;
6430 goto err;
6431 }
6432 mddev->pers->quiesce(mddev, 1);
6433 bitmap_destroy(mddev);
6434 mddev->pers->quiesce(mddev, 0);
6435 mddev->bitmap_info.offset = 0;
6436 }
6437 }
6438 md_update_sb(mddev, 1);
6439 if (mddev_is_clustered(mddev))
6440 md_cluster_ops->metadata_update_finish(mddev);
6441 return rv;
6442 err:
6443 if (mddev_is_clustered(mddev))
6444 md_cluster_ops->metadata_update_cancel(mddev);
6445 return rv;
6446 }
6447
6448 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6449 {
6450 struct md_rdev *rdev;
6451 int err = 0;
6452
6453 if (mddev->pers == NULL)
6454 return -ENODEV;
6455
6456 rcu_read_lock();
6457 rdev = find_rdev_rcu(mddev, dev);
6458 if (!rdev)
6459 err = -ENODEV;
6460 else {
6461 md_error(mddev, rdev);
6462 if (!test_bit(Faulty, &rdev->flags))
6463 err = -EBUSY;
6464 }
6465 rcu_read_unlock();
6466 return err;
6467 }
6468
6469 /*
6470 * We have a problem here : there is no easy way to give a CHS
6471 * virtual geometry. We currently pretend that we have a 2 heads
6472 * 4 sectors (with a BIG number of cylinders...). This drives
6473 * dosfs just mad... ;-)
6474 */
6475 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6476 {
6477 struct mddev *mddev = bdev->bd_disk->private_data;
6478
6479 geo->heads = 2;
6480 geo->sectors = 4;
6481 geo->cylinders = mddev->array_sectors / 8;
6482 return 0;
6483 }
6484
6485 static inline bool md_ioctl_valid(unsigned int cmd)
6486 {
6487 switch (cmd) {
6488 case ADD_NEW_DISK:
6489 case BLKROSET:
6490 case GET_ARRAY_INFO:
6491 case GET_BITMAP_FILE:
6492 case GET_DISK_INFO:
6493 case HOT_ADD_DISK:
6494 case HOT_REMOVE_DISK:
6495 case RAID_AUTORUN:
6496 case RAID_VERSION:
6497 case RESTART_ARRAY_RW:
6498 case RUN_ARRAY:
6499 case SET_ARRAY_INFO:
6500 case SET_BITMAP_FILE:
6501 case SET_DISK_FAULTY:
6502 case STOP_ARRAY:
6503 case STOP_ARRAY_RO:
6504 case CLUSTERED_DISK_NACK:
6505 return true;
6506 default:
6507 return false;
6508 }
6509 }
6510
6511 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6512 unsigned int cmd, unsigned long arg)
6513 {
6514 int err = 0;
6515 void __user *argp = (void __user *)arg;
6516 struct mddev *mddev = NULL;
6517 int ro;
6518
6519 if (!md_ioctl_valid(cmd))
6520 return -ENOTTY;
6521
6522 switch (cmd) {
6523 case RAID_VERSION:
6524 case GET_ARRAY_INFO:
6525 case GET_DISK_INFO:
6526 break;
6527 default:
6528 if (!capable(CAP_SYS_ADMIN))
6529 return -EACCES;
6530 }
6531
6532 /*
6533 * Commands dealing with the RAID driver but not any
6534 * particular array:
6535 */
6536 switch (cmd) {
6537 case RAID_VERSION:
6538 err = get_version(argp);
6539 goto out;
6540
6541 #ifndef MODULE
6542 case RAID_AUTORUN:
6543 err = 0;
6544 autostart_arrays(arg);
6545 goto out;
6546 #endif
6547 default:;
6548 }
6549
6550 /*
6551 * Commands creating/starting a new array:
6552 */
6553
6554 mddev = bdev->bd_disk->private_data;
6555
6556 if (!mddev) {
6557 BUG();
6558 goto out;
6559 }
6560
6561 /* Some actions do not requires the mutex */
6562 switch (cmd) {
6563 case GET_ARRAY_INFO:
6564 if (!mddev->raid_disks && !mddev->external)
6565 err = -ENODEV;
6566 else
6567 err = get_array_info(mddev, argp);
6568 goto out;
6569
6570 case GET_DISK_INFO:
6571 if (!mddev->raid_disks && !mddev->external)
6572 err = -ENODEV;
6573 else
6574 err = get_disk_info(mddev, argp);
6575 goto out;
6576
6577 case SET_DISK_FAULTY:
6578 err = set_disk_faulty(mddev, new_decode_dev(arg));
6579 goto out;
6580
6581 case GET_BITMAP_FILE:
6582 err = get_bitmap_file(mddev, argp);
6583 goto out;
6584
6585 }
6586
6587 if (cmd == ADD_NEW_DISK)
6588 /* need to ensure md_delayed_delete() has completed */
6589 flush_workqueue(md_misc_wq);
6590
6591 if (cmd == HOT_REMOVE_DISK)
6592 /* need to ensure recovery thread has run */
6593 wait_event_interruptible_timeout(mddev->sb_wait,
6594 !test_bit(MD_RECOVERY_NEEDED,
6595 &mddev->flags),
6596 msecs_to_jiffies(5000));
6597 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6598 /* Need to flush page cache, and ensure no-one else opens
6599 * and writes
6600 */
6601 mutex_lock(&mddev->open_mutex);
6602 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6603 mutex_unlock(&mddev->open_mutex);
6604 err = -EBUSY;
6605 goto out;
6606 }
6607 set_bit(MD_STILL_CLOSED, &mddev->flags);
6608 mutex_unlock(&mddev->open_mutex);
6609 sync_blockdev(bdev);
6610 }
6611 err = mddev_lock(mddev);
6612 if (err) {
6613 printk(KERN_INFO
6614 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6615 err, cmd);
6616 goto out;
6617 }
6618
6619 if (cmd == SET_ARRAY_INFO) {
6620 mdu_array_info_t info;
6621 if (!arg)
6622 memset(&info, 0, sizeof(info));
6623 else if (copy_from_user(&info, argp, sizeof(info))) {
6624 err = -EFAULT;
6625 goto unlock;
6626 }
6627 if (mddev->pers) {
6628 err = update_array_info(mddev, &info);
6629 if (err) {
6630 printk(KERN_WARNING "md: couldn't update"
6631 " array info. %d\n", err);
6632 goto unlock;
6633 }
6634 goto unlock;
6635 }
6636 if (!list_empty(&mddev->disks)) {
6637 printk(KERN_WARNING
6638 "md: array %s already has disks!\n",
6639 mdname(mddev));
6640 err = -EBUSY;
6641 goto unlock;
6642 }
6643 if (mddev->raid_disks) {
6644 printk(KERN_WARNING
6645 "md: array %s already initialised!\n",
6646 mdname(mddev));
6647 err = -EBUSY;
6648 goto unlock;
6649 }
6650 err = set_array_info(mddev, &info);
6651 if (err) {
6652 printk(KERN_WARNING "md: couldn't set"
6653 " array info. %d\n", err);
6654 goto unlock;
6655 }
6656 goto unlock;
6657 }
6658
6659 /*
6660 * Commands querying/configuring an existing array:
6661 */
6662 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6663 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6664 if ((!mddev->raid_disks && !mddev->external)
6665 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6666 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6667 && cmd != GET_BITMAP_FILE) {
6668 err = -ENODEV;
6669 goto unlock;
6670 }
6671
6672 /*
6673 * Commands even a read-only array can execute:
6674 */
6675 switch (cmd) {
6676 case RESTART_ARRAY_RW:
6677 err = restart_array(mddev);
6678 goto unlock;
6679
6680 case STOP_ARRAY:
6681 err = do_md_stop(mddev, 0, bdev);
6682 goto unlock;
6683
6684 case STOP_ARRAY_RO:
6685 err = md_set_readonly(mddev, bdev);
6686 goto unlock;
6687
6688 case HOT_REMOVE_DISK:
6689 err = hot_remove_disk(mddev, new_decode_dev(arg));
6690 goto unlock;
6691
6692 case ADD_NEW_DISK:
6693 /* We can support ADD_NEW_DISK on read-only arrays
6694 * on if we are re-adding a preexisting device.
6695 * So require mddev->pers and MD_DISK_SYNC.
6696 */
6697 if (mddev->pers) {
6698 mdu_disk_info_t info;
6699 if (copy_from_user(&info, argp, sizeof(info)))
6700 err = -EFAULT;
6701 else if (!(info.state & (1<<MD_DISK_SYNC)))
6702 /* Need to clear read-only for this */
6703 break;
6704 else
6705 err = add_new_disk(mddev, &info);
6706 goto unlock;
6707 }
6708 break;
6709
6710 case BLKROSET:
6711 if (get_user(ro, (int __user *)(arg))) {
6712 err = -EFAULT;
6713 goto unlock;
6714 }
6715 err = -EINVAL;
6716
6717 /* if the bdev is going readonly the value of mddev->ro
6718 * does not matter, no writes are coming
6719 */
6720 if (ro)
6721 goto unlock;
6722
6723 /* are we are already prepared for writes? */
6724 if (mddev->ro != 1)
6725 goto unlock;
6726
6727 /* transitioning to readauto need only happen for
6728 * arrays that call md_write_start
6729 */
6730 if (mddev->pers) {
6731 err = restart_array(mddev);
6732 if (err == 0) {
6733 mddev->ro = 2;
6734 set_disk_ro(mddev->gendisk, 0);
6735 }
6736 }
6737 goto unlock;
6738 }
6739
6740 /*
6741 * The remaining ioctls are changing the state of the
6742 * superblock, so we do not allow them on read-only arrays.
6743 */
6744 if (mddev->ro && mddev->pers) {
6745 if (mddev->ro == 2) {
6746 mddev->ro = 0;
6747 sysfs_notify_dirent_safe(mddev->sysfs_state);
6748 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6749 /* mddev_unlock will wake thread */
6750 /* If a device failed while we were read-only, we
6751 * need to make sure the metadata is updated now.
