drm/i915/bdw: Reorganize PPGTT init
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int i, j;
101
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 if (!r1_bio)
104 return NULL;
105
106 /*
107 * Allocate bios : 1 for reading, n-1 for writing
108 */
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 if (!bio)
112 goto out_free_bio;
113 r1_bio->bios[j] = bio;
114 }
115 /*
116 * Allocate RESYNC_PAGES data pages and attach them to
117 * the first bio.
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
120 */
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 j = pi->raid_disks;
123 else
124 j = 1;
125 while(j--) {
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
128
129 if (bio_alloc_pages(bio, gfp_flags))
130 goto out_free_bio;
131 }
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 }
139
140 r1_bio->master_bio = NULL;
141
142 return r1_bio;
143
144 out_free_bio:
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
148 return NULL;
149 }
150
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153 struct pool_info *pi = data;
154 int i,j;
155 struct r1bio *r1bio = __r1_bio;
156
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
159 if (j == 0 ||
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163 }
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
166
167 r1bio_pool_free(r1bio, data);
168 }
169
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172 int i;
173
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
177 bio_put(*bio);
178 *bio = NULL;
179 }
180 }
181
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184 struct r1conf *conf = r1_bio->mddev->private;
185
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
188 }
189
190 static void put_buf(struct r1bio *r1_bio)
191 {
192 struct r1conf *conf = r1_bio->mddev->private;
193 int i;
194
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
197 if (bio->bi_end_io)
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199 }
200
201 mempool_free(r1_bio, conf->r1buf_pool);
202
203 lower_barrier(conf);
204 }
205
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208 unsigned long flags;
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
211
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
214 conf->nr_queued ++;
215 spin_unlock_irqrestore(&conf->device_lock, flags);
216
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
225 */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228 struct bio *bio = r1_bio->master_bio;
229 int done;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_sector;
233
234 if (bio->bi_phys_segments) {
235 unsigned long flags;
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240 /*
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
243 */
244 wake_up(&conf->wait_barrier);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf, start_next_window, bi_sector);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 bio_sectors(bio) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate) {
337 raid_end_bio_io(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
351 set_bit(R1BIO_ReadError, &r1_bio->state);
352 reschedule_retry(r1_bio);
353 /* don't drop the reference on read_disk yet */
354 }
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 /*
431 * Do not set R1BIO_Uptodate if the current device is
432 * rebuilding or Faulty. This is because we cannot use
433 * such device for properly reading the data back (we could
434 * potentially use it, if the current write would have felt
435 * before rdev->recovery_offset, but for simplicity we don't
436 * check this here.
437 */
438 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
439 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
440 set_bit(R1BIO_Uptodate, &r1_bio->state);
441
442 /* Maybe we can clear some bad blocks. */
443 if (is_badblock(conf->mirrors[mirror].rdev,
444 r1_bio->sector, r1_bio->sectors,
445 &first_bad, &bad_sectors)) {
446 r1_bio->bios[mirror] = IO_MADE_GOOD;
447 set_bit(R1BIO_MadeGood, &r1_bio->state);
448 }
449 }
450
451 if (behind) {
452 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
453 atomic_dec(&r1_bio->behind_remaining);
454
455 /*
456 * In behind mode, we ACK the master bio once the I/O
457 * has safely reached all non-writemostly
458 * disks. Setting the Returned bit ensures that this
459 * gets done only once -- we don't ever want to return
460 * -EIO here, instead we'll wait
461 */
462 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
463 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
464 /* Maybe we can return now */
465 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
466 struct bio *mbio = r1_bio->master_bio;
467 pr_debug("raid1: behind end write sectors"
468 " %llu-%llu\n",
469 (unsigned long long) mbio->bi_sector,
470 (unsigned long long) mbio->bi_sector +
471 bio_sectors(mbio) - 1);
472 call_bio_endio(r1_bio);
473 }
474 }
475 }
476 if (r1_bio->bios[mirror] == NULL)
477 rdev_dec_pending(conf->mirrors[mirror].rdev,
478 conf->mddev);
479
480 /*
481 * Let's see if all mirrored write operations have finished
482 * already.
483 */
484 r1_bio_write_done(r1_bio);
485
486 if (to_put)
487 bio_put(to_put);
488 }
489
490
491 /*
492 * This routine returns the disk from which the requested read should
493 * be done. There is a per-array 'next expected sequential IO' sector
494 * number - if this matches on the next IO then we use the last disk.
495 * There is also a per-disk 'last know head position' sector that is
496 * maintained from IRQ contexts, both the normal and the resync IO
497 * completion handlers update this position correctly. If there is no
498 * perfect sequential match then we pick the disk whose head is closest.
499 *
500 * If there are 2 mirrors in the same 2 devices, performance degrades
501 * because position is mirror, not device based.
502 *
503 * The rdev for the device selected will have nr_pending incremented.
504 */
505 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
506 {
507 const sector_t this_sector = r1_bio->sector;
508 int sectors;
509 int best_good_sectors;
510 int best_disk, best_dist_disk, best_pending_disk;
511 int has_nonrot_disk;
512 int disk;
513 sector_t best_dist;
514 unsigned int min_pending;
515 struct md_rdev *rdev;
516 int choose_first;
517 int choose_next_idle;
518
519 rcu_read_lock();
520 /*
521 * Check if we can balance. We can balance on the whole
522 * device if no resync is going on, or below the resync window.
523 * We take the first readable disk when above the resync window.
524 */
525 retry:
526 sectors = r1_bio->sectors;
527 best_disk = -1;
528 best_dist_disk = -1;
529 best_dist = MaxSector;
530 best_pending_disk = -1;
531 min_pending = UINT_MAX;
532 best_good_sectors = 0;
533 has_nonrot_disk = 0;
534 choose_next_idle = 0;
535
536 if (conf->mddev->recovery_cp < MaxSector &&
537 (this_sector + sectors >= conf->next_resync))
538 choose_first = 1;
539 else
540 choose_first = 0;
541
542 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
543 sector_t dist;
544 sector_t first_bad;
545 int bad_sectors;
546 unsigned int pending;
547 bool nonrot;
548
549 rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 if (r1_bio->bios[disk] == IO_BLOCKED
551 || rdev == NULL
552 || test_bit(Unmerged, &rdev->flags)
553 || test_bit(Faulty, &rdev->flags))
554 continue;
555 if (!test_bit(In_sync, &rdev->flags) &&
556 rdev->recovery_offset < this_sector + sectors)
557 continue;
558 if (test_bit(WriteMostly, &rdev->flags)) {
559 /* Don't balance among write-mostly, just
560 * use the first as a last resort */
561 if (best_disk < 0) {
562 if (is_badblock(rdev, this_sector, sectors,
563 &first_bad, &bad_sectors)) {
564 if (first_bad < this_sector)
565 /* Cannot use this */
566 continue;
567 best_good_sectors = first_bad - this_sector;
568 } else
569 best_good_sectors = sectors;
570 best_disk = disk;
571 }
572 continue;
573 }
574 /* This is a reasonable device to use. It might
575 * even be best.
576 */
577 if (is_badblock(rdev, this_sector, sectors,
578 &first_bad, &bad_sectors)) {
579 if (best_dist < MaxSector)
580 /* already have a better device */
581 continue;
582 if (first_bad <= this_sector) {
583 /* cannot read here. If this is the 'primary'
584 * device, then we must not read beyond
585 * bad_sectors from another device..
586 */
587 bad_sectors -= (this_sector - first_bad);
588 if (choose_first && sectors > bad_sectors)
589 sectors = bad_sectors;
590 if (best_good_sectors > sectors)
591 best_good_sectors = sectors;
592
593 } else {
594 sector_t good_sectors = first_bad - this_sector;
595 if (good_sectors > best_good_sectors) {
596 best_good_sectors = good_sectors;
597 best_disk = disk;
598 }
599 if (choose_first)
600 break;
601 }
602 continue;
603 } else
604 best_good_sectors = sectors;
605
606 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
607 has_nonrot_disk |= nonrot;
608 pending = atomic_read(&rdev->nr_pending);
609 dist = abs(this_sector - conf->mirrors[disk].head_position);
610 if (choose_first) {
611 best_disk = disk;
612 break;
613 }
614 /* Don't change to another disk for sequential reads */
615 if (conf->mirrors[disk].next_seq_sect == this_sector
616 || dist == 0) {
617 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
618 struct raid1_info *mirror = &conf->mirrors[disk];
619
620 best_disk = disk;
621 /*
622 * If buffered sequential IO size exceeds optimal
623 * iosize, check if there is idle disk. If yes, choose
624 * the idle disk. read_balance could already choose an
625 * idle disk before noticing it's a sequential IO in
626 * this disk. This doesn't matter because this disk
627 * will idle, next time it will be utilized after the
628 * first disk has IO size exceeds optimal iosize. In
629 * this way, iosize of the first disk will be optimal
630 * iosize at least. iosize of the second disk might be
631 * small, but not a big deal since when the second disk
632 * starts IO, the first disk is likely still busy.
633 */
634 if (nonrot && opt_iosize > 0 &&
635 mirror->seq_start != MaxSector &&
636 mirror->next_seq_sect > opt_iosize &&
637 mirror->next_seq_sect - opt_iosize >=
638 mirror->seq_start) {
639 choose_next_idle = 1;
640 continue;
641 }
642 break;
643 }
644 /* If device is idle, use it */
645 if (pending == 0) {
646 best_disk = disk;
647 break;
648 }
649
650 if (choose_next_idle)
651 continue;
652
653 if (min_pending > pending) {
654 min_pending = pending;
655 best_pending_disk = disk;
656 }
657
658 if (dist < best_dist) {
659 best_dist = dist;
660 best_dist_disk = disk;
661 }
662 }
663
664 /*
665 * If all disks are rotational, choose the closest disk. If any disk is
666 * non-rotational, choose the disk with less pending request even the
667 * disk is rotational, which might/might not be optimal for raids with
668 * mixed ratation/non-rotational disks depending on workload.
669 */
670 if (best_disk == -1) {
671 if (has_nonrot_disk)
672 best_disk = best_pending_disk;
673 else
674 best_disk = best_dist_disk;
675 }
676
677 if (best_disk >= 0) {
678 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
679 if (!rdev)
680 goto retry;
681 atomic_inc(&rdev->nr_pending);
682 if (test_bit(Faulty, &rdev->flags)) {
683 /* cannot risk returning a device that failed
684 * before we inc'ed nr_pending
685 */
686 rdev_dec_pending(rdev, conf->mddev);
687 goto retry;
688 }
689 sectors = best_good_sectors;
690
691 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
692 conf->mirrors[best_disk].seq_start = this_sector;
693
694 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
695 }
696 rcu_read_unlock();
697 *max_sectors = sectors;
698
699 return best_disk;
700 }
701
702 static int raid1_mergeable_bvec(struct request_queue *q,
703 struct bvec_merge_data *bvm,
704 struct bio_vec *biovec)
705 {
706 struct mddev *mddev = q->queuedata;
707 struct r1conf *conf = mddev->private;
708 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
709 int max = biovec->bv_len;
710
711 if (mddev->merge_check_needed) {
712 int disk;
713 rcu_read_lock();
714 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
715 struct md_rdev *rdev = rcu_dereference(
716 conf->mirrors[disk].rdev);
717 if (rdev && !test_bit(Faulty, &rdev->flags)) {
718 struct request_queue *q =
719 bdev_get_queue(rdev->bdev);
720 if (q->merge_bvec_fn) {
721 bvm->bi_sector = sector +
722 rdev->data_offset;
723 bvm->bi_bdev = rdev->bdev;
724 max = min(max, q->merge_bvec_fn(
725 q, bvm, biovec));
726 }
727 }
728 }
729 rcu_read_unlock();
730 }
731 return max;
732
733 }
734
735 int md_raid1_congested(struct mddev *mddev, int bits)
736 {
737 struct r1conf *conf = mddev->private;
738 int i, ret = 0;
739
740 if ((bits & (1 << BDI_async_congested)) &&
741 conf->pending_count >= max_queued_requests)
742 return 1;
743
744 rcu_read_lock();
745 for (i = 0; i < conf->raid_disks * 2; i++) {
746 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q = bdev_get_queue(rdev->bdev);
749
750 BUG_ON(!q);
751
752 /* Note the '|| 1' - when read_balance prefers
753 * non-congested targets, it can be removed
754 */
755 if ((bits & (1<<BDI_async_congested)) || 1)
756 ret |= bdi_congested(&q->backing_dev_info, bits);
757 else
758 ret &= bdi_congested(&q->backing_dev_info, bits);
759 }
760 }
761 rcu_read_unlock();
762 return ret;
763 }
764 EXPORT_SYMBOL_GPL(md_raid1_congested);
765
766 static int raid1_congested(void *data, int bits)
767 {
768 struct mddev *mddev = data;
769
770 return mddev_congested(mddev, bits) ||
771 md_raid1_congested(mddev, bits);
772 }
773
774 static void flush_pending_writes(struct r1conf *conf)
775 {
776 /* Any writes that have been queued but are awaiting
777 * bitmap updates get flushed here.
