MD: Move macros from raid1*.h to raid1*.c
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
118 */
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate)
337 raid_end_bio_io(r1_bio);
338 else {
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 }
353
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int start_disk;
501 int best_disk;
502 int i;
503 sector_t best_dist;
504 struct md_rdev *rdev;
505 int choose_first;
506
507 rcu_read_lock();
508 /*
509 * Check if we can balance. We can balance on the whole
510 * device if no resync is going on, or below the resync window.
511 * We take the first readable disk when above the resync window.
512 */
513 retry:
514 sectors = r1_bio->sectors;
515 best_disk = -1;
516 best_dist = MaxSector;
517 best_good_sectors = 0;
518
519 if (conf->mddev->recovery_cp < MaxSector &&
520 (this_sector + sectors >= conf->next_resync)) {
521 choose_first = 1;
522 start_disk = 0;
523 } else {
524 choose_first = 0;
525 start_disk = conf->last_used;
526 }
527
528 for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
529 sector_t dist;
530 sector_t first_bad;
531 int bad_sectors;
532
533 int disk = start_disk + i;
534 if (disk >= conf->raid_disks * 2)
535 disk -= conf->raid_disks * 2;
536
537 rdev = rcu_dereference(conf->mirrors[disk].rdev);
538 if (r1_bio->bios[disk] == IO_BLOCKED
539 || rdev == NULL
540 || test_bit(Unmerged, &rdev->flags)
541 || test_bit(Faulty, &rdev->flags))
542 continue;
543 if (!test_bit(In_sync, &rdev->flags) &&
544 rdev->recovery_offset < this_sector + sectors)
545 continue;
546 if (test_bit(WriteMostly, &rdev->flags)) {
547 /* Don't balance among write-mostly, just
548 * use the first as a last resort */
549 if (best_disk < 0) {
550 if (is_badblock(rdev, this_sector, sectors,
551 &first_bad, &bad_sectors)) {
552 if (first_bad < this_sector)
553 /* Cannot use this */
554 continue;
555 best_good_sectors = first_bad - this_sector;
556 } else
557 best_good_sectors = sectors;
558 best_disk = disk;
559 }
560 continue;
561 }
562 /* This is a reasonable device to use. It might
563 * even be best.
564 */
565 if (is_badblock(rdev, this_sector, sectors,
566 &first_bad, &bad_sectors)) {
567 if (best_dist < MaxSector)
568 /* already have a better device */
569 continue;
570 if (first_bad <= this_sector) {
571 /* cannot read here. If this is the 'primary'
572 * device, then we must not read beyond
573 * bad_sectors from another device..
574 */
575 bad_sectors -= (this_sector - first_bad);
576 if (choose_first && sectors > bad_sectors)
577 sectors = bad_sectors;
578 if (best_good_sectors > sectors)
579 best_good_sectors = sectors;
580
581 } else {
582 sector_t good_sectors = first_bad - this_sector;
583 if (good_sectors > best_good_sectors) {
584 best_good_sectors = good_sectors;
585 best_disk = disk;
586 }
587 if (choose_first)
588 break;
589 }
590 continue;
591 } else
592 best_good_sectors = sectors;
593
594 dist = abs(this_sector - conf->mirrors[disk].head_position);
595 if (choose_first
596 /* Don't change to another disk for sequential reads */
597 || conf->next_seq_sect == this_sector
598 || dist == 0
599 /* If device is idle, use it */
600 || atomic_read(&rdev->nr_pending) == 0) {
601 best_disk = disk;
602 break;
603 }
604 if (dist < best_dist) {
605 best_dist = dist;
606 best_disk = disk;
607 }
608 }
609
610 if (best_disk >= 0) {
611 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
612 if (!rdev)
613 goto retry;
614 atomic_inc(&rdev->nr_pending);
615 if (test_bit(Faulty, &rdev->flags)) {
616 /* cannot risk returning a device that failed
617 * before we inc'ed nr_pending
618 */
619 rdev_dec_pending(rdev, conf->mddev);
620 goto retry;
621 }
622 sectors = best_good_sectors;
623 conf->next_seq_sect = this_sector + sectors;
624 conf->last_used = best_disk;
625 }
626 rcu_read_unlock();
627 *max_sectors = sectors;
628
629 return best_disk;
630 }
631
632 static int raid1_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
635 {
636 struct mddev *mddev = q->queuedata;
637 struct r1conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 int max = biovec->bv_len;
640
641 if (mddev->merge_check_needed) {
642 int disk;
643 rcu_read_lock();
644 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
645 struct md_rdev *rdev = rcu_dereference(
646 conf->mirrors[disk].rdev);
647 if (rdev && !test_bit(Faulty, &rdev->flags)) {
648 struct request_queue *q =
649 bdev_get_queue(rdev->bdev);
650 if (q->merge_bvec_fn) {
651 bvm->bi_sector = sector +
652 rdev->data_offset;
653 bvm->bi_bdev = rdev->bdev;
654 max = min(max, q->merge_bvec_fn(
655 q, bvm, biovec));
656 }
657 }
658 }
659 rcu_read_unlock();
660 }
661 return max;
662
663 }
664
665 int md_raid1_congested(struct mddev *mddev, int bits)
666 {
667 struct r1conf *conf = mddev->private;
668 int i, ret = 0;
669
670 if ((bits & (1 << BDI_async_congested)) &&
671 conf->pending_count >= max_queued_requests)
672 return 1;
673
674 rcu_read_lock();
675 for (i = 0; i < conf->raid_disks * 2; i++) {
676 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
677 if (rdev && !test_bit(Faulty, &rdev->flags)) {
678 struct request_queue *q = bdev_get_queue(rdev->bdev);
679
680 BUG_ON(!q);
681
682 /* Note the '|| 1' - when read_balance prefers
683 * non-congested targets, it can be removed
684 */
685 if ((bits & (1<<BDI_async_congested)) || 1)
686 ret |= bdi_congested(&q->backing_dev_info, bits);
687 else
688 ret &= bdi_congested(&q->backing_dev_info, bits);
689 }
690 }
691 rcu_read_unlock();
692 return ret;
693 }
694 EXPORT_SYMBOL_GPL(md_raid1_congested);
695
696 static int raid1_congested(void *data, int bits)
697 {
698 struct mddev *mddev = data;
699
700 return mddev_congested(mddev, bits) ||
701 md_raid1_congested(mddev, bits);
702 }
703
704 static void flush_pending_writes(struct r1conf *conf)
705 {
706 /* Any writes that have been queued but are awaiting
707 * bitmap updates get flushed here.
708 */
709 spin_lock_irq(&conf->device_lock);
710
711 if (conf->pending_bio_list.head) {
712 struct bio *bio;
713 bio = bio_list_get(&conf->pending_bio_list);
714 conf->pending_count = 0;
715 spin_unlock_irq(&conf->device_lock);
716 /* flush any pending bitmap writes to
717 * disk before proceeding w/ I/O */
718 bitmap_unplug(conf->mddev->bitmap);
719 wake_up(&conf->wait_barrier);
720
721 while (bio) { /* submit pending writes */
722 struct bio *next = bio->bi_next;
723 bio->bi_next = NULL;
724 generic_make_request(bio);
725 bio = next;
726 }
727 } else
728 spin_unlock_irq(&conf->device_lock);
729 }
730
731 /* Barriers....
732 * Sometimes we need to suspend IO while we do something else,
733 * either some resync/recovery, or reconfigure the array.
734 * To do this we raise a 'barrier'.
735 * The 'barrier' is a counter that can be raised multiple times
736 * to count how many activities are happening which preclude
737 * normal IO.
738 * We can only raise the barrier if there is no pending IO.
739 * i.e. if nr_pending == 0.
740 * We choose only to raise the barrier if no-one is waiting for the
741 * barrier to go down. This means that as soon as an IO request
742 * is ready, no other operations which require a barrier will start
743 * until the IO request has had a chance.
744 *
745 * So: regular IO calls 'wait_barrier'. When that returns there
746 * is no backgroup IO happening, It must arrange to call
747 * allow_barrier when it has finished its IO.
748 * backgroup IO calls must call raise_barrier. Once that returns
749 * there is no normal IO happeing. It must arrange to call
750 * lower_barrier when the particular background IO completes.
751 */
752 #define RESYNC_DEPTH 32
753
754 static void raise_barrier(struct r1conf *conf)
755 {
756 spin_lock_irq(&conf->resync_lock);
757
758 /* Wait until no block IO is waiting */
759 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
760 conf->resync_lock, );
761
762 /* block any new IO from starting */
763 conf->barrier++;
764
765 /* Now wait for all pending IO to complete */
766 wait_event_lock_irq(conf->wait_barrier,
767 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
768 conf->resync_lock, );
769
770 spin_unlock_irq(&conf->resync_lock);
771 }
772
773 static void lower_barrier(struct r1conf *conf)
774 {
775 unsigned long flags;
776 BUG_ON(conf->barrier <= 0);
777 spin_lock_irqsave(&conf->resync_lock, flags);
778 conf->barrier--;
779 spin_unlock_irqrestore(&conf->resync_lock, flags);
780 wake_up(&conf->wait_barrier);
781 }
782
783 static void wait_barrier(struct r1conf *conf)
784 {
785 spin_lock_irq(&conf->resync_lock);
786 if (conf->barrier) {
787 conf->nr_waiting++;
788 /* Wait for the barrier to drop.
789 * However if there are already pending
790 * requests (preventing the barrier from
791 * rising completely), and the
792 * pre-process bio queue isn't empty,
793 * then don't wait, as we need to empty
794 * that queue to get the nr_pending
795 * count down.
796 */
797 wait_event_lock_irq(conf->wait_barrier,
798 !conf->barrier ||
799 (conf->nr_pending &&
800 current->bio_list &&
801 !bio_list_empty(current->bio_list)),
802 conf->resync_lock,
803 );
804 conf->nr_waiting--;
805 }
806 conf->nr_pending++;
807 spin_unlock_irq(&conf->resync_lock);
808 }
809
810 static void allow_barrier(struct r1conf *conf)
811 {
812 unsigned long flags;
813 spin_lock_irqsave(&conf->resync_lock, flags);
814 conf->nr_pending--;
815 spin_unlock_irqrestore(&conf->resync_lock, flags);
816 wake_up(&conf->wait_barrier);
817 }
818
819 static void freeze_array(struct r1conf *conf)
820 {
821 /* stop syncio and normal IO and wait for everything to
822 * go quite.
