md/raid1: split out two sub-functions from sync_request_write
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/seq_file.h>
38 #include "md.h"
39 #include "raid1.h"
40 #include "bitmap.h"
41
42 #define DEBUG 0
43 #if DEBUG
44 #define PRINTK(x...) printk(x)
45 #else
46 #define PRINTK(x...)
47 #endif
48
49 /*
50 * Number of guaranteed r1bios in case of extreme VM load:
51 */
52 #define NR_RAID1_BIOS 256
53
54
55 static void allow_barrier(conf_t *conf);
56 static void lower_barrier(conf_t *conf);
57
58 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
59 {
60 struct pool_info *pi = data;
61 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
62
63 /* allocate a r1bio with room for raid_disks entries in the bios array */
64 return kzalloc(size, gfp_flags);
65 }
66
67 static void r1bio_pool_free(void *r1_bio, void *data)
68 {
69 kfree(r1_bio);
70 }
71
72 #define RESYNC_BLOCK_SIZE (64*1024)
73 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
74 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
75 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
76 #define RESYNC_WINDOW (2048*1024)
77
78 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 struct pool_info *pi = data;
81 struct page *page;
82 r1bio_t *r1_bio;
83 struct bio *bio;
84 int i, j;
85
86 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
87 if (!r1_bio)
88 return NULL;
89
90 /*
91 * Allocate bios : 1 for reading, n-1 for writing
92 */
93 for (j = pi->raid_disks ; j-- ; ) {
94 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
95 if (!bio)
96 goto out_free_bio;
97 r1_bio->bios[j] = bio;
98 }
99 /*
100 * Allocate RESYNC_PAGES data pages and attach them to
101 * the first bio.
102 * If this is a user-requested check/repair, allocate
103 * RESYNC_PAGES for each bio.
104 */
105 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
106 j = pi->raid_disks;
107 else
108 j = 1;
109 while(j--) {
110 bio = r1_bio->bios[j];
111 for (i = 0; i < RESYNC_PAGES; i++) {
112 page = alloc_page(gfp_flags);
113 if (unlikely(!page))
114 goto out_free_pages;
115
116 bio->bi_io_vec[i].bv_page = page;
117 bio->bi_vcnt = i+1;
118 }
119 }
120 /* If not user-requests, copy the page pointers to all bios */
121 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
122 for (i=0; i<RESYNC_PAGES ; i++)
123 for (j=1; j<pi->raid_disks; j++)
124 r1_bio->bios[j]->bi_io_vec[i].bv_page =
125 r1_bio->bios[0]->bi_io_vec[i].bv_page;
126 }
127
128 r1_bio->master_bio = NULL;
129
130 return r1_bio;
131
132 out_free_pages:
133 for (j=0 ; j < pi->raid_disks; j++)
134 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
135 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
136 j = -1;
137 out_free_bio:
138 while ( ++j < pi->raid_disks )
139 bio_put(r1_bio->bios[j]);
140 r1bio_pool_free(r1_bio, data);
141 return NULL;
142 }
143
144 static void r1buf_pool_free(void *__r1_bio, void *data)
145 {
146 struct pool_info *pi = data;
147 int i,j;
148 r1bio_t *r1bio = __r1_bio;
149
150 for (i = 0; i < RESYNC_PAGES; i++)
151 for (j = pi->raid_disks; j-- ;) {
152 if (j == 0 ||
153 r1bio->bios[j]->bi_io_vec[i].bv_page !=
154 r1bio->bios[0]->bi_io_vec[i].bv_page)
155 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
156 }
157 for (i=0 ; i < pi->raid_disks; i++)
158 bio_put(r1bio->bios[i]);
159
160 r1bio_pool_free(r1bio, data);
161 }
162
163 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
164 {
165 int i;
166
167 for (i = 0; i < conf->raid_disks; i++) {
168 struct bio **bio = r1_bio->bios + i;
169 if (*bio && *bio != IO_BLOCKED)
170 bio_put(*bio);
171 *bio = NULL;
172 }
173 }
174
175 static void free_r1bio(r1bio_t *r1_bio)
176 {
177 conf_t *conf = r1_bio->mddev->private;
178
179 /*
180 * Wake up any possible resync thread that waits for the device
181 * to go idle.
182 */
183 allow_barrier(conf);
184
185 put_all_bios(conf, r1_bio);
186 mempool_free(r1_bio, conf->r1bio_pool);
187 }
188
189 static void put_buf(r1bio_t *r1_bio)
190 {
191 conf_t *conf = r1_bio->mddev->private;
192 int i;
193
194 for (i=0; i<conf->raid_disks; i++) {
195 struct bio *bio = r1_bio->bios[i];
196 if (bio->bi_end_io)
197 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
198 }
199
200 mempool_free(r1_bio, conf->r1buf_pool);
201
202 lower_barrier(conf);
203 }
204
205 static void reschedule_retry(r1bio_t *r1_bio)
206 {
207 unsigned long flags;
208 mddev_t *mddev = r1_bio->mddev;
209 conf_t *conf = mddev->private;
210
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r1_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
215
216 wake_up(&conf->wait_barrier);
217 md_wakeup_thread(mddev->thread);
218 }
219
220 /*
221 * raid_end_bio_io() is called when we have finished servicing a mirrored
222 * operation and are ready to return a success/failure code to the buffer
223 * cache layer.
224 */
225 static void raid_end_bio_io(r1bio_t *r1_bio)
226 {
227 struct bio *bio = r1_bio->master_bio;
228
229 /* if nobody has done the final endio yet, do it now */
230 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
231 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
232 (bio_data_dir(bio) == WRITE) ? "write" : "read",
233 (unsigned long long) bio->bi_sector,
234 (unsigned long long) bio->bi_sector +
235 (bio->bi_size >> 9) - 1);
236
237 bio_endio(bio,
238 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
239 }
240 free_r1bio(r1_bio);
241 }
242
243 /*
244 * Update disk head position estimator based on IRQ completion info.
245 */
246 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
247 {
248 conf_t *conf = r1_bio->mddev->private;
249
250 conf->mirrors[disk].head_position =
251 r1_bio->sector + (r1_bio->sectors);
252 }
253
254 static void raid1_end_read_request(struct bio *bio, int error)
255 {
256 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
257 r1bio_t *r1_bio = bio->bi_private;
258 int mirror;
259 conf_t *conf = r1_bio->mddev->private;
260
261 mirror = r1_bio->read_disk;
262 /*
263 * this branch is our 'one mirror IO has finished' event handler:
264 */
265 update_head_pos(mirror, r1_bio);
266
267 if (uptodate)
268 set_bit(R1BIO_Uptodate, &r1_bio->state);
269 else {
270 /* If all other devices have failed, we want to return
271 * the error upwards rather than fail the last device.
272 * Here we redefine "uptodate" to mean "Don't want to retry"
273 */
274 unsigned long flags;
275 spin_lock_irqsave(&conf->device_lock, flags);
276 if (r1_bio->mddev->degraded == conf->raid_disks ||
277 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
278 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
279 uptodate = 1;
280 spin_unlock_irqrestore(&conf->device_lock, flags);
281 }
282
283 if (uptodate)
284 raid_end_bio_io(r1_bio);
285 else {
286 /*
287 * oops, read error:
288 */
289 char b[BDEVNAME_SIZE];
290 if (printk_ratelimit())
291 printk(KERN_ERR "md/raid1:%s: %s: rescheduling sector %llu\n",
292 mdname(conf->mddev),
293 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
294 reschedule_retry(r1_bio);
295 }
296
297 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
298 }
299
300 static void r1_bio_write_done(r1bio_t *r1_bio, int vcnt, struct bio_vec *bv,
301 int behind)
302 {
303 if (atomic_dec_and_test(&r1_bio->remaining))
304 {
305 /* it really is the end of this request */
306 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
307 /* free extra copy of the data pages */
308 int i = vcnt;
309 while (i--)
310 safe_put_page(bv[i].bv_page);
311 }
312 /* clear the bitmap if all writes complete successfully */
313 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
314 r1_bio->sectors,
315 !test_bit(R1BIO_Degraded, &r1_bio->state),
316 behind);
317 md_write_end(r1_bio->mddev);
318 raid_end_bio_io(r1_bio);
319 }
320 }
321
322 static void raid1_end_write_request(struct bio *bio, int error)
323 {
324 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
325 r1bio_t *r1_bio = bio->bi_private;
326 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
327 conf_t *conf = r1_bio->mddev->private;
328 struct bio *to_put = NULL;
329
330
331 for (mirror = 0; mirror < conf->raid_disks; mirror++)
332 if (r1_bio->bios[mirror] == bio)
333 break;
334
335 /*
336 * 'one mirror IO has finished' event handler:
337 */
338 r1_bio->bios[mirror] = NULL;
339 to_put = bio;
340 if (!uptodate) {
341 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
342 /* an I/O failed, we can't clear the bitmap */
343 set_bit(R1BIO_Degraded, &r1_bio->state);
344 } else
345 /*
346 * Set R1BIO_Uptodate in our master bio, so that we
347 * will return a good error code for to the higher
348 * levels even if IO on some other mirrored buffer
349 * fails.
