Merge branch 'for-4.1/sensor-hub' into for-linus
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int need_pages;
101 int i, j;
102
103 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
104 if (!r1_bio)
105 return NULL;
106
107 /*
108 * Allocate bios : 1 for reading, n-1 for writing
109 */
110 for (j = pi->raid_disks ; j-- ; ) {
111 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
112 if (!bio)
113 goto out_free_bio;
114 r1_bio->bios[j] = bio;
115 }
116 /*
117 * Allocate RESYNC_PAGES data pages and attach them to
118 * the first bio.
119 * If this is a user-requested check/repair, allocate
120 * RESYNC_PAGES for each bio.
121 */
122 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
123 need_pages = pi->raid_disks;
124 else
125 need_pages = 1;
126 for (j = 0; j < need_pages; j++) {
127 bio = r1_bio->bios[j];
128 bio->bi_vcnt = RESYNC_PAGES;
129
130 if (bio_alloc_pages(bio, gfp_flags))
131 goto out_free_pages;
132 }
133 /* If not user-requests, copy the page pointers to all bios */
134 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
135 for (i=0; i<RESYNC_PAGES ; i++)
136 for (j=1; j<pi->raid_disks; j++)
137 r1_bio->bios[j]->bi_io_vec[i].bv_page =
138 r1_bio->bios[0]->bi_io_vec[i].bv_page;
139 }
140
141 r1_bio->master_bio = NULL;
142
143 return r1_bio;
144
145 out_free_pages:
146 while (--j >= 0) {
147 struct bio_vec *bv;
148
149 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
150 __free_page(bv->bv_page);
151 }
152
153 out_free_bio:
154 while (++j < pi->raid_disks)
155 bio_put(r1_bio->bios[j]);
156 r1bio_pool_free(r1_bio, data);
157 return NULL;
158 }
159
160 static void r1buf_pool_free(void *__r1_bio, void *data)
161 {
162 struct pool_info *pi = data;
163 int i,j;
164 struct r1bio *r1bio = __r1_bio;
165
166 for (i = 0; i < RESYNC_PAGES; i++)
167 for (j = pi->raid_disks; j-- ;) {
168 if (j == 0 ||
169 r1bio->bios[j]->bi_io_vec[i].bv_page !=
170 r1bio->bios[0]->bi_io_vec[i].bv_page)
171 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
172 }
173 for (i=0 ; i < pi->raid_disks; i++)
174 bio_put(r1bio->bios[i]);
175
176 r1bio_pool_free(r1bio, data);
177 }
178
179 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
180 {
181 int i;
182
183 for (i = 0; i < conf->raid_disks * 2; i++) {
184 struct bio **bio = r1_bio->bios + i;
185 if (!BIO_SPECIAL(*bio))
186 bio_put(*bio);
187 *bio = NULL;
188 }
189 }
190
191 static void free_r1bio(struct r1bio *r1_bio)
192 {
193 struct r1conf *conf = r1_bio->mddev->private;
194
195 put_all_bios(conf, r1_bio);
196 mempool_free(r1_bio, conf->r1bio_pool);
197 }
198
199 static void put_buf(struct r1bio *r1_bio)
200 {
201 struct r1conf *conf = r1_bio->mddev->private;
202 int i;
203
204 for (i = 0; i < conf->raid_disks * 2; i++) {
205 struct bio *bio = r1_bio->bios[i];
206 if (bio->bi_end_io)
207 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 }
209
210 mempool_free(r1_bio, conf->r1buf_pool);
211
212 lower_barrier(conf);
213 }
214
215 static void reschedule_retry(struct r1bio *r1_bio)
216 {
217 unsigned long flags;
218 struct mddev *mddev = r1_bio->mddev;
219 struct r1conf *conf = mddev->private;
220
221 spin_lock_irqsave(&conf->device_lock, flags);
222 list_add(&r1_bio->retry_list, &conf->retry_list);
223 conf->nr_queued ++;
224 spin_unlock_irqrestore(&conf->device_lock, flags);
225
226 wake_up(&conf->wait_barrier);
227 md_wakeup_thread(mddev->thread);
228 }
229
230 /*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235 static void call_bio_endio(struct r1bio *r1_bio)
236 {
237 struct bio *bio = r1_bio->master_bio;
238 int done;
239 struct r1conf *conf = r1_bio->mddev->private;
240 sector_t start_next_window = r1_bio->start_next_window;
241 sector_t bi_sector = bio->bi_iter.bi_sector;
242
243 if (bio->bi_phys_segments) {
244 unsigned long flags;
245 spin_lock_irqsave(&conf->device_lock, flags);
246 bio->bi_phys_segments--;
247 done = (bio->bi_phys_segments == 0);
248 spin_unlock_irqrestore(&conf->device_lock, flags);
249 /*
250 * make_request() might be waiting for
251 * bi_phys_segments to decrease
252 */
253 wake_up(&conf->wait_barrier);
254 } else
255 done = 1;
256
257 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
258 clear_bit(BIO_UPTODATE, &bio->bi_flags);
259 if (done) {
260 bio_endio(bio, 0);
261 /*
262 * Wake up any possible resync thread that waits for the device
263 * to go idle.
264 */
265 allow_barrier(conf, start_next_window, bi_sector);
266 }
267 }
268
269 static void raid_end_bio_io(struct r1bio *r1_bio)
270 {
271 struct bio *bio = r1_bio->master_bio;
272
273 /* if nobody has done the final endio yet, do it now */
274 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
275 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
276 (bio_data_dir(bio) == WRITE) ? "write" : "read",
277 (unsigned long long) bio->bi_iter.bi_sector,
278 (unsigned long long) bio_end_sector(bio) - 1);
279
280 call_bio_endio(r1_bio);
281 }
282 free_r1bio(r1_bio);
283 }
284
285 /*
286 * Update disk head position estimator based on IRQ completion info.
287 */
288 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
289 {
290 struct r1conf *conf = r1_bio->mddev->private;
291
292 conf->mirrors[disk].head_position =
293 r1_bio->sector + (r1_bio->sectors);
294 }
295
296 /*
297 * Find the disk number which triggered given bio
298 */
299 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
300 {
301 int mirror;
302 struct r1conf *conf = r1_bio->mddev->private;
303 int raid_disks = conf->raid_disks;
304
305 for (mirror = 0; mirror < raid_disks * 2; mirror++)
306 if (r1_bio->bios[mirror] == bio)
307 break;
308
309 BUG_ON(mirror == raid_disks * 2);
310 update_head_pos(mirror, r1_bio);
311
312 return mirror;
313 }
314
315 static void raid1_end_read_request(struct bio *bio, int error)
316 {
317 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
318 struct r1bio *r1_bio = bio->bi_private;
319 int mirror;
320 struct r1conf *conf = r1_bio->mddev->private;
321
322 mirror = r1_bio->read_disk;
323 /*
324 * this branch is our 'one mirror IO has finished' event handler:
325 */
326 update_head_pos(mirror, r1_bio);
327
328 if (uptodate)
329 set_bit(R1BIO_Uptodate, &r1_bio->state);
330 else {
331 /* If all other devices have failed, we want to return
332 * the error upwards rather than fail the last device.
333 * Here we redefine "uptodate" to mean "Don't want to retry"
334 */
335 unsigned long flags;
336 spin_lock_irqsave(&conf->device_lock, flags);
337 if (r1_bio->mddev->degraded == conf->raid_disks ||
338 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
339 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
340 uptodate = 1;
341 spin_unlock_irqrestore(&conf->device_lock, flags);
342 }
343
344 if (uptodate) {
345 raid_end_bio_io(r1_bio);
346 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
347 } else {
348 /*
349 * oops, read error:
350 */
351 char b[BDEVNAME_SIZE];
352 printk_ratelimited(
353 KERN_ERR "md/raid1:%s: %s: "
354 "rescheduling sector %llu\n",
355 mdname(conf->mddev),
356 bdevname(conf->mirrors[mirror].rdev->bdev,
357 b),
358 (unsigned long long)r1_bio->sector);
359 set_bit(R1BIO_ReadError, &r1_bio->state);
360 reschedule_retry(r1_bio);
361 /* don't drop the reference on read_disk yet */
362 }
363 }
364
365 static void close_write(struct r1bio *r1_bio)
366 {
367 /* it really is the end of this request */
368 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
369 /* free extra copy of the data pages */
370 int i = r1_bio->behind_page_count;
371 while (i--)
372 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
373 kfree(r1_bio->behind_bvecs);
374 r1_bio->behind_bvecs = NULL;
375 }
376 /* clear the bitmap if all writes complete successfully */
377 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
378 r1_bio->sectors,
379 !test_bit(R1BIO_Degraded, &r1_bio->state),
380 test_bit(R1BIO_BehindIO, &r1_bio->state));
381 md_write_end(r1_bio->mddev);
382 }
383
384 static void r1_bio_write_done(struct r1bio *r1_bio)
385 {
386 if (!atomic_dec_and_test(&r1_bio->remaining))
387 return;
388
389 if (test_bit(R1BIO_WriteError, &r1_bio->state))
390 reschedule_retry(r1_bio);
391 else {
392 close_write(r1_bio);
393 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
394 reschedule_retry(r1_bio);
395 else
396 raid_end_bio_io(r1_bio);
397 }
398 }
399
400 static void raid1_end_write_request(struct bio *bio, int error)
401 {
402 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
403 struct r1bio *r1_bio = bio->bi_private;
404 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
405 struct r1conf *conf = r1_bio->mddev->private;
406 struct bio *to_put = NULL;
407
408 mirror = find_bio_disk(r1_bio, bio);
409
410 /*
411 * 'one mirror IO has finished' event handler:
412 */
413 if (!uptodate) {
414 set_bit(WriteErrorSeen,
415 &conf->mirrors[mirror].rdev->flags);
416 if (!test_and_set_bit(WantReplacement,
417 &conf->mirrors[mirror].rdev->flags))
418 set_bit(MD_RECOVERY_NEEDED, &
419 conf->mddev->recovery);
420
421 set_bit(R1BIO_WriteError, &r1_bio->state);
422 } else {
423 /*
424 * Set R1BIO_Uptodate in our master bio, so that we
425 * will return a good error code for to the higher
426 * levels even if IO on some other mirrored buffer
427 * fails.
428 *
429 * The 'master' represents the composite IO operation
430 * to user-side. So if something waits for IO, then it
431 * will wait for the 'master' bio.
432 */
433 sector_t first_bad;
434 int bad_sectors;
435
436 r1_bio->bios[mirror] = NULL;
437 to_put = bio;
438 /*
439 * Do not set R1BIO_Uptodate if the current device is
440 * rebuilding or Faulty. This is because we cannot use
441 * such device for properly reading the data back (we could
442 * potentially use it, if the current write would have felt
443 * before rdev->recovery_offset, but for simplicity we don't
444 * check this here.
445 */
446 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
447 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
448 set_bit(R1BIO_Uptodate, &r1_bio->state);
449
450 /* Maybe we can clear some bad blocks. */
451 if (is_badblock(conf->mirrors[mirror].rdev,
452 r1_bio->sector, r1_bio->sectors,
453 &first_bad, &bad_sectors)) {
454 r1_bio->bios[mirror] = IO_MADE_GOOD;
455 set_bit(R1BIO_MadeGood, &r1_bio->state);
456 }
457 }
458
459 if (behind) {
460 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
461 atomic_dec(&r1_bio->behind_remaining);
462
463 /*
464 * In behind mode, we ACK the master bio once the I/O
465 * has safely reached all non-writemostly
466 * disks. Setting the Returned bit ensures that this
467 * gets done only once -- we don't ever want to return
468 * -EIO here, instead we'll wait
469 */
470 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
471 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
472 /* Maybe we can return now */
473 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
474 struct bio *mbio = r1_bio->master_bio;
475 pr_debug("raid1: behind end write sectors"
476 " %llu-%llu\n",
477 (unsigned long long) mbio->bi_iter.bi_sector,
478 (unsigned long long) bio_end_sector(mbio) - 1);
479 call_bio_endio(r1_bio);
480 }
481 }
482 }
483 if (r1_bio->bios[mirror] == NULL)
484 rdev_dec_pending(conf->mirrors[mirror].rdev,
485 conf->mddev);
486
487 /*
488 * Let's see if all mirrored write operations have finished
489 * already.
490 */
491 r1_bio_write_done(r1_bio);
492
493 if (to_put)
494 bio_put(to_put);
495 }
496
497 /*
498 * This routine returns the disk from which the requested read should
499 * be done. There is a per-array 'next expected sequential IO' sector
500 * number - if this matches on the next IO then we use the last disk.