823 * We increment barrier and nr_waiting, and then
824 * wait until nr_pending match nr_queued+1
825 * This is called in the context of one normal IO request
826 * that has failed. Thus any sync request that might be pending
827 * will be blocked by nr_pending, and we need to wait for
828 * pending IO requests to complete or be queued for re-try.
829 * Thus the number queued (nr_queued) plus this request (1)
830 * must match the number of pending IOs (nr_pending) before
831 * we continue.
832 */
833 spin_lock_irq(&conf->resync_lock);
834 conf->barrier++;
835 conf->nr_waiting++;
836 wait_event_lock_irq(conf->wait_barrier,
837 conf->nr_pending == conf->nr_queued+1,
838 conf->resync_lock,
839 flush_pending_writes(conf));
840 spin_unlock_irq(&conf->resync_lock);
841 }
842 static void unfreeze_array(struct r1conf *conf)
843 {
844 /* reverse the effect of the freeze */
845 spin_lock_irq(&conf->resync_lock);
846 conf->barrier--;
847 conf->nr_waiting--;
848 wake_up(&conf->wait_barrier);
849 spin_unlock_irq(&conf->resync_lock);
850 }
851
852
853 /* duplicate the data pages for behind I/O
854 */
855 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
856 {
857 int i;
858 struct bio_vec *bvec;
859 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
860 GFP_NOIO);
861 if (unlikely(!bvecs))
862 return;
863
864 bio_for_each_segment(bvec, bio, i) {
865 bvecs[i] = *bvec;
866 bvecs[i].bv_page = alloc_page(GFP_NOIO);
867 if (unlikely(!bvecs[i].bv_page))
868 goto do_sync_io;
869 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
870 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
871 kunmap(bvecs[i].bv_page);
872 kunmap(bvec->bv_page);
873 }
874 r1_bio->behind_bvecs = bvecs;
875 r1_bio->behind_page_count = bio->bi_vcnt;
876 set_bit(R1BIO_BehindIO, &r1_bio->state);
877 return;
878
879 do_sync_io:
880 for (i = 0; i < bio->bi_vcnt; i++)
881 if (bvecs[i].bv_page)
882 put_page(bvecs[i].bv_page);
883 kfree(bvecs);
884 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
885 }
886
887 static void make_request(struct mddev *mddev, struct bio * bio)
888 {
889 struct r1conf *conf = mddev->private;
890 struct raid1_info *mirror;
891 struct r1bio *r1_bio;
892 struct bio *read_bio;
893 int i, disks;
894 struct bitmap *bitmap;
895 unsigned long flags;
896 const int rw = bio_data_dir(bio);
897 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
898 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
899 struct md_rdev *blocked_rdev;
900 int first_clone;
901 int sectors_handled;
902 int max_sectors;
903
904 /*
905 * Register the new request and wait if the reconstruction
906 * thread has put up a bar for new requests.
907 * Continue immediately if no resync is active currently.
908 */
909
910 md_write_start(mddev, bio); /* wait on superblock update early */
911
912 if (bio_data_dir(bio) == WRITE &&
913 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
914 bio->bi_sector < mddev->suspend_hi) {
915 /* As the suspend_* range is controlled by
916 * userspace, we want an interruptible
917 * wait.
918 */
919 DEFINE_WAIT(w);
920 for (;;) {
921 flush_signals(current);
922 prepare_to_wait(&conf->wait_barrier,
923 &w, TASK_INTERRUPTIBLE);
924 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
925 bio->bi_sector >= mddev->suspend_hi)
926 break;
927 schedule();
928 }
929 finish_wait(&conf->wait_barrier, &w);
930 }
931
932 wait_barrier(conf);
933
934 bitmap = mddev->bitmap;
935
936 /*
937 * make_request() can abort the operation when READA is being
938 * used and no empty request is available.
939 *
940 */
941 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
942
943 r1_bio->master_bio = bio;
944 r1_bio->sectors = bio->bi_size >> 9;
945 r1_bio->state = 0;
946 r1_bio->mddev = mddev;
947 r1_bio->sector = bio->bi_sector;
948
949 /* We might need to issue multiple reads to different
950 * devices if there are bad blocks around, so we keep
951 * track of the number of reads in bio->bi_phys_segments.
952 * If this is 0, there is only one r1_bio and no locking
953 * will be needed when requests complete. If it is
954 * non-zero, then it is the number of not-completed requests.
955 */
956 bio->bi_phys_segments = 0;
957 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
958
959 if (rw == READ) {
960 /*
961 * read balancing logic:
962 */
963 int rdisk;
964
965 read_again:
966 rdisk = read_balance(conf, r1_bio, &max_sectors);
967
968 if (rdisk < 0) {
969 /* couldn't find anywhere to read from */
970 raid_end_bio_io(r1_bio);
971 return;
972 }
973 mirror = conf->mirrors + rdisk;
974
975 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
976 bitmap) {
977 /* Reading from a write-mostly device must
978 * take care not to over-take any writes
979 * that are 'behind'
980 */
981 wait_event(bitmap->behind_wait,
982 atomic_read(&bitmap->behind_writes) == 0);
983 }
984 r1_bio->read_disk = rdisk;
985
986 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
987 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
988 max_sectors);
989
990 r1_bio->bios[rdisk] = read_bio;
991
992 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
993 read_bio->bi_bdev = mirror->rdev->bdev;
994 read_bio->bi_end_io = raid1_end_read_request;
995 read_bio->bi_rw = READ | do_sync;
996 read_bio->bi_private = r1_bio;
997
998 if (max_sectors < r1_bio->sectors) {
999 /* could not read all from this device, so we will
1000 * need another r1_bio.
1001 */
1002
1003 sectors_handled = (r1_bio->sector + max_sectors
1004 - bio->bi_sector);
1005 r1_bio->sectors = max_sectors;
1006 spin_lock_irq(&conf->device_lock);
1007 if (bio->bi_phys_segments == 0)
1008 bio->bi_phys_segments = 2;
1009 else
1010 bio->bi_phys_segments++;
1011 spin_unlock_irq(&conf->device_lock);
1012 /* Cannot call generic_make_request directly
1013 * as that will be queued in __make_request
1014 * and subsequent mempool_alloc might block waiting
1015 * for it. So hand bio over to raid1d.
1016 */
1017 reschedule_retry(r1_bio);
1018
1019 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1020
1021 r1_bio->master_bio = bio;
1022 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1023 r1_bio->state = 0;
1024 r1_bio->mddev = mddev;
1025 r1_bio->sector = bio->bi_sector + sectors_handled;
1026 goto read_again;
1027 } else
1028 generic_make_request(read_bio);
1029 return;
1030 }
1031
1032 /*
1033 * WRITE:
1034 */
1035 if (conf->pending_count >= max_queued_requests) {
1036 md_wakeup_thread(mddev->thread);
1037 wait_event(conf->wait_barrier,
1038 conf->pending_count < max_queued_requests);
1039 }
1040 /* first select target devices under rcu_lock and
1041 * inc refcount on their rdev. Record them by setting
1042 * bios[x] to bio
1043 * If there are known/acknowledged bad blocks on any device on
1044 * which we have seen a write error, we want to avoid writing those
1045 * blocks.
1046 * This potentially requires several writes to write around
1047 * the bad blocks. Each set of writes gets it's own r1bio
1048 * with a set of bios attached.
1049 */
1050
1051 disks = conf->raid_disks * 2;
1052 retry_write:
1053 blocked_rdev = NULL;
1054 rcu_read_lock();
1055 max_sectors = r1_bio->sectors;
1056 for (i = 0; i < disks; i++) {
1057 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1058 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1059 atomic_inc(&rdev->nr_pending);
1060 blocked_rdev = rdev;
1061 break;
1062 }
1063 r1_bio->bios[i] = NULL;
1064 if (!rdev || test_bit(Faulty, &rdev->flags)
1065 || test_bit(Unmerged, &rdev->flags)) {
1066 if (i < conf->raid_disks)
1067 set_bit(R1BIO_Degraded, &r1_bio->state);
1068 continue;
1069 }
1070
1071 atomic_inc(&rdev->nr_pending);
1072 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1073 sector_t first_bad;
1074 int bad_sectors;
1075 int is_bad;
1076
1077 is_bad = is_badblock(rdev, r1_bio->sector,
1078 max_sectors,
1079 &first_bad, &bad_sectors);
1080 if (is_bad < 0) {
1081 /* mustn't write here until the bad block is
1082 * acknowledged*/
1083 set_bit(BlockedBadBlocks, &rdev->flags);
1084 blocked_rdev = rdev;
1085 break;
1086 }
1087 if (is_bad && first_bad <= r1_bio->sector) {
1088 /* Cannot write here at all */
1089 bad_sectors -= (r1_bio->sector - first_bad);
1090 if (bad_sectors < max_sectors)
1091 /* mustn't write more than bad_sectors
1092 * to other devices yet
1093 */
1094 max_sectors = bad_sectors;
1095 rdev_dec_pending(rdev, mddev);
1096 /* We don't set R1BIO_Degraded as that
1097 * only applies if the disk is
1098 * missing, so it might be re-added,
1099 * and we want to know to recover this
1100 * chunk.
1101 * In this case the device is here,
1102 * and the fact that this chunk is not
1103 * in-sync is recorded in the bad
1104 * block log
1105 */
1106 continue;
1107 }
1108 if (is_bad) {
1109 int good_sectors = first_bad - r1_bio->sector;
1110 if (good_sectors < max_sectors)
1111 max_sectors = good_sectors;
1112 }
1113 }
1114 r1_bio->bios[i] = bio;
1115 }
1116 rcu_read_unlock();
1117
1118 if (unlikely(blocked_rdev)) {
1119 /* Wait for this device to become unblocked */
1120 int j;
1121
1122 for (j = 0; j < i; j++)
1123 if (r1_bio->bios[j])
1124 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1125 r1_bio->state = 0;
1126 allow_barrier(conf);
1127 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1128 wait_barrier(conf);
1129 goto retry_write;
1130 }
1131
1132 if (max_sectors < r1_bio->sectors) {
1133 /* We are splitting this write into multiple parts, so
1134 * we need to prepare for allocating another r1_bio.
