Merge tag 'sound-3.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
118 */
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate)
337 raid_end_bio_io(r1_bio);
338 else {
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 }
353
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
502 int disk;
503 sector_t best_dist;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
506 int choose_first;
507 int choose_next_idle;
508
509 rcu_read_lock();
510 /*
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
516 sectors = r1_bio->sectors;
517 best_disk = -1;
518 best_dist_disk = -1;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
523 has_nonrot_disk = 0;
524 choose_next_idle = 0;
525
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
528 choose_first = 1;
529 else
530 choose_first = 0;
531
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 sector_t dist;
534 sector_t first_bad;
535 int bad_sectors;
536 unsigned int pending;
537 bool nonrot;
538
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
544 continue;
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
547 continue;
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
560 best_disk = disk;
561 }
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
600 if (choose_first) {
601 best_disk = disk;
602 break;
603 }
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
648 if (dist < best_dist) {
649 best_dist = dist;
650 best_dist_disk = disk;
651 }
652 }
653
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
676 rdev_dec_pending(rdev, conf->mddev);
677 goto retry;
678 }
679 sectors = best_good_sectors;
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 }
686 rcu_read_unlock();
687 *max_sectors = sectors;
688
689 return best_disk;
690 }
691
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695 {
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723 }
724
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 struct r1conf *conf = mddev->private;
728 int i, ret = 0;
729
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
734 rcu_read_lock();
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
739
740 BUG_ON(!q);
741
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755
756 static int raid1_congested(void *data, int bits)
757 {
758 struct mddev *mddev = data;
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762 }
763
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
768 */
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
784 generic_make_request(bio);
785 bio = next;
786 }
787 } else
788 spin_unlock_irq(&conf->device_lock);
789 }
790
791 /* Barriers....
792 * Sometimes we need to suspend IO while we do something else,
793 * either some resync/recovery, or reconfigure the array.
794 * To do this we raise a 'barrier'.
795 * The 'barrier' is a counter that can be raised multiple times
796 * to count how many activities are happening which preclude
797 * normal IO.
798 * We can only raise the barrier if there is no pending IO.
799 * i.e. if nr_pending == 0.
800 * We choose only to raise the barrier if no-one is waiting for the
801 * barrier to go down. This means that as soon as an IO request
802 * is ready, no other operations which require a barrier will start
803 * until the IO request has had a chance.
804 *
805 * So: regular IO calls 'wait_barrier'. When that returns there
806 * is no backgroup IO happening, It must arrange to call
807 * allow_barrier when it has finished its IO.
808 * backgroup IO calls must call raise_barrier. Once that returns
809 * there is no normal IO happeing. It must arrange to call
810 * lower_barrier when the particular background IO completes.
811 */
812 #define RESYNC_DEPTH 32
813
814 static void raise_barrier(struct r1conf *conf)
815 {
816 spin_lock_irq(&conf->resync_lock);
817
818 /* Wait until no block IO is waiting */
819 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
820 conf->resync_lock, );
821
822 /* block any new IO from starting */
823 conf->barrier++;
824
825 /* Now wait for all pending IO to complete */
826 wait_event_lock_irq(conf->wait_barrier,
827 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
828 conf->resync_lock, );
829
830 spin_unlock_irq(&conf->resync_lock);
831 }
832
833 static void lower_barrier(struct r1conf *conf)
834 {
835 unsigned long flags;
836 BUG_ON(conf->barrier <= 0);
837 spin_lock_irqsave(&conf->resync_lock, flags);
838 conf->barrier--;
839 spin_unlock_irqrestore(&conf->resync_lock, flags);
840 wake_up(&conf->wait_barrier);
841 }
842
843 static void wait_barrier(struct r1conf *conf)
844 {
845 spin_lock_irq(&conf->resync_lock);
846 if (conf->barrier) {
847 conf->nr_waiting++;
848 /* Wait for the barrier to drop.
849 * However if there are already pending
850 * requests (preventing the barrier from
851 * rising completely), and the
852 * pre-process bio queue isn't empty,
853 * then don't wait, as we need to empty
854 * that queue to get the nr_pending
855 * count down.
856 */
857 wait_event_lock_irq(conf->wait_barrier,
858 !conf->barrier ||
859 (conf->nr_pending &&
860 current->bio_list &&
861 !bio_list_empty(current->bio_list)),
862 conf->resync_lock,
863 );
864 conf->nr_waiting--;
865 }
866 conf->nr_pending++;
867 spin_unlock_irq(&conf->resync_lock);
868 }
869
870 static void allow_barrier(struct r1conf *conf)
871 {
872 unsigned long flags;
873 spin_lock_irqsave(&conf->resync_lock, flags);
874 conf->nr_pending--;
875 spin_unlock_irqrestore(&conf->resync_lock, flags);
876 wake_up(&conf->wait_barrier);
877 }
878
879 static void freeze_array(struct r1conf *conf)
880 {
881 /* stop syncio and normal IO and wait for everything to
882 * go quite.
883 * We increment barrier and nr_waiting, and then
884 * wait until nr_pending match nr_queued+1
885 * This is called in the context of one normal IO request
886 * that has failed. Thus any sync request that might be pending
887 * will be blocked by nr_pending, and we need to wait for
888 * pending IO requests to complete or be queued for re-try.
889 * Thus the number queued (nr_queued) plus this request (1)
890 * must match the number of pending IOs (nr_pending) before
891 * we continue.
892 */
893 spin_lock_irq(&conf->resync_lock);
894 conf->barrier++;
895 conf->nr_waiting++;
896 wait_event_lock_irq(conf->wait_barrier,
897 conf->nr_pending == conf->nr_queued+1,
898 conf->resync_lock,
899 flush_pending_writes(conf));
900 spin_unlock_irq(&conf->resync_lock);
901 }
902 static void unfreeze_array(struct r1conf *conf)
903 {
904 /* reverse the effect of the freeze */
905 spin_lock_irq(&conf->resync_lock);
906 conf->barrier--;
907 conf->nr_waiting--;
908 wake_up(&conf->wait_barrier);
909 spin_unlock_irq(&conf->resync_lock);
910 }
911
912
913 /* duplicate the data pages for behind I/O
914 */
915 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
916 {
917 int i;
918 struct bio_vec *bvec;
919 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
920 GFP_NOIO);
921 if (unlikely(!bvecs))
922 return;
923
924 bio_for_each_segment(bvec, bio, i) {
925 bvecs[i] = *bvec;
926 bvecs[i].bv_page = alloc_page(GFP_NOIO);
927 if (unlikely(!bvecs[i].bv_page))
928 goto do_sync_io;
929 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
930 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
931 kunmap(bvecs[i].bv_page);
932 kunmap(bvec->bv_page);
933 }
934 r1_bio->behind_bvecs = bvecs;
935 r1_bio->behind_page_count = bio->bi_vcnt;
936 set_bit(R1BIO_BehindIO, &r1_bio->state);
937 return;
938
939 do_sync_io:
940 for (i = 0; i < bio->bi_vcnt; i++)
941 if (bvecs[i].bv_page)
942 put_page(bvecs[i].bv_page);
943 kfree(bvecs);
944 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
945 }
946
947 static void make_request(struct mddev *mddev, struct bio * bio)
948 {
949 struct r1conf *conf = mddev->private;
950 struct raid1_info *mirror;
951 struct r1bio *r1_bio;
952 struct bio *read_bio;
953 int i, disks;
954 struct bitmap *bitmap;
955 unsigned long flags;
956 const int rw = bio_data_dir(bio);
957 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
958 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
959 struct md_rdev *blocked_rdev;
960 int first_clone;
961 int sectors_handled;
962 int max_sectors;
963
964 /*
965 * Register the new request and wait if the reconstruction
966 * thread has put up a bar for new requests.
967 * Continue immediately if no resync is active currently.
968 */
969
970 md_write_start(mddev, bio); /* wait on superblock update early */
971
972 if (bio_data_dir(bio) == WRITE &&
973 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
974 bio->bi_sector < mddev->suspend_hi) {
975 /* As the suspend_* range is controlled by
976 * userspace, we want an interruptible
977 * wait.
978 */
979 DEFINE_WAIT(w);
980 for (;;) {
981 flush_signals(current);
982 prepare_to_wait(&conf->wait_barrier,
983 &w, TASK_INTERRUPTIBLE);
984 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
985 bio->bi_sector >= mddev->suspend_hi)
986 break;
987 schedule();
988 }
989 finish_wait(&conf->wait_barrier, &w);
990 }
991
992 wait_barrier(conf);
993
994 bitmap = mddev->bitmap;
995
996 /*
997 * make_request() can abort the operation when READA is being
998 * used and no empty request is available.
999 *
1000 */
1001 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1002
1003 r1_bio->master_bio = bio;
1004 r1_bio->sectors = bio->bi_size >> 9;
1005 r1_bio->state = 0;
1006 r1_bio->mddev = mddev;
1007 r1_bio->sector = bio->bi_sector;
1008
1009 /* We might need to issue multiple reads to different
1010 * devices if there are bad blocks around, so we keep
1011 * track of the number of reads in bio->bi_phys_segments.
1012 * If this is 0, there is only one r1_bio and no locking
1013 * will be needed when requests complete. If it is
1014 * non-zero, then it is the number of not-completed requests.
