Merge tag 'pinctrl-v4.8-1' of git://git.kernel.org/pub/scm/linux/kernel/git/linusw...
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
95 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
96
97 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
98 {
99 struct pool_info *pi = data;
100 struct r1bio *r1_bio;
101 struct bio *bio;
102 int need_pages;
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
106 if (!r1_bio)
107 return NULL;
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
123 */
124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
125 need_pages = pi->raid_disks;
126 else
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
129 bio = r1_bio->bios[j];
130 bio->bi_vcnt = RESYNC_PAGES;
131
132 if (bio_alloc_pages(bio, gfp_flags))
133 goto out_free_pages;
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
147 out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
155 out_free_bio:
156 while (++j < pi->raid_disks)
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160 }
161
162 static void r1buf_pool_free(void *__r1_bio, void *data)
163 {
164 struct pool_info *pi = data;
165 int i,j;
166 struct r1bio *r1bio = __r1_bio;
167
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
174 }
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179 }
180
181 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
182 {
183 int i;
184
185 for (i = 0; i < conf->raid_disks * 2; i++) {
186 struct bio **bio = r1_bio->bios + i;
187 if (!BIO_SPECIAL(*bio))
188 bio_put(*bio);
189 *bio = NULL;
190 }
191 }
192
193 static void free_r1bio(struct r1bio *r1_bio)
194 {
195 struct r1conf *conf = r1_bio->mddev->private;
196
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199 }
200
201 static void put_buf(struct r1bio *r1_bio)
202 {
203 struct r1conf *conf = r1_bio->mddev->private;
204 int i;
205
206 for (i = 0; i < conf->raid_disks * 2; i++) {
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
214 lower_barrier(conf);
215 }
216
217 static void reschedule_retry(struct r1bio *r1_bio)
218 {
219 unsigned long flags;
220 struct mddev *mddev = r1_bio->mddev;
221 struct r1conf *conf = mddev->private;
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
225 conf->nr_queued ++;
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
228 wake_up(&conf->wait_barrier);
229 md_wakeup_thread(mddev->thread);
230 }
231
232 /*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
237 static void call_bio_endio(struct r1bio *r1_bio)
238 {
239 struct bio *bio = r1_bio->master_bio;
240 int done;
241 struct r1conf *conf = r1_bio->mddev->private;
242 sector_t start_next_window = r1_bio->start_next_window;
243 sector_t bi_sector = bio->bi_iter.bi_sector;
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
260 bio->bi_error = -EIO;
261
262 if (done) {
263 bio_endio(bio);
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
268 allow_barrier(conf, start_next_window, bi_sector);
269 }
270 }
271
272 static void raid_end_bio_io(struct r1bio *r1_bio)
273 {
274 struct bio *bio = r1_bio->master_bio;
275
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
282
283 call_bio_endio(r1_bio);
284 }
285 free_r1bio(r1_bio);
286 }
287
288 /*
289 * Update disk head position estimator based on IRQ completion info.
290 */
291 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
292 {
293 struct r1conf *conf = r1_bio->mddev->private;
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297 }
298
299 /*
300 * Find the disk number which triggered given bio
301 */
302 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
303 {
304 int mirror;
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
307
308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
312 BUG_ON(mirror == raid_disks * 2);
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316 }
317
318 static void raid1_end_read_request(struct bio *bio)
319 {
320 int uptodate = !bio->bi_error;
321 struct r1bio *r1_bio = bio->bi_private;
322 int mirror;
323 struct r1conf *conf = r1_bio->mddev->private;
324
325 mirror = r1_bio->read_disk;
326 /*
327 * this branch is our 'one mirror IO has finished' event handler:
328 */
329 update_head_pos(mirror, r1_bio);
330
331 if (uptodate)
332 set_bit(R1BIO_Uptodate, &r1_bio->state);
333 else {
334 /* If all other devices have failed, we want to return
335 * the error upwards rather than fail the last device.
