Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
118 */
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate) {
337 raid_end_bio_io(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
351 set_bit(R1BIO_ReadError, &r1_bio->state);
352 reschedule_retry(r1_bio);
353 /* don't drop the reference on read_disk yet */
354 }
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
502 int disk;
503 sector_t best_dist;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
506 int choose_first;
507 int choose_next_idle;
508
509 rcu_read_lock();
510 /*
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
516 sectors = r1_bio->sectors;
517 best_disk = -1;
518 best_dist_disk = -1;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
523 has_nonrot_disk = 0;
524 choose_next_idle = 0;
525
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
528 choose_first = 1;
529 else
530 choose_first = 0;
531
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 sector_t dist;
534 sector_t first_bad;
535 int bad_sectors;
536 unsigned int pending;
537 bool nonrot;
538
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
544 continue;
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
547 continue;
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
560 best_disk = disk;
561 }
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
600 if (choose_first) {
601 best_disk = disk;
602 break;
603 }
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
648 if (dist < best_dist) {
649 best_dist = dist;
650 best_dist_disk = disk;
651 }
652 }
653
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
676 rdev_dec_pending(rdev, conf->mddev);
677 goto retry;
678 }
679 sectors = best_good_sectors;
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 }
686 rcu_read_unlock();
687 *max_sectors = sectors;
688
689 return best_disk;
690 }
691
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695 {
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723 }
724
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 struct r1conf *conf = mddev->private;
728 int i, ret = 0;
729
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
734 rcu_read_lock();
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
739
740 BUG_ON(!q);
741
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755
756 static int raid1_congested(void *data, int bits)
757 {
758 struct mddev *mddev = data;
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762 }
763
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
768 */
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
790 bio = next;
791 }
792 } else
793 spin_unlock_irq(&conf->device_lock);
794 }
795
796 /* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
816 */
817 #define RESYNC_DEPTH 32
818
819 static void raise_barrier(struct r1conf *conf)
820 {
821 spin_lock_irq(&conf->resync_lock);
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 conf->resync_lock);
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
830 /* Now wait for all pending IO to complete */
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833 conf->resync_lock);
834
835 spin_unlock_irq(&conf->resync_lock);
836 }
837
838 static void lower_barrier(struct r1conf *conf)
839 {
840 unsigned long flags;
841 BUG_ON(conf->barrier <= 0);
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846 }
847
848 static void wait_barrier(struct r1conf *conf)
849 {
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
867 conf->resync_lock);
868 conf->nr_waiting--;
869 }
870 conf->nr_pending++;
871 spin_unlock_irq(&conf->resync_lock);
872 }
873
874 static void allow_barrier(struct r1conf *conf)
875 {
876 unsigned long flags;
877 spin_lock_irqsave(&conf->resync_lock, flags);
878 conf->nr_pending--;
879 spin_unlock_irqrestore(&conf->resync_lock, flags);
880 wake_up(&conf->wait_barrier);
881 }
882
883 static void freeze_array(struct r1conf *conf)
884 {
885 /* stop syncio and normal IO and wait for everything to
886 * go quite.
887 * We increment barrier and nr_waiting, and then
888 * wait until nr_pending match nr_queued+1
889 * This is called in the context of one normal IO request
890 * that has failed. Thus any sync request that might be pending
891 * will be blocked by nr_pending, and we need to wait for
892 * pending IO requests to complete or be queued for re-try.
893 * Thus the number queued (nr_queued) plus this request (1)
894 * must match the number of pending IOs (nr_pending) before
895 * we continue.
896 */
897 spin_lock_irq(&conf->resync_lock);
898 conf->barrier++;
899 conf->nr_waiting++;
900 wait_event_lock_irq_cmd(conf->wait_barrier,
901 conf->nr_pending == conf->nr_queued+1,
902 conf->resync_lock,
903 flush_pending_writes(conf));
904 spin_unlock_irq(&conf->resync_lock);
905 }
906 static void unfreeze_array(struct r1conf *conf)
907 {
908 /* reverse the effect of the freeze */
909 spin_lock_irq(&conf->resync_lock);
910 conf->barrier--;
911 conf->nr_waiting--;
912 wake_up(&conf->wait_barrier);
913 spin_unlock_irq(&conf->resync_lock);
914 }
915
916
917 /* duplicate the data pages for behind I/O
918 */
919 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
920 {
921 int i;
922 struct bio_vec *bvec;
923 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
924 GFP_NOIO);
925 if (unlikely(!bvecs))
926 return;
927
928 bio_for_each_segment(bvec, bio, i) {
929 bvecs[i] = *bvec;
930 bvecs[i].bv_page = alloc_page(GFP_NOIO);
931 if (unlikely(!bvecs[i].bv_page))
932 goto do_sync_io;
933 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
934 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
935 kunmap(bvecs[i].bv_page);
936 kunmap(bvec->bv_page);
937 }
938 r1_bio->behind_bvecs = bvecs;
939 r1_bio->behind_page_count = bio->bi_vcnt;
940 set_bit(R1BIO_BehindIO, &r1_bio->state);
941 return;
942
943 do_sync_io:
944 for (i = 0; i < bio->bi_vcnt; i++)
945 if (bvecs[i].bv_page)
946 put_page(bvecs[i].bv_page);
947 kfree(bvecs);
948 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
949 }
950
951 struct raid1_plug_cb {
952 struct blk_plug_cb cb;
953 struct bio_list pending;
954 int pending_cnt;
955 };
956
957 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
958 {
959 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
960 cb);
961 struct mddev *mddev = plug->cb.data;
962 struct r1conf *conf = mddev->private;
963 struct bio *bio;
964
965 if (from_schedule || current->bio_list) {
966 spin_lock_irq(&conf->device_lock);
967 bio_list_merge(&conf->pending_bio_list, &plug->pending);
968 conf->pending_count += plug->pending_cnt;
969 spin_unlock_irq(&conf->device_lock);
970 wake_up(&conf->wait_barrier);
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
984 generic_make_request(bio);
985 bio = next;
986 }
987 kfree(plug);
988 }
989
990 static void make_request(struct mddev *mddev, struct bio * bio)
991 {
992 struct r1conf *conf = mddev->private;
993 struct raid1_info *mirror;
994 struct r1bio *r1_bio;
995 struct bio *read_bio;
996 int i, disks;
997 struct bitmap *bitmap;
998 unsigned long flags;
999 const int rw = bio_data_dir(bio);
1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1002 const unsigned long do_discard = (bio->bi_rw
1003 & (REQ_DISCARD | REQ_SECURE));
1004 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1005 struct md_rdev *blocked_rdev;
1006 struct blk_plug_cb *cb;
1007 struct raid1_plug_cb *plug = NULL;
1008 int first_clone;
1009 int sectors_handled;
1010 int max_sectors;
1011
1012 /*
1013 * Register the new request and wait if the reconstruction
1014 * thread has put up a bar for new requests.
1015 * Continue immediately if no resync is active currently.
1016 */
1017
1018 md_write_start(mddev, bio); /* wait on superblock update early */
1019
1020 if (bio_data_dir(bio) == WRITE &&
1021 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1022 bio->bi_sector < mddev->suspend_hi) {
1023 /* As the suspend_* range is controlled by
1024 * userspace, we want an interruptible
1025 * wait.
1026 */
1027 DEFINE_WAIT(w);
1028 for (;;) {
1029 flush_signals(current);
1030 prepare_to_wait(&conf->wait_barrier,
1031 &w, TASK_INTERRUPTIBLE);
1032 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1033 bio->bi_sector >= mddev->suspend_hi)
1034 break;
1035 schedule();
1036 }
1037 finish_wait(&conf->wait_barrier, &w);
1038 }
1039
1040 wait_barrier(conf);
1041
1042 bitmap = mddev->bitmap;
1043
1044 /*
1045 * make_request() can abort the operation when READA is being
1046 * used and no empty request is available.
1047 *
1048 */
1049 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1050
1051 r1_bio->master_bio = bio;
1052 r1_bio->sectors = bio->bi_size >> 9;
1053 r1_bio->state = 0;
1054 r1_bio->mddev = mddev;
1055 r1_bio->sector = bio->bi_sector;
1056
1057 /* We might need to issue multiple reads to different
1058 * devices if there are bad blocks around, so we keep
1059 * track of the number of reads in bio->bi_phys_segments.
1060 * If this is 0, there is only one r1_bio and no locking
1061 * will be needed when requests complete. If it is
1062 * non-zero, then it is the number of not-completed requests.
1063 */
1064 bio->bi_phys_segments = 0;
1065 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1066
1067 if (rw == READ) {
1068 /*
1069 * read balancing logic:
1070 */
1071 int rdisk;
1072
1073 read_again:
1074 rdisk = read_balance(conf, r1_bio, &max_sectors);
1075
1076 if (rdisk < 0) {
1077 /* couldn't find anywhere to read from */
1078 raid_end_bio_io(r1_bio);
1079 return;
1080 }
1081 mirror = conf->mirrors + rdisk;
1082
1083 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1084 bitmap) {
1085 /* Reading from a write-mostly device must
1086 * take care not to over-take any writes
1087 * that are 'behind'
1088 */
1089 wait_event(bitmap->behind_wait,
1090 atomic_read(&bitmap->behind_writes) == 0);
1091 }
1092 r1_bio->read_disk = rdisk;
1093
1094 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1095 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1096 max_sectors);
1097
1098 r1_bio->bios[rdisk] = read_bio;
1099
1100 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1101 read_bio->bi_bdev = mirror->rdev->bdev;
1102 read_bio->bi_end_io = raid1_end_read_request;
1103 read_bio->bi_rw = READ | do_sync;
1104 read_bio->bi_private = r1_bio;
1105
1106 if (max_sectors < r1_bio->sectors) {
1107 /* could not read all from this device, so we will
1108 * need another r1_bio.