1015 */
1016 bio->bi_phys_segments = 0;
1017 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1018
1019 if (rw == READ) {
1020 /*
1021 * read balancing logic:
1022 */
1023 int rdisk;
1024
1025 read_again:
1026 rdisk = read_balance(conf, r1_bio, &max_sectors);
1027
1028 if (rdisk < 0) {
1029 /* couldn't find anywhere to read from */
1030 raid_end_bio_io(r1_bio);
1031 return;
1032 }
1033 mirror = conf->mirrors + rdisk;
1034
1035 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1036 bitmap) {
1037 /* Reading from a write-mostly device must
1038 * take care not to over-take any writes
1039 * that are 'behind'
1040 */
1041 wait_event(bitmap->behind_wait,
1042 atomic_read(&bitmap->behind_writes) == 0);
1043 }
1044 r1_bio->read_disk = rdisk;
1045
1046 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1047 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1048 max_sectors);
1049
1050 r1_bio->bios[rdisk] = read_bio;
1051
1052 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1053 read_bio->bi_bdev = mirror->rdev->bdev;
1054 read_bio->bi_end_io = raid1_end_read_request;
1055 read_bio->bi_rw = READ | do_sync;
1056 read_bio->bi_private = r1_bio;
1057
1058 if (max_sectors < r1_bio->sectors) {
1059 /* could not read all from this device, so we will
1060 * need another r1_bio.
1061 */
1062
1063 sectors_handled = (r1_bio->sector + max_sectors
1064 - bio->bi_sector);
1065 r1_bio->sectors = max_sectors;
1066 spin_lock_irq(&conf->device_lock);
1067 if (bio->bi_phys_segments == 0)
1068 bio->bi_phys_segments = 2;
1069 else
1070 bio->bi_phys_segments++;
1071 spin_unlock_irq(&conf->device_lock);
1072 /* Cannot call generic_make_request directly
1073 * as that will be queued in __make_request
1074 * and subsequent mempool_alloc might block waiting
1075 * for it. So hand bio over to raid1d.
1076 */
1077 reschedule_retry(r1_bio);
1078
1079 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1080
1081 r1_bio->master_bio = bio;
1082 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1083 r1_bio->state = 0;
1084 r1_bio->mddev = mddev;
1085 r1_bio->sector = bio->bi_sector + sectors_handled;
1086 goto read_again;
1087 } else
1088 generic_make_request(read_bio);
1089 return;
1090 }
1091
1092 /*
1093 * WRITE:
1094 */
1095 if (conf->pending_count >= max_queued_requests) {
1096 md_wakeup_thread(mddev->thread);
1097 wait_event(conf->wait_barrier,
1098 conf->pending_count < max_queued_requests);
1099 }
1100 /* first select target devices under rcu_lock and
1101 * inc refcount on their rdev. Record them by setting
1102 * bios[x] to bio
1103 * If there are known/acknowledged bad blocks on any device on
1104 * which we have seen a write error, we want to avoid writing those
1105 * blocks.
1106 * This potentially requires several writes to write around
1107 * the bad blocks. Each set of writes gets it's own r1bio
1108 * with a set of bios attached.
1109 */
1110
1111 disks = conf->raid_disks * 2;
1112 retry_write:
1113 blocked_rdev = NULL;
1114 rcu_read_lock();
1115 max_sectors = r1_bio->sectors;
1116 for (i = 0; i < disks; i++) {
1117 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1118 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1119 atomic_inc(&rdev->nr_pending);
1120 blocked_rdev = rdev;
1121 break;
1122 }
1123 r1_bio->bios[i] = NULL;
1124 if (!rdev || test_bit(Faulty, &rdev->flags)
1125 || test_bit(Unmerged, &rdev->flags)) {
1126 if (i < conf->raid_disks)
1127 set_bit(R1BIO_Degraded, &r1_bio->state);
1128 continue;
1129 }
1130
1131 atomic_inc(&rdev->nr_pending);
1132 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1133 sector_t first_bad;
1134 int bad_sectors;
1135 int is_bad;
1136
1137 is_bad = is_badblock(rdev, r1_bio->sector,
1138 max_sectors,
1139 &first_bad, &bad_sectors);
1140 if (is_bad < 0) {
1141 /* mustn't write here until the bad block is
1142 * acknowledged*/
1143 set_bit(BlockedBadBlocks, &rdev->flags);
1144 blocked_rdev = rdev;
1145 break;
1146 }
1147 if (is_bad && first_bad <= r1_bio->sector) {
1148 /* Cannot write here at all */
1149 bad_sectors -= (r1_bio->sector - first_bad);
1150 if (bad_sectors < max_sectors)
1151 /* mustn't write more than bad_sectors
1152 * to other devices yet
1153 */
1154 max_sectors = bad_sectors;
1155 rdev_dec_pending(rdev, mddev);
1156 /* We don't set R1BIO_Degraded as that
1157 * only applies if the disk is
1158 * missing, so it might be re-added,
1159 * and we want to know to recover this
1160 * chunk.
1161 * In this case the device is here,
1162 * and the fact that this chunk is not
1163 * in-sync is recorded in the bad
1164 * block log
1165 */
1166 continue;
1167 }
1168 if (is_bad) {
1169 int good_sectors = first_bad - r1_bio->sector;
1170 if (good_sectors < max_sectors)
1171 max_sectors = good_sectors;
1172 }
1173 }
1174 r1_bio->bios[i] = bio;
1175 }
1176 rcu_read_unlock();
1177
1178 if (unlikely(blocked_rdev)) {
1179 /* Wait for this device to become unblocked */
1180 int j;
1181
1182 for (j = 0; j < i; j++)
1183 if (r1_bio->bios[j])
1184 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1185 r1_bio->state = 0;
1186 allow_barrier(conf);
1187 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1188 wait_barrier(conf);
1189 goto retry_write;
1190 }
1191
1192 if (max_sectors < r1_bio->sectors) {
1193 /* We are splitting this write into multiple parts, so
1194 * we need to prepare for allocating another r1_bio.
1195 */
1196 r1_bio->sectors = max_sectors;
1197 spin_lock_irq(&conf->device_lock);
1198 if (bio->bi_phys_segments == 0)
1199 bio->bi_phys_segments = 2;
1200 else
1201 bio->bi_phys_segments++;
1202 spin_unlock_irq(&conf->device_lock);
1203 }
1204 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1205
1206 atomic_set(&r1_bio->remaining, 1);
1207 atomic_set(&r1_bio->behind_remaining, 0);
1208
1209 first_clone = 1;
1210 for (i = 0; i < disks; i++) {
1211 struct bio *mbio;
1212 if (!r1_bio->bios[i])
1213 continue;
1214
1215 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1216 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1217
1218 if (first_clone) {
1219 /* do behind I/O ?
1220 * Not if there are too many, or cannot
1221 * allocate memory, or a reader on WriteMostly
1222 * is waiting for behind writes to flush */
1223 if (bitmap &&
1224 (atomic_read(&bitmap->behind_writes)
1225 < mddev->bitmap_info.max_write_behind) &&
1226 !waitqueue_active(&bitmap->behind_wait))
1227 alloc_behind_pages(mbio, r1_bio);
1228
1229 bitmap_startwrite(bitmap, r1_bio->sector,
1230 r1_bio->sectors,
1231 test_bit(R1BIO_BehindIO,
1232 &r1_bio->state));
1233 first_clone = 0;
1234 }
1235 if (r1_bio->behind_bvecs) {
1236 struct bio_vec *bvec;
1237 int j;
1238
1239 /* Yes, I really want the '__' version so that
1240 * we clear any unused pointer in the io_vec, rather
1241 * than leave them unchanged. This is important
1242 * because when we come to free the pages, we won't
1243 * know the original bi_idx, so we just free
1244 * them all
1245 */
1246 __bio_for_each_segment(bvec, mbio, j, 0)
1247 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1248 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1249 atomic_inc(&r1_bio->behind_remaining);
1250 }
1251
1252 r1_bio->bios[i] = mbio;
1253
1254 mbio->bi_sector = (r1_bio->sector +
1255 conf->mirrors[i].rdev->data_offset);
1256 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1257 mbio->bi_end_io = raid1_end_write_request;
1258 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1259 mbio->bi_private = r1_bio;
1260
1261 atomic_inc(&r1_bio->remaining);
1262 spin_lock_irqsave(&conf->device_lock, flags);
1263 bio_list_add(&conf->pending_bio_list, mbio);
1264 conf->pending_count++;
1265 spin_unlock_irqrestore(&conf->device_lock, flags);
1266 if (!mddev_check_plugged(mddev))
1267 md_wakeup_thread(mddev->thread);
1268 }
1269 /* Mustn't call r1_bio_write_done before this next test,
1270 * as it could result in the bio being freed.
1271 */
1272 if (sectors_handled < (bio->bi_size >> 9)) {
1273 r1_bio_write_done(r1_bio);
1274 /* We need another r1_bio. It has already been counted
1275 * in bio->bi_phys_segments
1276 */
1277 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1278 r1_bio->master_bio = bio;
1279 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1280 r1_bio->state = 0;
1281 r1_bio->mddev = mddev;
1282 r1_bio->sector = bio->bi_sector + sectors_handled;
1283 goto retry_write;
1284 }
1285
1286 r1_bio_write_done(r1_bio);
1287
1288 /* In case raid1d snuck in to freeze_array */
1289 wake_up(&conf->wait_barrier);
1290 }
1291
1292 static void status(struct seq_file *seq, struct mddev *mddev)
1293 {
1294 struct r1conf *conf = mddev->private;
1295 int i;
1296
1297 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1298 conf->raid_disks - mddev->degraded);
1299 rcu_read_lock();
1300 for (i = 0; i < conf->raid_disks; i++) {
1301 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1302 seq_printf(seq, "%s",
1303 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1304 }
1305 rcu_read_unlock();
1306 seq_printf(seq, "]");
1307 }
1308
1309
1310 static void error(struct mddev *mddev, struct md_rdev *rdev)
1311 {
1312 char b[BDEVNAME_SIZE];
1313 struct r1conf *conf = mddev->private;
1314
1315 /*
1316 * If it is not operational, then we have already marked it as dead
1317 * else if it is the last working disks, ignore the error, let the
1318 * next level up know.