350 *
351 * The 'master' represents the composite IO operation
352 * to user-side. So if something waits for IO, then it
353 * will wait for the 'master' bio.
354 */
355 set_bit(R1BIO_Uptodate, &r1_bio->state);
356
357 update_head_pos(mirror, r1_bio);
358
359 if (behind) {
360 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
361 atomic_dec(&r1_bio->behind_remaining);
362
363 /*
364 * In behind mode, we ACK the master bio once the I/O
365 * has safely reached all non-writemostly
366 * disks. Setting the Returned bit ensures that this
367 * gets done only once -- we don't ever want to return
368 * -EIO here, instead we'll wait
369 */
370 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
371 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
372 /* Maybe we can return now */
373 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
374 struct bio *mbio = r1_bio->master_bio;
375 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
376 (unsigned long long) mbio->bi_sector,
377 (unsigned long long) mbio->bi_sector +
378 (mbio->bi_size >> 9) - 1);
379 bio_endio(mbio, 0);
380 }
381 }
382 }
383 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
384
385 /*
386 * Let's see if all mirrored write operations have finished
387 * already.
388 */
389 r1_bio_write_done(r1_bio, bio->bi_vcnt, bio->bi_io_vec, behind);
390
391 if (to_put)
392 bio_put(to_put);
393 }
394
395
396 /*
397 * This routine returns the disk from which the requested read should
398 * be done. There is a per-array 'next expected sequential IO' sector
399 * number - if this matches on the next IO then we use the last disk.
400 * There is also a per-disk 'last know head position' sector that is
401 * maintained from IRQ contexts, both the normal and the resync IO
402 * completion handlers update this position correctly. If there is no
403 * perfect sequential match then we pick the disk whose head is closest.
404 *
405 * If there are 2 mirrors in the same 2 devices, performance degrades
406 * because position is mirror, not device based.
407 *
408 * The rdev for the device selected will have nr_pending incremented.
409 */
410 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
411 {
412 const sector_t this_sector = r1_bio->sector;
413 const int sectors = r1_bio->sectors;
414 int start_disk;
415 int best_disk;
416 int i;
417 sector_t best_dist;
418 mdk_rdev_t *rdev;
419 int choose_first;
420
421 rcu_read_lock();
422 /*
423 * Check if we can balance. We can balance on the whole
424 * device if no resync is going on, or below the resync window.
425 * We take the first readable disk when above the resync window.
426 */
427 retry:
428 best_disk = -1;
429 best_dist = MaxSector;
430 if (conf->mddev->recovery_cp < MaxSector &&
431 (this_sector + sectors >= conf->next_resync)) {
432 choose_first = 1;
433 start_disk = 0;
434 } else {
435 choose_first = 0;
436 start_disk = conf->last_used;
437 }
438
439 for (i = 0 ; i < conf->raid_disks ; i++) {
440 sector_t dist;
441 int disk = start_disk + i;
442 if (disk >= conf->raid_disks)
443 disk -= conf->raid_disks;
444
445 rdev = rcu_dereference(conf->mirrors[disk].rdev);
446 if (r1_bio->bios[disk] == IO_BLOCKED
447 || rdev == NULL
448 || test_bit(Faulty, &rdev->flags))
449 continue;
450 if (!test_bit(In_sync, &rdev->flags) &&
451 rdev->recovery_offset < this_sector + sectors)
452 continue;
453 if (test_bit(WriteMostly, &rdev->flags)) {
454 /* Don't balance among write-mostly, just
455 * use the first as a last resort */
456 if (best_disk < 0)
457 best_disk = disk;
458 continue;
459 }
460 /* This is a reasonable device to use. It might
461 * even be best.
462 */
463 dist = abs(this_sector - conf->mirrors[disk].head_position);
464 if (choose_first
465 /* Don't change to another disk for sequential reads */
466 || conf->next_seq_sect == this_sector
467 || dist == 0
468 /* If device is idle, use it */
469 || atomic_read(&rdev->nr_pending) == 0) {
470 best_disk = disk;
471 break;
472 }
473 if (dist < best_dist) {
474 best_dist = dist;
475 best_disk = disk;
476 }
477 }
478
479 if (best_disk >= 0) {
480 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
481 if (!rdev)
482 goto retry;
483 atomic_inc(&rdev->nr_pending);
484 if (test_bit(Faulty, &rdev->flags)) {
485 /* cannot risk returning a device that failed
486 * before we inc'ed nr_pending
487 */
488 rdev_dec_pending(rdev, conf->mddev);
489 goto retry;
490 }
491 conf->next_seq_sect = this_sector + sectors;
492 conf->last_used = best_disk;
493 }
494 rcu_read_unlock();
495
496 return best_disk;
497 }
498
499 static int raid1_congested(void *data, int bits)
500 {
501 mddev_t *mddev = data;
502 conf_t *conf = mddev->private;
503 int i, ret = 0;
504
505 if (mddev_congested(mddev, bits))
506 return 1;
507
508 rcu_read_lock();
509 for (i = 0; i < mddev->raid_disks; i++) {
510 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
511 if (rdev && !test_bit(Faulty, &rdev->flags)) {
512 struct request_queue *q = bdev_get_queue(rdev->bdev);
513
514 /* Note the '|| 1' - when read_balance prefers
515 * non-congested targets, it can be removed
516 */
517 if ((bits & (1<<BDI_async_congested)) || 1)
518 ret |= bdi_congested(&q->backing_dev_info, bits);
519 else
520 ret &= bdi_congested(&q->backing_dev_info, bits);
521 }
522 }
523 rcu_read_unlock();
524 return ret;
525 }
526
527
528 static void flush_pending_writes(conf_t *conf)
529 {
530 /* Any writes that have been queued but are awaiting
531 * bitmap updates get flushed here.
532 */
533 spin_lock_irq(&conf->device_lock);
534
535 if (conf->pending_bio_list.head) {
536 struct bio *bio;
537 bio = bio_list_get(&conf->pending_bio_list);
538 spin_unlock_irq(&conf->device_lock);
539 /* flush any pending bitmap writes to
540 * disk before proceeding w/ I/O */
541 bitmap_unplug(conf->mddev->bitmap);
542
543 while (bio) { /* submit pending writes */
544 struct bio *next = bio->bi_next;
545 bio->bi_next = NULL;
546 generic_make_request(bio);
547 bio = next;
548 }
549 } else
550 spin_unlock_irq(&conf->device_lock);
551 }
552
553 /* Barriers....
554 * Sometimes we need to suspend IO while we do something else,
555 * either some resync/recovery, or reconfigure the array.
556 * To do this we raise a 'barrier'.
557 * The 'barrier' is a counter that can be raised multiple times
558 * to count how many activities are happening which preclude
559 * normal IO.
560 * We can only raise the barrier if there is no pending IO.
561 * i.e. if nr_pending == 0.
562 * We choose only to raise the barrier if no-one is waiting for the
563 * barrier to go down. This means that as soon as an IO request
564 * is ready, no other operations which require a barrier will start
565 * until the IO request has had a chance.
566 *
567 * So: regular IO calls 'wait_barrier'. When that returns there
568 * is no backgroup IO happening, It must arrange to call
569 * allow_barrier when it has finished its IO.
570 * backgroup IO calls must call raise_barrier. Once that returns
571 * there is no normal IO happeing. It must arrange to call
572 * lower_barrier when the particular background IO completes.
573 */
574 #define RESYNC_DEPTH 32
575
576 static void raise_barrier(conf_t *conf)
577 {
578 spin_lock_irq(&conf->resync_lock);
579
580 /* Wait until no block IO is waiting */
581 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
582 conf->resync_lock, );
583
584 /* block any new IO from starting */
585 conf->barrier++;
586
587 /* Now wait for all pending IO to complete */
588 wait_event_lock_irq(conf->wait_barrier,
589 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
590 conf->resync_lock, );
591
592 spin_unlock_irq(&conf->resync_lock);
593 }
594
595 static void lower_barrier(conf_t *conf)
596 {
597 unsigned long flags;
598 BUG_ON(conf->barrier <= 0);
599 spin_lock_irqsave(&conf->resync_lock, flags);
600 conf->barrier--;
601 spin_unlock_irqrestore(&conf->resync_lock, flags);
602 wake_up(&conf->wait_barrier);
603 }
604
605 static void wait_barrier(conf_t *conf)
606 {
607 spin_lock_irq(&conf->resync_lock);
608 if (conf->barrier) {
609 conf->nr_waiting++;
610 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
611 conf->resync_lock,
612 );
613 conf->nr_waiting--;
614 }
615 conf->nr_pending++;
616 spin_unlock_irq(&conf->resync_lock);
617 }
618
619 static void allow_barrier(conf_t *conf)
620 {
621 unsigned long flags;
622 spin_lock_irqsave(&conf->resync_lock, flags);
623 conf->nr_pending--;
624 spin_unlock_irqrestore(&conf->resync_lock, flags);
625 wake_up(&conf->wait_barrier);
626 }
627
628 static void freeze_array(conf_t *conf)
629 {
630 /* stop syncio and normal IO and wait for everything to
631 * go quite.