1109 */
1110
1111 sectors_handled = (r1_bio->sector + max_sectors
1112 - bio->bi_sector);
1113 r1_bio->sectors = max_sectors;
1114 spin_lock_irq(&conf->device_lock);
1115 if (bio->bi_phys_segments == 0)
1116 bio->bi_phys_segments = 2;
1117 else
1118 bio->bi_phys_segments++;
1119 spin_unlock_irq(&conf->device_lock);
1120 /* Cannot call generic_make_request directly
1121 * as that will be queued in __make_request
1122 * and subsequent mempool_alloc might block waiting
1123 * for it. So hand bio over to raid1d.
1124 */
1125 reschedule_retry(r1_bio);
1126
1127 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1128
1129 r1_bio->master_bio = bio;
1130 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1131 r1_bio->state = 0;
1132 r1_bio->mddev = mddev;
1133 r1_bio->sector = bio->bi_sector + sectors_handled;
1134 goto read_again;
1135 } else
1136 generic_make_request(read_bio);
1137 return;
1138 }
1139
1140 /*
1141 * WRITE:
1142 */
1143 if (conf->pending_count >= max_queued_requests) {
1144 md_wakeup_thread(mddev->thread);
1145 wait_event(conf->wait_barrier,
1146 conf->pending_count < max_queued_requests);
1147 }
1148 /* first select target devices under rcu_lock and
1149 * inc refcount on their rdev. Record them by setting
1150 * bios[x] to bio
1151 * If there are known/acknowledged bad blocks on any device on
1152 * which we have seen a write error, we want to avoid writing those
1153 * blocks.
1154 * This potentially requires several writes to write around
1155 * the bad blocks. Each set of writes gets it's own r1bio
1156 * with a set of bios attached.
1157 */
1158
1159 disks = conf->raid_disks * 2;
1160 retry_write:
1161 blocked_rdev = NULL;
1162 rcu_read_lock();
1163 max_sectors = r1_bio->sectors;
1164 for (i = 0; i < disks; i++) {
1165 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1166 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1167 atomic_inc(&rdev->nr_pending);
1168 blocked_rdev = rdev;
1169 break;
1170 }
1171 r1_bio->bios[i] = NULL;
1172 if (!rdev || test_bit(Faulty, &rdev->flags)
1173 || test_bit(Unmerged, &rdev->flags)) {
1174 if (i < conf->raid_disks)
1175 set_bit(R1BIO_Degraded, &r1_bio->state);
1176 continue;
1177 }
1178
1179 atomic_inc(&rdev->nr_pending);
1180 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1181 sector_t first_bad;
1182 int bad_sectors;
1183 int is_bad;
1184
1185 is_bad = is_badblock(rdev, r1_bio->sector,
1186 max_sectors,
1187 &first_bad, &bad_sectors);
1188 if (is_bad < 0) {
1189 /* mustn't write here until the bad block is
1190 * acknowledged*/
1191 set_bit(BlockedBadBlocks, &rdev->flags);
1192 blocked_rdev = rdev;
1193 break;
1194 }
1195 if (is_bad && first_bad <= r1_bio->sector) {
1196 /* Cannot write here at all */
1197 bad_sectors -= (r1_bio->sector - first_bad);
1198 if (bad_sectors < max_sectors)
1199 /* mustn't write more than bad_sectors
1200 * to other devices yet
1201 */
1202 max_sectors = bad_sectors;
1203 rdev_dec_pending(rdev, mddev);
1204 /* We don't set R1BIO_Degraded as that
1205 * only applies if the disk is
1206 * missing, so it might be re-added,
1207 * and we want to know to recover this
1208 * chunk.
1209 * In this case the device is here,
1210 * and the fact that this chunk is not
1211 * in-sync is recorded in the bad
1212 * block log
1213 */
1214 continue;
1215 }
1216 if (is_bad) {
1217 int good_sectors = first_bad - r1_bio->sector;
1218 if (good_sectors < max_sectors)
1219 max_sectors = good_sectors;
1220 }
1221 }
1222 r1_bio->bios[i] = bio;
1223 }
1224 rcu_read_unlock();
1225
1226 if (unlikely(blocked_rdev)) {
1227 /* Wait for this device to become unblocked */
1228 int j;
1229
1230 for (j = 0; j < i; j++)
1231 if (r1_bio->bios[j])
1232 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1233 r1_bio->state = 0;
1234 allow_barrier(conf);
1235 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1236 wait_barrier(conf);
1237 goto retry_write;
1238 }
1239
1240 if (max_sectors < r1_bio->sectors) {
1241 /* We are splitting this write into multiple parts, so
1242 * we need to prepare for allocating another r1_bio.
1243 */
1244 r1_bio->sectors = max_sectors;
1245 spin_lock_irq(&conf->device_lock);
1246 if (bio->bi_phys_segments == 0)
1247 bio->bi_phys_segments = 2;
1248 else
1249 bio->bi_phys_segments++;
1250 spin_unlock_irq(&conf->device_lock);
1251 }
1252 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1253
1254 atomic_set(&r1_bio->remaining, 1);
1255 atomic_set(&r1_bio->behind_remaining, 0);
1256
1257 first_clone = 1;
1258 for (i = 0; i < disks; i++) {
1259 struct bio *mbio;
1260 if (!r1_bio->bios[i])
1261 continue;
1262
1263 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1264 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1265
1266 if (first_clone) {
1267 /* do behind I/O ?
1268 * Not if there are too many, or cannot
1269 * allocate memory, or a reader on WriteMostly
1270 * is waiting for behind writes to flush */
1271 if (bitmap &&
1272 (atomic_read(&bitmap->behind_writes)
1273 < mddev->bitmap_info.max_write_behind) &&
1274 !waitqueue_active(&bitmap->behind_wait))
1275 alloc_behind_pages(mbio, r1_bio);
1276
1277 bitmap_startwrite(bitmap, r1_bio->sector,
1278 r1_bio->sectors,
1279 test_bit(R1BIO_BehindIO,
1280 &r1_bio->state));
1281 first_clone = 0;
1282 }
1283 if (r1_bio->behind_bvecs) {
1284 struct bio_vec *bvec;
1285 int j;
1286
1287 /* Yes, I really want the '__' version so that
1288 * we clear any unused pointer in the io_vec, rather
1289 * than leave them unchanged. This is important
1290 * because when we come to free the pages, we won't
1291 * know the original bi_idx, so we just free
1292 * them all
1293 */
1294 __bio_for_each_segment(bvec, mbio, j, 0)
1295 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1296 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1297 atomic_inc(&r1_bio->behind_remaining);
1298 }
1299
1300 r1_bio->bios[i] = mbio;
1301
1302 mbio->bi_sector = (r1_bio->sector +
1303 conf->mirrors[i].rdev->data_offset);
1304 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1305 mbio->bi_end_io = raid1_end_write_request;
1306 mbio->bi_rw =
1307 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1308 mbio->bi_private = r1_bio;
1309
1310 atomic_inc(&r1_bio->remaining);
1311
1312 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1313 if (cb)
1314 plug = container_of(cb, struct raid1_plug_cb, cb);
1315 else
1316 plug = NULL;
1317 spin_lock_irqsave(&conf->device_lock, flags);
1318 if (plug) {
1319 bio_list_add(&plug->pending, mbio);
1320 plug->pending_cnt++;
1321 } else {
1322 bio_list_add(&conf->pending_bio_list, mbio);
1323 conf->pending_count++;
1324 }
1325 spin_unlock_irqrestore(&conf->device_lock, flags);
1326 if (!plug)
1327 md_wakeup_thread(mddev->thread);
1328 }
1329 /* Mustn't call r1_bio_write_done before this next test,
1330 * as it could result in the bio being freed.
1331 */
1332 if (sectors_handled < (bio->bi_size >> 9)) {
1333 r1_bio_write_done(r1_bio);
1334 /* We need another r1_bio. It has already been counted
1335 * in bio->bi_phys_segments
1336 */
1337 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1338 r1_bio->master_bio = bio;
1339 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1340 r1_bio->state = 0;
1341 r1_bio->mddev = mddev;
1342 r1_bio->sector = bio->bi_sector + sectors_handled;
1343 goto retry_write;
1344 }
1345
1346 r1_bio_write_done(r1_bio);
1347
1348 /* In case raid1d snuck in to freeze_array */
1349 wake_up(&conf->wait_barrier);
1350 }
1351
1352 static void status(struct seq_file *seq, struct mddev *mddev)
1353 {
1354 struct r1conf *conf = mddev->private;
1355 int i;
1356
1357 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1358 conf->raid_disks - mddev->degraded);
1359 rcu_read_lock();
1360 for (i = 0; i < conf->raid_disks; i++) {
1361 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1362 seq_printf(seq, "%s",
1363 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1364 }
1365 rcu_read_unlock();
1366 seq_printf(seq, "]");
1367 }
1368
1369
1370 static void error(struct mddev *mddev, struct md_rdev *rdev)
1371 {
1372 char b[BDEVNAME_SIZE];
1373 struct r1conf *conf = mddev->private;
1374
1375 /*
1376 * If it is not operational, then we have already marked it as dead
1377 * else if it is the last working disks, ignore the error, let the
1378 * next level up know.
1379 * else mark the drive as failed
1380 */
1381 if (test_bit(In_sync, &rdev->flags)
1382 && (conf->raid_disks - mddev->degraded) == 1) {
1383 /*
1384 * Don't fail the drive, act as though we were just a
1385 * normal single drive.