336 * Here we redefine "uptodate" to mean "Don't want to retry"
337 */
338 unsigned long flags;
339 spin_lock_irqsave(&conf->device_lock, flags);
340 if (r1_bio->mddev->degraded == conf->raid_disks ||
341 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
342 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
343 uptodate = 1;
344 spin_unlock_irqrestore(&conf->device_lock, flags);
345 }
346
347 if (uptodate) {
348 raid_end_bio_io(r1_bio);
349 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 } else {
351 /*
352 * oops, read error:
353 */
354 char b[BDEVNAME_SIZE];
355 printk_ratelimited(
356 KERN_ERR "md/raid1:%s: %s: "
357 "rescheduling sector %llu\n",
358 mdname(conf->mddev),
359 bdevname(conf->mirrors[mirror].rdev->bdev,
360 b),
361 (unsigned long long)r1_bio->sector);
362 set_bit(R1BIO_ReadError, &r1_bio->state);
363 reschedule_retry(r1_bio);
364 /* don't drop the reference on read_disk yet */
365 }
366 }
367
368 static void close_write(struct r1bio *r1_bio)
369 {
370 /* it really is the end of this request */
371 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 /* free extra copy of the data pages */
373 int i = r1_bio->behind_page_count;
374 while (i--)
375 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 kfree(r1_bio->behind_bvecs);
377 r1_bio->behind_bvecs = NULL;
378 }
379 /* clear the bitmap if all writes complete successfully */
380 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 r1_bio->sectors,
382 !test_bit(R1BIO_Degraded, &r1_bio->state),
383 test_bit(R1BIO_BehindIO, &r1_bio->state));
384 md_write_end(r1_bio->mddev);
385 }
386
387 static void r1_bio_write_done(struct r1bio *r1_bio)
388 {
389 if (!atomic_dec_and_test(&r1_bio->remaining))
390 return;
391
392 if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 reschedule_retry(r1_bio);
394 else {
395 close_write(r1_bio);
396 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 reschedule_retry(r1_bio);
398 else
399 raid_end_bio_io(r1_bio);
400 }
401 }
402
403 static void raid1_end_write_request(struct bio *bio)
404 {
405 struct r1bio *r1_bio = bio->bi_private;
406 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
407 struct r1conf *conf = r1_bio->mddev->private;
408 struct bio *to_put = NULL;
409
410 mirror = find_bio_disk(r1_bio, bio);
411
412 /*
413 * 'one mirror IO has finished' event handler:
414 */
415 if (bio->bi_error) {
416 set_bit(WriteErrorSeen,
417 &conf->mirrors[mirror].rdev->flags);
418 if (!test_and_set_bit(WantReplacement,
419 &conf->mirrors[mirror].rdev->flags))
420 set_bit(MD_RECOVERY_NEEDED, &
421 conf->mddev->recovery);
422
423 set_bit(R1BIO_WriteError, &r1_bio->state);
424 } else {
425 /*
426 * Set R1BIO_Uptodate in our master bio, so that we
427 * will return a good error code for to the higher
428 * levels even if IO on some other mirrored buffer
429 * fails.
430 *
431 * The 'master' represents the composite IO operation
432 * to user-side. So if something waits for IO, then it
433 * will wait for the 'master' bio.
434 */
435 sector_t first_bad;
436 int bad_sectors;
437
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
440 /*
441 * Do not set R1BIO_Uptodate if the current device is
442 * rebuilding or Faulty. This is because we cannot use
443 * such device for properly reading the data back (we could
444 * potentially use it, if the current write would have felt
445 * before rdev->recovery_offset, but for simplicity we don't
446 * check this here.
447 */
448 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 set_bit(R1BIO_Uptodate, &r1_bio->state);
451
452 /* Maybe we can clear some bad blocks. */
453 if (is_badblock(conf->mirrors[mirror].rdev,
454 r1_bio->sector, r1_bio->sectors,
455 &first_bad, &bad_sectors)) {
456 r1_bio->bios[mirror] = IO_MADE_GOOD;
457 set_bit(R1BIO_MadeGood, &r1_bio->state);
458 }
459 }
460
461 if (behind) {
462 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 atomic_dec(&r1_bio->behind_remaining);
464
465 /*
466 * In behind mode, we ACK the master bio once the I/O
467 * has safely reached all non-writemostly
468 * disks. Setting the Returned bit ensures that this
469 * gets done only once -- we don't ever want to return
470 * -EIO here, instead we'll wait
471 */
472 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 /* Maybe we can return now */
475 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 struct bio *mbio = r1_bio->master_bio;
477 pr_debug("raid1: behind end write sectors"
478 " %llu-%llu\n",
479 (unsigned long long) mbio->bi_iter.bi_sector,
480 (unsigned long long) bio_end_sector(mbio) - 1);
481 call_bio_endio(r1_bio);
482 }
483 }
484 }
485 if (r1_bio->bios[mirror] == NULL)
486 rdev_dec_pending(conf->mirrors[mirror].rdev,
487 conf->mddev);
488
489 /*
490 * Let's see if all mirrored write operations have finished
491 * already.
