md/raid1: make sequential read detection per disk based
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
118 */
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate)
337 raid_end_bio_io(r1_bio);
338 else {
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 }
353
354 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk;
501 int disk;
502 sector_t best_dist;
503 struct md_rdev *rdev;
504 int choose_first;
505
506 rcu_read_lock();
507 /*
508 * Check if we can balance. We can balance on the whole
509 * device if no resync is going on, or below the resync window.
510 * We take the first readable disk when above the resync window.
511 */
512 retry:
513 sectors = r1_bio->sectors;
514 best_disk = -1;
515 best_dist = MaxSector;
516 best_good_sectors = 0;
517
518 if (conf->mddev->recovery_cp < MaxSector &&
519 (this_sector + sectors >= conf->next_resync))
520 choose_first = 1;
521 else
522 choose_first = 0;
523
524 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
525 sector_t dist;
526 sector_t first_bad;
527 int bad_sectors;
528
529 rdev = rcu_dereference(conf->mirrors[disk].rdev);
530 if (r1_bio->bios[disk] == IO_BLOCKED
531 || rdev == NULL
532 || test_bit(Unmerged, &rdev->flags)
533 || test_bit(Faulty, &rdev->flags))
534 continue;
535 if (!test_bit(In_sync, &rdev->flags) &&
536 rdev->recovery_offset < this_sector + sectors)
537 continue;
538 if (test_bit(WriteMostly, &rdev->flags)) {
539 /* Don't balance among write-mostly, just
540 * use the first as a last resort */
541 if (best_disk < 0) {
542 if (is_badblock(rdev, this_sector, sectors,
543 &first_bad, &bad_sectors)) {
544 if (first_bad < this_sector)
545 /* Cannot use this */
546 continue;
547 best_good_sectors = first_bad - this_sector;
548 } else
549 best_good_sectors = sectors;
550 best_disk = disk;
551 }
552 continue;
553 }
554 /* This is a reasonable device to use. It might
555 * even be best.
556 */
557 if (is_badblock(rdev, this_sector, sectors,
558 &first_bad, &bad_sectors)) {
559 if (best_dist < MaxSector)
560 /* already have a better device */
561 continue;
562 if (first_bad <= this_sector) {
563 /* cannot read here. If this is the 'primary'
564 * device, then we must not read beyond
565 * bad_sectors from another device..
566 */
567 bad_sectors -= (this_sector - first_bad);
568 if (choose_first && sectors > bad_sectors)
569 sectors = bad_sectors;
570 if (best_good_sectors > sectors)
571 best_good_sectors = sectors;
572
573 } else {
574 sector_t good_sectors = first_bad - this_sector;
575 if (good_sectors > best_good_sectors) {
576 best_good_sectors = good_sectors;
577 best_disk = disk;
578 }
579 if (choose_first)
580 break;
581 }
582 continue;
583 } else
584 best_good_sectors = sectors;
585
586 dist = abs(this_sector - conf->mirrors[disk].head_position);
587 if (choose_first
588 /* Don't change to another disk for sequential reads */
589 || conf->mirrors[disk].next_seq_sect == this_sector
590 || dist == 0
591 /* If device is idle, use it */
592 || atomic_read(&rdev->nr_pending) == 0) {
593 best_disk = disk;
594 break;
595 }
596 if (dist < best_dist) {
597 best_dist = dist;
598 best_disk = disk;
599 }
600 }
601
602 if (best_disk >= 0) {
603 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
604 if (!rdev)
605 goto retry;
606 atomic_inc(&rdev->nr_pending);
607 if (test_bit(Faulty, &rdev->flags)) {
608 /* cannot risk returning a device that failed
609 * before we inc'ed nr_pending
610 */
611 rdev_dec_pending(rdev, conf->mddev);
612 goto retry;
613 }
614 sectors = best_good_sectors;
615 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
616 }
617 rcu_read_unlock();
618 *max_sectors = sectors;
619
620 return best_disk;
621 }
622
623 static int raid1_mergeable_bvec(struct request_queue *q,
624 struct bvec_merge_data *bvm,
625 struct bio_vec *biovec)
626 {
627 struct mddev *mddev = q->queuedata;
628 struct r1conf *conf = mddev->private;
629 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
630 int max = biovec->bv_len;
631
632 if (mddev->merge_check_needed) {
633 int disk;
634 rcu_read_lock();
635 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
636 struct md_rdev *rdev = rcu_dereference(
637 conf->mirrors[disk].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
639 struct request_queue *q =
640 bdev_get_queue(rdev->bdev);
641 if (q->merge_bvec_fn) {
642 bvm->bi_sector = sector +
643 rdev->data_offset;
644 bvm->bi_bdev = rdev->bdev;
645 max = min(max, q->merge_bvec_fn(
646 q, bvm, biovec));
647 }
648 }
649 }
650 rcu_read_unlock();
651 }
652 return max;
653
654 }
655
656 int md_raid1_congested(struct mddev *mddev, int bits)
657 {
658 struct r1conf *conf = mddev->private;
659 int i, ret = 0;
660
661 if ((bits & (1 << BDI_async_congested)) &&
662 conf->pending_count >= max_queued_requests)
663 return 1;
664
665 rcu_read_lock();
666 for (i = 0; i < conf->raid_disks * 2; i++) {
667 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
668 if (rdev && !test_bit(Faulty, &rdev->flags)) {
669 struct request_queue *q = bdev_get_queue(rdev->bdev);
670
671 BUG_ON(!q);
672
673 /* Note the '|| 1' - when read_balance prefers
674 * non-congested targets, it can be removed
675 */
676 if ((bits & (1<<BDI_async_congested)) || 1)
677 ret |= bdi_congested(&q->backing_dev_info, bits);
678 else
679 ret &= bdi_congested(&q->backing_dev_info, bits);
680 }
681 }
682 rcu_read_unlock();
683 return ret;
684 }
685 EXPORT_SYMBOL_GPL(md_raid1_congested);
686
687 static int raid1_congested(void *data, int bits)
688 {
689 struct mddev *mddev = data;
690
691 return mddev_congested(mddev, bits) ||
692 md_raid1_congested(mddev, bits);
693 }
694
695 static void flush_pending_writes(struct r1conf *conf)
696 {
697 /* Any writes that have been queued but are awaiting
698 * bitmap updates get flushed here.
699 */
700 spin_lock_irq(&conf->device_lock);
701
702 if (conf->pending_bio_list.head) {
703 struct bio *bio;
704 bio = bio_list_get(&conf->pending_bio_list);
705 conf->pending_count = 0;
706 spin_unlock_irq(&conf->device_lock);
707 /* flush any pending bitmap writes to
708 * disk before proceeding w/ I/O */
709 bitmap_unplug(conf->mddev->bitmap);
710 wake_up(&conf->wait_barrier);
711
712 while (bio) { /* submit pending writes */
713 struct bio *next = bio->bi_next;
714 bio->bi_next = NULL;
715 generic_make_request(bio);
716 bio = next;
717 }
718 } else
719 spin_unlock_irq(&conf->device_lock);
720 }
721
722 /* Barriers....
723 * Sometimes we need to suspend IO while we do something else,
724 * either some resync/recovery, or reconfigure the array.
725 * To do this we raise a 'barrier'.
726 * The 'barrier' is a counter that can be raised multiple times
727 * to count how many activities are happening which preclude
728 * normal IO.
729 * We can only raise the barrier if there is no pending IO.
730 * i.e. if nr_pending == 0.
731 * We choose only to raise the barrier if no-one is waiting for the
732 * barrier to go down. This means that as soon as an IO request
733 * is ready, no other operations which require a barrier will start
734 * until the IO request has had a chance.
735 *
736 * So: regular IO calls 'wait_barrier'. When that returns there
737 * is no backgroup IO happening, It must arrange to call
738 * allow_barrier when it has finished its IO.
739 * backgroup IO calls must call raise_barrier. Once that returns
740 * there is no normal IO happeing. It must arrange to call
741 * lower_barrier when the particular background IO completes.
742 */
743 #define RESYNC_DEPTH 32
744
745 static void raise_barrier(struct r1conf *conf)
746 {
747 spin_lock_irq(&conf->resync_lock);
748
749 /* Wait until no block IO is waiting */
750 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
751 conf->resync_lock, );
752
753 /* block any new IO from starting */
754 conf->barrier++;
755
756 /* Now wait for all pending IO to complete */
757 wait_event_lock_irq(conf->wait_barrier,
758 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
759 conf->resync_lock, );
760
761 spin_unlock_irq(&conf->resync_lock);
762 }
763
764 static void lower_barrier(struct r1conf *conf)
765 {
766 unsigned long flags;
767 BUG_ON(conf->barrier <= 0);
768 spin_lock_irqsave(&conf->resync_lock, flags);
769 conf->barrier--;
770 spin_unlock_irqrestore(&conf->resync_lock, flags);
771 wake_up(&conf->wait_barrier);
772 }
773
774 static void wait_barrier(struct r1conf *conf)
775 {
776 spin_lock_irq(&conf->resync_lock);
777 if (conf->barrier) {
778 conf->nr_waiting++;
779 /* Wait for the barrier to drop.
780 * However if there are already pending
781 * requests (preventing the barrier from
782 * rising completely), and the
783 * pre-process bio queue isn't empty,
784 * then don't wait, as we need to empty
785 * that queue to get the nr_pending
786 * count down.
787 */
788 wait_event_lock_irq(conf->wait_barrier,
789 !conf->barrier ||
790 (conf->nr_pending &&
791 current->bio_list &&
792 !bio_list_empty(current->bio_list)),
793 conf->resync_lock,
794 );
795 conf->nr_waiting--;
796 }
797 conf->nr_pending++;
798 spin_unlock_irq(&conf->resync_lock);
799 }
800
801 static void allow_barrier(struct r1conf *conf)
802 {
803 unsigned long flags;
804 spin_lock_irqsave(&conf->resync_lock, flags);
805 conf->nr_pending--;
806 spin_unlock_irqrestore(&conf->resync_lock, flags);
807 wake_up(&conf->wait_barrier);
808 }
809
810 static void freeze_array(struct r1conf *conf)
811 {
812 /* stop syncio and normal IO and wait for everything to
813 * go quite.