632 * We increment barrier and nr_waiting, and then
633 * wait until nr_pending match nr_queued+1
634 * This is called in the context of one normal IO request
635 * that has failed. Thus any sync request that might be pending
636 * will be blocked by nr_pending, and we need to wait for
637 * pending IO requests to complete or be queued for re-try.
638 * Thus the number queued (nr_queued) plus this request (1)
639 * must match the number of pending IOs (nr_pending) before
640 * we continue.
641 */
642 spin_lock_irq(&conf->resync_lock);
643 conf->barrier++;
644 conf->nr_waiting++;
645 wait_event_lock_irq(conf->wait_barrier,
646 conf->nr_pending == conf->nr_queued+1,
647 conf->resync_lock,
648 flush_pending_writes(conf));
649 spin_unlock_irq(&conf->resync_lock);
650 }
651 static void unfreeze_array(conf_t *conf)
652 {
653 /* reverse the effect of the freeze */
654 spin_lock_irq(&conf->resync_lock);
655 conf->barrier--;
656 conf->nr_waiting--;
657 wake_up(&conf->wait_barrier);
658 spin_unlock_irq(&conf->resync_lock);
659 }
660
661
662 /* duplicate the data pages for behind I/O
663 * We return a list of bio_vec rather than just page pointers
664 * as it makes freeing easier
665 */
666 static struct bio_vec *alloc_behind_pages(struct bio *bio)
667 {
668 int i;
669 struct bio_vec *bvec;
670 struct bio_vec *pages = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
671 GFP_NOIO);
672 if (unlikely(!pages))
673 goto do_sync_io;
674
675 bio_for_each_segment(bvec, bio, i) {
676 pages[i].bv_page = alloc_page(GFP_NOIO);
677 if (unlikely(!pages[i].bv_page))
678 goto do_sync_io;
679 memcpy(kmap(pages[i].bv_page) + bvec->bv_offset,
680 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
681 kunmap(pages[i].bv_page);
682 kunmap(bvec->bv_page);
683 }
684
685 return pages;
686
687 do_sync_io:
688 if (pages)
689 for (i = 0; i < bio->bi_vcnt && pages[i].bv_page; i++)
690 put_page(pages[i].bv_page);
691 kfree(pages);
692 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
693 return NULL;
694 }
695
696 static int make_request(mddev_t *mddev, struct bio * bio)
697 {
698 conf_t *conf = mddev->private;
699 mirror_info_t *mirror;
700 r1bio_t *r1_bio;
701 struct bio *read_bio;
702 int i, targets = 0, disks;
703 struct bitmap *bitmap;
704 unsigned long flags;
705 struct bio_vec *behind_pages = NULL;
706 const int rw = bio_data_dir(bio);
707 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
708 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
709 mdk_rdev_t *blocked_rdev;
710 int plugged;
711
712 /*
713 * Register the new request and wait if the reconstruction
714 * thread has put up a bar for new requests.
715 * Continue immediately if no resync is active currently.
716 */
717
718 md_write_start(mddev, bio); /* wait on superblock update early */
719
720 if (bio_data_dir(bio) == WRITE &&
721 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
722 bio->bi_sector < mddev->suspend_hi) {
723 /* As the suspend_* range is controlled by
724 * userspace, we want an interruptible
725 * wait.
726 */
727 DEFINE_WAIT(w);
728 for (;;) {
729 flush_signals(current);
730 prepare_to_wait(&conf->wait_barrier,
731 &w, TASK_INTERRUPTIBLE);
732 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
733 bio->bi_sector >= mddev->suspend_hi)
734 break;
735 schedule();
736 }
737 finish_wait(&conf->wait_barrier, &w);
738 }
739
740 wait_barrier(conf);
741
742 bitmap = mddev->bitmap;
743
744 /*
745 * make_request() can abort the operation when READA is being
746 * used and no empty request is available.
747 *
748 */
749 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
750
751 r1_bio->master_bio = bio;
752 r1_bio->sectors = bio->bi_size >> 9;
753 r1_bio->state = 0;
754 r1_bio->mddev = mddev;
755 r1_bio->sector = bio->bi_sector;
756
757 if (rw == READ) {
758 /*
759 * read balancing logic:
760 */
761 int rdisk = read_balance(conf, r1_bio);
762
763 if (rdisk < 0) {
764 /* couldn't find anywhere to read from */
765 raid_end_bio_io(r1_bio);
766 return 0;
767 }
768 mirror = conf->mirrors + rdisk;
769
770 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
771 bitmap) {
772 /* Reading from a write-mostly device must
773 * take care not to over-take any writes
774 * that are 'behind'
775 */
776 wait_event(bitmap->behind_wait,
777 atomic_read(&bitmap->behind_writes) == 0);
778 }
779 r1_bio->read_disk = rdisk;
780
781 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
782
783 r1_bio->bios[rdisk] = read_bio;
784
785 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
786 read_bio->bi_bdev = mirror->rdev->bdev;
787 read_bio->bi_end_io = raid1_end_read_request;
788 read_bio->bi_rw = READ | do_sync;
789 read_bio->bi_private = r1_bio;
790
791 generic_make_request(read_bio);
792 return 0;
793 }
794
795 /*
796 * WRITE:
797 */
798 /* first select target devices under spinlock and
799 * inc refcount on their rdev. Record them by setting
800 * bios[x] to bio
801 */
802 plugged = mddev_check_plugged(mddev);
803
804 disks = conf->raid_disks;
805 retry_write:
806 blocked_rdev = NULL;
807 rcu_read_lock();
808 for (i = 0; i < disks; i++) {
809 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
810 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
811 atomic_inc(&rdev->nr_pending);
812 blocked_rdev = rdev;
813 break;
814 }
815 if (rdev && !test_bit(Faulty, &rdev->flags)) {
816 atomic_inc(&rdev->nr_pending);
817 if (test_bit(Faulty, &rdev->flags)) {
818 rdev_dec_pending(rdev, mddev);
819 r1_bio->bios[i] = NULL;
820 } else {
821 r1_bio->bios[i] = bio;
822 targets++;
823 }
824 } else
825 r1_bio->bios[i] = NULL;
826 }
827 rcu_read_unlock();
828
829 if (unlikely(blocked_rdev)) {
830 /* Wait for this device to become unblocked */
831 int j;
832
833 for (j = 0; j < i; j++)
834 if (r1_bio->bios[j])
835 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
836
837 allow_barrier(conf);
838 md_wait_for_blocked_rdev(blocked_rdev, mddev);
839 wait_barrier(conf);
840 goto retry_write;
841 }
842
843 BUG_ON(targets == 0); /* we never fail the last device */
844
845 if (targets < conf->raid_disks) {
846 /* array is degraded, we will not clear the bitmap
847 * on I/O completion (see raid1_end_write_request) */
848 set_bit(R1BIO_Degraded, &r1_bio->state);
849 }
850
851 /* do behind I/O ?
852 * Not if there are too many, or cannot allocate memory,
853 * or a reader on WriteMostly is waiting for behind writes
854 * to flush */
855 if (bitmap &&
856 (atomic_read(&bitmap->behind_writes)
857 < mddev->bitmap_info.max_write_behind) &&
858 !waitqueue_active(&bitmap->behind_wait) &&
859 (behind_pages = alloc_behind_pages(bio)) != NULL)
860 set_bit(R1BIO_BehindIO, &r1_bio->state);
861
862 atomic_set(&r1_bio->remaining, 1);
863 atomic_set(&r1_bio->behind_remaining, 0);
864
865 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
866 test_bit(R1BIO_BehindIO, &r1_bio->state));
867 for (i = 0; i < disks; i++) {
868 struct bio *mbio;
869 if (!r1_bio->bios[i])
870 continue;
871
872 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
873 r1_bio->bios[i] = mbio;
874
875 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
876 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
877 mbio->bi_end_io = raid1_end_write_request;
878 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
879 mbio->bi_private = r1_bio;
880
881 if (behind_pages) {
882 struct bio_vec *bvec;
883 int j;
884
885 /* Yes, I really want the '__' version so that
886 * we clear any unused pointer in the io_vec, rather
887 * than leave them unchanged. This is important
888 * because when we come to free the pages, we won't
889 * know the original bi_idx, so we just free
890 * them all
891 */
892 __bio_for_each_segment(bvec, mbio, j, 0)
893 bvec->bv_page = behind_pages[j].bv_page;
894 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
895 atomic_inc(&r1_bio->behind_remaining);
896 }
897
898 atomic_inc(&r1_bio->remaining);
899 spin_lock_irqsave(&conf->device_lock, flags);
900 bio_list_add(&conf->pending_bio_list, mbio);
901 spin_unlock_irqrestore(&conf->device_lock, flags);
902 }
903 r1_bio_write_done(r1_bio, bio->bi_vcnt, behind_pages, behind_pages != NULL);
904 kfree(behind_pages); /* the behind pages are attached to the bios now */
905
906 /* In case raid1d snuck in to freeze_array */
907 wake_up(&conf->wait_barrier);
908
909 if (do_sync || !bitmap || !plugged)
910 md_wakeup_thread(mddev->thread);
911
912 return 0;
913 }
914
915 static void status(struct seq_file *seq, mddev_t *mddev)
916 {
917 conf_t *conf = mddev->private;
918 int i;
919
920 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
921 conf->raid_disks - mddev->degraded);
922 rcu_read_lock();
923 for (i = 0; i < conf->raid_disks; i++) {
924 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
925 seq_printf(seq, "%s",
926 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
927 }
928 rcu_read_unlock();
929 seq_printf(seq, "]");
930 }
931
932
933 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
934 {
935 char b[BDEVNAME_SIZE];
936 conf_t *conf = mddev->private;
937
938 /*
939 * If it is not operational, then we have already marked it as dead
940 * else if it is the last working disks, ignore the error, let the
941 * next level up know.