778 */
779 spin_lock_irq(&conf->device_lock);
780
781 if (conf->pending_bio_list.head) {
782 struct bio *bio;
783 bio = bio_list_get(&conf->pending_bio_list);
784 conf->pending_count = 0;
785 spin_unlock_irq(&conf->device_lock);
786 /* flush any pending bitmap writes to
787 * disk before proceeding w/ I/O */
788 bitmap_unplug(conf->mddev->bitmap);
789 wake_up(&conf->wait_barrier);
790
791 while (bio) { /* submit pending writes */
792 struct bio *next = bio->bi_next;
793 bio->bi_next = NULL;
794 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
795 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
796 /* Just ignore it */
797 bio_endio(bio, 0);
798 else
799 generic_make_request(bio);
800 bio = next;
801 }
802 } else
803 spin_unlock_irq(&conf->device_lock);
804 }
805
806 /* Barriers....
807 * Sometimes we need to suspend IO while we do something else,
808 * either some resync/recovery, or reconfigure the array.
809 * To do this we raise a 'barrier'.
810 * The 'barrier' is a counter that can be raised multiple times
811 * to count how many activities are happening which preclude
812 * normal IO.
813 * We can only raise the barrier if there is no pending IO.
814 * i.e. if nr_pending == 0.
815 * We choose only to raise the barrier if no-one is waiting for the
816 * barrier to go down. This means that as soon as an IO request
817 * is ready, no other operations which require a barrier will start
818 * until the IO request has had a chance.
819 *
820 * So: regular IO calls 'wait_barrier'. When that returns there
821 * is no backgroup IO happening, It must arrange to call
822 * allow_barrier when it has finished its IO.
823 * backgroup IO calls must call raise_barrier. Once that returns
824 * there is no normal IO happeing. It must arrange to call
825 * lower_barrier when the particular background IO completes.
826 */
827 static void raise_barrier(struct r1conf *conf)
828 {
829 spin_lock_irq(&conf->resync_lock);
830
831 /* Wait until no block IO is waiting */
832 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
833 conf->resync_lock);
834
835 /* block any new IO from starting */
836 conf->barrier++;
837
838 /* For these conditions we must wait:
839 * A: while the array is in frozen state
840 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
841 * the max count which allowed.
842 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
843 * next resync will reach to the window which normal bios are
844 * handling.
845 */
846 wait_event_lock_irq(conf->wait_barrier,
847 !conf->array_frozen &&
848 conf->barrier < RESYNC_DEPTH &&
849 (conf->start_next_window >=
850 conf->next_resync + RESYNC_SECTORS),
851 conf->resync_lock);
852
853 spin_unlock_irq(&conf->resync_lock);
854 }
855
856 static void lower_barrier(struct r1conf *conf)
857 {
858 unsigned long flags;
859 BUG_ON(conf->barrier <= 0);
860 spin_lock_irqsave(&conf->resync_lock, flags);
861 conf->barrier--;
862 spin_unlock_irqrestore(&conf->resync_lock, flags);
863 wake_up(&conf->wait_barrier);
864 }
865
866 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
867 {
868 bool wait = false;
869
870 if (conf->array_frozen || !bio)
871 wait = true;
872 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
873 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
874 wait = true;
875 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
876 >= bio_end_sector(bio)) ||
877 (conf->next_resync + NEXT_NORMALIO_DISTANCE
878 <= bio->bi_sector))
879 wait = false;
880 else
881 wait = true;
882 }
883
884 return wait;
885 }
886
887 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
888 {
889 sector_t sector = 0;
890
891 spin_lock_irq(&conf->resync_lock);
892 if (need_to_wait_for_sync(conf, bio)) {
893 conf->nr_waiting++;
894 /* Wait for the barrier to drop.
895 * However if there are already pending
896 * requests (preventing the barrier from
897 * rising completely), and the
898 * pre-process bio queue isn't empty,
899 * then don't wait, as we need to empty
900 * that queue to get the nr_pending
901 * count down.
902 */
903 wait_event_lock_irq(conf->wait_barrier,
904 !conf->array_frozen &&
905 (!conf->barrier ||
906 ((conf->start_next_window <
907 conf->next_resync + RESYNC_SECTORS) &&
908 current->bio_list &&
909 !bio_list_empty(current->bio_list))),
910 conf->resync_lock);
911 conf->nr_waiting--;
912 }
913
914 if (bio && bio_data_dir(bio) == WRITE) {
915 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
916 <= bio->bi_sector) {
917 if (conf->start_next_window == MaxSector)
918 conf->start_next_window =
919 conf->next_resync +
920 NEXT_NORMALIO_DISTANCE;
921
922 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
923 <= bio->bi_sector)
924 conf->next_window_requests++;
925 else
926 conf->current_window_requests++;
927 sector = conf->start_next_window;
928 }
929 }
930
931 conf->nr_pending++;
932 spin_unlock_irq(&conf->resync_lock);
933 return sector;
934 }
935
936 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
937 sector_t bi_sector)
938 {
939 unsigned long flags;
940
941 spin_lock_irqsave(&conf->resync_lock, flags);
942 conf->nr_pending--;
943 if (start_next_window) {
944 if (start_next_window == conf->start_next_window) {
945 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
946 <= bi_sector)
947 conf->next_window_requests--;
948 else
949 conf->current_window_requests--;
950 } else
951 conf->current_window_requests--;
952
953 if (!conf->current_window_requests) {
954 if (conf->next_window_requests) {
955 conf->current_window_requests =
956 conf->next_window_requests;
957 conf->next_window_requests = 0;
958 conf->start_next_window +=
959 NEXT_NORMALIO_DISTANCE;
960 } else
961 conf->start_next_window = MaxSector;
962 }
963 }
964 spin_unlock_irqrestore(&conf->resync_lock, flags);
965 wake_up(&conf->wait_barrier);
966 }
967
968 static void freeze_array(struct r1conf *conf, int extra)
969 {
970 /* stop syncio and normal IO and wait for everything to
971 * go quite.
972 * We wait until nr_pending match nr_queued+extra
973 * This is called in the context of one normal IO request
974 * that has failed. Thus any sync request that might be pending
975 * will be blocked by nr_pending, and we need to wait for
976 * pending IO requests to complete or be queued for re-try.
977 * Thus the number queued (nr_queued) plus this request (extra)
978 * must match the number of pending IOs (nr_pending) before
979 * we continue.
980 */
981 spin_lock_irq(&conf->resync_lock);
982 conf->array_frozen = 1;
983 wait_event_lock_irq_cmd(conf->wait_barrier,
984 conf->nr_pending == conf->nr_queued+extra,
985 conf->resync_lock,
986 flush_pending_writes(conf));
987 spin_unlock_irq(&conf->resync_lock);
988 }
989 static void unfreeze_array(struct r1conf *conf)
990 {
991 /* reverse the effect of the freeze */
992 spin_lock_irq(&conf->resync_lock);
993 conf->array_frozen = 0;
994 wake_up(&conf->wait_barrier);
995 spin_unlock_irq(&conf->resync_lock);
996 }
997
998
999 /* duplicate the data pages for behind I/O
1000 */
1001 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1002 {
1003 int i;
1004 struct bio_vec *bvec;
1005 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1006 GFP_NOIO);
1007 if (unlikely(!bvecs))
1008 return;
1009
1010 bio_for_each_segment_all(bvec, bio, i) {
1011 bvecs[i] = *bvec;
1012 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1013 if (unlikely(!bvecs[i].bv_page))
1014 goto do_sync_io;
1015 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1016 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1017 kunmap(bvecs[i].bv_page);
1018 kunmap(bvec->bv_page);
1019 }
1020 r1_bio->behind_bvecs = bvecs;
1021 r1_bio->behind_page_count = bio->bi_vcnt;
1022 set_bit(R1BIO_BehindIO, &r1_bio->state);
1023 return;
1024
1025 do_sync_io:
1026 for (i = 0; i < bio->bi_vcnt; i++)
1027 if (bvecs[i].bv_page)
1028 put_page(bvecs[i].bv_page);
1029 kfree(bvecs);
1030 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
1031 }
1032
1033 struct raid1_plug_cb {
1034 struct blk_plug_cb cb;
1035 struct bio_list pending;
1036 int pending_cnt;
1037 };
1038
1039 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1040 {
1041 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1042 cb);
1043 struct mddev *mddev = plug->cb.data;
1044 struct r1conf *conf = mddev->private;
1045 struct bio *bio;
1046
1047 if (from_schedule || current->bio_list) {
1048 spin_lock_irq(&conf->device_lock);
1049 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1050 conf->pending_count += plug->pending_cnt;
1051 spin_unlock_irq(&conf->device_lock);
1052 wake_up(&conf->wait_barrier);
1053 md_wakeup_thread(mddev->thread);
1054 kfree(plug);
1055 return;
1056 }
1057
1058 /* we aren't scheduling, so we can do the write-out directly. */
1059 bio = bio_list_get(&plug->pending);
1060 bitmap_unplug(mddev->bitmap);
1061 wake_up(&conf->wait_barrier);
1062
1063 while (bio) { /* submit pending writes */
1064 struct bio *next = bio->bi_next;
1065 bio->bi_next = NULL;
1066 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1067 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1068 /* Just ignore it */
1069 bio_endio(bio, 0);
1070 else
1071 generic_make_request(bio);
1072 bio = next;
1073 }
1074 kfree(plug);
1075 }
1076
1077 static void make_request(struct mddev *mddev, struct bio * bio)
1078 {
1079 struct r1conf *conf = mddev->private;
1080 struct raid1_info *mirror;
1081 struct r1bio *r1_bio;
1082 struct bio *read_bio;
1083 int i, disks;
1084 struct bitmap *bitmap;
1085 unsigned long flags;
1086 const int rw = bio_data_dir(bio);
1087 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1088 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1089 const unsigned long do_discard = (bio->bi_rw
1090 & (REQ_DISCARD | REQ_SECURE));
1091 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1092 struct md_rdev *blocked_rdev;
1093 struct blk_plug_cb *cb;
1094 struct raid1_plug_cb *plug = NULL;
1095 int first_clone;
1096 int sectors_handled;
1097 int max_sectors;
1098 sector_t start_next_window;
1099
1100 /*
1101 * Register the new request and wait if the reconstruction
1102 * thread has put up a bar for new requests.