814 * We increment barrier and nr_waiting, and then
815 * wait until nr_pending match nr_queued+1
816 * This is called in the context of one normal IO request
817 * that has failed. Thus any sync request that might be pending
818 * will be blocked by nr_pending, and we need to wait for
819 * pending IO requests to complete or be queued for re-try.
820 * Thus the number queued (nr_queued) plus this request (1)
821 * must match the number of pending IOs (nr_pending) before
822 * we continue.
823 */
824 spin_lock_irq(&conf->resync_lock);
825 conf->barrier++;
826 conf->nr_waiting++;
827 wait_event_lock_irq(conf->wait_barrier,
828 conf->nr_pending == conf->nr_queued+1,
829 conf->resync_lock,
830 flush_pending_writes(conf));
831 spin_unlock_irq(&conf->resync_lock);
832 }
833 static void unfreeze_array(struct r1conf *conf)
834 {
835 /* reverse the effect of the freeze */
836 spin_lock_irq(&conf->resync_lock);
837 conf->barrier--;
838 conf->nr_waiting--;
839 wake_up(&conf->wait_barrier);
840 spin_unlock_irq(&conf->resync_lock);
841 }
842
843
844 /* duplicate the data pages for behind I/O
845 */
846 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
847 {
848 int i;
849 struct bio_vec *bvec;
850 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
851 GFP_NOIO);
852 if (unlikely(!bvecs))
853 return;
854
855 bio_for_each_segment(bvec, bio, i) {
856 bvecs[i] = *bvec;
857 bvecs[i].bv_page = alloc_page(GFP_NOIO);
858 if (unlikely(!bvecs[i].bv_page))
859 goto do_sync_io;
860 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
861 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
862 kunmap(bvecs[i].bv_page);
863 kunmap(bvec->bv_page);
864 }
865 r1_bio->behind_bvecs = bvecs;
866 r1_bio->behind_page_count = bio->bi_vcnt;
867 set_bit(R1BIO_BehindIO, &r1_bio->state);
868 return;
869
870 do_sync_io:
871 for (i = 0; i < bio->bi_vcnt; i++)
872 if (bvecs[i].bv_page)
873 put_page(bvecs[i].bv_page);
874 kfree(bvecs);
875 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
876 }
877
878 static void make_request(struct mddev *mddev, struct bio * bio)
879 {
880 struct r1conf *conf = mddev->private;
881 struct raid1_info *mirror;
882 struct r1bio *r1_bio;
883 struct bio *read_bio;
884 int i, disks;
885 struct bitmap *bitmap;
886 unsigned long flags;
887 const int rw = bio_data_dir(bio);
888 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
889 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
890 struct md_rdev *blocked_rdev;
891 int first_clone;
892 int sectors_handled;
893 int max_sectors;
894
895 /*
896 * Register the new request and wait if the reconstruction
897 * thread has put up a bar for new requests.
898 * Continue immediately if no resync is active currently.
899 */
900
901 md_write_start(mddev, bio); /* wait on superblock update early */
902
903 if (bio_data_dir(bio) == WRITE &&
904 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
905 bio->bi_sector < mddev->suspend_hi) {
906 /* As the suspend_* range is controlled by
907 * userspace, we want an interruptible
908 * wait.
909 */
910 DEFINE_WAIT(w);
911 for (;;) {
912 flush_signals(current);
913 prepare_to_wait(&conf->wait_barrier,
914 &w, TASK_INTERRUPTIBLE);
915 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
916 bio->bi_sector >= mddev->suspend_hi)
917 break;
918 schedule();
919 }
920 finish_wait(&conf->wait_barrier, &w);
921 }
922
923 wait_barrier(conf);
924
925 bitmap = mddev->bitmap;
926
927 /*
928 * make_request() can abort the operation when READA is being
929 * used and no empty request is available.
930 *
931 */
932 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
933
934 r1_bio->master_bio = bio;
935 r1_bio->sectors = bio->bi_size >> 9;
936 r1_bio->state = 0;
937 r1_bio->mddev = mddev;
938 r1_bio->sector = bio->bi_sector;
939
940 /* We might need to issue multiple reads to different
941 * devices if there are bad blocks around, so we keep
942 * track of the number of reads in bio->bi_phys_segments.
943 * If this is 0, there is only one r1_bio and no locking
944 * will be needed when requests complete. If it is
945 * non-zero, then it is the number of not-completed requests.
946 */
947 bio->bi_phys_segments = 0;
948 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
949
950 if (rw == READ) {
951 /*
952 * read balancing logic:
953 */
954 int rdisk;
955
956 read_again:
957 rdisk = read_balance(conf, r1_bio, &max_sectors);
958
959 if (rdisk < 0) {
960 /* couldn't find anywhere to read from */
961 raid_end_bio_io(r1_bio);
962 return;
963 }
964 mirror = conf->mirrors + rdisk;
965
966 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
967 bitmap) {
968 /* Reading from a write-mostly device must
969 * take care not to over-take any writes
970 * that are 'behind'
971 */
972 wait_event(bitmap->behind_wait,
973 atomic_read(&bitmap->behind_writes) == 0);
974 }
975 r1_bio->read_disk = rdisk;
976
977 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
978 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
979 max_sectors);
980
981 r1_bio->bios[rdisk] = read_bio;
982
983 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
984 read_bio->bi_bdev = mirror->rdev->bdev;
985 read_bio->bi_end_io = raid1_end_read_request;
986 read_bio->bi_rw = READ | do_sync;
987 read_bio->bi_private = r1_bio;
988
989 if (max_sectors < r1_bio->sectors) {
990 /* could not read all from this device, so we will
991 * need another r1_bio.
992 */
993
994 sectors_handled = (r1_bio->sector + max_sectors
995 - bio->bi_sector);
996 r1_bio->sectors = max_sectors;
997 spin_lock_irq(&conf->device_lock);
998 if (bio->bi_phys_segments == 0)
999 bio->bi_phys_segments = 2;
1000 else
1001 bio->bi_phys_segments++;
1002 spin_unlock_irq(&conf->device_lock);
1003 /* Cannot call generic_make_request directly
1004 * as that will be queued in __make_request
1005 * and subsequent mempool_alloc might block waiting
1006 * for it. So hand bio over to raid1d.
1007 */
1008 reschedule_retry(r1_bio);
1009
1010 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1011
1012 r1_bio->master_bio = bio;
1013 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1014 r1_bio->state = 0;
1015 r1_bio->mddev = mddev;
1016 r1_bio->sector = bio->bi_sector + sectors_handled;
1017 goto read_again;
1018 } else
1019 generic_make_request(read_bio);
1020 return;
1021 }
1022
1023 /*
1024 * WRITE:
1025 */
1026 if (conf->pending_count >= max_queued_requests) {
1027 md_wakeup_thread(mddev->thread);
1028 wait_event(conf->wait_barrier,
1029 conf->pending_count < max_queued_requests);
1030 }
1031 /* first select target devices under rcu_lock and
1032 * inc refcount on their rdev. Record them by setting
1033 * bios[x] to bio
1034 * If there are known/acknowledged bad blocks on any device on
1035 * which we have seen a write error, we want to avoid writing those
1036 * blocks.
1037 * This potentially requires several writes to write around
1038 * the bad blocks. Each set of writes gets it's own r1bio
1039 * with a set of bios attached.
1040 */
1041
1042 disks = conf->raid_disks * 2;
1043 retry_write:
1044 blocked_rdev = NULL;
1045 rcu_read_lock();
1046 max_sectors = r1_bio->sectors;
1047 for (i = 0; i < disks; i++) {
1048 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1049 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1050 atomic_inc(&rdev->nr_pending);
1051 blocked_rdev = rdev;
1052 break;
1053 }
1054 r1_bio->bios[i] = NULL;
1055 if (!rdev || test_bit(Faulty, &rdev->flags)
1056 || test_bit(Unmerged, &rdev->flags)) {
1057 if (i < conf->raid_disks)
1058 set_bit(R1BIO_Degraded, &r1_bio->state);
1059 continue;
1060 }
1061
1062 atomic_inc(&rdev->nr_pending);
1063 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1064 sector_t first_bad;
1065 int bad_sectors;
1066 int is_bad;
1067
1068 is_bad = is_badblock(rdev, r1_bio->sector,
1069 max_sectors,
1070 &first_bad, &bad_sectors);
1071 if (is_bad < 0) {
1072 /* mustn't write here until the bad block is
1073 * acknowledged*/
1074 set_bit(BlockedBadBlocks, &rdev->flags);
1075 blocked_rdev = rdev;
1076 break;
1077 }
1078 if (is_bad && first_bad <= r1_bio->sector) {
1079 /* Cannot write here at all */
1080 bad_sectors -= (r1_bio->sector - first_bad);
1081 if (bad_sectors < max_sectors)
1082 /* mustn't write more than bad_sectors
1083 * to other devices yet
1084 */
1085 max_sectors = bad_sectors;
1086 rdev_dec_pending(rdev, mddev);
1087 /* We don't set R1BIO_Degraded as that
1088 * only applies if the disk is
1089 * missing, so it might be re-added,
1090 * and we want to know to recover this
1091 * chunk.
1092 * In this case the device is here,
1093 * and the fact that this chunk is not
1094 * in-sync is recorded in the bad
1095 * block log
1096 */
1097 continue;
1098 }
1099 if (is_bad) {
1100 int good_sectors = first_bad - r1_bio->sector;
1101 if (good_sectors < max_sectors)
1102 max_sectors = good_sectors;
1103 }
1104 }
1105 r1_bio->bios[i] = bio;
1106 }
1107 rcu_read_unlock();
1108
1109 if (unlikely(blocked_rdev)) {
1110 /* Wait for this device to become unblocked */
1111 int j;
1112
1113 for (j = 0; j < i; j++)
1114 if (r1_bio->bios[j])
1115 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1116 r1_bio->state = 0;
1117 allow_barrier(conf);
1118 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1119 wait_barrier(conf);
1120 goto retry_write;
1121 }
1122
1123 if (max_sectors < r1_bio->sectors) {
1124 /* We are splitting this write into multiple parts, so
1125 * we need to prepare for allocating another r1_bio.