501 * There is also a per-disk 'last know head position' sector that is
502 * maintained from IRQ contexts, both the normal and the resync IO
503 * completion handlers update this position correctly. If there is no
504 * perfect sequential match then we pick the disk whose head is closest.
505 *
506 * If there are 2 mirrors in the same 2 devices, performance degrades
507 * because position is mirror, not device based.
508 *
509 * The rdev for the device selected will have nr_pending incremented.
510 */
511 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
512 {
513 const sector_t this_sector = r1_bio->sector;
514 int sectors;
515 int best_good_sectors;
516 int best_disk, best_dist_disk, best_pending_disk;
517 int has_nonrot_disk;
518 int disk;
519 sector_t best_dist;
520 unsigned int min_pending;
521 struct md_rdev *rdev;
522 int choose_first;
523 int choose_next_idle;
524
525 rcu_read_lock();
526 /*
527 * Check if we can balance. We can balance on the whole
528 * device if no resync is going on, or below the resync window.
529 * We take the first readable disk when above the resync window.
530 */
531 retry:
532 sectors = r1_bio->sectors;
533 best_disk = -1;
534 best_dist_disk = -1;
535 best_dist = MaxSector;
536 best_pending_disk = -1;
537 min_pending = UINT_MAX;
538 best_good_sectors = 0;
539 has_nonrot_disk = 0;
540 choose_next_idle = 0;
541
542 choose_first = (conf->mddev->recovery_cp < this_sector + sectors);
543
544 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
545 sector_t dist;
546 sector_t first_bad;
547 int bad_sectors;
548 unsigned int pending;
549 bool nonrot;
550
551 rdev = rcu_dereference(conf->mirrors[disk].rdev);
552 if (r1_bio->bios[disk] == IO_BLOCKED
553 || rdev == NULL
554 || test_bit(Unmerged, &rdev->flags)
555 || test_bit(Faulty, &rdev->flags))
556 continue;
557 if (!test_bit(In_sync, &rdev->flags) &&
558 rdev->recovery_offset < this_sector + sectors)
559 continue;
560 if (test_bit(WriteMostly, &rdev->flags)) {
561 /* Don't balance among write-mostly, just
562 * use the first as a last resort */
563 if (best_disk < 0) {
564 if (is_badblock(rdev, this_sector, sectors,
565 &first_bad, &bad_sectors)) {
566 if (first_bad < this_sector)
567 /* Cannot use this */
568 continue;
569 best_good_sectors = first_bad - this_sector;
570 } else
571 best_good_sectors = sectors;
572 best_disk = disk;
573 }
574 continue;
575 }
576 /* This is a reasonable device to use. It might
577 * even be best.
578 */
579 if (is_badblock(rdev, this_sector, sectors,
580 &first_bad, &bad_sectors)) {
581 if (best_dist < MaxSector)
582 /* already have a better device */
583 continue;
584 if (first_bad <= this_sector) {
585 /* cannot read here. If this is the 'primary'
586 * device, then we must not read beyond
587 * bad_sectors from another device..
588 */
589 bad_sectors -= (this_sector - first_bad);
590 if (choose_first && sectors > bad_sectors)
591 sectors = bad_sectors;
592 if (best_good_sectors > sectors)
593 best_good_sectors = sectors;
594
595 } else {
596 sector_t good_sectors = first_bad - this_sector;
597 if (good_sectors > best_good_sectors) {
598 best_good_sectors = good_sectors;
599 best_disk = disk;
600 }
601 if (choose_first)
602 break;
603 }
604 continue;
605 } else
606 best_good_sectors = sectors;
607
608 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
609 has_nonrot_disk |= nonrot;
610 pending = atomic_read(&rdev->nr_pending);
611 dist = abs(this_sector - conf->mirrors[disk].head_position);
612 if (choose_first) {
613 best_disk = disk;
614 break;
615 }
616 /* Don't change to another disk for sequential reads */
617 if (conf->mirrors[disk].next_seq_sect == this_sector
618 || dist == 0) {
619 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
620 struct raid1_info *mirror = &conf->mirrors[disk];
621
622 best_disk = disk;
623 /*
624 * If buffered sequential IO size exceeds optimal
625 * iosize, check if there is idle disk. If yes, choose
626 * the idle disk. read_balance could already choose an
627 * idle disk before noticing it's a sequential IO in
628 * this disk. This doesn't matter because this disk
629 * will idle, next time it will be utilized after the
630 * first disk has IO size exceeds optimal iosize. In
631 * this way, iosize of the first disk will be optimal
632 * iosize at least. iosize of the second disk might be
633 * small, but not a big deal since when the second disk
634 * starts IO, the first disk is likely still busy.
635 */
636 if (nonrot && opt_iosize > 0 &&
637 mirror->seq_start != MaxSector &&
638 mirror->next_seq_sect > opt_iosize &&
639 mirror->next_seq_sect - opt_iosize >=
640 mirror->seq_start) {
641 choose_next_idle = 1;
642 continue;
643 }
644 break;
645 }
646 /* If device is idle, use it */
647 if (pending == 0) {
648 best_disk = disk;
649 break;
650 }
651
652 if (choose_next_idle)
653 continue;
654
655 if (min_pending > pending) {
656 min_pending = pending;
657 best_pending_disk = disk;
658 }
659
660 if (dist < best_dist) {
661 best_dist = dist;
662 best_dist_disk = disk;
663 }
664 }
665
666 /*
667 * If all disks are rotational, choose the closest disk. If any disk is
668 * non-rotational, choose the disk with less pending request even the
669 * disk is rotational, which might/might not be optimal for raids with
670 * mixed ratation/non-rotational disks depending on workload.
671 */
672 if (best_disk == -1) {
673 if (has_nonrot_disk)
674 best_disk = best_pending_disk;
675 else
676 best_disk = best_dist_disk;
677 }
678
679 if (best_disk >= 0) {
680 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
681 if (!rdev)
682 goto retry;
683 atomic_inc(&rdev->nr_pending);
684 if (test_bit(Faulty, &rdev->flags)) {
685 /* cannot risk returning a device that failed
686 * before we inc'ed nr_pending
687 */
688 rdev_dec_pending(rdev, conf->mddev);
689 goto retry;
690 }
691 sectors = best_good_sectors;
692
693 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
694 conf->mirrors[best_disk].seq_start = this_sector;
695
696 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
697 }
698 rcu_read_unlock();
699 *max_sectors = sectors;
700
701 return best_disk;
702 }
703
704 static int raid1_mergeable_bvec(struct mddev *mddev,
705 struct bvec_merge_data *bvm,
706 struct bio_vec *biovec)
707 {
708 struct r1conf *conf = mddev->private;
709 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
710 int max = biovec->bv_len;
711
712 if (mddev->merge_check_needed) {
713 int disk;
714 rcu_read_lock();
715 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
716 struct md_rdev *rdev = rcu_dereference(
717 conf->mirrors[disk].rdev);
718 if (rdev && !test_bit(Faulty, &rdev->flags)) {
719 struct request_queue *q =
720 bdev_get_queue(rdev->bdev);
721 if (q->merge_bvec_fn) {
722 bvm->bi_sector = sector +
723 rdev->data_offset;
724 bvm->bi_bdev = rdev->bdev;
725 max = min(max, q->merge_bvec_fn(
726 q, bvm, biovec));
727 }
728 }
729 }
730 rcu_read_unlock();
731 }
732 return max;
733
734 }
735
736 static int raid1_congested(struct mddev *mddev, int bits)
737 {
738 struct r1conf *conf = mddev->private;
739 int i, ret = 0;
740
741 if ((bits & (1 << BDI_async_congested)) &&
742 conf->pending_count >= max_queued_requests)
743 return 1;
744
745 rcu_read_lock();
746 for (i = 0; i < conf->raid_disks * 2; i++) {
747 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
748 if (rdev && !test_bit(Faulty, &rdev->flags)) {
749 struct request_queue *q = bdev_get_queue(rdev->bdev);
750
751 BUG_ON(!q);
752
753 /* Note the '|| 1' - when read_balance prefers
754 * non-congested targets, it can be removed
755 */
756 if ((bits & (1<<BDI_async_congested)) || 1)
757 ret |= bdi_congested(&q->backing_dev_info, bits);
758 else
759 ret &= bdi_congested(&q->backing_dev_info, bits);
760 }
761 }
762 rcu_read_unlock();
763 return ret;
764 }
765
766 static void flush_pending_writes(struct r1conf *conf)
767 {
768 /* Any writes that have been queued but are awaiting
769 * bitmap updates get flushed here.
770 */
771 spin_lock_irq(&conf->device_lock);
772
773 if (conf->pending_bio_list.head) {
774 struct bio *bio;
775 bio = bio_list_get(&conf->pending_bio_list);
776 conf->pending_count = 0;
777 spin_unlock_irq(&conf->device_lock);
778 /* flush any pending bitmap writes to
779 * disk before proceeding w/ I/O */
780 bitmap_unplug(conf->mddev->bitmap);
781 wake_up(&conf->wait_barrier);
782
783 while (bio) { /* submit pending writes */
784 struct bio *next = bio->bi_next;
785 bio->bi_next = NULL;
786 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
787 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
788 /* Just ignore it */
789 bio_endio(bio, 0);
790 else
791 generic_make_request(bio);
792 bio = next;
793 }
794 } else
795 spin_unlock_irq(&conf->device_lock);
796 }
797
798 /* Barriers....
799 * Sometimes we need to suspend IO while we do something else,
800 * either some resync/recovery, or reconfigure the array.
801 * To do this we raise a 'barrier'.
802 * The 'barrier' is a counter that can be raised multiple times
803 * to count how many activities are happening which preclude
804 * normal IO.
805 * We can only raise the barrier if there is no pending IO.
806 * i.e. if nr_pending == 0.
807 * We choose only to raise the barrier if no-one is waiting for the
808 * barrier to go down. This means that as soon as an IO request
809 * is ready, no other operations which require a barrier will start
810 * until the IO request has had a chance.
811 *
812 * So: regular IO calls 'wait_barrier'. When that returns there
813 * is no backgroup IO happening, It must arrange to call
814 * allow_barrier when it has finished its IO.
815 * backgroup IO calls must call raise_barrier. Once that returns
816 * there is no normal IO happeing. It must arrange to call
817 * lower_barrier when the particular background IO completes.
818 */
819 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
820 {
821 spin_lock_irq(&conf->resync_lock);
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 conf->resync_lock);
826
827 /* block any new IO from starting */
828 conf->barrier++;
829 conf->next_resync = sector_nr;
830
831 /* For these conditions we must wait:
832 * A: while the array is in frozen state
833 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
834 * the max count which allowed.
835 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
836 * next resync will reach to the window which normal bios are
837 * handling.
838 * D: while there are any active requests in the current window.
839 */
840 wait_event_lock_irq(conf->wait_barrier,
841 !conf->array_frozen &&
842 conf->barrier < RESYNC_DEPTH &&
843 conf->current_window_requests == 0 &&
844 (conf->start_next_window >=
845 conf->next_resync + RESYNC_SECTORS),
846 conf->resync_lock);
847
848 conf->nr_pending++;
849 spin_unlock_irq(&conf->resync_lock);
850 }
851
852 static void lower_barrier(struct r1conf *conf)
853 {
854 unsigned long flags;
855 BUG_ON(conf->barrier <= 0);
856 spin_lock_irqsave(&conf->resync_lock, flags);
857 conf->barrier--;
858 conf->nr_pending--;
859 spin_unlock_irqrestore(&conf->resync_lock, flags);
860 wake_up(&conf->wait_barrier);
861 }
862
863 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
864 {
865 bool wait = false;
866
867 if (conf->array_frozen || !bio)
868 wait = true;
869 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
870 if ((conf->mddev->curr_resync_completed
871 >= bio_end_sector(bio)) ||
872 (conf->next_resync + NEXT_NORMALIO_DISTANCE
873 <= bio->bi_iter.bi_sector))
874 wait = false;
875 else
876 wait = true;
877 }
878
879 return wait;
880 }
881
882 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
883 {
884 sector_t sector = 0;
885
886 spin_lock_irq(&conf->resync_lock);
887 if (need_to_wait_for_sync(conf, bio)) {
888 conf->nr_waiting++;
889 /* Wait for the barrier to drop.
890 * However if there are already pending
891 * requests (preventing the barrier from
892 * rising completely), and the
893 * per-process bio queue isn't empty,
894 * then don't wait, as we need to empty
895 * that queue to allow conf->start_next_window
896 * to increase.