1386 * However don't try a recovery from this drive as
1387 * it is very likely to fail.
1388 */
1389 conf->recovery_disabled = mddev->recovery_disabled;
1390 return;
1391 }
1392 set_bit(Blocked, &rdev->flags);
1393 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1394 unsigned long flags;
1395 spin_lock_irqsave(&conf->device_lock, flags);
1396 mddev->degraded++;
1397 set_bit(Faulty, &rdev->flags);
1398 spin_unlock_irqrestore(&conf->device_lock, flags);
1399 /*
1400 * if recovery is running, make sure it aborts.
1401 */
1402 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1403 } else
1404 set_bit(Faulty, &rdev->flags);
1405 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1406 printk(KERN_ALERT
1407 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1408 "md/raid1:%s: Operation continuing on %d devices.\n",
1409 mdname(mddev), bdevname(rdev->bdev, b),
1410 mdname(mddev), conf->raid_disks - mddev->degraded);
1411 }
1412
1413 static void print_conf(struct r1conf *conf)
1414 {
1415 int i;
1416
1417 printk(KERN_DEBUG "RAID1 conf printout:\n");
1418 if (!conf) {
1419 printk(KERN_DEBUG "(!conf)\n");
1420 return;
1421 }
1422 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1423 conf->raid_disks);
1424
1425 rcu_read_lock();
1426 for (i = 0; i < conf->raid_disks; i++) {
1427 char b[BDEVNAME_SIZE];
1428 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1429 if (rdev)
1430 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1431 i, !test_bit(In_sync, &rdev->flags),
1432 !test_bit(Faulty, &rdev->flags),
1433 bdevname(rdev->bdev,b));
1434 }
1435 rcu_read_unlock();
1436 }
1437
1438 static void close_sync(struct r1conf *conf)
1439 {
1440 wait_barrier(conf);
1441 allow_barrier(conf);
1442
1443 mempool_destroy(conf->r1buf_pool);
1444 conf->r1buf_pool = NULL;
1445 }
1446
1447 static int raid1_spare_active(struct mddev *mddev)
1448 {
1449 int i;
1450 struct r1conf *conf = mddev->private;
1451 int count = 0;
1452 unsigned long flags;
1453
1454 /*
1455 * Find all failed disks within the RAID1 configuration
1456 * and mark them readable.
1457 * Called under mddev lock, so rcu protection not needed.
1458 */
1459 for (i = 0; i < conf->raid_disks; i++) {
1460 struct md_rdev *rdev = conf->mirrors[i].rdev;
1461 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1462 if (repl
1463 && repl->recovery_offset == MaxSector
1464 && !test_bit(Faulty, &repl->flags)
1465 && !test_and_set_bit(In_sync, &repl->flags)) {
1466 /* replacement has just become active */
1467 if (!rdev ||
1468 !test_and_clear_bit(In_sync, &rdev->flags))
1469 count++;
1470 if (rdev) {
1471 /* Replaced device not technically
1472 * faulty, but we need to be sure
1473 * it gets removed and never re-added
1474 */
1475 set_bit(Faulty, &rdev->flags);
1476 sysfs_notify_dirent_safe(
1477 rdev->sysfs_state);
1478 }
1479 }
1480 if (rdev
1481 && !test_bit(Faulty, &rdev->flags)
1482 && !test_and_set_bit(In_sync, &rdev->flags)) {
1483 count++;
1484 sysfs_notify_dirent_safe(rdev->sysfs_state);
1485 }
1486 }
1487 spin_lock_irqsave(&conf->device_lock, flags);
1488 mddev->degraded -= count;
1489 spin_unlock_irqrestore(&conf->device_lock, flags);
1490
1491 print_conf(conf);
1492 return count;
1493 }
1494
1495
1496 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1497 {
1498 struct r1conf *conf = mddev->private;
1499 int err = -EEXIST;
1500 int mirror = 0;
1501 struct raid1_info *p;
1502 int first = 0;
1503 int last = conf->raid_disks - 1;
1504 struct request_queue *q = bdev_get_queue(rdev->bdev);
1505
1506 if (mddev->recovery_disabled == conf->recovery_disabled)
1507 return -EBUSY;
1508
1509 if (rdev->raid_disk >= 0)
1510 first = last = rdev->raid_disk;
1511
1512 if (q->merge_bvec_fn) {
1513 set_bit(Unmerged, &rdev->flags);
1514 mddev->merge_check_needed = 1;
1515 }
1516
1517 for (mirror = first; mirror <= last; mirror++) {
1518 p = conf->mirrors+mirror;
1519 if (!p->rdev) {
1520
1521 disk_stack_limits(mddev->gendisk, rdev->bdev,
1522 rdev->data_offset << 9);
1523
1524 p->head_position = 0;
1525 rdev->raid_disk = mirror;
1526 err = 0;
1527 /* As all devices are equivalent, we don't need a full recovery
1528 * if this was recently any drive of the array
1529 */
1530 if (rdev->saved_raid_disk < 0)
1531 conf->fullsync = 1;
1532 rcu_assign_pointer(p->rdev, rdev);
1533 break;
1534 }
1535 if (test_bit(WantReplacement, &p->rdev->flags) &&
1536 p[conf->raid_disks].rdev == NULL) {
1537 /* Add this device as a replacement */
1538 clear_bit(In_sync, &rdev->flags);
1539 set_bit(Replacement, &rdev->flags);
1540 rdev->raid_disk = mirror;
1541 err = 0;
1542 conf->fullsync = 1;
1543 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1544 break;
1545 }
1546 }
1547 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1548 /* Some requests might not have seen this new
1549 * merge_bvec_fn. We must wait for them to complete
1550 * before merging the device fully.
1551 * First we make sure any code which has tested
1552 * our function has submitted the request, then
1553 * we wait for all outstanding requests to complete.
1554 */
1555 synchronize_sched();
1556 raise_barrier(conf);
1557 lower_barrier(conf);
1558 clear_bit(Unmerged, &rdev->flags);
1559 }
1560 md_integrity_add_rdev(rdev, mddev);
1561 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1562 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1563 print_conf(conf);
1564 return err;
1565 }
1566
1567 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1568 {
1569 struct r1conf *conf = mddev->private;
1570 int err = 0;
1571 int number = rdev->raid_disk;
1572 struct raid1_info *p = conf->mirrors + number;
1573
1574 if (rdev != p->rdev)
1575 p = conf->mirrors + conf->raid_disks + number;
1576
1577 print_conf(conf);
1578 if (rdev == p->rdev) {
1579 if (test_bit(In_sync, &rdev->flags) ||
1580 atomic_read(&rdev->nr_pending)) {
1581 err = -EBUSY;
1582 goto abort;
1583 }
1584 /* Only remove non-faulty devices if recovery
1585 * is not possible.
1586 */
1587 if (!test_bit(Faulty, &rdev->flags) &&
1588 mddev->recovery_disabled != conf->recovery_disabled &&
1589 mddev->degraded < conf->raid_disks) {
1590 err = -EBUSY;
1591 goto abort;
1592 }
1593 p->rdev = NULL;
1594 synchronize_rcu();
1595 if (atomic_read(&rdev->nr_pending)) {
1596 /* lost the race, try later */
1597 err = -EBUSY;
1598 p->rdev = rdev;
1599 goto abort;
1600 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1601 /* We just removed a device that is being replaced.
1602 * Move down the replacement. We drain all IO before
1603 * doing this to avoid confusion.
1604 */
1605 struct md_rdev *repl =
1606 conf->mirrors[conf->raid_disks + number].rdev;
1607 raise_barrier(conf);
1608 clear_bit(Replacement, &repl->flags);
1609 p->rdev = repl;
1610 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1611 lower_barrier(conf);
1612 clear_bit(WantReplacement, &rdev->flags);
1613 } else
1614 clear_bit(WantReplacement, &rdev->flags);
1615 err = md_integrity_register(mddev);
1616 }
1617 abort:
1618
1619 print_conf(conf);
1620 return err;
1621 }
1622
1623
1624 static void end_sync_read(struct bio *bio, int error)
1625 {
1626 struct r1bio *r1_bio = bio->bi_private;
1627
1628 update_head_pos(r1_bio->read_disk, r1_bio);
1629
1630 /*
1631 * we have read a block, now it needs to be re-written,
1632 * or re-read if the read failed.