492 */
493 r1_bio_write_done(r1_bio);
494
495 if (to_put)
496 bio_put(to_put);
497 }
498
499 /*
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
507 *
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
510 *
511 * The rdev for the device selected will have nr_pending incremented.
512 */
513 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
514 {
515 const sector_t this_sector = r1_bio->sector;
516 int sectors;
517 int best_good_sectors;
518 int best_disk, best_dist_disk, best_pending_disk;
519 int has_nonrot_disk;
520 int disk;
521 sector_t best_dist;
522 unsigned int min_pending;
523 struct md_rdev *rdev;
524 int choose_first;
525 int choose_next_idle;
526
527 rcu_read_lock();
528 /*
529 * Check if we can balance. We can balance on the whole
530 * device if no resync is going on, or below the resync window.
531 * We take the first readable disk when above the resync window.
532 */
533 retry:
534 sectors = r1_bio->sectors;
535 best_disk = -1;
536 best_dist_disk = -1;
537 best_dist = MaxSector;
538 best_pending_disk = -1;
539 min_pending = UINT_MAX;
540 best_good_sectors = 0;
541 has_nonrot_disk = 0;
542 choose_next_idle = 0;
543
544 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 (mddev_is_clustered(conf->mddev) &&
546 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
547 this_sector + sectors)))
548 choose_first = 1;
549 else
550 choose_first = 0;
551
552 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
553 sector_t dist;
554 sector_t first_bad;
555 int bad_sectors;
556 unsigned int pending;
557 bool nonrot;
558
559 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 if (r1_bio->bios[disk] == IO_BLOCKED
561 || rdev == NULL
562 || test_bit(Faulty, &rdev->flags))
563 continue;
564 if (!test_bit(In_sync, &rdev->flags) &&
565 rdev->recovery_offset < this_sector + sectors)
566 continue;
567 if (test_bit(WriteMostly, &rdev->flags)) {
568 /* Don't balance among write-mostly, just
569 * use the first as a last resort */
570 if (best_dist_disk < 0) {
571 if (is_badblock(rdev, this_sector, sectors,
572 &first_bad, &bad_sectors)) {
573 if (first_bad <= this_sector)
574 /* Cannot use this */
575 continue;
576 best_good_sectors = first_bad - this_sector;
577 } else
578 best_good_sectors = sectors;
579 best_dist_disk = disk;
580 best_pending_disk = disk;
581 }
582 continue;
583 }
584 /* This is a reasonable device to use. It might
585 * even be best.
586 */
587 if (is_badblock(rdev, this_sector, sectors,
588 &first_bad, &bad_sectors)) {
589 if (best_dist < MaxSector)
590 /* already have a better device */
591 continue;
592 if (first_bad <= this_sector) {
593 /* cannot read here. If this is the 'primary'
594 * device, then we must not read beyond
595 * bad_sectors from another device..
596 */
597 bad_sectors -= (this_sector - first_bad);
598 if (choose_first && sectors > bad_sectors)
599 sectors = bad_sectors;
600 if (best_good_sectors > sectors)
601 best_good_sectors = sectors;
602
603 } else {
604 sector_t good_sectors = first_bad - this_sector;
605 if (good_sectors > best_good_sectors) {
606 best_good_sectors = good_sectors;
607 best_disk = disk;
608 }
609 if (choose_first)
610 break;
611 }
612 continue;
613 } else
614 best_good_sectors = sectors;
615
616 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 has_nonrot_disk |= nonrot;
618 pending = atomic_read(&rdev->nr_pending);
619 dist = abs(this_sector - conf->mirrors[disk].head_position);
620 if (choose_first) {
621 best_disk = disk;
622 break;
623 }
624 /* Don't change to another disk for sequential reads */
625 if (conf->mirrors[disk].next_seq_sect == this_sector
626 || dist == 0) {
627 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 struct raid1_info *mirror = &conf->mirrors[disk];
629
630 best_disk = disk;
631 /*
632 * If buffered sequential IO size exceeds optimal
633 * iosize, check if there is idle disk. If yes, choose
634 * the idle disk. read_balance could already choose an
635 * idle disk before noticing it's a sequential IO in
636 * this disk. This doesn't matter because this disk
637 * will idle, next time it will be utilized after the
638 * first disk has IO size exceeds optimal iosize. In
639 * this way, iosize of the first disk will be optimal
640 * iosize at least. iosize of the second disk might be
641 * small, but not a big deal since when the second disk
642 * starts IO, the first disk is likely still busy.