6752 */
6753 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6754 mddev_unlock(mddev);
6755 wait_event(mddev->sb_wait,
6756 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6757 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6758 mddev_lock_nointr(mddev);
6759 }
6760 } else {
6761 err = -EROFS;
6762 goto unlock;
6763 }
6764 }
6765
6766 switch (cmd) {
6767 case ADD_NEW_DISK:
6768 {
6769 mdu_disk_info_t info;
6770 if (copy_from_user(&info, argp, sizeof(info)))
6771 err = -EFAULT;
6772 else
6773 err = add_new_disk(mddev, &info);
6774 goto unlock;
6775 }
6776
6777 case CLUSTERED_DISK_NACK:
6778 if (mddev_is_clustered(mddev))
6779 md_cluster_ops->new_disk_ack(mddev, false);
6780 else
6781 err = -EINVAL;
6782 goto unlock;
6783
6784 case HOT_ADD_DISK:
6785 err = hot_add_disk(mddev, new_decode_dev(arg));
6786 goto unlock;
6787
6788 case RUN_ARRAY:
6789 err = do_md_run(mddev);
6790 goto unlock;
6791
6792 case SET_BITMAP_FILE:
6793 err = set_bitmap_file(mddev, (int)arg);
6794 goto unlock;
6795
6796 default:
6797 err = -EINVAL;
6798 goto unlock;
6799 }
6800
6801 unlock:
6802 if (mddev->hold_active == UNTIL_IOCTL &&
6803 err != -EINVAL)
6804 mddev->hold_active = 0;
6805 mddev_unlock(mddev);
6806 out:
6807 return err;
6808 }
6809 #ifdef CONFIG_COMPAT
6810 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6811 unsigned int cmd, unsigned long arg)
6812 {
6813 switch (cmd) {
6814 case HOT_REMOVE_DISK:
6815 case HOT_ADD_DISK:
6816 case SET_DISK_FAULTY:
6817 case SET_BITMAP_FILE:
6818 /* These take in integer arg, do not convert */
6819 break;
6820 default:
6821 arg = (unsigned long)compat_ptr(arg);
6822 break;
6823 }
6824
6825 return md_ioctl(bdev, mode, cmd, arg);
6826 }
6827 #endif /* CONFIG_COMPAT */
6828
6829 static int md_open(struct block_device *bdev, fmode_t mode)
6830 {
6831 /*
6832 * Succeed if we can lock the mddev, which confirms that
6833 * it isn't being stopped right now.
6834 */
6835 struct mddev *mddev = mddev_find(bdev->bd_dev);
6836 int err;
6837
6838 if (!mddev)
6839 return -ENODEV;
6840
6841 if (mddev->gendisk != bdev->bd_disk) {
6842 /* we are racing with mddev_put which is discarding this
6843 * bd_disk.
6844 */
6845 mddev_put(mddev);
6846 /* Wait until bdev->bd_disk is definitely gone */
6847 flush_workqueue(md_misc_wq);
6848 /* Then retry the open from the top */
6849 return -ERESTARTSYS;
6850 }
6851 BUG_ON(mddev != bdev->bd_disk->private_data);
6852
6853 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6854 goto out;
6855
6856 err = 0;
6857 atomic_inc(&mddev->openers);
6858 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6859 mutex_unlock(&mddev->open_mutex);
6860
6861 check_disk_change(bdev);
6862 out:
6863 return err;
6864 }
6865
6866 static void md_release(struct gendisk *disk, fmode_t mode)
6867 {
6868 struct mddev *mddev = disk->private_data;
6869
6870 BUG_ON(!mddev);
6871 atomic_dec(&mddev->openers);
6872 mddev_put(mddev);
6873 }
6874
6875 static int md_media_changed(struct gendisk *disk)
6876 {
6877 struct mddev *mddev = disk->private_data;
6878
6879 return mddev->changed;
6880 }
6881
6882 static int md_revalidate(struct gendisk *disk)
6883 {
6884 struct mddev *mddev = disk->private_data;
6885
6886 mddev->changed = 0;
6887 return 0;
6888 }
6889 static const struct block_device_operations md_fops =
6890 {
6891 .owner = THIS_MODULE,
6892 .open = md_open,
6893 .release = md_release,
6894 .ioctl = md_ioctl,
6895 #ifdef CONFIG_COMPAT
6896 .compat_ioctl = md_compat_ioctl,
6897 #endif
6898 .getgeo = md_getgeo,
6899 .media_changed = md_media_changed,
6900 .revalidate_disk= md_revalidate,
6901 };
6902
6903 static int md_thread(void *arg)
6904 {
6905 struct md_thread *thread = arg;
6906
6907 /*
6908 * md_thread is a 'system-thread', it's priority should be very
6909 * high. We avoid resource deadlocks individually in each
6910 * raid personality. (RAID5 does preallocation) We also use RR and
6911 * the very same RT priority as kswapd, thus we will never get
6912 * into a priority inversion deadlock.
6913 *
6914 * we definitely have to have equal or higher priority than
6915 * bdflush, otherwise bdflush will deadlock if there are too
6916 * many dirty RAID5 blocks.
6917 */
6918
6919 allow_signal(SIGKILL);
6920 while (!kthread_should_stop()) {
6921
6922 /* We need to wait INTERRUPTIBLE so that
6923 * we don't add to the load-average.
6924 * That means we need to be sure no signals are
6925 * pending
6926 */
6927 if (signal_pending(current))
6928 flush_signals(current);
6929
6930 wait_event_interruptible_timeout
6931 (thread->wqueue,
6932 test_bit(THREAD_WAKEUP, &thread->flags)
6933 || kthread_should_stop(),
6934 thread->timeout);
6935
6936 clear_bit(THREAD_WAKEUP, &thread->flags);
6937 if (!kthread_should_stop())
6938 thread->run(thread);
6939 }
6940
6941 return 0;
6942 }
6943
6944 void md_wakeup_thread(struct md_thread *thread)
6945 {
6946 if (thread) {
6947 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6948 set_bit(THREAD_WAKEUP, &thread->flags);
6949 wake_up(&thread->wqueue);
6950 }
6951 }
6952 EXPORT_SYMBOL(md_wakeup_thread);
6953
6954 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6955 struct mddev *mddev, const char *name)
6956 {
6957 struct md_thread *thread;
6958
6959 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6960 if (!thread)
6961 return NULL;
6962
6963 init_waitqueue_head(&thread->wqueue);
6964
6965 thread->run = run;
6966 thread->mddev = mddev;
6967 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6968 thread->tsk = kthread_run(md_thread, thread,
6969 "%s_%s",
6970 mdname(thread->mddev),
6971 name);
6972 if (IS_ERR(thread->tsk)) {
6973 kfree(thread);
6974 return NULL;
6975 }
6976 return thread;
6977 }
6978 EXPORT_SYMBOL(md_register_thread);
6979
6980 void md_unregister_thread(struct md_thread **threadp)
6981 {
6982 struct md_thread *thread = *threadp;
6983 if (!thread)
6984 return;
6985 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6986 /* Locking ensures that mddev_unlock does not wake_up a
6987 * non-existent thread
6988 */
6989 spin_lock(&pers_lock);
6990 *threadp = NULL;
6991 spin_unlock(&pers_lock);
6992
6993 kthread_stop(thread->tsk);
6994 kfree(thread);
6995 }
6996 EXPORT_SYMBOL(md_unregister_thread);
6997
6998 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6999 {
7000 if (!rdev || test_bit(Faulty, &rdev->flags))
7001 return;
7002
7003 if (!mddev->pers || !mddev->pers->error_handler)
7004 return;
7005 mddev->pers->error_handler(mddev,rdev);
7006 if (mddev->degraded)
7007 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7008 sysfs_notify_dirent_safe(rdev->sysfs_state);
7009 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7010 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7011 md_wakeup_thread(mddev->thread);
7012 if (mddev->event_work.func)
7013 queue_work(md_misc_wq, &mddev->event_work);
7014 md_new_event_inintr(mddev);
7015 }
7016 EXPORT_SYMBOL(md_error);
7017
7018 /* seq_file implementation /proc/mdstat */
7019
7020 static void status_unused(struct seq_file *seq)
7021 {
7022 int i = 0;
7023 struct md_rdev *rdev;
7024
7025 seq_printf(seq, "unused devices: ");
7026
7027 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7028 char b[BDEVNAME_SIZE];
7029 i++;
7030 seq_printf(seq, "%s ",
7031 bdevname(rdev->bdev,b));
7032 }
7033 if (!i)
7034 seq_printf(seq, "<none>");
7035
7036 seq_printf(seq, "\n");
7037 }
7038
7039 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7040 {
7041 sector_t max_sectors, resync, res;
7042 unsigned long dt, db;
7043 sector_t rt;
7044 int scale;
7045 unsigned int per_milli;
7046
7047 if (mddev->curr_resync <= 3)
7048 resync = 0;
7049 else
7050 resync = mddev->curr_resync
7051 - atomic_read(&mddev->recovery_active);
7052
7053 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7054 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7055 max_sectors = mddev->resync_max_sectors;
7056 else
7057 max_sectors = mddev->dev_sectors;
7058
7059 WARN_ON(max_sectors == 0);
7060 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7061 * in a sector_t, and (max_sectors>>scale) will fit in a
7062 * u32, as those are the requirements for sector_div.
7063 * Thus 'scale' must be at least 10
7064 */
7065 scale = 10;
7066 if (sizeof(sector_t) > sizeof(unsigned long)) {
7067 while ( max_sectors/2 > (1ULL<<(scale+32)))
7068 scale++;
7069 }
7070 res = (resync>>scale)*1000;
7071 sector_div(res, (u32)((max_sectors>>scale)+1));
7072
7073 per_milli = res;
7074 {
7075 int i, x = per_milli/50, y = 20-x;
7076 seq_printf(seq, "[");
7077 for (i = 0; i < x; i++)
7078 seq_printf(seq, "=");
7079 seq_printf(seq, ">");
7080 for (i = 0; i < y; i++)
7081 seq_printf(seq, ".");
7082 seq_printf(seq, "] ");
7083 }
7084 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7085 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7086 "reshape" :
7087 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7088 "check" :
7089 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7090 "resync" : "recovery"))),
7091 per_milli/10, per_milli % 10,
7092 (unsigned long long) resync/2,
7093 (unsigned long long) max_sectors/2);
7094
7095 /*
7096 * dt: time from mark until now
7097 * db: blocks written from mark until now
7098 * rt: remaining time
7099 *
7100 * rt is a sector_t, so could be 32bit or 64bit.