1319 * else mark the drive as failed
1320 */
1321 if (test_bit(In_sync, &rdev->flags)
1322 && (conf->raid_disks - mddev->degraded) == 1) {
1323 /*
1324 * Don't fail the drive, act as though we were just a
1325 * normal single drive.
1326 * However don't try a recovery from this drive as
1327 * it is very likely to fail.
1328 */
1329 conf->recovery_disabled = mddev->recovery_disabled;
1330 return;
1331 }
1332 set_bit(Blocked, &rdev->flags);
1333 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1334 unsigned long flags;
1335 spin_lock_irqsave(&conf->device_lock, flags);
1336 mddev->degraded++;
1337 set_bit(Faulty, &rdev->flags);
1338 spin_unlock_irqrestore(&conf->device_lock, flags);
1339 /*
1340 * if recovery is running, make sure it aborts.
1341 */
1342 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1343 } else
1344 set_bit(Faulty, &rdev->flags);
1345 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1346 printk(KERN_ALERT
1347 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1348 "md/raid1:%s: Operation continuing on %d devices.\n",
1349 mdname(mddev), bdevname(rdev->bdev, b),
1350 mdname(mddev), conf->raid_disks - mddev->degraded);
1351 }
1352
1353 static void print_conf(struct r1conf *conf)
1354 {
1355 int i;
1356
1357 printk(KERN_DEBUG "RAID1 conf printout:\n");
1358 if (!conf) {
1359 printk(KERN_DEBUG "(!conf)\n");
1360 return;
1361 }
1362 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1363 conf->raid_disks);
1364
1365 rcu_read_lock();
1366 for (i = 0; i < conf->raid_disks; i++) {
1367 char b[BDEVNAME_SIZE];
1368 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1369 if (rdev)
1370 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1371 i, !test_bit(In_sync, &rdev->flags),
1372 !test_bit(Faulty, &rdev->flags),
1373 bdevname(rdev->bdev,b));
1374 }
1375 rcu_read_unlock();
1376 }
1377
1378 static void close_sync(struct r1conf *conf)
1379 {
1380 wait_barrier(conf);
1381 allow_barrier(conf);
1382
1383 mempool_destroy(conf->r1buf_pool);
1384 conf->r1buf_pool = NULL;
1385 }
1386
1387 static int raid1_spare_active(struct mddev *mddev)
1388 {
1389 int i;
1390 struct r1conf *conf = mddev->private;
1391 int count = 0;
1392 unsigned long flags;
1393
1394 /*
1395 * Find all failed disks within the RAID1 configuration
1396 * and mark them readable.
1397 * Called under mddev lock, so rcu protection not needed.
1398 */
1399 for (i = 0; i < conf->raid_disks; i++) {
1400 struct md_rdev *rdev = conf->mirrors[i].rdev;
1401 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1402 if (repl
1403 && repl->recovery_offset == MaxSector
1404 && !test_bit(Faulty, &repl->flags)
1405 && !test_and_set_bit(In_sync, &repl->flags)) {
1406 /* replacement has just become active */
1407 if (!rdev ||
1408 !test_and_clear_bit(In_sync, &rdev->flags))
1409 count++;
1410 if (rdev) {
1411 /* Replaced device not technically
1412 * faulty, but we need to be sure
1413 * it gets removed and never re-added
1414 */
1415 set_bit(Faulty, &rdev->flags);
1416 sysfs_notify_dirent_safe(
1417 rdev->sysfs_state);
1418 }
1419 }
1420 if (rdev
1421 && !test_bit(Faulty, &rdev->flags)
1422 && !test_and_set_bit(In_sync, &rdev->flags)) {
1423 count++;
1424 sysfs_notify_dirent_safe(rdev->sysfs_state);
1425 }
1426 }
1427 spin_lock_irqsave(&conf->device_lock, flags);
1428 mddev->degraded -= count;
1429 spin_unlock_irqrestore(&conf->device_lock, flags);
1430
1431 print_conf(conf);
1432 return count;
1433 }
1434
1435
1436 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1437 {
1438 struct r1conf *conf = mddev->private;
1439 int err = -EEXIST;
1440 int mirror = 0;
1441 struct raid1_info *p;
1442 int first = 0;
1443 int last = conf->raid_disks - 1;
1444 struct request_queue *q = bdev_get_queue(rdev->bdev);
1445
1446 if (mddev->recovery_disabled == conf->recovery_disabled)
1447 return -EBUSY;
1448
1449 if (rdev->raid_disk >= 0)
1450 first = last = rdev->raid_disk;
1451
1452 if (q->merge_bvec_fn) {
1453 set_bit(Unmerged, &rdev->flags);
1454 mddev->merge_check_needed = 1;
1455 }
1456
1457 for (mirror = first; mirror <= last; mirror++) {
1458 p = conf->mirrors+mirror;
1459 if (!p->rdev) {
1460
1461 disk_stack_limits(mddev->gendisk, rdev->bdev,
1462 rdev->data_offset << 9);
1463
1464 p->head_position = 0;
1465 rdev->raid_disk = mirror;
1466 err = 0;
1467 /* As all devices are equivalent, we don't need a full recovery
1468 * if this was recently any drive of the array
1469 */
1470 if (rdev->saved_raid_disk < 0)
1471 conf->fullsync = 1;
1472 rcu_assign_pointer(p->rdev, rdev);
1473 break;
1474 }
1475 if (test_bit(WantReplacement, &p->rdev->flags) &&
1476 p[conf->raid_disks].rdev == NULL) {
1477 /* Add this device as a replacement */
1478 clear_bit(In_sync, &rdev->flags);
1479 set_bit(Replacement, &rdev->flags);
1480 rdev->raid_disk = mirror;
1481 err = 0;
1482 conf->fullsync = 1;
1483 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1484 break;
1485 }
1486 }
1487 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1488 /* Some requests might not have seen this new
1489 * merge_bvec_fn. We must wait for them to complete
1490 * before merging the device fully.
1491 * First we make sure any code which has tested
1492 * our function has submitted the request, then
1493 * we wait for all outstanding requests to complete.
1494 */
1495 synchronize_sched();
1496 raise_barrier(conf);
1497 lower_barrier(conf);
1498 clear_bit(Unmerged, &rdev->flags);
1499 }
1500 md_integrity_add_rdev(rdev, mddev);
1501 print_conf(conf);
1502 return err;
1503 }
1504
1505 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1506 {
1507 struct r1conf *conf = mddev->private;
1508 int err = 0;
1509 int number = rdev->raid_disk;
1510 struct raid1_info *p = conf->mirrors + number;
1511
1512 if (rdev != p->rdev)
1513 p = conf->mirrors + conf->raid_disks + number;
1514
1515 print_conf(conf);
1516 if (rdev == p->rdev) {
1517 if (test_bit(In_sync, &rdev->flags) ||
1518 atomic_read(&rdev->nr_pending)) {
1519 err = -EBUSY;
1520 goto abort;
1521 }
1522 /* Only remove non-faulty devices if recovery
1523 * is not possible.
1524 */
1525 if (!test_bit(Faulty, &rdev->flags) &&
1526 mddev->recovery_disabled != conf->recovery_disabled &&
1527 mddev->degraded < conf->raid_disks) {
1528 err = -EBUSY;
1529 goto abort;
1530 }
1531 p->rdev = NULL;
1532 synchronize_rcu();
1533 if (atomic_read(&rdev->nr_pending)) {
1534 /* lost the race, try later */
1535 err = -EBUSY;
1536 p->rdev = rdev;
1537 goto abort;
1538 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1539 /* We just removed a device that is being replaced.
1540 * Move down the replacement. We drain all IO before
1541 * doing this to avoid confusion.
1542 */
1543 struct md_rdev *repl =
1544 conf->mirrors[conf->raid_disks + number].rdev;
1545 raise_barrier(conf);
1546 clear_bit(Replacement, &repl->flags);
1547 p->rdev = repl;
1548 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1549 lower_barrier(conf);
1550 clear_bit(WantReplacement, &rdev->flags);
1551 } else
1552 clear_bit(WantReplacement, &rdev->flags);
1553 err = md_integrity_register(mddev);
1554 }
1555 abort:
1556
1557 print_conf(conf);
1558 return err;
1559 }
1560
1561
1562 static void end_sync_read(struct bio *bio, int error)
1563 {
1564 struct r1bio *r1_bio = bio->bi_private;
1565
1566 update_head_pos(r1_bio->read_disk, r1_bio);
1567
1568 /*
1569 * we have read a block, now it needs to be re-written,
1570 * or re-read if the read failed.