643 */
644 if (nonrot && opt_iosize > 0 &&
645 mirror->seq_start != MaxSector &&
646 mirror->next_seq_sect > opt_iosize &&
647 mirror->next_seq_sect - opt_iosize >=
648 mirror->seq_start) {
649 choose_next_idle = 1;
650 continue;
651 }
652 break;
653 }
654 /* If device is idle, use it */
655 if (pending == 0) {
656 best_disk = disk;
657 break;
658 }
659
660 if (choose_next_idle)
661 continue;
662
663 if (min_pending > pending) {
664 min_pending = pending;
665 best_pending_disk = disk;
666 }
667
668 if (dist < best_dist) {
669 best_dist = dist;
670 best_dist_disk = disk;
671 }
672 }
673
674 /*
675 * If all disks are rotational, choose the closest disk. If any disk is
676 * non-rotational, choose the disk with less pending request even the
677 * disk is rotational, which might/might not be optimal for raids with
678 * mixed ratation/non-rotational disks depending on workload.
679 */
680 if (best_disk == -1) {
681 if (has_nonrot_disk)
682 best_disk = best_pending_disk;
683 else
684 best_disk = best_dist_disk;
685 }
686
687 if (best_disk >= 0) {
688 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
689 if (!rdev)
690 goto retry;
691 atomic_inc(&rdev->nr_pending);
692 if (test_bit(Faulty, &rdev->flags)) {
693 /* cannot risk returning a device that failed
694 * before we inc'ed nr_pending
695 */
696 rdev_dec_pending(rdev, conf->mddev);
697 goto retry;
698 }
699 sectors = best_good_sectors;
700
701 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 conf->mirrors[best_disk].seq_start = this_sector;
703
704 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
705 }
706 rcu_read_unlock();
707 *max_sectors = sectors;
708
709 return best_disk;
710 }
711
712 static int raid1_congested(struct mddev *mddev, int bits)
713 {
714 struct r1conf *conf = mddev->private;
715 int i, ret = 0;
716
717 if ((bits & (1 << WB_async_congested)) &&
718 conf->pending_count >= max_queued_requests)
719 return 1;
720
721 rcu_read_lock();
722 for (i = 0; i < conf->raid_disks * 2; i++) {
723 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
725 struct request_queue *q = bdev_get_queue(rdev->bdev);
726
727 BUG_ON(!q);
728
729 /* Note the '|| 1' - when read_balance prefers
730 * non-congested targets, it can be removed
731 */
732 if ((bits & (1 << WB_async_congested)) || 1)
733 ret |= bdi_congested(&q->backing_dev_info, bits);
734 else
735 ret &= bdi_congested(&q->backing_dev_info, bits);
736 }
737 }
738 rcu_read_unlock();
739 return ret;
740 }
741
742 static void flush_pending_writes(struct r1conf *conf)
743 {
744 /* Any writes that have been queued but are awaiting
745 * bitmap updates get flushed here.
746 */
747 spin_lock_irq(&conf->device_lock);
748
749 if (conf->pending_bio_list.head) {
750 struct bio *bio;
751 bio = bio_list_get(&conf->pending_bio_list);
752 conf->pending_count = 0;
753 spin_unlock_irq(&conf->device_lock);
754 /* flush any pending bitmap writes to
755 * disk before proceeding w/ I/O */
756 bitmap_unplug(conf->mddev->bitmap);
757 wake_up(&conf->wait_barrier);
758
759 while (bio) { /* submit pending writes */
760 struct bio *next = bio->bi_next;
761 bio->bi_next = NULL;
762 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
763 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 /* Just ignore it */
765 bio_endio(bio);
766 else
767 generic_make_request(bio);
768 bio = next;
769 }
770 } else
771 spin_unlock_irq(&conf->device_lock);
772 }
773
774 /* Barriers....
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
780 * normal IO.
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down. This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
787 *
788 * So: regular IO calls 'wait_barrier'. When that returns there
789 * is no backgroup IO happening, It must arrange to call
790 * allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier. Once that returns
792 * there is no normal IO happeing. It must arrange to call
793 * lower_barrier when the particular background IO completes.