897 */
898 wait_event_lock_irq(conf->wait_barrier,
899 !conf->array_frozen &&
900 (!conf->barrier ||
901 ((conf->start_next_window <
902 conf->next_resync + RESYNC_SECTORS) &&
903 current->bio_list &&
904 !bio_list_empty(current->bio_list))),
905 conf->resync_lock);
906 conf->nr_waiting--;
907 }
908
909 if (bio && bio_data_dir(bio) == WRITE) {
910 if (bio->bi_iter.bi_sector >=
911 conf->mddev->curr_resync_completed) {
912 if (conf->start_next_window == MaxSector)
913 conf->start_next_window =
914 conf->next_resync +
915 NEXT_NORMALIO_DISTANCE;
916
917 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
918 <= bio->bi_iter.bi_sector)
919 conf->next_window_requests++;
920 else
921 conf->current_window_requests++;
922 sector = conf->start_next_window;
923 }
924 }
925
926 conf->nr_pending++;
927 spin_unlock_irq(&conf->resync_lock);
928 return sector;
929 }
930
931 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
932 sector_t bi_sector)
933 {
934 unsigned long flags;
935
936 spin_lock_irqsave(&conf->resync_lock, flags);
937 conf->nr_pending--;
938 if (start_next_window) {
939 if (start_next_window == conf->start_next_window) {
940 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
941 <= bi_sector)
942 conf->next_window_requests--;
943 else
944 conf->current_window_requests--;
945 } else
946 conf->current_window_requests--;
947
948 if (!conf->current_window_requests) {
949 if (conf->next_window_requests) {
950 conf->current_window_requests =
951 conf->next_window_requests;
952 conf->next_window_requests = 0;
953 conf->start_next_window +=
954 NEXT_NORMALIO_DISTANCE;
955 } else
956 conf->start_next_window = MaxSector;
957 }
958 }
959 spin_unlock_irqrestore(&conf->resync_lock, flags);
960 wake_up(&conf->wait_barrier);
961 }
962
963 static void freeze_array(struct r1conf *conf, int extra)
964 {
965 /* stop syncio and normal IO and wait for everything to
966 * go quite.
967 * We wait until nr_pending match nr_queued+extra
968 * This is called in the context of one normal IO request
969 * that has failed. Thus any sync request that might be pending
970 * will be blocked by nr_pending, and we need to wait for
971 * pending IO requests to complete or be queued for re-try.
972 * Thus the number queued (nr_queued) plus this request (extra)
973 * must match the number of pending IOs (nr_pending) before
974 * we continue.
975 */
976 spin_lock_irq(&conf->resync_lock);
977 conf->array_frozen = 1;
978 wait_event_lock_irq_cmd(conf->wait_barrier,
979 conf->nr_pending == conf->nr_queued+extra,
980 conf->resync_lock,
981 flush_pending_writes(conf));
982 spin_unlock_irq(&conf->resync_lock);
983 }
984 static void unfreeze_array(struct r1conf *conf)
985 {
986 /* reverse the effect of the freeze */
987 spin_lock_irq(&conf->resync_lock);
988 conf->array_frozen = 0;
989 wake_up(&conf->wait_barrier);
990 spin_unlock_irq(&conf->resync_lock);
991 }
992
993 /* duplicate the data pages for behind I/O
994 */
995 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
996 {
997 int i;
998 struct bio_vec *bvec;
999 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1000 GFP_NOIO);
1001 if (unlikely(!bvecs))
1002 return;
1003
1004 bio_for_each_segment_all(bvec, bio, i) {
1005 bvecs[i] = *bvec;
1006 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1007 if (unlikely(!bvecs[i].bv_page))
1008 goto do_sync_io;
1009 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1010 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1011 kunmap(bvecs[i].bv_page);
1012 kunmap(bvec->bv_page);
1013 }
1014 r1_bio->behind_bvecs = bvecs;
1015 r1_bio->behind_page_count = bio->bi_vcnt;
1016 set_bit(R1BIO_BehindIO, &r1_bio->state);
1017 return;
1018
1019 do_sync_io:
1020 for (i = 0; i < bio->bi_vcnt; i++)
1021 if (bvecs[i].bv_page)
1022 put_page(bvecs[i].bv_page);
1023 kfree(bvecs);
1024 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1025 bio->bi_iter.bi_size);
1026 }
1027
1028 struct raid1_plug_cb {
1029 struct blk_plug_cb cb;
1030 struct bio_list pending;
1031 int pending_cnt;
1032 };
1033
1034 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1035 {
1036 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1037 cb);
1038 struct mddev *mddev = plug->cb.data;
1039 struct r1conf *conf = mddev->private;
1040 struct bio *bio;
1041
1042 if (from_schedule || current->bio_list) {
1043 spin_lock_irq(&conf->device_lock);
1044 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1045 conf->pending_count += plug->pending_cnt;
1046 spin_unlock_irq(&conf->device_lock);
1047 wake_up(&conf->wait_barrier);
1048 md_wakeup_thread(mddev->thread);
1049 kfree(plug);
1050 return;
1051 }
1052
1053 /* we aren't scheduling, so we can do the write-out directly. */
1054 bio = bio_list_get(&plug->pending);
1055 bitmap_unplug(mddev->bitmap);
1056 wake_up(&conf->wait_barrier);
1057
1058 while (bio) { /* submit pending writes */
1059 struct bio *next = bio->bi_next;
1060 bio->bi_next = NULL;
1061 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1062 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1063 /* Just ignore it */
1064 bio_endio(bio, 0);
1065 else
1066 generic_make_request(bio);
1067 bio = next;
1068 }
1069 kfree(plug);
1070 }
1071
1072 static void make_request(struct mddev *mddev, struct bio * bio)
1073 {
1074 struct r1conf *conf = mddev->private;
1075 struct raid1_info *mirror;
1076 struct r1bio *r1_bio;
1077 struct bio *read_bio;
1078 int i, disks;
1079 struct bitmap *bitmap;
1080 unsigned long flags;
1081 const int rw = bio_data_dir(bio);
1082 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1083 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1084 const unsigned long do_discard = (bio->bi_rw
1085 & (REQ_DISCARD | REQ_SECURE));
1086 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1087 struct md_rdev *blocked_rdev;
1088 struct blk_plug_cb *cb;
1089 struct raid1_plug_cb *plug = NULL;
1090 int first_clone;
1091 int sectors_handled;
1092 int max_sectors;
1093 sector_t start_next_window;
1094
1095 /*
1096 * Register the new request and wait if the reconstruction
1097 * thread has put up a bar for new requests.
1098 * Continue immediately if no resync is active currently.
1099 */
1100
1101 md_write_start(mddev, bio); /* wait on superblock update early */
1102
1103 if (bio_data_dir(bio) == WRITE &&
1104 bio_end_sector(bio) > mddev->suspend_lo &&
1105 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1106 /* As the suspend_* range is controlled by
1107 * userspace, we want an interruptible
1108 * wait.
1109 */
1110 DEFINE_WAIT(w);
1111 for (;;) {
1112 flush_signals(current);
1113 prepare_to_wait(&conf->wait_barrier,
1114 &w, TASK_INTERRUPTIBLE);
1115 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1116 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1117 break;
1118 schedule();
1119 }
1120 finish_wait(&conf->wait_barrier, &w);
1121 }
1122
1123 start_next_window = wait_barrier(conf, bio);
1124
1125 bitmap = mddev->bitmap;
1126
1127 /*
1128 * make_request() can abort the operation when READA is being
1129 * used and no empty request is available.
1130 *
1131 */
1132 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1133
1134 r1_bio->master_bio = bio;
1135 r1_bio->sectors = bio_sectors(bio);
1136 r1_bio->state = 0;
1137 r1_bio->mddev = mddev;
1138 r1_bio->sector = bio->bi_iter.bi_sector;
1139
1140 /* We might need to issue multiple reads to different
1141 * devices if there are bad blocks around, so we keep
1142 * track of the number of reads in bio->bi_phys_segments.
1143 * If this is 0, there is only one r1_bio and no locking
1144 * will be needed when requests complete. If it is
1145 * non-zero, then it is the number of not-completed requests.
1146 */
1147 bio->bi_phys_segments = 0;
1148 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1149
1150 if (rw == READ) {
1151 /*
1152 * read balancing logic:
1153 */
1154 int rdisk;
1155
1156 read_again:
1157 rdisk = read_balance(conf, r1_bio, &max_sectors);
1158
1159 if (rdisk < 0) {
1160 /* couldn't find anywhere to read from */
1161 raid_end_bio_io(r1_bio);
1162 return;
1163 }
1164 mirror = conf->mirrors + rdisk;
1165
1166 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1167 bitmap) {
1168 /* Reading from a write-mostly device must
1169 * take care not to over-take any writes
1170 * that are 'behind'
1171 */
1172 wait_event(bitmap->behind_wait,
1173 atomic_read(&bitmap->behind_writes) == 0);
1174 }
1175 r1_bio->read_disk = rdisk;
1176 r1_bio->start_next_window = 0;
1177
1178 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1179 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1180 max_sectors);
1181
1182 r1_bio->bios[rdisk] = read_bio;
1183
1184 read_bio->bi_iter.bi_sector = r1_bio->sector +
1185 mirror->rdev->data_offset;
1186 read_bio->bi_bdev = mirror->rdev->bdev;
1187 read_bio->bi_end_io = raid1_end_read_request;
1188 read_bio->bi_rw = READ | do_sync;
1189 read_bio->bi_private = r1_bio;
1190
1191 if (max_sectors < r1_bio->sectors) {
1192 /* could not read all from this device, so we will
1193 * need another r1_bio.
1194 */
1195
1196 sectors_handled = (r1_bio->sector + max_sectors
1197 - bio->bi_iter.bi_sector);
1198 r1_bio->sectors = max_sectors;
1199 spin_lock_irq(&conf->device_lock);
1200 if (bio->bi_phys_segments == 0)
1201 bio->bi_phys_segments = 2;
1202 else
1203 bio->bi_phys_segments++;
1204 spin_unlock_irq(&conf->device_lock);
1205 /* Cannot call generic_make_request directly
1206 * as that will be queued in __make_request
1207 * and subsequent mempool_alloc might block waiting
1208 * for it. So hand bio over to raid1d.
1209 */
1210 reschedule_retry(r1_bio);
1211
1212 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1213
1214 r1_bio->master_bio = bio;
1215 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1216 r1_bio->state = 0;
1217 r1_bio->mddev = mddev;
1218 r1_bio->sector = bio->bi_iter.bi_sector +
1219 sectors_handled;
1220 goto read_again;
1221 } else
1222 generic_make_request(read_bio);
1223 return;
1224 }
1225
1226 /*
1227 * WRITE:
1228 */
1229 if (conf->pending_count >= max_queued_requests) {
1230 md_wakeup_thread(mddev->thread);
1231 wait_event(conf->wait_barrier,
1232 conf->pending_count < max_queued_requests);
1233 }
1234 /* first select target devices under rcu_lock and
1235 * inc refcount on their rdev. Record them by setting
1236 * bios[x] to bio
1237 * If there are known/acknowledged bad blocks on any device on
1238 * which we have seen a write error, we want to avoid writing those
1239 * blocks.
1240 * This potentially requires several writes to write around
1241 * the bad blocks. Each set of writes gets it's own r1bio
1242 * with a set of bios attached.
1243 */
1244
1245 disks = conf->raid_disks * 2;
1246 retry_write:
1247 r1_bio->start_next_window = start_next_window;
1248 blocked_rdev = NULL;
1249 rcu_read_lock();
1250 max_sectors = r1_bio->sectors;
1251 for (i = 0; i < disks; i++) {
1252 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1253 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1254 atomic_inc(&rdev->nr_pending);
1255 blocked_rdev = rdev;
1256 break;
1257 }
1258 r1_bio->bios[i] = NULL;
1259 if (!rdev || test_bit(Faulty, &rdev->flags)
1260 || test_bit(Unmerged, &rdev->flags)) {
1261 if (i < conf->raid_disks)
1262 set_bit(R1BIO_Degraded, &r1_bio->state);
1263 continue;
1264 }
1265
1266 atomic_inc(&rdev->nr_pending);
1267 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1268 sector_t first_bad;
1269 int bad_sectors;
1270 int is_bad;
1271
1272 is_bad = is_badblock(rdev, r1_bio->sector,
1273 max_sectors,
1274 &first_bad, &bad_sectors);
1275 if (is_bad < 0) {
1276 /* mustn't write here until the bad block is
1277 * acknowledged*/
1278 set_bit(BlockedBadBlocks, &rdev->flags);
1279 blocked_rdev = rdev;
1280 break;
1281 }
1282 if (is_bad && first_bad <= r1_bio->sector) {
1283 /* Cannot write here at all */
1284 bad_sectors -= (r1_bio->sector - first_bad);
1285 if (bad_sectors < max_sectors)
1286 /* mustn't write more than bad_sectors
1287 * to other devices yet
1288 */
1289 max_sectors = bad_sectors;
1290 rdev_dec_pending(rdev, mddev);
1291 /* We don't set R1BIO_Degraded as that
1292 * only applies if the disk is
1293 * missing, so it might be re-added,
1294 * and we want to know to recover this
1295 * chunk.