1135 */
1136 r1_bio->sectors = max_sectors;
1137 spin_lock_irq(&conf->device_lock);
1138 if (bio->bi_phys_segments == 0)
1139 bio->bi_phys_segments = 2;
1140 else
1141 bio->bi_phys_segments++;
1142 spin_unlock_irq(&conf->device_lock);
1143 }
1144 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1145
1146 atomic_set(&r1_bio->remaining, 1);
1147 atomic_set(&r1_bio->behind_remaining, 0);
1148
1149 first_clone = 1;
1150 for (i = 0; i < disks; i++) {
1151 struct bio *mbio;
1152 if (!r1_bio->bios[i])
1153 continue;
1154
1155 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1156 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1157
1158 if (first_clone) {
1159 /* do behind I/O ?
1160 * Not if there are too many, or cannot
1161 * allocate memory, or a reader on WriteMostly
1162 * is waiting for behind writes to flush */
1163 if (bitmap &&
1164 (atomic_read(&bitmap->behind_writes)
1165 < mddev->bitmap_info.max_write_behind) &&
1166 !waitqueue_active(&bitmap->behind_wait))
1167 alloc_behind_pages(mbio, r1_bio);
1168
1169 bitmap_startwrite(bitmap, r1_bio->sector,
1170 r1_bio->sectors,
1171 test_bit(R1BIO_BehindIO,
1172 &r1_bio->state));
1173 first_clone = 0;
1174 }
1175 if (r1_bio->behind_bvecs) {
1176 struct bio_vec *bvec;
1177 int j;
1178
1179 /* Yes, I really want the '__' version so that
1180 * we clear any unused pointer in the io_vec, rather
1181 * than leave them unchanged. This is important
1182 * because when we come to free the pages, we won't
1183 * know the original bi_idx, so we just free
1184 * them all
1185 */
1186 __bio_for_each_segment(bvec, mbio, j, 0)
1187 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1188 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1189 atomic_inc(&r1_bio->behind_remaining);
1190 }
1191
1192 r1_bio->bios[i] = mbio;
1193
1194 mbio->bi_sector = (r1_bio->sector +
1195 conf->mirrors[i].rdev->data_offset);
1196 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1197 mbio->bi_end_io = raid1_end_write_request;
1198 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1199 mbio->bi_private = r1_bio;
1200
1201 atomic_inc(&r1_bio->remaining);
1202 spin_lock_irqsave(&conf->device_lock, flags);
1203 bio_list_add(&conf->pending_bio_list, mbio);
1204 conf->pending_count++;
1205 spin_unlock_irqrestore(&conf->device_lock, flags);
1206 if (!mddev_check_plugged(mddev))
1207 md_wakeup_thread(mddev->thread);
1208 }
1209 /* Mustn't call r1_bio_write_done before this next test,
1210 * as it could result in the bio being freed.
1211 */
1212 if (sectors_handled < (bio->bi_size >> 9)) {
1213 r1_bio_write_done(r1_bio);
1214 /* We need another r1_bio. It has already been counted
1215 * in bio->bi_phys_segments
1216 */
1217 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1218 r1_bio->master_bio = bio;
1219 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1220 r1_bio->state = 0;
1221 r1_bio->mddev = mddev;
1222 r1_bio->sector = bio->bi_sector + sectors_handled;
1223 goto retry_write;
1224 }
1225
1226 r1_bio_write_done(r1_bio);
1227
1228 /* In case raid1d snuck in to freeze_array */
1229 wake_up(&conf->wait_barrier);
1230 }
1231
1232 static void status(struct seq_file *seq, struct mddev *mddev)
1233 {
1234 struct r1conf *conf = mddev->private;
1235 int i;
1236
1237 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1238 conf->raid_disks - mddev->degraded);
1239 rcu_read_lock();
1240 for (i = 0; i < conf->raid_disks; i++) {
1241 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1242 seq_printf(seq, "%s",
1243 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1244 }
1245 rcu_read_unlock();
1246 seq_printf(seq, "]");
1247 }
1248
1249
1250 static void error(struct mddev *mddev, struct md_rdev *rdev)
1251 {
1252 char b[BDEVNAME_SIZE];
1253 struct r1conf *conf = mddev->private;
1254
1255 /*
1256 * If it is not operational, then we have already marked it as dead
1257 * else if it is the last working disks, ignore the error, let the
1258 * next level up know.
1259 * else mark the drive as failed
1260 */
1261 if (test_bit(In_sync, &rdev->flags)
1262 && (conf->raid_disks - mddev->degraded) == 1) {
1263 /*
1264 * Don't fail the drive, act as though we were just a
1265 * normal single drive.
1266 * However don't try a recovery from this drive as
1267 * it is very likely to fail.
1268 */
1269 conf->recovery_disabled = mddev->recovery_disabled;
1270 return;
1271 }
1272 set_bit(Blocked, &rdev->flags);
1273 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1274 unsigned long flags;
1275 spin_lock_irqsave(&conf->device_lock, flags);
1276 mddev->degraded++;
1277 set_bit(Faulty, &rdev->flags);
1278 spin_unlock_irqrestore(&conf->device_lock, flags);
1279 /*
1280 * if recovery is running, make sure it aborts.
1281 */
1282 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1283 } else
1284 set_bit(Faulty, &rdev->flags);
1285 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1286 printk(KERN_ALERT
1287 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1288 "md/raid1:%s: Operation continuing on %d devices.\n",
1289 mdname(mddev), bdevname(rdev->bdev, b),
1290 mdname(mddev), conf->raid_disks - mddev->degraded);
1291 }
1292
1293 static void print_conf(struct r1conf *conf)
1294 {
1295 int i;
1296
1297 printk(KERN_DEBUG "RAID1 conf printout:\n");
1298 if (!conf) {
1299 printk(KERN_DEBUG "(!conf)\n");
1300 return;
1301 }
1302 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1303 conf->raid_disks);
1304
1305 rcu_read_lock();
1306 for (i = 0; i < conf->raid_disks; i++) {
1307 char b[BDEVNAME_SIZE];
1308 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1309 if (rdev)
1310 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1311 i, !test_bit(In_sync, &rdev->flags),
1312 !test_bit(Faulty, &rdev->flags),
1313 bdevname(rdev->bdev,b));
1314 }
1315 rcu_read_unlock();
1316 }
1317
1318 static void close_sync(struct r1conf *conf)
1319 {
1320 wait_barrier(conf);
1321 allow_barrier(conf);
1322
1323 mempool_destroy(conf->r1buf_pool);
1324 conf->r1buf_pool = NULL;
1325 }
1326
1327 static int raid1_spare_active(struct mddev *mddev)
1328 {
1329 int i;
1330 struct r1conf *conf = mddev->private;
1331 int count = 0;
1332 unsigned long flags;
1333
1334 /*
1335 * Find all failed disks within the RAID1 configuration
1336 * and mark them readable.
1337 * Called under mddev lock, so rcu protection not needed.
1338 */
1339 for (i = 0; i < conf->raid_disks; i++) {
1340 struct md_rdev *rdev = conf->mirrors[i].rdev;
1341 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1342 if (repl
1343 && repl->recovery_offset == MaxSector
1344 && !test_bit(Faulty, &repl->flags)
1345 && !test_and_set_bit(In_sync, &repl->flags)) {
1346 /* replacement has just become active */
1347 if (!rdev ||
1348 !test_and_clear_bit(In_sync, &rdev->flags))
1349 count++;
1350 if (rdev) {
1351 /* Replaced device not technically
1352 * faulty, but we need to be sure
1353 * it gets removed and never re-added
1354 */
1355 set_bit(Faulty, &rdev->flags);
1356 sysfs_notify_dirent_safe(
1357 rdev->sysfs_state);
1358 }
1359 }
1360 if (rdev
1361 && !test_bit(Faulty, &rdev->flags)
1362 && !test_and_set_bit(In_sync, &rdev->flags)) {
1363 count++;
1364 sysfs_notify_dirent_safe(rdev->sysfs_state);
1365 }
1366 }
1367 spin_lock_irqsave(&conf->device_lock, flags);
1368 mddev->degraded -= count;
1369 spin_unlock_irqrestore(&conf->device_lock, flags);
1370
1371 print_conf(conf);
1372 return count;
1373 }
1374
1375
1376 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1377 {
1378 struct r1conf *conf = mddev->private;
1379 int err = -EEXIST;
1380 int mirror = 0;
1381 struct raid1_info *p;
1382 int first = 0;
1383 int last = conf->raid_disks - 1;
1384 struct request_queue *q = bdev_get_queue(rdev->bdev);
1385
1386 if (mddev->recovery_disabled == conf->recovery_disabled)
1387 return -EBUSY;
1388
1389 if (rdev->raid_disk >= 0)
1390 first = last = rdev->raid_disk;
1391
1392 if (q->merge_bvec_fn) {
1393 set_bit(Unmerged, &rdev->flags);
1394 mddev->merge_check_needed = 1;
1395 }
1396
1397 for (mirror = first; mirror <= last; mirror++) {
1398 p = conf->mirrors+mirror;
1399 if (!p->rdev) {
1400
1401 disk_stack_limits(mddev->gendisk, rdev->bdev,
1402 rdev->data_offset << 9);
1403
1404 p->head_position = 0;
1405 rdev->raid_disk = mirror;
1406 err = 0;
1407 /* As all devices are equivalent, we don't need a full recovery
1408 * if this was recently any drive of the array
1409 */
1410 if (rdev->saved_raid_disk < 0)
1411 conf->fullsync = 1;
1412 rcu_assign_pointer(p->rdev, rdev);
1413 break;
1414 }
1415 if (test_bit(WantReplacement, &p->rdev->flags) &&
1416 p[conf->raid_disks].rdev == NULL) {
1417 /* Add this device as a replacement */
1418 clear_bit(In_sync, &rdev->flags);
1419 set_bit(Replacement, &rdev->flags);
1420 rdev->raid_disk = mirror;
1421 err = 0;
1422 conf->fullsync = 1;
1423 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1424 break;
1425 }
1426 }
1427 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1428 /* Some requests might not have seen this new
1429 * merge_bvec_fn. We must wait for them to complete
1430 * before merging the device fully.