7101 * So we divide before multiply in case it is 32bit and close
7102 * to the limit.
7103 * We scale the divisor (db) by 32 to avoid losing precision
7104 * near the end of resync when the number of remaining sectors
7105 * is close to 'db'.
7106 * We then divide rt by 32 after multiplying by db to compensate.
7107 * The '+1' avoids division by zero if db is very small.
7108 */
7109 dt = ((jiffies - mddev->resync_mark) / HZ);
7110 if (!dt) dt++;
7111 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7112 - mddev->resync_mark_cnt;
7113
7114 rt = max_sectors - resync; /* number of remaining sectors */
7115 sector_div(rt, db/32+1);
7116 rt *= dt;
7117 rt >>= 5;
7118
7119 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7120 ((unsigned long)rt % 60)/6);
7121
7122 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7123 }
7124
7125 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7126 {
7127 struct list_head *tmp;
7128 loff_t l = *pos;
7129 struct mddev *mddev;
7130
7131 if (l >= 0x10000)
7132 return NULL;
7133 if (!l--)
7134 /* header */
7135 return (void*)1;
7136
7137 spin_lock(&all_mddevs_lock);
7138 list_for_each(tmp,&all_mddevs)
7139 if (!l--) {
7140 mddev = list_entry(tmp, struct mddev, all_mddevs);
7141 mddev_get(mddev);
7142 spin_unlock(&all_mddevs_lock);
7143 return mddev;
7144 }
7145 spin_unlock(&all_mddevs_lock);
7146 if (!l--)
7147 return (void*)2;/* tail */
7148 return NULL;
7149 }
7150
7151 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7152 {
7153 struct list_head *tmp;
7154 struct mddev *next_mddev, *mddev = v;
7155
7156 ++*pos;
7157 if (v == (void*)2)
7158 return NULL;
7159
7160 spin_lock(&all_mddevs_lock);
7161 if (v == (void*)1)
7162 tmp = all_mddevs.next;
7163 else
7164 tmp = mddev->all_mddevs.next;
7165 if (tmp != &all_mddevs)
7166 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7167 else {
7168 next_mddev = (void*)2;
7169 *pos = 0x10000;
7170 }
7171 spin_unlock(&all_mddevs_lock);
7172
7173 if (v != (void*)1)
7174 mddev_put(mddev);
7175 return next_mddev;
7176
7177 }
7178
7179 static void md_seq_stop(struct seq_file *seq, void *v)
7180 {
7181 struct mddev *mddev = v;
7182
7183 if (mddev && v != (void*)1 && v != (void*)2)
7184 mddev_put(mddev);
7185 }
7186
7187 static int md_seq_show(struct seq_file *seq, void *v)
7188 {
7189 struct mddev *mddev = v;
7190 sector_t sectors;
7191 struct md_rdev *rdev;
7192
7193 if (v == (void*)1) {
7194 struct md_personality *pers;
7195 seq_printf(seq, "Personalities : ");
7196 spin_lock(&pers_lock);
7197 list_for_each_entry(pers, &pers_list, list)
7198 seq_printf(seq, "[%s] ", pers->name);
7199
7200 spin_unlock(&pers_lock);
7201 seq_printf(seq, "\n");
7202 seq->poll_event = atomic_read(&md_event_count);
7203 return 0;
7204 }
7205 if (v == (void*)2) {
7206 status_unused(seq);
7207 return 0;
7208 }
7209
7210 spin_lock(&mddev->lock);
7211 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7212 seq_printf(seq, "%s : %sactive", mdname(mddev),
7213 mddev->pers ? "" : "in");
7214 if (mddev->pers) {
7215 if (mddev->ro==1)
7216 seq_printf(seq, " (read-only)");
7217 if (mddev->ro==2)
7218 seq_printf(seq, " (auto-read-only)");
7219 seq_printf(seq, " %s", mddev->pers->name);
7220 }
7221
7222 sectors = 0;
7223 rcu_read_lock();
7224 rdev_for_each_rcu(rdev, mddev) {
7225 char b[BDEVNAME_SIZE];
7226 seq_printf(seq, " %s[%d]",
7227 bdevname(rdev->bdev,b), rdev->desc_nr);
7228 if (test_bit(WriteMostly, &rdev->flags))
7229 seq_printf(seq, "(W)");
7230 if (test_bit(Faulty, &rdev->flags)) {
7231 seq_printf(seq, "(F)");
7232 continue;
7233 }
7234 if (rdev->raid_disk < 0)
7235 seq_printf(seq, "(S)"); /* spare */
7236 if (test_bit(Replacement, &rdev->flags))
7237 seq_printf(seq, "(R)");
7238 sectors += rdev->sectors;
7239 }
7240 rcu_read_unlock();
7241
7242 if (!list_empty(&mddev->disks)) {
7243 if (mddev->pers)
7244 seq_printf(seq, "\n %llu blocks",
7245 (unsigned long long)
7246 mddev->array_sectors / 2);
7247 else
7248 seq_printf(seq, "\n %llu blocks",
7249 (unsigned long long)sectors / 2);
7250 }
7251 if (mddev->persistent) {
7252 if (mddev->major_version != 0 ||
7253 mddev->minor_version != 90) {
7254 seq_printf(seq," super %d.%d",
7255 mddev->major_version,
7256 mddev->minor_version);
7257 }
7258 } else if (mddev->external)
7259 seq_printf(seq, " super external:%s",
7260 mddev->metadata_type);
7261 else
7262 seq_printf(seq, " super non-persistent");
7263
7264 if (mddev->pers) {
7265 mddev->pers->status(seq, mddev);
7266 seq_printf(seq, "\n ");
7267 if (mddev->pers->sync_request) {
7268 if (mddev->curr_resync > 2) {
7269 status_resync(seq, mddev);
7270 seq_printf(seq, "\n ");
7271 } else if (mddev->curr_resync >= 1)
7272 seq_printf(seq, "\tresync=DELAYED\n ");
7273 else if (mddev->recovery_cp < MaxSector)
7274 seq_printf(seq, "\tresync=PENDING\n ");
7275 }
7276 } else
7277 seq_printf(seq, "\n ");
7278
7279 bitmap_status(seq, mddev->bitmap);
7280
7281 seq_printf(seq, "\n");
7282 }
7283 spin_unlock(&mddev->lock);
7284
7285 return 0;
7286 }
7287
7288 static const struct seq_operations md_seq_ops = {
7289 .start = md_seq_start,
7290 .next = md_seq_next,
7291 .stop = md_seq_stop,
7292 .show = md_seq_show,
7293 };
7294
7295 static int md_seq_open(struct inode *inode, struct file *file)
7296 {
7297 struct seq_file *seq;
7298 int error;
7299
7300 error = seq_open(file, &md_seq_ops);
7301 if (error)
7302 return error;
7303
7304 seq = file->private_data;
7305 seq->poll_event = atomic_read(&md_event_count);
7306 return error;
7307 }
7308
7309 static int md_unloading;
7310 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7311 {
7312 struct seq_file *seq = filp->private_data;
7313 int mask;
7314
7315 if (md_unloading)
7316 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7317 poll_wait(filp, &md_event_waiters, wait);
7318
7319 /* always allow read */
7320 mask = POLLIN | POLLRDNORM;
7321
7322 if (seq->poll_event != atomic_read(&md_event_count))
7323 mask |= POLLERR | POLLPRI;
7324 return mask;
7325 }
7326
7327 static const struct file_operations md_seq_fops = {
7328 .owner = THIS_MODULE,
7329 .open = md_seq_open,
7330 .read = seq_read,
7331 .llseek = seq_lseek,
7332 .release = seq_release_private,
7333 .poll = mdstat_poll,
7334 };
7335
7336 int register_md_personality(struct md_personality *p)
7337 {
7338 printk(KERN_INFO "md: %s personality registered for level %d\n",
7339 p->name, p->level);
7340 spin_lock(&pers_lock);
7341 list_add_tail(&p->list, &pers_list);
7342 spin_unlock(&pers_lock);
7343 return 0;
7344 }
7345 EXPORT_SYMBOL(register_md_personality);
7346
7347 int unregister_md_personality(struct md_personality *p)
7348 {
7349 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7350 spin_lock(&pers_lock);
7351 list_del_init(&p->list);
7352 spin_unlock(&pers_lock);
7353 return 0;
7354 }
7355 EXPORT_SYMBOL(unregister_md_personality);
7356
7357 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7358 {
7359 if (md_cluster_ops != NULL)
7360 return -EALREADY;
7361 spin_lock(&pers_lock);
7362 md_cluster_ops = ops;
7363 md_cluster_mod = module;
7364 spin_unlock(&pers_lock);
7365 return 0;
7366 }
7367 EXPORT_SYMBOL(register_md_cluster_operations);
7368
7369 int unregister_md_cluster_operations(void)
7370 {
7371 spin_lock(&pers_lock);
7372 md_cluster_ops = NULL;
7373 spin_unlock(&pers_lock);
7374 return 0;
7375 }
7376 EXPORT_SYMBOL(unregister_md_cluster_operations);
7377
7378 int md_setup_cluster(struct mddev *mddev, int nodes)
7379 {
7380 int err;
7381
7382 err = request_module("md-cluster");
7383 if (err) {
7384 pr_err("md-cluster module not found.\n");
7385 return err;
7386 }
7387
7388 spin_lock(&pers_lock);
7389 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7390 spin_unlock(&pers_lock);
7391 return -ENOENT;
7392 }
7393 spin_unlock(&pers_lock);
7394
7395 return md_cluster_ops->join(mddev, nodes);
7396 }
7397
7398 void md_cluster_stop(struct mddev *mddev)
7399 {
7400 if (!md_cluster_ops)
7401 return;
7402 md_cluster_ops->leave(mddev);
7403 module_put(md_cluster_mod);
7404 }
7405
7406 static int is_mddev_idle(struct mddev *mddev, int init)
7407 {
7408 struct md_rdev *rdev;
7409 int idle;
7410 int curr_events;
7411
7412 idle = 1;
7413 rcu_read_lock();
7414 rdev_for_each_rcu(rdev, mddev) {
7415 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7416 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7417 (int)part_stat_read(&disk->part0, sectors[1]) -
7418 atomic_read(&disk->sync_io);
7419 /* sync IO will cause sync_io to increase before the disk_stats
7420 * as sync_io is counted when a request starts, and
7421 * disk_stats is counted when it completes.