942 * else mark the drive as failed
943 */
944 if (test_bit(In_sync, &rdev->flags)
945 && (conf->raid_disks - mddev->degraded) == 1) {
946 /*
947 * Don't fail the drive, act as though we were just a
948 * normal single drive.
949 * However don't try a recovery from this drive as
950 * it is very likely to fail.
951 */
952 mddev->recovery_disabled = 1;
953 return;
954 }
955 if (test_and_clear_bit(In_sync, &rdev->flags)) {
956 unsigned long flags;
957 spin_lock_irqsave(&conf->device_lock, flags);
958 mddev->degraded++;
959 set_bit(Faulty, &rdev->flags);
960 spin_unlock_irqrestore(&conf->device_lock, flags);
961 /*
962 * if recovery is running, make sure it aborts.
963 */
964 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
965 } else
966 set_bit(Faulty, &rdev->flags);
967 set_bit(MD_CHANGE_DEVS, &mddev->flags);
968 printk(KERN_ALERT
969 "md/raid1:%s: Disk failure on %s, disabling device.\n"
970 "md/raid1:%s: Operation continuing on %d devices.\n",
971 mdname(mddev), bdevname(rdev->bdev, b),
972 mdname(mddev), conf->raid_disks - mddev->degraded);
973 }
974
975 static void print_conf(conf_t *conf)
976 {
977 int i;
978
979 printk(KERN_DEBUG "RAID1 conf printout:\n");
980 if (!conf) {
981 printk(KERN_DEBUG "(!conf)\n");
982 return;
983 }
984 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
985 conf->raid_disks);
986
987 rcu_read_lock();
988 for (i = 0; i < conf->raid_disks; i++) {
989 char b[BDEVNAME_SIZE];
990 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
991 if (rdev)
992 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
993 i, !test_bit(In_sync, &rdev->flags),
994 !test_bit(Faulty, &rdev->flags),
995 bdevname(rdev->bdev,b));
996 }
997 rcu_read_unlock();
998 }
999
1000 static void close_sync(conf_t *conf)
1001 {
1002 wait_barrier(conf);
1003 allow_barrier(conf);
1004
1005 mempool_destroy(conf->r1buf_pool);
1006 conf->r1buf_pool = NULL;
1007 }
1008
1009 static int raid1_spare_active(mddev_t *mddev)
1010 {
1011 int i;
1012 conf_t *conf = mddev->private;
1013 int count = 0;
1014 unsigned long flags;
1015
1016 /*
1017 * Find all failed disks within the RAID1 configuration
1018 * and mark them readable.
1019 * Called under mddev lock, so rcu protection not needed.
1020 */
1021 for (i = 0; i < conf->raid_disks; i++) {
1022 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1023 if (rdev
1024 && !test_bit(Faulty, &rdev->flags)
1025 && !test_and_set_bit(In_sync, &rdev->flags)) {
1026 count++;
1027 sysfs_notify_dirent(rdev->sysfs_state);
1028 }
1029 }
1030 spin_lock_irqsave(&conf->device_lock, flags);
1031 mddev->degraded -= count;
1032 spin_unlock_irqrestore(&conf->device_lock, flags);
1033
1034 print_conf(conf);
1035 return count;
1036 }
1037
1038
1039 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1040 {
1041 conf_t *conf = mddev->private;
1042 int err = -EEXIST;
1043 int mirror = 0;
1044 mirror_info_t *p;
1045 int first = 0;
1046 int last = mddev->raid_disks - 1;
1047
1048 if (rdev->raid_disk >= 0)
1049 first = last = rdev->raid_disk;
1050
1051 for (mirror = first; mirror <= last; mirror++)
1052 if ( !(p=conf->mirrors+mirror)->rdev) {
1053
1054 disk_stack_limits(mddev->gendisk, rdev->bdev,
1055 rdev->data_offset << 9);
1056 /* as we don't honour merge_bvec_fn, we must
1057 * never risk violating it, so limit
1058 * ->max_segments to one lying with a single
1059 * page, as a one page request is never in
1060 * violation.
1061 */
1062 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1063 blk_queue_max_segments(mddev->queue, 1);
1064 blk_queue_segment_boundary(mddev->queue,
1065 PAGE_CACHE_SIZE - 1);
1066 }
1067
1068 p->head_position = 0;
1069 rdev->raid_disk = mirror;
1070 err = 0;
1071 /* As all devices are equivalent, we don't need a full recovery
1072 * if this was recently any drive of the array
1073 */
1074 if (rdev->saved_raid_disk < 0)
1075 conf->fullsync = 1;
1076 rcu_assign_pointer(p->rdev, rdev);
1077 break;
1078 }
1079 md_integrity_add_rdev(rdev, mddev);
1080 print_conf(conf);
1081 return err;
1082 }
1083
1084 static int raid1_remove_disk(mddev_t *mddev, int number)
1085 {
1086 conf_t *conf = mddev->private;
1087 int err = 0;
1088 mdk_rdev_t *rdev;
1089 mirror_info_t *p = conf->mirrors+ number;
1090
1091 print_conf(conf);
1092 rdev = p->rdev;
1093 if (rdev) {
1094 if (test_bit(In_sync, &rdev->flags) ||
1095 atomic_read(&rdev->nr_pending)) {
1096 err = -EBUSY;
1097 goto abort;
1098 }
1099 /* Only remove non-faulty devices if recovery
1100 * is not possible.
1101 */
1102 if (!test_bit(Faulty, &rdev->flags) &&
1103 !mddev->recovery_disabled &&
1104 mddev->degraded < conf->raid_disks) {
1105 err = -EBUSY;
1106 goto abort;
1107 }
1108 p->rdev = NULL;
1109 synchronize_rcu();
1110 if (atomic_read(&rdev->nr_pending)) {
1111 /* lost the race, try later */
1112 err = -EBUSY;
1113 p->rdev = rdev;
1114 goto abort;
1115 }
1116 err = md_integrity_register(mddev);
1117 }
1118 abort:
1119
1120 print_conf(conf);
1121 return err;
1122 }
1123
1124
1125 static void end_sync_read(struct bio *bio, int error)
1126 {
1127 r1bio_t *r1_bio = bio->bi_private;
1128 int i;
1129
1130 for (i=r1_bio->mddev->raid_disks; i--; )
1131 if (r1_bio->bios[i] == bio)
1132 break;
1133 BUG_ON(i < 0);
1134 update_head_pos(i, r1_bio);
1135 /*
1136 * we have read a block, now it needs to be re-written,
1137 * or re-read if the read failed.
1138 * We don't do much here, just schedule handling by raid1d
1139 */
1140 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1141 set_bit(R1BIO_Uptodate, &r1_bio->state);
1142
1143 if (atomic_dec_and_test(&r1_bio->remaining))
1144 reschedule_retry(r1_bio);
1145 }
1146
1147 static void end_sync_write(struct bio *bio, int error)
1148 {
1149 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1150 r1bio_t *r1_bio = bio->bi_private;
1151 mddev_t *mddev = r1_bio->mddev;
1152 conf_t *conf = mddev->private;
1153 int i;
1154 int mirror=0;
1155
1156 for (i = 0; i < conf->raid_disks; i++)
1157 if (r1_bio->bios[i] == bio) {
1158 mirror = i;
1159 break;
1160 }
1161 if (!uptodate) {
1162 sector_t sync_blocks = 0;
1163 sector_t s = r1_bio->sector;
1164 long sectors_to_go = r1_bio->sectors;
1165 /* make sure these bits doesn't get cleared. */
1166 do {
1167 bitmap_end_sync(mddev->bitmap, s,
1168 &sync_blocks, 1);
1169 s += sync_blocks;
1170 sectors_to_go -= sync_blocks;
1171 } while (sectors_to_go > 0);
1172 md_error(mddev, conf->mirrors[mirror].rdev);
1173 }
1174
1175 update_head_pos(mirror, r1_bio);
1176
1177 if (atomic_dec_and_test(&r1_bio->remaining)) {
1178 sector_t s = r1_bio->sectors;
1179 put_buf(r1_bio);
1180 md_done_sync(mddev, s, uptodate);
1181 }
1182 }
1183
1184 static int fix_sync_read_error(r1bio_t *r1_bio)
1185 {
1186 /* Try some synchronous reads of other devices to get
1187 * good data, much like with normal read errors. Only
1188 * read into the pages we already have so we don't
1189 * need to re-issue the read request.