1571 * We don't do much here, just schedule handling by raid1d
1572 */
1573 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1574 set_bit(R1BIO_Uptodate, &r1_bio->state);
1575
1576 if (atomic_dec_and_test(&r1_bio->remaining))
1577 reschedule_retry(r1_bio);
1578 }
1579
1580 static void end_sync_write(struct bio *bio, int error)
1581 {
1582 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1583 struct r1bio *r1_bio = bio->bi_private;
1584 struct mddev *mddev = r1_bio->mddev;
1585 struct r1conf *conf = mddev->private;
1586 int mirror=0;
1587 sector_t first_bad;
1588 int bad_sectors;
1589
1590 mirror = find_bio_disk(r1_bio, bio);
1591
1592 if (!uptodate) {
1593 sector_t sync_blocks = 0;
1594 sector_t s = r1_bio->sector;
1595 long sectors_to_go = r1_bio->sectors;
1596 /* make sure these bits doesn't get cleared. */
1597 do {
1598 bitmap_end_sync(mddev->bitmap, s,
1599 &sync_blocks, 1);
1600 s += sync_blocks;
1601 sectors_to_go -= sync_blocks;
1602 } while (sectors_to_go > 0);
1603 set_bit(WriteErrorSeen,
1604 &conf->mirrors[mirror].rdev->flags);
1605 if (!test_and_set_bit(WantReplacement,
1606 &conf->mirrors[mirror].rdev->flags))
1607 set_bit(MD_RECOVERY_NEEDED, &
1608 mddev->recovery);
1609 set_bit(R1BIO_WriteError, &r1_bio->state);
1610 } else if (is_badblock(conf->mirrors[mirror].rdev,
1611 r1_bio->sector,
1612 r1_bio->sectors,
1613 &first_bad, &bad_sectors) &&
1614 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1615 r1_bio->sector,
1616 r1_bio->sectors,
1617 &first_bad, &bad_sectors)
1618 )
1619 set_bit(R1BIO_MadeGood, &r1_bio->state);
1620
1621 if (atomic_dec_and_test(&r1_bio->remaining)) {
1622 int s = r1_bio->sectors;
1623 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1624 test_bit(R1BIO_WriteError, &r1_bio->state))
1625 reschedule_retry(r1_bio);
1626 else {
1627 put_buf(r1_bio);
1628 md_done_sync(mddev, s, uptodate);
1629 }
1630 }
1631 }
1632
1633 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1634 int sectors, struct page *page, int rw)
1635 {
1636 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1637 /* success */
1638 return 1;
1639 if (rw == WRITE) {
1640 set_bit(WriteErrorSeen, &rdev->flags);
1641 if (!test_and_set_bit(WantReplacement,
1642 &rdev->flags))
1643 set_bit(MD_RECOVERY_NEEDED, &
1644 rdev->mddev->recovery);
1645 }
1646 /* need to record an error - either for the block or the device */
1647 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1648 md_error(rdev->mddev, rdev);
1649 return 0;
1650 }
1651
1652 static int fix_sync_read_error(struct r1bio *r1_bio)
1653 {
1654 /* Try some synchronous reads of other devices to get
1655 * good data, much like with normal read errors. Only
1656 * read into the pages we already have so we don't
1657 * need to re-issue the read request.
1658 * We don't need to freeze the array, because being in an
1659 * active sync request, there is no normal IO, and
1660 * no overlapping syncs.
1661 * We don't need to check is_badblock() again as we
1662 * made sure that anything with a bad block in range
1663 * will have bi_end_io clear.
1664 */
1665 struct mddev *mddev = r1_bio->mddev;
1666 struct r1conf *conf = mddev->private;
1667 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1668 sector_t sect = r1_bio->sector;
1669 int sectors = r1_bio->sectors;
1670 int idx = 0;
1671
1672 while(sectors) {
1673 int s = sectors;
1674 int d = r1_bio->read_disk;
1675 int success = 0;
1676 struct md_rdev *rdev;
1677 int start;
1678
1679 if (s > (PAGE_SIZE>>9))
1680 s = PAGE_SIZE >> 9;
1681 do {
1682 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1683 /* No rcu protection needed here devices
1684 * can only be removed when no resync is
1685 * active, and resync is currently active
1686 */
1687 rdev = conf->mirrors[d].rdev;
1688 if (sync_page_io(rdev, sect, s<<9,
1689 bio->bi_io_vec[idx].bv_page,
1690 READ, false)) {
1691 success = 1;
1692 break;
1693 }
1694 }
1695 d++;
1696 if (d == conf->raid_disks * 2)
1697 d = 0;
1698 } while (!success && d != r1_bio->read_disk);
1699
1700 if (!success) {
1701 char b[BDEVNAME_SIZE];
1702 int abort = 0;
1703 /* Cannot read from anywhere, this block is lost.
1704 * Record a bad block on each device. If that doesn't
1705 * work just disable and interrupt the recovery.
1706 * Don't fail devices as that won't really help.
1707 */
1708 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1709 " for block %llu\n",
1710 mdname(mddev),
1711 bdevname(bio->bi_bdev, b),
1712 (unsigned long long)r1_bio->sector);
1713 for (d = 0; d < conf->raid_disks * 2; d++) {
1714 rdev = conf->mirrors[d].rdev;
1715 if (!rdev || test_bit(Faulty, &rdev->flags))
1716 continue;
1717 if (!rdev_set_badblocks(rdev, sect, s, 0))
1718 abort = 1;
1719 }
1720 if (abort) {
1721 conf->recovery_disabled =
1722 mddev->recovery_disabled;
1723 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1724 md_done_sync(mddev, r1_bio->sectors, 0);
1725 put_buf(r1_bio);
1726 return 0;
1727 }
1728 /* Try next page */
1729 sectors -= s;
1730 sect += s;
1731 idx++;
1732 continue;
1733 }
1734
1735 start = d;
1736 /* write it back and re-read */
1737 while (d != r1_bio->read_disk) {
1738 if (d == 0)
1739 d = conf->raid_disks * 2;
1740 d--;
1741 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1742 continue;
1743 rdev = conf->mirrors[d].rdev;
1744 if (r1_sync_page_io(rdev, sect, s,
1745 bio->bi_io_vec[idx].bv_page,
1746 WRITE) == 0) {
1747 r1_bio->bios[d]->bi_end_io = NULL;
1748 rdev_dec_pending(rdev, mddev);
1749 }
1750 }
1751 d = start;
1752 while (d != r1_bio->read_disk) {
1753 if (d == 0)
1754 d = conf->raid_disks * 2;
1755 d--;
1756 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1757 continue;
1758 rdev = conf->mirrors[d].rdev;
1759 if (r1_sync_page_io(rdev, sect, s,
1760 bio->bi_io_vec[idx].bv_page,
1761 READ) != 0)
1762 atomic_add(s, &rdev->corrected_errors);
1763 }
1764 sectors -= s;
1765 sect += s;
1766 idx ++;
1767 }
1768 set_bit(R1BIO_Uptodate, &r1_bio->state);
1769 set_bit(BIO_UPTODATE, &bio->bi_flags);
1770 return 1;
1771 }
1772
1773 static int process_checks(struct r1bio *r1_bio)
1774 {
1775 /* We have read all readable devices. If we haven't
1776 * got the block, then there is no hope left.
1777 * If we have, then we want to do a comparison
1778 * and skip the write if everything is the same.
1779 * If any blocks failed to read, then we need to
1780 * attempt an over-write
1781 */
1782 struct mddev *mddev = r1_bio->mddev;
1783 struct r1conf *conf = mddev->private;
1784 int primary;
1785 int i;
1786 int vcnt;
1787
1788 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1789 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1790 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1791 r1_bio->bios[primary]->bi_end_io = NULL;
1792 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1793 break;
1794 }
1795 r1_bio->read_disk = primary;
1796 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1797 for (i = 0; i < conf->raid_disks * 2; i++) {
1798 int j;
1799 struct bio *pbio = r1_bio->bios[primary];
1800 struct bio *sbio = r1_bio->bios[i];
1801 int size;
1802
1803 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1804 continue;
1805
1806 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1807 for (j = vcnt; j-- ; ) {
1808 struct page *p, *s;
1809 p = pbio->bi_io_vec[j].bv_page;
1810 s = sbio->bi_io_vec[j].bv_page;
1811 if (memcmp(page_address(p),
1812 page_address(s),
1813 sbio->bi_io_vec[j].bv_len))
1814 break;
1815 }
1816 } else
1817 j = 0;
1818 if (j >= 0)
1819 mddev->resync_mismatches += r1_bio->sectors;
1820 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1821 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1822 /* No need to write to this device. */
1823 sbio->bi_end_io = NULL;
1824 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1825 continue;
1826 }
1827 /* fixup the bio for reuse */
1828 sbio->bi_vcnt = vcnt;
1829 sbio->bi_size = r1_bio->sectors << 9;
1830 sbio->bi_idx = 0;
1831 sbio->bi_phys_segments = 0;
1832 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1833 sbio->bi_flags |= 1 << BIO_UPTODATE;
1834 sbio->bi_next = NULL;
1835 sbio->bi_sector = r1_bio->sector +
1836 conf->mirrors[i].rdev->data_offset;
1837 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1838 size = sbio->bi_size;
1839 for (j = 0; j < vcnt ; j++) {
1840 struct bio_vec *bi;
1841 bi = &sbio->bi_io_vec[j];
1842 bi->bv_offset = 0;
1843 if (size > PAGE_SIZE)
1844 bi->bv_len = PAGE_SIZE;
1845 else
1846 bi->bv_len = size;
1847 size -= PAGE_SIZE;
1848 memcpy(page_address(bi->bv_page),
1849 page_address(pbio->bi_io_vec[j].bv_page),
1850 PAGE_SIZE);
1851 }
1852 }
1853 return 0;
1854 }
1855
1856 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1857 {
1858 struct r1conf *conf = mddev->private;
1859 int i;
1860 int disks = conf->raid_disks * 2;
1861 struct bio *bio, *wbio;
1862
1863 bio = r1_bio->bios[r1_bio->read_disk];
1864
1865 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1866 /* ouch - failed to read all of that. */
1867 if (!fix_sync_read_error(r1_bio))
1868 return;
1869
1870 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1871 if (process_checks(r1_bio) < 0)
1872 return;
1873 /*
1874 * schedule writes
1875 */
1876 atomic_set(&r1_bio->remaining, 1);
1877 for (i = 0; i < disks ; i++) {
1878 wbio = r1_bio->bios[i];
1879 if (wbio->bi_end_io == NULL ||
1880 (wbio->bi_end_io == end_sync_read &&
1881 (i == r1_bio->read_disk ||
1882 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1883 continue;
1884
1885 wbio->bi_rw = WRITE;
1886 wbio->bi_end_io = end_sync_write;
1887 atomic_inc(&r1_bio->remaining);
1888 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1889
1890 generic_make_request(wbio);
1891 }
1892
1893 if (atomic_dec_and_test(&r1_bio->remaining)) {
1894 /* if we're here, all write(s) have completed, so clean up */
1895 int s = r1_bio->sectors;
1896 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1897 test_bit(R1BIO_WriteError, &r1_bio->state))
1898 reschedule_retry(r1_bio);
1899 else {
1900 put_buf(r1_bio);
1901 md_done_sync(mddev, s, 1);
1902 }
1903 }
1904 }
1905
1906 /*
1907 * This is a kernel thread which:
1908 *
1909 * 1. Retries failed read operations on working mirrors.