794 */
795 static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
796 {
797 spin_lock_irq(&conf->resync_lock);
798
799 /* Wait until no block IO is waiting */
800 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
801 conf->resync_lock);
802
803 /* block any new IO from starting */
804 conf->barrier++;
805 conf->next_resync = sector_nr;
806
807 /* For these conditions we must wait:
808 * A: while the array is in frozen state
809 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 * the max count which allowed.
811 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 * next resync will reach to the window which normal bios are
813 * handling.
814 * D: while there are any active requests in the current window.
815 */
816 wait_event_lock_irq(conf->wait_barrier,
817 !conf->array_frozen &&
818 conf->barrier < RESYNC_DEPTH &&
819 conf->current_window_requests == 0 &&
820 (conf->start_next_window >=
821 conf->next_resync + RESYNC_SECTORS),
822 conf->resync_lock);
823
824 conf->nr_pending++;
825 spin_unlock_irq(&conf->resync_lock);
826 }
827
828 static void lower_barrier(struct r1conf *conf)
829 {
830 unsigned long flags;
831 BUG_ON(conf->barrier <= 0);
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->barrier--;
834 conf->nr_pending--;
835 spin_unlock_irqrestore(&conf->resync_lock, flags);
836 wake_up(&conf->wait_barrier);
837 }
838
839 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
840 {
841 bool wait = false;
842
843 if (conf->array_frozen || !bio)
844 wait = true;
845 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
846 if ((conf->mddev->curr_resync_completed
847 >= bio_end_sector(bio)) ||
848 (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 <= bio->bi_iter.bi_sector))
850 wait = false;
851 else
852 wait = true;
853 }
854
855 return wait;
856 }
857
858 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859 {
860 sector_t sector = 0;
861
862 spin_lock_irq(&conf->resync_lock);
863 if (need_to_wait_for_sync(conf, bio)) {
864 conf->nr_waiting++;
865 /* Wait for the barrier to drop.
866 * However if there are already pending
867 * requests (preventing the barrier from
868 * rising completely), and the
869 * per-process bio queue isn't empty,
870 * then don't wait, as we need to empty
871 * that queue to allow conf->start_next_window
872 * to increase.
873 */
874 wait_event_lock_irq(conf->wait_barrier,
875 !conf->array_frozen &&
876 (!conf->barrier ||
877 ((conf->start_next_window <
878 conf->next_resync + RESYNC_SECTORS) &&
879 current->bio_list &&
880 !bio_list_empty(current->bio_list))),
881 conf->resync_lock);
882 conf->nr_waiting--;
883 }
884
885 if (bio && bio_data_dir(bio) == WRITE) {
886 if (bio->bi_iter.bi_sector >= conf->next_resync) {
887 if (conf->start_next_window == MaxSector)
888 conf->start_next_window =
889 conf->next_resync +
890 NEXT_NORMALIO_DISTANCE;
891
892 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
893 <= bio->bi_iter.bi_sector)
894 conf->next_window_requests++;
895 else
896 conf->current_window_requests++;
897 sector = conf->start_next_window;
898 }
899 }
900
901 conf->nr_pending++;
902 spin_unlock_irq(&conf->resync_lock);
903 return sector;
904 }
905
906 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907 sector_t bi_sector)
908 {
909 unsigned long flags;
910
911 spin_lock_irqsave(&conf->resync_lock, flags);
912 conf->nr_pending--;
913 if (start_next_window) {
914 if (start_next_window == conf->start_next_window) {
915 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916 <= bi_sector)
917 conf->next_window_requests--;
918 else
919 conf->current_window_requests--;
920 } else
921 conf->current_window_requests--;
922
923 if (!conf->current_window_requests) {
924 if (conf->next_window_requests) {
925 conf->current_window_requests =
926 conf->next_window_requests;
927 conf->next_window_requests = 0;
928 conf->start_next_window +=
929 NEXT_NORMALIO_DISTANCE;
930 } else
931 conf->start_next_window = MaxSector;
932 }
933 }
934 spin_unlock_irqrestore(&conf->resync_lock, flags);
935 wake_up(&conf->wait_barrier);
936 }
937
938 static void freeze_array(struct r1conf *conf, int extra)
939 {
940 /* stop syncio and normal IO and wait for everything to
941 * go quite.
942 * We wait until nr_pending match nr_queued+extra
943 * This is called in the context of one normal IO request
944 * that has failed. Thus any sync request that might be pending
945 * will be blocked by nr_pending, and we need to wait for
946 * pending IO requests to complete or be queued for re-try.