1126 */
1127 r1_bio->sectors = max_sectors;
1128 spin_lock_irq(&conf->device_lock);
1129 if (bio->bi_phys_segments == 0)
1130 bio->bi_phys_segments = 2;
1131 else
1132 bio->bi_phys_segments++;
1133 spin_unlock_irq(&conf->device_lock);
1134 }
1135 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1136
1137 atomic_set(&r1_bio->remaining, 1);
1138 atomic_set(&r1_bio->behind_remaining, 0);
1139
1140 first_clone = 1;
1141 for (i = 0; i < disks; i++) {
1142 struct bio *mbio;
1143 if (!r1_bio->bios[i])
1144 continue;
1145
1146 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1147 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1148
1149 if (first_clone) {
1150 /* do behind I/O ?
1151 * Not if there are too many, or cannot
1152 * allocate memory, or a reader on WriteMostly
1153 * is waiting for behind writes to flush */
1154 if (bitmap &&
1155 (atomic_read(&bitmap->behind_writes)
1156 < mddev->bitmap_info.max_write_behind) &&
1157 !waitqueue_active(&bitmap->behind_wait))
1158 alloc_behind_pages(mbio, r1_bio);
1159
1160 bitmap_startwrite(bitmap, r1_bio->sector,
1161 r1_bio->sectors,
1162 test_bit(R1BIO_BehindIO,
1163 &r1_bio->state));
1164 first_clone = 0;
1165 }
1166 if (r1_bio->behind_bvecs) {
1167 struct bio_vec *bvec;
1168 int j;
1169
1170 /* Yes, I really want the '__' version so that
1171 * we clear any unused pointer in the io_vec, rather
1172 * than leave them unchanged. This is important
1173 * because when we come to free the pages, we won't
1174 * know the original bi_idx, so we just free
1175 * them all
1176 */
1177 __bio_for_each_segment(bvec, mbio, j, 0)
1178 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1179 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1180 atomic_inc(&r1_bio->behind_remaining);
1181 }
1182
1183 r1_bio->bios[i] = mbio;
1184
1185 mbio->bi_sector = (r1_bio->sector +
1186 conf->mirrors[i].rdev->data_offset);
1187 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1188 mbio->bi_end_io = raid1_end_write_request;
1189 mbio->bi_rw = WRITE | do_flush_fua | do_sync;
1190 mbio->bi_private = r1_bio;
1191
1192 atomic_inc(&r1_bio->remaining);
1193 spin_lock_irqsave(&conf->device_lock, flags);
1194 bio_list_add(&conf->pending_bio_list, mbio);
1195 conf->pending_count++;
1196 spin_unlock_irqrestore(&conf->device_lock, flags);
1197 if (!mddev_check_plugged(mddev))
1198 md_wakeup_thread(mddev->thread);
1199 }
1200 /* Mustn't call r1_bio_write_done before this next test,
1201 * as it could result in the bio being freed.
1202 */
1203 if (sectors_handled < (bio->bi_size >> 9)) {
1204 r1_bio_write_done(r1_bio);
1205 /* We need another r1_bio. It has already been counted
1206 * in bio->bi_phys_segments
1207 */
1208 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1209 r1_bio->master_bio = bio;
1210 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1211 r1_bio->state = 0;
1212 r1_bio->mddev = mddev;
1213 r1_bio->sector = bio->bi_sector + sectors_handled;
1214 goto retry_write;
1215 }
1216
1217 r1_bio_write_done(r1_bio);
1218
1219 /* In case raid1d snuck in to freeze_array */
1220 wake_up(&conf->wait_barrier);
1221 }
1222
1223 static void status(struct seq_file *seq, struct mddev *mddev)
1224 {
1225 struct r1conf *conf = mddev->private;
1226 int i;
1227
1228 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1229 conf->raid_disks - mddev->degraded);
1230 rcu_read_lock();
1231 for (i = 0; i < conf->raid_disks; i++) {
1232 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1233 seq_printf(seq, "%s",
1234 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1235 }
1236 rcu_read_unlock();
1237 seq_printf(seq, "]");
1238 }
1239
1240
1241 static void error(struct mddev *mddev, struct md_rdev *rdev)
1242 {
1243 char b[BDEVNAME_SIZE];
1244 struct r1conf *conf = mddev->private;
1245
1246 /*
1247 * If it is not operational, then we have already marked it as dead
1248 * else if it is the last working disks, ignore the error, let the
1249 * next level up know.
1250 * else mark the drive as failed
1251 */
1252 if (test_bit(In_sync, &rdev->flags)
1253 && (conf->raid_disks - mddev->degraded) == 1) {
1254 /*
1255 * Don't fail the drive, act as though we were just a
1256 * normal single drive.
1257 * However don't try a recovery from this drive as
1258 * it is very likely to fail.
1259 */
1260 conf->recovery_disabled = mddev->recovery_disabled;
1261 return;
1262 }
1263 set_bit(Blocked, &rdev->flags);
1264 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1265 unsigned long flags;
1266 spin_lock_irqsave(&conf->device_lock, flags);
1267 mddev->degraded++;
1268 set_bit(Faulty, &rdev->flags);
1269 spin_unlock_irqrestore(&conf->device_lock, flags);
1270 /*
1271 * if recovery is running, make sure it aborts.
1272 */
1273 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1274 } else
1275 set_bit(Faulty, &rdev->flags);
1276 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1277 printk(KERN_ALERT
1278 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1279 "md/raid1:%s: Operation continuing on %d devices.\n",
1280 mdname(mddev), bdevname(rdev->bdev, b),
1281 mdname(mddev), conf->raid_disks - mddev->degraded);
1282 }
1283
1284 static void print_conf(struct r1conf *conf)
1285 {
1286 int i;
1287
1288 printk(KERN_DEBUG "RAID1 conf printout:\n");
1289 if (!conf) {
1290 printk(KERN_DEBUG "(!conf)\n");
1291 return;
1292 }
1293 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1294 conf->raid_disks);
1295
1296 rcu_read_lock();
1297 for (i = 0; i < conf->raid_disks; i++) {
1298 char b[BDEVNAME_SIZE];
1299 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1300 if (rdev)
1301 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1302 i, !test_bit(In_sync, &rdev->flags),
1303 !test_bit(Faulty, &rdev->flags),
1304 bdevname(rdev->bdev,b));
1305 }
1306 rcu_read_unlock();
1307 }
1308
1309 static void close_sync(struct r1conf *conf)
1310 {
1311 wait_barrier(conf);
1312 allow_barrier(conf);
1313
1314 mempool_destroy(conf->r1buf_pool);
1315 conf->r1buf_pool = NULL;
1316 }
1317
1318 static int raid1_spare_active(struct mddev *mddev)
1319 {
1320 int i;
1321 struct r1conf *conf = mddev->private;
1322 int count = 0;
1323 unsigned long flags;
1324
1325 /*
1326 * Find all failed disks within the RAID1 configuration
1327 * and mark them readable.
1328 * Called under mddev lock, so rcu protection not needed.
1329 */
1330 for (i = 0; i < conf->raid_disks; i++) {
1331 struct md_rdev *rdev = conf->mirrors[i].rdev;
1332 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1333 if (repl
1334 && repl->recovery_offset == MaxSector
1335 && !test_bit(Faulty, &repl->flags)
1336 && !test_and_set_bit(In_sync, &repl->flags)) {
1337 /* replacement has just become active */
1338 if (!rdev ||
1339 !test_and_clear_bit(In_sync, &rdev->flags))
1340 count++;
1341 if (rdev) {
1342 /* Replaced device not technically
1343 * faulty, but we need to be sure
1344 * it gets removed and never re-added
1345 */
1346 set_bit(Faulty, &rdev->flags);
1347 sysfs_notify_dirent_safe(
1348 rdev->sysfs_state);
1349 }
1350 }
1351 if (rdev
1352 && !test_bit(Faulty, &rdev->flags)
1353 && !test_and_set_bit(In_sync, &rdev->flags)) {
1354 count++;
1355 sysfs_notify_dirent_safe(rdev->sysfs_state);
1356 }
1357 }
1358 spin_lock_irqsave(&conf->device_lock, flags);
1359 mddev->degraded -= count;
1360 spin_unlock_irqrestore(&conf->device_lock, flags);
1361
1362 print_conf(conf);
1363 return count;
1364 }
1365
1366
1367 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1368 {
1369 struct r1conf *conf = mddev->private;
1370 int err = -EEXIST;
1371 int mirror = 0;
1372 struct raid1_info *p;
1373 int first = 0;
1374 int last = conf->raid_disks - 1;
1375 struct request_queue *q = bdev_get_queue(rdev->bdev);
1376
1377 if (mddev->recovery_disabled == conf->recovery_disabled)
1378 return -EBUSY;
1379
1380 if (rdev->raid_disk >= 0)
1381 first = last = rdev->raid_disk;
1382
1383 if (q->merge_bvec_fn) {
1384 set_bit(Unmerged, &rdev->flags);
1385 mddev->merge_check_needed = 1;
1386 }
1387
1388 for (mirror = first; mirror <= last; mirror++) {
1389 p = conf->mirrors+mirror;
1390 if (!p->rdev) {
1391
1392 disk_stack_limits(mddev->gendisk, rdev->bdev,
1393 rdev->data_offset << 9);
1394
1395 p->head_position = 0;
1396 rdev->raid_disk = mirror;
1397 err = 0;
1398 /* As all devices are equivalent, we don't need a full recovery
1399 * if this was recently any drive of the array
1400 */
1401 if (rdev->saved_raid_disk < 0)
1402 conf->fullsync = 1;
1403 rcu_assign_pointer(p->rdev, rdev);
1404 break;
1405 }
1406 if (test_bit(WantReplacement, &p->rdev->flags) &&
1407 p[conf->raid_disks].rdev == NULL) {
1408 /* Add this device as a replacement */
1409 clear_bit(In_sync, &rdev->flags);
1410 set_bit(Replacement, &rdev->flags);
1411 rdev->raid_disk = mirror;
1412 err = 0;
1413 conf->fullsync = 1;
1414 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1415 break;
1416 }
1417 }
1418 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1419 /* Some requests might not have seen this new
1420 * merge_bvec_fn. We must wait for them to complete
1421 * before merging the device fully.