7422 * So resync activity will cause curr_events to be smaller than
7423 * when there was no such activity.
7424 * non-sync IO will cause disk_stat to increase without
7425 * increasing sync_io so curr_events will (eventually)
7426 * be larger than it was before. Once it becomes
7427 * substantially larger, the test below will cause
7428 * the array to appear non-idle, and resync will slow
7429 * down.
7430 * If there is a lot of outstanding resync activity when
7431 * we set last_event to curr_events, then all that activity
7432 * completing might cause the array to appear non-idle
7433 * and resync will be slowed down even though there might
7434 * not have been non-resync activity. This will only
7435 * happen once though. 'last_events' will soon reflect
7436 * the state where there is little or no outstanding
7437 * resync requests, and further resync activity will
7438 * always make curr_events less than last_events.
7439 *
7440 */
7441 if (init || curr_events - rdev->last_events > 64) {
7442 rdev->last_events = curr_events;
7443 idle = 0;
7444 }
7445 }
7446 rcu_read_unlock();
7447 return idle;
7448 }
7449
7450 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7451 {
7452 /* another "blocks" (512byte) blocks have been synced */
7453 atomic_sub(blocks, &mddev->recovery_active);
7454 wake_up(&mddev->recovery_wait);
7455 if (!ok) {
7456 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7457 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7458 md_wakeup_thread(mddev->thread);
7459 // stop recovery, signal do_sync ....
7460 }
7461 }
7462 EXPORT_SYMBOL(md_done_sync);
7463
7464 /* md_write_start(mddev, bi)
7465 * If we need to update some array metadata (e.g. 'active' flag
7466 * in superblock) before writing, schedule a superblock update
7467 * and wait for it to complete.
7468 */
7469 void md_write_start(struct mddev *mddev, struct bio *bi)
7470 {
7471 int did_change = 0;
7472 if (bio_data_dir(bi) != WRITE)
7473 return;
7474
7475 BUG_ON(mddev->ro == 1);
7476 if (mddev->ro == 2) {
7477 /* need to switch to read/write */
7478 mddev->ro = 0;
7479 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7480 md_wakeup_thread(mddev->thread);
7481 md_wakeup_thread(mddev->sync_thread);
7482 did_change = 1;
7483 }
7484 atomic_inc(&mddev->writes_pending);
7485 if (mddev->safemode == 1)
7486 mddev->safemode = 0;
7487 if (mddev->in_sync) {
7488 spin_lock(&mddev->lock);
7489 if (mddev->in_sync) {
7490 mddev->in_sync = 0;
7491 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7492 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7493 md_wakeup_thread(mddev->thread);
7494 did_change = 1;
7495 }
7496 spin_unlock(&mddev->lock);
7497 }
7498 if (did_change)
7499 sysfs_notify_dirent_safe(mddev->sysfs_state);
7500 wait_event(mddev->sb_wait,
7501 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7502 }
7503 EXPORT_SYMBOL(md_write_start);
7504
7505 void md_write_end(struct mddev *mddev)
7506 {
7507 if (atomic_dec_and_test(&mddev->writes_pending)) {
7508 if (mddev->safemode == 2)
7509 md_wakeup_thread(mddev->thread);
7510 else if (mddev->safemode_delay)
7511 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7512 }
7513 }
7514 EXPORT_SYMBOL(md_write_end);
7515
7516 /* md_allow_write(mddev)
7517 * Calling this ensures that the array is marked 'active' so that writes
7518 * may proceed without blocking. It is important to call this before
7519 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7520 * Must be called with mddev_lock held.
7521 *
7522 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7523 * is dropped, so return -EAGAIN after notifying userspace.
7524 */
7525 int md_allow_write(struct mddev *mddev)
7526 {
7527 if (!mddev->pers)
7528 return 0;
7529 if (mddev->ro)
7530 return 0;
7531 if (!mddev->pers->sync_request)
7532 return 0;
7533
7534 spin_lock(&mddev->lock);
7535 if (mddev->in_sync) {
7536 mddev->in_sync = 0;
7537 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7538 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7539 if (mddev->safemode_delay &&
7540 mddev->safemode == 0)
7541 mddev->safemode = 1;
7542 spin_unlock(&mddev->lock);
7543 if (mddev_is_clustered(mddev))
7544 md_cluster_ops->metadata_update_start(mddev);
7545 md_update_sb(mddev, 0);
7546 if (mddev_is_clustered(mddev))
7547 md_cluster_ops->metadata_update_finish(mddev);
7548 sysfs_notify_dirent_safe(mddev->sysfs_state);
7549 } else
7550 spin_unlock(&mddev->lock);
7551
7552 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7553 return -EAGAIN;
7554 else
7555 return 0;
7556 }
7557 EXPORT_SYMBOL_GPL(md_allow_write);
7558
7559 #define SYNC_MARKS 10
7560 #define SYNC_MARK_STEP (3*HZ)
7561 #define UPDATE_FREQUENCY (5*60*HZ)
7562 void md_do_sync(struct md_thread *thread)
7563 {
7564 struct mddev *mddev = thread->mddev;
7565 struct mddev *mddev2;
7566 unsigned int currspeed = 0,
7567 window;
7568 sector_t max_sectors,j, io_sectors, recovery_done;
7569 unsigned long mark[SYNC_MARKS];
7570 unsigned long update_time;
7571 sector_t mark_cnt[SYNC_MARKS];
7572 int last_mark,m;
7573 struct list_head *tmp;
7574 sector_t last_check;
7575 int skipped = 0;
7576 struct md_rdev *rdev;
7577 char *desc, *action = NULL;
7578 struct blk_plug plug;
7579
7580 /* just incase thread restarts... */
7581 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7582 return;
7583 if (mddev->ro) {/* never try to sync a read-only array */
7584 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7585 return;
7586 }
7587
7588 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7589 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7590 desc = "data-check";
7591 action = "check";
7592 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7593 desc = "requested-resync";
7594 action = "repair";
7595 } else
7596 desc = "resync";
7597 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7598 desc = "reshape";
7599 else
7600 desc = "recovery";
7601
7602 mddev->last_sync_action = action ?: desc;
7603
7604 /* we overload curr_resync somewhat here.
7605 * 0 == not engaged in resync at all
7606 * 2 == checking that there is no conflict with another sync
7607 * 1 == like 2, but have yielded to allow conflicting resync to
7608 * commense
7609 * other == active in resync - this many blocks
7610 *
7611 * Before starting a resync we must have set curr_resync to
7612 * 2, and then checked that every "conflicting" array has curr_resync
7613 * less than ours. When we find one that is the same or higher
7614 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7615 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7616 * This will mean we have to start checking from the beginning again.
7617 *
7618 */
7619
7620 do {
7621 mddev->curr_resync = 2;
7622
7623 try_again:
7624 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7625 goto skip;
7626 for_each_mddev(mddev2, tmp) {
7627 if (mddev2 == mddev)
7628 continue;
7629 if (!mddev->parallel_resync
7630 && mddev2->curr_resync
7631 && match_mddev_units(mddev, mddev2)) {
7632 DEFINE_WAIT(wq);
7633 if (mddev < mddev2 && mddev->curr_resync == 2) {
7634 /* arbitrarily yield */
7635 mddev->curr_resync = 1;
7636 wake_up(&resync_wait);
7637 }
7638 if (mddev > mddev2 && mddev->curr_resync == 1)
7639 /* no need to wait here, we can wait the next
7640 * time 'round when curr_resync == 2
7641 */
7642 continue;
7643 /* We need to wait 'interruptible' so as not to
7644 * contribute to the load average, and not to
7645 * be caught by 'softlockup'
7646 */
7647 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7648 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7649 mddev2->curr_resync >= mddev->curr_resync) {
7650 printk(KERN_INFO "md: delaying %s of %s"
7651 " until %s has finished (they"
7652 " share one or more physical units)\n",
7653 desc, mdname(mddev), mdname(mddev2));
7654 mddev_put(mddev2);
7655 if (signal_pending(current))
7656 flush_signals(current);
7657 schedule();
7658 finish_wait(&resync_wait, &wq);
7659 goto try_again;
7660 }
7661 finish_wait(&resync_wait, &wq);
7662 }
7663 }
7664 } while (mddev->curr_resync < 2);
7665
7666 j = 0;
7667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7668 /* resync follows the size requested by the personality,
7669 * which defaults to physical size, but can be virtual size
7670 */
7671 max_sectors = mddev->resync_max_sectors;
7672 atomic64_set(&mddev->resync_mismatches, 0);
7673 /* we don't use the checkpoint if there's a bitmap */
7674 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7675 j = mddev->resync_min;
7676 else if (!mddev->bitmap)
7677 j = mddev->recovery_cp;
7678
7679 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7680 max_sectors = mddev->resync_max_sectors;
7681 else {
7682 /* recovery follows the physical size of devices */
7683 max_sectors = mddev->dev_sectors;
7684 j = MaxSector;
7685 rcu_read_lock();
7686 rdev_for_each_rcu(rdev, mddev)
7687 if (rdev->raid_disk >= 0 &&
7688 !test_bit(Faulty, &rdev->flags) &&
7689 !test_bit(In_sync, &rdev->flags) &&
7690 rdev->recovery_offset < j)
7691 j = rdev->recovery_offset;
7692 rcu_read_unlock();
7693
7694 /* If there is a bitmap, we need to make sure all
7695 * writes that started before we added a spare
7696 * complete before we start doing a recovery.