1190 * We don't need to freeze the array, because being in an
1191 * active sync request, there is no normal IO, and
1192 * no overlapping syncs.
1193 */
1194 mddev_t *mddev = r1_bio->mddev;
1195 conf_t *conf = mddev->private;
1196 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1197 sector_t sect = r1_bio->sector;
1198 int sectors = r1_bio->sectors;
1199 int idx = 0;
1200
1201 while(sectors) {
1202 int s = sectors;
1203 int d = r1_bio->read_disk;
1204 int success = 0;
1205 mdk_rdev_t *rdev;
1206
1207 if (s > (PAGE_SIZE>>9))
1208 s = PAGE_SIZE >> 9;
1209 do {
1210 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1211 /* No rcu protection needed here devices
1212 * can only be removed when no resync is
1213 * active, and resync is currently active
1214 */
1215 rdev = conf->mirrors[d].rdev;
1216 if (sync_page_io(rdev,
1217 sect,
1218 s<<9,
1219 bio->bi_io_vec[idx].bv_page,
1220 READ, false)) {
1221 success = 1;
1222 break;
1223 }
1224 }
1225 d++;
1226 if (d == conf->raid_disks)
1227 d = 0;
1228 } while (!success && d != r1_bio->read_disk);
1229
1230 if (success) {
1231 int start = d;
1232 /* write it back and re-read */
1233 set_bit(R1BIO_Uptodate, &r1_bio->state);
1234 while (d != r1_bio->read_disk) {
1235 if (d == 0)
1236 d = conf->raid_disks;
1237 d--;
1238 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1239 continue;
1240 rdev = conf->mirrors[d].rdev;
1241 atomic_add(s, &rdev->corrected_errors);
1242 if (sync_page_io(rdev,
1243 sect,
1244 s<<9,
1245 bio->bi_io_vec[idx].bv_page,
1246 WRITE, false) == 0)
1247 md_error(mddev, rdev);
1248 }
1249 d = start;
1250 while (d != r1_bio->read_disk) {
1251 if (d == 0)
1252 d = conf->raid_disks;
1253 d--;
1254 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1255 continue;
1256 rdev = conf->mirrors[d].rdev;
1257 if (sync_page_io(rdev,
1258 sect,
1259 s<<9,
1260 bio->bi_io_vec[idx].bv_page,
1261 READ, false) == 0)
1262 md_error(mddev, rdev);
1263 }
1264 } else {
1265 char b[BDEVNAME_SIZE];
1266 /* Cannot read from anywhere, array is toast */
1267 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1268 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1269 " for block %llu\n",
1270 mdname(mddev),
1271 bdevname(bio->bi_bdev, b),
1272 (unsigned long long)r1_bio->sector);
1273 md_done_sync(mddev, r1_bio->sectors, 0);
1274 put_buf(r1_bio);
1275 return 0;
1276 }
1277 sectors -= s;
1278 sect += s;
1279 idx ++;
1280 }
1281 return 1;
1282 }
1283
1284 static int process_checks(r1bio_t *r1_bio)
1285 {
1286 /* We have read all readable devices. If we haven't
1287 * got the block, then there is no hope left.
1288 * If we have, then we want to do a comparison
1289 * and skip the write if everything is the same.
1290 * If any blocks failed to read, then we need to
1291 * attempt an over-write
1292 */
1293 mddev_t *mddev = r1_bio->mddev;
1294 conf_t *conf = mddev->private;
1295 int primary;
1296 int i;
1297
1298 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1299 for (i=0; i<mddev->raid_disks; i++)
1300 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1301 md_error(mddev, conf->mirrors[i].rdev);
1302
1303 md_done_sync(mddev, r1_bio->sectors, 1);
1304 put_buf(r1_bio);
1305 return -1;
1306 }
1307 for (primary=0; primary<mddev->raid_disks; primary++)
1308 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1309 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1310 r1_bio->bios[primary]->bi_end_io = NULL;
1311 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1312 break;
1313 }
1314 r1_bio->read_disk = primary;
1315 for (i=0; i<mddev->raid_disks; i++)
1316 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1317 int j;
1318 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1319 struct bio *pbio = r1_bio->bios[primary];
1320 struct bio *sbio = r1_bio->bios[i];
1321
1322 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1323 for (j = vcnt; j-- ; ) {
1324 struct page *p, *s;
1325 p = pbio->bi_io_vec[j].bv_page;
1326 s = sbio->bi_io_vec[j].bv_page;
1327 if (memcmp(page_address(p),
1328 page_address(s),
1329 PAGE_SIZE))
1330 break;
1331 }
1332 } else
1333 j = 0;
1334 if (j >= 0)
1335 mddev->resync_mismatches += r1_bio->sectors;
1336 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1337 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1338 sbio->bi_end_io = NULL;
1339 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1340 } else {
1341 /* fixup the bio for reuse */
1342 int size;
1343 sbio->bi_vcnt = vcnt;
1344 sbio->bi_size = r1_bio->sectors << 9;
1345 sbio->bi_idx = 0;
1346 sbio->bi_phys_segments = 0;
1347 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1348 sbio->bi_flags |= 1 << BIO_UPTODATE;
1349 sbio->bi_next = NULL;
1350 sbio->bi_sector = r1_bio->sector +
1351 conf->mirrors[i].rdev->data_offset;
1352 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1353 size = sbio->bi_size;
1354 for (j = 0; j < vcnt ; j++) {
1355 struct bio_vec *bi;
1356 bi = &sbio->bi_io_vec[j];
1357 bi->bv_offset = 0;
1358 if (size > PAGE_SIZE)
1359 bi->bv_len = PAGE_SIZE;
1360 else
1361 bi->bv_len = size;
1362 size -= PAGE_SIZE;
1363 memcpy(page_address(bi->bv_page),
1364 page_address(pbio->bi_io_vec[j].bv_page),
1365 PAGE_SIZE);
1366 }
1367
1368 }
1369 }
1370 return 0;
1371 }
1372
1373 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1374 {
1375 conf_t *conf = mddev->private;
1376 int i;
1377 int disks = conf->raid_disks;
1378 struct bio *bio, *wbio;
1379
1380 bio = r1_bio->bios[r1_bio->read_disk];
1381
1382
1383 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1384 if (process_checks(r1_bio) < 0)
1385 return;
1386
1387 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1388 /* ouch - failed to read all of that. */
1389 if (!fix_sync_read_error(r1_bio))
1390 return;
1391 /*
1392 * schedule writes
1393 */
1394 atomic_set(&r1_bio->remaining, 1);
1395 for (i = 0; i < disks ; i++) {
1396 wbio = r1_bio->bios[i];
1397 if (wbio->bi_end_io == NULL ||
1398 (wbio->bi_end_io == end_sync_read &&
1399 (i == r1_bio->read_disk ||
1400 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1401 continue;
1402
1403 wbio->bi_rw = WRITE;
1404 wbio->bi_end_io = end_sync_write;
1405 atomic_inc(&r1_bio->remaining);
1406 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1407
1408 generic_make_request(wbio);
1409 }
1410
1411 if (atomic_dec_and_test(&r1_bio->remaining)) {
1412 /* if we're here, all write(s) have completed, so clean up */
1413 md_done_sync(mddev, r1_bio->sectors, 1);
1414 put_buf(r1_bio);
1415 }
1416 }
1417
1418 /*
1419 * This is a kernel thread which:
1420 *
1421 * 1. Retries failed read operations on working mirrors.
1422 * 2. Updates the raid superblock when problems encounter.
1423 * 3. Performs writes following reads for array syncronising.
1424 */
1425
1426 static void fix_read_error(conf_t *conf, int read_disk,
1427 sector_t sect, int sectors)
1428 {
1429 mddev_t *mddev = conf->mddev;
1430 while(sectors) {
1431 int s = sectors;
1432 int d = read_disk;
1433 int success = 0;
1434 int start;
1435 mdk_rdev_t *rdev;
1436
1437 if (s > (PAGE_SIZE>>9))
1438 s = PAGE_SIZE >> 9;
1439
1440 do {
1441 /* Note: no rcu protection needed here
1442 * as this is synchronous in the raid1d thread
1443 * which is the thread that might remove
1444 * a device. If raid1d ever becomes multi-threaded....