1422 * First we make sure any code which has tested
1423 * our function has submitted the request, then
1424 * we wait for all outstanding requests to complete.
1425 */
1426 synchronize_sched();
1427 raise_barrier(conf);
1428 lower_barrier(conf);
1429 clear_bit(Unmerged, &rdev->flags);
1430 }
1431 md_integrity_add_rdev(rdev, mddev);
1432 print_conf(conf);
1433 return err;
1434 }
1435
1436 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1437 {
1438 struct r1conf *conf = mddev->private;
1439 int err = 0;
1440 int number = rdev->raid_disk;
1441 struct raid1_info *p = conf->mirrors + number;
1442
1443 if (rdev != p->rdev)
1444 p = conf->mirrors + conf->raid_disks + number;
1445
1446 print_conf(conf);
1447 if (rdev == p->rdev) {
1448 if (test_bit(In_sync, &rdev->flags) ||
1449 atomic_read(&rdev->nr_pending)) {
1450 err = -EBUSY;
1451 goto abort;
1452 }
1453 /* Only remove non-faulty devices if recovery
1454 * is not possible.
1455 */
1456 if (!test_bit(Faulty, &rdev->flags) &&
1457 mddev->recovery_disabled != conf->recovery_disabled &&
1458 mddev->degraded < conf->raid_disks) {
1459 err = -EBUSY;
1460 goto abort;
1461 }
1462 p->rdev = NULL;
1463 synchronize_rcu();
1464 if (atomic_read(&rdev->nr_pending)) {
1465 /* lost the race, try later */
1466 err = -EBUSY;
1467 p->rdev = rdev;
1468 goto abort;
1469 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1470 /* We just removed a device that is being replaced.
1471 * Move down the replacement. We drain all IO before
1472 * doing this to avoid confusion.
1473 */
1474 struct md_rdev *repl =
1475 conf->mirrors[conf->raid_disks + number].rdev;
1476 raise_barrier(conf);
1477 clear_bit(Replacement, &repl->flags);
1478 p->rdev = repl;
1479 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1480 lower_barrier(conf);
1481 clear_bit(WantReplacement, &rdev->flags);
1482 } else
1483 clear_bit(WantReplacement, &rdev->flags);
1484 err = md_integrity_register(mddev);
1485 }
1486 abort:
1487
1488 print_conf(conf);
1489 return err;
1490 }
1491
1492
1493 static void end_sync_read(struct bio *bio, int error)
1494 {
1495 struct r1bio *r1_bio = bio->bi_private;
1496
1497 update_head_pos(r1_bio->read_disk, r1_bio);
1498
1499 /*
1500 * we have read a block, now it needs to be re-written,
1501 * or re-read if the read failed.
1502 * We don't do much here, just schedule handling by raid1d
1503 */
1504 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1505 set_bit(R1BIO_Uptodate, &r1_bio->state);
1506
1507 if (atomic_dec_and_test(&r1_bio->remaining))
1508 reschedule_retry(r1_bio);
1509 }
1510
1511 static void end_sync_write(struct bio *bio, int error)
1512 {
1513 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1514 struct r1bio *r1_bio = bio->bi_private;
1515 struct mddev *mddev = r1_bio->mddev;
1516 struct r1conf *conf = mddev->private;
1517 int mirror=0;
1518 sector_t first_bad;
1519 int bad_sectors;
1520
1521 mirror = find_bio_disk(r1_bio, bio);
1522
1523 if (!uptodate) {
1524 sector_t sync_blocks = 0;
1525 sector_t s = r1_bio->sector;
1526 long sectors_to_go = r1_bio->sectors;
1527 /* make sure these bits doesn't get cleared. */
1528 do {
1529 bitmap_end_sync(mddev->bitmap, s,
1530 &sync_blocks, 1);
1531 s += sync_blocks;
1532 sectors_to_go -= sync_blocks;
1533 } while (sectors_to_go > 0);
1534 set_bit(WriteErrorSeen,
1535 &conf->mirrors[mirror].rdev->flags);
1536 if (!test_and_set_bit(WantReplacement,
1537 &conf->mirrors[mirror].rdev->flags))
1538 set_bit(MD_RECOVERY_NEEDED, &
1539 mddev->recovery);
1540 set_bit(R1BIO_WriteError, &r1_bio->state);
1541 } else if (is_badblock(conf->mirrors[mirror].rdev,
1542 r1_bio->sector,
1543 r1_bio->sectors,
1544 &first_bad, &bad_sectors) &&
1545 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1546 r1_bio->sector,
1547 r1_bio->sectors,
1548 &first_bad, &bad_sectors)
1549 )
1550 set_bit(R1BIO_MadeGood, &r1_bio->state);
1551
1552 if (atomic_dec_and_test(&r1_bio->remaining)) {
1553 int s = r1_bio->sectors;
1554 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1555 test_bit(R1BIO_WriteError, &r1_bio->state))
1556 reschedule_retry(r1_bio);
1557 else {
1558 put_buf(r1_bio);
1559 md_done_sync(mddev, s, uptodate);
1560 }
1561 }
1562 }
1563
1564 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1565 int sectors, struct page *page, int rw)
1566 {
1567 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1568 /* success */
1569 return 1;
1570 if (rw == WRITE) {
1571 set_bit(WriteErrorSeen, &rdev->flags);
1572 if (!test_and_set_bit(WantReplacement,
1573 &rdev->flags))
1574 set_bit(MD_RECOVERY_NEEDED, &
1575 rdev->mddev->recovery);
1576 }
1577 /* need to record an error - either for the block or the device */
1578 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1579 md_error(rdev->mddev, rdev);
1580 return 0;
1581 }
1582
1583 static int fix_sync_read_error(struct r1bio *r1_bio)
1584 {
1585 /* Try some synchronous reads of other devices to get
1586 * good data, much like with normal read errors. Only
1587 * read into the pages we already have so we don't
1588 * need to re-issue the read request.
1589 * We don't need to freeze the array, because being in an
1590 * active sync request, there is no normal IO, and
1591 * no overlapping syncs.
1592 * We don't need to check is_badblock() again as we
1593 * made sure that anything with a bad block in range
1594 * will have bi_end_io clear.
1595 */
1596 struct mddev *mddev = r1_bio->mddev;
1597 struct r1conf *conf = mddev->private;
1598 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1599 sector_t sect = r1_bio->sector;
1600 int sectors = r1_bio->sectors;
1601 int idx = 0;
1602
1603 while(sectors) {
1604 int s = sectors;
1605 int d = r1_bio->read_disk;
1606 int success = 0;
1607 struct md_rdev *rdev;
1608 int start;
1609
1610 if (s > (PAGE_SIZE>>9))
1611 s = PAGE_SIZE >> 9;
1612 do {
1613 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1614 /* No rcu protection needed here devices
1615 * can only be removed when no resync is
1616 * active, and resync is currently active
1617 */
1618 rdev = conf->mirrors[d].rdev;
1619 if (sync_page_io(rdev, sect, s<<9,
1620 bio->bi_io_vec[idx].bv_page,
1621 READ, false)) {
1622 success = 1;
1623 break;
1624 }
1625 }
1626 d++;
1627 if (d == conf->raid_disks * 2)
1628 d = 0;
1629 } while (!success && d != r1_bio->read_disk);
1630
1631 if (!success) {
1632 char b[BDEVNAME_SIZE];
1633 int abort = 0;
1634 /* Cannot read from anywhere, this block is lost.
1635 * Record a bad block on each device. If that doesn't
1636 * work just disable and interrupt the recovery.
1637 * Don't fail devices as that won't really help.
1638 */
1639 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1640 " for block %llu\n",
1641 mdname(mddev),
1642 bdevname(bio->bi_bdev, b),
1643 (unsigned long long)r1_bio->sector);
1644 for (d = 0; d < conf->raid_disks * 2; d++) {
1645 rdev = conf->mirrors[d].rdev;
1646 if (!rdev || test_bit(Faulty, &rdev->flags))
1647 continue;
1648 if (!rdev_set_badblocks(rdev, sect, s, 0))
1649 abort = 1;
1650 }
1651 if (abort) {
1652 conf->recovery_disabled =
1653 mddev->recovery_disabled;
1654 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1655 md_done_sync(mddev, r1_bio->sectors, 0);
1656 put_buf(r1_bio);
1657 return 0;
1658 }
1659 /* Try next page */
1660 sectors -= s;
1661 sect += s;
1662 idx++;
1663 continue;
1664 }
1665
1666 start = d;
1667 /* write it back and re-read */
1668 while (d != r1_bio->read_disk) {
1669 if (d == 0)
1670 d = conf->raid_disks * 2;
1671 d--;
1672 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1673 continue;
1674 rdev = conf->mirrors[d].rdev;
1675 if (r1_sync_page_io(rdev, sect, s,
1676 bio->bi_io_vec[idx].bv_page,
1677 WRITE) == 0) {
1678 r1_bio->bios[d]->bi_end_io = NULL;
1679 rdev_dec_pending(rdev, mddev);
1680 }
1681 }
1682 d = start;
1683 while (d != r1_bio->read_disk) {
1684 if (d == 0)
1685 d = conf->raid_disks * 2;
1686 d--;
1687 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1688 continue;
1689 rdev = conf->mirrors[d].rdev;
1690 if (r1_sync_page_io(rdev, sect, s,
1691 bio->bi_io_vec[idx].bv_page,
1692 READ) != 0)
1693 atomic_add(s, &rdev->corrected_errors);
1694 }
1695 sectors -= s;
1696 sect += s;
1697 idx ++;
1698 }
1699 set_bit(R1BIO_Uptodate, &r1_bio->state);
1700 set_bit(BIO_UPTODATE, &bio->bi_flags);
1701 return 1;
1702 }
1703
1704 static int process_checks(struct r1bio *r1_bio)
1705 {
1706 /* We have read all readable devices. If we haven't
1707 * got the block, then there is no hope left.
1708 * If we have, then we want to do a comparison
1709 * and skip the write if everything is the same.