1431 * First we make sure any code which has tested
1432 * our function has submitted the request, then
1433 * we wait for all outstanding requests to complete.
1434 */
1435 synchronize_sched();
1436 raise_barrier(conf);
1437 lower_barrier(conf);
1438 clear_bit(Unmerged, &rdev->flags);
1439 }
1440 md_integrity_add_rdev(rdev, mddev);
1441 print_conf(conf);
1442 return err;
1443 }
1444
1445 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1446 {
1447 struct r1conf *conf = mddev->private;
1448 int err = 0;
1449 int number = rdev->raid_disk;
1450 struct raid1_info *p = conf->mirrors + number;
1451
1452 if (rdev != p->rdev)
1453 p = conf->mirrors + conf->raid_disks + number;
1454
1455 print_conf(conf);
1456 if (rdev == p->rdev) {
1457 if (test_bit(In_sync, &rdev->flags) ||
1458 atomic_read(&rdev->nr_pending)) {
1459 err = -EBUSY;
1460 goto abort;
1461 }
1462 /* Only remove non-faulty devices if recovery
1463 * is not possible.
1464 */
1465 if (!test_bit(Faulty, &rdev->flags) &&
1466 mddev->recovery_disabled != conf->recovery_disabled &&
1467 mddev->degraded < conf->raid_disks) {
1468 err = -EBUSY;
1469 goto abort;
1470 }
1471 p->rdev = NULL;
1472 synchronize_rcu();
1473 if (atomic_read(&rdev->nr_pending)) {
1474 /* lost the race, try later */
1475 err = -EBUSY;
1476 p->rdev = rdev;
1477 goto abort;
1478 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1479 /* We just removed a device that is being replaced.
1480 * Move down the replacement. We drain all IO before
1481 * doing this to avoid confusion.
1482 */
1483 struct md_rdev *repl =
1484 conf->mirrors[conf->raid_disks + number].rdev;
1485 raise_barrier(conf);
1486 clear_bit(Replacement, &repl->flags);
1487 p->rdev = repl;
1488 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1489 lower_barrier(conf);
1490 clear_bit(WantReplacement, &rdev->flags);
1491 } else
1492 clear_bit(WantReplacement, &rdev->flags);
1493 err = md_integrity_register(mddev);
1494 }
1495 abort:
1496
1497 print_conf(conf);
1498 return err;
1499 }
1500
1501
1502 static void end_sync_read(struct bio *bio, int error)
1503 {
1504 struct r1bio *r1_bio = bio->bi_private;
1505
1506 update_head_pos(r1_bio->read_disk, r1_bio);
1507
1508 /*
1509 * we have read a block, now it needs to be re-written,
1510 * or re-read if the read failed.
1511 * We don't do much here, just schedule handling by raid1d
1512 */
1513 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1514 set_bit(R1BIO_Uptodate, &r1_bio->state);
1515
1516 if (atomic_dec_and_test(&r1_bio->remaining))
1517 reschedule_retry(r1_bio);
1518 }
1519
1520 static void end_sync_write(struct bio *bio, int error)
1521 {
1522 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1523 struct r1bio *r1_bio = bio->bi_private;
1524 struct mddev *mddev = r1_bio->mddev;
1525 struct r1conf *conf = mddev->private;
1526 int mirror=0;
1527 sector_t first_bad;
1528 int bad_sectors;
1529
1530 mirror = find_bio_disk(r1_bio, bio);
1531
1532 if (!uptodate) {
1533 sector_t sync_blocks = 0;
1534 sector_t s = r1_bio->sector;
1535 long sectors_to_go = r1_bio->sectors;
1536 /* make sure these bits doesn't get cleared. */
1537 do {
1538 bitmap_end_sync(mddev->bitmap, s,
1539 &sync_blocks, 1);
1540 s += sync_blocks;
1541 sectors_to_go -= sync_blocks;
1542 } while (sectors_to_go > 0);
1543 set_bit(WriteErrorSeen,
1544 &conf->mirrors[mirror].rdev->flags);
1545 if (!test_and_set_bit(WantReplacement,
1546 &conf->mirrors[mirror].rdev->flags))
1547 set_bit(MD_RECOVERY_NEEDED, &
1548 mddev->recovery);
1549 set_bit(R1BIO_WriteError, &r1_bio->state);
1550 } else if (is_badblock(conf->mirrors[mirror].rdev,
1551 r1_bio->sector,
1552 r1_bio->sectors,
1553 &first_bad, &bad_sectors) &&
1554 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1555 r1_bio->sector,
1556 r1_bio->sectors,
1557 &first_bad, &bad_sectors)
1558 )
1559 set_bit(R1BIO_MadeGood, &r1_bio->state);
1560
1561 if (atomic_dec_and_test(&r1_bio->remaining)) {
1562 int s = r1_bio->sectors;
1563 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1564 test_bit(R1BIO_WriteError, &r1_bio->state))
1565 reschedule_retry(r1_bio);
1566 else {
1567 put_buf(r1_bio);
1568 md_done_sync(mddev, s, uptodate);
1569 }
1570 }
1571 }
1572
1573 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1574 int sectors, struct page *page, int rw)
1575 {
1576 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1577 /* success */
1578 return 1;
1579 if (rw == WRITE) {
1580 set_bit(WriteErrorSeen, &rdev->flags);
1581 if (!test_and_set_bit(WantReplacement,
1582 &rdev->flags))
1583 set_bit(MD_RECOVERY_NEEDED, &
1584 rdev->mddev->recovery);
1585 }
1586 /* need to record an error - either for the block or the device */
1587 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1588 md_error(rdev->mddev, rdev);
1589 return 0;
1590 }
1591
1592 static int fix_sync_read_error(struct r1bio *r1_bio)
1593 {
1594 /* Try some synchronous reads of other devices to get
1595 * good data, much like with normal read errors. Only
1596 * read into the pages we already have so we don't
1597 * need to re-issue the read request.
1598 * We don't need to freeze the array, because being in an
1599 * active sync request, there is no normal IO, and
1600 * no overlapping syncs.
1601 * We don't need to check is_badblock() again as we
1602 * made sure that anything with a bad block in range
1603 * will have bi_end_io clear.
1604 */
1605 struct mddev *mddev = r1_bio->mddev;
1606 struct r1conf *conf = mddev->private;
1607 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1608 sector_t sect = r1_bio->sector;
1609 int sectors = r1_bio->sectors;
1610 int idx = 0;
1611
1612 while(sectors) {
1613 int s = sectors;
1614 int d = r1_bio->read_disk;
1615 int success = 0;
1616 struct md_rdev *rdev;
1617 int start;
1618
1619 if (s > (PAGE_SIZE>>9))
1620 s = PAGE_SIZE >> 9;
1621 do {
1622 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1623 /* No rcu protection needed here devices
1624 * can only be removed when no resync is
1625 * active, and resync is currently active
1626 */
1627 rdev = conf->mirrors[d].rdev;
1628 if (sync_page_io(rdev, sect, s<<9,
1629 bio->bi_io_vec[idx].bv_page,
1630 READ, false)) {
1631 success = 1;
1632 break;
1633 }
1634 }
1635 d++;
1636 if (d == conf->raid_disks * 2)
1637 d = 0;
1638 } while (!success && d != r1_bio->read_disk);
1639
1640 if (!success) {
1641 char b[BDEVNAME_SIZE];
1642 int abort = 0;
1643 /* Cannot read from anywhere, this block is lost.
1644 * Record a bad block on each device. If that doesn't
1645 * work just disable and interrupt the recovery.
1646 * Don't fail devices as that won't really help.
1647 */
1648 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1649 " for block %llu\n",
1650 mdname(mddev),
1651 bdevname(bio->bi_bdev, b),
1652 (unsigned long long)r1_bio->sector);
1653 for (d = 0; d < conf->raid_disks * 2; d++) {
1654 rdev = conf->mirrors[d].rdev;
1655 if (!rdev || test_bit(Faulty, &rdev->flags))
1656 continue;
1657 if (!rdev_set_badblocks(rdev, sect, s, 0))
1658 abort = 1;
1659 }
1660 if (abort) {
1661 conf->recovery_disabled =
1662 mddev->recovery_disabled;
1663 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1664 md_done_sync(mddev, r1_bio->sectors, 0);
1665 put_buf(r1_bio);
1666 return 0;
1667 }
1668 /* Try next page */
1669 sectors -= s;
1670 sect += s;
1671 idx++;
1672 continue;
1673 }
1674
1675 start = d;
1676 /* write it back and re-read */
1677 while (d != r1_bio->read_disk) {
1678 if (d == 0)
1679 d = conf->raid_disks * 2;
1680 d--;
1681 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1682 continue;
1683 rdev = conf->mirrors[d].rdev;
1684 if (r1_sync_page_io(rdev, sect, s,
1685 bio->bi_io_vec[idx].bv_page,
1686 WRITE) == 0) {
1687 r1_bio->bios[d]->bi_end_io = NULL;
1688 rdev_dec_pending(rdev, mddev);
1689 }
1690 }
1691 d = start;
1692 while (d != r1_bio->read_disk) {
1693 if (d == 0)
1694 d = conf->raid_disks * 2;
1695 d--;
1696 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1697 continue;
1698 rdev = conf->mirrors[d].rdev;
1699 if (r1_sync_page_io(rdev, sect, s,
1700 bio->bi_io_vec[idx].bv_page,
1701 READ) != 0)
1702 atomic_add(s, &rdev->corrected_errors);
1703 }
1704 sectors -= s;
1705 sect += s;
1706 idx ++;
1707 }
1708 set_bit(R1BIO_Uptodate, &r1_bio->state);
1709 set_bit(BIO_UPTODATE, &bio->bi_flags);
1710 return 1;
1711 }
1712
1713 static int process_checks(struct r1bio *r1_bio)
1714 {
1715 /* We have read all readable devices. If we haven't
1716 * got the block, then there is no hope left.
1717 * If we have, then we want to do a comparison
1718 * and skip the write if everything is the same.