947 * Thus the number queued (nr_queued) plus this request (extra)
948 * must match the number of pending IOs (nr_pending) before
949 * we continue.
950 */
951 spin_lock_irq(&conf->resync_lock);
952 conf->array_frozen = 1;
953 wait_event_lock_irq_cmd(conf->wait_barrier,
954 conf->nr_pending == conf->nr_queued+extra,
955 conf->resync_lock,
956 flush_pending_writes(conf));
957 spin_unlock_irq(&conf->resync_lock);
958 }
959 static void unfreeze_array(struct r1conf *conf)
960 {
961 /* reverse the effect of the freeze */
962 spin_lock_irq(&conf->resync_lock);
963 conf->array_frozen = 0;
964 wake_up(&conf->wait_barrier);
965 spin_unlock_irq(&conf->resync_lock);
966 }
967
968 /* duplicate the data pages for behind I/O
969 */
970 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
971 {
972 int i;
973 struct bio_vec *bvec;
974 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
975 GFP_NOIO);
976 if (unlikely(!bvecs))
977 return;
978
979 bio_for_each_segment_all(bvec, bio, i) {
980 bvecs[i] = *bvec;
981 bvecs[i].bv_page = alloc_page(GFP_NOIO);
982 if (unlikely(!bvecs[i].bv_page))
983 goto do_sync_io;
984 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986 kunmap(bvecs[i].bv_page);
987 kunmap(bvec->bv_page);
988 }
989 r1_bio->behind_bvecs = bvecs;
990 r1_bio->behind_page_count = bio->bi_vcnt;
991 set_bit(R1BIO_BehindIO, &r1_bio->state);
992 return;
993
994 do_sync_io:
995 for (i = 0; i < bio->bi_vcnt; i++)
996 if (bvecs[i].bv_page)
997 put_page(bvecs[i].bv_page);
998 kfree(bvecs);
999 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000 bio->bi_iter.bi_size);
1001 }
1002
1003 struct raid1_plug_cb {
1004 struct blk_plug_cb cb;
1005 struct bio_list pending;
1006 int pending_cnt;
1007 };
1008
1009 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010 {
1011 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012 cb);
1013 struct mddev *mddev = plug->cb.data;
1014 struct r1conf *conf = mddev->private;
1015 struct bio *bio;
1016
1017 if (from_schedule || current->bio_list) {
1018 spin_lock_irq(&conf->device_lock);
1019 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020 conf->pending_count += plug->pending_cnt;
1021 spin_unlock_irq(&conf->device_lock);
1022 wake_up(&conf->wait_barrier);
1023 md_wakeup_thread(mddev->thread);
1024 kfree(plug);
1025 return;
1026 }
1027
1028 /* we aren't scheduling, so we can do the write-out directly. */
1029 bio = bio_list_get(&plug->pending);
1030 bitmap_unplug(mddev->bitmap);
1031 wake_up(&conf->wait_barrier);
1032
1033 while (bio) { /* submit pending writes */
1034 struct bio *next = bio->bi_next;
1035 bio->bi_next = NULL;
1036 if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1037 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038 /* Just ignore it */
1039 bio_endio(bio);
1040 else
1041 generic_make_request(bio);
1042 bio = next;
1043 }
1044 kfree(plug);
1045 }
1046
1047 static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1048 {
1049 struct r1conf *conf = mddev->private;
1050 struct raid1_info *mirror;
1051 struct r1bio *r1_bio;
1052 struct bio *read_bio;
1053 int i, disks;
1054 struct bitmap *bitmap;
1055 unsigned long flags;
1056 const int op = bio_op(bio);
1057 const int rw = bio_data_dir(bio);
1058 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 const unsigned long do_flush_fua = (bio->bi_rw &
1060 (REQ_PREFLUSH | REQ_FUA));
1061 struct md_rdev *blocked_rdev;
1062 struct blk_plug_cb *cb;
1063 struct raid1_plug_cb *plug = NULL;
1064 int first_clone;
1065 int sectors_handled;
1066 int max_sectors;
1067 sector_t start_next_window;
1068
1069 /*
1070 * Register the new request and wait if the reconstruction
1071 * thread has put up a bar for new requests.
1072 * Continue immediately if no resync is active currently.