1103 * Continue immediately if no resync is active currently.
1104 */
1105
1106 md_write_start(mddev, bio); /* wait on superblock update early */
1107
1108 if (bio_data_dir(bio) == WRITE &&
1109 bio_end_sector(bio) > mddev->suspend_lo &&
1110 bio->bi_sector < mddev->suspend_hi) {
1111 /* As the suspend_* range is controlled by
1112 * userspace, we want an interruptible
1113 * wait.
1114 */
1115 DEFINE_WAIT(w);
1116 for (;;) {
1117 flush_signals(current);
1118 prepare_to_wait(&conf->wait_barrier,
1119 &w, TASK_INTERRUPTIBLE);
1120 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1121 bio->bi_sector >= mddev->suspend_hi)
1122 break;
1123 schedule();
1124 }
1125 finish_wait(&conf->wait_barrier, &w);
1126 }
1127
1128 start_next_window = wait_barrier(conf, bio);
1129
1130 bitmap = mddev->bitmap;
1131
1132 /*
1133 * make_request() can abort the operation when READA is being
1134 * used and no empty request is available.
1135 *
1136 */
1137 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1138
1139 r1_bio->master_bio = bio;
1140 r1_bio->sectors = bio_sectors(bio);
1141 r1_bio->state = 0;
1142 r1_bio->mddev = mddev;
1143 r1_bio->sector = bio->bi_sector;
1144
1145 /* We might need to issue multiple reads to different
1146 * devices if there are bad blocks around, so we keep
1147 * track of the number of reads in bio->bi_phys_segments.
1148 * If this is 0, there is only one r1_bio and no locking
1149 * will be needed when requests complete. If it is
1150 * non-zero, then it is the number of not-completed requests.
1151 */
1152 bio->bi_phys_segments = 0;
1153 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1154
1155 if (rw == READ) {
1156 /*
1157 * read balancing logic:
1158 */
1159 int rdisk;
1160
1161 read_again:
1162 rdisk = read_balance(conf, r1_bio, &max_sectors);
1163
1164 if (rdisk < 0) {
1165 /* couldn't find anywhere to read from */
1166 raid_end_bio_io(r1_bio);
1167 return;
1168 }
1169 mirror = conf->mirrors + rdisk;
1170
1171 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1172 bitmap) {
1173 /* Reading from a write-mostly device must
1174 * take care not to over-take any writes
1175 * that are 'behind'
1176 */
1177 wait_event(bitmap->behind_wait,
1178 atomic_read(&bitmap->behind_writes) == 0);
1179 }
1180 r1_bio->read_disk = rdisk;
1181
1182 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1183 bio_trim(read_bio, r1_bio->sector - bio->bi_sector,
1184 max_sectors);
1185
1186 r1_bio->bios[rdisk] = read_bio;
1187
1188 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1189 read_bio->bi_bdev = mirror->rdev->bdev;
1190 read_bio->bi_end_io = raid1_end_read_request;
1191 read_bio->bi_rw = READ | do_sync;
1192 read_bio->bi_private = r1_bio;
1193
1194 if (max_sectors < r1_bio->sectors) {
1195 /* could not read all from this device, so we will
1196 * need another r1_bio.
1197 */
1198
1199 sectors_handled = (r1_bio->sector + max_sectors
1200 - bio->bi_sector);
1201 r1_bio->sectors = max_sectors;
1202 spin_lock_irq(&conf->device_lock);
1203 if (bio->bi_phys_segments == 0)
1204 bio->bi_phys_segments = 2;
1205 else
1206 bio->bi_phys_segments++;
1207 spin_unlock_irq(&conf->device_lock);
1208 /* Cannot call generic_make_request directly
1209 * as that will be queued in __make_request
1210 * and subsequent mempool_alloc might block waiting
1211 * for it. So hand bio over to raid1d.
1212 */
1213 reschedule_retry(r1_bio);
1214
1215 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216
1217 r1_bio->master_bio = bio;
1218 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219 r1_bio->state = 0;
1220 r1_bio->mddev = mddev;
1221 r1_bio->sector = bio->bi_sector + sectors_handled;
1222 goto read_again;
1223 } else
1224 generic_make_request(read_bio);
1225 return;
1226 }
1227
1228 /*
1229 * WRITE:
1230 */
1231 if (conf->pending_count >= max_queued_requests) {
1232 md_wakeup_thread(mddev->thread);
1233 wait_event(conf->wait_barrier,
1234 conf->pending_count < max_queued_requests);
1235 }
1236 /* first select target devices under rcu_lock and
1237 * inc refcount on their rdev. Record them by setting
1238 * bios[x] to bio
1239 * If there are known/acknowledged bad blocks on any device on
1240 * which we have seen a write error, we want to avoid writing those
1241 * blocks.
1242 * This potentially requires several writes to write around
1243 * the bad blocks. Each set of writes gets it's own r1bio
1244 * with a set of bios attached.
1245 */
1246
1247 disks = conf->raid_disks * 2;
1248 retry_write:
1249 r1_bio->start_next_window = start_next_window;
1250 blocked_rdev = NULL;
1251 rcu_read_lock();
1252 max_sectors = r1_bio->sectors;
1253 for (i = 0; i < disks; i++) {
1254 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1255 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1256 atomic_inc(&rdev->nr_pending);
1257 blocked_rdev = rdev;
1258 break;
1259 }
1260 r1_bio->bios[i] = NULL;
1261 if (!rdev || test_bit(Faulty, &rdev->flags)
1262 || test_bit(Unmerged, &rdev->flags)) {
1263 if (i < conf->raid_disks)
1264 set_bit(R1BIO_Degraded, &r1_bio->state);
1265 continue;
1266 }
1267
1268 atomic_inc(&rdev->nr_pending);
1269 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1270 sector_t first_bad;
1271 int bad_sectors;
1272 int is_bad;
1273
1274 is_bad = is_badblock(rdev, r1_bio->sector,
1275 max_sectors,
1276 &first_bad, &bad_sectors);
1277 if (is_bad < 0) {
1278 /* mustn't write here until the bad block is
1279 * acknowledged*/
1280 set_bit(BlockedBadBlocks, &rdev->flags);
1281 blocked_rdev = rdev;
1282 break;
1283 }
1284 if (is_bad && first_bad <= r1_bio->sector) {
1285 /* Cannot write here at all */
1286 bad_sectors -= (r1_bio->sector - first_bad);
1287 if (bad_sectors < max_sectors)
1288 /* mustn't write more than bad_sectors
1289 * to other devices yet
1290 */
1291 max_sectors = bad_sectors;
1292 rdev_dec_pending(rdev, mddev);
1293 /* We don't set R1BIO_Degraded as that
1294 * only applies if the disk is
1295 * missing, so it might be re-added,
1296 * and we want to know to recover this
1297 * chunk.
1298 * In this case the device is here,
1299 * and the fact that this chunk is not
1300 * in-sync is recorded in the bad
1301 * block log
1302 */
1303 continue;
1304 }
1305 if (is_bad) {
1306 int good_sectors = first_bad - r1_bio->sector;
1307 if (good_sectors < max_sectors)
1308 max_sectors = good_sectors;
1309 }
1310 }
1311 r1_bio->bios[i] = bio;
1312 }
1313 rcu_read_unlock();
1314
1315 if (unlikely(blocked_rdev)) {
1316 /* Wait for this device to become unblocked */
1317 int j;
1318 sector_t old = start_next_window;
1319
1320 for (j = 0; j < i; j++)
1321 if (r1_bio->bios[j])
1322 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1323 r1_bio->state = 0;
1324 allow_barrier(conf, start_next_window, bio->bi_sector);
1325 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1326 start_next_window = wait_barrier(conf, bio);
1327 /*
1328 * We must make sure the multi r1bios of bio have
1329 * the same value of bi_phys_segments
1330 */
1331 if (bio->bi_phys_segments && old &&
1332 old != start_next_window)
1333 /* Wait for the former r1bio(s) to complete */
1334 wait_event(conf->wait_barrier,
1335 bio->bi_phys_segments == 1);
1336 goto retry_write;
1337 }
1338
1339 if (max_sectors < r1_bio->sectors) {
1340 /* We are splitting this write into multiple parts, so
1341 * we need to prepare for allocating another r1_bio.
1342 */
1343 r1_bio->sectors = max_sectors;
1344 spin_lock_irq(&conf->device_lock);
1345 if (bio->bi_phys_segments == 0)
1346 bio->bi_phys_segments = 2;
1347 else
1348 bio->bi_phys_segments++;
1349 spin_unlock_irq(&conf->device_lock);
1350 }
1351 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1352
1353 atomic_set(&r1_bio->remaining, 1);
1354 atomic_set(&r1_bio->behind_remaining, 0);
1355
1356 first_clone = 1;
1357 for (i = 0; i < disks; i++) {
1358 struct bio *mbio;
1359 if (!r1_bio->bios[i])
1360 continue;
1361
1362 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1363 bio_trim(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1364
1365 if (first_clone) {
1366 /* do behind I/O ?
1367 * Not if there are too many, or cannot
1368 * allocate memory, or a reader on WriteMostly
1369 * is waiting for behind writes to flush */
1370 if (bitmap &&
1371 (atomic_read(&bitmap->behind_writes)
1372 < mddev->bitmap_info.max_write_behind) &&
1373 !waitqueue_active(&bitmap->behind_wait))
1374 alloc_behind_pages(mbio, r1_bio);
1375
1376 bitmap_startwrite(bitmap, r1_bio->sector,
1377 r1_bio->sectors,
1378 test_bit(R1BIO_BehindIO,
1379 &r1_bio->state));
1380 first_clone = 0;
1381 }
1382 if (r1_bio->behind_bvecs) {
1383 struct bio_vec *bvec;
1384 int j;
1385
1386 /*
1387 * We trimmed the bio, so _all is legit
1388 */
1389 bio_for_each_segment_all(bvec, mbio, j)
1390 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1391 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1392 atomic_inc(&r1_bio->behind_remaining);
1393 }
1394
1395 r1_bio->bios[i] = mbio;
1396
1397 mbio->bi_sector = (r1_bio->sector +
1398 conf->mirrors[i].rdev->data_offset);
1399 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1400 mbio->bi_end_io = raid1_end_write_request;
1401 mbio->bi_rw =
1402 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1403 mbio->bi_private = r1_bio;
1404
1405 atomic_inc(&r1_bio->remaining);
1406
1407 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1408 if (cb)
1409 plug = container_of(cb, struct raid1_plug_cb, cb);
1410 else
1411 plug = NULL;
1412 spin_lock_irqsave(&conf->device_lock, flags);
1413 if (plug) {
1414 bio_list_add(&plug->pending, mbio);
1415 plug->pending_cnt++;
1416 } else {
1417 bio_list_add(&conf->pending_bio_list, mbio);
1418 conf->pending_count++;
1419 }
1420 spin_unlock_irqrestore(&conf->device_lock, flags);
1421 if (!plug)
1422 md_wakeup_thread(mddev->thread);
1423 }
1424 /* Mustn't call r1_bio_write_done before this next test,
1425 * as it could result in the bio being freed.