1296 * In this case the device is here,
1297 * and the fact that this chunk is not
1298 * in-sync is recorded in the bad
1299 * block log
1300 */
1301 continue;
1302 }
1303 if (is_bad) {
1304 int good_sectors = first_bad - r1_bio->sector;
1305 if (good_sectors < max_sectors)
1306 max_sectors = good_sectors;
1307 }
1308 }
1309 r1_bio->bios[i] = bio;
1310 }
1311 rcu_read_unlock();
1312
1313 if (unlikely(blocked_rdev)) {
1314 /* Wait for this device to become unblocked */
1315 int j;
1316 sector_t old = start_next_window;
1317
1318 for (j = 0; j < i; j++)
1319 if (r1_bio->bios[j])
1320 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1321 r1_bio->state = 0;
1322 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1323 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1324 start_next_window = wait_barrier(conf, bio);
1325 /*
1326 * We must make sure the multi r1bios of bio have
1327 * the same value of bi_phys_segments
1328 */
1329 if (bio->bi_phys_segments && old &&
1330 old != start_next_window)
1331 /* Wait for the former r1bio(s) to complete */
1332 wait_event(conf->wait_barrier,
1333 bio->bi_phys_segments == 1);
1334 goto retry_write;
1335 }
1336
1337 if (max_sectors < r1_bio->sectors) {
1338 /* We are splitting this write into multiple parts, so
1339 * we need to prepare for allocating another r1_bio.
1340 */
1341 r1_bio->sectors = max_sectors;
1342 spin_lock_irq(&conf->device_lock);
1343 if (bio->bi_phys_segments == 0)
1344 bio->bi_phys_segments = 2;
1345 else
1346 bio->bi_phys_segments++;
1347 spin_unlock_irq(&conf->device_lock);
1348 }
1349 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1350
1351 atomic_set(&r1_bio->remaining, 1);
1352 atomic_set(&r1_bio->behind_remaining, 0);
1353
1354 first_clone = 1;
1355 for (i = 0; i < disks; i++) {
1356 struct bio *mbio;
1357 if (!r1_bio->bios[i])
1358 continue;
1359
1360 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1361 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1362
1363 if (first_clone) {
1364 /* do behind I/O ?
1365 * Not if there are too many, or cannot
1366 * allocate memory, or a reader on WriteMostly
1367 * is waiting for behind writes to flush */
1368 if (bitmap &&
1369 (atomic_read(&bitmap->behind_writes)
1370 < mddev->bitmap_info.max_write_behind) &&
1371 !waitqueue_active(&bitmap->behind_wait))
1372 alloc_behind_pages(mbio, r1_bio);
1373
1374 bitmap_startwrite(bitmap, r1_bio->sector,
1375 r1_bio->sectors,
1376 test_bit(R1BIO_BehindIO,
1377 &r1_bio->state));
1378 first_clone = 0;
1379 }
1380 if (r1_bio->behind_bvecs) {
1381 struct bio_vec *bvec;
1382 int j;
1383
1384 /*
1385 * We trimmed the bio, so _all is legit
1386 */
1387 bio_for_each_segment_all(bvec, mbio, j)
1388 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1389 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1390 atomic_inc(&r1_bio->behind_remaining);
1391 }
1392
1393 r1_bio->bios[i] = mbio;
1394
1395 mbio->bi_iter.bi_sector = (r1_bio->sector +
1396 conf->mirrors[i].rdev->data_offset);
1397 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1398 mbio->bi_end_io = raid1_end_write_request;
1399 mbio->bi_rw =
1400 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1401 mbio->bi_private = r1_bio;
1402
1403 atomic_inc(&r1_bio->remaining);
1404
1405 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1406 if (cb)
1407 plug = container_of(cb, struct raid1_plug_cb, cb);
1408 else
1409 plug = NULL;
1410 spin_lock_irqsave(&conf->device_lock, flags);
1411 if (plug) {
1412 bio_list_add(&plug->pending, mbio);
1413 plug->pending_cnt++;
1414 } else {
1415 bio_list_add(&conf->pending_bio_list, mbio);
1416 conf->pending_count++;
1417 }
1418 spin_unlock_irqrestore(&conf->device_lock, flags);
1419 if (!plug)
1420 md_wakeup_thread(mddev->thread);
1421 }
1422 /* Mustn't call r1_bio_write_done before this next test,
1423 * as it could result in the bio being freed.
1424 */
1425 if (sectors_handled < bio_sectors(bio)) {
1426 r1_bio_write_done(r1_bio);
1427 /* We need another r1_bio. It has already been counted
1428 * in bio->bi_phys_segments
1429 */
1430 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1431 r1_bio->master_bio = bio;
1432 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1433 r1_bio->state = 0;
1434 r1_bio->mddev = mddev;
1435 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1436 goto retry_write;
1437 }
1438
1439 r1_bio_write_done(r1_bio);
1440
1441 /* In case raid1d snuck in to freeze_array */
1442 wake_up(&conf->wait_barrier);
1443 }
1444
1445 static void status(struct seq_file *seq, struct mddev *mddev)
1446 {
1447 struct r1conf *conf = mddev->private;
1448 int i;
1449
1450 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1451 conf->raid_disks - mddev->degraded);
1452 rcu_read_lock();
1453 for (i = 0; i < conf->raid_disks; i++) {
1454 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1455 seq_printf(seq, "%s",
1456 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1457 }
1458 rcu_read_unlock();
1459 seq_printf(seq, "]");
1460 }
1461
1462 static void error(struct mddev *mddev, struct md_rdev *rdev)
1463 {
1464 char b[BDEVNAME_SIZE];
1465 struct r1conf *conf = mddev->private;
1466
1467 /*
1468 * If it is not operational, then we have already marked it as dead
1469 * else if it is the last working disks, ignore the error, let the
1470 * next level up know.
1471 * else mark the drive as failed
1472 */
1473 if (test_bit(In_sync, &rdev->flags)
1474 && (conf->raid_disks - mddev->degraded) == 1) {
1475 /*
1476 * Don't fail the drive, act as though we were just a
1477 * normal single drive.
1478 * However don't try a recovery from this drive as
1479 * it is very likely to fail.
1480 */
1481 conf->recovery_disabled = mddev->recovery_disabled;
1482 return;
1483 }
1484 set_bit(Blocked, &rdev->flags);
1485 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1486 unsigned long flags;
1487 spin_lock_irqsave(&conf->device_lock, flags);
1488 mddev->degraded++;
1489 set_bit(Faulty, &rdev->flags);
1490 spin_unlock_irqrestore(&conf->device_lock, flags);
1491 } else
1492 set_bit(Faulty, &rdev->flags);
1493 /*
1494 * if recovery is running, make sure it aborts.
1495 */
1496 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1497 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1498 printk(KERN_ALERT
1499 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1500 "md/raid1:%s: Operation continuing on %d devices.\n",
1501 mdname(mddev), bdevname(rdev->bdev, b),
1502 mdname(mddev), conf->raid_disks - mddev->degraded);
1503 }
1504
1505 static void print_conf(struct r1conf *conf)
1506 {
1507 int i;
1508
1509 printk(KERN_DEBUG "RAID1 conf printout:\n");
1510 if (!conf) {
1511 printk(KERN_DEBUG "(!conf)\n");
1512 return;
1513 }
1514 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1515 conf->raid_disks);
1516
1517 rcu_read_lock();
1518 for (i = 0; i < conf->raid_disks; i++) {
1519 char b[BDEVNAME_SIZE];
1520 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1521 if (rdev)
1522 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1523 i, !test_bit(In_sync, &rdev->flags),
1524 !test_bit(Faulty, &rdev->flags),
1525 bdevname(rdev->bdev,b));
1526 }
1527 rcu_read_unlock();
1528 }
1529
1530 static void close_sync(struct r1conf *conf)
1531 {
1532 wait_barrier(conf, NULL);
1533 allow_barrier(conf, 0, 0);
1534
1535 mempool_destroy(conf->r1buf_pool);
1536 conf->r1buf_pool = NULL;
1537
1538 spin_lock_irq(&conf->resync_lock);
1539 conf->next_resync = 0;
1540 conf->start_next_window = MaxSector;
1541 conf->current_window_requests +=
1542 conf->next_window_requests;
1543 conf->next_window_requests = 0;
1544 spin_unlock_irq(&conf->resync_lock);
1545 }
1546
1547 static int raid1_spare_active(struct mddev *mddev)
1548 {
1549 int i;
1550 struct r1conf *conf = mddev->private;
1551 int count = 0;
1552 unsigned long flags;
1553
1554 /*
1555 * Find all failed disks within the RAID1 configuration
1556 * and mark them readable.
1557 * Called under mddev lock, so rcu protection not needed.
1558 */
1559 for (i = 0; i < conf->raid_disks; i++) {
1560 struct md_rdev *rdev = conf->mirrors[i].rdev;
1561 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1562 if (repl
1563 && repl->recovery_offset == MaxSector
1564 && !test_bit(Faulty, &repl->flags)
1565 && !test_and_set_bit(In_sync, &repl->flags)) {
1566 /* replacement has just become active */
1567 if (!rdev ||
1568 !test_and_clear_bit(In_sync, &rdev->flags))
1569 count++;
1570 if (rdev) {
1571 /* Replaced device not technically
1572 * faulty, but we need to be sure
1573 * it gets removed and never re-added
1574 */
1575 set_bit(Faulty, &rdev->flags);
1576 sysfs_notify_dirent_safe(
1577 rdev->sysfs_state);
1578 }
1579 }
1580 if (rdev
1581 && rdev->recovery_offset == MaxSector
1582 && !test_bit(Faulty, &rdev->flags)
1583 && !test_and_set_bit(In_sync, &rdev->flags)) {
1584 count++;
1585 sysfs_notify_dirent_safe(rdev->sysfs_state);
1586 }
1587 }
1588 spin_lock_irqsave(&conf->device_lock, flags);
1589 mddev->degraded -= count;
1590 spin_unlock_irqrestore(&conf->device_lock, flags);
1591
1592 print_conf(conf);
1593 return count;
1594 }
1595
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598 struct r1conf *conf = mddev->private;
1599 int err = -EEXIST;
1600 int mirror = 0;
1601 struct raid1_info *p;
1602 int first = 0;
1603 int last = conf->raid_disks - 1;
1604 struct request_queue *q = bdev_get_queue(rdev->bdev);
1605
1606 if (mddev->recovery_disabled == conf->recovery_disabled)
1607 return -EBUSY;
1608
1609 if (rdev->raid_disk >= 0)
1610 first = last = rdev->raid_disk;
1611
1612 if (q->merge_bvec_fn) {
1613 set_bit(Unmerged, &rdev->flags);
1614 mddev->merge_check_needed = 1;
1615 }
1616
1617 for (mirror = first; mirror <= last; mirror++) {
1618 p = conf->mirrors+mirror;
1619 if (!p->rdev) {
1620
1621 if (mddev->gendisk)
1622 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 rdev->data_offset << 9);
1624
1625 p->head_position = 0;
1626 rdev->raid_disk = mirror;
1627 err = 0;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1630 */
1631 if (rdev->saved_raid_disk < 0)
1632 conf->fullsync = 1;
1633 rcu_assign_pointer(p->rdev, rdev);
1634 break;
1635 }
1636 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 p[conf->raid_disks].rdev == NULL) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync, &rdev->flags);
1640 set_bit(Replacement, &rdev->flags);
1641 rdev->raid_disk = mirror;
1642 err = 0;
1643 conf->fullsync = 1;
1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 break;
1646 }
1647 }
1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1655 */
1656 synchronize_sched();
1657 freeze_array(conf, 0);
1658 unfreeze_array(conf);
1659 clear_bit(Unmerged, &rdev->flags);
1660 }
1661 md_integrity_add_rdev(rdev, mddev);
1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 print_conf(conf);
1665 return err;
1666 }
1667
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 struct r1conf *conf = mddev->private;
1671 int err = 0;
1672 int number = rdev->raid_disk;
1673 struct raid1_info *p = conf->mirrors + number;
1674
1675 if (rdev != p->rdev)
1676 p = conf->mirrors + conf->raid_disks + number;
1677
1678 print_conf(conf);
1679 if (rdev == p->rdev) {
1680 if (test_bit(In_sync, &rdev->flags) ||
1681 atomic_read(&rdev->nr_pending)) {
1682 err = -EBUSY;
1683 goto abort;
1684 }
1685 /* Only remove non-faulty devices if recovery
1686 * is not possible.