1073 */
1074
1075 md_write_start(mddev, bio); /* wait on superblock update early */
1076
1077 if (bio_data_dir(bio) == WRITE &&
1078 ((bio_end_sector(bio) > mddev->suspend_lo &&
1079 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1080 (mddev_is_clustered(mddev) &&
1081 md_cluster_ops->area_resyncing(mddev, WRITE,
1082 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1083 /* As the suspend_* range is controlled by
1084 * userspace, we want an interruptible
1085 * wait.
1086 */
1087 DEFINE_WAIT(w);
1088 for (;;) {
1089 flush_signals(current);
1090 prepare_to_wait(&conf->wait_barrier,
1091 &w, TASK_INTERRUPTIBLE);
1092 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1093 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1094 (mddev_is_clustered(mddev) &&
1095 !md_cluster_ops->area_resyncing(mddev, WRITE,
1096 bio->bi_iter.bi_sector, bio_end_sector(bio))))
1097 break;
1098 schedule();
1099 }
1100 finish_wait(&conf->wait_barrier, &w);
1101 }
1102
1103 start_next_window = wait_barrier(conf, bio);
1104
1105 bitmap = mddev->bitmap;
1106
1107 /*
1108 * make_request() can abort the operation when read-ahead is being
1109 * used and no empty request is available.
1110 *
1111 */
1112 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1113
1114 r1_bio->master_bio = bio;
1115 r1_bio->sectors = bio_sectors(bio);
1116 r1_bio->state = 0;
1117 r1_bio->mddev = mddev;
1118 r1_bio->sector = bio->bi_iter.bi_sector;
1119
1120 /* We might need to issue multiple reads to different
1121 * devices if there are bad blocks around, so we keep
1122 * track of the number of reads in bio->bi_phys_segments.
1123 * If this is 0, there is only one r1_bio and no locking
1124 * will be needed when requests complete. If it is
1125 * non-zero, then it is the number of not-completed requests.
1126 */
1127 bio->bi_phys_segments = 0;
1128 bio_clear_flag(bio, BIO_SEG_VALID);
1129
1130 if (rw == READ) {
1131 /*
1132 * read balancing logic:
1133 */
1134 int rdisk;
1135
1136 read_again:
1137 rdisk = read_balance(conf, r1_bio, &max_sectors);
1138
1139 if (rdisk < 0) {
1140 /* couldn't find anywhere to read from */
1141 raid_end_bio_io(r1_bio);
1142 return;
1143 }
1144 mirror = conf->mirrors + rdisk;
1145
1146 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1147 bitmap) {
1148 /* Reading from a write-mostly device must
1149 * take care not to over-take any writes
1150 * that are 'behind'
1151 */
1152 wait_event(bitmap->behind_wait,
1153 atomic_read(&bitmap->behind_writes) == 0);
1154 }
1155 r1_bio->read_disk = rdisk;
1156 r1_bio->start_next_window = 0;
1157
1158 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1159 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1160 max_sectors);
1161
1162 r1_bio->bios[rdisk] = read_bio;
1163
1164 read_bio->bi_iter.bi_sector = r1_bio->sector +
1165 mirror->rdev->data_offset;
1166 read_bio->bi_bdev = mirror->rdev->bdev;
1167 read_bio->bi_end_io = raid1_end_read_request;
1168 bio_set_op_attrs(read_bio, op, do_sync);
1169 read_bio->bi_private = r1_bio;
1170
1171 if (max_sectors < r1_bio->sectors) {
1172 /* could not read all from this device, so we will
1173 * need another r1_bio.
1174 */
1175
1176 sectors_handled = (r1_bio->sector + max_sectors
1177 - bio->bi_iter.bi_sector);
1178 r1_bio->sectors = max_sectors;
1179 spin_lock_irq(&conf->device_lock);
1180 if (bio->bi_phys_segments == 0)
1181 bio->bi_phys_segments = 2;
1182 else
1183 bio->bi_phys_segments++;
1184 spin_unlock_irq(&conf->device_lock);
1185 /* Cannot call generic_make_request directly
1186 * as that will be queued in __make_request
1187 * and subsequent mempool_alloc might block waiting
1188 * for it. So hand bio over to raid1d.