1426 */
1427 if (sectors_handled < bio_sectors(bio)) {
1428 r1_bio_write_done(r1_bio);
1429 /* We need another r1_bio. It has already been counted
1430 * in bio->bi_phys_segments
1431 */
1432 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1433 r1_bio->master_bio = bio;
1434 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1435 r1_bio->state = 0;
1436 r1_bio->mddev = mddev;
1437 r1_bio->sector = bio->bi_sector + sectors_handled;
1438 goto retry_write;
1439 }
1440
1441 r1_bio_write_done(r1_bio);
1442
1443 /* In case raid1d snuck in to freeze_array */
1444 wake_up(&conf->wait_barrier);
1445 }
1446
1447 static void status(struct seq_file *seq, struct mddev *mddev)
1448 {
1449 struct r1conf *conf = mddev->private;
1450 int i;
1451
1452 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1453 conf->raid_disks - mddev->degraded);
1454 rcu_read_lock();
1455 for (i = 0; i < conf->raid_disks; i++) {
1456 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1457 seq_printf(seq, "%s",
1458 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1459 }
1460 rcu_read_unlock();
1461 seq_printf(seq, "]");
1462 }
1463
1464
1465 static void error(struct mddev *mddev, struct md_rdev *rdev)
1466 {
1467 char b[BDEVNAME_SIZE];
1468 struct r1conf *conf = mddev->private;
1469
1470 /*
1471 * If it is not operational, then we have already marked it as dead
1472 * else if it is the last working disks, ignore the error, let the
1473 * next level up know.
1474 * else mark the drive as failed
1475 */
1476 if (test_bit(In_sync, &rdev->flags)
1477 && (conf->raid_disks - mddev->degraded) == 1) {
1478 /*
1479 * Don't fail the drive, act as though we were just a
1480 * normal single drive.
1481 * However don't try a recovery from this drive as
1482 * it is very likely to fail.
1483 */
1484 conf->recovery_disabled = mddev->recovery_disabled;
1485 return;
1486 }
1487 set_bit(Blocked, &rdev->flags);
1488 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1489 unsigned long flags;
1490 spin_lock_irqsave(&conf->device_lock, flags);
1491 mddev->degraded++;
1492 set_bit(Faulty, &rdev->flags);
1493 spin_unlock_irqrestore(&conf->device_lock, flags);
1494 /*
1495 * if recovery is running, make sure it aborts.
1496 */
1497 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1498 } else
1499 set_bit(Faulty, &rdev->flags);
1500 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1501 printk(KERN_ALERT
1502 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1503 "md/raid1:%s: Operation continuing on %d devices.\n",
1504 mdname(mddev), bdevname(rdev->bdev, b),
1505 mdname(mddev), conf->raid_disks - mddev->degraded);
1506 }
1507
1508 static void print_conf(struct r1conf *conf)
1509 {
1510 int i;
1511
1512 printk(KERN_DEBUG "RAID1 conf printout:\n");
1513 if (!conf) {
1514 printk(KERN_DEBUG "(!conf)\n");
1515 return;
1516 }
1517 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1518 conf->raid_disks);
1519
1520 rcu_read_lock();
1521 for (i = 0; i < conf->raid_disks; i++) {
1522 char b[BDEVNAME_SIZE];
1523 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1524 if (rdev)
1525 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1526 i, !test_bit(In_sync, &rdev->flags),
1527 !test_bit(Faulty, &rdev->flags),
1528 bdevname(rdev->bdev,b));
1529 }
1530 rcu_read_unlock();
1531 }
1532
1533 static void close_sync(struct r1conf *conf)
1534 {
1535 wait_barrier(conf, NULL);
1536 allow_barrier(conf, 0, 0);
1537
1538 mempool_destroy(conf->r1buf_pool);
1539 conf->r1buf_pool = NULL;
1540
1541 conf->next_resync = 0;
1542 conf->start_next_window = MaxSector;
1543 }
1544
1545 static int raid1_spare_active(struct mddev *mddev)
1546 {
1547 int i;
1548 struct r1conf *conf = mddev->private;
1549 int count = 0;
1550 unsigned long flags;
1551
1552 /*
1553 * Find all failed disks within the RAID1 configuration
1554 * and mark them readable.
1555 * Called under mddev lock, so rcu protection not needed.
1556 */
1557 for (i = 0; i < conf->raid_disks; i++) {
1558 struct md_rdev *rdev = conf->mirrors[i].rdev;
1559 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1560 if (repl
1561 && repl->recovery_offset == MaxSector
1562 && !test_bit(Faulty, &repl->flags)
1563 && !test_and_set_bit(In_sync, &repl->flags)) {
1564 /* replacement has just become active */
1565 if (!rdev ||
1566 !test_and_clear_bit(In_sync, &rdev->flags))
1567 count++;
1568 if (rdev) {
1569 /* Replaced device not technically
1570 * faulty, but we need to be sure
1571 * it gets removed and never re-added
1572 */
1573 set_bit(Faulty, &rdev->flags);
1574 sysfs_notify_dirent_safe(
1575 rdev->sysfs_state);
1576 }
1577 }
1578 if (rdev
1579 && rdev->recovery_offset == MaxSector
1580 && !test_bit(Faulty, &rdev->flags)
1581 && !test_and_set_bit(In_sync, &rdev->flags)) {
1582 count++;
1583 sysfs_notify_dirent_safe(rdev->sysfs_state);
1584 }
1585 }
1586 spin_lock_irqsave(&conf->device_lock, flags);
1587 mddev->degraded -= count;
1588 spin_unlock_irqrestore(&conf->device_lock, flags);
1589
1590 print_conf(conf);
1591 return count;
1592 }
1593
1594
1595 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1596 {
1597 struct r1conf *conf = mddev->private;
1598 int err = -EEXIST;
1599 int mirror = 0;
1600 struct raid1_info *p;
1601 int first = 0;
1602 int last = conf->raid_disks - 1;
1603 struct request_queue *q = bdev_get_queue(rdev->bdev);
1604
1605 if (mddev->recovery_disabled == conf->recovery_disabled)
1606 return -EBUSY;
1607
1608 if (rdev->raid_disk >= 0)
1609 first = last = rdev->raid_disk;
1610
1611 if (q->merge_bvec_fn) {
1612 set_bit(Unmerged, &rdev->flags);
1613 mddev->merge_check_needed = 1;
1614 }
1615
1616 for (mirror = first; mirror <= last; mirror++) {
1617 p = conf->mirrors+mirror;
1618 if (!p->rdev) {
1619
1620 if (mddev->gendisk)
1621 disk_stack_limits(mddev->gendisk, rdev->bdev,
1622 rdev->data_offset << 9);
1623
1624 p->head_position = 0;
1625 rdev->raid_disk = mirror;
1626 err = 0;
1627 /* As all devices are equivalent, we don't need a full recovery
1628 * if this was recently any drive of the array
1629 */
1630 if (rdev->saved_raid_disk < 0)
1631 conf->fullsync = 1;
1632 rcu_assign_pointer(p->rdev, rdev);
1633 break;
1634 }
1635 if (test_bit(WantReplacement, &p->rdev->flags) &&
1636 p[conf->raid_disks].rdev == NULL) {
1637 /* Add this device as a replacement */
1638 clear_bit(In_sync, &rdev->flags);
1639 set_bit(Replacement, &rdev->flags);
1640 rdev->raid_disk = mirror;
1641 err = 0;
1642 conf->fullsync = 1;
1643 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1644 break;
1645 }
1646 }
1647 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1648 /* Some requests might not have seen this new
1649 * merge_bvec_fn. We must wait for them to complete
1650 * before merging the device fully.
1651 * First we make sure any code which has tested
1652 * our function has submitted the request, then
1653 * we wait for all outstanding requests to complete.
1654 */
1655 synchronize_sched();
1656 freeze_array(conf, 0);
1657 unfreeze_array(conf);
1658 clear_bit(Unmerged, &rdev->flags);
1659 }
1660 md_integrity_add_rdev(rdev, mddev);
1661 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1662 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1663 print_conf(conf);
1664 return err;
1665 }
1666
1667 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1668 {
1669 struct r1conf *conf = mddev->private;
1670 int err = 0;
1671 int number = rdev->raid_disk;
1672 struct raid1_info *p = conf->mirrors + number;
1673
1674 if (rdev != p->rdev)
1675 p = conf->mirrors + conf->raid_disks + number;
1676
1677 print_conf(conf);
1678 if (rdev == p->rdev) {
1679 if (test_bit(In_sync, &rdev->flags) ||
1680 atomic_read(&rdev->nr_pending)) {
1681 err = -EBUSY;
1682 goto abort;
1683 }
1684 /* Only remove non-faulty devices if recovery
1685 * is not possible.
1686 */
1687 if (!test_bit(Faulty, &rdev->flags) &&
1688 mddev->recovery_disabled != conf->recovery_disabled &&
1689 mddev->degraded < conf->raid_disks) {
1690 err = -EBUSY;
1691 goto abort;
1692 }
1693 p->rdev = NULL;
1694 synchronize_rcu();
1695 if (atomic_read(&rdev->nr_pending)) {
1696 /* lost the race, try later */
1697 err = -EBUSY;
1698 p->rdev = rdev;
1699 goto abort;
1700 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1701 /* We just removed a device that is being replaced.
1702 * Move down the replacement. We drain all IO before
1703 * doing this to avoid confusion.
1704 */
1705 struct md_rdev *repl =
1706 conf->mirrors[conf->raid_disks + number].rdev;
1707 freeze_array(conf, 0);
1708 clear_bit(Replacement, &repl->flags);
1709 p->rdev = repl;
1710 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1711 unfreeze_array(conf);
1712 clear_bit(WantReplacement, &rdev->flags);
1713 } else
1714 clear_bit(WantReplacement, &rdev->flags);
1715 err = md_integrity_register(mddev);
1716 }
1717 abort:
1718
1719 print_conf(conf);
1720 return err;
1721 }
1722
1723
1724 static void end_sync_read(struct bio *bio, int error)
1725 {
1726 struct r1bio *r1_bio = bio->bi_private;
1727
1728 update_head_pos(r1_bio->read_disk, r1_bio);
1729
1730 /*
1731 * we have read a block, now it needs to be re-written,
1732 * or re-read if the read failed.
1733 * We don't do much here, just schedule handling by raid1d
1734 */
1735 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736 set_bit(R1BIO_Uptodate, &r1_bio->state);
1737
1738 if (atomic_dec_and_test(&r1_bio->remaining))
1739 reschedule_retry(r1_bio);
1740 }
1741
1742 static void end_sync_write(struct bio *bio, int error)
1743 {
1744 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745 struct r1bio *r1_bio = bio->bi_private;
1746 struct mddev *mddev = r1_bio->mddev;
1747 struct r1conf *conf = mddev->private;
1748 int mirror=0;
1749 sector_t first_bad;
1750 int bad_sectors;
1751
1752 mirror = find_bio_disk(r1_bio, bio);
1753
1754 if (!uptodate) {
1755 sector_t sync_blocks = 0;
1756 sector_t s = r1_bio->sector;
1757 long sectors_to_go = r1_bio->sectors;
1758 /* make sure these bits doesn't get cleared. */
1759 do {
1760 bitmap_end_sync(mddev->bitmap, s,
1761 &sync_blocks, 1);
1762 s += sync_blocks;
1763 sectors_to_go -= sync_blocks;
1764 } while (sectors_to_go > 0);
1765 set_bit(WriteErrorSeen,
1766 &conf->mirrors[mirror].rdev->flags);
1767 if (!test_and_set_bit(WantReplacement,
1768 &conf->mirrors[mirror].rdev->flags))
1769 set_bit(MD_RECOVERY_NEEDED, &
1770 mddev->recovery);
1771 set_bit(R1BIO_WriteError, &r1_bio->state);
1772 } else if (is_badblock(conf->mirrors[mirror].rdev,
1773 r1_bio->sector,
1774 r1_bio->sectors,
1775 &first_bad, &bad_sectors) &&
1776 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777 r1_bio->sector,
1778 r1_bio->sectors,
1779 &first_bad, &bad_sectors)
1780 )
1781 set_bit(R1BIO_MadeGood, &r1_bio->state);
1782
1783 if (atomic_dec_and_test(&r1_bio->remaining)) {
1784 int s = r1_bio->sectors;
1785 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786 test_bit(R1BIO_WriteError, &r1_bio->state))
1787 reschedule_retry(r1_bio);
1788 else {
1789 put_buf(r1_bio);
1790 md_done_sync(mddev, s, uptodate);
1791 }
1792 }
1793 }
1794
1795 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796 int sectors, struct page *page, int rw)
1797 {
1798 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799 /* success */
1800 return 1;
1801 if (rw == WRITE) {
1802 set_bit(WriteErrorSeen, &rdev->flags);
1803 if (!test_and_set_bit(WantReplacement,
1804 &rdev->flags))
1805 set_bit(MD_RECOVERY_NEEDED, &
1806 rdev->mddev->recovery);
1807 }
1808 /* need to record an error - either for the block or the device */
1809 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810 md_error(rdev->mddev, rdev);
1811 return 0;
1812 }
1813
1814 static int fix_sync_read_error(struct r1bio *r1_bio)
1815 {
1816 /* Try some synchronous reads of other devices to get
1817 * good data, much like with normal read errors. Only
1818 * read into the pages we already have so we don't
1819 * need to re-issue the read request.