1719 * If any blocks failed to read, then we need to
1720 * attempt an over-write
1721 */
1722 struct mddev *mddev = r1_bio->mddev;
1723 struct r1conf *conf = mddev->private;
1724 int primary;
1725 int i;
1726 int vcnt;
1727
1728 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1729 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1730 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1731 r1_bio->bios[primary]->bi_end_io = NULL;
1732 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1733 break;
1734 }
1735 r1_bio->read_disk = primary;
1736 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1737 for (i = 0; i < conf->raid_disks * 2; i++) {
1738 int j;
1739 struct bio *pbio = r1_bio->bios[primary];
1740 struct bio *sbio = r1_bio->bios[i];
1741 int size;
1742
1743 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1744 continue;
1745
1746 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1747 for (j = vcnt; j-- ; ) {
1748 struct page *p, *s;
1749 p = pbio->bi_io_vec[j].bv_page;
1750 s = sbio->bi_io_vec[j].bv_page;
1751 if (memcmp(page_address(p),
1752 page_address(s),
1753 sbio->bi_io_vec[j].bv_len))
1754 break;
1755 }
1756 } else
1757 j = 0;
1758 if (j >= 0)
1759 mddev->resync_mismatches += r1_bio->sectors;
1760 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1761 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1762 /* No need to write to this device. */
1763 sbio->bi_end_io = NULL;
1764 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1765 continue;
1766 }
1767 /* fixup the bio for reuse */
1768 sbio->bi_vcnt = vcnt;
1769 sbio->bi_size = r1_bio->sectors << 9;
1770 sbio->bi_idx = 0;
1771 sbio->bi_phys_segments = 0;
1772 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1773 sbio->bi_flags |= 1 << BIO_UPTODATE;
1774 sbio->bi_next = NULL;
1775 sbio->bi_sector = r1_bio->sector +
1776 conf->mirrors[i].rdev->data_offset;
1777 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1778 size = sbio->bi_size;
1779 for (j = 0; j < vcnt ; j++) {
1780 struct bio_vec *bi;
1781 bi = &sbio->bi_io_vec[j];
1782 bi->bv_offset = 0;
1783 if (size > PAGE_SIZE)
1784 bi->bv_len = PAGE_SIZE;
1785 else
1786 bi->bv_len = size;
1787 size -= PAGE_SIZE;
1788 memcpy(page_address(bi->bv_page),
1789 page_address(pbio->bi_io_vec[j].bv_page),
1790 PAGE_SIZE);
1791 }
1792 }
1793 return 0;
1794 }
1795
1796 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1797 {
1798 struct r1conf *conf = mddev->private;
1799 int i;
1800 int disks = conf->raid_disks * 2;
1801 struct bio *bio, *wbio;
1802
1803 bio = r1_bio->bios[r1_bio->read_disk];
1804
1805 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1806 /* ouch - failed to read all of that. */
1807 if (!fix_sync_read_error(r1_bio))
1808 return;
1809
1810 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1811 if (process_checks(r1_bio) < 0)
1812 return;
1813 /*
1814 * schedule writes
1815 */
1816 atomic_set(&r1_bio->remaining, 1);
1817 for (i = 0; i < disks ; i++) {
1818 wbio = r1_bio->bios[i];
1819 if (wbio->bi_end_io == NULL ||
1820 (wbio->bi_end_io == end_sync_read &&
1821 (i == r1_bio->read_disk ||
1822 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1823 continue;
1824
1825 wbio->bi_rw = WRITE;
1826 wbio->bi_end_io = end_sync_write;
1827 atomic_inc(&r1_bio->remaining);
1828 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1829
1830 generic_make_request(wbio);
1831 }
1832
1833 if (atomic_dec_and_test(&r1_bio->remaining)) {
1834 /* if we're here, all write(s) have completed, so clean up */
1835 int s = r1_bio->sectors;
1836 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1837 test_bit(R1BIO_WriteError, &r1_bio->state))
1838 reschedule_retry(r1_bio);
1839 else {
1840 put_buf(r1_bio);
1841 md_done_sync(mddev, s, 1);
1842 }
1843 }
1844 }
1845
1846 /*
1847 * This is a kernel thread which:
1848 *
1849 * 1. Retries failed read operations on working mirrors.
1850 * 2. Updates the raid superblock when problems encounter.
1851 * 3. Performs writes following reads for array synchronising.
1852 */
1853
1854 static void fix_read_error(struct r1conf *conf, int read_disk,
1855 sector_t sect, int sectors)
1856 {
1857 struct mddev *mddev = conf->mddev;
1858 while(sectors) {
1859 int s = sectors;
1860 int d = read_disk;
1861 int success = 0;
1862 int start;
1863 struct md_rdev *rdev;
1864
1865 if (s > (PAGE_SIZE>>9))
1866 s = PAGE_SIZE >> 9;
1867
1868 do {
1869 /* Note: no rcu protection needed here
1870 * as this is synchronous in the raid1d thread
1871 * which is the thread that might remove
1872 * a device. If raid1d ever becomes multi-threaded....
1873 */
1874 sector_t first_bad;
1875 int bad_sectors;
1876
1877 rdev = conf->mirrors[d].rdev;
1878 if (rdev &&
1879 (test_bit(In_sync, &rdev->flags) ||
1880 (!test_bit(Faulty, &rdev->flags) &&
1881 rdev->recovery_offset >= sect + s)) &&
1882 is_badblock(rdev, sect, s,
1883 &first_bad, &bad_sectors) == 0 &&
1884 sync_page_io(rdev, sect, s<<9,
1885 conf->tmppage, READ, false))
1886 success = 1;
1887 else {
1888 d++;
1889 if (d == conf->raid_disks * 2)
1890 d = 0;
1891 }
1892 } while (!success && d != read_disk);
1893
1894 if (!success) {
1895 /* Cannot read from anywhere - mark it bad */
1896 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1897 if (!rdev_set_badblocks(rdev, sect, s, 0))
1898 md_error(mddev, rdev);
1899 break;
1900 }
1901 /* write it back and re-read */
1902 start = d;
1903 while (d != read_disk) {
1904 if (d==0)
1905 d = conf->raid_disks * 2;
1906 d--;
1907 rdev = conf->mirrors[d].rdev;
1908 if (rdev &&
1909 test_bit(In_sync, &rdev->flags))
1910 r1_sync_page_io(rdev, sect, s,
1911 conf->tmppage, WRITE);
1912 }
1913 d = start;
1914 while (d != read_disk) {
1915 char b[BDEVNAME_SIZE];
1916 if (d==0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 rdev = conf->mirrors[d].rdev;
1920 if (rdev &&
1921 test_bit(In_sync, &rdev->flags)) {
1922 if (r1_sync_page_io(rdev, sect, s,
1923 conf->tmppage, READ)) {
1924 atomic_add(s, &rdev->corrected_errors);
1925 printk(KERN_INFO
1926 "md/raid1:%s: read error corrected "
1927 "(%d sectors at %llu on %s)\n",
1928 mdname(mddev), s,
1929 (unsigned long long)(sect +
1930 rdev->data_offset),
1931 bdevname(rdev->bdev, b));
1932 }
1933 }
1934 }
1935 sectors -= s;
1936 sect += s;
1937 }
1938 }
1939
1940 static void bi_complete(struct bio *bio, int error)
1941 {
1942 complete((struct completion *)bio->bi_private);
1943 }
1944
1945 static int submit_bio_wait(int rw, struct bio *bio)
1946 {
1947 struct completion event;
1948 rw |= REQ_SYNC;
1949
1950 init_completion(&event);
1951 bio->bi_private = &event;
1952 bio->bi_end_io = bi_complete;
1953 submit_bio(rw, bio);
1954 wait_for_completion(&event);
1955
1956 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1957 }
1958
1959 static int narrow_write_error(struct r1bio *r1_bio, int i)
1960 {
1961 struct mddev *mddev = r1_bio->mddev;
1962 struct r1conf *conf = mddev->private;
1963 struct md_rdev *rdev = conf->mirrors[i].rdev;
1964 int vcnt, idx;
1965 struct bio_vec *vec;
1966
1967 /* bio has the data to be written to device 'i' where
1968 * we just recently had a write error.
1969 * We repeatedly clone the bio and trim down to one block,
1970 * then try the write. Where the write fails we record
1971 * a bad block.
1972 * It is conceivable that the bio doesn't exactly align with
1973 * blocks. We must handle this somehow.
1974 *
1975 * We currently own a reference on the rdev.
1976 */
1977
1978 int block_sectors;
1979 sector_t sector;
1980 int sectors;
1981 int sect_to_write = r1_bio->sectors;
1982 int ok = 1;
1983
1984 if (rdev->badblocks.shift < 0)
1985 return 0;
1986
1987 block_sectors = 1 << rdev->badblocks.shift;
1988 sector = r1_bio->sector;
1989 sectors = ((sector + block_sectors)
1990 & ~(sector_t)(block_sectors - 1))
1991 - sector;
1992
1993 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1994 vcnt = r1_bio->behind_page_count;
1995 vec = r1_bio->behind_bvecs;
1996 idx = 0;
1997 while (vec[idx].bv_page == NULL)
1998 idx++;
1999 } else {
2000 vcnt = r1_bio->master_bio->bi_vcnt;
2001 vec = r1_bio->master_bio->bi_io_vec;
2002 idx = r1_bio->master_bio->bi_idx;
2003 }
2004 while (sect_to_write) {
2005 struct bio *wbio;
2006 if (sectors > sect_to_write)
2007 sectors = sect_to_write;
2008 /* Write at 'sector' for 'sectors'*/
2009
2010 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2011 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2012 wbio->bi_sector = r1_bio->sector;
2013 wbio->bi_rw = WRITE;
2014 wbio->bi_vcnt = vcnt;
2015 wbio->bi_size = r1_bio->sectors << 9;
2016 wbio->bi_idx = idx;
2017
2018 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2019 wbio->bi_sector += rdev->data_offset;
2020 wbio->bi_bdev = rdev->bdev;
2021 if (submit_bio_wait(WRITE, wbio) == 0)
2022 /* failure! */
2023 ok = rdev_set_badblocks(rdev, sector,
2024 sectors, 0)
2025 && ok;
2026
2027 bio_put(wbio);
2028 sect_to_write -= sectors;
2029 sector += sectors;
2030 sectors = block_sectors;
2031 }
2032 return ok;
2033 }
2034
2035 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2036 {
2037 int m;
2038 int s = r1_bio->sectors;
2039 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2040 struct md_rdev *rdev = conf->mirrors[m].rdev;
2041 struct bio *bio = r1_bio->bios[m];
2042 if (bio->bi_end_io == NULL)
2043 continue;
2044 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2045 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2046 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2047 }
2048 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2049 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2050 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2051 md_error(conf->mddev, rdev);
2052 }
2053 }
2054 put_buf(r1_bio);
2055 md_done_sync(conf->mddev, s, 1);
2056 }
2057
2058 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2059 {
2060 int m;
2061 for (m = 0; m < conf->raid_disks * 2 ; m++)
2062 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2063 struct md_rdev *rdev = conf->mirrors[m].rdev;
2064 rdev_clear_badblocks(rdev,
2065 r1_bio->sector,
2066 r1_bio->sectors, 0);
2067 rdev_dec_pending(rdev, conf->mddev);
2068 } else if (r1_bio->bios[m] != NULL) {
2069 /* This drive got a write error. We need to
2070 * narrow down and record precise write
2071 * errors.