1633 * We don't do much here, just schedule handling by raid1d
1634 */
1635 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1636 set_bit(R1BIO_Uptodate, &r1_bio->state);
1637
1638 if (atomic_dec_and_test(&r1_bio->remaining))
1639 reschedule_retry(r1_bio);
1640 }
1641
1642 static void end_sync_write(struct bio *bio, int error)
1643 {
1644 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1645 struct r1bio *r1_bio = bio->bi_private;
1646 struct mddev *mddev = r1_bio->mddev;
1647 struct r1conf *conf = mddev->private;
1648 int mirror=0;
1649 sector_t first_bad;
1650 int bad_sectors;
1651
1652 mirror = find_bio_disk(r1_bio, bio);
1653
1654 if (!uptodate) {
1655 sector_t sync_blocks = 0;
1656 sector_t s = r1_bio->sector;
1657 long sectors_to_go = r1_bio->sectors;
1658 /* make sure these bits doesn't get cleared. */
1659 do {
1660 bitmap_end_sync(mddev->bitmap, s,
1661 &sync_blocks, 1);
1662 s += sync_blocks;
1663 sectors_to_go -= sync_blocks;
1664 } while (sectors_to_go > 0);
1665 set_bit(WriteErrorSeen,
1666 &conf->mirrors[mirror].rdev->flags);
1667 if (!test_and_set_bit(WantReplacement,
1668 &conf->mirrors[mirror].rdev->flags))
1669 set_bit(MD_RECOVERY_NEEDED, &
1670 mddev->recovery);
1671 set_bit(R1BIO_WriteError, &r1_bio->state);
1672 } else if (is_badblock(conf->mirrors[mirror].rdev,
1673 r1_bio->sector,
1674 r1_bio->sectors,
1675 &first_bad, &bad_sectors) &&
1676 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1677 r1_bio->sector,
1678 r1_bio->sectors,
1679 &first_bad, &bad_sectors)
1680 )
1681 set_bit(R1BIO_MadeGood, &r1_bio->state);
1682
1683 if (atomic_dec_and_test(&r1_bio->remaining)) {
1684 int s = r1_bio->sectors;
1685 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1686 test_bit(R1BIO_WriteError, &r1_bio->state))
1687 reschedule_retry(r1_bio);
1688 else {
1689 put_buf(r1_bio);
1690 md_done_sync(mddev, s, uptodate);
1691 }
1692 }
1693 }
1694
1695 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1696 int sectors, struct page *page, int rw)
1697 {
1698 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1699 /* success */
1700 return 1;
1701 if (rw == WRITE) {
1702 set_bit(WriteErrorSeen, &rdev->flags);
1703 if (!test_and_set_bit(WantReplacement,
1704 &rdev->flags))
1705 set_bit(MD_RECOVERY_NEEDED, &
1706 rdev->mddev->recovery);
1707 }
1708 /* need to record an error - either for the block or the device */
1709 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1710 md_error(rdev->mddev, rdev);
1711 return 0;
1712 }
1713
1714 static int fix_sync_read_error(struct r1bio *r1_bio)
1715 {
1716 /* Try some synchronous reads of other devices to get
1717 * good data, much like with normal read errors. Only
1718 * read into the pages we already have so we don't
1719 * need to re-issue the read request.
1720 * We don't need to freeze the array, because being in an
1721 * active sync request, there is no normal IO, and
1722 * no overlapping syncs.
1723 * We don't need to check is_badblock() again as we
1724 * made sure that anything with a bad block in range
1725 * will have bi_end_io clear.
1726 */
1727 struct mddev *mddev = r1_bio->mddev;
1728 struct r1conf *conf = mddev->private;
1729 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1730 sector_t sect = r1_bio->sector;
1731 int sectors = r1_bio->sectors;
1732 int idx = 0;
1733
1734 while(sectors) {
1735 int s = sectors;
1736 int d = r1_bio->read_disk;
1737 int success = 0;
1738 struct md_rdev *rdev;
1739 int start;
1740
1741 if (s > (PAGE_SIZE>>9))
1742 s = PAGE_SIZE >> 9;
1743 do {
1744 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1745 /* No rcu protection needed here devices
1746 * can only be removed when no resync is
1747 * active, and resync is currently active
1748 */
1749 rdev = conf->mirrors[d].rdev;
1750 if (sync_page_io(rdev, sect, s<<9,
1751 bio->bi_io_vec[idx].bv_page,
1752 READ, false)) {
1753 success = 1;
1754 break;
1755 }
1756 }
1757 d++;
1758 if (d == conf->raid_disks * 2)
1759 d = 0;
1760 } while (!success && d != r1_bio->read_disk);
1761
1762 if (!success) {
1763 char b[BDEVNAME_SIZE];
1764 int abort = 0;
1765 /* Cannot read from anywhere, this block is lost.
1766 * Record a bad block on each device. If that doesn't
1767 * work just disable and interrupt the recovery.
1768 * Don't fail devices as that won't really help.
1769 */
1770 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1771 " for block %llu\n",
1772 mdname(mddev),
1773 bdevname(bio->bi_bdev, b),
1774 (unsigned long long)r1_bio->sector);
1775 for (d = 0; d < conf->raid_disks * 2; d++) {
1776 rdev = conf->mirrors[d].rdev;
1777 if (!rdev || test_bit(Faulty, &rdev->flags))
1778 continue;
1779 if (!rdev_set_badblocks(rdev, sect, s, 0))
1780 abort = 1;
1781 }
1782 if (abort) {
1783 conf->recovery_disabled =
1784 mddev->recovery_disabled;
1785 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1786 md_done_sync(mddev, r1_bio->sectors, 0);
1787 put_buf(r1_bio);
1788 return 0;
1789 }
1790 /* Try next page */
1791 sectors -= s;
1792 sect += s;
1793 idx++;
1794 continue;
1795 }
1796
1797 start = d;
1798 /* write it back and re-read */
1799 while (d != r1_bio->read_disk) {
1800 if (d == 0)
1801 d = conf->raid_disks * 2;
1802 d--;
1803 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1804 continue;
1805 rdev = conf->mirrors[d].rdev;
1806 if (r1_sync_page_io(rdev, sect, s,
1807 bio->bi_io_vec[idx].bv_page,
1808 WRITE) == 0) {
1809 r1_bio->bios[d]->bi_end_io = NULL;
1810 rdev_dec_pending(rdev, mddev);
1811 }
1812 }
1813 d = start;
1814 while (d != r1_bio->read_disk) {
1815 if (d == 0)
1816 d = conf->raid_disks * 2;
1817 d--;
1818 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1819 continue;
1820 rdev = conf->mirrors[d].rdev;
1821 if (r1_sync_page_io(rdev, sect, s,
1822 bio->bi_io_vec[idx].bv_page,
1823 READ) != 0)
1824 atomic_add(s, &rdev->corrected_errors);
1825 }
1826 sectors -= s;
1827 sect += s;
1828 idx ++;
1829 }
1830 set_bit(R1BIO_Uptodate, &r1_bio->state);
1831 set_bit(BIO_UPTODATE, &bio->bi_flags);
1832 return 1;
1833 }
1834
1835 static int process_checks(struct r1bio *r1_bio)
1836 {
1837 /* We have read all readable devices. If we haven't
1838 * got the block, then there is no hope left.
1839 * If we have, then we want to do a comparison
1840 * and skip the write if everything is the same.
1841 * If any blocks failed to read, then we need to
1842 * attempt an over-write
1843 */
1844 struct mddev *mddev = r1_bio->mddev;
1845 struct r1conf *conf = mddev->private;
1846 int primary;
1847 int i;
1848 int vcnt;
1849
1850 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1851 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1852 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1853 r1_bio->bios[primary]->bi_end_io = NULL;
1854 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1855 break;
1856 }
1857 r1_bio->read_disk = primary;
1858 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1859 for (i = 0; i < conf->raid_disks * 2; i++) {
1860 int j;
1861 struct bio *pbio = r1_bio->bios[primary];
1862 struct bio *sbio = r1_bio->bios[i];
1863 int size;
1864
1865 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1866 continue;
1867
1868 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1869 for (j = vcnt; j-- ; ) {
1870 struct page *p, *s;
1871 p = pbio->bi_io_vec[j].bv_page;
1872 s = sbio->bi_io_vec[j].bv_page;
1873 if (memcmp(page_address(p),
1874 page_address(s),
1875 sbio->bi_io_vec[j].bv_len))
1876 break;
1877 }
1878 } else
1879 j = 0;
1880 if (j >= 0)
1881 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1882 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1883 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1884 /* No need to write to this device. */
1885 sbio->bi_end_io = NULL;
1886 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1887 continue;
1888 }
1889 /* fixup the bio for reuse */
1890 sbio->bi_vcnt = vcnt;
1891 sbio->bi_size = r1_bio->sectors << 9;
1892 sbio->bi_idx = 0;
1893 sbio->bi_phys_segments = 0;
1894 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1895 sbio->bi_flags |= 1 << BIO_UPTODATE;
1896 sbio->bi_next = NULL;
1897 sbio->bi_sector = r1_bio->sector +
1898 conf->mirrors[i].rdev->data_offset;
1899 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1900 size = sbio->bi_size;
1901 for (j = 0; j < vcnt ; j++) {
1902 struct bio_vec *bi;
1903 bi = &sbio->bi_io_vec[j];
1904 bi->bv_offset = 0;
1905 if (size > PAGE_SIZE)
1906 bi->bv_len = PAGE_SIZE;
1907 else
1908 bi->bv_len = size;
1909 size -= PAGE_SIZE;
1910 memcpy(page_address(bi->bv_page),
1911 page_address(pbio->bi_io_vec[j].bv_page),
1912 PAGE_SIZE);
1913 }
1914 }
1915 return 0;
1916 }
1917
1918 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1919 {
1920 struct r1conf *conf = mddev->private;
1921 int i;
1922 int disks = conf->raid_disks * 2;
1923 struct bio *bio, *wbio;
1924
1925 bio = r1_bio->bios[r1_bio->read_disk];
1926
1927 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1928 /* ouch - failed to read all of that. */
1929 if (!fix_sync_read_error(r1_bio))
1930 return;
1931
1932 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1933 if (process_checks(r1_bio) < 0)
1934 return;
1935 /*
1936 * schedule writes
1937 */
1938 atomic_set(&r1_bio->remaining, 1);
1939 for (i = 0; i < disks ; i++) {
1940 wbio = r1_bio->bios[i];
1941 if (wbio->bi_end_io == NULL ||
1942 (wbio->bi_end_io == end_sync_read &&
1943 (i == r1_bio->read_disk ||
1944 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1945 continue;
1946
1947 wbio->bi_rw = WRITE;
1948 wbio->bi_end_io = end_sync_write;
1949 atomic_inc(&r1_bio->remaining);
1950 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1951
1952 generic_make_request(wbio);
1953 }
1954
1955 if (atomic_dec_and_test(&r1_bio->remaining)) {
1956 /* if we're here, all write(s) have completed, so clean up */
1957 int s = r1_bio->sectors;
1958 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1959 test_bit(R1BIO_WriteError, &r1_bio->state))
1960 reschedule_retry(r1_bio);
1961 else {
1962 put_buf(r1_bio);
1963 md_done_sync(mddev, s, 1);
1964 }
1965 }
1966 }
1967
1968 /*
1969 * This is a kernel thread which:
1970 *
1971 * 1. Retries failed read operations on working mirrors.