7697 * Otherwise the write might complete and (via
7698 * bitmap_endwrite) set a bit in the bitmap after the
7699 * recovery has checked that bit and skipped that
7700 * region.
7701 */
7702 if (mddev->bitmap) {
7703 mddev->pers->quiesce(mddev, 1);
7704 mddev->pers->quiesce(mddev, 0);
7705 }
7706 }
7707
7708 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7709 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7710 " %d KB/sec/disk.\n", speed_min(mddev));
7711 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7712 "(but not more than %d KB/sec) for %s.\n",
7713 speed_max(mddev), desc);
7714
7715 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7716
7717 io_sectors = 0;
7718 for (m = 0; m < SYNC_MARKS; m++) {
7719 mark[m] = jiffies;
7720 mark_cnt[m] = io_sectors;
7721 }
7722 last_mark = 0;
7723 mddev->resync_mark = mark[last_mark];
7724 mddev->resync_mark_cnt = mark_cnt[last_mark];
7725
7726 /*
7727 * Tune reconstruction:
7728 */
7729 window = 32*(PAGE_SIZE/512);
7730 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7731 window/2, (unsigned long long)max_sectors/2);
7732
7733 atomic_set(&mddev->recovery_active, 0);
7734 last_check = 0;
7735
7736 if (j>2) {
7737 printk(KERN_INFO
7738 "md: resuming %s of %s from checkpoint.\n",
7739 desc, mdname(mddev));
7740 mddev->curr_resync = j;
7741 } else
7742 mddev->curr_resync = 3; /* no longer delayed */
7743 mddev->curr_resync_completed = j;
7744 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7745 md_new_event(mddev);
7746 update_time = jiffies;
7747
7748 if (mddev_is_clustered(mddev))
7749 md_cluster_ops->resync_start(mddev, j, max_sectors);
7750
7751 blk_start_plug(&plug);
7752 while (j < max_sectors) {
7753 sector_t sectors;
7754
7755 skipped = 0;
7756
7757 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7758 ((mddev->curr_resync > mddev->curr_resync_completed &&
7759 (mddev->curr_resync - mddev->curr_resync_completed)
7760 > (max_sectors >> 4)) ||
7761 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7762 (j - mddev->curr_resync_completed)*2
7763 >= mddev->resync_max - mddev->curr_resync_completed
7764 )) {
7765 /* time to update curr_resync_completed */
7766 wait_event(mddev->recovery_wait,
7767 atomic_read(&mddev->recovery_active) == 0);
7768 mddev->curr_resync_completed = j;
7769 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7770 j > mddev->recovery_cp)
7771 mddev->recovery_cp = j;
7772 update_time = jiffies;
7773 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7774 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7775 }
7776
7777 while (j >= mddev->resync_max &&
7778 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7779 /* As this condition is controlled by user-space,
7780 * we can block indefinitely, so use '_interruptible'
7781 * to avoid triggering warnings.
7782 */
7783 flush_signals(current); /* just in case */
7784 wait_event_interruptible(mddev->recovery_wait,
7785 mddev->resync_max > j
7786 || test_bit(MD_RECOVERY_INTR,
7787 &mddev->recovery));
7788 }
7789
7790 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7791 break;
7792
7793 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7794 currspeed < speed_min(mddev));
7795 if (sectors == 0) {
7796 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7797 break;
7798 }
7799
7800 if (!skipped) { /* actual IO requested */
7801 io_sectors += sectors;
7802 atomic_add(sectors, &mddev->recovery_active);
7803 }
7804
7805 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7806 break;
7807
7808 j += sectors;
7809 if (j > 2)
7810 mddev->curr_resync = j;
7811 if (mddev_is_clustered(mddev))
7812 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7813 mddev->curr_mark_cnt = io_sectors;
7814 if (last_check == 0)
7815 /* this is the earliest that rebuild will be
7816 * visible in /proc/mdstat
7817 */
7818 md_new_event(mddev);
7819
7820 if (last_check + window > io_sectors || j == max_sectors)
7821 continue;
7822
7823 last_check = io_sectors;
7824 repeat:
7825 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7826 /* step marks */
7827 int next = (last_mark+1) % SYNC_MARKS;
7828
7829 mddev->resync_mark = mark[next];
7830 mddev->resync_mark_cnt = mark_cnt[next];
7831 mark[next] = jiffies;
7832 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7833 last_mark = next;
7834 }
7835
7836 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7837 break;
7838
7839 /*
7840 * this loop exits only if either when we are slower than
7841 * the 'hard' speed limit, or the system was IO-idle for
7842 * a jiffy.
7843 * the system might be non-idle CPU-wise, but we only care
7844 * about not overloading the IO subsystem. (things like an
7845 * e2fsck being done on the RAID array should execute fast)
7846 */
7847 cond_resched();
7848
7849 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7850 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7851 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7852
7853 if (currspeed > speed_min(mddev)) {
7854 if ((currspeed > speed_max(mddev)) ||
7855 !is_mddev_idle(mddev, 0)) {
7856 msleep(500);
7857 goto repeat;
7858 }
7859 }
7860 }
7861 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7862 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7863 ? "interrupted" : "done");
7864 /*
7865 * this also signals 'finished resyncing' to md_stop
7866 */
7867 blk_finish_plug(&plug);
7868 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7869
7870 /* tell personality that we are finished */
7871 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7872
7873 if (mddev_is_clustered(mddev))
7874 md_cluster_ops->resync_finish(mddev);
7875
7876 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7877 mddev->curr_resync > 2) {
7878 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7879 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7880 if (mddev->curr_resync >= mddev->recovery_cp) {
7881 printk(KERN_INFO
7882 "md: checkpointing %s of %s.\n",
7883 desc, mdname(mddev));
7884 if (test_bit(MD_RECOVERY_ERROR,
7885 &mddev->recovery))
7886 mddev->recovery_cp =
7887 mddev->curr_resync_completed;
7888 else
7889 mddev->recovery_cp =
7890 mddev->curr_resync;
7891 }
7892 } else
7893 mddev->recovery_cp = MaxSector;
7894 } else {
7895 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7896 mddev->curr_resync = MaxSector;
7897 rcu_read_lock();
7898 rdev_for_each_rcu(rdev, mddev)
7899 if (rdev->raid_disk >= 0 &&
7900 mddev->delta_disks >= 0 &&
7901 !test_bit(Faulty, &rdev->flags) &&
7902 !test_bit(In_sync, &rdev->flags) &&
7903 rdev->recovery_offset < mddev->curr_resync)
7904 rdev->recovery_offset = mddev->curr_resync;
7905 rcu_read_unlock();
7906 }
7907 }
7908 skip:
7909 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7910
7911 spin_lock(&mddev->lock);
7912 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7913 /* We completed so min/max setting can be forgotten if used. */
7914 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7915 mddev->resync_min = 0;
7916 mddev->resync_max = MaxSector;
7917 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7918 mddev->resync_min = mddev->curr_resync_completed;
7919 mddev->curr_resync = 0;
7920 spin_unlock(&mddev->lock);
7921
7922 wake_up(&resync_wait);
7923 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7924 md_wakeup_thread(mddev->thread);
7925 return;
7926 }
7927 EXPORT_SYMBOL_GPL(md_do_sync);
7928
7929 static int remove_and_add_spares(struct mddev *mddev,
7930 struct md_rdev *this)
7931 {
7932 struct md_rdev *rdev;
7933 int spares = 0;
7934 int removed = 0;
7935
7936 rdev_for_each(rdev, mddev)
7937 if ((this == NULL || rdev == this) &&
7938 rdev->raid_disk >= 0 &&
7939 !test_bit(Blocked, &rdev->flags) &&
7940 (test_bit(Faulty, &rdev->flags) ||
7941 ! test_bit(In_sync, &rdev->flags)) &&
7942 atomic_read(&rdev->nr_pending)==0) {
7943 if (mddev->pers->hot_remove_disk(
7944 mddev, rdev) == 0) {
7945 sysfs_unlink_rdev(mddev, rdev);
7946 rdev->raid_disk = -1;
7947 removed++;
7948 }
7949 }
7950 if (removed && mddev->kobj.sd)
7951 sysfs_notify(&mddev->kobj, NULL, "degraded");
7952
7953 if (this)
7954 goto no_add;
7955
7956 rdev_for_each(rdev, mddev) {
7957 if (rdev->raid_disk >= 0 &&
7958 !test_bit(In_sync, &rdev->flags) &&
7959 !test_bit(Faulty, &rdev->flags))
7960 spares++;
7961 if (rdev->raid_disk >= 0)
7962 continue;
7963 if (test_bit(Faulty, &rdev->flags))
7964 continue;
7965 if (mddev->ro &&
7966 ! (rdev->saved_raid_disk >= 0 &&
7967 !test_bit(Bitmap_sync, &rdev->flags)))
7968 continue;
7969
7970 if (rdev->saved_raid_disk < 0)
7971 rdev->recovery_offset = 0;
7972 if (mddev->pers->
7973 hot_add_disk(mddev, rdev) == 0) {
7974 if (sysfs_link_rdev(mddev, rdev))
7975 /* failure here is OK */;
7976 spares++;
7977 md_new_event(mddev);
7978 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7979 }
7980 }
7981 no_add:
7982 if (removed)
7983 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7984 return spares;
7985 }
7986
7987 static void md_start_sync(struct work_struct *ws)
7988 {
7989 struct mddev *mddev = container_of(ws, struct mddev, del_work);
7990
7991 mddev->sync_thread = md_register_thread(md_do_sync,
7992 mddev,
7993 "resync");
7994 if (!mddev->sync_thread) {
7995 printk(KERN_ERR "%s: could not start resync"
7996 " thread...\n",
7997 mdname(mddev));
7998 /* leave the spares where they are, it shouldn't hurt */
7999 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8000 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8001 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8002 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8003 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8004 wake_up(&resync_wait);
8005 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8006 &mddev->recovery))
8007 if (mddev->sysfs_action)
8008 sysfs_notify_dirent_safe(mddev->sysfs_action);
8009 } else
8010 md_wakeup_thread(mddev->sync_thread);
8011 sysfs_notify_dirent_safe(mddev->sysfs_action);
8012 md_new_event(mddev);
8013 }
8014
8015 /*
8016 * This routine is regularly called by all per-raid-array threads to
8017 * deal with generic issues like resync and super-block update.