1820 * We don't need to freeze the array, because being in an
1821 * active sync request, there is no normal IO, and
1822 * no overlapping syncs.
1823 * We don't need to check is_badblock() again as we
1824 * made sure that anything with a bad block in range
1825 * will have bi_end_io clear.
1826 */
1827 struct mddev *mddev = r1_bio->mddev;
1828 struct r1conf *conf = mddev->private;
1829 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830 sector_t sect = r1_bio->sector;
1831 int sectors = r1_bio->sectors;
1832 int idx = 0;
1833
1834 while(sectors) {
1835 int s = sectors;
1836 int d = r1_bio->read_disk;
1837 int success = 0;
1838 struct md_rdev *rdev;
1839 int start;
1840
1841 if (s > (PAGE_SIZE>>9))
1842 s = PAGE_SIZE >> 9;
1843 do {
1844 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845 /* No rcu protection needed here devices
1846 * can only be removed when no resync is
1847 * active, and resync is currently active
1848 */
1849 rdev = conf->mirrors[d].rdev;
1850 if (sync_page_io(rdev, sect, s<<9,
1851 bio->bi_io_vec[idx].bv_page,
1852 READ, false)) {
1853 success = 1;
1854 break;
1855 }
1856 }
1857 d++;
1858 if (d == conf->raid_disks * 2)
1859 d = 0;
1860 } while (!success && d != r1_bio->read_disk);
1861
1862 if (!success) {
1863 char b[BDEVNAME_SIZE];
1864 int abort = 0;
1865 /* Cannot read from anywhere, this block is lost.
1866 * Record a bad block on each device. If that doesn't
1867 * work just disable and interrupt the recovery.
1868 * Don't fail devices as that won't really help.
1869 */
1870 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871 " for block %llu\n",
1872 mdname(mddev),
1873 bdevname(bio->bi_bdev, b),
1874 (unsigned long long)r1_bio->sector);
1875 for (d = 0; d < conf->raid_disks * 2; d++) {
1876 rdev = conf->mirrors[d].rdev;
1877 if (!rdev || test_bit(Faulty, &rdev->flags))
1878 continue;
1879 if (!rdev_set_badblocks(rdev, sect, s, 0))
1880 abort = 1;
1881 }
1882 if (abort) {
1883 conf->recovery_disabled =
1884 mddev->recovery_disabled;
1885 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886 md_done_sync(mddev, r1_bio->sectors, 0);
1887 put_buf(r1_bio);
1888 return 0;
1889 }
1890 /* Try next page */
1891 sectors -= s;
1892 sect += s;
1893 idx++;
1894 continue;
1895 }
1896
1897 start = d;
1898 /* write it back and re-read */
1899 while (d != r1_bio->read_disk) {
1900 if (d == 0)
1901 d = conf->raid_disks * 2;
1902 d--;
1903 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904 continue;
1905 rdev = conf->mirrors[d].rdev;
1906 if (r1_sync_page_io(rdev, sect, s,
1907 bio->bi_io_vec[idx].bv_page,
1908 WRITE) == 0) {
1909 r1_bio->bios[d]->bi_end_io = NULL;
1910 rdev_dec_pending(rdev, mddev);
1911 }
1912 }
1913 d = start;
1914 while (d != r1_bio->read_disk) {
1915 if (d == 0)
1916 d = conf->raid_disks * 2;
1917 d--;
1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 continue;
1920 rdev = conf->mirrors[d].rdev;
1921 if (r1_sync_page_io(rdev, sect, s,
1922 bio->bi_io_vec[idx].bv_page,
1923 READ) != 0)
1924 atomic_add(s, &rdev->corrected_errors);
1925 }
1926 sectors -= s;
1927 sect += s;
1928 idx ++;
1929 }
1930 set_bit(R1BIO_Uptodate, &r1_bio->state);
1931 set_bit(BIO_UPTODATE, &bio->bi_flags);
1932 return 1;
1933 }
1934
1935 static int process_checks(struct r1bio *r1_bio)
1936 {
1937 /* We have read all readable devices. If we haven't
1938 * got the block, then there is no hope left.
1939 * If we have, then we want to do a comparison
1940 * and skip the write if everything is the same.
1941 * If any blocks failed to read, then we need to
1942 * attempt an over-write
1943 */
1944 struct mddev *mddev = r1_bio->mddev;
1945 struct r1conf *conf = mddev->private;
1946 int primary;
1947 int i;
1948 int vcnt;
1949
1950 /* Fix variable parts of all bios */
1951 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952 for (i = 0; i < conf->raid_disks * 2; i++) {
1953 int j;
1954 int size;
1955 struct bio *b = r1_bio->bios[i];
1956 if (b->bi_end_io != end_sync_read)
1957 continue;
1958 /* fixup the bio for reuse */
1959 bio_reset(b);
1960 b->bi_vcnt = vcnt;
1961 b->bi_size = r1_bio->sectors << 9;
1962 b->bi_sector = r1_bio->sector +
1963 conf->mirrors[i].rdev->data_offset;
1964 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1965 b->bi_end_io = end_sync_read;
1966 b->bi_private = r1_bio;
1967
1968 size = b->bi_size;
1969 for (j = 0; j < vcnt ; j++) {
1970 struct bio_vec *bi;
1971 bi = &b->bi_io_vec[j];
1972 bi->bv_offset = 0;
1973 if (size > PAGE_SIZE)
1974 bi->bv_len = PAGE_SIZE;
1975 else
1976 bi->bv_len = size;
1977 size -= PAGE_SIZE;
1978 }
1979 }
1980 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1981 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1982 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1983 r1_bio->bios[primary]->bi_end_io = NULL;
1984 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1985 break;
1986 }
1987 r1_bio->read_disk = primary;
1988 for (i = 0; i < conf->raid_disks * 2; i++) {
1989 int j;
1990 struct bio *pbio = r1_bio->bios[primary];
1991 struct bio *sbio = r1_bio->bios[i];
1992
1993 if (sbio->bi_end_io != end_sync_read)
1994 continue;
1995
1996 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1997 for (j = vcnt; j-- ; ) {
1998 struct page *p, *s;
1999 p = pbio->bi_io_vec[j].bv_page;
2000 s = sbio->bi_io_vec[j].bv_page;
2001 if (memcmp(page_address(p),
2002 page_address(s),
2003 sbio->bi_io_vec[j].bv_len))
2004 break;
2005 }
2006 } else
2007 j = 0;
2008 if (j >= 0)
2009 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2010 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2011 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
2012 /* No need to write to this device. */
2013 sbio->bi_end_io = NULL;
2014 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2015 continue;
2016 }
2017
2018 bio_copy_data(sbio, pbio);
2019 }
2020 return 0;
2021 }
2022
2023 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2024 {
2025 struct r1conf *conf = mddev->private;
2026 int i;
2027 int disks = conf->raid_disks * 2;
2028 struct bio *bio, *wbio;
2029
2030 bio = r1_bio->bios[r1_bio->read_disk];
2031
2032 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2033 /* ouch - failed to read all of that. */
2034 if (!fix_sync_read_error(r1_bio))
2035 return;
2036
2037 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2038 if (process_checks(r1_bio) < 0)
2039 return;
2040 /*
2041 * schedule writes
2042 */
2043 atomic_set(&r1_bio->remaining, 1);
2044 for (i = 0; i < disks ; i++) {
2045 wbio = r1_bio->bios[i];
2046 if (wbio->bi_end_io == NULL ||
2047 (wbio->bi_end_io == end_sync_read &&
2048 (i == r1_bio->read_disk ||
2049 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2050 continue;
2051
2052 wbio->bi_rw = WRITE;
2053 wbio->bi_end_io = end_sync_write;
2054 atomic_inc(&r1_bio->remaining);
2055 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2056
2057 generic_make_request(wbio);
2058 }
2059
2060 if (atomic_dec_and_test(&r1_bio->remaining)) {
2061 /* if we're here, all write(s) have completed, so clean up */
2062 int s = r1_bio->sectors;
2063 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2064 test_bit(R1BIO_WriteError, &r1_bio->state))
2065 reschedule_retry(r1_bio);
2066 else {
2067 put_buf(r1_bio);
2068 md_done_sync(mddev, s, 1);
2069 }
2070 }
2071 }
2072
2073 /*
2074 * This is a kernel thread which:
2075 *
2076 * 1. Retries failed read operations on working mirrors.
2077 * 2. Updates the raid superblock when problems encounter.
2078 * 3. Performs writes following reads for array synchronising.
2079 */
2080
2081 static void fix_read_error(struct r1conf *conf, int read_disk,
2082 sector_t sect, int sectors)
2083 {
2084 struct mddev *mddev = conf->mddev;
2085 while(sectors) {
2086 int s = sectors;
2087 int d = read_disk;
2088 int success = 0;
2089 int start;
2090 struct md_rdev *rdev;
2091
2092 if (s > (PAGE_SIZE>>9))
2093 s = PAGE_SIZE >> 9;
2094
2095 do {
2096 /* Note: no rcu protection needed here
2097 * as this is synchronous in the raid1d thread
2098 * which is the thread that might remove
2099 * a device. If raid1d ever becomes multi-threaded....