1972 * 2. Updates the raid superblock when problems encounter.
1973 * 3. Performs writes following reads for array synchronising.
1974 */
1975
1976 static void fix_read_error(struct r1conf *conf, int read_disk,
1977 sector_t sect, int sectors)
1978 {
1979 struct mddev *mddev = conf->mddev;
1980 while(sectors) {
1981 int s = sectors;
1982 int d = read_disk;
1983 int success = 0;
1984 int start;
1985 struct md_rdev *rdev;
1986
1987 if (s > (PAGE_SIZE>>9))
1988 s = PAGE_SIZE >> 9;
1989
1990 do {
1991 /* Note: no rcu protection needed here
1992 * as this is synchronous in the raid1d thread
1993 * which is the thread that might remove
1994 * a device. If raid1d ever becomes multi-threaded....
1995 */
1996 sector_t first_bad;
1997 int bad_sectors;
1998
1999 rdev = conf->mirrors[d].rdev;
2000 if (rdev &&
2001 (test_bit(In_sync, &rdev->flags) ||
2002 (!test_bit(Faulty, &rdev->flags) &&
2003 rdev->recovery_offset >= sect + s)) &&
2004 is_badblock(rdev, sect, s,
2005 &first_bad, &bad_sectors) == 0 &&
2006 sync_page_io(rdev, sect, s<<9,
2007 conf->tmppage, READ, false))
2008 success = 1;
2009 else {
2010 d++;
2011 if (d == conf->raid_disks * 2)
2012 d = 0;
2013 }
2014 } while (!success && d != read_disk);
2015
2016 if (!success) {
2017 /* Cannot read from anywhere - mark it bad */
2018 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2019 if (!rdev_set_badblocks(rdev, sect, s, 0))
2020 md_error(mddev, rdev);
2021 break;
2022 }
2023 /* write it back and re-read */
2024 start = d;
2025 while (d != read_disk) {
2026 if (d==0)
2027 d = conf->raid_disks * 2;
2028 d--;
2029 rdev = conf->mirrors[d].rdev;
2030 if (rdev &&
2031 test_bit(In_sync, &rdev->flags))
2032 r1_sync_page_io(rdev, sect, s,
2033 conf->tmppage, WRITE);
2034 }
2035 d = start;
2036 while (d != read_disk) {
2037 char b[BDEVNAME_SIZE];
2038 if (d==0)
2039 d = conf->raid_disks * 2;
2040 d--;
2041 rdev = conf->mirrors[d].rdev;
2042 if (rdev &&
2043 test_bit(In_sync, &rdev->flags)) {
2044 if (r1_sync_page_io(rdev, sect, s,
2045 conf->tmppage, READ)) {
2046 atomic_add(s, &rdev->corrected_errors);
2047 printk(KERN_INFO
2048 "md/raid1:%s: read error corrected "
2049 "(%d sectors at %llu on %s)\n",
2050 mdname(mddev), s,
2051 (unsigned long long)(sect +
2052 rdev->data_offset),
2053 bdevname(rdev->bdev, b));
2054 }
2055 }
2056 }
2057 sectors -= s;
2058 sect += s;
2059 }
2060 }
2061
2062 static void bi_complete(struct bio *bio, int error)
2063 {
2064 complete((struct completion *)bio->bi_private);
2065 }
2066
2067 static int submit_bio_wait(int rw, struct bio *bio)
2068 {
2069 struct completion event;
2070 rw |= REQ_SYNC;
2071
2072 init_completion(&event);
2073 bio->bi_private = &event;
2074 bio->bi_end_io = bi_complete;
2075 submit_bio(rw, bio);
2076 wait_for_completion(&event);
2077
2078 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2079 }
2080
2081 static int narrow_write_error(struct r1bio *r1_bio, int i)
2082 {
2083 struct mddev *mddev = r1_bio->mddev;
2084 struct r1conf *conf = mddev->private;
2085 struct md_rdev *rdev = conf->mirrors[i].rdev;
2086 int vcnt, idx;
2087 struct bio_vec *vec;
2088
2089 /* bio has the data to be written to device 'i' where
2090 * we just recently had a write error.
2091 * We repeatedly clone the bio and trim down to one block,
2092 * then try the write. Where the write fails we record
2093 * a bad block.
2094 * It is conceivable that the bio doesn't exactly align with
2095 * blocks. We must handle this somehow.
2096 *
2097 * We currently own a reference on the rdev.
2098 */
2099
2100 int block_sectors;
2101 sector_t sector;
2102 int sectors;
2103 int sect_to_write = r1_bio->sectors;
2104 int ok = 1;
2105
2106 if (rdev->badblocks.shift < 0)
2107 return 0;
2108
2109 block_sectors = 1 << rdev->badblocks.shift;
2110 sector = r1_bio->sector;
2111 sectors = ((sector + block_sectors)
2112 & ~(sector_t)(block_sectors - 1))
2113 - sector;
2114
2115 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2116 vcnt = r1_bio->behind_page_count;
2117 vec = r1_bio->behind_bvecs;
2118 idx = 0;
2119 while (vec[idx].bv_page == NULL)
2120 idx++;
2121 } else {
2122 vcnt = r1_bio->master_bio->bi_vcnt;
2123 vec = r1_bio->master_bio->bi_io_vec;
2124 idx = r1_bio->master_bio->bi_idx;
2125 }
2126 while (sect_to_write) {
2127 struct bio *wbio;
2128 if (sectors > sect_to_write)
2129 sectors = sect_to_write;
2130 /* Write at 'sector' for 'sectors'*/
2131
2132 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2133 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2134 wbio->bi_sector = r1_bio->sector;
2135 wbio->bi_rw = WRITE;
2136 wbio->bi_vcnt = vcnt;
2137 wbio->bi_size = r1_bio->sectors << 9;
2138 wbio->bi_idx = idx;
2139
2140 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2141 wbio->bi_sector += rdev->data_offset;
2142 wbio->bi_bdev = rdev->bdev;
2143 if (submit_bio_wait(WRITE, wbio) == 0)
2144 /* failure! */
2145 ok = rdev_set_badblocks(rdev, sector,
2146 sectors, 0)
2147 && ok;
2148
2149 bio_put(wbio);
2150 sect_to_write -= sectors;
2151 sector += sectors;
2152 sectors = block_sectors;
2153 }
2154 return ok;
2155 }
2156
2157 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2158 {
2159 int m;
2160 int s = r1_bio->sectors;
2161 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2162 struct md_rdev *rdev = conf->mirrors[m].rdev;
2163 struct bio *bio = r1_bio->bios[m];
2164 if (bio->bi_end_io == NULL)
2165 continue;
2166 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2167 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2168 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2169 }
2170 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2171 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2172 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2173 md_error(conf->mddev, rdev);
2174 }
2175 }
2176 put_buf(r1_bio);
2177 md_done_sync(conf->mddev, s, 1);
2178 }
2179
2180 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2181 {
2182 int m;
2183 for (m = 0; m < conf->raid_disks * 2 ; m++)
2184 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2185 struct md_rdev *rdev = conf->mirrors[m].rdev;
2186 rdev_clear_badblocks(rdev,
2187 r1_bio->sector,
2188 r1_bio->sectors, 0);
2189 rdev_dec_pending(rdev, conf->mddev);
2190 } else if (r1_bio->bios[m] != NULL) {
2191 /* This drive got a write error. We need to
2192 * narrow down and record precise write
2193 * errors.
2194 */
2195 if (!narrow_write_error(r1_bio, m)) {
2196 md_error(conf->mddev,
2197 conf->mirrors[m].rdev);
2198 /* an I/O failed, we can't clear the bitmap */
2199 set_bit(R1BIO_Degraded, &r1_bio->state);
2200 }
2201 rdev_dec_pending(conf->mirrors[m].rdev,
2202 conf->mddev);
2203 }
2204 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2205 close_write(r1_bio);
2206 raid_end_bio_io(r1_bio);
2207 }
2208
2209 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2210 {
2211 int disk;
2212 int max_sectors;
2213 struct mddev *mddev = conf->mddev;
2214 struct bio *bio;
2215 char b[BDEVNAME_SIZE];
2216 struct md_rdev *rdev;
2217
2218 clear_bit(R1BIO_ReadError, &r1_bio->state);
2219 /* we got a read error. Maybe the drive is bad. Maybe just
2220 * the block and we can fix it.
2221 * We freeze all other IO, and try reading the block from
2222 * other devices. When we find one, we re-write
2223 * and check it that fixes the read error.