1710 * If any blocks failed to read, then we need to
1711 * attempt an over-write
1712 */
1713 struct mddev *mddev = r1_bio->mddev;
1714 struct r1conf *conf = mddev->private;
1715 int primary;
1716 int i;
1717 int vcnt;
1718
1719 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1720 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1721 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1722 r1_bio->bios[primary]->bi_end_io = NULL;
1723 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1724 break;
1725 }
1726 r1_bio->read_disk = primary;
1727 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1728 for (i = 0; i < conf->raid_disks * 2; i++) {
1729 int j;
1730 struct bio *pbio = r1_bio->bios[primary];
1731 struct bio *sbio = r1_bio->bios[i];
1732 int size;
1733
1734 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1735 continue;
1736
1737 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1738 for (j = vcnt; j-- ; ) {
1739 struct page *p, *s;
1740 p = pbio->bi_io_vec[j].bv_page;
1741 s = sbio->bi_io_vec[j].bv_page;
1742 if (memcmp(page_address(p),
1743 page_address(s),
1744 sbio->bi_io_vec[j].bv_len))
1745 break;
1746 }
1747 } else
1748 j = 0;
1749 if (j >= 0)
1750 mddev->resync_mismatches += r1_bio->sectors;
1751 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1752 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1753 /* No need to write to this device. */
1754 sbio->bi_end_io = NULL;
1755 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1756 continue;
1757 }
1758 /* fixup the bio for reuse */
1759 sbio->bi_vcnt = vcnt;
1760 sbio->bi_size = r1_bio->sectors << 9;
1761 sbio->bi_idx = 0;
1762 sbio->bi_phys_segments = 0;
1763 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1764 sbio->bi_flags |= 1 << BIO_UPTODATE;
1765 sbio->bi_next = NULL;
1766 sbio->bi_sector = r1_bio->sector +
1767 conf->mirrors[i].rdev->data_offset;
1768 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1769 size = sbio->bi_size;
1770 for (j = 0; j < vcnt ; j++) {
1771 struct bio_vec *bi;
1772 bi = &sbio->bi_io_vec[j];
1773 bi->bv_offset = 0;
1774 if (size > PAGE_SIZE)
1775 bi->bv_len = PAGE_SIZE;
1776 else
1777 bi->bv_len = size;
1778 size -= PAGE_SIZE;
1779 memcpy(page_address(bi->bv_page),
1780 page_address(pbio->bi_io_vec[j].bv_page),
1781 PAGE_SIZE);
1782 }
1783 }
1784 return 0;
1785 }
1786
1787 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1788 {
1789 struct r1conf *conf = mddev->private;
1790 int i;
1791 int disks = conf->raid_disks * 2;
1792 struct bio *bio, *wbio;
1793
1794 bio = r1_bio->bios[r1_bio->read_disk];
1795
1796 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1797 /* ouch - failed to read all of that. */
1798 if (!fix_sync_read_error(r1_bio))
1799 return;
1800
1801 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1802 if (process_checks(r1_bio) < 0)
1803 return;
1804 /*
1805 * schedule writes
1806 */
1807 atomic_set(&r1_bio->remaining, 1);
1808 for (i = 0; i < disks ; i++) {
1809 wbio = r1_bio->bios[i];
1810 if (wbio->bi_end_io == NULL ||
1811 (wbio->bi_end_io == end_sync_read &&
1812 (i == r1_bio->read_disk ||
1813 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1814 continue;
1815
1816 wbio->bi_rw = WRITE;
1817 wbio->bi_end_io = end_sync_write;
1818 atomic_inc(&r1_bio->remaining);
1819 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1820
1821 generic_make_request(wbio);
1822 }
1823
1824 if (atomic_dec_and_test(&r1_bio->remaining)) {
1825 /* if we're here, all write(s) have completed, so clean up */
1826 int s = r1_bio->sectors;
1827 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1828 test_bit(R1BIO_WriteError, &r1_bio->state))
1829 reschedule_retry(r1_bio);
1830 else {
1831 put_buf(r1_bio);
1832 md_done_sync(mddev, s, 1);
1833 }
1834 }
1835 }
1836
1837 /*
1838 * This is a kernel thread which:
1839 *
1840 * 1. Retries failed read operations on working mirrors.
1841 * 2. Updates the raid superblock when problems encounter.
1842 * 3. Performs writes following reads for array synchronising.
1843 */
1844
1845 static void fix_read_error(struct r1conf *conf, int read_disk,
1846 sector_t sect, int sectors)
1847 {
1848 struct mddev *mddev = conf->mddev;
1849 while(sectors) {
1850 int s = sectors;
1851 int d = read_disk;
1852 int success = 0;
1853 int start;
1854 struct md_rdev *rdev;
1855
1856 if (s > (PAGE_SIZE>>9))
1857 s = PAGE_SIZE >> 9;
1858
1859 do {
1860 /* Note: no rcu protection needed here
1861 * as this is synchronous in the raid1d thread
1862 * which is the thread that might remove
1863 * a device. If raid1d ever becomes multi-threaded....
1864 */
1865 sector_t first_bad;
1866 int bad_sectors;
1867
1868 rdev = conf->mirrors[d].rdev;
1869 if (rdev &&
1870 (test_bit(In_sync, &rdev->flags) ||
1871 (!test_bit(Faulty, &rdev->flags) &&
1872 rdev->recovery_offset >= sect + s)) &&
1873 is_badblock(rdev, sect, s,
1874 &first_bad, &bad_sectors) == 0 &&
1875 sync_page_io(rdev, sect, s<<9,
1876 conf->tmppage, READ, false))
1877 success = 1;
1878 else {
1879 d++;
1880 if (d == conf->raid_disks * 2)
1881 d = 0;
1882 }
1883 } while (!success && d != read_disk);
1884
1885 if (!success) {
1886 /* Cannot read from anywhere - mark it bad */
1887 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
1888 if (!rdev_set_badblocks(rdev, sect, s, 0))
1889 md_error(mddev, rdev);
1890 break;
1891 }
1892 /* write it back and re-read */
1893 start = d;
1894 while (d != read_disk) {
1895 if (d==0)
1896 d = conf->raid_disks * 2;
1897 d--;
1898 rdev = conf->mirrors[d].rdev;
1899 if (rdev &&
1900 test_bit(In_sync, &rdev->flags))
1901 r1_sync_page_io(rdev, sect, s,
1902 conf->tmppage, WRITE);
1903 }
1904 d = start;
1905 while (d != read_disk) {
1906 char b[BDEVNAME_SIZE];
1907 if (d==0)
1908 d = conf->raid_disks * 2;
1909 d--;
1910 rdev = conf->mirrors[d].rdev;
1911 if (rdev &&
1912 test_bit(In_sync, &rdev->flags)) {
1913 if (r1_sync_page_io(rdev, sect, s,
1914 conf->tmppage, READ)) {
1915 atomic_add(s, &rdev->corrected_errors);
1916 printk(KERN_INFO
1917 "md/raid1:%s: read error corrected "
1918 "(%d sectors at %llu on %s)\n",
1919 mdname(mddev), s,
1920 (unsigned long long)(sect +
1921 rdev->data_offset),
1922 bdevname(rdev->bdev, b));
1923 }
1924 }
1925 }
1926 sectors -= s;
1927 sect += s;
1928 }
1929 }
1930
1931 static void bi_complete(struct bio *bio, int error)
1932 {
1933 complete((struct completion *)bio->bi_private);
1934 }
1935
1936 static int submit_bio_wait(int rw, struct bio *bio)
1937 {
1938 struct completion event;
1939 rw |= REQ_SYNC;
1940
1941 init_completion(&event);
1942 bio->bi_private = &event;
1943 bio->bi_end_io = bi_complete;
1944 submit_bio(rw, bio);
1945 wait_for_completion(&event);
1946
1947 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1948 }
1949
1950 static int narrow_write_error(struct r1bio *r1_bio, int i)
1951 {
1952 struct mddev *mddev = r1_bio->mddev;
1953 struct r1conf *conf = mddev->private;
1954 struct md_rdev *rdev = conf->mirrors[i].rdev;
1955 int vcnt, idx;
1956 struct bio_vec *vec;
1957
1958 /* bio has the data to be written to device 'i' where
1959 * we just recently had a write error.
1960 * We repeatedly clone the bio and trim down to one block,
1961 * then try the write. Where the write fails we record
1962 * a bad block.
1963 * It is conceivable that the bio doesn't exactly align with
1964 * blocks. We must handle this somehow.
1965 *
1966 * We currently own a reference on the rdev.
1967 */
1968
1969 int block_sectors;
1970 sector_t sector;
1971 int sectors;
1972 int sect_to_write = r1_bio->sectors;
1973 int ok = 1;
1974
1975 if (rdev->badblocks.shift < 0)
1976 return 0;
1977
1978 block_sectors = 1 << rdev->badblocks.shift;
1979 sector = r1_bio->sector;
1980 sectors = ((sector + block_sectors)
1981 & ~(sector_t)(block_sectors - 1))
1982 - sector;
1983
1984 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
1985 vcnt = r1_bio->behind_page_count;
1986 vec = r1_bio->behind_bvecs;
1987 idx = 0;
1988 while (vec[idx].bv_page == NULL)
1989 idx++;
1990 } else {
1991 vcnt = r1_bio->master_bio->bi_vcnt;
1992 vec = r1_bio->master_bio->bi_io_vec;
1993 idx = r1_bio->master_bio->bi_idx;
1994 }
1995 while (sect_to_write) {
1996 struct bio *wbio;
1997 if (sectors > sect_to_write)
1998 sectors = sect_to_write;
1999 /* Write at 'sector' for 'sectors'*/
2000
2001 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2002 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2003 wbio->bi_sector = r1_bio->sector;
2004 wbio->bi_rw = WRITE;
2005 wbio->bi_vcnt = vcnt;
2006 wbio->bi_size = r1_bio->sectors << 9;
2007 wbio->bi_idx = idx;
2008
2009 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2010 wbio->bi_sector += rdev->data_offset;
2011 wbio->bi_bdev = rdev->bdev;
2012 if (submit_bio_wait(WRITE, wbio) == 0)
2013 /* failure! */
2014 ok = rdev_set_badblocks(rdev, sector,
2015 sectors, 0)
2016 && ok;
2017
2018 bio_put(wbio);
2019 sect_to_write -= sectors;
2020 sector += sectors;
2021 sectors = block_sectors;
2022 }
2023 return ok;
2024 }
2025
2026 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2027 {
2028 int m;
2029 int s = r1_bio->sectors;
2030 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2031 struct md_rdev *rdev = conf->mirrors[m].rdev;
2032 struct bio *bio = r1_bio->bios[m];
2033 if (bio->bi_end_io == NULL)
2034 continue;
2035 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2036 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2037 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2038 }
2039 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2040 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2041 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2042 md_error(conf->mddev, rdev);
2043 }
2044 }
2045 put_buf(r1_bio);
2046 md_done_sync(conf->mddev, s, 1);
2047 }
2048
2049 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2050 {
2051 int m;
2052 for (m = 0; m < conf->raid_disks * 2 ; m++)
2053 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2054 struct md_rdev *rdev = conf->mirrors[m].rdev;
2055 rdev_clear_badblocks(rdev,
2056 r1_bio->sector,
2057 r1_bio->sectors, 0);
2058 rdev_dec_pending(rdev, conf->mddev);
2059 } else if (r1_bio->bios[m] != NULL) {
2060 /* This drive got a write error. We need to
2061 * narrow down and record precise write
2062 * errors.