2072 */
2073 if (!narrow_write_error(r1_bio, m)) {
2074 md_error(conf->mddev,
2075 conf->mirrors[m].rdev);
2076 /* an I/O failed, we can't clear the bitmap */
2077 set_bit(R1BIO_Degraded, &r1_bio->state);
2078 }
2079 rdev_dec_pending(conf->mirrors[m].rdev,
2080 conf->mddev);
2081 }
2082 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2083 close_write(r1_bio);
2084 raid_end_bio_io(r1_bio);
2085 }
2086
2087 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2088 {
2089 int disk;
2090 int max_sectors;
2091 struct mddev *mddev = conf->mddev;
2092 struct bio *bio;
2093 char b[BDEVNAME_SIZE];
2094 struct md_rdev *rdev;
2095
2096 clear_bit(R1BIO_ReadError, &r1_bio->state);
2097 /* we got a read error. Maybe the drive is bad. Maybe just
2098 * the block and we can fix it.
2099 * We freeze all other IO, and try reading the block from
2100 * other devices. When we find one, we re-write
2101 * and check it that fixes the read error.
2102 * This is all done synchronously while the array is
2103 * frozen
2104 */
2105 if (mddev->ro == 0) {
2106 freeze_array(conf);
2107 fix_read_error(conf, r1_bio->read_disk,
2108 r1_bio->sector, r1_bio->sectors);
2109 unfreeze_array(conf);
2110 } else
2111 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2112
2113 bio = r1_bio->bios[r1_bio->read_disk];
2114 bdevname(bio->bi_bdev, b);
2115 read_more:
2116 disk = read_balance(conf, r1_bio, &max_sectors);
2117 if (disk == -1) {
2118 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2119 " read error for block %llu\n",
2120 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2121 raid_end_bio_io(r1_bio);
2122 } else {
2123 const unsigned long do_sync
2124 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2125 if (bio) {
2126 r1_bio->bios[r1_bio->read_disk] =
2127 mddev->ro ? IO_BLOCKED : NULL;
2128 bio_put(bio);
2129 }
2130 r1_bio->read_disk = disk;
2131 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2132 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2133 r1_bio->bios[r1_bio->read_disk] = bio;
2134 rdev = conf->mirrors[disk].rdev;
2135 printk_ratelimited(KERN_ERR
2136 "md/raid1:%s: redirecting sector %llu"
2137 " to other mirror: %s\n",
2138 mdname(mddev),
2139 (unsigned long long)r1_bio->sector,
2140 bdevname(rdev->bdev, b));
2141 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2142 bio->bi_bdev = rdev->bdev;
2143 bio->bi_end_io = raid1_end_read_request;
2144 bio->bi_rw = READ | do_sync;
2145 bio->bi_private = r1_bio;
2146 if (max_sectors < r1_bio->sectors) {
2147 /* Drat - have to split this up more */
2148 struct bio *mbio = r1_bio->master_bio;
2149 int sectors_handled = (r1_bio->sector + max_sectors
2150 - mbio->bi_sector);
2151 r1_bio->sectors = max_sectors;
2152 spin_lock_irq(&conf->device_lock);
2153 if (mbio->bi_phys_segments == 0)
2154 mbio->bi_phys_segments = 2;
2155 else
2156 mbio->bi_phys_segments++;
2157 spin_unlock_irq(&conf->device_lock);
2158 generic_make_request(bio);
2159 bio = NULL;
2160
2161 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2162
2163 r1_bio->master_bio = mbio;
2164 r1_bio->sectors = (mbio->bi_size >> 9)
2165 - sectors_handled;
2166 r1_bio->state = 0;
2167 set_bit(R1BIO_ReadError, &r1_bio->state);
2168 r1_bio->mddev = mddev;
2169 r1_bio->sector = mbio->bi_sector + sectors_handled;
2170
2171 goto read_more;
2172 } else
2173 generic_make_request(bio);
2174 }
2175 }
2176
2177 static void raid1d(struct mddev *mddev)
2178 {
2179 struct r1bio *r1_bio;
2180 unsigned long flags;
2181 struct r1conf *conf = mddev->private;
2182 struct list_head *head = &conf->retry_list;
2183 struct blk_plug plug;
2184
2185 md_check_recovery(mddev);
2186
2187 blk_start_plug(&plug);
2188 for (;;) {
2189
2190 if (atomic_read(&mddev->plug_cnt) == 0)
2191 flush_pending_writes(conf);
2192
2193 spin_lock_irqsave(&conf->device_lock, flags);
2194 if (list_empty(head)) {
2195 spin_unlock_irqrestore(&conf->device_lock, flags);
2196 break;
2197 }
2198 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2199 list_del(head->prev);
2200 conf->nr_queued--;
2201 spin_unlock_irqrestore(&conf->device_lock, flags);
2202
2203 mddev = r1_bio->mddev;
2204 conf = mddev->private;
2205 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2206 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2207 test_bit(R1BIO_WriteError, &r1_bio->state))
2208 handle_sync_write_finished(conf, r1_bio);
2209 else
2210 sync_request_write(mddev, r1_bio);
2211 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2212 test_bit(R1BIO_WriteError, &r1_bio->state))
2213 handle_write_finished(conf, r1_bio);
2214 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2215 handle_read_error(conf, r1_bio);
2216 else
2217 /* just a partial read to be scheduled from separate
2218 * context
2219 */
2220 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2221
2222 cond_resched();
2223 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2224 md_check_recovery(mddev);
2225 }
2226 blk_finish_plug(&plug);
2227 }
2228
2229
2230 static int init_resync(struct r1conf *conf)
2231 {
2232 int buffs;
2233
2234 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2235 BUG_ON(conf->r1buf_pool);
2236 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2237 conf->poolinfo);
2238 if (!conf->r1buf_pool)
2239 return -ENOMEM;
2240 conf->next_resync = 0;
2241 return 0;
2242 }
2243
2244 /*
2245 * perform a "sync" on one "block"
2246 *
2247 * We need to make sure that no normal I/O request - particularly write
2248 * requests - conflict with active sync requests.
2249 *
2250 * This is achieved by tracking pending requests and a 'barrier' concept
2251 * that can be installed to exclude normal IO requests.
2252 */
2253
2254 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2255 {
2256 struct r1conf *conf = mddev->private;
2257 struct r1bio *r1_bio;
2258 struct bio *bio;
2259 sector_t max_sector, nr_sectors;
2260 int disk = -1;
2261 int i;
2262 int wonly = -1;
2263 int write_targets = 0, read_targets = 0;
2264 sector_t sync_blocks;
2265 int still_degraded = 0;
2266 int good_sectors = RESYNC_SECTORS;
2267 int min_bad = 0; /* number of sectors that are bad in all devices */
2268
2269 if (!conf->r1buf_pool)
2270 if (init_resync(conf))
2271 return 0;
2272
2273 max_sector = mddev->dev_sectors;
2274 if (sector_nr >= max_sector) {
2275 /* If we aborted, we need to abort the
2276 * sync on the 'current' bitmap chunk (there will
2277 * only be one in raid1 resync.
2278 * We can find the current addess in mddev->curr_resync
2279 */
2280 if (mddev->curr_resync < max_sector) /* aborted */
2281 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2282 &sync_blocks, 1);
2283 else /* completed sync */
2284 conf->fullsync = 0;
2285
2286 bitmap_close_sync(mddev->bitmap);
2287 close_sync(conf);
2288 return 0;
2289 }
2290
2291 if (mddev->bitmap == NULL &&
2292 mddev->recovery_cp == MaxSector &&
2293 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2294 conf->fullsync == 0) {
2295 *skipped = 1;
2296 return max_sector - sector_nr;
2297 }
2298 /* before building a request, check if we can skip these blocks..
2299 * This call the bitmap_start_sync doesn't actually record anything
2300 */
2301 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2302 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2303 /* We can skip this block, and probably several more */
2304 *skipped = 1;
2305 return sync_blocks;
2306 }
2307 /*
2308 * If there is non-resync activity waiting for a turn,
2309 * and resync is going fast enough,
2310 * then let it though before starting on this new sync request.
2311 */
2312 if (!go_faster && conf->nr_waiting)
2313 msleep_interruptible(1000);
2314
2315 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2316 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2317 raise_barrier(conf);
2318
2319 conf->next_resync = sector_nr;
2320
2321 rcu_read_lock();
2322 /*
2323 * If we get a correctably read error during resync or recovery,
2324 * we might want to read from a different device. So we
2325 * flag all drives that could conceivably be read from for READ,
2326 * and any others (which will be non-In_sync devices) for WRITE.
2327 * If a read fails, we try reading from something else for which READ
2328 * is OK.