2100 */
2101 sector_t first_bad;
2102 int bad_sectors;
2103
2104 rdev = conf->mirrors[d].rdev;
2105 if (rdev &&
2106 (test_bit(In_sync, &rdev->flags) ||
2107 (!test_bit(Faulty, &rdev->flags) &&
2108 rdev->recovery_offset >= sect + s)) &&
2109 is_badblock(rdev, sect, s,
2110 &first_bad, &bad_sectors) == 0 &&
2111 sync_page_io(rdev, sect, s<<9,
2112 conf->tmppage, READ, false))
2113 success = 1;
2114 else {
2115 d++;
2116 if (d == conf->raid_disks * 2)
2117 d = 0;
2118 }
2119 } while (!success && d != read_disk);
2120
2121 if (!success) {
2122 /* Cannot read from anywhere - mark it bad */
2123 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2124 if (!rdev_set_badblocks(rdev, sect, s, 0))
2125 md_error(mddev, rdev);
2126 break;
2127 }
2128 /* write it back and re-read */
2129 start = d;
2130 while (d != read_disk) {
2131 if (d==0)
2132 d = conf->raid_disks * 2;
2133 d--;
2134 rdev = conf->mirrors[d].rdev;
2135 if (rdev &&
2136 test_bit(In_sync, &rdev->flags))
2137 r1_sync_page_io(rdev, sect, s,
2138 conf->tmppage, WRITE);
2139 }
2140 d = start;
2141 while (d != read_disk) {
2142 char b[BDEVNAME_SIZE];
2143 if (d==0)
2144 d = conf->raid_disks * 2;
2145 d--;
2146 rdev = conf->mirrors[d].rdev;
2147 if (rdev &&
2148 test_bit(In_sync, &rdev->flags)) {
2149 if (r1_sync_page_io(rdev, sect, s,
2150 conf->tmppage, READ)) {
2151 atomic_add(s, &rdev->corrected_errors);
2152 printk(KERN_INFO
2153 "md/raid1:%s: read error corrected "
2154 "(%d sectors at %llu on %s)\n",
2155 mdname(mddev), s,
2156 (unsigned long long)(sect +
2157 rdev->data_offset),
2158 bdevname(rdev->bdev, b));
2159 }
2160 }
2161 }
2162 sectors -= s;
2163 sect += s;
2164 }
2165 }
2166
2167 static int narrow_write_error(struct r1bio *r1_bio, int i)
2168 {
2169 struct mddev *mddev = r1_bio->mddev;
2170 struct r1conf *conf = mddev->private;
2171 struct md_rdev *rdev = conf->mirrors[i].rdev;
2172
2173 /* bio has the data to be written to device 'i' where
2174 * we just recently had a write error.
2175 * We repeatedly clone the bio and trim down to one block,
2176 * then try the write. Where the write fails we record
2177 * a bad block.
2178 * It is conceivable that the bio doesn't exactly align with
2179 * blocks. We must handle this somehow.
2180 *
2181 * We currently own a reference on the rdev.
2182 */
2183
2184 int block_sectors;
2185 sector_t sector;
2186 int sectors;
2187 int sect_to_write = r1_bio->sectors;
2188 int ok = 1;
2189
2190 if (rdev->badblocks.shift < 0)
2191 return 0;
2192
2193 block_sectors = 1 << rdev->badblocks.shift;
2194 sector = r1_bio->sector;
2195 sectors = ((sector + block_sectors)
2196 & ~(sector_t)(block_sectors - 1))
2197 - sector;
2198
2199 while (sect_to_write) {
2200 struct bio *wbio;
2201 if (sectors > sect_to_write)
2202 sectors = sect_to_write;
2203 /* Write at 'sector' for 'sectors'*/
2204
2205 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2206 unsigned vcnt = r1_bio->behind_page_count;
2207 struct bio_vec *vec = r1_bio->behind_bvecs;
2208
2209 while (!vec->bv_page) {
2210 vec++;
2211 vcnt--;
2212 }
2213
2214 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2215 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2216
2217 wbio->bi_vcnt = vcnt;
2218 } else {
2219 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2220 }
2221
2222 wbio->bi_rw = WRITE;
2223 wbio->bi_sector = r1_bio->sector;
2224 wbio->bi_size = r1_bio->sectors << 9;
2225
2226 bio_trim(wbio, sector - r1_bio->sector, sectors);
2227 wbio->bi_sector += rdev->data_offset;
2228 wbio->bi_bdev = rdev->bdev;
2229 if (submit_bio_wait(WRITE, wbio) == 0)
2230 /* failure! */
2231 ok = rdev_set_badblocks(rdev, sector,
2232 sectors, 0)
2233 && ok;
2234
2235 bio_put(wbio);
2236 sect_to_write -= sectors;
2237 sector += sectors;
2238 sectors = block_sectors;
2239 }
2240 return ok;
2241 }
2242
2243 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2244 {
2245 int m;
2246 int s = r1_bio->sectors;
2247 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2248 struct md_rdev *rdev = conf->mirrors[m].rdev;
2249 struct bio *bio = r1_bio->bios[m];
2250 if (bio->bi_end_io == NULL)
2251 continue;
2252 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2253 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2254 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2255 }
2256 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2257 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2258 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2259 md_error(conf->mddev, rdev);
2260 }
2261 }
2262 put_buf(r1_bio);
2263 md_done_sync(conf->mddev, s, 1);
2264 }
2265
2266 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2267 {
2268 int m;
2269 for (m = 0; m < conf->raid_disks * 2 ; m++)
2270 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2271 struct md_rdev *rdev = conf->mirrors[m].rdev;
2272 rdev_clear_badblocks(rdev,
2273 r1_bio->sector,
2274 r1_bio->sectors, 0);
2275 rdev_dec_pending(rdev, conf->mddev);
2276 } else if (r1_bio->bios[m] != NULL) {
2277 /* This drive got a write error. We need to
2278 * narrow down and record precise write
2279 * errors.
2280 */
2281 if (!narrow_write_error(r1_bio, m)) {
2282 md_error(conf->mddev,
2283 conf->mirrors[m].rdev);
2284 /* an I/O failed, we can't clear the bitmap */
2285 set_bit(R1BIO_Degraded, &r1_bio->state);
2286 }
2287 rdev_dec_pending(conf->mirrors[m].rdev,
2288 conf->mddev);
2289 }
2290 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2291 close_write(r1_bio);
2292 raid_end_bio_io(r1_bio);
2293 }
2294
2295 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2296 {
2297 int disk;
2298 int max_sectors;
2299 struct mddev *mddev = conf->mddev;
2300 struct bio *bio;
2301 char b[BDEVNAME_SIZE];
2302 struct md_rdev *rdev;
2303
2304 clear_bit(R1BIO_ReadError, &r1_bio->state);
2305 /* we got a read error. Maybe the drive is bad. Maybe just
2306 * the block and we can fix it.
2307 * We freeze all other IO, and try reading the block from
2308 * other devices. When we find one, we re-write
2309 * and check it that fixes the read error.
2310 * This is all done synchronously while the array is
2311 * frozen
2312 */
2313 if (mddev->ro == 0) {
2314 freeze_array(conf, 1);
2315 fix_read_error(conf, r1_bio->read_disk,
2316 r1_bio->sector, r1_bio->sectors);
2317 unfreeze_array(conf);
2318 } else
2319 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2320 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2321
2322 bio = r1_bio->bios[r1_bio->read_disk];
2323 bdevname(bio->bi_bdev, b);
2324 read_more:
2325 disk = read_balance(conf, r1_bio, &max_sectors);
2326 if (disk == -1) {
2327 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2328 " read error for block %llu\n",
2329 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2330 raid_end_bio_io(r1_bio);
2331 } else {
2332 const unsigned long do_sync
2333 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2334 if (bio) {
2335 r1_bio->bios[r1_bio->read_disk] =
2336 mddev->ro ? IO_BLOCKED : NULL;
2337 bio_put(bio);
2338 }
2339 r1_bio->read_disk = disk;
2340 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2341 bio_trim(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2342 r1_bio->bios[r1_bio->read_disk] = bio;
2343 rdev = conf->mirrors[disk].rdev;
2344 printk_ratelimited(KERN_ERR
2345 "md/raid1:%s: redirecting sector %llu"
2346 " to other mirror: %s\n",
2347 mdname(mddev),
2348 (unsigned long long)r1_bio->sector,
2349 bdevname(rdev->bdev, b));
2350 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2351 bio->bi_bdev = rdev->bdev;
2352 bio->bi_end_io = raid1_end_read_request;
2353 bio->bi_rw = READ | do_sync;
2354 bio->bi_private = r1_bio;
2355 if (max_sectors < r1_bio->sectors) {
2356 /* Drat - have to split this up more */
2357 struct bio *mbio = r1_bio->master_bio;
2358 int sectors_handled = (r1_bio->sector + max_sectors
2359 - mbio->bi_sector);
2360 r1_bio->sectors = max_sectors;
2361 spin_lock_irq(&conf->device_lock);
2362 if (mbio->bi_phys_segments == 0)
2363 mbio->bi_phys_segments = 2;
2364 else
2365 mbio->bi_phys_segments++;
2366 spin_unlock_irq(&conf->device_lock);
2367 generic_make_request(bio);
2368 bio = NULL;
2369
2370 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2371
2372 r1_bio->master_bio = mbio;
2373 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2374 r1_bio->state = 0;
2375 set_bit(R1BIO_ReadError, &r1_bio->state);
2376 r1_bio->mddev = mddev;
2377 r1_bio->sector = mbio->bi_sector + sectors_handled;
2378
2379 goto read_more;
2380 } else
2381 generic_make_request(bio);
2382 }
2383 }
2384
2385 static void raid1d(struct md_thread *thread)
2386 {
2387 struct mddev *mddev = thread->mddev;
2388 struct r1bio *r1_bio;
2389 unsigned long flags;
2390 struct r1conf *conf = mddev->private;
2391 struct list_head *head = &conf->retry_list;
2392 struct blk_plug plug;
2393
2394 md_check_recovery(mddev);
2395
2396 blk_start_plug(&plug);
2397 for (;;) {
2398
2399 flush_pending_writes(conf);
2400
2401 spin_lock_irqsave(&conf->device_lock, flags);
2402 if (list_empty(head)) {
2403 spin_unlock_irqrestore(&conf->device_lock, flags);
2404 break;
2405 }
2406 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2407 list_del(head->prev);
2408 conf->nr_queued--;
2409 spin_unlock_irqrestore(&conf->device_lock, flags);
2410
2411 mddev = r1_bio->mddev;
2412 conf = mddev->private;
2413 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2414 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2415 test_bit(R1BIO_WriteError, &r1_bio->state))
2416 handle_sync_write_finished(conf, r1_bio);
2417 else
2418 sync_request_write(mddev, r1_bio);
2419 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2420 test_bit(R1BIO_WriteError, &r1_bio->state))
2421 handle_write_finished(conf, r1_bio);
2422 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2423 handle_read_error(conf, r1_bio);
2424 else
2425 /* just a partial read to be scheduled from separate
2426 * context
2427 */
2428 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2429
2430 cond_resched();
2431 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2432 md_check_recovery(mddev);
2433 }
2434 blk_finish_plug(&plug);
2435 }
2436
2437
2438 static int init_resync(struct r1conf *conf)
2439 {
2440 int buffs;
2441
2442 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2443 BUG_ON(conf->r1buf_pool);
2444 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2445 conf->poolinfo);
2446 if (!conf->r1buf_pool)
2447 return -ENOMEM;
2448 conf->next_resync = 0;
2449 return 0;
2450 }
2451
2452 /*
2453 * perform a "sync" on one "block"
2454 *
2455 * We need to make sure that no normal I/O request - particularly write
2456 * requests - conflict with active sync requests.
2457 *
2458 * This is achieved by tracking pending requests and a 'barrier' concept
2459 * that can be installed to exclude normal IO requests.
2460 */
2461
2462 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2463 {
2464 struct r1conf *conf = mddev->private;
2465 struct r1bio *r1_bio;
2466 struct bio *bio;
2467 sector_t max_sector, nr_sectors;
2468 int disk = -1;
2469 int i;
2470 int wonly = -1;
2471 int write_targets = 0, read_targets = 0;
2472 sector_t sync_blocks;
2473 int still_degraded = 0;
2474 int good_sectors = RESYNC_SECTORS;
2475 int min_bad = 0; /* number of sectors that are bad in all devices */
2476
2477 if (!conf->r1buf_pool)
2478 if (init_resync(conf))
2479 return 0;
2480
2481 max_sector = mddev->dev_sectors;
2482 if (sector_nr >= max_sector) {
2483 /* If we aborted, we need to abort the
2484 * sync on the 'current' bitmap chunk (there will
2485 * only be one in raid1 resync.