2224 * This is all done synchronously while the array is
2225 * frozen
2226 */
2227 if (mddev->ro == 0) {
2228 freeze_array(conf);
2229 fix_read_error(conf, r1_bio->read_disk,
2230 r1_bio->sector, r1_bio->sectors);
2231 unfreeze_array(conf);
2232 } else
2233 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2234 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2235
2236 bio = r1_bio->bios[r1_bio->read_disk];
2237 bdevname(bio->bi_bdev, b);
2238 read_more:
2239 disk = read_balance(conf, r1_bio, &max_sectors);
2240 if (disk == -1) {
2241 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2242 " read error for block %llu\n",
2243 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2244 raid_end_bio_io(r1_bio);
2245 } else {
2246 const unsigned long do_sync
2247 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2248 if (bio) {
2249 r1_bio->bios[r1_bio->read_disk] =
2250 mddev->ro ? IO_BLOCKED : NULL;
2251 bio_put(bio);
2252 }
2253 r1_bio->read_disk = disk;
2254 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2255 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2256 r1_bio->bios[r1_bio->read_disk] = bio;
2257 rdev = conf->mirrors[disk].rdev;
2258 printk_ratelimited(KERN_ERR
2259 "md/raid1:%s: redirecting sector %llu"
2260 " to other mirror: %s\n",
2261 mdname(mddev),
2262 (unsigned long long)r1_bio->sector,
2263 bdevname(rdev->bdev, b));
2264 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2265 bio->bi_bdev = rdev->bdev;
2266 bio->bi_end_io = raid1_end_read_request;
2267 bio->bi_rw = READ | do_sync;
2268 bio->bi_private = r1_bio;
2269 if (max_sectors < r1_bio->sectors) {
2270 /* Drat - have to split this up more */
2271 struct bio *mbio = r1_bio->master_bio;
2272 int sectors_handled = (r1_bio->sector + max_sectors
2273 - mbio->bi_sector);
2274 r1_bio->sectors = max_sectors;
2275 spin_lock_irq(&conf->device_lock);
2276 if (mbio->bi_phys_segments == 0)
2277 mbio->bi_phys_segments = 2;
2278 else
2279 mbio->bi_phys_segments++;
2280 spin_unlock_irq(&conf->device_lock);
2281 generic_make_request(bio);
2282 bio = NULL;
2283
2284 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2285
2286 r1_bio->master_bio = mbio;
2287 r1_bio->sectors = (mbio->bi_size >> 9)
2288 - sectors_handled;
2289 r1_bio->state = 0;
2290 set_bit(R1BIO_ReadError, &r1_bio->state);
2291 r1_bio->mddev = mddev;
2292 r1_bio->sector = mbio->bi_sector + sectors_handled;
2293
2294 goto read_more;
2295 } else
2296 generic_make_request(bio);
2297 }
2298 }
2299
2300 static void raid1d(struct md_thread *thread)
2301 {
2302 struct mddev *mddev = thread->mddev;
2303 struct r1bio *r1_bio;
2304 unsigned long flags;
2305 struct r1conf *conf = mddev->private;
2306 struct list_head *head = &conf->retry_list;
2307 struct blk_plug plug;
2308
2309 md_check_recovery(mddev);
2310
2311 blk_start_plug(&plug);
2312 for (;;) {
2313
2314 flush_pending_writes(conf);
2315
2316 spin_lock_irqsave(&conf->device_lock, flags);
2317 if (list_empty(head)) {
2318 spin_unlock_irqrestore(&conf->device_lock, flags);
2319 break;
2320 }
2321 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2322 list_del(head->prev);
2323 conf->nr_queued--;
2324 spin_unlock_irqrestore(&conf->device_lock, flags);
2325
2326 mddev = r1_bio->mddev;
2327 conf = mddev->private;
2328 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2329 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2330 test_bit(R1BIO_WriteError, &r1_bio->state))
2331 handle_sync_write_finished(conf, r1_bio);
2332 else
2333 sync_request_write(mddev, r1_bio);
2334 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2335 test_bit(R1BIO_WriteError, &r1_bio->state))
2336 handle_write_finished(conf, r1_bio);
2337 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2338 handle_read_error(conf, r1_bio);
2339 else
2340 /* just a partial read to be scheduled from separate
2341 * context
2342 */
2343 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2344
2345 cond_resched();
2346 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2347 md_check_recovery(mddev);
2348 }
2349 blk_finish_plug(&plug);
2350 }
2351
2352
2353 static int init_resync(struct r1conf *conf)
2354 {
2355 int buffs;
2356
2357 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2358 BUG_ON(conf->r1buf_pool);
2359 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2360 conf->poolinfo);
2361 if (!conf->r1buf_pool)
2362 return -ENOMEM;
2363 conf->next_resync = 0;
2364 return 0;
2365 }
2366
2367 /*
2368 * perform a "sync" on one "block"
2369 *
2370 * We need to make sure that no normal I/O request - particularly write
2371 * requests - conflict with active sync requests.
2372 *
2373 * This is achieved by tracking pending requests and a 'barrier' concept
2374 * that can be installed to exclude normal IO requests.
2375 */
2376
2377 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2378 {
2379 struct r1conf *conf = mddev->private;
2380 struct r1bio *r1_bio;
2381 struct bio *bio;
2382 sector_t max_sector, nr_sectors;
2383 int disk = -1;
2384 int i;
2385 int wonly = -1;
2386 int write_targets = 0, read_targets = 0;
2387 sector_t sync_blocks;
2388 int still_degraded = 0;
2389 int good_sectors = RESYNC_SECTORS;
2390 int min_bad = 0; /* number of sectors that are bad in all devices */
2391
2392 if (!conf->r1buf_pool)
2393 if (init_resync(conf))
2394 return 0;
2395
2396 max_sector = mddev->dev_sectors;
2397 if (sector_nr >= max_sector) {
2398 /* If we aborted, we need to abort the
2399 * sync on the 'current' bitmap chunk (there will
2400 * only be one in raid1 resync.
2401 * We can find the current addess in mddev->curr_resync
2402 */
2403 if (mddev->curr_resync < max_sector) /* aborted */
2404 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2405 &sync_blocks, 1);
2406 else /* completed sync */
2407 conf->fullsync = 0;
2408
2409 bitmap_close_sync(mddev->bitmap);
2410 close_sync(conf);
2411 return 0;
2412 }
2413
2414 if (mddev->bitmap == NULL &&
2415 mddev->recovery_cp == MaxSector &&
2416 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2417 conf->fullsync == 0) {
2418 *skipped = 1;
2419 return max_sector - sector_nr;
2420 }
2421 /* before building a request, check if we can skip these blocks..
2422 * This call the bitmap_start_sync doesn't actually record anything
2423 */
2424 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2425 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2426 /* We can skip this block, and probably several more */
2427 *skipped = 1;
2428 return sync_blocks;
2429 }
2430 /*
2431 * If there is non-resync activity waiting for a turn,
2432 * and resync is going fast enough,
2433 * then let it though before starting on this new sync request.
2434 */
2435 if (!go_faster && conf->nr_waiting)
2436 msleep_interruptible(1000);
2437
2438 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2439 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2440 raise_barrier(conf);
2441
2442 conf->next_resync = sector_nr;
2443
2444 rcu_read_lock();
2445 /*
2446 * If we get a correctably read error during resync or recovery,
2447 * we might want to read from a different device. So we
2448 * flag all drives that could conceivably be read from for READ,
2449 * and any others (which will be non-In_sync devices) for WRITE.
2450 * If a read fails, we try reading from something else for which READ
2451 * is OK.
2452 */
2453
2454 r1_bio->mddev = mddev;
2455 r1_bio->sector = sector_nr;
2456 r1_bio->state = 0;
2457 set_bit(R1BIO_IsSync, &r1_bio->state);
2458
2459 for (i = 0; i < conf->raid_disks * 2; i++) {
2460 struct md_rdev *rdev;
2461 bio = r1_bio->bios[i];
2462
2463 /* take from bio_init */
2464 bio->bi_next = NULL;
2465 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2466 bio->bi_flags |= 1 << BIO_UPTODATE;
2467 bio->bi_rw = READ;
2468 bio->bi_vcnt = 0;
2469 bio->bi_idx = 0;
2470 bio->bi_phys_segments = 0;
2471 bio->bi_size = 0;
2472 bio->bi_end_io = NULL;
2473 bio->bi_private = NULL;
2474
2475 rdev = rcu_dereference(conf->mirrors[i].rdev);
2476 if (rdev == NULL ||
2477 test_bit(Faulty, &rdev->flags)) {
2478 if (i < conf->raid_disks)
2479 still_degraded = 1;
2480 } else if (!test_bit(In_sync, &rdev->flags)) {
2481 bio->bi_rw = WRITE;
2482 bio->bi_end_io = end_sync_write;
2483 write_targets ++;
2484 } else {
2485 /* may need to read from here */
2486 sector_t first_bad = MaxSector;
2487 int bad_sectors;
2488
2489 if (is_badblock(rdev, sector_nr, good_sectors,
2490 &first_bad, &bad_sectors)) {
2491 if (first_bad > sector_nr)
2492 good_sectors = first_bad - sector_nr;
2493 else {
2494 bad_sectors -= (sector_nr - first_bad);
2495 if (min_bad == 0 ||
2496 min_bad > bad_sectors)
2497 min_bad = bad_sectors;
2498 }
2499 }
2500 if (sector_nr < first_bad) {
2501 if (test_bit(WriteMostly, &rdev->flags)) {
2502 if (wonly < 0)
2503 wonly = i;
2504 } else {
2505 if (disk < 0)
2506 disk = i;
2507 }
2508 bio->bi_rw = READ;
2509 bio->bi_end_io = end_sync_read;
2510 read_targets++;
2511 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2512 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2513 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2514 /*
2515 * The device is suitable for reading (InSync),
2516 * but has bad block(s) here. Let's try to correct them,
2517 * if we are doing resync or repair. Otherwise, leave
2518 * this device alone for this sync request.