8018 * Raid personalities that don't have a thread (linear/raid0) do not
8019 * need this as they never do any recovery or update the superblock.
8020 *
8021 * It does not do any resync itself, but rather "forks" off other threads
8022 * to do that as needed.
8023 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8024 * "->recovery" and create a thread at ->sync_thread.
8025 * When the thread finishes it sets MD_RECOVERY_DONE
8026 * and wakeups up this thread which will reap the thread and finish up.
8027 * This thread also removes any faulty devices (with nr_pending == 0).
8028 *
8029 * The overall approach is:
8030 * 1/ if the superblock needs updating, update it.
8031 * 2/ If a recovery thread is running, don't do anything else.
8032 * 3/ If recovery has finished, clean up, possibly marking spares active.
8033 * 4/ If there are any faulty devices, remove them.
8034 * 5/ If array is degraded, try to add spares devices
8035 * 6/ If array has spares or is not in-sync, start a resync thread.
8036 */
8037 void md_check_recovery(struct mddev *mddev)
8038 {
8039 if (mddev->suspended)
8040 return;
8041
8042 if (mddev->bitmap)
8043 bitmap_daemon_work(mddev);
8044
8045 if (signal_pending(current)) {
8046 if (mddev->pers->sync_request && !mddev->external) {
8047 printk(KERN_INFO "md: %s in immediate safe mode\n",
8048 mdname(mddev));
8049 mddev->safemode = 2;
8050 }
8051 flush_signals(current);
8052 }
8053
8054 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8055 return;
8056 if ( ! (
8057 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8058 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8059 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8060 (mddev->external == 0 && mddev->safemode == 1) ||
8061 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8062 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8063 ))
8064 return;
8065
8066 if (mddev_trylock(mddev)) {
8067 int spares = 0;
8068
8069 if (mddev->ro) {
8070 /* On a read-only array we can:
8071 * - remove failed devices
8072 * - add already-in_sync devices if the array itself
8073 * is in-sync.
8074 * As we only add devices that are already in-sync,
8075 * we can activate the spares immediately.
8076 */
8077 remove_and_add_spares(mddev, NULL);
8078 /* There is no thread, but we need to call
8079 * ->spare_active and clear saved_raid_disk
8080 */
8081 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8082 md_reap_sync_thread(mddev);
8083 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8084 goto unlock;
8085 }
8086
8087 if (!mddev->external) {
8088 int did_change = 0;
8089 spin_lock(&mddev->lock);
8090 if (mddev->safemode &&
8091 !atomic_read(&mddev->writes_pending) &&
8092 !mddev->in_sync &&
8093 mddev->recovery_cp == MaxSector) {
8094 mddev->in_sync = 1;
8095 did_change = 1;
8096 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8097 }
8098 if (mddev->safemode == 1)
8099 mddev->safemode = 0;
8100 spin_unlock(&mddev->lock);
8101 if (did_change)
8102 sysfs_notify_dirent_safe(mddev->sysfs_state);
8103 }
8104
8105 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8106 if (mddev_is_clustered(mddev))
8107 md_cluster_ops->metadata_update_start(mddev);
8108 md_update_sb(mddev, 0);
8109 if (mddev_is_clustered(mddev))
8110 md_cluster_ops->metadata_update_finish(mddev);
8111 }
8112
8113 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8114 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8115 /* resync/recovery still happening */
8116 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8117 goto unlock;
8118 }
8119 if (mddev->sync_thread) {
8120 md_reap_sync_thread(mddev);
8121 goto unlock;
8122 }
8123 /* Set RUNNING before clearing NEEDED to avoid
8124 * any transients in the value of "sync_action".
8125 */
8126 mddev->curr_resync_completed = 0;
8127 spin_lock(&mddev->lock);
8128 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8129 spin_unlock(&mddev->lock);
8130 /* Clear some bits that don't mean anything, but
8131 * might be left set
8132 */
8133 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8134 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8135
8136 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8137 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8138 goto not_running;
8139 /* no recovery is running.
8140 * remove any failed drives, then
8141 * add spares if possible.
8142 * Spares are also removed and re-added, to allow
8143 * the personality to fail the re-add.
8144 */
8145
8146 if (mddev->reshape_position != MaxSector) {
8147 if (mddev->pers->check_reshape == NULL ||
8148 mddev->pers->check_reshape(mddev) != 0)
8149 /* Cannot proceed */
8150 goto not_running;
8151 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8152 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8153 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8154 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8155 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8156 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8157 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8158 } else if (mddev->recovery_cp < MaxSector) {
8159 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8160 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8161 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8162 /* nothing to be done ... */
8163 goto not_running;
8164
8165 if (mddev->pers->sync_request) {
8166 if (spares) {
8167 /* We are adding a device or devices to an array
8168 * which has the bitmap stored on all devices.
8169 * So make sure all bitmap pages get written
8170 */
8171 bitmap_write_all(mddev->bitmap);
8172 }
8173 INIT_WORK(&mddev->del_work, md_start_sync);
8174 queue_work(md_misc_wq, &mddev->del_work);
8175 goto unlock;
8176 }
8177 not_running:
8178 if (!mddev->sync_thread) {
8179 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8180 wake_up(&resync_wait);
8181 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8182 &mddev->recovery))
8183 if (mddev->sysfs_action)
8184 sysfs_notify_dirent_safe(mddev->sysfs_action);
8185 }
8186 unlock:
8187 wake_up(&mddev->sb_wait);
8188 mddev_unlock(mddev);
8189 }
8190 }
8191 EXPORT_SYMBOL(md_check_recovery);
8192
8193 void md_reap_sync_thread(struct mddev *mddev)
8194 {
8195 struct md_rdev *rdev;
8196
8197 /* resync has finished, collect result */
8198 md_unregister_thread(&mddev->sync_thread);
8199 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8200 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8201 /* success...*/
8202 /* activate any spares */
8203 if (mddev->pers->spare_active(mddev)) {
8204 sysfs_notify(&mddev->kobj, NULL,
8205 "degraded");
8206 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8207 }
8208 }
8209 if (mddev_is_clustered(mddev))
8210 md_cluster_ops->metadata_update_start(mddev);
8211 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8212 mddev->pers->finish_reshape)
8213 mddev->pers->finish_reshape(mddev);
8214
8215 /* If array is no-longer degraded, then any saved_raid_disk
8216 * information must be scrapped.
8217 */
8218 if (!mddev->degraded)
8219 rdev_for_each(rdev, mddev)
8220 rdev->saved_raid_disk = -1;
8221
8222 md_update_sb(mddev, 1);
8223 if (mddev_is_clustered(mddev))
8224 md_cluster_ops->metadata_update_finish(mddev);
8225 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8226 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8227 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8228 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8229 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8230 wake_up(&resync_wait);
8231 /* flag recovery needed just to double check */
8232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8233 sysfs_notify_dirent_safe(mddev->sysfs_action);
8234 md_new_event(mddev);
8235 if (mddev->event_work.func)
8236 queue_work(md_misc_wq, &mddev->event_work);
8237 }
8238 EXPORT_SYMBOL(md_reap_sync_thread);
8239
8240 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8241 {
8242 sysfs_notify_dirent_safe(rdev->sysfs_state);
8243 wait_event_timeout(rdev->blocked_wait,
8244 !test_bit(Blocked, &rdev->flags) &&
8245 !test_bit(BlockedBadBlocks, &rdev->flags),
8246 msecs_to_jiffies(5000));
8247 rdev_dec_pending(rdev, mddev);
8248 }
8249 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8250
8251 void md_finish_reshape(struct mddev *mddev)
8252 {
8253 /* called be personality module when reshape completes. */
8254 struct md_rdev *rdev;
8255
8256 rdev_for_each(rdev, mddev) {
8257 if (rdev->data_offset > rdev->new_data_offset)
8258 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8259 else
8260 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8261 rdev->data_offset = rdev->new_data_offset;
8262 }
8263 }
8264 EXPORT_SYMBOL(md_finish_reshape);
8265
8266 /* Bad block management.
8267 * We can record which blocks on each device are 'bad' and so just
8268 * fail those blocks, or that stripe, rather than the whole device.
8269 * Entries in the bad-block table are 64bits wide. This comprises:
8270 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8271 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8272 * A 'shift' can be set so that larger blocks are tracked and
8273 * consequently larger devices can be covered.
8274 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8275 *
8276 * Locking of the bad-block table uses a seqlock so md_is_badblock
8277 * might need to retry if it is very unlucky.
8278 * We will sometimes want to check for bad blocks in a bi_end_io function,
8279 * so we use the write_seqlock_irq variant.
8280 *
8281 * When looking for a bad block we specify a range and want to
8282 * know if any block in the range is bad. So we binary-search
8283 * to the last range that starts at-or-before the given endpoint,
8284 * (or "before the sector after the target range")
8285 * then see if it ends after the given start.
8286 * We return
8287 * 0 if there are no known bad blocks in the range
8288 * 1 if there are known bad block which are all acknowledged
8289 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8290 * plus the start/length of the first bad section we overlap.
8291 */
8292 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8293 sector_t *first_bad, int *bad_sectors)
8294 {
8295 int hi;
8296 int lo;
8297 u64 *p = bb->page;
8298 int rv;
8299 sector_t target = s + sectors;
8300 unsigned seq;
8301
8302 if (bb->shift > 0) {
8303 /* round the start down, and the end up */
8304 s >>= bb->shift;
8305 target += (1<<bb->shift) - 1;
8306 target >>= bb->shift;
8307 sectors = target - s;
8308 }
8309 /* 'target' is now the first block after the bad range */
8310
8311 retry:
8312 seq = read_seqbegin(&bb->lock);
8313 lo = 0;
8314 rv = 0;
8315 hi = bb->count;
8316
8317 /* Binary search between lo and hi for 'target'
8318 * i.e. for the last range that starts before 'target'
8319 */
8320 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8321 * are known not to be the last range before target.