1445 */
1446 rdev = conf->mirrors[d].rdev;
1447 if (rdev &&
1448 test_bit(In_sync, &rdev->flags) &&
1449 sync_page_io(rdev, sect, s<<9,
1450 conf->tmppage, READ, false))
1451 success = 1;
1452 else {
1453 d++;
1454 if (d == conf->raid_disks)
1455 d = 0;
1456 }
1457 } while (!success && d != read_disk);
1458
1459 if (!success) {
1460 /* Cannot read from anywhere -- bye bye array */
1461 md_error(mddev, conf->mirrors[read_disk].rdev);
1462 break;
1463 }
1464 /* write it back and re-read */
1465 start = d;
1466 while (d != read_disk) {
1467 if (d==0)
1468 d = conf->raid_disks;
1469 d--;
1470 rdev = conf->mirrors[d].rdev;
1471 if (rdev &&
1472 test_bit(In_sync, &rdev->flags)) {
1473 if (sync_page_io(rdev, sect, s<<9,
1474 conf->tmppage, WRITE, false)
1475 == 0)
1476 /* Well, this device is dead */
1477 md_error(mddev, rdev);
1478 }
1479 }
1480 d = start;
1481 while (d != read_disk) {
1482 char b[BDEVNAME_SIZE];
1483 if (d==0)
1484 d = conf->raid_disks;
1485 d--;
1486 rdev = conf->mirrors[d].rdev;
1487 if (rdev &&
1488 test_bit(In_sync, &rdev->flags)) {
1489 if (sync_page_io(rdev, sect, s<<9,
1490 conf->tmppage, READ, false)
1491 == 0)
1492 /* Well, this device is dead */
1493 md_error(mddev, rdev);
1494 else {
1495 atomic_add(s, &rdev->corrected_errors);
1496 printk(KERN_INFO
1497 "md/raid1:%s: read error corrected "
1498 "(%d sectors at %llu on %s)\n",
1499 mdname(mddev), s,
1500 (unsigned long long)(sect +
1501 rdev->data_offset),
1502 bdevname(rdev->bdev, b));
1503 }
1504 }
1505 }
1506 sectors -= s;
1507 sect += s;
1508 }
1509 }
1510
1511 static void raid1d(mddev_t *mddev)
1512 {
1513 r1bio_t *r1_bio;
1514 struct bio *bio;
1515 unsigned long flags;
1516 conf_t *conf = mddev->private;
1517 struct list_head *head = &conf->retry_list;
1518 mdk_rdev_t *rdev;
1519 struct blk_plug plug;
1520
1521 md_check_recovery(mddev);
1522
1523 blk_start_plug(&plug);
1524 for (;;) {
1525 char b[BDEVNAME_SIZE];
1526
1527 if (atomic_read(&mddev->plug_cnt) == 0)
1528 flush_pending_writes(conf);
1529
1530 spin_lock_irqsave(&conf->device_lock, flags);
1531 if (list_empty(head)) {
1532 spin_unlock_irqrestore(&conf->device_lock, flags);
1533 break;
1534 }
1535 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1536 list_del(head->prev);
1537 conf->nr_queued--;
1538 spin_unlock_irqrestore(&conf->device_lock, flags);
1539
1540 mddev = r1_bio->mddev;
1541 conf = mddev->private;
1542 if (test_bit(R1BIO_IsSync, &r1_bio->state))
1543 sync_request_write(mddev, r1_bio);
1544 else {
1545 int disk;
1546
1547 /* we got a read error. Maybe the drive is bad. Maybe just
1548 * the block and we can fix it.
1549 * We freeze all other IO, and try reading the block from
1550 * other devices. When we find one, we re-write
1551 * and check it that fixes the read error.
1552 * This is all done synchronously while the array is
1553 * frozen
1554 */
1555 if (mddev->ro == 0) {
1556 freeze_array(conf);
1557 fix_read_error(conf, r1_bio->read_disk,
1558 r1_bio->sector,
1559 r1_bio->sectors);
1560 unfreeze_array(conf);
1561 } else
1562 md_error(mddev,
1563 conf->mirrors[r1_bio->read_disk].rdev);
1564
1565 bio = r1_bio->bios[r1_bio->read_disk];
1566 if ((disk=read_balance(conf, r1_bio)) == -1) {
1567 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
1568 " read error for block %llu\n",
1569 mdname(mddev),
1570 bdevname(bio->bi_bdev,b),
1571 (unsigned long long)r1_bio->sector);
1572 raid_end_bio_io(r1_bio);
1573 } else {
1574 const unsigned long do_sync = r1_bio->master_bio->bi_rw & REQ_SYNC;
1575 r1_bio->bios[r1_bio->read_disk] =
1576 mddev->ro ? IO_BLOCKED : NULL;
1577 r1_bio->read_disk = disk;
1578 bio_put(bio);
1579 bio = bio_clone_mddev(r1_bio->master_bio,
1580 GFP_NOIO, mddev);
1581 r1_bio->bios[r1_bio->read_disk] = bio;
1582 rdev = conf->mirrors[disk].rdev;
1583 if (printk_ratelimit())
1584 printk(KERN_ERR "md/raid1:%s: redirecting sector %llu to"
1585 " other mirror: %s\n",
1586 mdname(mddev),
1587 (unsigned long long)r1_bio->sector,
1588 bdevname(rdev->bdev,b));
1589 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1590 bio->bi_bdev = rdev->bdev;
1591 bio->bi_end_io = raid1_end_read_request;
1592 bio->bi_rw = READ | do_sync;
1593 bio->bi_private = r1_bio;
1594 generic_make_request(bio);
1595 }
1596 }
1597 cond_resched();
1598 }
1599 blk_finish_plug(&plug);
1600 }
1601
1602
1603 static int init_resync(conf_t *conf)
1604 {
1605 int buffs;
1606
1607 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1608 BUG_ON(conf->r1buf_pool);
1609 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1610 conf->poolinfo);
1611 if (!conf->r1buf_pool)
1612 return -ENOMEM;
1613 conf->next_resync = 0;
1614 return 0;
1615 }
1616
1617 /*
1618 * perform a "sync" on one "block"
1619 *
1620 * We need to make sure that no normal I/O request - particularly write
1621 * requests - conflict with active sync requests.
1622 *
1623 * This is achieved by tracking pending requests and a 'barrier' concept
1624 * that can be installed to exclude normal IO requests.
1625 */
1626
1627 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1628 {
1629 conf_t *conf = mddev->private;
1630 r1bio_t *r1_bio;
1631 struct bio *bio;
1632 sector_t max_sector, nr_sectors;
1633 int disk = -1;
1634 int i;
1635 int wonly = -1;
1636 int write_targets = 0, read_targets = 0;
1637 sector_t sync_blocks;
1638 int still_degraded = 0;
1639
1640 if (!conf->r1buf_pool)
1641 if (init_resync(conf))
1642 return 0;
1643
1644 max_sector = mddev->dev_sectors;
1645 if (sector_nr >= max_sector) {
1646 /* If we aborted, we need to abort the
1647 * sync on the 'current' bitmap chunk (there will
1648 * only be one in raid1 resync.
1649 * We can find the current addess in mddev->curr_resync
1650 */
1651 if (mddev->curr_resync < max_sector) /* aborted */
1652 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1653 &sync_blocks, 1);
1654 else /* completed sync */
1655 conf->fullsync = 0;
1656
1657 bitmap_close_sync(mddev->bitmap);
1658 close_sync(conf);
1659 return 0;
1660 }
1661
1662 if (mddev->bitmap == NULL &&
1663 mddev->recovery_cp == MaxSector &&
1664 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1665 conf->fullsync == 0) {
1666 *skipped = 1;
1667 return max_sector - sector_nr;
1668 }
1669 /* before building a request, check if we can skip these blocks..
1670 * This call the bitmap_start_sync doesn't actually record anything
1671 */
1672 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1673 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1674 /* We can skip this block, and probably several more */
1675 *skipped = 1;
1676 return sync_blocks;
1677 }
1678 /*
1679 * If there is non-resync activity waiting for a turn,
1680 * and resync is going fast enough,
1681 * then let it though before starting on this new sync request.
1682 */
1683 if (!go_faster && conf->nr_waiting)
1684 msleep_interruptible(1000);
1685
1686 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1687 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1688 raise_barrier(conf);
1689
1690 conf->next_resync = sector_nr;
1691
1692 rcu_read_lock();
1693 /*
1694 * If we get a correctably read error during resync or recovery,
1695 * we might want to read from a different device. So we
1696 * flag all drives that could conceivably be read from for READ,
1697 * and any others (which will be non-In_sync devices) for WRITE.
1698 * If a read fails, we try reading from something else for which READ
1699 * is OK.