1910 * 2. Updates the raid superblock when problems encounter.
1911 * 3. Performs writes following reads for array synchronising.
1912 */
1913
1914 static void fix_read_error(struct r1conf *conf, int read_disk,
1915 sector_t sect, int sectors)
1916 {
1917 struct mddev *mddev = conf->mddev;
1918 while(sectors) {
1919 int s = sectors;
1920 int d = read_disk;
1921 int success = 0;
1922 int start;
1923 struct md_rdev *rdev;
1924
1925 if (s > (PAGE_SIZE>>9))
1926 s = PAGE_SIZE >> 9;
1927
1928 do {
1929 /* Note: no rcu protection needed here
1930 * as this is synchronous in the raid1d thread
1931 * which is the thread that might remove
1932 * a device. If raid1d ever becomes multi-threaded....
1933 */
1934 sector_t first_bad;
1935 int bad_sectors;
1936
1937 rdev = conf->mirrors[d].rdev;
1938 if (rdev &&
1939 (test_bit(In_sync, &rdev->flags) ||
1940 (!test_bit(Faulty, &rdev->flags) &&
1941 rdev->recovery_offset >= sect + s)) &&
1942 is_badblock(rdev, sect, s,
1943 &first_bad, &bad_sectors) == 0 &&
1944 sync_page_io(rdev, sect, s<<9,
1945 conf->tmppage, READ, false))
1946 success = 1;
1947 else {
1948 d++;
1949 if (d == conf->raid_disks * 2)
1950 d = 0;
1951 }
1952 } while (!success && d != read_disk);
1953
1954 if (!success) {
1955 /* Cannot read from anywhere - mark it bad */
1956 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1957 if (!rdev_set_badblocks(rdev, sect, s, 0))
1958 md_error(mddev, rdev);
1959 break;
1960 }
1961 /* write it back and re-read */
1962 start = d;
1963 while (d != read_disk) {
1964 if (d==0)
1965 d = conf->raid_disks * 2;
1966 d--;
1967 rdev = conf->mirrors[d].rdev;
1968 if (rdev &&
1969 test_bit(In_sync, &rdev->flags))
1970 r1_sync_page_io(rdev, sect, s,
1971 conf->tmppage, WRITE);
1972 }
1973 d = start;
1974 while (d != read_disk) {
1975 char b[BDEVNAME_SIZE];
1976 if (d==0)
1977 d = conf->raid_disks * 2;
1978 d--;
1979 rdev = conf->mirrors[d].rdev;
1980 if (rdev &&
1981 test_bit(In_sync, &rdev->flags)) {
1982 if (r1_sync_page_io(rdev, sect, s,
1983 conf->tmppage, READ)) {
1984 atomic_add(s, &rdev->corrected_errors);
1985 printk(KERN_INFO
1986 "md/raid1:%s: read error corrected "
1987 "(%d sectors at %llu on %s)\n",
1988 mdname(mddev), s,
1989 (unsigned long long)(sect +
1990 rdev->data_offset),
1991 bdevname(rdev->bdev, b));
1992 }
1993 }
1994 }
1995 sectors -= s;
1996 sect += s;
1997 }
1998 }
1999
2000 static void bi_complete(struct bio *bio, int error)
2001 {
2002 complete((struct completion *)bio->bi_private);
2003 }
2004
2005 static int submit_bio_wait(int rw, struct bio *bio)
2006 {
2007 struct completion event;
2008 rw |= REQ_SYNC;
2009
2010 init_completion(&event);
2011 bio->bi_private = &event;
2012 bio->bi_end_io = bi_complete;
2013 submit_bio(rw, bio);
2014 wait_for_completion(&event);
2015
2016 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2017 }
2018
2019 static int narrow_write_error(struct r1bio *r1_bio, int i)
2020 {
2021 struct mddev *mddev = r1_bio->mddev;
2022 struct r1conf *conf = mddev->private;
2023 struct md_rdev *rdev = conf->mirrors[i].rdev;
2024 int vcnt, idx;
2025 struct bio_vec *vec;
2026
2027 /* bio has the data to be written to device 'i' where
2028 * we just recently had a write error.
2029 * We repeatedly clone the bio and trim down to one block,
2030 * then try the write. Where the write fails we record
2031 * a bad block.
2032 * It is conceivable that the bio doesn't exactly align with
2033 * blocks. We must handle this somehow.
2034 *
2035 * We currently own a reference on the rdev.
2036 */
2037
2038 int block_sectors;
2039 sector_t sector;
2040 int sectors;
2041 int sect_to_write = r1_bio->sectors;
2042 int ok = 1;
2043
2044 if (rdev->badblocks.shift < 0)
2045 return 0;
2046
2047 block_sectors = 1 << rdev->badblocks.shift;
2048 sector = r1_bio->sector;
2049 sectors = ((sector + block_sectors)
2050 & ~(sector_t)(block_sectors - 1))
2051 - sector;
2052
2053 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2054 vcnt = r1_bio->behind_page_count;
2055 vec = r1_bio->behind_bvecs;
2056 idx = 0;
2057 while (vec[idx].bv_page == NULL)
2058 idx++;
2059 } else {
2060 vcnt = r1_bio->master_bio->bi_vcnt;
2061 vec = r1_bio->master_bio->bi_io_vec;
2062 idx = r1_bio->master_bio->bi_idx;
2063 }
2064 while (sect_to_write) {
2065 struct bio *wbio;
2066 if (sectors > sect_to_write)
2067 sectors = sect_to_write;
2068 /* Write at 'sector' for 'sectors'*/
2069
2070 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2071 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2072 wbio->bi_sector = r1_bio->sector;
2073 wbio->bi_rw = WRITE;
2074 wbio->bi_vcnt = vcnt;
2075 wbio->bi_size = r1_bio->sectors << 9;
2076 wbio->bi_idx = idx;
2077
2078 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2079 wbio->bi_sector += rdev->data_offset;
2080 wbio->bi_bdev = rdev->bdev;
2081 if (submit_bio_wait(WRITE, wbio) == 0)
2082 /* failure! */
2083 ok = rdev_set_badblocks(rdev, sector,
2084 sectors, 0)
2085 && ok;
2086
2087 bio_put(wbio);
2088 sect_to_write -= sectors;
2089 sector += sectors;
2090 sectors = block_sectors;
2091 }
2092 return ok;
2093 }
2094
2095 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2096 {
2097 int m;
2098 int s = r1_bio->sectors;
2099 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2100 struct md_rdev *rdev = conf->mirrors[m].rdev;
2101 struct bio *bio = r1_bio->bios[m];
2102 if (bio->bi_end_io == NULL)
2103 continue;
2104 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2105 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2106 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2107 }
2108 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2109 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2110 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2111 md_error(conf->mddev, rdev);
2112 }
2113 }
2114 put_buf(r1_bio);
2115 md_done_sync(conf->mddev, s, 1);
2116 }
2117
2118 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2119 {
2120 int m;
2121 for (m = 0; m < conf->raid_disks * 2 ; m++)
2122 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2123 struct md_rdev *rdev = conf->mirrors[m].rdev;
2124 rdev_clear_badblocks(rdev,
2125 r1_bio->sector,
2126 r1_bio->sectors, 0);
2127 rdev_dec_pending(rdev, conf->mddev);
2128 } else if (r1_bio->bios[m] != NULL) {
2129 /* This drive got a write error. We need to
2130 * narrow down and record precise write
2131 * errors.
2132 */
2133 if (!narrow_write_error(r1_bio, m)) {
2134 md_error(conf->mddev,
2135 conf->mirrors[m].rdev);
2136 /* an I/O failed, we can't clear the bitmap */
2137 set_bit(R1BIO_Degraded, &r1_bio->state);
2138 }
2139 rdev_dec_pending(conf->mirrors[m].rdev,
2140 conf->mddev);
2141 }
2142 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2143 close_write(r1_bio);
2144 raid_end_bio_io(r1_bio);
2145 }
2146
2147 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2148 {
2149 int disk;
2150 int max_sectors;
2151 struct mddev *mddev = conf->mddev;
2152 struct bio *bio;
2153 char b[BDEVNAME_SIZE];
2154 struct md_rdev *rdev;
2155
2156 clear_bit(R1BIO_ReadError, &r1_bio->state);
2157 /* we got a read error. Maybe the drive is bad. Maybe just
2158 * the block and we can fix it.
2159 * We freeze all other IO, and try reading the block from
2160 * other devices. When we find one, we re-write
2161 * and check it that fixes the read error.