8322 * VARIANT: hi-lo is the number of possible
8323 * ranges, and decreases until it reaches 1
8324 */
8325 while (hi - lo > 1) {
8326 int mid = (lo + hi) / 2;
8327 sector_t a = BB_OFFSET(p[mid]);
8328 if (a < target)
8329 /* This could still be the one, earlier ranges
8330 * could not. */
8331 lo = mid;
8332 else
8333 /* This and later ranges are definitely out. */
8334 hi = mid;
8335 }
8336 /* 'lo' might be the last that started before target, but 'hi' isn't */
8337 if (hi > lo) {
8338 /* need to check all range that end after 's' to see if
8339 * any are unacknowledged.
8340 */
8341 while (lo >= 0 &&
8342 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8343 if (BB_OFFSET(p[lo]) < target) {
8344 /* starts before the end, and finishes after
8345 * the start, so they must overlap
8346 */
8347 if (rv != -1 && BB_ACK(p[lo]))
8348 rv = 1;
8349 else
8350 rv = -1;
8351 *first_bad = BB_OFFSET(p[lo]);
8352 *bad_sectors = BB_LEN(p[lo]);
8353 }
8354 lo--;
8355 }
8356 }
8357
8358 if (read_seqretry(&bb->lock, seq))
8359 goto retry;
8360
8361 return rv;
8362 }
8363 EXPORT_SYMBOL_GPL(md_is_badblock);
8364
8365 /*
8366 * Add a range of bad blocks to the table.
8367 * This might extend the table, or might contract it
8368 * if two adjacent ranges can be merged.
8369 * We binary-search to find the 'insertion' point, then
8370 * decide how best to handle it.
8371 */
8372 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8373 int acknowledged)
8374 {
8375 u64 *p;
8376 int lo, hi;
8377 int rv = 1;
8378 unsigned long flags;
8379
8380 if (bb->shift < 0)
8381 /* badblocks are disabled */
8382 return 0;
8383
8384 if (bb->shift) {
8385 /* round the start down, and the end up */
8386 sector_t next = s + sectors;
8387 s >>= bb->shift;
8388 next += (1<<bb->shift) - 1;
8389 next >>= bb->shift;
8390 sectors = next - s;
8391 }
8392
8393 write_seqlock_irqsave(&bb->lock, flags);
8394
8395 p = bb->page;
8396 lo = 0;
8397 hi = bb->count;
8398 /* Find the last range that starts at-or-before 's' */
8399 while (hi - lo > 1) {
8400 int mid = (lo + hi) / 2;
8401 sector_t a = BB_OFFSET(p[mid]);
8402 if (a <= s)
8403 lo = mid;
8404 else
8405 hi = mid;
8406 }
8407 if (hi > lo && BB_OFFSET(p[lo]) > s)
8408 hi = lo;
8409
8410 if (hi > lo) {
8411 /* we found a range that might merge with the start
8412 * of our new range
8413 */
8414 sector_t a = BB_OFFSET(p[lo]);
8415 sector_t e = a + BB_LEN(p[lo]);
8416 int ack = BB_ACK(p[lo]);
8417 if (e >= s) {
8418 /* Yes, we can merge with a previous range */
8419 if (s == a && s + sectors >= e)
8420 /* new range covers old */
8421 ack = acknowledged;
8422 else
8423 ack = ack && acknowledged;
8424
8425 if (e < s + sectors)
8426 e = s + sectors;
8427 if (e - a <= BB_MAX_LEN) {
8428 p[lo] = BB_MAKE(a, e-a, ack);
8429 s = e;
8430 } else {
8431 /* does not all fit in one range,
8432 * make p[lo] maximal
8433 */
8434 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8435 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8436 s = a + BB_MAX_LEN;
8437 }
8438 sectors = e - s;
8439 }
8440 }
8441 if (sectors && hi < bb->count) {
8442 /* 'hi' points to the first range that starts after 's'.
8443 * Maybe we can merge with the start of that range */
8444 sector_t a = BB_OFFSET(p[hi]);
8445 sector_t e = a + BB_LEN(p[hi]);
8446 int ack = BB_ACK(p[hi]);
8447 if (a <= s + sectors) {
8448 /* merging is possible */
8449 if (e <= s + sectors) {
8450 /* full overlap */
8451 e = s + sectors;
8452 ack = acknowledged;
8453 } else
8454 ack = ack && acknowledged;
8455
8456 a = s;
8457 if (e - a <= BB_MAX_LEN) {
8458 p[hi] = BB_MAKE(a, e-a, ack);
8459 s = e;
8460 } else {
8461 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8462 s = a + BB_MAX_LEN;
8463 }
8464 sectors = e - s;
8465 lo = hi;
8466 hi++;
8467 }
8468 }
8469 if (sectors == 0 && hi < bb->count) {
8470 /* we might be able to combine lo and hi */
8471 /* Note: 's' is at the end of 'lo' */
8472 sector_t a = BB_OFFSET(p[hi]);
8473 int lolen = BB_LEN(p[lo]);
8474 int hilen = BB_LEN(p[hi]);
8475 int newlen = lolen + hilen - (s - a);
8476 if (s >= a && newlen < BB_MAX_LEN) {
8477 /* yes, we can combine them */
8478 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8479 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8480 memmove(p + hi, p + hi + 1,
8481 (bb->count - hi - 1) * 8);
8482 bb->count--;
8483 }
8484 }
8485 while (sectors) {
8486 /* didn't merge (it all).
8487 * Need to add a range just before 'hi' */
8488 if (bb->count >= MD_MAX_BADBLOCKS) {
8489 /* No room for more */
8490 rv = 0;
8491 break;
8492 } else {
8493 int this_sectors = sectors;
8494 memmove(p + hi + 1, p + hi,
8495 (bb->count - hi) * 8);
8496 bb->count++;
8497
8498 if (this_sectors > BB_MAX_LEN)
8499 this_sectors = BB_MAX_LEN;
8500 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8501 sectors -= this_sectors;
8502 s += this_sectors;
8503 }
8504 }
8505
8506 bb->changed = 1;
8507 if (!acknowledged)
8508 bb->unacked_exist = 1;
8509 write_sequnlock_irqrestore(&bb->lock, flags);
8510
8511 return rv;
8512 }
8513
8514 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8515 int is_new)
8516 {
8517 int rv;
8518 if (is_new)
8519 s += rdev->new_data_offset;
8520 else
8521 s += rdev->data_offset;
8522 rv = md_set_badblocks(&rdev->badblocks,
8523 s, sectors, 0);
8524 if (rv) {
8525 /* Make sure they get written out promptly */
8526 sysfs_notify_dirent_safe(rdev->sysfs_state);
8527 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8528 md_wakeup_thread(rdev->mddev->thread);
8529 }
8530 return rv;
8531 }
8532 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8533
8534 /*
8535 * Remove a range of bad blocks from the table.
8536 * This may involve extending the table if we spilt a region,
8537 * but it must not fail. So if the table becomes full, we just
8538 * drop the remove request.
8539 */
8540 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8541 {
8542 u64 *p;
8543 int lo, hi;
8544 sector_t target = s + sectors;
8545 int rv = 0;
8546
8547 if (bb->shift > 0) {
8548 /* When clearing we round the start up and the end down.
8549 * This should not matter as the shift should align with
8550 * the block size and no rounding should ever be needed.
8551 * However it is better the think a block is bad when it
8552 * isn't than to think a block is not bad when it is.
8553 */
8554 s += (1<<bb->shift) - 1;
8555 s >>= bb->shift;
8556 target >>= bb->shift;
8557 sectors = target - s;
8558 }
8559
8560 write_seqlock_irq(&bb->lock);
8561
8562 p = bb->page;
8563 lo = 0;
8564 hi = bb->count;
8565 /* Find the last range that starts before 'target' */
8566 while (hi - lo > 1) {
8567 int mid = (lo + hi) / 2;
8568 sector_t a = BB_OFFSET(p[mid]);
8569 if (a < target)
8570 lo = mid;
8571 else
8572 hi = mid;
8573 }
8574 if (hi > lo) {
8575 /* p[lo] is the last range that could overlap the
8576 * current range. Earlier ranges could also overlap,
8577 * but only this one can overlap the end of the range.
8578 */
8579 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8580 /* Partial overlap, leave the tail of this range */
8581 int ack = BB_ACK(p[lo]);
8582 sector_t a = BB_OFFSET(p[lo]);
8583 sector_t end = a + BB_LEN(p[lo]);
8584
8585 if (a < s) {
8586 /* we need to split this range */
8587 if (bb->count >= MD_MAX_BADBLOCKS) {
8588 rv = -ENOSPC;
8589 goto out;
8590 }
8591 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8592 bb->count++;
8593 p[lo] = BB_MAKE(a, s-a, ack);
8594 lo++;
8595 }
8596 p[lo] = BB_MAKE(target, end - target, ack);
8597 /* there is no longer an overlap */
8598 hi = lo;
8599 lo--;
8600 }
8601 while (lo >= 0 &&
8602 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8603 /* This range does overlap */
8604 if (BB_OFFSET(p[lo]) < s) {
8605 /* Keep the early parts of this range. */
8606 int ack = BB_ACK(p[lo]);
8607 sector_t start = BB_OFFSET(p[lo]);
8608 p[lo] = BB_MAKE(start, s - start, ack);
8609 /* now low doesn't overlap, so.. */
8610 break;
8611 }
8612 lo--;
8613 }
8614 /* 'lo' is strictly before, 'hi' is strictly after,
8615 * anything between needs to be discarded
8616 */
8617 if (hi - lo > 1) {
8618 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8619 bb->count -= (hi - lo - 1);
8620 }
8621 }
8622
8623 bb->changed = 1;
8624 out:
8625 write_sequnlock_irq(&bb->lock);
8626 return rv;
8627 }
8628
8629 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8630 int is_new)
8631 {
8632 if (is_new)
8633 s += rdev->new_data_offset;
8634 else
8635 s += rdev->data_offset;
8636 return md_clear_badblocks(&rdev->badblocks,
8637 s, sectors);
8638 }
8639 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8640
8641 /*
8642 * Acknowledge all bad blocks in a list.