2329 */
2330
2331 r1_bio->mddev = mddev;
2332 r1_bio->sector = sector_nr;
2333 r1_bio->state = 0;
2334 set_bit(R1BIO_IsSync, &r1_bio->state);
2335
2336 for (i = 0; i < conf->raid_disks * 2; i++) {
2337 struct md_rdev *rdev;
2338 bio = r1_bio->bios[i];
2339
2340 /* take from bio_init */
2341 bio->bi_next = NULL;
2342 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2343 bio->bi_flags |= 1 << BIO_UPTODATE;
2344 bio->bi_rw = READ;
2345 bio->bi_vcnt = 0;
2346 bio->bi_idx = 0;
2347 bio->bi_phys_segments = 0;
2348 bio->bi_size = 0;
2349 bio->bi_end_io = NULL;
2350 bio->bi_private = NULL;
2351
2352 rdev = rcu_dereference(conf->mirrors[i].rdev);
2353 if (rdev == NULL ||
2354 test_bit(Faulty, &rdev->flags)) {
2355 if (i < conf->raid_disks)
2356 still_degraded = 1;
2357 } else if (!test_bit(In_sync, &rdev->flags)) {
2358 bio->bi_rw = WRITE;
2359 bio->bi_end_io = end_sync_write;
2360 write_targets ++;
2361 } else {
2362 /* may need to read from here */
2363 sector_t first_bad = MaxSector;
2364 int bad_sectors;
2365
2366 if (is_badblock(rdev, sector_nr, good_sectors,
2367 &first_bad, &bad_sectors)) {
2368 if (first_bad > sector_nr)
2369 good_sectors = first_bad - sector_nr;
2370 else {
2371 bad_sectors -= (sector_nr - first_bad);
2372 if (min_bad == 0 ||
2373 min_bad > bad_sectors)
2374 min_bad = bad_sectors;
2375 }
2376 }
2377 if (sector_nr < first_bad) {
2378 if (test_bit(WriteMostly, &rdev->flags)) {
2379 if (wonly < 0)
2380 wonly = i;
2381 } else {
2382 if (disk < 0)
2383 disk = i;
2384 }
2385 bio->bi_rw = READ;
2386 bio->bi_end_io = end_sync_read;
2387 read_targets++;
2388 }
2389 }
2390 if (bio->bi_end_io) {
2391 atomic_inc(&rdev->nr_pending);
2392 bio->bi_sector = sector_nr + rdev->data_offset;
2393 bio->bi_bdev = rdev->bdev;
2394 bio->bi_private = r1_bio;
2395 }
2396 }
2397 rcu_read_unlock();
2398 if (disk < 0)
2399 disk = wonly;
2400 r1_bio->read_disk = disk;
2401
2402 if (read_targets == 0 && min_bad > 0) {
2403 /* These sectors are bad on all InSync devices, so we
2404 * need to mark them bad on all write targets
2405 */
2406 int ok = 1;
2407 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2408 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2409 struct md_rdev *rdev = conf->mirrors[i].rdev;
2410 ok = rdev_set_badblocks(rdev, sector_nr,
2411 min_bad, 0
2412 ) && ok;
2413 }
2414 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2415 *skipped = 1;
2416 put_buf(r1_bio);
2417
2418 if (!ok) {
2419 /* Cannot record the badblocks, so need to
2420 * abort the resync.
2421 * If there are multiple read targets, could just
2422 * fail the really bad ones ???
2423 */
2424 conf->recovery_disabled = mddev->recovery_disabled;
2425 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2426 return 0;
2427 } else
2428 return min_bad;
2429
2430 }
2431 if (min_bad > 0 && min_bad < good_sectors) {
2432 /* only resync enough to reach the next bad->good
2433 * transition */
2434 good_sectors = min_bad;
2435 }
2436
2437 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2438 /* extra read targets are also write targets */
2439 write_targets += read_targets-1;
2440
2441 if (write_targets == 0 || read_targets == 0) {
2442 /* There is nowhere to write, so all non-sync
2443 * drives must be failed - so we are finished
2444 */
2445 sector_t rv = max_sector - sector_nr;
2446 *skipped = 1;
2447 put_buf(r1_bio);
2448 return rv;
2449 }
2450
2451 if (max_sector > mddev->resync_max)
2452 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2453 if (max_sector > sector_nr + good_sectors)
2454 max_sector = sector_nr + good_sectors;
2455 nr_sectors = 0;
2456 sync_blocks = 0;
2457 do {
2458 struct page *page;
2459 int len = PAGE_SIZE;
2460 if (sector_nr + (len>>9) > max_sector)
2461 len = (max_sector - sector_nr) << 9;
2462 if (len == 0)
2463 break;
2464 if (sync_blocks == 0) {
2465 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2466 &sync_blocks, still_degraded) &&
2467 !conf->fullsync &&
2468 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2469 break;
2470 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2471 if ((len >> 9) > sync_blocks)
2472 len = sync_blocks<<9;
2473 }
2474
2475 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2476 bio = r1_bio->bios[i];
2477 if (bio->bi_end_io) {
2478 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2479 if (bio_add_page(bio, page, len, 0) == 0) {
2480 /* stop here */
2481 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2482 while (i > 0) {
2483 i--;
2484 bio = r1_bio->bios[i];
2485 if (bio->bi_end_io==NULL)
2486 continue;
2487 /* remove last page from this bio */
2488 bio->bi_vcnt--;
2489 bio->bi_size -= len;
2490 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2491 }
2492 goto bio_full;
2493 }
2494 }
2495 }
2496 nr_sectors += len>>9;
2497 sector_nr += len>>9;
2498 sync_blocks -= (len>>9);
2499 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2500 bio_full:
2501 r1_bio->sectors = nr_sectors;
2502
2503 /* For a user-requested sync, we read all readable devices and do a
2504 * compare
2505 */
2506 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2507 atomic_set(&r1_bio->remaining, read_targets);
2508 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2509 bio = r1_bio->bios[i];
2510 if (bio->bi_end_io == end_sync_read) {
2511 read_targets--;
2512 md_sync_acct(bio->bi_bdev, nr_sectors);
2513 generic_make_request(bio);
2514 }
2515 }
2516 } else {
2517 atomic_set(&r1_bio->remaining, 1);
2518 bio = r1_bio->bios[r1_bio->read_disk];
2519 md_sync_acct(bio->bi_bdev, nr_sectors);
2520 generic_make_request(bio);
2521
2522 }
2523 return nr_sectors;
2524 }
2525
2526 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2527 {
2528 if (sectors)
2529 return sectors;
2530
2531 return mddev->dev_sectors;
2532 }
2533
2534 static struct r1conf *setup_conf(struct mddev *mddev)
2535 {
2536 struct r1conf *conf;
2537 int i;
2538 struct raid1_info *disk;
2539 struct md_rdev *rdev;
2540 int err = -ENOMEM;
2541
2542 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2543 if (!conf)
2544 goto abort;
2545
2546 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2547 * mddev->raid_disks * 2,
2548 GFP_KERNEL);
2549 if (!conf->mirrors)
2550 goto abort;
2551
2552 conf->tmppage = alloc_page(GFP_KERNEL);
2553 if (!conf->tmppage)
2554 goto abort;
2555
2556 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2557 if (!conf->poolinfo)
2558 goto abort;
2559 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2560 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2561 r1bio_pool_free,
2562 conf->poolinfo);
2563 if (!conf->r1bio_pool)
2564 goto abort;
2565
2566 conf->poolinfo->mddev = mddev;
2567
2568 err = -EINVAL;
2569 spin_lock_init(&conf->device_lock);
2570 rdev_for_each(rdev, mddev) {
2571 struct request_queue *q;
2572 int disk_idx = rdev->raid_disk;
2573 if (disk_idx >= mddev->raid_disks
2574 || disk_idx < 0)
2575 continue;
2576 if (test_bit(Replacement, &rdev->flags))
2577 disk = conf->mirrors + conf->raid_disks + disk_idx;
2578 else
2579 disk = conf->mirrors + disk_idx;
2580
2581 if (disk->rdev)
2582 goto abort;
2583 disk->rdev = rdev;
2584 q = bdev_get_queue(rdev->bdev);
2585 if (q->merge_bvec_fn)
2586 mddev->merge_check_needed = 1;
2587
2588 disk->head_position = 0;
2589 }
2590 conf->raid_disks = mddev->raid_disks;
2591 conf->mddev = mddev;
2592 INIT_LIST_HEAD(&conf->retry_list);
2593
2594 spin_lock_init(&conf->resync_lock);
2595 init_waitqueue_head(&conf->wait_barrier);
2596
2597 bio_list_init(&conf->pending_bio_list);
2598 conf->pending_count = 0;
2599 conf->recovery_disabled = mddev->recovery_disabled - 1;
2600
2601 err = -EIO;
2602 conf->last_used = -1;
2603 for (i = 0; i < conf->raid_disks * 2; i++) {
2604
2605 disk = conf->mirrors + i;
2606
2607 if (i < conf->raid_disks &&
2608 disk[conf->raid_disks].rdev) {
2609 /* This slot has a replacement. */
2610 if (!disk->rdev) {
2611 /* No original, just make the replacement
2612 * a recovering spare
2613 */
2614 disk->rdev =
2615 disk[conf->raid_disks].rdev;
2616 disk[conf->raid_disks].rdev = NULL;
2617 } else if (!test_bit(In_sync, &disk->rdev->flags))
2618 /* Original is not in_sync - bad */
2619 goto abort;
2620 }
2621
2622 if (!disk->rdev ||
2623 !test_bit(In_sync, &disk->rdev->flags)) {
2624 disk->head_position = 0;
2625 if (disk->rdev &&
2626 (disk->rdev->saved_raid_disk < 0))
2627 conf->fullsync = 1;
2628 } else if (conf->last_used < 0)
2629 /*
2630 * The first working device is used as a
2631 * starting point to read balancing.