1687 */
1688 if (!test_bit(Faulty, &rdev->flags) &&
1689 mddev->recovery_disabled != conf->recovery_disabled &&
1690 mddev->degraded < conf->raid_disks) {
1691 err = -EBUSY;
1692 goto abort;
1693 }
1694 p->rdev = NULL;
1695 synchronize_rcu();
1696 if (atomic_read(&rdev->nr_pending)) {
1697 /* lost the race, try later */
1698 err = -EBUSY;
1699 p->rdev = rdev;
1700 goto abort;
1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1705 */
1706 struct md_rdev *repl =
1707 conf->mirrors[conf->raid_disks + number].rdev;
1708 freeze_array(conf, 0);
1709 clear_bit(Replacement, &repl->flags);
1710 p->rdev = repl;
1711 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 unfreeze_array(conf);
1713 clear_bit(WantReplacement, &rdev->flags);
1714 } else
1715 clear_bit(WantReplacement, &rdev->flags);
1716 err = md_integrity_register(mddev);
1717 }
1718 abort:
1719
1720 print_conf(conf);
1721 return err;
1722 }
1723
1724 static void end_sync_read(struct bio *bio, int error)
1725 {
1726 struct r1bio *r1_bio = bio->bi_private;
1727
1728 update_head_pos(r1_bio->read_disk, r1_bio);
1729
1730 /*
1731 * we have read a block, now it needs to be re-written,
1732 * or re-read if the read failed.
1733 * We don't do much here, just schedule handling by raid1d
1734 */
1735 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1736 set_bit(R1BIO_Uptodate, &r1_bio->state);
1737
1738 if (atomic_dec_and_test(&r1_bio->remaining))
1739 reschedule_retry(r1_bio);
1740 }
1741
1742 static void end_sync_write(struct bio *bio, int error)
1743 {
1744 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1745 struct r1bio *r1_bio = bio->bi_private;
1746 struct mddev *mddev = r1_bio->mddev;
1747 struct r1conf *conf = mddev->private;
1748 int mirror=0;
1749 sector_t first_bad;
1750 int bad_sectors;
1751
1752 mirror = find_bio_disk(r1_bio, bio);
1753
1754 if (!uptodate) {
1755 sector_t sync_blocks = 0;
1756 sector_t s = r1_bio->sector;
1757 long sectors_to_go = r1_bio->sectors;
1758 /* make sure these bits doesn't get cleared. */
1759 do {
1760 bitmap_end_sync(mddev->bitmap, s,
1761 &sync_blocks, 1);
1762 s += sync_blocks;
1763 sectors_to_go -= sync_blocks;
1764 } while (sectors_to_go > 0);
1765 set_bit(WriteErrorSeen,
1766 &conf->mirrors[mirror].rdev->flags);
1767 if (!test_and_set_bit(WantReplacement,
1768 &conf->mirrors[mirror].rdev->flags))
1769 set_bit(MD_RECOVERY_NEEDED, &
1770 mddev->recovery);
1771 set_bit(R1BIO_WriteError, &r1_bio->state);
1772 } else if (is_badblock(conf->mirrors[mirror].rdev,
1773 r1_bio->sector,
1774 r1_bio->sectors,
1775 &first_bad, &bad_sectors) &&
1776 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1777 r1_bio->sector,
1778 r1_bio->sectors,
1779 &first_bad, &bad_sectors)
1780 )
1781 set_bit(R1BIO_MadeGood, &r1_bio->state);
1782
1783 if (atomic_dec_and_test(&r1_bio->remaining)) {
1784 int s = r1_bio->sectors;
1785 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1786 test_bit(R1BIO_WriteError, &r1_bio->state))
1787 reschedule_retry(r1_bio);
1788 else {
1789 put_buf(r1_bio);
1790 md_done_sync(mddev, s, uptodate);
1791 }
1792 }
1793 }
1794
1795 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1796 int sectors, struct page *page, int rw)
1797 {
1798 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1799 /* success */
1800 return 1;
1801 if (rw == WRITE) {
1802 set_bit(WriteErrorSeen, &rdev->flags);
1803 if (!test_and_set_bit(WantReplacement,
1804 &rdev->flags))
1805 set_bit(MD_RECOVERY_NEEDED, &
1806 rdev->mddev->recovery);
1807 }
1808 /* need to record an error - either for the block or the device */
1809 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1810 md_error(rdev->mddev, rdev);
1811 return 0;
1812 }
1813
1814 static int fix_sync_read_error(struct r1bio *r1_bio)
1815 {
1816 /* Try some synchronous reads of other devices to get
1817 * good data, much like with normal read errors. Only
1818 * read into the pages we already have so we don't
1819 * need to re-issue the read request.
1820 * We don't need to freeze the array, because being in an
1821 * active sync request, there is no normal IO, and
1822 * no overlapping syncs.
1823 * We don't need to check is_badblock() again as we
1824 * made sure that anything with a bad block in range
1825 * will have bi_end_io clear.
1826 */
1827 struct mddev *mddev = r1_bio->mddev;
1828 struct r1conf *conf = mddev->private;
1829 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1830 sector_t sect = r1_bio->sector;
1831 int sectors = r1_bio->sectors;
1832 int idx = 0;
1833
1834 while(sectors) {
1835 int s = sectors;
1836 int d = r1_bio->read_disk;
1837 int success = 0;
1838 struct md_rdev *rdev;
1839 int start;
1840
1841 if (s > (PAGE_SIZE>>9))
1842 s = PAGE_SIZE >> 9;
1843 do {
1844 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1845 /* No rcu protection needed here devices
1846 * can only be removed when no resync is
1847 * active, and resync is currently active
1848 */
1849 rdev = conf->mirrors[d].rdev;
1850 if (sync_page_io(rdev, sect, s<<9,
1851 bio->bi_io_vec[idx].bv_page,
1852 READ, false)) {
1853 success = 1;
1854 break;
1855 }
1856 }
1857 d++;
1858 if (d == conf->raid_disks * 2)
1859 d = 0;
1860 } while (!success && d != r1_bio->read_disk);
1861
1862 if (!success) {
1863 char b[BDEVNAME_SIZE];
1864 int abort = 0;
1865 /* Cannot read from anywhere, this block is lost.
1866 * Record a bad block on each device. If that doesn't
1867 * work just disable and interrupt the recovery.
1868 * Don't fail devices as that won't really help.
1869 */
1870 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1871 " for block %llu\n",
1872 mdname(mddev),
1873 bdevname(bio->bi_bdev, b),
1874 (unsigned long long)r1_bio->sector);
1875 for (d = 0; d < conf->raid_disks * 2; d++) {
1876 rdev = conf->mirrors[d].rdev;
1877 if (!rdev || test_bit(Faulty, &rdev->flags))
1878 continue;
1879 if (!rdev_set_badblocks(rdev, sect, s, 0))
1880 abort = 1;
1881 }
1882 if (abort) {
1883 conf->recovery_disabled =
1884 mddev->recovery_disabled;
1885 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1886 md_done_sync(mddev, r1_bio->sectors, 0);
1887 put_buf(r1_bio);
1888 return 0;
1889 }
1890 /* Try next page */
1891 sectors -= s;
1892 sect += s;
1893 idx++;
1894 continue;
1895 }
1896
1897 start = d;
1898 /* write it back and re-read */
1899 while (d != r1_bio->read_disk) {
1900 if (d == 0)
1901 d = conf->raid_disks * 2;
1902 d--;
1903 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1904 continue;
1905 rdev = conf->mirrors[d].rdev;
1906 if (r1_sync_page_io(rdev, sect, s,
1907 bio->bi_io_vec[idx].bv_page,
1908 WRITE) == 0) {
1909 r1_bio->bios[d]->bi_end_io = NULL;
1910 rdev_dec_pending(rdev, mddev);
1911 }
1912 }
1913 d = start;
1914 while (d != r1_bio->read_disk) {
1915 if (d == 0)
1916 d = conf->raid_disks * 2;
1917 d--;
1918 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1919 continue;
1920 rdev = conf->mirrors[d].rdev;
1921 if (r1_sync_page_io(rdev, sect, s,
1922 bio->bi_io_vec[idx].bv_page,
1923 READ) != 0)
1924 atomic_add(s, &rdev->corrected_errors);
1925 }
1926 sectors -= s;
1927 sect += s;
1928 idx ++;
1929 }
1930 set_bit(R1BIO_Uptodate, &r1_bio->state);
1931 set_bit(BIO_UPTODATE, &bio->bi_flags);
1932 return 1;
1933 }
1934
1935 static void process_checks(struct r1bio *r1_bio)
1936 {
1937 /* We have read all readable devices. If we haven't
1938 * got the block, then there is no hope left.
1939 * If we have, then we want to do a comparison
1940 * and skip the write if everything is the same.
1941 * If any blocks failed to read, then we need to
1942 * attempt an over-write
1943 */
1944 struct mddev *mddev = r1_bio->mddev;
1945 struct r1conf *conf = mddev->private;
1946 int primary;
1947 int i;
1948 int vcnt;
1949
1950 /* Fix variable parts of all bios */
1951 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1952 for (i = 0; i < conf->raid_disks * 2; i++) {
1953 int j;
1954 int size;
1955 int uptodate;
1956 struct bio *b = r1_bio->bios[i];
1957 if (b->bi_end_io != end_sync_read)
1958 continue;
1959 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1960 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1961 bio_reset(b);
1962 if (!uptodate)
1963 clear_bit(BIO_UPTODATE, &b->bi_flags);
1964 b->bi_vcnt = vcnt;
1965 b->bi_iter.bi_size = r1_bio->sectors << 9;
1966 b->bi_iter.bi_sector = r1_bio->sector +
1967 conf->mirrors[i].rdev->data_offset;
1968 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1969 b->bi_end_io = end_sync_read;
1970 b->bi_private = r1_bio;
1971
1972 size = b->bi_iter.bi_size;
1973 for (j = 0; j < vcnt ; j++) {
1974 struct bio_vec *bi;
1975 bi = &b->bi_io_vec[j];
1976 bi->bv_offset = 0;
1977 if (size > PAGE_SIZE)
1978 bi->bv_len = PAGE_SIZE;
1979 else
1980 bi->bv_len = size;
1981 size -= PAGE_SIZE;
1982 }
1983 }
1984 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1985 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1986 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1987 r1_bio->bios[primary]->bi_end_io = NULL;
1988 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1989 break;
1990 }
1991 r1_bio->read_disk = primary;
1992 for (i = 0; i < conf->raid_disks * 2; i++) {
1993 int j;
1994 struct bio *pbio = r1_bio->bios[primary];
1995 struct bio *sbio = r1_bio->bios[i];
1996 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1997
1998 if (sbio->bi_end_io != end_sync_read)
1999 continue;
2000 /* Now we can 'fixup' the BIO_UPTODATE flag */
2001 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2002
2003 if (uptodate) {
2004 for (j = vcnt; j-- ; ) {
2005 struct page *p, *s;
2006 p = pbio->bi_io_vec[j].bv_page;
2007 s = sbio->bi_io_vec[j].bv_page;
2008 if (memcmp(page_address(p),
2009 page_address(s),
2010 sbio->bi_io_vec[j].bv_len))
2011 break;
2012 }
2013 } else
2014 j = 0;
2015 if (j >= 0)
2016 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2017 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2018 && uptodate)) {
2019 /* No need to write to this device. */
2020 sbio->bi_end_io = NULL;
2021 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2022 continue;
2023 }
2024
2025 bio_copy_data(sbio, pbio);
2026 }
2027 }
2028
2029 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2030 {
2031 struct r1conf *conf = mddev->private;
2032 int i;
2033 int disks = conf->raid_disks * 2;
2034 struct bio *bio, *wbio;
2035
2036 bio = r1_bio->bios[r1_bio->read_disk];
2037
2038 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2039 /* ouch - failed to read all of that. */
2040 if (!fix_sync_read_error(r1_bio))
2041 return;
2042
2043 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2044 process_checks(r1_bio);
2045
2046 /*
2047 * schedule writes
2048 */
2049 atomic_set(&r1_bio->remaining, 1);
2050 for (i = 0; i < disks ; i++) {
2051 wbio = r1_bio->bios[i];
2052 if (wbio->bi_end_io == NULL ||
2053 (wbio->bi_end_io == end_sync_read &&
2054 (i == r1_bio->read_disk ||
2055 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2056 continue;
2057
2058 wbio->bi_rw = WRITE;
2059 wbio->bi_end_io = end_sync_write;
2060 atomic_inc(&r1_bio->remaining);
2061 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2062
2063 generic_make_request(wbio);
2064 }
2065
2066 if (atomic_dec_and_test(&r1_bio->remaining)) {
2067 /* if we're here, all write(s) have completed, so clean up */
2068 int s = r1_bio->sectors;
2069 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2070 test_bit(R1BIO_WriteError, &r1_bio->state))
2071 reschedule_retry(r1_bio);
2072 else {
2073 put_buf(r1_bio);
2074 md_done_sync(mddev, s, 1);
2075 }
2076 }
2077 }
2078
2079 /*
2080 * This is a kernel thread which:
2081 *
2082 * 1. Retries failed read operations on working mirrors.