2519 */
2520 bio->bi_rw = WRITE;
2521 bio->bi_end_io = end_sync_write;
2522 write_targets++;
2523 }
2524 }
2525 if (bio->bi_end_io) {
2526 atomic_inc(&rdev->nr_pending);
2527 bio->bi_sector = sector_nr + rdev->data_offset;
2528 bio->bi_bdev = rdev->bdev;
2529 bio->bi_private = r1_bio;
2530 }
2531 }
2532 rcu_read_unlock();
2533 if (disk < 0)
2534 disk = wonly;
2535 r1_bio->read_disk = disk;
2536
2537 if (read_targets == 0 && min_bad > 0) {
2538 /* These sectors are bad on all InSync devices, so we
2539 * need to mark them bad on all write targets
2540 */
2541 int ok = 1;
2542 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2543 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2544 struct md_rdev *rdev = conf->mirrors[i].rdev;
2545 ok = rdev_set_badblocks(rdev, sector_nr,
2546 min_bad, 0
2547 ) && ok;
2548 }
2549 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2550 *skipped = 1;
2551 put_buf(r1_bio);
2552
2553 if (!ok) {
2554 /* Cannot record the badblocks, so need to
2555 * abort the resync.
2556 * If there are multiple read targets, could just
2557 * fail the really bad ones ???
2558 */
2559 conf->recovery_disabled = mddev->recovery_disabled;
2560 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2561 return 0;
2562 } else
2563 return min_bad;
2564
2565 }
2566 if (min_bad > 0 && min_bad < good_sectors) {
2567 /* only resync enough to reach the next bad->good
2568 * transition */
2569 good_sectors = min_bad;
2570 }
2571
2572 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2573 /* extra read targets are also write targets */
2574 write_targets += read_targets-1;
2575
2576 if (write_targets == 0 || read_targets == 0) {
2577 /* There is nowhere to write, so all non-sync
2578 * drives must be failed - so we are finished
2579 */
2580 sector_t rv;
2581 if (min_bad > 0)
2582 max_sector = sector_nr + min_bad;
2583 rv = max_sector - sector_nr;
2584 *skipped = 1;
2585 put_buf(r1_bio);
2586 return rv;
2587 }
2588
2589 if (max_sector > mddev->resync_max)
2590 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2591 if (max_sector > sector_nr + good_sectors)
2592 max_sector = sector_nr + good_sectors;
2593 nr_sectors = 0;
2594 sync_blocks = 0;
2595 do {
2596 struct page *page;
2597 int len = PAGE_SIZE;
2598 if (sector_nr + (len>>9) > max_sector)
2599 len = (max_sector - sector_nr) << 9;
2600 if (len == 0)
2601 break;
2602 if (sync_blocks == 0) {
2603 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2604 &sync_blocks, still_degraded) &&
2605 !conf->fullsync &&
2606 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2607 break;
2608 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2609 if ((len >> 9) > sync_blocks)
2610 len = sync_blocks<<9;
2611 }
2612
2613 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2614 bio = r1_bio->bios[i];
2615 if (bio->bi_end_io) {
2616 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2617 if (bio_add_page(bio, page, len, 0) == 0) {
2618 /* stop here */
2619 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2620 while (i > 0) {
2621 i--;
2622 bio = r1_bio->bios[i];
2623 if (bio->bi_end_io==NULL)
2624 continue;
2625 /* remove last page from this bio */
2626 bio->bi_vcnt--;
2627 bio->bi_size -= len;
2628 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2629 }
2630 goto bio_full;
2631 }
2632 }
2633 }
2634 nr_sectors += len>>9;
2635 sector_nr += len>>9;
2636 sync_blocks -= (len>>9);
2637 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2638 bio_full:
2639 r1_bio->sectors = nr_sectors;
2640
2641 /* For a user-requested sync, we read all readable devices and do a
2642 * compare
2643 */
2644 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2645 atomic_set(&r1_bio->remaining, read_targets);
2646 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2647 bio = r1_bio->bios[i];
2648 if (bio->bi_end_io == end_sync_read) {
2649 read_targets--;
2650 md_sync_acct(bio->bi_bdev, nr_sectors);
2651 generic_make_request(bio);
2652 }
2653 }
2654 } else {
2655 atomic_set(&r1_bio->remaining, 1);
2656 bio = r1_bio->bios[r1_bio->read_disk];
2657 md_sync_acct(bio->bi_bdev, nr_sectors);
2658 generic_make_request(bio);
2659
2660 }
2661 return nr_sectors;
2662 }
2663
2664 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2665 {
2666 if (sectors)
2667 return sectors;
2668
2669 return mddev->dev_sectors;
2670 }
2671
2672 static struct r1conf *setup_conf(struct mddev *mddev)
2673 {
2674 struct r1conf *conf;
2675 int i;
2676 struct raid1_info *disk;
2677 struct md_rdev *rdev;
2678 int err = -ENOMEM;
2679
2680 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2681 if (!conf)
2682 goto abort;
2683
2684 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2685 * mddev->raid_disks * 2,
2686 GFP_KERNEL);
2687 if (!conf->mirrors)
2688 goto abort;
2689
2690 conf->tmppage = alloc_page(GFP_KERNEL);
2691 if (!conf->tmppage)
2692 goto abort;
2693
2694 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2695 if (!conf->poolinfo)
2696 goto abort;
2697 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2698 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2699 r1bio_pool_free,
2700 conf->poolinfo);
2701 if (!conf->r1bio_pool)
2702 goto abort;
2703
2704 conf->poolinfo->mddev = mddev;
2705
2706 err = -EINVAL;
2707 spin_lock_init(&conf->device_lock);
2708 rdev_for_each(rdev, mddev) {
2709 struct request_queue *q;
2710 int disk_idx = rdev->raid_disk;
2711 if (disk_idx >= mddev->raid_disks
2712 || disk_idx < 0)
2713 continue;
2714 if (test_bit(Replacement, &rdev->flags))
2715 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2716 else
2717 disk = conf->mirrors + disk_idx;
2718
2719 if (disk->rdev)
2720 goto abort;
2721 disk->rdev = rdev;
2722 q = bdev_get_queue(rdev->bdev);
2723 if (q->merge_bvec_fn)
2724 mddev->merge_check_needed = 1;
2725
2726 disk->head_position = 0;
2727 disk->seq_start = MaxSector;
2728 }
2729 conf->raid_disks = mddev->raid_disks;
2730 conf->mddev = mddev;
2731 INIT_LIST_HEAD(&conf->retry_list);
2732
2733 spin_lock_init(&conf->resync_lock);
2734 init_waitqueue_head(&conf->wait_barrier);
2735
2736 bio_list_init(&conf->pending_bio_list);
2737 conf->pending_count = 0;
2738 conf->recovery_disabled = mddev->recovery_disabled - 1;
2739
2740 err = -EIO;
2741 for (i = 0; i < conf->raid_disks * 2; i++) {
2742
2743 disk = conf->mirrors + i;
2744
2745 if (i < conf->raid_disks &&
2746 disk[conf->raid_disks].rdev) {
2747 /* This slot has a replacement. */
2748 if (!disk->rdev) {
2749 /* No original, just make the replacement
2750 * a recovering spare
2751 */
2752 disk->rdev =
2753 disk[conf->raid_disks].rdev;
2754 disk[conf->raid_disks].rdev = NULL;
2755 } else if (!test_bit(In_sync, &disk->rdev->flags))
2756 /* Original is not in_sync - bad */
2757 goto abort;
2758 }
2759
2760 if (!disk->rdev ||
2761 !test_bit(In_sync, &disk->rdev->flags)) {
2762 disk->head_position = 0;
2763 if (disk->rdev &&
2764 (disk->rdev->saved_raid_disk < 0))
2765 conf->fullsync = 1;
2766 }
2767 }
2768
2769 err = -ENOMEM;
2770 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2771 if (!conf->thread) {
2772 printk(KERN_ERR
2773 "md/raid1:%s: couldn't allocate thread\n",
2774 mdname(mddev));
2775 goto abort;
2776 }
2777
2778 return conf;
2779
2780 abort:
2781 if (conf) {
2782 if (conf->r1bio_pool)
2783 mempool_destroy(conf->r1bio_pool);
2784 kfree(conf->mirrors);
2785 safe_put_page(conf->tmppage);
2786 kfree(conf->poolinfo);
2787 kfree(conf);
2788 }
2789 return ERR_PTR(err);
2790 }
2791
2792 static int stop(struct mddev *mddev);
2793 static int run(struct mddev *mddev)
2794 {
2795 struct r1conf *conf;
2796 int i;
2797 struct md_rdev *rdev;
2798 int ret;
2799 bool discard_supported = false;
2800
2801 if (mddev->level != 1) {
2802 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2803 mdname(mddev), mddev->level);
2804 return -EIO;
2805 }
2806 if (mddev->reshape_position != MaxSector) {
2807 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2808 mdname(mddev));
2809 return -EIO;
2810 }
2811 /*
2812 * copy the already verified devices into our private RAID1
2813 * bookkeeping area. [whatever we allocate in run(),
2814 * should be freed in stop()]
2815 */
2816 if (mddev->private == NULL)
2817 conf = setup_conf(mddev);
2818 else
2819 conf = mddev->private;
2820
2821 if (IS_ERR(conf))
2822 return PTR_ERR(conf);
2823
2824 if (mddev->queue)
2825 blk_queue_max_write_same_sectors(mddev->queue,
2826 mddev->chunk_sectors);
2827 rdev_for_each(rdev, mddev) {
2828 if (!mddev->gendisk)
2829 continue;
2830 disk_stack_limits(mddev->gendisk, rdev->bdev,
2831 rdev->data_offset << 9);
2832 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2833 discard_supported = true;
2834 }
2835
2836 mddev->degraded = 0;
2837 for (i=0; i < conf->raid_disks; i++)
2838 if (conf->mirrors[i].rdev == NULL ||
2839 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2840 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2841 mddev->degraded++;
2842
2843 if (conf->raid_disks - mddev->degraded == 1)
2844 mddev->recovery_cp = MaxSector;
2845
2846 if (mddev->recovery_cp != MaxSector)
2847 printk(KERN_NOTICE "md/raid1:%s: not clean"
2848 " -- starting background reconstruction\n",
2849 mdname(mddev));
2850 printk(KERN_INFO
2851 "md/raid1:%s: active with %d out of %d mirrors\n",
2852 mdname(mddev), mddev->raid_disks - mddev->degraded,
2853 mddev->raid_disks);
2854
2855 /*
2856 * Ok, everything is just fine now
2857 */
2858 mddev->thread = conf->thread;
2859 conf->thread = NULL;
2860 mddev->private = conf;
2861
2862 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2863
2864 if (mddev->queue) {
2865 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2866 mddev->queue->backing_dev_info.congested_data = mddev;
2867 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2868
2869 if (discard_supported)
2870 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2871 mddev->queue);
2872 else
2873 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2874 mddev->queue);
2875 }
2876
2877 ret = md_integrity_register(mddev);
2878 if (ret)
2879 stop(mddev);
2880 return ret;
2881 }
2882
2883 static int stop(struct mddev *mddev)
2884 {
2885 struct r1conf *conf = mddev->private;
2886 struct bitmap *bitmap = mddev->bitmap;
2887
2888 /* wait for behind writes to complete */
2889 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2890 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2891 mdname(mddev));
2892 /* need to kick something here to make sure I/O goes? */
2893 wait_event(bitmap->behind_wait,
2894 atomic_read(&bitmap->behind_writes) == 0);
2895 }
2896
2897 raise_barrier(conf);
2898 lower_barrier(conf);
2899
2900 md_unregister_thread(&mddev->thread);
2901 if (conf->r1bio_pool)
2902 mempool_destroy(conf->r1bio_pool);
2903 kfree(conf->mirrors);
2904 kfree(conf->poolinfo);
2905 kfree(conf);
2906 mddev->private = NULL;
2907 return 0;
2908 }
2909
2910 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2911 {
2912 /* no resync is happening, and there is enough space
2913 * on all devices, so we can resize.