2632 */
2633 conf->last_used = i;
2634 }
2635
2636 if (conf->last_used < 0) {
2637 printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
2638 mdname(mddev));
2639 goto abort;
2640 }
2641 err = -ENOMEM;
2642 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2643 if (!conf->thread) {
2644 printk(KERN_ERR
2645 "md/raid1:%s: couldn't allocate thread\n",
2646 mdname(mddev));
2647 goto abort;
2648 }
2649
2650 return conf;
2651
2652 abort:
2653 if (conf) {
2654 if (conf->r1bio_pool)
2655 mempool_destroy(conf->r1bio_pool);
2656 kfree(conf->mirrors);
2657 safe_put_page(conf->tmppage);
2658 kfree(conf->poolinfo);
2659 kfree(conf);
2660 }
2661 return ERR_PTR(err);
2662 }
2663
2664 static int stop(struct mddev *mddev);
2665 static int run(struct mddev *mddev)
2666 {
2667 struct r1conf *conf;
2668 int i;
2669 struct md_rdev *rdev;
2670 int ret;
2671
2672 if (mddev->level != 1) {
2673 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2674 mdname(mddev), mddev->level);
2675 return -EIO;
2676 }
2677 if (mddev->reshape_position != MaxSector) {
2678 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2679 mdname(mddev));
2680 return -EIO;
2681 }
2682 /*
2683 * copy the already verified devices into our private RAID1
2684 * bookkeeping area. [whatever we allocate in run(),
2685 * should be freed in stop()]
2686 */
2687 if (mddev->private == NULL)
2688 conf = setup_conf(mddev);
2689 else
2690 conf = mddev->private;
2691
2692 if (IS_ERR(conf))
2693 return PTR_ERR(conf);
2694
2695 rdev_for_each(rdev, mddev) {
2696 if (!mddev->gendisk)
2697 continue;
2698 disk_stack_limits(mddev->gendisk, rdev->bdev,
2699 rdev->data_offset << 9);
2700 }
2701
2702 mddev->degraded = 0;
2703 for (i=0; i < conf->raid_disks; i++)
2704 if (conf->mirrors[i].rdev == NULL ||
2705 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2706 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2707 mddev->degraded++;
2708
2709 if (conf->raid_disks - mddev->degraded == 1)
2710 mddev->recovery_cp = MaxSector;
2711
2712 if (mddev->recovery_cp != MaxSector)
2713 printk(KERN_NOTICE "md/raid1:%s: not clean"
2714 " -- starting background reconstruction\n",
2715 mdname(mddev));
2716 printk(KERN_INFO
2717 "md/raid1:%s: active with %d out of %d mirrors\n",
2718 mdname(mddev), mddev->raid_disks - mddev->degraded,
2719 mddev->raid_disks);
2720
2721 /*
2722 * Ok, everything is just fine now
2723 */
2724 mddev->thread = conf->thread;
2725 conf->thread = NULL;
2726 mddev->private = conf;
2727
2728 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2729
2730 if (mddev->queue) {
2731 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2732 mddev->queue->backing_dev_info.congested_data = mddev;
2733 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2734 }
2735
2736 ret = md_integrity_register(mddev);
2737 if (ret)
2738 stop(mddev);
2739 return ret;
2740 }
2741
2742 static int stop(struct mddev *mddev)
2743 {
2744 struct r1conf *conf = mddev->private;
2745 struct bitmap *bitmap = mddev->bitmap;
2746
2747 /* wait for behind writes to complete */
2748 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2749 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2750 mdname(mddev));
2751 /* need to kick something here to make sure I/O goes? */
2752 wait_event(bitmap->behind_wait,
2753 atomic_read(&bitmap->behind_writes) == 0);
2754 }
2755
2756 raise_barrier(conf);
2757 lower_barrier(conf);
2758
2759 md_unregister_thread(&mddev->thread);
2760 if (conf->r1bio_pool)
2761 mempool_destroy(conf->r1bio_pool);
2762 kfree(conf->mirrors);
2763 kfree(conf->poolinfo);
2764 kfree(conf);
2765 mddev->private = NULL;
2766 return 0;
2767 }
2768
2769 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2770 {
2771 /* no resync is happening, and there is enough space
2772 * on all devices, so we can resize.
2773 * We need to make sure resync covers any new space.
2774 * If the array is shrinking we should possibly wait until
2775 * any io in the removed space completes, but it hardly seems
2776 * worth it.
2777 */
2778 sector_t newsize = raid1_size(mddev, sectors, 0);
2779 if (mddev->external_size &&
2780 mddev->array_sectors > newsize)
2781 return -EINVAL;
2782 if (mddev->bitmap) {
2783 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2784 if (ret)
2785 return ret;
2786 }
2787 md_set_array_sectors(mddev, newsize);
2788 set_capacity(mddev->gendisk, mddev->array_sectors);
2789 revalidate_disk(mddev->gendisk);
2790 if (sectors > mddev->dev_sectors &&
2791 mddev->recovery_cp > mddev->dev_sectors) {
2792 mddev->recovery_cp = mddev->dev_sectors;
2793 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2794 }
2795 mddev->dev_sectors = sectors;
2796 mddev->resync_max_sectors = sectors;
2797 return 0;
2798 }
2799
2800 static int raid1_reshape(struct mddev *mddev)
2801 {
2802 /* We need to:
2803 * 1/ resize the r1bio_pool
2804 * 2/ resize conf->mirrors
2805 *
2806 * We allocate a new r1bio_pool if we can.
2807 * Then raise a device barrier and wait until all IO stops.
2808 * Then resize conf->mirrors and swap in the new r1bio pool.
2809 *
2810 * At the same time, we "pack" the devices so that all the missing
2811 * devices have the higher raid_disk numbers.
2812 */
2813 mempool_t *newpool, *oldpool;
2814 struct pool_info *newpoolinfo;
2815 struct raid1_info *newmirrors;
2816 struct r1conf *conf = mddev->private;
2817 int cnt, raid_disks;
2818 unsigned long flags;
2819 int d, d2, err;
2820
2821 /* Cannot change chunk_size, layout, or level */
2822 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2823 mddev->layout != mddev->new_layout ||
2824 mddev->level != mddev->new_level) {
2825 mddev->new_chunk_sectors = mddev->chunk_sectors;
2826 mddev->new_layout = mddev->layout;
2827 mddev->new_level = mddev->level;
2828 return -EINVAL;
2829 }
2830
2831 err = md_allow_write(mddev);
2832 if (err)
2833 return err;
2834
2835 raid_disks = mddev->raid_disks + mddev->delta_disks;
2836
2837 if (raid_disks < conf->raid_disks) {
2838 cnt=0;
2839 for (d= 0; d < conf->raid_disks; d++)
2840 if (conf->mirrors[d].rdev)
2841 cnt++;
2842 if (cnt > raid_disks)
2843 return -EBUSY;
2844 }
2845
2846 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2847 if (!newpoolinfo)
2848 return -ENOMEM;
2849 newpoolinfo->mddev = mddev;
2850 newpoolinfo->raid_disks = raid_disks * 2;
2851
2852 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2853 r1bio_pool_free, newpoolinfo);
2854 if (!newpool) {
2855 kfree(newpoolinfo);
2856 return -ENOMEM;
2857 }
2858 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2859 GFP_KERNEL);
2860 if (!newmirrors) {
2861 kfree(newpoolinfo);
2862 mempool_destroy(newpool);
2863 return -ENOMEM;
2864 }
2865
2866 raise_barrier(conf);
2867
2868 /* ok, everything is stopped */
2869 oldpool = conf->r1bio_pool;
2870 conf->r1bio_pool = newpool;
2871
2872 for (d = d2 = 0; d < conf->raid_disks; d++) {
2873 struct md_rdev *rdev = conf->mirrors[d].rdev;
2874 if (rdev && rdev->raid_disk != d2) {
2875 sysfs_unlink_rdev(mddev, rdev);
2876 rdev->raid_disk = d2;
2877 sysfs_unlink_rdev(mddev, rdev);
2878 if (sysfs_link_rdev(mddev, rdev))
2879 printk(KERN_WARNING
2880 "md/raid1:%s: cannot register rd%d\n",
2881 mdname(mddev), rdev->raid_disk);
2882 }
2883 if (rdev)
2884 newmirrors[d2++].rdev = rdev;
2885 }
2886 kfree(conf->mirrors);
2887 conf->mirrors = newmirrors;
2888 kfree(conf->poolinfo);
2889 conf->poolinfo = newpoolinfo;
2890
2891 spin_lock_irqsave(&conf->device_lock, flags);
2892 mddev->degraded += (raid_disks - conf->raid_disks);
2893 spin_unlock_irqrestore(&conf->device_lock, flags);
2894 conf->raid_disks = mddev->raid_disks = raid_disks;
2895 mddev->delta_disks = 0;
2896
2897 conf->last_used = 0; /* just make sure it is in-range */
2898 lower_barrier(conf);
2899
2900 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2901 md_wakeup_thread(mddev->thread);
2902
2903 mempool_destroy(oldpool);
2904 return 0;
2905 }
2906
2907 static void raid1_quiesce(struct mddev *mddev, int state)
2908 {
2909 struct r1conf *conf = mddev->private;
2910
2911 switch(state) {
2912 case 2: /* wake for suspend */
2913 wake_up(&conf->wait_barrier);
2914 break;
2915 case 1:
2916 raise_barrier(conf);
2917 break;
2918 case 0:
2919 lower_barrier(conf);
2920 break;
2921 }
2922 }
2923
2924 static void *raid1_takeover(struct mddev *mddev)
2925 {
2926 /* raid1 can take over:
2927 * raid5 with 2 devices, any layout or chunk size
2928 */
2929 if (mddev->level == 5 && mddev->raid_disks == 2) {
2930 struct r1conf *conf;
2931 mddev->new_level = 1;
2932 mddev->new_layout = 0;
2933 mddev->new_chunk_sectors = 0;
2934 conf = setup_conf(mddev);
2935 if (!IS_ERR(conf))
2936 conf->barrier = 1;
2937 return conf;
2938 }
2939 return ERR_PTR(-EINVAL);
2940 }
2941
2942 static struct md_personality raid1_personality =
2943 {
2944 .name = "raid1",
2945 .level = 1,
2946 .owner = THIS_MODULE,
2947 .make_request = make_request,
2948 .run = run,
2949 .stop = stop,
2950 .status = status,
2951 .error_handler = error,
2952 .hot_add_disk = raid1_add_disk,
2953 .hot_remove_disk= raid1_remove_disk,
2954 .spare_active = raid1_spare_active,
2955 .sync_request = sync_request,
2956 .resize = raid1_resize,
2957 .size = raid1_size,
2958 .check_reshape = raid1_reshape,
2959 .quiesce = raid1_quiesce,
2960 .takeover = raid1_takeover,
2961 };
2962
2963 static int __init raid_init(void)
2964 {
2965 return register_md_personality(&raid1_personality);
2966 }
2967
2968 static void raid_exit(void)
2969 {
2970 unregister_md_personality(&raid1_personality);
2971 }
2972
2973 module_init(raid_init);
2974 module_exit(raid_exit);
2975 MODULE_LICENSE("GPL");
2976 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2977 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2978 MODULE_ALIAS("md-raid1");
2979 MODULE_ALIAS("md-level-1");
2980
2981 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.132259 seconds and 5 git commands to generate.