2083 * 2. Updates the raid superblock when problems encounter.
2084 * 3. Performs writes following reads for array synchronising.
2085 */
2086
2087 static void fix_read_error(struct r1conf *conf, int read_disk,
2088 sector_t sect, int sectors)
2089 {
2090 struct mddev *mddev = conf->mddev;
2091 while(sectors) {
2092 int s = sectors;
2093 int d = read_disk;
2094 int success = 0;
2095 int start;
2096 struct md_rdev *rdev;
2097
2098 if (s > (PAGE_SIZE>>9))
2099 s = PAGE_SIZE >> 9;
2100
2101 do {
2102 /* Note: no rcu protection needed here
2103 * as this is synchronous in the raid1d thread
2104 * which is the thread that might remove
2105 * a device. If raid1d ever becomes multi-threaded....
2106 */
2107 sector_t first_bad;
2108 int bad_sectors;
2109
2110 rdev = conf->mirrors[d].rdev;
2111 if (rdev &&
2112 (test_bit(In_sync, &rdev->flags) ||
2113 (!test_bit(Faulty, &rdev->flags) &&
2114 rdev->recovery_offset >= sect + s)) &&
2115 is_badblock(rdev, sect, s,
2116 &first_bad, &bad_sectors) == 0 &&
2117 sync_page_io(rdev, sect, s<<9,
2118 conf->tmppage, READ, false))
2119 success = 1;
2120 else {
2121 d++;
2122 if (d == conf->raid_disks * 2)
2123 d = 0;
2124 }
2125 } while (!success && d != read_disk);
2126
2127 if (!success) {
2128 /* Cannot read from anywhere - mark it bad */
2129 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2130 if (!rdev_set_badblocks(rdev, sect, s, 0))
2131 md_error(mddev, rdev);
2132 break;
2133 }
2134 /* write it back and re-read */
2135 start = d;
2136 while (d != read_disk) {
2137 if (d==0)
2138 d = conf->raid_disks * 2;
2139 d--;
2140 rdev = conf->mirrors[d].rdev;
2141 if (rdev &&
2142 !test_bit(Faulty, &rdev->flags))
2143 r1_sync_page_io(rdev, sect, s,
2144 conf->tmppage, WRITE);
2145 }
2146 d = start;
2147 while (d != read_disk) {
2148 char b[BDEVNAME_SIZE];
2149 if (d==0)
2150 d = conf->raid_disks * 2;
2151 d--;
2152 rdev = conf->mirrors[d].rdev;
2153 if (rdev &&
2154 !test_bit(Faulty, &rdev->flags)) {
2155 if (r1_sync_page_io(rdev, sect, s,
2156 conf->tmppage, READ)) {
2157 atomic_add(s, &rdev->corrected_errors);
2158 printk(KERN_INFO
2159 "md/raid1:%s: read error corrected "
2160 "(%d sectors at %llu on %s)\n",
2161 mdname(mddev), s,
2162 (unsigned long long)(sect +
2163 rdev->data_offset),
2164 bdevname(rdev->bdev, b));
2165 }
2166 }
2167 }
2168 sectors -= s;
2169 sect += s;
2170 }
2171 }
2172
2173 static int narrow_write_error(struct r1bio *r1_bio, int i)
2174 {
2175 struct mddev *mddev = r1_bio->mddev;
2176 struct r1conf *conf = mddev->private;
2177 struct md_rdev *rdev = conf->mirrors[i].rdev;
2178
2179 /* bio has the data to be written to device 'i' where
2180 * we just recently had a write error.
2181 * We repeatedly clone the bio and trim down to one block,
2182 * then try the write. Where the write fails we record
2183 * a bad block.
2184 * It is conceivable that the bio doesn't exactly align with
2185 * blocks. We must handle this somehow.
2186 *
2187 * We currently own a reference on the rdev.
2188 */
2189
2190 int block_sectors;
2191 sector_t sector;
2192 int sectors;
2193 int sect_to_write = r1_bio->sectors;
2194 int ok = 1;
2195
2196 if (rdev->badblocks.shift < 0)
2197 return 0;
2198
2199 block_sectors = roundup(1 << rdev->badblocks.shift,
2200 bdev_logical_block_size(rdev->bdev) >> 9);
2201 sector = r1_bio->sector;
2202 sectors = ((sector + block_sectors)
2203 & ~(sector_t)(block_sectors - 1))
2204 - sector;
2205
2206 while (sect_to_write) {
2207 struct bio *wbio;
2208 if (sectors > sect_to_write)
2209 sectors = sect_to_write;
2210 /* Write at 'sector' for 'sectors'*/
2211
2212 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2213 unsigned vcnt = r1_bio->behind_page_count;
2214 struct bio_vec *vec = r1_bio->behind_bvecs;
2215
2216 while (!vec->bv_page) {
2217 vec++;
2218 vcnt--;
2219 }
2220
2221 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2222 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2223
2224 wbio->bi_vcnt = vcnt;
2225 } else {
2226 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2227 }
2228
2229 wbio->bi_rw = WRITE;
2230 wbio->bi_iter.bi_sector = r1_bio->sector;
2231 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2232
2233 bio_trim(wbio, sector - r1_bio->sector, sectors);
2234 wbio->bi_iter.bi_sector += rdev->data_offset;
2235 wbio->bi_bdev = rdev->bdev;
2236 if (submit_bio_wait(WRITE, wbio) == 0)
2237 /* failure! */
2238 ok = rdev_set_badblocks(rdev, sector,
2239 sectors, 0)
2240 && ok;
2241
2242 bio_put(wbio);
2243 sect_to_write -= sectors;
2244 sector += sectors;
2245 sectors = block_sectors;
2246 }
2247 return ok;
2248 }
2249
2250 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2251 {
2252 int m;
2253 int s = r1_bio->sectors;
2254 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2255 struct md_rdev *rdev = conf->mirrors[m].rdev;
2256 struct bio *bio = r1_bio->bios[m];
2257 if (bio->bi_end_io == NULL)
2258 continue;
2259 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2260 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2261 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2262 }
2263 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2264 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2265 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2266 md_error(conf->mddev, rdev);
2267 }
2268 }
2269 put_buf(r1_bio);
2270 md_done_sync(conf->mddev, s, 1);
2271 }
2272
2273 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2274 {
2275 int m;
2276 for (m = 0; m < conf->raid_disks * 2 ; m++)
2277 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2278 struct md_rdev *rdev = conf->mirrors[m].rdev;
2279 rdev_clear_badblocks(rdev,
2280 r1_bio->sector,
2281 r1_bio->sectors, 0);
2282 rdev_dec_pending(rdev, conf->mddev);
2283 } else if (r1_bio->bios[m] != NULL) {
2284 /* This drive got a write error. We need to
2285 * narrow down and record precise write
2286 * errors.
2287 */
2288 if (!narrow_write_error(r1_bio, m)) {
2289 md_error(conf->mddev,
2290 conf->mirrors[m].rdev);
2291 /* an I/O failed, we can't clear the bitmap */
2292 set_bit(R1BIO_Degraded, &r1_bio->state);
2293 }
2294 rdev_dec_pending(conf->mirrors[m].rdev,
2295 conf->mddev);
2296 }
2297 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2298 close_write(r1_bio);
2299 raid_end_bio_io(r1_bio);
2300 }
2301
2302 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2303 {
2304 int disk;
2305 int max_sectors;
2306 struct mddev *mddev = conf->mddev;
2307 struct bio *bio;
2308 char b[BDEVNAME_SIZE];
2309 struct md_rdev *rdev;
2310
2311 clear_bit(R1BIO_ReadError, &r1_bio->state);
2312 /* we got a read error. Maybe the drive is bad. Maybe just
2313 * the block and we can fix it.
2314 * We freeze all other IO, and try reading the block from
2315 * other devices. When we find one, we re-write
2316 * and check it that fixes the read error.
2317 * This is all done synchronously while the array is
2318 * frozen
2319 */
2320 if (mddev->ro == 0) {
2321 freeze_array(conf, 1);
2322 fix_read_error(conf, r1_bio->read_disk,
2323 r1_bio->sector, r1_bio->sectors);
2324 unfreeze_array(conf);
2325 } else
2326 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2327 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2328
2329 bio = r1_bio->bios[r1_bio->read_disk];
2330 bdevname(bio->bi_bdev, b);
2331 read_more:
2332 disk = read_balance(conf, r1_bio, &max_sectors);
2333 if (disk == -1) {
2334 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2335 " read error for block %llu\n",
2336 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2337 raid_end_bio_io(r1_bio);
2338 } else {
2339 const unsigned long do_sync
2340 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2341 if (bio) {
2342 r1_bio->bios[r1_bio->read_disk] =
2343 mddev->ro ? IO_BLOCKED : NULL;
2344 bio_put(bio);
2345 }
2346 r1_bio->read_disk = disk;
2347 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2348 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2349 max_sectors);
2350 r1_bio->bios[r1_bio->read_disk] = bio;
2351 rdev = conf->mirrors[disk].rdev;
2352 printk_ratelimited(KERN_ERR
2353 "md/raid1:%s: redirecting sector %llu"
2354 " to other mirror: %s\n",
2355 mdname(mddev),
2356 (unsigned long long)r1_bio->sector,
2357 bdevname(rdev->bdev, b));
2358 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2359 bio->bi_bdev = rdev->bdev;
2360 bio->bi_end_io = raid1_end_read_request;
2361 bio->bi_rw = READ | do_sync;
2362 bio->bi_private = r1_bio;
2363 if (max_sectors < r1_bio->sectors) {
2364 /* Drat - have to split this up more */
2365 struct bio *mbio = r1_bio->master_bio;
2366 int sectors_handled = (r1_bio->sector + max_sectors
2367 - mbio->bi_iter.bi_sector);
2368 r1_bio->sectors = max_sectors;
2369 spin_lock_irq(&conf->device_lock);
2370 if (mbio->bi_phys_segments == 0)
2371 mbio->bi_phys_segments = 2;
2372 else
2373 mbio->bi_phys_segments++;
2374 spin_unlock_irq(&conf->device_lock);
2375 generic_make_request(bio);
2376 bio = NULL;
2377
2378 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2379
2380 r1_bio->master_bio = mbio;
2381 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2382 r1_bio->state = 0;
2383 set_bit(R1BIO_ReadError, &r1_bio->state);
2384 r1_bio->mddev = mddev;
2385 r1_bio->sector = mbio->bi_iter.bi_sector +
2386 sectors_handled;
2387
2388 goto read_more;
2389 } else
2390 generic_make_request(bio);
2391 }
2392 }
2393
2394 static void raid1d(struct md_thread *thread)
2395 {
2396 struct mddev *mddev = thread->mddev;
2397 struct r1bio *r1_bio;
2398 unsigned long flags;
2399 struct r1conf *conf = mddev->private;
2400 struct list_head *head = &conf->retry_list;
2401 struct blk_plug plug;
2402
2403 md_check_recovery(mddev);
2404
2405 blk_start_plug(&plug);
2406 for (;;) {
2407
2408 flush_pending_writes(conf);
2409
2410 spin_lock_irqsave(&conf->device_lock, flags);
2411 if (list_empty(head)) {
2412 spin_unlock_irqrestore(&conf->device_lock, flags);
2413 break;
2414 }
2415 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2416 list_del(head->prev);
2417 conf->nr_queued--;
2418 spin_unlock_irqrestore(&conf->device_lock, flags);
2419
2420 mddev = r1_bio->mddev;
2421 conf = mddev->private;
2422 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2423 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2424 test_bit(R1BIO_WriteError, &r1_bio->state))
2425 handle_sync_write_finished(conf, r1_bio);
2426 else
2427 sync_request_write(mddev, r1_bio);
2428 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2429 test_bit(R1BIO_WriteError, &r1_bio->state))
2430 handle_write_finished(conf, r1_bio);
2431 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2432 handle_read_error(conf, r1_bio);
2433 else
2434 /* just a partial read to be scheduled from separate
2435 * context
2436 */
2437 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2438
2439 cond_resched();
2440 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2441 md_check_recovery(mddev);
2442 }
2443 blk_finish_plug(&plug);
2444 }
2445
2446 static int init_resync(struct r1conf *conf)
2447 {
2448 int buffs;
2449
2450 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2451 BUG_ON(conf->r1buf_pool);
2452 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2453 conf->poolinfo);
2454 if (!conf->r1buf_pool)
2455 return -ENOMEM;
2456 conf->next_resync = 0;
2457 return 0;
2458 }
2459
2460 /*
2461 * perform a "sync" on one "block"
2462 *
2463 * We need to make sure that no normal I/O request - particularly write
2464 * requests - conflict with active sync requests.