2063 */
2064 if (!narrow_write_error(r1_bio, m)) {
2065 md_error(conf->mddev,
2066 conf->mirrors[m].rdev);
2067 /* an I/O failed, we can't clear the bitmap */
2068 set_bit(R1BIO_Degraded, &r1_bio->state);
2069 }
2070 rdev_dec_pending(conf->mirrors[m].rdev,
2071 conf->mddev);
2072 }
2073 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2074 close_write(r1_bio);
2075 raid_end_bio_io(r1_bio);
2076 }
2077
2078 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2079 {
2080 int disk;
2081 int max_sectors;
2082 struct mddev *mddev = conf->mddev;
2083 struct bio *bio;
2084 char b[BDEVNAME_SIZE];
2085 struct md_rdev *rdev;
2086
2087 clear_bit(R1BIO_ReadError, &r1_bio->state);
2088 /* we got a read error. Maybe the drive is bad. Maybe just
2089 * the block and we can fix it.
2090 * We freeze all other IO, and try reading the block from
2091 * other devices. When we find one, we re-write
2092 * and check it that fixes the read error.
2093 * This is all done synchronously while the array is
2094 * frozen
2095 */
2096 if (mddev->ro == 0) {
2097 freeze_array(conf);
2098 fix_read_error(conf, r1_bio->read_disk,
2099 r1_bio->sector, r1_bio->sectors);
2100 unfreeze_array(conf);
2101 } else
2102 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2103
2104 bio = r1_bio->bios[r1_bio->read_disk];
2105 bdevname(bio->bi_bdev, b);
2106 read_more:
2107 disk = read_balance(conf, r1_bio, &max_sectors);
2108 if (disk == -1) {
2109 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2110 " read error for block %llu\n",
2111 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2112 raid_end_bio_io(r1_bio);
2113 } else {
2114 const unsigned long do_sync
2115 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2116 if (bio) {
2117 r1_bio->bios[r1_bio->read_disk] =
2118 mddev->ro ? IO_BLOCKED : NULL;
2119 bio_put(bio);
2120 }
2121 r1_bio->read_disk = disk;
2122 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2123 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2124 r1_bio->bios[r1_bio->read_disk] = bio;
2125 rdev = conf->mirrors[disk].rdev;
2126 printk_ratelimited(KERN_ERR
2127 "md/raid1:%s: redirecting sector %llu"
2128 " to other mirror: %s\n",
2129 mdname(mddev),
2130 (unsigned long long)r1_bio->sector,
2131 bdevname(rdev->bdev, b));
2132 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2133 bio->bi_bdev = rdev->bdev;
2134 bio->bi_end_io = raid1_end_read_request;
2135 bio->bi_rw = READ | do_sync;
2136 bio->bi_private = r1_bio;
2137 if (max_sectors < r1_bio->sectors) {
2138 /* Drat - have to split this up more */
2139 struct bio *mbio = r1_bio->master_bio;
2140 int sectors_handled = (r1_bio->sector + max_sectors
2141 - mbio->bi_sector);
2142 r1_bio->sectors = max_sectors;
2143 spin_lock_irq(&conf->device_lock);
2144 if (mbio->bi_phys_segments == 0)
2145 mbio->bi_phys_segments = 2;
2146 else
2147 mbio->bi_phys_segments++;
2148 spin_unlock_irq(&conf->device_lock);
2149 generic_make_request(bio);
2150 bio = NULL;
2151
2152 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2153
2154 r1_bio->master_bio = mbio;
2155 r1_bio->sectors = (mbio->bi_size >> 9)
2156 - sectors_handled;
2157 r1_bio->state = 0;
2158 set_bit(R1BIO_ReadError, &r1_bio->state);
2159 r1_bio->mddev = mddev;
2160 r1_bio->sector = mbio->bi_sector + sectors_handled;
2161
2162 goto read_more;
2163 } else
2164 generic_make_request(bio);
2165 }
2166 }
2167
2168 static void raid1d(struct mddev *mddev)
2169 {
2170 struct r1bio *r1_bio;
2171 unsigned long flags;
2172 struct r1conf *conf = mddev->private;
2173 struct list_head *head = &conf->retry_list;
2174 struct blk_plug plug;
2175
2176 md_check_recovery(mddev);
2177
2178 blk_start_plug(&plug);
2179 for (;;) {
2180
2181 if (atomic_read(&mddev->plug_cnt) == 0)
2182 flush_pending_writes(conf);
2183
2184 spin_lock_irqsave(&conf->device_lock, flags);
2185 if (list_empty(head)) {
2186 spin_unlock_irqrestore(&conf->device_lock, flags);
2187 break;
2188 }
2189 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2190 list_del(head->prev);
2191 conf->nr_queued--;
2192 spin_unlock_irqrestore(&conf->device_lock, flags);
2193
2194 mddev = r1_bio->mddev;
2195 conf = mddev->private;
2196 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2197 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2198 test_bit(R1BIO_WriteError, &r1_bio->state))
2199 handle_sync_write_finished(conf, r1_bio);
2200 else
2201 sync_request_write(mddev, r1_bio);
2202 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2203 test_bit(R1BIO_WriteError, &r1_bio->state))
2204 handle_write_finished(conf, r1_bio);
2205 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2206 handle_read_error(conf, r1_bio);
2207 else
2208 /* just a partial read to be scheduled from separate
2209 * context
2210 */
2211 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2212
2213 cond_resched();
2214 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2215 md_check_recovery(mddev);
2216 }
2217 blk_finish_plug(&plug);
2218 }
2219
2220
2221 static int init_resync(struct r1conf *conf)
2222 {
2223 int buffs;
2224
2225 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2226 BUG_ON(conf->r1buf_pool);
2227 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2228 conf->poolinfo);
2229 if (!conf->r1buf_pool)
2230 return -ENOMEM;
2231 conf->next_resync = 0;
2232 return 0;
2233 }
2234
2235 /*
2236 * perform a "sync" on one "block"
2237 *
2238 * We need to make sure that no normal I/O request - particularly write
2239 * requests - conflict with active sync requests.
2240 *
2241 * This is achieved by tracking pending requests and a 'barrier' concept
2242 * that can be installed to exclude normal IO requests.
2243 */
2244
2245 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2246 {
2247 struct r1conf *conf = mddev->private;
2248 struct r1bio *r1_bio;
2249 struct bio *bio;
2250 sector_t max_sector, nr_sectors;
2251 int disk = -1;
2252 int i;
2253 int wonly = -1;
2254 int write_targets = 0, read_targets = 0;
2255 sector_t sync_blocks;
2256 int still_degraded = 0;
2257 int good_sectors = RESYNC_SECTORS;
2258 int min_bad = 0; /* number of sectors that are bad in all devices */
2259
2260 if (!conf->r1buf_pool)
2261 if (init_resync(conf))
2262 return 0;
2263
2264 max_sector = mddev->dev_sectors;
2265 if (sector_nr >= max_sector) {
2266 /* If we aborted, we need to abort the
2267 * sync on the 'current' bitmap chunk (there will
2268 * only be one in raid1 resync.
2269 * We can find the current addess in mddev->curr_resync
2270 */
2271 if (mddev->curr_resync < max_sector) /* aborted */
2272 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2273 &sync_blocks, 1);
2274 else /* completed sync */
2275 conf->fullsync = 0;
2276
2277 bitmap_close_sync(mddev->bitmap);
2278 close_sync(conf);
2279 return 0;
2280 }
2281
2282 if (mddev->bitmap == NULL &&
2283 mddev->recovery_cp == MaxSector &&
2284 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2285 conf->fullsync == 0) {
2286 *skipped = 1;
2287 return max_sector - sector_nr;
2288 }
2289 /* before building a request, check if we can skip these blocks..
2290 * This call the bitmap_start_sync doesn't actually record anything
2291 */
2292 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2293 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2294 /* We can skip this block, and probably several more */
2295 *skipped = 1;
2296 return sync_blocks;
2297 }
2298 /*
2299 * If there is non-resync activity waiting for a turn,
2300 * and resync is going fast enough,
2301 * then let it though before starting on this new sync request.
2302 */
2303 if (!go_faster && conf->nr_waiting)
2304 msleep_interruptible(1000);
2305
2306 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2307 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2308 raise_barrier(conf);
2309
2310 conf->next_resync = sector_nr;
2311
2312 rcu_read_lock();
2313 /*
2314 * If we get a correctably read error during resync or recovery,
2315 * we might want to read from a different device. So we
2316 * flag all drives that could conceivably be read from for READ,
2317 * and any others (which will be non-In_sync devices) for WRITE.
2318 * If a read fails, we try reading from something else for which READ
2319 * is OK.