2162 * This is all done synchronously while the array is
2163 * frozen
2164 */
2165 if (mddev->ro == 0) {
2166 freeze_array(conf);
2167 fix_read_error(conf, r1_bio->read_disk,
2168 r1_bio->sector, r1_bio->sectors);
2169 unfreeze_array(conf);
2170 } else
2171 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2172
2173 bio = r1_bio->bios[r1_bio->read_disk];
2174 bdevname(bio->bi_bdev, b);
2175 read_more:
2176 disk = read_balance(conf, r1_bio, &max_sectors);
2177 if (disk == -1) {
2178 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2179 " read error for block %llu\n",
2180 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2181 raid_end_bio_io(r1_bio);
2182 } else {
2183 const unsigned long do_sync
2184 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2185 if (bio) {
2186 r1_bio->bios[r1_bio->read_disk] =
2187 mddev->ro ? IO_BLOCKED : NULL;
2188 bio_put(bio);
2189 }
2190 r1_bio->read_disk = disk;
2191 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2192 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2193 r1_bio->bios[r1_bio->read_disk] = bio;
2194 rdev = conf->mirrors[disk].rdev;
2195 printk_ratelimited(KERN_ERR
2196 "md/raid1:%s: redirecting sector %llu"
2197 " to other mirror: %s\n",
2198 mdname(mddev),
2199 (unsigned long long)r1_bio->sector,
2200 bdevname(rdev->bdev, b));
2201 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2202 bio->bi_bdev = rdev->bdev;
2203 bio->bi_end_io = raid1_end_read_request;
2204 bio->bi_rw = READ | do_sync;
2205 bio->bi_private = r1_bio;
2206 if (max_sectors < r1_bio->sectors) {
2207 /* Drat - have to split this up more */
2208 struct bio *mbio = r1_bio->master_bio;
2209 int sectors_handled = (r1_bio->sector + max_sectors
2210 - mbio->bi_sector);
2211 r1_bio->sectors = max_sectors;
2212 spin_lock_irq(&conf->device_lock);
2213 if (mbio->bi_phys_segments == 0)
2214 mbio->bi_phys_segments = 2;
2215 else
2216 mbio->bi_phys_segments++;
2217 spin_unlock_irq(&conf->device_lock);
2218 generic_make_request(bio);
2219 bio = NULL;
2220
2221 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2222
2223 r1_bio->master_bio = mbio;
2224 r1_bio->sectors = (mbio->bi_size >> 9)
2225 - sectors_handled;
2226 r1_bio->state = 0;
2227 set_bit(R1BIO_ReadError, &r1_bio->state);
2228 r1_bio->mddev = mddev;
2229 r1_bio->sector = mbio->bi_sector + sectors_handled;
2230
2231 goto read_more;
2232 } else
2233 generic_make_request(bio);
2234 }
2235 }
2236
2237 static void raid1d(struct mddev *mddev)
2238 {
2239 struct r1bio *r1_bio;
2240 unsigned long flags;
2241 struct r1conf *conf = mddev->private;
2242 struct list_head *head = &conf->retry_list;
2243 struct blk_plug plug;
2244
2245 md_check_recovery(mddev);
2246
2247 blk_start_plug(&plug);
2248 for (;;) {
2249
2250 flush_pending_writes(conf);
2251
2252 spin_lock_irqsave(&conf->device_lock, flags);
2253 if (list_empty(head)) {
2254 spin_unlock_irqrestore(&conf->device_lock, flags);
2255 break;
2256 }
2257 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2258 list_del(head->prev);
2259 conf->nr_queued--;
2260 spin_unlock_irqrestore(&conf->device_lock, flags);
2261
2262 mddev = r1_bio->mddev;
2263 conf = mddev->private;
2264 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2265 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2266 test_bit(R1BIO_WriteError, &r1_bio->state))
2267 handle_sync_write_finished(conf, r1_bio);
2268 else
2269 sync_request_write(mddev, r1_bio);
2270 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2271 test_bit(R1BIO_WriteError, &r1_bio->state))
2272 handle_write_finished(conf, r1_bio);
2273 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2274 handle_read_error(conf, r1_bio);
2275 else
2276 /* just a partial read to be scheduled from separate
2277 * context
2278 */
2279 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2280
2281 cond_resched();
2282 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2283 md_check_recovery(mddev);
2284 }
2285 blk_finish_plug(&plug);
2286 }
2287
2288
2289 static int init_resync(struct r1conf *conf)
2290 {
2291 int buffs;
2292
2293 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2294 BUG_ON(conf->r1buf_pool);
2295 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2296 conf->poolinfo);
2297 if (!conf->r1buf_pool)
2298 return -ENOMEM;
2299 conf->next_resync = 0;
2300 return 0;
2301 }
2302
2303 /*
2304 * perform a "sync" on one "block"
2305 *
2306 * We need to make sure that no normal I/O request - particularly write
2307 * requests - conflict with active sync requests.
2308 *
2309 * This is achieved by tracking pending requests and a 'barrier' concept
2310 * that can be installed to exclude normal IO requests.
2311 */
2312
2313 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2314 {
2315 struct r1conf *conf = mddev->private;
2316 struct r1bio *r1_bio;
2317 struct bio *bio;
2318 sector_t max_sector, nr_sectors;
2319 int disk = -1;
2320 int i;
2321 int wonly = -1;
2322 int write_targets = 0, read_targets = 0;
2323 sector_t sync_blocks;
2324 int still_degraded = 0;
2325 int good_sectors = RESYNC_SECTORS;
2326 int min_bad = 0; /* number of sectors that are bad in all devices */
2327
2328 if (!conf->r1buf_pool)
2329 if (init_resync(conf))
2330 return 0;
2331
2332 max_sector = mddev->dev_sectors;
2333 if (sector_nr >= max_sector) {
2334 /* If we aborted, we need to abort the
2335 * sync on the 'current' bitmap chunk (there will
2336 * only be one in raid1 resync.
2337 * We can find the current addess in mddev->curr_resync
2338 */
2339 if (mddev->curr_resync < max_sector) /* aborted */
2340 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2341 &sync_blocks, 1);
2342 else /* completed sync */
2343 conf->fullsync = 0;
2344
2345 bitmap_close_sync(mddev->bitmap);
2346 close_sync(conf);
2347 return 0;
2348 }
2349
2350 if (mddev->bitmap == NULL &&
2351 mddev->recovery_cp == MaxSector &&
2352 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2353 conf->fullsync == 0) {
2354 *skipped = 1;
2355 return max_sector - sector_nr;
2356 }
2357 /* before building a request, check if we can skip these blocks..
2358 * This call the bitmap_start_sync doesn't actually record anything
2359 */
2360 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2361 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2362 /* We can skip this block, and probably several more */
2363 *skipped = 1;
2364 return sync_blocks;
2365 }
2366 /*
2367 * If there is non-resync activity waiting for a turn,
2368 * and resync is going fast enough,
2369 * then let it though before starting on this new sync request.
2370 */
2371 if (!go_faster && conf->nr_waiting)
2372 msleep_interruptible(1000);
2373
2374 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2375 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2376 raise_barrier(conf);
2377
2378 conf->next_resync = sector_nr;
2379
2380 rcu_read_lock();
2381 /*
2382 * If we get a correctably read error during resync or recovery,
2383 * we might want to read from a different device. So we
2384 * flag all drives that could conceivably be read from for READ,
2385 * and any others (which will be non-In_sync devices) for WRITE.
2386 * If a read fails, we try reading from something else for which READ
2387 * is OK.
2388 */
2389
2390 r1_bio->mddev = mddev;
2391 r1_bio->sector = sector_nr;
2392 r1_bio->state = 0;
2393 set_bit(R1BIO_IsSync, &r1_bio->state);
2394
2395 for (i = 0; i < conf->raid_disks * 2; i++) {
2396 struct md_rdev *rdev;
2397 bio = r1_bio->bios[i];
2398
2399 /* take from bio_init */
2400 bio->bi_next = NULL;
2401 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2402 bio->bi_flags |= 1 << BIO_UPTODATE;
2403 bio->bi_rw = READ;
2404 bio->bi_vcnt = 0;
2405 bio->bi_idx = 0;
2406 bio->bi_phys_segments = 0;
2407 bio->bi_size = 0;
2408 bio->bi_end_io = NULL;
2409 bio->bi_private = NULL;
2410
2411 rdev = rcu_dereference(conf->mirrors[i].rdev);
2412 if (rdev == NULL ||
2413 test_bit(Faulty, &rdev->flags)) {
2414 if (i < conf->raid_disks)
2415 still_degraded = 1;
2416 } else if (!test_bit(In_sync, &rdev->flags)) {
2417 bio->bi_rw = WRITE;
2418 bio->bi_end_io = end_sync_write;
2419 write_targets ++;
2420 } else {
2421 /* may need to read from here */
2422 sector_t first_bad = MaxSector;
2423 int bad_sectors;
2424
2425 if (is_badblock(rdev, sector_nr, good_sectors,
2426 &first_bad, &bad_sectors)) {
2427 if (first_bad > sector_nr)
2428 good_sectors = first_bad - sector_nr;
2429 else {
2430 bad_sectors -= (sector_nr - first_bad);
2431 if (min_bad == 0 ||
2432 min_bad > bad_sectors)
2433 min_bad = bad_sectors;
2434 }
2435 }
2436 if (sector_nr < first_bad) {
2437 if (test_bit(WriteMostly, &rdev->flags)) {
2438 if (wonly < 0)
2439 wonly = i;
2440 } else {
2441 if (disk < 0)
2442 disk = i;
2443 }
2444 bio->bi_rw = READ;
2445 bio->bi_end_io = end_sync_read;
2446 read_targets++;
2447 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2448 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2449 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2450 /*
2451 * The device is suitable for reading (InSync),
2452 * but has bad block(s) here. Let's try to correct them,
2453 * if we are doing resync or repair. Otherwise, leave
2454 * this device alone for this sync request.