2465 *
2466 * This is achieved by tracking pending requests and a 'barrier' concept
2467 * that can be installed to exclude normal IO requests.
2468 */
2469
2470 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2471 {
2472 struct r1conf *conf = mddev->private;
2473 struct r1bio *r1_bio;
2474 struct bio *bio;
2475 sector_t max_sector, nr_sectors;
2476 int disk = -1;
2477 int i;
2478 int wonly = -1;
2479 int write_targets = 0, read_targets = 0;
2480 sector_t sync_blocks;
2481 int still_degraded = 0;
2482 int good_sectors = RESYNC_SECTORS;
2483 int min_bad = 0; /* number of sectors that are bad in all devices */
2484
2485 if (!conf->r1buf_pool)
2486 if (init_resync(conf))
2487 return 0;
2488
2489 max_sector = mddev->dev_sectors;
2490 if (sector_nr >= max_sector) {
2491 /* If we aborted, we need to abort the
2492 * sync on the 'current' bitmap chunk (there will
2493 * only be one in raid1 resync.
2494 * We can find the current addess in mddev->curr_resync
2495 */
2496 if (mddev->curr_resync < max_sector) /* aborted */
2497 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2498 &sync_blocks, 1);
2499 else /* completed sync */
2500 conf->fullsync = 0;
2501
2502 bitmap_close_sync(mddev->bitmap);
2503 close_sync(conf);
2504 return 0;
2505 }
2506
2507 if (mddev->bitmap == NULL &&
2508 mddev->recovery_cp == MaxSector &&
2509 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2510 conf->fullsync == 0) {
2511 *skipped = 1;
2512 return max_sector - sector_nr;
2513 }
2514 /* before building a request, check if we can skip these blocks..
2515 * This call the bitmap_start_sync doesn't actually record anything
2516 */
2517 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2518 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2519 /* We can skip this block, and probably several more */
2520 *skipped = 1;
2521 return sync_blocks;
2522 }
2523 /*
2524 * If there is non-resync activity waiting for a turn,
2525 * and resync is going fast enough,
2526 * then let it though before starting on this new sync request.
2527 */
2528 if (!go_faster && conf->nr_waiting)
2529 msleep_interruptible(1000);
2530
2531 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2532 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2533
2534 raise_barrier(conf, sector_nr);
2535
2536 rcu_read_lock();
2537 /*
2538 * If we get a correctably read error during resync or recovery,
2539 * we might want to read from a different device. So we
2540 * flag all drives that could conceivably be read from for READ,
2541 * and any others (which will be non-In_sync devices) for WRITE.
2542 * If a read fails, we try reading from something else for which READ
2543 * is OK.
2544 */
2545
2546 r1_bio->mddev = mddev;
2547 r1_bio->sector = sector_nr;
2548 r1_bio->state = 0;
2549 set_bit(R1BIO_IsSync, &r1_bio->state);
2550
2551 for (i = 0; i < conf->raid_disks * 2; i++) {
2552 struct md_rdev *rdev;
2553 bio = r1_bio->bios[i];
2554 bio_reset(bio);
2555
2556 rdev = rcu_dereference(conf->mirrors[i].rdev);
2557 if (rdev == NULL ||
2558 test_bit(Faulty, &rdev->flags)) {
2559 if (i < conf->raid_disks)
2560 still_degraded = 1;
2561 } else if (!test_bit(In_sync, &rdev->flags)) {
2562 bio->bi_rw = WRITE;
2563 bio->bi_end_io = end_sync_write;
2564 write_targets ++;
2565 } else {
2566 /* may need to read from here */
2567 sector_t first_bad = MaxSector;
2568 int bad_sectors;
2569
2570 if (is_badblock(rdev, sector_nr, good_sectors,
2571 &first_bad, &bad_sectors)) {
2572 if (first_bad > sector_nr)
2573 good_sectors = first_bad - sector_nr;
2574 else {
2575 bad_sectors -= (sector_nr - first_bad);
2576 if (min_bad == 0 ||
2577 min_bad > bad_sectors)
2578 min_bad = bad_sectors;
2579 }
2580 }
2581 if (sector_nr < first_bad) {
2582 if (test_bit(WriteMostly, &rdev->flags)) {
2583 if (wonly < 0)
2584 wonly = i;
2585 } else {
2586 if (disk < 0)
2587 disk = i;
2588 }
2589 bio->bi_rw = READ;
2590 bio->bi_end_io = end_sync_read;
2591 read_targets++;
2592 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2593 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2594 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2595 /*
2596 * The device is suitable for reading (InSync),
2597 * but has bad block(s) here. Let's try to correct them,
2598 * if we are doing resync or repair. Otherwise, leave
2599 * this device alone for this sync request.
2600 */
2601 bio->bi_rw = WRITE;
2602 bio->bi_end_io = end_sync_write;
2603 write_targets++;
2604 }
2605 }
2606 if (bio->bi_end_io) {
2607 atomic_inc(&rdev->nr_pending);
2608 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2609 bio->bi_bdev = rdev->bdev;
2610 bio->bi_private = r1_bio;
2611 }
2612 }
2613 rcu_read_unlock();
2614 if (disk < 0)
2615 disk = wonly;
2616 r1_bio->read_disk = disk;
2617
2618 if (read_targets == 0 && min_bad > 0) {
2619 /* These sectors are bad on all InSync devices, so we
2620 * need to mark them bad on all write targets
2621 */
2622 int ok = 1;
2623 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2624 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2625 struct md_rdev *rdev = conf->mirrors[i].rdev;
2626 ok = rdev_set_badblocks(rdev, sector_nr,
2627 min_bad, 0
2628 ) && ok;
2629 }
2630 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2631 *skipped = 1;
2632 put_buf(r1_bio);
2633
2634 if (!ok) {
2635 /* Cannot record the badblocks, so need to
2636 * abort the resync.
2637 * If there are multiple read targets, could just
2638 * fail the really bad ones ???
2639 */
2640 conf->recovery_disabled = mddev->recovery_disabled;
2641 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2642 return 0;
2643 } else
2644 return min_bad;
2645
2646 }
2647 if (min_bad > 0 && min_bad < good_sectors) {
2648 /* only resync enough to reach the next bad->good
2649 * transition */
2650 good_sectors = min_bad;
2651 }
2652
2653 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2654 /* extra read targets are also write targets */
2655 write_targets += read_targets-1;
2656
2657 if (write_targets == 0 || read_targets == 0) {
2658 /* There is nowhere to write, so all non-sync
2659 * drives must be failed - so we are finished
2660 */
2661 sector_t rv;
2662 if (min_bad > 0)
2663 max_sector = sector_nr + min_bad;
2664 rv = max_sector - sector_nr;
2665 *skipped = 1;
2666 put_buf(r1_bio);
2667 return rv;
2668 }
2669
2670 if (max_sector > mddev->resync_max)
2671 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2672 if (max_sector > sector_nr + good_sectors)
2673 max_sector = sector_nr + good_sectors;
2674 nr_sectors = 0;
2675 sync_blocks = 0;
2676 do {
2677 struct page *page;
2678 int len = PAGE_SIZE;
2679 if (sector_nr + (len>>9) > max_sector)
2680 len = (max_sector - sector_nr) << 9;
2681 if (len == 0)
2682 break;
2683 if (sync_blocks == 0) {
2684 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2685 &sync_blocks, still_degraded) &&
2686 !conf->fullsync &&
2687 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2688 break;
2689 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2690 if ((len >> 9) > sync_blocks)
2691 len = sync_blocks<<9;
2692 }
2693
2694 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2695 bio = r1_bio->bios[i];
2696 if (bio->bi_end_io) {
2697 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2698 if (bio_add_page(bio, page, len, 0) == 0) {
2699 /* stop here */
2700 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2701 while (i > 0) {
2702 i--;
2703 bio = r1_bio->bios[i];
2704 if (bio->bi_end_io==NULL)
2705 continue;
2706 /* remove last page from this bio */
2707 bio->bi_vcnt--;
2708 bio->bi_iter.bi_size -= len;
2709 __clear_bit(BIO_SEG_VALID, &bio->bi_flags);
2710 }
2711 goto bio_full;
2712 }
2713 }
2714 }
2715 nr_sectors += len>>9;
2716 sector_nr += len>>9;
2717 sync_blocks -= (len>>9);
2718 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2719 bio_full:
2720 r1_bio->sectors = nr_sectors;
2721
2722 /* For a user-requested sync, we read all readable devices and do a
2723 * compare
2724 */
2725 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2726 atomic_set(&r1_bio->remaining, read_targets);
2727 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2728 bio = r1_bio->bios[i];
2729 if (bio->bi_end_io == end_sync_read) {
2730 read_targets--;
2731 md_sync_acct(bio->bi_bdev, nr_sectors);
2732 generic_make_request(bio);
2733 }
2734 }
2735 } else {
2736 atomic_set(&r1_bio->remaining, 1);
2737 bio = r1_bio->bios[r1_bio->read_disk];
2738 md_sync_acct(bio->bi_bdev, nr_sectors);
2739 generic_make_request(bio);
2740
2741 }
2742 return nr_sectors;
2743 }
2744
2745 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2746 {
2747 if (sectors)
2748 return sectors;
2749
2750 return mddev->dev_sectors;
2751 }
2752
2753 static struct r1conf *setup_conf(struct mddev *mddev)
2754 {
2755 struct r1conf *conf;
2756 int i;
2757 struct raid1_info *disk;
2758 struct md_rdev *rdev;
2759 int err = -ENOMEM;
2760
2761 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2762 if (!conf)
2763 goto abort;
2764
2765 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2766 * mddev->raid_disks * 2,
2767 GFP_KERNEL);
2768 if (!conf->mirrors)
2769 goto abort;
2770
2771 conf->tmppage = alloc_page(GFP_KERNEL);
2772 if (!conf->tmppage)
2773 goto abort;
2774
2775 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2776 if (!conf->poolinfo)
2777 goto abort;
2778 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2779 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2780 r1bio_pool_free,
2781 conf->poolinfo);
2782 if (!conf->r1bio_pool)
2783 goto abort;
2784
2785 conf->poolinfo->mddev = mddev;
2786
2787 err = -EINVAL;
2788 spin_lock_init(&conf->device_lock);
2789 rdev_for_each(rdev, mddev) {
2790 struct request_queue *q;
2791 int disk_idx = rdev->raid_disk;
2792 if (disk_idx >= mddev->raid_disks
2793 || disk_idx < 0)
2794 continue;
2795 if (test_bit(Replacement, &rdev->flags))
2796 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2797 else
2798 disk = conf->mirrors + disk_idx;
2799
2800 if (disk->rdev)
2801 goto abort;
2802 disk->rdev = rdev;
2803 q = bdev_get_queue(rdev->bdev);
2804 if (q->merge_bvec_fn)
2805 mddev->merge_check_needed = 1;
2806
2807 disk->head_position = 0;
2808 disk->seq_start = MaxSector;
2809 }
2810 conf->raid_disks = mddev->raid_disks;
2811 conf->mddev = mddev;
2812 INIT_LIST_HEAD(&conf->retry_list);
2813
2814 spin_lock_init(&conf->resync_lock);
2815 init_waitqueue_head(&conf->wait_barrier);
2816
2817 bio_list_init(&conf->pending_bio_list);
2818 conf->pending_count = 0;