2486 * We can find the current addess in mddev->curr_resync
2487 */
2488 if (mddev->curr_resync < max_sector) /* aborted */
2489 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2490 &sync_blocks, 1);
2491 else /* completed sync */
2492 conf->fullsync = 0;
2493
2494 bitmap_close_sync(mddev->bitmap);
2495 close_sync(conf);
2496 return 0;
2497 }
2498
2499 if (mddev->bitmap == NULL &&
2500 mddev->recovery_cp == MaxSector &&
2501 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2502 conf->fullsync == 0) {
2503 *skipped = 1;
2504 return max_sector - sector_nr;
2505 }
2506 /* before building a request, check if we can skip these blocks..
2507 * This call the bitmap_start_sync doesn't actually record anything
2508 */
2509 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2510 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2511 /* We can skip this block, and probably several more */
2512 *skipped = 1;
2513 return sync_blocks;
2514 }
2515 /*
2516 * If there is non-resync activity waiting for a turn,
2517 * and resync is going fast enough,
2518 * then let it though before starting on this new sync request.
2519 */
2520 if (!go_faster && conf->nr_waiting)
2521 msleep_interruptible(1000);
2522
2523 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2524 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2525 raise_barrier(conf);
2526
2527 conf->next_resync = sector_nr;
2528
2529 rcu_read_lock();
2530 /*
2531 * If we get a correctably read error during resync or recovery,
2532 * we might want to read from a different device. So we
2533 * flag all drives that could conceivably be read from for READ,
2534 * and any others (which will be non-In_sync devices) for WRITE.
2535 * If a read fails, we try reading from something else for which READ
2536 * is OK.
2537 */
2538
2539 r1_bio->mddev = mddev;
2540 r1_bio->sector = sector_nr;
2541 r1_bio->state = 0;
2542 set_bit(R1BIO_IsSync, &r1_bio->state);
2543
2544 for (i = 0; i < conf->raid_disks * 2; i++) {
2545 struct md_rdev *rdev;
2546 bio = r1_bio->bios[i];
2547 bio_reset(bio);
2548
2549 rdev = rcu_dereference(conf->mirrors[i].rdev);
2550 if (rdev == NULL ||
2551 test_bit(Faulty, &rdev->flags)) {
2552 if (i < conf->raid_disks)
2553 still_degraded = 1;
2554 } else if (!test_bit(In_sync, &rdev->flags)) {
2555 bio->bi_rw = WRITE;
2556 bio->bi_end_io = end_sync_write;
2557 write_targets ++;
2558 } else {
2559 /* may need to read from here */
2560 sector_t first_bad = MaxSector;
2561 int bad_sectors;
2562
2563 if (is_badblock(rdev, sector_nr, good_sectors,
2564 &first_bad, &bad_sectors)) {
2565 if (first_bad > sector_nr)
2566 good_sectors = first_bad - sector_nr;
2567 else {
2568 bad_sectors -= (sector_nr - first_bad);
2569 if (min_bad == 0 ||
2570 min_bad > bad_sectors)
2571 min_bad = bad_sectors;
2572 }
2573 }
2574 if (sector_nr < first_bad) {
2575 if (test_bit(WriteMostly, &rdev->flags)) {
2576 if (wonly < 0)
2577 wonly = i;
2578 } else {
2579 if (disk < 0)
2580 disk = i;
2581 }
2582 bio->bi_rw = READ;
2583 bio->bi_end_io = end_sync_read;
2584 read_targets++;
2585 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2586 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2587 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2588 /*
2589 * The device is suitable for reading (InSync),
2590 * but has bad block(s) here. Let's try to correct them,
2591 * if we are doing resync or repair. Otherwise, leave
2592 * this device alone for this sync request.
2593 */
2594 bio->bi_rw = WRITE;
2595 bio->bi_end_io = end_sync_write;
2596 write_targets++;
2597 }
2598 }
2599 if (bio->bi_end_io) {
2600 atomic_inc(&rdev->nr_pending);
2601 bio->bi_sector = sector_nr + rdev->data_offset;
2602 bio->bi_bdev = rdev->bdev;
2603 bio->bi_private = r1_bio;
2604 }
2605 }
2606 rcu_read_unlock();
2607 if (disk < 0)
2608 disk = wonly;
2609 r1_bio->read_disk = disk;
2610
2611 if (read_targets == 0 && min_bad > 0) {
2612 /* These sectors are bad on all InSync devices, so we
2613 * need to mark them bad on all write targets
2614 */
2615 int ok = 1;
2616 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2617 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2618 struct md_rdev *rdev = conf->mirrors[i].rdev;
2619 ok = rdev_set_badblocks(rdev, sector_nr,
2620 min_bad, 0
2621 ) && ok;
2622 }
2623 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2624 *skipped = 1;
2625 put_buf(r1_bio);
2626
2627 if (!ok) {
2628 /* Cannot record the badblocks, so need to
2629 * abort the resync.
2630 * If there are multiple read targets, could just
2631 * fail the really bad ones ???
2632 */
2633 conf->recovery_disabled = mddev->recovery_disabled;
2634 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2635 return 0;
2636 } else
2637 return min_bad;
2638
2639 }
2640 if (min_bad > 0 && min_bad < good_sectors) {
2641 /* only resync enough to reach the next bad->good
2642 * transition */
2643 good_sectors = min_bad;
2644 }
2645
2646 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2647 /* extra read targets are also write targets */
2648 write_targets += read_targets-1;
2649
2650 if (write_targets == 0 || read_targets == 0) {
2651 /* There is nowhere to write, so all non-sync
2652 * drives must be failed - so we are finished
2653 */
2654 sector_t rv;
2655 if (min_bad > 0)
2656 max_sector = sector_nr + min_bad;
2657 rv = max_sector - sector_nr;
2658 *skipped = 1;
2659 put_buf(r1_bio);
2660 return rv;
2661 }
2662
2663 if (max_sector > mddev->resync_max)
2664 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2665 if (max_sector > sector_nr + good_sectors)
2666 max_sector = sector_nr + good_sectors;
2667 nr_sectors = 0;
2668 sync_blocks = 0;
2669 do {
2670 struct page *page;
2671 int len = PAGE_SIZE;
2672 if (sector_nr + (len>>9) > max_sector)
2673 len = (max_sector - sector_nr) << 9;
2674 if (len == 0)
2675 break;
2676 if (sync_blocks == 0) {
2677 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2678 &sync_blocks, still_degraded) &&
2679 !conf->fullsync &&
2680 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2681 break;
2682 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2683 if ((len >> 9) > sync_blocks)
2684 len = sync_blocks<<9;
2685 }
2686
2687 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2688 bio = r1_bio->bios[i];
2689 if (bio->bi_end_io) {
2690 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2691 if (bio_add_page(bio, page, len, 0) == 0) {
2692 /* stop here */
2693 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2694 while (i > 0) {
2695 i--;
2696 bio = r1_bio->bios[i];
2697 if (bio->bi_end_io==NULL)
2698 continue;
2699 /* remove last page from this bio */
2700 bio->bi_vcnt--;
2701 bio->bi_size -= len;
2702 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2703 }
2704 goto bio_full;
2705 }
2706 }
2707 }
2708 nr_sectors += len>>9;
2709 sector_nr += len>>9;
2710 sync_blocks -= (len>>9);
2711 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2712 bio_full:
2713 r1_bio->sectors = nr_sectors;
2714
2715 /* For a user-requested sync, we read all readable devices and do a
2716 * compare
2717 */
2718 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2719 atomic_set(&r1_bio->remaining, read_targets);
2720 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2721 bio = r1_bio->bios[i];
2722 if (bio->bi_end_io == end_sync_read) {
2723 read_targets--;
2724 md_sync_acct(bio->bi_bdev, nr_sectors);
2725 generic_make_request(bio);
2726 }
2727 }
2728 } else {
2729 atomic_set(&r1_bio->remaining, 1);
2730 bio = r1_bio->bios[r1_bio->read_disk];
2731 md_sync_acct(bio->bi_bdev, nr_sectors);
2732 generic_make_request(bio);
2733
2734 }
2735 return nr_sectors;
2736 }
2737
2738 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2739 {
2740 if (sectors)
2741 return sectors;
2742
2743 return mddev->dev_sectors;
2744 }
2745
2746 static struct r1conf *setup_conf(struct mddev *mddev)
2747 {
2748 struct r1conf *conf;
2749 int i;
2750 struct raid1_info *disk;
2751 struct md_rdev *rdev;
2752 int err = -ENOMEM;
2753
2754 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2755 if (!conf)
2756 goto abort;
2757
2758 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2759 * mddev->raid_disks * 2,
2760 GFP_KERNEL);
2761 if (!conf->mirrors)
2762 goto abort;
2763
2764 conf->tmppage = alloc_page(GFP_KERNEL);
2765 if (!conf->tmppage)
2766 goto abort;
2767
2768 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2769 if (!conf->poolinfo)
2770 goto abort;
2771 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2772 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2773 r1bio_pool_free,
2774 conf->poolinfo);
2775 if (!conf->r1bio_pool)
2776 goto abort;
2777
2778 conf->poolinfo->mddev = mddev;
2779
2780 err = -EINVAL;
2781 spin_lock_init(&conf->device_lock);
2782 rdev_for_each(rdev, mddev) {
2783 struct request_queue *q;
2784 int disk_idx = rdev->raid_disk;
2785 if (disk_idx >= mddev->raid_disks
2786 || disk_idx < 0)
2787 continue;
2788 if (test_bit(Replacement, &rdev->flags))
2789 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2790 else
2791 disk = conf->mirrors + disk_idx;
2792
2793 if (disk->rdev)
2794 goto abort;
2795 disk->rdev = rdev;
2796 q = bdev_get_queue(rdev->bdev);
2797 if (q->merge_bvec_fn)
2798 mddev->merge_check_needed = 1;
2799
2800 disk->head_position = 0;
2801 disk->seq_start = MaxSector;
2802 }
2803 conf->raid_disks = mddev->raid_disks;
2804 conf->mddev = mddev;
2805 INIT_LIST_HEAD(&conf->retry_list);
2806
2807 spin_lock_init(&conf->resync_lock);
2808 init_waitqueue_head(&conf->wait_barrier);
2809
2810 bio_list_init(&conf->pending_bio_list);
2811 conf->pending_count = 0;
2812 conf->recovery_disabled = mddev->recovery_disabled - 1;
2813
2814 conf->start_next_window = MaxSector;
2815 conf->current_window_requests = conf->next_window_requests = 0;
2816
2817 err = -EIO;
2818 for (i = 0; i < conf->raid_disks * 2; i++) {
2819
2820 disk = conf->mirrors + i;
2821
2822 if (i < conf->raid_disks &&
2823 disk[conf->raid_disks].rdev) {
2824 /* This slot has a replacement. */
2825 if (!disk->rdev) {
2826 /* No original, just make the replacement
2827 * a recovering spare
2828 */
2829 disk->rdev =
2830 disk[conf->raid_disks].rdev;
2831 disk[conf->raid_disks].rdev = NULL;
2832 } else if (!test_bit(In_sync, &disk->rdev->flags))
2833 /* Original is not in_sync - bad */
2834 goto abort;
2835 }