2320 */
2321
2322 r1_bio->mddev = mddev;
2323 r1_bio->sector = sector_nr;
2324 r1_bio->state = 0;
2325 set_bit(R1BIO_IsSync, &r1_bio->state);
2326
2327 for (i = 0; i < conf->raid_disks * 2; i++) {
2328 struct md_rdev *rdev;
2329 bio = r1_bio->bios[i];
2330
2331 /* take from bio_init */
2332 bio->bi_next = NULL;
2333 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2334 bio->bi_flags |= 1 << BIO_UPTODATE;
2335 bio->bi_rw = READ;
2336 bio->bi_vcnt = 0;
2337 bio->bi_idx = 0;
2338 bio->bi_phys_segments = 0;
2339 bio->bi_size = 0;
2340 bio->bi_end_io = NULL;
2341 bio->bi_private = NULL;
2342
2343 rdev = rcu_dereference(conf->mirrors[i].rdev);
2344 if (rdev == NULL ||
2345 test_bit(Faulty, &rdev->flags)) {
2346 if (i < conf->raid_disks)
2347 still_degraded = 1;
2348 } else if (!test_bit(In_sync, &rdev->flags)) {
2349 bio->bi_rw = WRITE;
2350 bio->bi_end_io = end_sync_write;
2351 write_targets ++;
2352 } else {
2353 /* may need to read from here */
2354 sector_t first_bad = MaxSector;
2355 int bad_sectors;
2356
2357 if (is_badblock(rdev, sector_nr, good_sectors,
2358 &first_bad, &bad_sectors)) {
2359 if (first_bad > sector_nr)
2360 good_sectors = first_bad - sector_nr;
2361 else {
2362 bad_sectors -= (sector_nr - first_bad);
2363 if (min_bad == 0 ||
2364 min_bad > bad_sectors)
2365 min_bad = bad_sectors;
2366 }
2367 }
2368 if (sector_nr < first_bad) {
2369 if (test_bit(WriteMostly, &rdev->flags)) {
2370 if (wonly < 0)
2371 wonly = i;
2372 } else {
2373 if (disk < 0)
2374 disk = i;
2375 }
2376 bio->bi_rw = READ;
2377 bio->bi_end_io = end_sync_read;
2378 read_targets++;
2379 }
2380 }
2381 if (bio->bi_end_io) {
2382 atomic_inc(&rdev->nr_pending);
2383 bio->bi_sector = sector_nr + rdev->data_offset;
2384 bio->bi_bdev = rdev->bdev;
2385 bio->bi_private = r1_bio;
2386 }
2387 }
2388 rcu_read_unlock();
2389 if (disk < 0)
2390 disk = wonly;
2391 r1_bio->read_disk = disk;
2392
2393 if (read_targets == 0 && min_bad > 0) {
2394 /* These sectors are bad on all InSync devices, so we
2395 * need to mark them bad on all write targets
2396 */
2397 int ok = 1;
2398 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2399 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2400 struct md_rdev *rdev = conf->mirrors[i].rdev;
2401 ok = rdev_set_badblocks(rdev, sector_nr,
2402 min_bad, 0
2403 ) && ok;
2404 }
2405 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2406 *skipped = 1;
2407 put_buf(r1_bio);
2408
2409 if (!ok) {
2410 /* Cannot record the badblocks, so need to
2411 * abort the resync.
2412 * If there are multiple read targets, could just
2413 * fail the really bad ones ???
2414 */
2415 conf->recovery_disabled = mddev->recovery_disabled;
2416 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2417 return 0;
2418 } else
2419 return min_bad;
2420
2421 }
2422 if (min_bad > 0 && min_bad < good_sectors) {
2423 /* only resync enough to reach the next bad->good
2424 * transition */
2425 good_sectors = min_bad;
2426 }
2427
2428 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2429 /* extra read targets are also write targets */
2430 write_targets += read_targets-1;
2431
2432 if (write_targets == 0 || read_targets == 0) {
2433 /* There is nowhere to write, so all non-sync
2434 * drives must be failed - so we are finished
2435 */
2436 sector_t rv = max_sector - sector_nr;
2437 *skipped = 1;
2438 put_buf(r1_bio);
2439 return rv;
2440 }
2441
2442 if (max_sector > mddev->resync_max)
2443 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2444 if (max_sector > sector_nr + good_sectors)
2445 max_sector = sector_nr + good_sectors;
2446 nr_sectors = 0;
2447 sync_blocks = 0;
2448 do {
2449 struct page *page;
2450 int len = PAGE_SIZE;
2451 if (sector_nr + (len>>9) > max_sector)
2452 len = (max_sector - sector_nr) << 9;
2453 if (len == 0)
2454 break;
2455 if (sync_blocks == 0) {
2456 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2457 &sync_blocks, still_degraded) &&
2458 !conf->fullsync &&
2459 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2460 break;
2461 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2462 if ((len >> 9) > sync_blocks)
2463 len = sync_blocks<<9;
2464 }
2465
2466 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2467 bio = r1_bio->bios[i];
2468 if (bio->bi_end_io) {
2469 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2470 if (bio_add_page(bio, page, len, 0) == 0) {
2471 /* stop here */
2472 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2473 while (i > 0) {
2474 i--;
2475 bio = r1_bio->bios[i];
2476 if (bio->bi_end_io==NULL)
2477 continue;
2478 /* remove last page from this bio */
2479 bio->bi_vcnt--;
2480 bio->bi_size -= len;
2481 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2482 }
2483 goto bio_full;
2484 }
2485 }
2486 }
2487 nr_sectors += len>>9;
2488 sector_nr += len>>9;
2489 sync_blocks -= (len>>9);
2490 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2491 bio_full:
2492 r1_bio->sectors = nr_sectors;
2493
2494 /* For a user-requested sync, we read all readable devices and do a
2495 * compare
2496 */
2497 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2498 atomic_set(&r1_bio->remaining, read_targets);
2499 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2500 bio = r1_bio->bios[i];
2501 if (bio->bi_end_io == end_sync_read) {
2502 read_targets--;
2503 md_sync_acct(bio->bi_bdev, nr_sectors);
2504 generic_make_request(bio);
2505 }
2506 }
2507 } else {
2508 atomic_set(&r1_bio->remaining, 1);
2509 bio = r1_bio->bios[r1_bio->read_disk];
2510 md_sync_acct(bio->bi_bdev, nr_sectors);
2511 generic_make_request(bio);
2512
2513 }
2514 return nr_sectors;
2515 }
2516
2517 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2518 {
2519 if (sectors)
2520 return sectors;
2521
2522 return mddev->dev_sectors;
2523 }
2524
2525 static struct r1conf *setup_conf(struct mddev *mddev)
2526 {
2527 struct r1conf *conf;
2528 int i;
2529 struct raid1_info *disk;
2530 struct md_rdev *rdev;
2531 int err = -ENOMEM;
2532
2533 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2534 if (!conf)
2535 goto abort;
2536
2537 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2538 * mddev->raid_disks * 2,
2539 GFP_KERNEL);
2540 if (!conf->mirrors)
2541 goto abort;
2542
2543 conf->tmppage = alloc_page(GFP_KERNEL);
2544 if (!conf->tmppage)
2545 goto abort;
2546
2547 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2548 if (!conf->poolinfo)
2549 goto abort;
2550 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2551 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2552 r1bio_pool_free,
2553 conf->poolinfo);
2554 if (!conf->r1bio_pool)
2555 goto abort;
2556
2557 conf->poolinfo->mddev = mddev;
2558
2559 err = -EINVAL;
2560 spin_lock_init(&conf->device_lock);
2561 rdev_for_each(rdev, mddev) {
2562 struct request_queue *q;
2563 int disk_idx = rdev->raid_disk;
2564 if (disk_idx >= mddev->raid_disks
2565 || disk_idx < 0)
2566 continue;
2567 if (test_bit(Replacement, &rdev->flags))
2568 disk = conf->mirrors + conf->raid_disks + disk_idx;
2569 else
2570 disk = conf->mirrors + disk_idx;
2571
2572 if (disk->rdev)
2573 goto abort;
2574 disk->rdev = rdev;
2575 q = bdev_get_queue(rdev->bdev);
2576 if (q->merge_bvec_fn)
2577 mddev->merge_check_needed = 1;
2578
2579 disk->head_position = 0;
2580 }
2581 conf->raid_disks = mddev->raid_disks;
2582 conf->mddev = mddev;
2583 INIT_LIST_HEAD(&conf->retry_list);
2584
2585 spin_lock_init(&conf->resync_lock);
2586 init_waitqueue_head(&conf->wait_barrier);
2587
2588 bio_list_init(&conf->pending_bio_list);
2589 conf->pending_count = 0;
2590 conf->recovery_disabled = mddev->recovery_disabled - 1;
2591
2592 err = -EIO;
2593 for (i = 0; i < conf->raid_disks * 2; i++) {
2594
2595 disk = conf->mirrors + i;
2596
2597 if (i < conf->raid_disks &&
2598 disk[conf->raid_disks].rdev) {
2599 /* This slot has a replacement. */
2600 if (!disk->rdev) {
2601 /* No original, just make the replacement
2602 * a recovering spare
2603 */
2604 disk->rdev =
2605 disk[conf->raid_disks].rdev;
2606 disk[conf->raid_disks].rdev = NULL;
2607 } else if (!test_bit(In_sync, &disk->rdev->flags))
2608 /* Original is not in_sync - bad */
2609 goto abort;
2610 }
2611
2612 if (!disk->rdev ||
2613 !test_bit(In_sync, &disk->rdev->flags)) {
2614 disk->head_position = 0;
2615 if (disk->rdev &&
2616 (disk->rdev->saved_raid_disk < 0))
2617 conf->fullsync = 1;
2618 }
2619 }
2620
2621 err = -ENOMEM;
2622 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2623 if (!conf->thread) {
2624 printk(KERN_ERR
2625 "md/raid1:%s: couldn't allocate thread\n",
2626 mdname(mddev));
2627 goto abort;
2628 }
2629
2630 return conf;
2631
2632 abort:
2633 if (conf) {
2634 if (conf->r1bio_pool)
2635 mempool_destroy(conf->r1bio_pool);
2636 kfree(conf->mirrors);
2637 safe_put_page(conf->tmppage);
2638 kfree(conf->poolinfo);
2639 kfree(conf);
2640 }
2641 return ERR_PTR(err);
2642 }
2643
2644 static int stop(struct mddev *mddev);
2645 static int run(struct mddev *mddev)
2646 {
2647 struct r1conf *conf;
2648 int i;
2649 struct md_rdev *rdev;
2650 int ret;
2651
2652 if (mddev->level != 1) {
2653 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2654 mdname(mddev), mddev->level);
2655 return -EIO;
2656 }
2657 if (mddev->reshape_position != MaxSector) {
2658 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2659 mdname(mddev));
2660 return -EIO;
2661 }
2662 /*
2663 * copy the already verified devices into our private RAID1
2664 * bookkeeping area. [whatever we allocate in run(),
2665 * should be freed in stop()]
2666 */
2667 if (mddev->private == NULL)
2668 conf = setup_conf(mddev);
2669 else
2670 conf = mddev->private;
2671
2672 if (IS_ERR(conf))
2673 return PTR_ERR(conf);
2674
2675 rdev_for_each(rdev, mddev) {
2676 if (!mddev->gendisk)
2677 continue;
2678 disk_stack_limits(mddev->gendisk, rdev->bdev,
2679 rdev->data_offset << 9);
2680 }
2681
2682 mddev->degraded = 0;
2683 for (i=0; i < conf->raid_disks; i++)
2684 if (conf->mirrors[i].rdev == NULL ||
2685 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2686 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2687 mddev->degraded++;
2688
2689 if (conf->raid_disks - mddev->degraded == 1)
2690 mddev->recovery_cp = MaxSector;
2691
2692 if (mddev->recovery_cp != MaxSector)
2693 printk(KERN_NOTICE "md/raid1:%s: not clean"
2694 " -- starting background reconstruction\n",
2695 mdname(mddev));
2696 printk(KERN_INFO
2697 "md/raid1:%s: active with %d out of %d mirrors\n",
2698 mdname(mddev), mddev->raid_disks - mddev->degraded,
2699 mddev->raid_disks);
2700
2701 /*
2702 * Ok, everything is just fine now
2703 */
2704 mddev->thread = conf->thread;
2705 conf->thread = NULL;
2706 mddev->private = conf;
2707
2708 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2709
2710 if (mddev->queue) {
2711 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2712 mddev->queue->backing_dev_info.congested_data = mddev;
2713 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2714 }
2715
2716 ret = md_integrity_register(mddev);
2717 if (ret)
2718 stop(mddev);
2719 return ret;
2720 }
2721
2722 static int stop(struct mddev *mddev)
2723 {
2724 struct r1conf *conf = mddev->private;
2725 struct bitmap *bitmap = mddev->bitmap;
2726
2727 /* wait for behind writes to complete */
2728 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2729 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2730 mdname(mddev));
2731 /* need to kick something here to make sure I/O goes? */
2732 wait_event(bitmap->behind_wait,
2733 atomic_read(&bitmap->behind_writes) == 0);
2734 }
2735
2736 raise_barrier(conf);
2737 lower_barrier(conf);
2738
2739 md_unregister_thread(&mddev->thread);
2740 if (conf->r1bio_pool)
2741 mempool_destroy(conf->r1bio_pool);
2742 kfree(conf->mirrors);
2743 kfree(conf->poolinfo);
2744 kfree(conf);
2745 mddev->private = NULL;
2746 return 0;
2747 }
2748
2749 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2750 {
2751 /* no resync is happening, and there is enough space
2752 * on all devices, so we can resize.