2819 conf->recovery_disabled = mddev->recovery_disabled - 1;
2820
2821 conf->start_next_window = MaxSector;
2822 conf->current_window_requests = conf->next_window_requests = 0;
2823
2824 err = -EIO;
2825 for (i = 0; i < conf->raid_disks * 2; i++) {
2826
2827 disk = conf->mirrors + i;
2828
2829 if (i < conf->raid_disks &&
2830 disk[conf->raid_disks].rdev) {
2831 /* This slot has a replacement. */
2832 if (!disk->rdev) {
2833 /* No original, just make the replacement
2834 * a recovering spare
2835 */
2836 disk->rdev =
2837 disk[conf->raid_disks].rdev;
2838 disk[conf->raid_disks].rdev = NULL;
2839 } else if (!test_bit(In_sync, &disk->rdev->flags))
2840 /* Original is not in_sync - bad */
2841 goto abort;
2842 }
2843
2844 if (!disk->rdev ||
2845 !test_bit(In_sync, &disk->rdev->flags)) {
2846 disk->head_position = 0;
2847 if (disk->rdev &&
2848 (disk->rdev->saved_raid_disk < 0))
2849 conf->fullsync = 1;
2850 }
2851 }
2852
2853 err = -ENOMEM;
2854 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2855 if (!conf->thread) {
2856 printk(KERN_ERR
2857 "md/raid1:%s: couldn't allocate thread\n",
2858 mdname(mddev));
2859 goto abort;
2860 }
2861
2862 return conf;
2863
2864 abort:
2865 if (conf) {
2866 if (conf->r1bio_pool)
2867 mempool_destroy(conf->r1bio_pool);
2868 kfree(conf->mirrors);
2869 safe_put_page(conf->tmppage);
2870 kfree(conf->poolinfo);
2871 kfree(conf);
2872 }
2873 return ERR_PTR(err);
2874 }
2875
2876 static void raid1_free(struct mddev *mddev, void *priv);
2877 static int run(struct mddev *mddev)
2878 {
2879 struct r1conf *conf;
2880 int i;
2881 struct md_rdev *rdev;
2882 int ret;
2883 bool discard_supported = false;
2884
2885 if (mddev->level != 1) {
2886 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2887 mdname(mddev), mddev->level);
2888 return -EIO;
2889 }
2890 if (mddev->reshape_position != MaxSector) {
2891 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2892 mdname(mddev));
2893 return -EIO;
2894 }
2895 /*
2896 * copy the already verified devices into our private RAID1
2897 * bookkeeping area. [whatever we allocate in run(),
2898 * should be freed in raid1_free()]
2899 */
2900 if (mddev->private == NULL)
2901 conf = setup_conf(mddev);
2902 else
2903 conf = mddev->private;
2904
2905 if (IS_ERR(conf))
2906 return PTR_ERR(conf);
2907
2908 if (mddev->queue)
2909 blk_queue_max_write_same_sectors(mddev->queue, 0);
2910
2911 rdev_for_each(rdev, mddev) {
2912 if (!mddev->gendisk)
2913 continue;
2914 disk_stack_limits(mddev->gendisk, rdev->bdev,
2915 rdev->data_offset << 9);
2916 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2917 discard_supported = true;
2918 }
2919
2920 mddev->degraded = 0;
2921 for (i=0; i < conf->raid_disks; i++)
2922 if (conf->mirrors[i].rdev == NULL ||
2923 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2924 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2925 mddev->degraded++;
2926
2927 if (conf->raid_disks - mddev->degraded == 1)
2928 mddev->recovery_cp = MaxSector;
2929
2930 if (mddev->recovery_cp != MaxSector)
2931 printk(KERN_NOTICE "md/raid1:%s: not clean"
2932 " -- starting background reconstruction\n",
2933 mdname(mddev));
2934 printk(KERN_INFO
2935 "md/raid1:%s: active with %d out of %d mirrors\n",
2936 mdname(mddev), mddev->raid_disks - mddev->degraded,
2937 mddev->raid_disks);
2938
2939 /*
2940 * Ok, everything is just fine now
2941 */
2942 mddev->thread = conf->thread;
2943 conf->thread = NULL;
2944 mddev->private = conf;
2945
2946 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2947
2948 if (mddev->queue) {
2949 if (discard_supported)
2950 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2951 mddev->queue);
2952 else
2953 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2954 mddev->queue);
2955 }
2956
2957 ret = md_integrity_register(mddev);
2958 if (ret) {
2959 md_unregister_thread(&mddev->thread);
2960 raid1_free(mddev, conf);
2961 }
2962 return ret;
2963 }
2964
2965 static void raid1_free(struct mddev *mddev, void *priv)
2966 {
2967 struct r1conf *conf = priv;
2968
2969 if (conf->r1bio_pool)
2970 mempool_destroy(conf->r1bio_pool);
2971 kfree(conf->mirrors);
2972 safe_put_page(conf->tmppage);
2973 kfree(conf->poolinfo);
2974 kfree(conf);
2975 }
2976
2977 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2978 {
2979 /* no resync is happening, and there is enough space
2980 * on all devices, so we can resize.
2981 * We need to make sure resync covers any new space.
2982 * If the array is shrinking we should possibly wait until
2983 * any io in the removed space completes, but it hardly seems
2984 * worth it.
2985 */
2986 sector_t newsize = raid1_size(mddev, sectors, 0);
2987 if (mddev->external_size &&
2988 mddev->array_sectors > newsize)
2989 return -EINVAL;
2990 if (mddev->bitmap) {
2991 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2992 if (ret)
2993 return ret;
2994 }
2995 md_set_array_sectors(mddev, newsize);
2996 set_capacity(mddev->gendisk, mddev->array_sectors);
2997 revalidate_disk(mddev->gendisk);
2998 if (sectors > mddev->dev_sectors &&
2999 mddev->recovery_cp > mddev->dev_sectors) {
3000 mddev->recovery_cp = mddev->dev_sectors;
3001 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3002 }
3003 mddev->dev_sectors = sectors;
3004 mddev->resync_max_sectors = sectors;
3005 return 0;
3006 }
3007
3008 static int raid1_reshape(struct mddev *mddev)
3009 {
3010 /* We need to:
3011 * 1/ resize the r1bio_pool
3012 * 2/ resize conf->mirrors
3013 *
3014 * We allocate a new r1bio_pool if we can.
3015 * Then raise a device barrier and wait until all IO stops.
3016 * Then resize conf->mirrors and swap in the new r1bio pool.
3017 *
3018 * At the same time, we "pack" the devices so that all the missing
3019 * devices have the higher raid_disk numbers.
3020 */
3021 mempool_t *newpool, *oldpool;
3022 struct pool_info *newpoolinfo;
3023 struct raid1_info *newmirrors;
3024 struct r1conf *conf = mddev->private;
3025 int cnt, raid_disks;
3026 unsigned long flags;
3027 int d, d2, err;
3028
3029 /* Cannot change chunk_size, layout, or level */
3030 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3031 mddev->layout != mddev->new_layout ||
3032 mddev->level != mddev->new_level) {
3033 mddev->new_chunk_sectors = mddev->chunk_sectors;
3034 mddev->new_layout = mddev->layout;
3035 mddev->new_level = mddev->level;
3036 return -EINVAL;
3037 }
3038
3039 err = md_allow_write(mddev);
3040 if (err)
3041 return err;
3042
3043 raid_disks = mddev->raid_disks + mddev->delta_disks;
3044
3045 if (raid_disks < conf->raid_disks) {
3046 cnt=0;
3047 for (d= 0; d < conf->raid_disks; d++)
3048 if (conf->mirrors[d].rdev)
3049 cnt++;
3050 if (cnt > raid_disks)
3051 return -EBUSY;
3052 }
3053
3054 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3055 if (!newpoolinfo)
3056 return -ENOMEM;
3057 newpoolinfo->mddev = mddev;
3058 newpoolinfo->raid_disks = raid_disks * 2;
3059
3060 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3061 r1bio_pool_free, newpoolinfo);
3062 if (!newpool) {
3063 kfree(newpoolinfo);
3064 return -ENOMEM;
3065 }
3066 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3067 GFP_KERNEL);
3068 if (!newmirrors) {
3069 kfree(newpoolinfo);
3070 mempool_destroy(newpool);
3071 return -ENOMEM;
3072 }
3073
3074 freeze_array(conf, 0);
3075
3076 /* ok, everything is stopped */
3077 oldpool = conf->r1bio_pool;
3078 conf->r1bio_pool = newpool;
3079
3080 for (d = d2 = 0; d < conf->raid_disks; d++) {
3081 struct md_rdev *rdev = conf->mirrors[d].rdev;
3082 if (rdev && rdev->raid_disk != d2) {
3083 sysfs_unlink_rdev(mddev, rdev);
3084 rdev->raid_disk = d2;
3085 sysfs_unlink_rdev(mddev, rdev);
3086 if (sysfs_link_rdev(mddev, rdev))
3087 printk(KERN_WARNING
3088 "md/raid1:%s: cannot register rd%d\n",
3089 mdname(mddev), rdev->raid_disk);
3090 }
3091 if (rdev)
3092 newmirrors[d2++].rdev = rdev;
3093 }
3094 kfree(conf->mirrors);
3095 conf->mirrors = newmirrors;
3096 kfree(conf->poolinfo);
3097 conf->poolinfo = newpoolinfo;
3098
3099 spin_lock_irqsave(&conf->device_lock, flags);
3100 mddev->degraded += (raid_disks - conf->raid_disks);
3101 spin_unlock_irqrestore(&conf->device_lock, flags);
3102 conf->raid_disks = mddev->raid_disks = raid_disks;
3103 mddev->delta_disks = 0;
3104
3105 unfreeze_array(conf);
3106
3107 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3108 md_wakeup_thread(mddev->thread);
3109
3110 mempool_destroy(oldpool);
3111 return 0;
3112 }
3113
3114 static void raid1_quiesce(struct mddev *mddev, int state)
3115 {
3116 struct r1conf *conf = mddev->private;
3117
3118 switch(state) {
3119 case 2: /* wake for suspend */
3120 wake_up(&conf->wait_barrier);
3121 break;
3122 case 1:
3123 freeze_array(conf, 0);
3124 break;
3125 case 0:
3126 unfreeze_array(conf);
3127 break;
3128 }
3129 }
3130
3131 static void *raid1_takeover(struct mddev *mddev)
3132 {
3133 /* raid1 can take over:
3134 * raid5 with 2 devices, any layout or chunk size
3135 */
3136 if (mddev->level == 5 && mddev->raid_disks == 2) {
3137 struct r1conf *conf;
3138 mddev->new_level = 1;
3139 mddev->new_layout = 0;
3140 mddev->new_chunk_sectors = 0;
3141 conf = setup_conf(mddev);
3142 if (!IS_ERR(conf))
3143 /* Array must appear to be quiesced */
3144 conf->array_frozen = 1;
3145 return conf;
3146 }
3147 return ERR_PTR(-EINVAL);
3148 }
3149
3150 static struct md_personality raid1_personality =
3151 {
3152 .name = "raid1",
3153 .level = 1,
3154 .owner = THIS_MODULE,
3155 .make_request = make_request,
3156 .run = run,
3157 .free = raid1_free,
3158 .status = status,
3159 .error_handler = error,
3160 .hot_add_disk = raid1_add_disk,
3161 .hot_remove_disk= raid1_remove_disk,
3162 .spare_active = raid1_spare_active,
3163 .sync_request = sync_request,
3164 .resize = raid1_resize,
3165 .size = raid1_size,
3166 .check_reshape = raid1_reshape,
3167 .quiesce = raid1_quiesce,
3168 .takeover = raid1_takeover,
3169 .congested = raid1_congested,
3170 .mergeable_bvec = raid1_mergeable_bvec,
3171 };
3172
3173 static int __init raid_init(void)
3174 {
3175 return register_md_personality(&raid1_personality);
3176 }
3177
3178 static void raid_exit(void)
3179 {
3180 unregister_md_personality(&raid1_personality);
3181 }
3182
3183 module_init(raid_init);
3184 module_exit(raid_exit);
3185 MODULE_LICENSE("GPL");
3186 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3187 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3188 MODULE_ALIAS("md-raid1");
3189 MODULE_ALIAS("md-level-1");
3190
3191 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.130961 seconds and 6 git commands to generate.