2455 */
2456 bio->bi_rw = WRITE;
2457 bio->bi_end_io = end_sync_write;
2458 write_targets++;
2459 }
2460 }
2461 if (bio->bi_end_io) {
2462 atomic_inc(&rdev->nr_pending);
2463 bio->bi_sector = sector_nr + rdev->data_offset;
2464 bio->bi_bdev = rdev->bdev;
2465 bio->bi_private = r1_bio;
2466 }
2467 }
2468 rcu_read_unlock();
2469 if (disk < 0)
2470 disk = wonly;
2471 r1_bio->read_disk = disk;
2472
2473 if (read_targets == 0 && min_bad > 0) {
2474 /* These sectors are bad on all InSync devices, so we
2475 * need to mark them bad on all write targets
2476 */
2477 int ok = 1;
2478 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2479 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2480 struct md_rdev *rdev = conf->mirrors[i].rdev;
2481 ok = rdev_set_badblocks(rdev, sector_nr,
2482 min_bad, 0
2483 ) && ok;
2484 }
2485 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2486 *skipped = 1;
2487 put_buf(r1_bio);
2488
2489 if (!ok) {
2490 /* Cannot record the badblocks, so need to
2491 * abort the resync.
2492 * If there are multiple read targets, could just
2493 * fail the really bad ones ???
2494 */
2495 conf->recovery_disabled = mddev->recovery_disabled;
2496 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2497 return 0;
2498 } else
2499 return min_bad;
2500
2501 }
2502 if (min_bad > 0 && min_bad < good_sectors) {
2503 /* only resync enough to reach the next bad->good
2504 * transition */
2505 good_sectors = min_bad;
2506 }
2507
2508 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2509 /* extra read targets are also write targets */
2510 write_targets += read_targets-1;
2511
2512 if (write_targets == 0 || read_targets == 0) {
2513 /* There is nowhere to write, so all non-sync
2514 * drives must be failed - so we are finished
2515 */
2516 sector_t rv;
2517 if (min_bad > 0)
2518 max_sector = sector_nr + min_bad;
2519 rv = max_sector - sector_nr;
2520 *skipped = 1;
2521 put_buf(r1_bio);
2522 return rv;
2523 }
2524
2525 if (max_sector > mddev->resync_max)
2526 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2527 if (max_sector > sector_nr + good_sectors)
2528 max_sector = sector_nr + good_sectors;
2529 nr_sectors = 0;
2530 sync_blocks = 0;
2531 do {
2532 struct page *page;
2533 int len = PAGE_SIZE;
2534 if (sector_nr + (len>>9) > max_sector)
2535 len = (max_sector - sector_nr) << 9;
2536 if (len == 0)
2537 break;
2538 if (sync_blocks == 0) {
2539 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2540 &sync_blocks, still_degraded) &&
2541 !conf->fullsync &&
2542 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2543 break;
2544 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2545 if ((len >> 9) > sync_blocks)
2546 len = sync_blocks<<9;
2547 }
2548
2549 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2550 bio = r1_bio->bios[i];
2551 if (bio->bi_end_io) {
2552 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2553 if (bio_add_page(bio, page, len, 0) == 0) {
2554 /* stop here */
2555 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2556 while (i > 0) {
2557 i--;
2558 bio = r1_bio->bios[i];
2559 if (bio->bi_end_io==NULL)
2560 continue;
2561 /* remove last page from this bio */
2562 bio->bi_vcnt--;
2563 bio->bi_size -= len;
2564 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2565 }
2566 goto bio_full;
2567 }
2568 }
2569 }
2570 nr_sectors += len>>9;
2571 sector_nr += len>>9;
2572 sync_blocks -= (len>>9);
2573 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2574 bio_full:
2575 r1_bio->sectors = nr_sectors;
2576
2577 /* For a user-requested sync, we read all readable devices and do a
2578 * compare
2579 */
2580 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2581 atomic_set(&r1_bio->remaining, read_targets);
2582 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2583 bio = r1_bio->bios[i];
2584 if (bio->bi_end_io == end_sync_read) {
2585 read_targets--;
2586 md_sync_acct(bio->bi_bdev, nr_sectors);
2587 generic_make_request(bio);
2588 }
2589 }
2590 } else {
2591 atomic_set(&r1_bio->remaining, 1);
2592 bio = r1_bio->bios[r1_bio->read_disk];
2593 md_sync_acct(bio->bi_bdev, nr_sectors);
2594 generic_make_request(bio);
2595
2596 }
2597 return nr_sectors;
2598 }
2599
2600 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2601 {
2602 if (sectors)
2603 return sectors;
2604
2605 return mddev->dev_sectors;
2606 }
2607
2608 static struct r1conf *setup_conf(struct mddev *mddev)
2609 {
2610 struct r1conf *conf;
2611 int i;
2612 struct raid1_info *disk;
2613 struct md_rdev *rdev;
2614 int err = -ENOMEM;
2615
2616 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2617 if (!conf)
2618 goto abort;
2619
2620 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2621 * mddev->raid_disks * 2,
2622 GFP_KERNEL);
2623 if (!conf->mirrors)
2624 goto abort;
2625
2626 conf->tmppage = alloc_page(GFP_KERNEL);
2627 if (!conf->tmppage)
2628 goto abort;
2629
2630 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2631 if (!conf->poolinfo)
2632 goto abort;
2633 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2634 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2635 r1bio_pool_free,
2636 conf->poolinfo);
2637 if (!conf->r1bio_pool)
2638 goto abort;
2639
2640 conf->poolinfo->mddev = mddev;
2641
2642 err = -EINVAL;
2643 spin_lock_init(&conf->device_lock);
2644 rdev_for_each(rdev, mddev) {
2645 struct request_queue *q;
2646 int disk_idx = rdev->raid_disk;
2647 if (disk_idx >= mddev->raid_disks
2648 || disk_idx < 0)
2649 continue;
2650 if (test_bit(Replacement, &rdev->flags))
2651 disk = conf->mirrors + conf->raid_disks + disk_idx;
2652 else
2653 disk = conf->mirrors + disk_idx;
2654
2655 if (disk->rdev)
2656 goto abort;
2657 disk->rdev = rdev;
2658 q = bdev_get_queue(rdev->bdev);
2659 if (q->merge_bvec_fn)
2660 mddev->merge_check_needed = 1;
2661
2662 disk->head_position = 0;
2663 disk->seq_start = MaxSector;
2664 }
2665 conf->raid_disks = mddev->raid_disks;
2666 conf->mddev = mddev;
2667 INIT_LIST_HEAD(&conf->retry_list);
2668
2669 spin_lock_init(&conf->resync_lock);
2670 init_waitqueue_head(&conf->wait_barrier);
2671
2672 bio_list_init(&conf->pending_bio_list);
2673 conf->pending_count = 0;
2674 conf->recovery_disabled = mddev->recovery_disabled - 1;
2675
2676 err = -EIO;
2677 for (i = 0; i < conf->raid_disks * 2; i++) {
2678
2679 disk = conf->mirrors + i;
2680
2681 if (i < conf->raid_disks &&
2682 disk[conf->raid_disks].rdev) {
2683 /* This slot has a replacement. */
2684 if (!disk->rdev) {
2685 /* No original, just make the replacement
2686 * a recovering spare
2687 */
2688 disk->rdev =
2689 disk[conf->raid_disks].rdev;
2690 disk[conf->raid_disks].rdev = NULL;
2691 } else if (!test_bit(In_sync, &disk->rdev->flags))
2692 /* Original is not in_sync - bad */
2693 goto abort;
2694 }
2695
2696 if (!disk->rdev ||
2697 !test_bit(In_sync, &disk->rdev->flags)) {
2698 disk->head_position = 0;
2699 if (disk->rdev &&
2700 (disk->rdev->saved_raid_disk < 0))
2701 conf->fullsync = 1;
2702 }
2703 }
2704
2705 err = -ENOMEM;
2706 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2707 if (!conf->thread) {
2708 printk(KERN_ERR
2709 "md/raid1:%s: couldn't allocate thread\n",
2710 mdname(mddev));
2711 goto abort;
2712 }
2713
2714 return conf;
2715
2716 abort:
2717 if (conf) {
2718 if (conf->r1bio_pool)
2719 mempool_destroy(conf->r1bio_pool);
2720 kfree(conf->mirrors);
2721 safe_put_page(conf->tmppage);
2722 kfree(conf->poolinfo);
2723 kfree(conf);
2724 }
2725 return ERR_PTR(err);
2726 }
2727
2728 static int stop(struct mddev *mddev);
2729 static int run(struct mddev *mddev)
2730 {
2731 struct r1conf *conf;
2732 int i;
2733 struct md_rdev *rdev;
2734 int ret;
2735
2736 if (mddev->level != 1) {
2737 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2738 mdname(mddev), mddev->level);
2739 return -EIO;
2740 }
2741 if (mddev->reshape_position != MaxSector) {
2742 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2743 mdname(mddev));
2744 return -EIO;
2745 }
2746 /*
2747 * copy the already verified devices into our private RAID1
2748 * bookkeeping area. [whatever we allocate in run(),
2749 * should be freed in stop()]
2750 */
2751 if (mddev->private == NULL)
2752 conf = setup_conf(mddev);
2753 else
2754 conf = mddev->private;
2755
2756 if (IS_ERR(conf))
2757 return PTR_ERR(conf);
2758
2759 rdev_for_each(rdev, mddev) {
2760 if (!mddev->gendisk)
2761 continue;
2762 disk_stack_limits(mddev->gendisk, rdev->bdev,
2763 rdev->data_offset << 9);
2764 }
2765
2766 mddev->degraded = 0;
2767 for (i=0; i < conf->raid_disks; i++)
2768 if (conf->mirrors[i].rdev == NULL ||
2769 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2770 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2771 mddev->degraded++;
2772
2773 if (conf->raid_disks - mddev->degraded == 1)
2774 mddev->recovery_cp = MaxSector;
2775
2776 if (mddev->recovery_cp != MaxSector)
2777 printk(KERN_NOTICE "md/raid1:%s: not clean"
2778 " -- starting background reconstruction\n",
2779 mdname(mddev));
2780 printk(KERN_INFO
2781 "md/raid1:%s: active with %d out of %d mirrors\n",
2782 mdname(mddev), mddev->raid_disks - mddev->degraded,
2783 mddev->raid_disks);
2784
2785 /*
2786 * Ok, everything is just fine now
2787 */
2788 mddev->thread = conf->thread;
2789 conf->thread = NULL;
2790 mddev->private = conf;
2791
2792 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2793
2794 if (mddev->queue) {
2795 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2796 mddev->queue->backing_dev_info.congested_data = mddev;
2797 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2798 }
2799
2800 ret = md_integrity_register(mddev);
2801 if (ret)
2802 stop(mddev);
2803 return ret;
2804 }
2805
2806 static int stop(struct mddev *mddev)
2807 {
2808 struct r1conf *conf = mddev->private;
2809 struct bitmap *bitmap = mddev->bitmap;
2810
2811 /* wait for behind writes to complete */
2812 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2813 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2814 mdname(mddev));
2815 /* need to kick something here to make sure I/O goes? */
2816 wait_event(bitmap->behind_wait,
2817 atomic_read(&bitmap->behind_writes) == 0);
2818 }
2819
2820 raise_barrier(conf);
2821 lower_barrier(conf);
2822
2823 md_unregister_thread(&mddev->thread);
2824 if (conf->r1bio_pool)
2825 mempool_destroy(conf->r1bio_pool);
2826 kfree(conf->mirrors);
2827 kfree(conf->poolinfo);
2828 kfree(conf);
2829 mddev->private = NULL;
2830 return 0;
2831 }
2832
2833 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2834 {
2835 /* no resync is happening, and there is enough space
2836 * on all devices, so we can resize.