2753 * We need to make sure resync covers any new space.
2754 * If the array is shrinking we should possibly wait until
2755 * any io in the removed space completes, but it hardly seems
2756 * worth it.
2757 */
2758 sector_t newsize = raid1_size(mddev, sectors, 0);
2759 if (mddev->external_size &&
2760 mddev->array_sectors > newsize)
2761 return -EINVAL;
2762 if (mddev->bitmap) {
2763 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2764 if (ret)
2765 return ret;
2766 }
2767 md_set_array_sectors(mddev, newsize);
2768 set_capacity(mddev->gendisk, mddev->array_sectors);
2769 revalidate_disk(mddev->gendisk);
2770 if (sectors > mddev->dev_sectors &&
2771 mddev->recovery_cp > mddev->dev_sectors) {
2772 mddev->recovery_cp = mddev->dev_sectors;
2773 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2774 }
2775 mddev->dev_sectors = sectors;
2776 mddev->resync_max_sectors = sectors;
2777 return 0;
2778 }
2779
2780 static int raid1_reshape(struct mddev *mddev)
2781 {
2782 /* We need to:
2783 * 1/ resize the r1bio_pool
2784 * 2/ resize conf->mirrors
2785 *
2786 * We allocate a new r1bio_pool if we can.
2787 * Then raise a device barrier and wait until all IO stops.
2788 * Then resize conf->mirrors and swap in the new r1bio pool.
2789 *
2790 * At the same time, we "pack" the devices so that all the missing
2791 * devices have the higher raid_disk numbers.
2792 */
2793 mempool_t *newpool, *oldpool;
2794 struct pool_info *newpoolinfo;
2795 struct raid1_info *newmirrors;
2796 struct r1conf *conf = mddev->private;
2797 int cnt, raid_disks;
2798 unsigned long flags;
2799 int d, d2, err;
2800
2801 /* Cannot change chunk_size, layout, or level */
2802 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2803 mddev->layout != mddev->new_layout ||
2804 mddev->level != mddev->new_level) {
2805 mddev->new_chunk_sectors = mddev->chunk_sectors;
2806 mddev->new_layout = mddev->layout;
2807 mddev->new_level = mddev->level;
2808 return -EINVAL;
2809 }
2810
2811 err = md_allow_write(mddev);
2812 if (err)
2813 return err;
2814
2815 raid_disks = mddev->raid_disks + mddev->delta_disks;
2816
2817 if (raid_disks < conf->raid_disks) {
2818 cnt=0;
2819 for (d= 0; d < conf->raid_disks; d++)
2820 if (conf->mirrors[d].rdev)
2821 cnt++;
2822 if (cnt > raid_disks)
2823 return -EBUSY;
2824 }
2825
2826 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2827 if (!newpoolinfo)
2828 return -ENOMEM;
2829 newpoolinfo->mddev = mddev;
2830 newpoolinfo->raid_disks = raid_disks * 2;
2831
2832 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2833 r1bio_pool_free, newpoolinfo);
2834 if (!newpool) {
2835 kfree(newpoolinfo);
2836 return -ENOMEM;
2837 }
2838 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2839 GFP_KERNEL);
2840 if (!newmirrors) {
2841 kfree(newpoolinfo);
2842 mempool_destroy(newpool);
2843 return -ENOMEM;
2844 }
2845
2846 raise_barrier(conf);
2847
2848 /* ok, everything is stopped */
2849 oldpool = conf->r1bio_pool;
2850 conf->r1bio_pool = newpool;
2851
2852 for (d = d2 = 0; d < conf->raid_disks; d++) {
2853 struct md_rdev *rdev = conf->mirrors[d].rdev;
2854 if (rdev && rdev->raid_disk != d2) {
2855 sysfs_unlink_rdev(mddev, rdev);
2856 rdev->raid_disk = d2;
2857 sysfs_unlink_rdev(mddev, rdev);
2858 if (sysfs_link_rdev(mddev, rdev))
2859 printk(KERN_WARNING
2860 "md/raid1:%s: cannot register rd%d\n",
2861 mdname(mddev), rdev->raid_disk);
2862 }
2863 if (rdev)
2864 newmirrors[d2++].rdev = rdev;
2865 }
2866 kfree(conf->mirrors);
2867 conf->mirrors = newmirrors;
2868 kfree(conf->poolinfo);
2869 conf->poolinfo = newpoolinfo;
2870
2871 spin_lock_irqsave(&conf->device_lock, flags);
2872 mddev->degraded += (raid_disks - conf->raid_disks);
2873 spin_unlock_irqrestore(&conf->device_lock, flags);
2874 conf->raid_disks = mddev->raid_disks = raid_disks;
2875 mddev->delta_disks = 0;
2876
2877 lower_barrier(conf);
2878
2879 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2880 md_wakeup_thread(mddev->thread);
2881
2882 mempool_destroy(oldpool);
2883 return 0;
2884 }
2885
2886 static void raid1_quiesce(struct mddev *mddev, int state)
2887 {
2888 struct r1conf *conf = mddev->private;
2889
2890 switch(state) {
2891 case 2: /* wake for suspend */
2892 wake_up(&conf->wait_barrier);
2893 break;
2894 case 1:
2895 raise_barrier(conf);
2896 break;
2897 case 0:
2898 lower_barrier(conf);
2899 break;
2900 }
2901 }
2902
2903 static void *raid1_takeover(struct mddev *mddev)
2904 {
2905 /* raid1 can take over:
2906 * raid5 with 2 devices, any layout or chunk size
2907 */
2908 if (mddev->level == 5 && mddev->raid_disks == 2) {
2909 struct r1conf *conf;
2910 mddev->new_level = 1;
2911 mddev->new_layout = 0;
2912 mddev->new_chunk_sectors = 0;
2913 conf = setup_conf(mddev);
2914 if (!IS_ERR(conf))
2915 conf->barrier = 1;
2916 return conf;
2917 }
2918 return ERR_PTR(-EINVAL);
2919 }
2920
2921 static struct md_personality raid1_personality =
2922 {
2923 .name = "raid1",
2924 .level = 1,
2925 .owner = THIS_MODULE,
2926 .make_request = make_request,
2927 .run = run,
2928 .stop = stop,
2929 .status = status,
2930 .error_handler = error,
2931 .hot_add_disk = raid1_add_disk,
2932 .hot_remove_disk= raid1_remove_disk,
2933 .spare_active = raid1_spare_active,
2934 .sync_request = sync_request,
2935 .resize = raid1_resize,
2936 .size = raid1_size,
2937 .check_reshape = raid1_reshape,
2938 .quiesce = raid1_quiesce,
2939 .takeover = raid1_takeover,
2940 };
2941
2942 static int __init raid_init(void)
2943 {
2944 return register_md_personality(&raid1_personality);
2945 }
2946
2947 static void raid_exit(void)
2948 {
2949 unregister_md_personality(&raid1_personality);
2950 }
2951
2952 module_init(raid_init);
2953 module_exit(raid_exit);
2954 MODULE_LICENSE("GPL");
2955 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2956 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2957 MODULE_ALIAS("md-raid1");
2958 MODULE_ALIAS("md-level-1");
2959
2960 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.092128 seconds and 6 git commands to generate.