1700 */
1701
1702 r1_bio->mddev = mddev;
1703 r1_bio->sector = sector_nr;
1704 r1_bio->state = 0;
1705 set_bit(R1BIO_IsSync, &r1_bio->state);
1706
1707 for (i=0; i < conf->raid_disks; i++) {
1708 mdk_rdev_t *rdev;
1709 bio = r1_bio->bios[i];
1710
1711 /* take from bio_init */
1712 bio->bi_next = NULL;
1713 bio->bi_flags &= ~(BIO_POOL_MASK-1);
1714 bio->bi_flags |= 1 << BIO_UPTODATE;
1715 bio->bi_comp_cpu = -1;
1716 bio->bi_rw = READ;
1717 bio->bi_vcnt = 0;
1718 bio->bi_idx = 0;
1719 bio->bi_phys_segments = 0;
1720 bio->bi_size = 0;
1721 bio->bi_end_io = NULL;
1722 bio->bi_private = NULL;
1723
1724 rdev = rcu_dereference(conf->mirrors[i].rdev);
1725 if (rdev == NULL ||
1726 test_bit(Faulty, &rdev->flags)) {
1727 still_degraded = 1;
1728 continue;
1729 } else if (!test_bit(In_sync, &rdev->flags)) {
1730 bio->bi_rw = WRITE;
1731 bio->bi_end_io = end_sync_write;
1732 write_targets ++;
1733 } else {
1734 /* may need to read from here */
1735 bio->bi_rw = READ;
1736 bio->bi_end_io = end_sync_read;
1737 if (test_bit(WriteMostly, &rdev->flags)) {
1738 if (wonly < 0)
1739 wonly = i;
1740 } else {
1741 if (disk < 0)
1742 disk = i;
1743 }
1744 read_targets++;
1745 }
1746 atomic_inc(&rdev->nr_pending);
1747 bio->bi_sector = sector_nr + rdev->data_offset;
1748 bio->bi_bdev = rdev->bdev;
1749 bio->bi_private = r1_bio;
1750 }
1751 rcu_read_unlock();
1752 if (disk < 0)
1753 disk = wonly;
1754 r1_bio->read_disk = disk;
1755
1756 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1757 /* extra read targets are also write targets */
1758 write_targets += read_targets-1;
1759
1760 if (write_targets == 0 || read_targets == 0) {
1761 /* There is nowhere to write, so all non-sync
1762 * drives must be failed - so we are finished
1763 */
1764 sector_t rv = max_sector - sector_nr;
1765 *skipped = 1;
1766 put_buf(r1_bio);
1767 return rv;
1768 }
1769
1770 if (max_sector > mddev->resync_max)
1771 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1772 nr_sectors = 0;
1773 sync_blocks = 0;
1774 do {
1775 struct page *page;
1776 int len = PAGE_SIZE;
1777 if (sector_nr + (len>>9) > max_sector)
1778 len = (max_sector - sector_nr) << 9;
1779 if (len == 0)
1780 break;
1781 if (sync_blocks == 0) {
1782 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1783 &sync_blocks, still_degraded) &&
1784 !conf->fullsync &&
1785 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1786 break;
1787 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1788 if ((len >> 9) > sync_blocks)
1789 len = sync_blocks<<9;
1790 }
1791
1792 for (i=0 ; i < conf->raid_disks; i++) {
1793 bio = r1_bio->bios[i];
1794 if (bio->bi_end_io) {
1795 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1796 if (bio_add_page(bio, page, len, 0) == 0) {
1797 /* stop here */
1798 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1799 while (i > 0) {
1800 i--;
1801 bio = r1_bio->bios[i];
1802 if (bio->bi_end_io==NULL)
1803 continue;
1804 /* remove last page from this bio */
1805 bio->bi_vcnt--;
1806 bio->bi_size -= len;
1807 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1808 }
1809 goto bio_full;
1810 }
1811 }
1812 }
1813 nr_sectors += len>>9;
1814 sector_nr += len>>9;
1815 sync_blocks -= (len>>9);
1816 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1817 bio_full:
1818 r1_bio->sectors = nr_sectors;
1819
1820 /* For a user-requested sync, we read all readable devices and do a
1821 * compare
1822 */
1823 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1824 atomic_set(&r1_bio->remaining, read_targets);
1825 for (i=0; i<conf->raid_disks; i++) {
1826 bio = r1_bio->bios[i];
1827 if (bio->bi_end_io == end_sync_read) {
1828 md_sync_acct(bio->bi_bdev, nr_sectors);
1829 generic_make_request(bio);
1830 }
1831 }
1832 } else {
1833 atomic_set(&r1_bio->remaining, 1);
1834 bio = r1_bio->bios[r1_bio->read_disk];
1835 md_sync_acct(bio->bi_bdev, nr_sectors);
1836 generic_make_request(bio);
1837
1838 }
1839 return nr_sectors;
1840 }
1841
1842 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1843 {
1844 if (sectors)
1845 return sectors;
1846
1847 return mddev->dev_sectors;
1848 }
1849
1850 static conf_t *setup_conf(mddev_t *mddev)
1851 {
1852 conf_t *conf;
1853 int i;
1854 mirror_info_t *disk;
1855 mdk_rdev_t *rdev;
1856 int err = -ENOMEM;
1857
1858 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1859 if (!conf)
1860 goto abort;
1861
1862 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1863 GFP_KERNEL);
1864 if (!conf->mirrors)
1865 goto abort;
1866
1867 conf->tmppage = alloc_page(GFP_KERNEL);
1868 if (!conf->tmppage)
1869 goto abort;
1870
1871 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1872 if (!conf->poolinfo)
1873 goto abort;
1874 conf->poolinfo->raid_disks = mddev->raid_disks;
1875 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1876 r1bio_pool_free,
1877 conf->poolinfo);
1878 if (!conf->r1bio_pool)
1879 goto abort;
1880
1881 conf->poolinfo->mddev = mddev;
1882
1883 spin_lock_init(&conf->device_lock);
1884 list_for_each_entry(rdev, &mddev->disks, same_set) {
1885 int disk_idx = rdev->raid_disk;
1886 if (disk_idx >= mddev->raid_disks
1887 || disk_idx < 0)
1888 continue;
1889 disk = conf->mirrors + disk_idx;
1890
1891 disk->rdev = rdev;
1892
1893 disk->head_position = 0;
1894 }
1895 conf->raid_disks = mddev->raid_disks;
1896 conf->mddev = mddev;
1897 INIT_LIST_HEAD(&conf->retry_list);
1898
1899 spin_lock_init(&conf->resync_lock);
1900 init_waitqueue_head(&conf->wait_barrier);
1901
1902 bio_list_init(&conf->pending_bio_list);
1903
1904 conf->last_used = -1;
1905 for (i = 0; i < conf->raid_disks; i++) {
1906
1907 disk = conf->mirrors + i;
1908
1909 if (!disk->rdev ||
1910 !test_bit(In_sync, &disk->rdev->flags)) {
1911 disk->head_position = 0;
1912 if (disk->rdev)
1913 conf->fullsync = 1;
1914 } else if (conf->last_used < 0)
1915 /*
1916 * The first working device is used as a
1917 * starting point to read balancing.
1918 */
1919 conf->last_used = i;
1920 }
1921
1922 err = -EIO;
1923 if (conf->last_used < 0) {
1924 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
1925 mdname(mddev));
1926 goto abort;
1927 }
1928 err = -ENOMEM;
1929 conf->thread = md_register_thread(raid1d, mddev, NULL);
1930 if (!conf->thread) {
1931 printk(KERN_ERR
1932 "md/raid1:%s: couldn't allocate thread\n",
1933 mdname(mddev));
1934 goto abort;
1935 }
1936
1937 return conf;
1938
1939 abort:
1940 if (conf) {
1941 if (conf->r1bio_pool)
1942 mempool_destroy(conf->r1bio_pool);
1943 kfree(conf->mirrors);
1944 safe_put_page(conf->tmppage);
1945 kfree(conf->poolinfo);
1946 kfree(conf);
1947 }
1948 return ERR_PTR(err);
1949 }
1950
1951 static int run(mddev_t *mddev)
1952 {
1953 conf_t *conf;
1954 int i;
1955 mdk_rdev_t *rdev;
1956
1957 if (mddev->level != 1) {
1958 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
1959 mdname(mddev), mddev->level);
1960 return -EIO;
1961 }
1962 if (mddev->reshape_position != MaxSector) {
1963 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
1964 mdname(mddev));
1965 return -EIO;
1966 }
1967 /*
1968 * copy the already verified devices into our private RAID1
1969 * bookkeeping area. [whatever we allocate in run(),
1970 * should be freed in stop()]
1971 */
1972 if (mddev->private == NULL)
1973 conf = setup_conf(mddev);
1974 else
1975 conf = mddev->private;
1976
1977 if (IS_ERR(conf))
1978 return PTR_ERR(conf);
1979
1980 list_for_each_entry(rdev, &mddev->disks, same_set) {
1981 disk_stack_limits(mddev->gendisk, rdev->bdev,
1982 rdev->data_offset << 9);
1983 /* as we don't honour merge_bvec_fn, we must never risk
1984 * violating it, so limit ->max_segments to 1 lying within
1985 * a single page, as a one page request is never in violation.