2837 * We need to make sure resync covers any new space.
2838 * If the array is shrinking we should possibly wait until
2839 * any io in the removed space completes, but it hardly seems
2840 * worth it.
2841 */
2842 sector_t newsize = raid1_size(mddev, sectors, 0);
2843 if (mddev->external_size &&
2844 mddev->array_sectors > newsize)
2845 return -EINVAL;
2846 if (mddev->bitmap) {
2847 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2848 if (ret)
2849 return ret;
2850 }
2851 md_set_array_sectors(mddev, newsize);
2852 set_capacity(mddev->gendisk, mddev->array_sectors);
2853 revalidate_disk(mddev->gendisk);
2854 if (sectors > mddev->dev_sectors &&
2855 mddev->recovery_cp > mddev->dev_sectors) {
2856 mddev->recovery_cp = mddev->dev_sectors;
2857 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2858 }
2859 mddev->dev_sectors = sectors;
2860 mddev->resync_max_sectors = sectors;
2861 return 0;
2862 }
2863
2864 static int raid1_reshape(struct mddev *mddev)
2865 {
2866 /* We need to:
2867 * 1/ resize the r1bio_pool
2868 * 2/ resize conf->mirrors
2869 *
2870 * We allocate a new r1bio_pool if we can.
2871 * Then raise a device barrier and wait until all IO stops.
2872 * Then resize conf->mirrors and swap in the new r1bio pool.
2873 *
2874 * At the same time, we "pack" the devices so that all the missing
2875 * devices have the higher raid_disk numbers.
2876 */
2877 mempool_t *newpool, *oldpool;
2878 struct pool_info *newpoolinfo;
2879 struct raid1_info *newmirrors;
2880 struct r1conf *conf = mddev->private;
2881 int cnt, raid_disks;
2882 unsigned long flags;
2883 int d, d2, err;
2884
2885 /* Cannot change chunk_size, layout, or level */
2886 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2887 mddev->layout != mddev->new_layout ||
2888 mddev->level != mddev->new_level) {
2889 mddev->new_chunk_sectors = mddev->chunk_sectors;
2890 mddev->new_layout = mddev->layout;
2891 mddev->new_level = mddev->level;
2892 return -EINVAL;
2893 }
2894
2895 err = md_allow_write(mddev);
2896 if (err)
2897 return err;
2898
2899 raid_disks = mddev->raid_disks + mddev->delta_disks;
2900
2901 if (raid_disks < conf->raid_disks) {
2902 cnt=0;
2903 for (d= 0; d < conf->raid_disks; d++)
2904 if (conf->mirrors[d].rdev)
2905 cnt++;
2906 if (cnt > raid_disks)
2907 return -EBUSY;
2908 }
2909
2910 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2911 if (!newpoolinfo)
2912 return -ENOMEM;
2913 newpoolinfo->mddev = mddev;
2914 newpoolinfo->raid_disks = raid_disks * 2;
2915
2916 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2917 r1bio_pool_free, newpoolinfo);
2918 if (!newpool) {
2919 kfree(newpoolinfo);
2920 return -ENOMEM;
2921 }
2922 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2923 GFP_KERNEL);
2924 if (!newmirrors) {
2925 kfree(newpoolinfo);
2926 mempool_destroy(newpool);
2927 return -ENOMEM;
2928 }
2929
2930 raise_barrier(conf);
2931
2932 /* ok, everything is stopped */
2933 oldpool = conf->r1bio_pool;
2934 conf->r1bio_pool = newpool;
2935
2936 for (d = d2 = 0; d < conf->raid_disks; d++) {
2937 struct md_rdev *rdev = conf->mirrors[d].rdev;
2938 if (rdev && rdev->raid_disk != d2) {
2939 sysfs_unlink_rdev(mddev, rdev);
2940 rdev->raid_disk = d2;
2941 sysfs_unlink_rdev(mddev, rdev);
2942 if (sysfs_link_rdev(mddev, rdev))
2943 printk(KERN_WARNING
2944 "md/raid1:%s: cannot register rd%d\n",
2945 mdname(mddev), rdev->raid_disk);
2946 }
2947 if (rdev)
2948 newmirrors[d2++].rdev = rdev;
2949 }
2950 kfree(conf->mirrors);
2951 conf->mirrors = newmirrors;
2952 kfree(conf->poolinfo);
2953 conf->poolinfo = newpoolinfo;
2954
2955 spin_lock_irqsave(&conf->device_lock, flags);
2956 mddev->degraded += (raid_disks - conf->raid_disks);
2957 spin_unlock_irqrestore(&conf->device_lock, flags);
2958 conf->raid_disks = mddev->raid_disks = raid_disks;
2959 mddev->delta_disks = 0;
2960
2961 lower_barrier(conf);
2962
2963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2964 md_wakeup_thread(mddev->thread);
2965
2966 mempool_destroy(oldpool);
2967 return 0;
2968 }
2969
2970 static void raid1_quiesce(struct mddev *mddev, int state)
2971 {
2972 struct r1conf *conf = mddev->private;
2973
2974 switch(state) {
2975 case 2: /* wake for suspend */
2976 wake_up(&conf->wait_barrier);
2977 break;
2978 case 1:
2979 raise_barrier(conf);
2980 break;
2981 case 0:
2982 lower_barrier(conf);
2983 break;
2984 }
2985 }
2986
2987 static void *raid1_takeover(struct mddev *mddev)
2988 {
2989 /* raid1 can take over:
2990 * raid5 with 2 devices, any layout or chunk size
2991 */
2992 if (mddev->level == 5 && mddev->raid_disks == 2) {
2993 struct r1conf *conf;
2994 mddev->new_level = 1;
2995 mddev->new_layout = 0;
2996 mddev->new_chunk_sectors = 0;
2997 conf = setup_conf(mddev);
2998 if (!IS_ERR(conf))
2999 conf->barrier = 1;
3000 return conf;
3001 }
3002 return ERR_PTR(-EINVAL);
3003 }
3004
3005 static struct md_personality raid1_personality =
3006 {
3007 .name = "raid1",
3008 .level = 1,
3009 .owner = THIS_MODULE,
3010 .make_request = make_request,
3011 .run = run,
3012 .stop = stop,
3013 .status = status,
3014 .error_handler = error,
3015 .hot_add_disk = raid1_add_disk,
3016 .hot_remove_disk= raid1_remove_disk,
3017 .spare_active = raid1_spare_active,
3018 .sync_request = sync_request,
3019 .resize = raid1_resize,
3020 .size = raid1_size,
3021 .check_reshape = raid1_reshape,
3022 .quiesce = raid1_quiesce,
3023 .takeover = raid1_takeover,
3024 };
3025
3026 static int __init raid_init(void)
3027 {
3028 return register_md_personality(&raid1_personality);
3029 }
3030
3031 static void raid_exit(void)
3032 {
3033 unregister_md_personality(&raid1_personality);
3034 }
3035
3036 module_init(raid_init);
3037 module_exit(raid_exit);
3038 MODULE_LICENSE("GPL");
3039 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3040 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3041 MODULE_ALIAS("md-raid1");
3042 MODULE_ALIAS("md-level-1");
3043
3044 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.129167 seconds and 5 git commands to generate.