2836
2837 if (!disk->rdev ||
2838 !test_bit(In_sync, &disk->rdev->flags)) {
2839 disk->head_position = 0;
2840 if (disk->rdev &&
2841 (disk->rdev->saved_raid_disk < 0))
2842 conf->fullsync = 1;
2843 }
2844 }
2845
2846 err = -ENOMEM;
2847 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2848 if (!conf->thread) {
2849 printk(KERN_ERR
2850 "md/raid1:%s: couldn't allocate thread\n",
2851 mdname(mddev));
2852 goto abort;
2853 }
2854
2855 return conf;
2856
2857 abort:
2858 if (conf) {
2859 if (conf->r1bio_pool)
2860 mempool_destroy(conf->r1bio_pool);
2861 kfree(conf->mirrors);
2862 safe_put_page(conf->tmppage);
2863 kfree(conf->poolinfo);
2864 kfree(conf);
2865 }
2866 return ERR_PTR(err);
2867 }
2868
2869 static int stop(struct mddev *mddev);
2870 static int run(struct mddev *mddev)
2871 {
2872 struct r1conf *conf;
2873 int i;
2874 struct md_rdev *rdev;
2875 int ret;
2876 bool discard_supported = false;
2877
2878 if (mddev->level != 1) {
2879 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2880 mdname(mddev), mddev->level);
2881 return -EIO;
2882 }
2883 if (mddev->reshape_position != MaxSector) {
2884 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2885 mdname(mddev));
2886 return -EIO;
2887 }
2888 /*
2889 * copy the already verified devices into our private RAID1
2890 * bookkeeping area. [whatever we allocate in run(),
2891 * should be freed in stop()]
2892 */
2893 if (mddev->private == NULL)
2894 conf = setup_conf(mddev);
2895 else
2896 conf = mddev->private;
2897
2898 if (IS_ERR(conf))
2899 return PTR_ERR(conf);
2900
2901 if (mddev->queue)
2902 blk_queue_max_write_same_sectors(mddev->queue, 0);
2903
2904 rdev_for_each(rdev, mddev) {
2905 if (!mddev->gendisk)
2906 continue;
2907 disk_stack_limits(mddev->gendisk, rdev->bdev,
2908 rdev->data_offset << 9);
2909 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2910 discard_supported = true;
2911 }
2912
2913 mddev->degraded = 0;
2914 for (i=0; i < conf->raid_disks; i++)
2915 if (conf->mirrors[i].rdev == NULL ||
2916 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2917 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2918 mddev->degraded++;
2919
2920 if (conf->raid_disks - mddev->degraded == 1)
2921 mddev->recovery_cp = MaxSector;
2922
2923 if (mddev->recovery_cp != MaxSector)
2924 printk(KERN_NOTICE "md/raid1:%s: not clean"
2925 " -- starting background reconstruction\n",
2926 mdname(mddev));
2927 printk(KERN_INFO
2928 "md/raid1:%s: active with %d out of %d mirrors\n",
2929 mdname(mddev), mddev->raid_disks - mddev->degraded,
2930 mddev->raid_disks);
2931
2932 /*
2933 * Ok, everything is just fine now
2934 */
2935 mddev->thread = conf->thread;
2936 conf->thread = NULL;
2937 mddev->private = conf;
2938
2939 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2940
2941 if (mddev->queue) {
2942 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2943 mddev->queue->backing_dev_info.congested_data = mddev;
2944 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2945
2946 if (discard_supported)
2947 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2948 mddev->queue);
2949 else
2950 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2951 mddev->queue);
2952 }
2953
2954 ret = md_integrity_register(mddev);
2955 if (ret)
2956 stop(mddev);
2957 return ret;
2958 }
2959
2960 static int stop(struct mddev *mddev)
2961 {
2962 struct r1conf *conf = mddev->private;
2963 struct bitmap *bitmap = mddev->bitmap;
2964
2965 /* wait for behind writes to complete */
2966 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2967 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2968 mdname(mddev));
2969 /* need to kick something here to make sure I/O goes? */
2970 wait_event(bitmap->behind_wait,
2971 atomic_read(&bitmap->behind_writes) == 0);
2972 }
2973
2974 freeze_array(conf, 0);
2975 unfreeze_array(conf);
2976
2977 md_unregister_thread(&mddev->thread);
2978 if (conf->r1bio_pool)
2979 mempool_destroy(conf->r1bio_pool);
2980 kfree(conf->mirrors);
2981 safe_put_page(conf->tmppage);
2982 kfree(conf->poolinfo);
2983 kfree(conf);
2984 mddev->private = NULL;
2985 return 0;
2986 }
2987
2988 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2989 {
2990 /* no resync is happening, and there is enough space
2991 * on all devices, so we can resize.
2992 * We need to make sure resync covers any new space.
2993 * If the array is shrinking we should possibly wait until
2994 * any io in the removed space completes, but it hardly seems
2995 * worth it.
2996 */
2997 sector_t newsize = raid1_size(mddev, sectors, 0);
2998 if (mddev->external_size &&
2999 mddev->array_sectors > newsize)
3000 return -EINVAL;
3001 if (mddev->bitmap) {
3002 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3003 if (ret)
3004 return ret;
3005 }
3006 md_set_array_sectors(mddev, newsize);
3007 set_capacity(mddev->gendisk, mddev->array_sectors);
3008 revalidate_disk(mddev->gendisk);
3009 if (sectors > mddev->dev_sectors &&
3010 mddev->recovery_cp > mddev->dev_sectors) {
3011 mddev->recovery_cp = mddev->dev_sectors;
3012 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3013 }
3014 mddev->dev_sectors = sectors;
3015 mddev->resync_max_sectors = sectors;
3016 return 0;
3017 }
3018
3019 static int raid1_reshape(struct mddev *mddev)
3020 {
3021 /* We need to:
3022 * 1/ resize the r1bio_pool
3023 * 2/ resize conf->mirrors
3024 *
3025 * We allocate a new r1bio_pool if we can.
3026 * Then raise a device barrier and wait until all IO stops.
3027 * Then resize conf->mirrors and swap in the new r1bio pool.
3028 *
3029 * At the same time, we "pack" the devices so that all the missing
3030 * devices have the higher raid_disk numbers.
3031 */
3032 mempool_t *newpool, *oldpool;
3033 struct pool_info *newpoolinfo;
3034 struct raid1_info *newmirrors;
3035 struct r1conf *conf = mddev->private;
3036 int cnt, raid_disks;
3037 unsigned long flags;
3038 int d, d2, err;
3039
3040 /* Cannot change chunk_size, layout, or level */
3041 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3042 mddev->layout != mddev->new_layout ||
3043 mddev->level != mddev->new_level) {
3044 mddev->new_chunk_sectors = mddev->chunk_sectors;
3045 mddev->new_layout = mddev->layout;
3046 mddev->new_level = mddev->level;
3047 return -EINVAL;
3048 }
3049
3050 err = md_allow_write(mddev);
3051 if (err)
3052 return err;
3053
3054 raid_disks = mddev->raid_disks + mddev->delta_disks;
3055
3056 if (raid_disks < conf->raid_disks) {
3057 cnt=0;
3058 for (d= 0; d < conf->raid_disks; d++)
3059 if (conf->mirrors[d].rdev)
3060 cnt++;
3061 if (cnt > raid_disks)
3062 return -EBUSY;
3063 }
3064
3065 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3066 if (!newpoolinfo)
3067 return -ENOMEM;
3068 newpoolinfo->mddev = mddev;
3069 newpoolinfo->raid_disks = raid_disks * 2;
3070
3071 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3072 r1bio_pool_free, newpoolinfo);
3073 if (!newpool) {
3074 kfree(newpoolinfo);
3075 return -ENOMEM;
3076 }
3077 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3078 GFP_KERNEL);
3079 if (!newmirrors) {
3080 kfree(newpoolinfo);
3081 mempool_destroy(newpool);
3082 return -ENOMEM;
3083 }
3084
3085 freeze_array(conf, 0);
3086
3087 /* ok, everything is stopped */
3088 oldpool = conf->r1bio_pool;
3089 conf->r1bio_pool = newpool;
3090
3091 for (d = d2 = 0; d < conf->raid_disks; d++) {
3092 struct md_rdev *rdev = conf->mirrors[d].rdev;
3093 if (rdev && rdev->raid_disk != d2) {
3094 sysfs_unlink_rdev(mddev, rdev);
3095 rdev->raid_disk = d2;
3096 sysfs_unlink_rdev(mddev, rdev);
3097 if (sysfs_link_rdev(mddev, rdev))
3098 printk(KERN_WARNING
3099 "md/raid1:%s: cannot register rd%d\n",
3100 mdname(mddev), rdev->raid_disk);
3101 }
3102 if (rdev)
3103 newmirrors[d2++].rdev = rdev;
3104 }
3105 kfree(conf->mirrors);
3106 conf->mirrors = newmirrors;
3107 kfree(conf->poolinfo);
3108 conf->poolinfo = newpoolinfo;
3109
3110 spin_lock_irqsave(&conf->device_lock, flags);
3111 mddev->degraded += (raid_disks - conf->raid_disks);
3112 spin_unlock_irqrestore(&conf->device_lock, flags);
3113 conf->raid_disks = mddev->raid_disks = raid_disks;
3114 mddev->delta_disks = 0;
3115
3116 unfreeze_array(conf);
3117
3118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119 md_wakeup_thread(mddev->thread);
3120
3121 mempool_destroy(oldpool);
3122 return 0;
3123 }
3124
3125 static void raid1_quiesce(struct mddev *mddev, int state)
3126 {
3127 struct r1conf *conf = mddev->private;
3128
3129 switch(state) {
3130 case 2: /* wake for suspend */
3131 wake_up(&conf->wait_barrier);
3132 break;
3133 case 1:
3134 freeze_array(conf, 0);
3135 break;
3136 case 0:
3137 unfreeze_array(conf);
3138 break;
3139 }
3140 }
3141
3142 static void *raid1_takeover(struct mddev *mddev)
3143 {
3144 /* raid1 can take over:
3145 * raid5 with 2 devices, any layout or chunk size
3146 */
3147 if (mddev->level == 5 && mddev->raid_disks == 2) {
3148 struct r1conf *conf;
3149 mddev->new_level = 1;
3150 mddev->new_layout = 0;
3151 mddev->new_chunk_sectors = 0;
3152 conf = setup_conf(mddev);
3153 if (!IS_ERR(conf))
3154 /* Array must appear to be quiesced */
3155 conf->array_frozen = 1;
3156 return conf;
3157 }
3158 return ERR_PTR(-EINVAL);
3159 }
3160
3161 static struct md_personality raid1_personality =
3162 {
3163 .name = "raid1",
3164 .level = 1,
3165 .owner = THIS_MODULE,
3166 .make_request = make_request,
3167 .run = run,
3168 .stop = stop,
3169 .status = status,
3170 .error_handler = error,
3171 .hot_add_disk = raid1_add_disk,
3172 .hot_remove_disk= raid1_remove_disk,
3173 .spare_active = raid1_spare_active,
3174 .sync_request = sync_request,
3175 .resize = raid1_resize,
3176 .size = raid1_size,
3177 .check_reshape = raid1_reshape,
3178 .quiesce = raid1_quiesce,
3179 .takeover = raid1_takeover,
3180 };
3181
3182 static int __init raid_init(void)
3183 {
3184 return register_md_personality(&raid1_personality);
3185 }
3186
3187 static void raid_exit(void)
3188 {
3189 unregister_md_personality(&raid1_personality);
3190 }
3191
3192 module_init(raid_init);
3193 module_exit(raid_exit);
3194 MODULE_LICENSE("GPL");
3195 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3196 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3197 MODULE_ALIAS("md-raid1");
3198 MODULE_ALIAS("md-level-1");
3199
3200 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.1715 seconds and 5 git commands to generate.