1986 */
1987 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1988 blk_queue_max_segments(mddev->queue, 1);
1989 blk_queue_segment_boundary(mddev->queue,
1990 PAGE_CACHE_SIZE - 1);
1991 }
1992 }
1993
1994 mddev->degraded = 0;
1995 for (i=0; i < conf->raid_disks; i++)
1996 if (conf->mirrors[i].rdev == NULL ||
1997 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
1998 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
1999 mddev->degraded++;
2000
2001 if (conf->raid_disks - mddev->degraded == 1)
2002 mddev->recovery_cp = MaxSector;
2003
2004 if (mddev->recovery_cp != MaxSector)
2005 printk(KERN_NOTICE "md/raid1:%s: not clean"
2006 " -- starting background reconstruction\n",
2007 mdname(mddev));
2008 printk(KERN_INFO
2009 "md/raid1:%s: active with %d out of %d mirrors\n",
2010 mdname(mddev), mddev->raid_disks - mddev->degraded,
2011 mddev->raid_disks);
2012
2013 /*
2014 * Ok, everything is just fine now
2015 */
2016 mddev->thread = conf->thread;
2017 conf->thread = NULL;
2018 mddev->private = conf;
2019
2020 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2021
2022 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2023 mddev->queue->backing_dev_info.congested_data = mddev;
2024 return md_integrity_register(mddev);
2025 }
2026
2027 static int stop(mddev_t *mddev)
2028 {
2029 conf_t *conf = mddev->private;
2030 struct bitmap *bitmap = mddev->bitmap;
2031
2032 /* wait for behind writes to complete */
2033 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2034 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2035 mdname(mddev));
2036 /* need to kick something here to make sure I/O goes? */
2037 wait_event(bitmap->behind_wait,
2038 atomic_read(&bitmap->behind_writes) == 0);
2039 }
2040
2041 raise_barrier(conf);
2042 lower_barrier(conf);
2043
2044 md_unregister_thread(mddev->thread);
2045 mddev->thread = NULL;
2046 if (conf->r1bio_pool)
2047 mempool_destroy(conf->r1bio_pool);
2048 kfree(conf->mirrors);
2049 kfree(conf->poolinfo);
2050 kfree(conf);
2051 mddev->private = NULL;
2052 return 0;
2053 }
2054
2055 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2056 {
2057 /* no resync is happening, and there is enough space
2058 * on all devices, so we can resize.
2059 * We need to make sure resync covers any new space.
2060 * If the array is shrinking we should possibly wait until
2061 * any io in the removed space completes, but it hardly seems
2062 * worth it.
2063 */
2064 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2065 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2066 return -EINVAL;
2067 set_capacity(mddev->gendisk, mddev->array_sectors);
2068 revalidate_disk(mddev->gendisk);
2069 if (sectors > mddev->dev_sectors &&
2070 mddev->recovery_cp == MaxSector) {
2071 mddev->recovery_cp = mddev->dev_sectors;
2072 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2073 }
2074 mddev->dev_sectors = sectors;
2075 mddev->resync_max_sectors = sectors;
2076 return 0;
2077 }
2078
2079 static int raid1_reshape(mddev_t *mddev)
2080 {
2081 /* We need to:
2082 * 1/ resize the r1bio_pool
2083 * 2/ resize conf->mirrors
2084 *
2085 * We allocate a new r1bio_pool if we can.
2086 * Then raise a device barrier and wait until all IO stops.
2087 * Then resize conf->mirrors and swap in the new r1bio pool.
2088 *
2089 * At the same time, we "pack" the devices so that all the missing
2090 * devices have the higher raid_disk numbers.
2091 */
2092 mempool_t *newpool, *oldpool;
2093 struct pool_info *newpoolinfo;
2094 mirror_info_t *newmirrors;
2095 conf_t *conf = mddev->private;
2096 int cnt, raid_disks;
2097 unsigned long flags;
2098 int d, d2, err;
2099
2100 /* Cannot change chunk_size, layout, or level */
2101 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2102 mddev->layout != mddev->new_layout ||
2103 mddev->level != mddev->new_level) {
2104 mddev->new_chunk_sectors = mddev->chunk_sectors;
2105 mddev->new_layout = mddev->layout;
2106 mddev->new_level = mddev->level;
2107 return -EINVAL;
2108 }
2109
2110 err = md_allow_write(mddev);
2111 if (err)
2112 return err;
2113
2114 raid_disks = mddev->raid_disks + mddev->delta_disks;
2115
2116 if (raid_disks < conf->raid_disks) {
2117 cnt=0;
2118 for (d= 0; d < conf->raid_disks; d++)
2119 if (conf->mirrors[d].rdev)
2120 cnt++;
2121 if (cnt > raid_disks)
2122 return -EBUSY;
2123 }
2124
2125 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2126 if (!newpoolinfo)
2127 return -ENOMEM;
2128 newpoolinfo->mddev = mddev;
2129 newpoolinfo->raid_disks = raid_disks;
2130
2131 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2132 r1bio_pool_free, newpoolinfo);
2133 if (!newpool) {
2134 kfree(newpoolinfo);
2135 return -ENOMEM;
2136 }
2137 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2138 if (!newmirrors) {
2139 kfree(newpoolinfo);
2140 mempool_destroy(newpool);
2141 return -ENOMEM;
2142 }
2143
2144 raise_barrier(conf);
2145
2146 /* ok, everything is stopped */
2147 oldpool = conf->r1bio_pool;
2148 conf->r1bio_pool = newpool;
2149
2150 for (d = d2 = 0; d < conf->raid_disks; d++) {
2151 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2152 if (rdev && rdev->raid_disk != d2) {
2153 char nm[20];
2154 sprintf(nm, "rd%d", rdev->raid_disk);
2155 sysfs_remove_link(&mddev->kobj, nm);
2156 rdev->raid_disk = d2;
2157 sprintf(nm, "rd%d", rdev->raid_disk);
2158 sysfs_remove_link(&mddev->kobj, nm);
2159 if (sysfs_create_link(&mddev->kobj,
2160 &rdev->kobj, nm))
2161 printk(KERN_WARNING
2162 "md/raid1:%s: cannot register "
2163 "%s\n",
2164 mdname(mddev), nm);
2165 }
2166 if (rdev)
2167 newmirrors[d2++].rdev = rdev;
2168 }
2169 kfree(conf->mirrors);
2170 conf->mirrors = newmirrors;
2171 kfree(conf->poolinfo);
2172 conf->poolinfo = newpoolinfo;
2173
2174 spin_lock_irqsave(&conf->device_lock, flags);
2175 mddev->degraded += (raid_disks - conf->raid_disks);
2176 spin_unlock_irqrestore(&conf->device_lock, flags);
2177 conf->raid_disks = mddev->raid_disks = raid_disks;
2178 mddev->delta_disks = 0;
2179
2180 conf->last_used = 0; /* just make sure it is in-range */
2181 lower_barrier(conf);
2182
2183 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2184 md_wakeup_thread(mddev->thread);
2185
2186 mempool_destroy(oldpool);
2187 return 0;
2188 }
2189
2190 static void raid1_quiesce(mddev_t *mddev, int state)
2191 {
2192 conf_t *conf = mddev->private;
2193
2194 switch(state) {
2195 case 2: /* wake for suspend */
2196 wake_up(&conf->wait_barrier);
2197 break;
2198 case 1:
2199 raise_barrier(conf);
2200 break;
2201 case 0:
2202 lower_barrier(conf);
2203 break;
2204 }
2205 }
2206
2207 static void *raid1_takeover(mddev_t *mddev)
2208 {
2209 /* raid1 can take over:
2210 * raid5 with 2 devices, any layout or chunk size
2211 */
2212 if (mddev->level == 5 && mddev->raid_disks == 2) {
2213 conf_t *conf;
2214 mddev->new_level = 1;
2215 mddev->new_layout = 0;
2216 mddev->new_chunk_sectors = 0;
2217 conf = setup_conf(mddev);
2218 if (!IS_ERR(conf))
2219 conf->barrier = 1;
2220 return conf;
2221 }
2222 return ERR_PTR(-EINVAL);
2223 }
2224
2225 static struct mdk_personality raid1_personality =
2226 {
2227 .name = "raid1",
2228 .level = 1,
2229 .owner = THIS_MODULE,
2230 .make_request = make_request,
2231 .run = run,
2232 .stop = stop,
2233 .status = status,
2234 .error_handler = error,
2235 .hot_add_disk = raid1_add_disk,
2236 .hot_remove_disk= raid1_remove_disk,
2237 .spare_active = raid1_spare_active,
2238 .sync_request = sync_request,
2239 .resize = raid1_resize,
2240 .size = raid1_size,
2241 .check_reshape = raid1_reshape,
2242 .quiesce = raid1_quiesce,
2243 .takeover = raid1_takeover,
2244 };
2245
2246 static int __init raid_init(void)
2247 {
2248 return register_md_personality(&raid1_personality);
2249 }
2250
2251 static void raid_exit(void)
2252 {
2253 unregister_md_personality(&raid1_personality);
2254 }
2255
2256 module_init(raid_init);
2257 module_exit(raid_exit);
2258 MODULE_LICENSE("GPL");
2259 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2260 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2261 MODULE_ALIAS("md-raid1");
2262 MODULE_ALIAS("md-level-1");
This page took 0.293008 seconds and 5 git commands to generate.