2914 * We need to make sure resync covers any new space.
2915 * If the array is shrinking we should possibly wait until
2916 * any io in the removed space completes, but it hardly seems
2917 * worth it.
2918 */
2919 sector_t newsize = raid1_size(mddev, sectors, 0);
2920 if (mddev->external_size &&
2921 mddev->array_sectors > newsize)
2922 return -EINVAL;
2923 if (mddev->bitmap) {
2924 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2925 if (ret)
2926 return ret;
2927 }
2928 md_set_array_sectors(mddev, newsize);
2929 set_capacity(mddev->gendisk, mddev->array_sectors);
2930 revalidate_disk(mddev->gendisk);
2931 if (sectors > mddev->dev_sectors &&
2932 mddev->recovery_cp > mddev->dev_sectors) {
2933 mddev->recovery_cp = mddev->dev_sectors;
2934 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2935 }
2936 mddev->dev_sectors = sectors;
2937 mddev->resync_max_sectors = sectors;
2938 return 0;
2939 }
2940
2941 static int raid1_reshape(struct mddev *mddev)
2942 {
2943 /* We need to:
2944 * 1/ resize the r1bio_pool
2945 * 2/ resize conf->mirrors
2946 *
2947 * We allocate a new r1bio_pool if we can.
2948 * Then raise a device barrier and wait until all IO stops.
2949 * Then resize conf->mirrors and swap in the new r1bio pool.
2950 *
2951 * At the same time, we "pack" the devices so that all the missing
2952 * devices have the higher raid_disk numbers.
2953 */
2954 mempool_t *newpool, *oldpool;
2955 struct pool_info *newpoolinfo;
2956 struct raid1_info *newmirrors;
2957 struct r1conf *conf = mddev->private;
2958 int cnt, raid_disks;
2959 unsigned long flags;
2960 int d, d2, err;
2961
2962 /* Cannot change chunk_size, layout, or level */
2963 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2964 mddev->layout != mddev->new_layout ||
2965 mddev->level != mddev->new_level) {
2966 mddev->new_chunk_sectors = mddev->chunk_sectors;
2967 mddev->new_layout = mddev->layout;
2968 mddev->new_level = mddev->level;
2969 return -EINVAL;
2970 }
2971
2972 err = md_allow_write(mddev);
2973 if (err)
2974 return err;
2975
2976 raid_disks = mddev->raid_disks + mddev->delta_disks;
2977
2978 if (raid_disks < conf->raid_disks) {
2979 cnt=0;
2980 for (d= 0; d < conf->raid_disks; d++)
2981 if (conf->mirrors[d].rdev)
2982 cnt++;
2983 if (cnt > raid_disks)
2984 return -EBUSY;
2985 }
2986
2987 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2988 if (!newpoolinfo)
2989 return -ENOMEM;
2990 newpoolinfo->mddev = mddev;
2991 newpoolinfo->raid_disks = raid_disks * 2;
2992
2993 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2994 r1bio_pool_free, newpoolinfo);
2995 if (!newpool) {
2996 kfree(newpoolinfo);
2997 return -ENOMEM;
2998 }
2999 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3000 GFP_KERNEL);
3001 if (!newmirrors) {
3002 kfree(newpoolinfo);
3003 mempool_destroy(newpool);
3004 return -ENOMEM;
3005 }
3006
3007 raise_barrier(conf);
3008
3009 /* ok, everything is stopped */
3010 oldpool = conf->r1bio_pool;
3011 conf->r1bio_pool = newpool;
3012
3013 for (d = d2 = 0; d < conf->raid_disks; d++) {
3014 struct md_rdev *rdev = conf->mirrors[d].rdev;
3015 if (rdev && rdev->raid_disk != d2) {
3016 sysfs_unlink_rdev(mddev, rdev);
3017 rdev->raid_disk = d2;
3018 sysfs_unlink_rdev(mddev, rdev);
3019 if (sysfs_link_rdev(mddev, rdev))
3020 printk(KERN_WARNING
3021 "md/raid1:%s: cannot register rd%d\n",
3022 mdname(mddev), rdev->raid_disk);
3023 }
3024 if (rdev)
3025 newmirrors[d2++].rdev = rdev;
3026 }
3027 kfree(conf->mirrors);
3028 conf->mirrors = newmirrors;
3029 kfree(conf->poolinfo);
3030 conf->poolinfo = newpoolinfo;
3031
3032 spin_lock_irqsave(&conf->device_lock, flags);
3033 mddev->degraded += (raid_disks - conf->raid_disks);
3034 spin_unlock_irqrestore(&conf->device_lock, flags);
3035 conf->raid_disks = mddev->raid_disks = raid_disks;
3036 mddev->delta_disks = 0;
3037
3038 lower_barrier(conf);
3039
3040 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3041 md_wakeup_thread(mddev->thread);
3042
3043 mempool_destroy(oldpool);
3044 return 0;
3045 }
3046
3047 static void raid1_quiesce(struct mddev *mddev, int state)
3048 {
3049 struct r1conf *conf = mddev->private;
3050
3051 switch(state) {
3052 case 2: /* wake for suspend */
3053 wake_up(&conf->wait_barrier);
3054 break;
3055 case 1:
3056 raise_barrier(conf);
3057 break;
3058 case 0:
3059 lower_barrier(conf);
3060 break;
3061 }
3062 }
3063
3064 static void *raid1_takeover(struct mddev *mddev)
3065 {
3066 /* raid1 can take over:
3067 * raid5 with 2 devices, any layout or chunk size
3068 */
3069 if (mddev->level == 5 && mddev->raid_disks == 2) {
3070 struct r1conf *conf;
3071 mddev->new_level = 1;
3072 mddev->new_layout = 0;
3073 mddev->new_chunk_sectors = 0;
3074 conf = setup_conf(mddev);
3075 if (!IS_ERR(conf))
3076 conf->barrier = 1;
3077 return conf;
3078 }
3079 return ERR_PTR(-EINVAL);
3080 }
3081
3082 static struct md_personality raid1_personality =
3083 {
3084 .name = "raid1",
3085 .level = 1,
3086 .owner = THIS_MODULE,
3087 .make_request = make_request,
3088 .run = run,
3089 .stop = stop,
3090 .status = status,
3091 .error_handler = error,
3092 .hot_add_disk = raid1_add_disk,
3093 .hot_remove_disk= raid1_remove_disk,
3094 .spare_active = raid1_spare_active,
3095 .sync_request = sync_request,
3096 .resize = raid1_resize,
3097 .size = raid1_size,
3098 .check_reshape = raid1_reshape,
3099 .quiesce = raid1_quiesce,
3100 .takeover = raid1_takeover,
3101 };
3102
3103 static int __init raid_init(void)
3104 {
3105 return register_md_personality(&raid1_personality);
3106 }
3107
3108 static void raid_exit(void)
3109 {
3110 unregister_md_personality(&raid1_personality);
3111 }
3112
3113 module_init(raid_init);
3114 module_exit(raid_exit);
3115 MODULE_LICENSE("GPL");
3116 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3117 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3118 MODULE_ALIAS("md-raid1");
3119 MODULE_ALIAS("md-level-1");
3120
3121 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.094605 seconds and 6 git commands to generate.