8643 * This only succeeds if ->changed is clear. It is used by
8644 * in-kernel metadata updates
8645 */
8646 void md_ack_all_badblocks(struct badblocks *bb)
8647 {
8648 if (bb->page == NULL || bb->changed)
8649 /* no point even trying */
8650 return;
8651 write_seqlock_irq(&bb->lock);
8652
8653 if (bb->changed == 0 && bb->unacked_exist) {
8654 u64 *p = bb->page;
8655 int i;
8656 for (i = 0; i < bb->count ; i++) {
8657 if (!BB_ACK(p[i])) {
8658 sector_t start = BB_OFFSET(p[i]);
8659 int len = BB_LEN(p[i]);
8660 p[i] = BB_MAKE(start, len, 1);
8661 }
8662 }
8663 bb->unacked_exist = 0;
8664 }
8665 write_sequnlock_irq(&bb->lock);
8666 }
8667 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8668
8669 /* sysfs access to bad-blocks list.
8670 * We present two files.
8671 * 'bad-blocks' lists sector numbers and lengths of ranges that
8672 * are recorded as bad. The list is truncated to fit within
8673 * the one-page limit of sysfs.
8674 * Writing "sector length" to this file adds an acknowledged
8675 * bad block list.
8676 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8677 * been acknowledged. Writing to this file adds bad blocks
8678 * without acknowledging them. This is largely for testing.
8679 */
8680
8681 static ssize_t
8682 badblocks_show(struct badblocks *bb, char *page, int unack)
8683 {
8684 size_t len;
8685 int i;
8686 u64 *p = bb->page;
8687 unsigned seq;
8688
8689 if (bb->shift < 0)
8690 return 0;
8691
8692 retry:
8693 seq = read_seqbegin(&bb->lock);
8694
8695 len = 0;
8696 i = 0;
8697
8698 while (len < PAGE_SIZE && i < bb->count) {
8699 sector_t s = BB_OFFSET(p[i]);
8700 unsigned int length = BB_LEN(p[i]);
8701 int ack = BB_ACK(p[i]);
8702 i++;
8703
8704 if (unack && ack)
8705 continue;
8706
8707 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8708 (unsigned long long)s << bb->shift,
8709 length << bb->shift);
8710 }
8711 if (unack && len == 0)
8712 bb->unacked_exist = 0;
8713
8714 if (read_seqretry(&bb->lock, seq))
8715 goto retry;
8716
8717 return len;
8718 }
8719
8720 #define DO_DEBUG 1
8721
8722 static ssize_t
8723 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8724 {
8725 unsigned long long sector;
8726 int length;
8727 char newline;
8728 #ifdef DO_DEBUG
8729 /* Allow clearing via sysfs *only* for testing/debugging.
8730 * Normally only a successful write may clear a badblock
8731 */
8732 int clear = 0;
8733 if (page[0] == '-') {
8734 clear = 1;
8735 page++;
8736 }
8737 #endif /* DO_DEBUG */
8738
8739 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8740 case 3:
8741 if (newline != '\n')
8742 return -EINVAL;
8743 case 2:
8744 if (length <= 0)
8745 return -EINVAL;
8746 break;
8747 default:
8748 return -EINVAL;
8749 }
8750
8751 #ifdef DO_DEBUG
8752 if (clear) {
8753 md_clear_badblocks(bb, sector, length);
8754 return len;
8755 }
8756 #endif /* DO_DEBUG */
8757 if (md_set_badblocks(bb, sector, length, !unack))
8758 return len;
8759 else
8760 return -ENOSPC;
8761 }
8762
8763 static int md_notify_reboot(struct notifier_block *this,
8764 unsigned long code, void *x)
8765 {
8766 struct list_head *tmp;
8767 struct mddev *mddev;
8768 int need_delay = 0;
8769
8770 for_each_mddev(mddev, tmp) {
8771 if (mddev_trylock(mddev)) {
8772 if (mddev->pers)
8773 __md_stop_writes(mddev);
8774 if (mddev->persistent)
8775 mddev->safemode = 2;
8776 mddev_unlock(mddev);
8777 }
8778 need_delay = 1;
8779 }
8780 /*
8781 * certain more exotic SCSI devices are known to be
8782 * volatile wrt too early system reboots. While the
8783 * right place to handle this issue is the given
8784 * driver, we do want to have a safe RAID driver ...
8785 */
8786 if (need_delay)
8787 mdelay(1000*1);
8788
8789 return NOTIFY_DONE;
8790 }
8791
8792 static struct notifier_block md_notifier = {
8793 .notifier_call = md_notify_reboot,
8794 .next = NULL,
8795 .priority = INT_MAX, /* before any real devices */
8796 };
8797
8798 static void md_geninit(void)
8799 {
8800 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8801
8802 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8803 }
8804
8805 static int __init md_init(void)
8806 {
8807 int ret = -ENOMEM;
8808
8809 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8810 if (!md_wq)
8811 goto err_wq;
8812
8813 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8814 if (!md_misc_wq)
8815 goto err_misc_wq;
8816
8817 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8818 goto err_md;
8819
8820 if ((ret = register_blkdev(0, "mdp")) < 0)
8821 goto err_mdp;
8822 mdp_major = ret;
8823
8824 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8825 md_probe, NULL, NULL);
8826 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8827 md_probe, NULL, NULL);
8828
8829 register_reboot_notifier(&md_notifier);
8830 raid_table_header = register_sysctl_table(raid_root_table);
8831
8832 md_geninit();
8833 return 0;
8834
8835 err_mdp:
8836 unregister_blkdev(MD_MAJOR, "md");
8837 err_md:
8838 destroy_workqueue(md_misc_wq);
8839 err_misc_wq:
8840 destroy_workqueue(md_wq);
8841 err_wq:
8842 return ret;
8843 }
8844
8845 void md_reload_sb(struct mddev *mddev)
8846 {
8847 struct md_rdev *rdev, *tmp;
8848
8849 rdev_for_each_safe(rdev, tmp, mddev) {
8850 rdev->sb_loaded = 0;
8851 ClearPageUptodate(rdev->sb_page);
8852 }
8853 mddev->raid_disks = 0;
8854 analyze_sbs(mddev);
8855 rdev_for_each_safe(rdev, tmp, mddev) {
8856 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8857 /* since we don't write to faulty devices, we figure out if the
8858 * disk is faulty by comparing events
8859 */
8860 if (mddev->events > sb->events)
8861 set_bit(Faulty, &rdev->flags);
8862 }
8863
8864 }
8865 EXPORT_SYMBOL(md_reload_sb);
8866
8867 #ifndef MODULE
8868
8869 /*
8870 * Searches all registered partitions for autorun RAID arrays
8871 * at boot time.
8872 */
8873
8874 static LIST_HEAD(all_detected_devices);
8875 struct detected_devices_node {
8876 struct list_head list;
8877 dev_t dev;
8878 };
8879
8880 void md_autodetect_dev(dev_t dev)
8881 {
8882 struct detected_devices_node *node_detected_dev;
8883
8884 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8885 if (node_detected_dev) {
8886 node_detected_dev->dev = dev;
8887 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8888 } else {
8889 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8890 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8891 }
8892 }
8893
8894 static void autostart_arrays(int part)
8895 {
8896 struct md_rdev *rdev;
8897 struct detected_devices_node *node_detected_dev;
8898 dev_t dev;
8899 int i_scanned, i_passed;
8900
8901 i_scanned = 0;
8902 i_passed = 0;
8903
8904 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8905
8906 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8907 i_scanned++;
8908 node_detected_dev = list_entry(all_detected_devices.next,
8909 struct detected_devices_node, list);
8910 list_del(&node_detected_dev->list);
8911 dev = node_detected_dev->dev;
8912 kfree(node_detected_dev);
8913 rdev = md_import_device(dev,0, 90);
8914 if (IS_ERR(rdev))
8915 continue;
8916
8917 if (test_bit(Faulty, &rdev->flags))
8918 continue;
8919
8920 set_bit(AutoDetected, &rdev->flags);
8921 list_add(&rdev->same_set, &pending_raid_disks);
8922 i_passed++;
8923 }
8924
8925 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8926 i_scanned, i_passed);
8927
8928 autorun_devices(part);
8929 }
8930
8931 #endif /* !MODULE */
8932
8933 static __exit void md_exit(void)
8934 {
8935 struct mddev *mddev;
8936 struct list_head *tmp;
8937 int delay = 1;
8938
8939 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8940 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8941
8942 unregister_blkdev(MD_MAJOR,"md");
8943 unregister_blkdev(mdp_major, "mdp");
8944 unregister_reboot_notifier(&md_notifier);
8945 unregister_sysctl_table(raid_table_header);
8946
8947 /* We cannot unload the modules while some process is
8948 * waiting for us in select() or poll() - wake them up
8949 */
8950 md_unloading = 1;
8951 while (waitqueue_active(&md_event_waiters)) {
8952 /* not safe to leave yet */
8953 wake_up(&md_event_waiters);
8954 msleep(delay);
8955 delay += delay;
8956 }
8957 remove_proc_entry("mdstat", NULL);
8958
8959 for_each_mddev(mddev, tmp) {
8960 export_array(mddev);
8961 mddev->hold_active = 0;
8962 }
8963 destroy_workqueue(md_misc_wq);
8964 destroy_workqueue(md_wq);
8965 }
8966
8967 subsys_initcall(md_init);
8968 module_exit(md_exit)
8969
8970 static int get_ro(char *buffer, struct kernel_param *kp)
8971 {
8972 return sprintf(buffer, "%d", start_readonly);
8973 }
8974 static int set_ro(const char *val, struct kernel_param *kp)
8975 {
8976 char *e;
8977 int num = simple_strtoul(val, &e, 10);
8978 if (*val && (*e == '\0' || *e == '\n')) {
8979 start_readonly = num;
8980 return 0;
8981 }
8982 return -EINVAL;
8983 }
8984
8985 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8986 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8987 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8988
8989 MODULE_LICENSE("GPL");
8990 MODULE_DESCRIPTION("MD RAID framework");
8991 MODULE_ALIAS("md");
8992 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.263411 seconds and 6 git commands to generate.