1189 */
1190 reschedule_retry(r1_bio);
1191
1192 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1193
1194 r1_bio->master_bio = bio;
1195 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1196 r1_bio->state = 0;
1197 r1_bio->mddev = mddev;
1198 r1_bio->sector = bio->bi_iter.bi_sector +
1199 sectors_handled;
1200 goto read_again;
1201 } else
1202 generic_make_request(read_bio);
1203 return;
1204 }
1205
1206 /*
1207 * WRITE:
1208 */
1209 if (conf->pending_count >= max_queued_requests) {
1210 md_wakeup_thread(mddev->thread);
1211 wait_event(conf->wait_barrier,
1212 conf->pending_count < max_queued_requests);
1213 }
1214 /* first select target devices under rcu_lock and
1215 * inc refcount on their rdev. Record them by setting
1216 * bios[x] to bio
1217 * If there are known/acknowledged bad blocks on any device on
1218 * which we have seen a write error, we want to avoid writing those
1219 * blocks.
1220 * This potentially requires several writes to write around
1221 * the bad blocks. Each set of writes gets it's own r1bio
1222 * with a set of bios attached.
1223 */
1224
1225 disks = conf->raid_disks * 2;
1226 retry_write:
1227 r1_bio->start_next_window = start_next_window;
1228 blocked_rdev = NULL;
1229 rcu_read_lock();
1230 max_sectors = r1_bio->sectors;
1231 for (i = 0; i < disks; i++) {
1232 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1233 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1234 atomic_inc(&rdev->nr_pending);
1235 blocked_rdev = rdev;
1236 break;
1237 }
1238 r1_bio->bios[i] = NULL;
1239 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1240 if (i < conf->raid_disks)
1241 set_bit(R1BIO_Degraded, &r1_bio->state);
1242 continue;
1243 }
1244
1245 atomic_inc(&rdev->nr_pending);
1246 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1247 sector_t first_bad;
1248 int bad_sectors;
1249 int is_bad;
1250
1251 is_bad = is_badblock(rdev, r1_bio->sector,
1252 max_sectors,
1253 &first_bad, &bad_sectors);
1254 if (is_bad < 0) {
1255 /* mustn't write here until the bad block is
1256 * acknowledged*/
1257 set_bit(BlockedBadBlocks, &rdev->flags);
1258 blocked_rdev = rdev;
1259 break;
1260 }
1261 if (is_bad && first_bad <= r1_bio->sector) {
1262 /* Cannot write here at all */
1263 bad_sectors -= (r1_bio->sector - first_bad);
1264 if (bad_sectors < max_sectors)
1265 /* mustn't write more than bad_sectors
1266 * to other devices yet
1267 */
1268 max_sectors = bad_sectors;
1269 rdev_dec_pending(rdev, mddev);
1270 /* We don't set R1BIO_Degraded as that
1271 * only applies if the disk is
1272 * missing, so it might be re-added,
1273 * and we want to know to recover this
1274 * chunk.
1275 * In this case the device is here,
1276 * and the fact that this chunk is not
1277 * in-sync is recorded in the bad
1278 * block log
1279 */
1280 continue;
1281 }
1282 if (is_bad) {
1283 int good_sectors = first_bad - r1_bio->sector;
1284 if (good_sectors < max_sectors)
1285 max_sectors = good_sectors;
1286 }
1287 }
1288 r1_bio->bios[i] = bio;
1289 }
1290 rcu_read_unlock();
1291
1292 if (unlikely(blocked_rdev)) {
1293 /* Wait for this device to become unblocked */
1294 int j;
1295 sector_t old = start_next_window;
1296
1297 for (j = 0; j < i; j++)
1298 if (r1_bio->bios[j])
1299 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1300 r1_bio->state = 0;
1301 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1302 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1303 start_next_window = wait_barrier(conf, bio);
1304 /*
1305 * We must make sure the multi r1bios of bio have
1306 * the same value of bi_phys_segments
1307 */
1308 if (bio->bi_phys_segments && old &&
1309 old != start_next_window)
1310 /* Wait for the former r1bio(s) to complete */
1311 wait_event(conf->wait_barrier,
1312 bio->bi_phys_segments == 1);
1313 goto retry_write;
1314 }
1315
1316 if (max_sectors < r1_bio->sectors) {
1317 /* We are splitting this write into multiple parts, so
1318 * we need to prepare for allocating another r1_bio.
1319 */
1320 r1_bio->sectors = max_sectors;
1321 spin_lock_irq(&conf->device_lock);
1322 if (bio->bi_phys_segments == 0)
1323 bio->bi_phys_segments = 2;
1324 else
1325 bio->bi_phys_segments++;
1326 spin_unlock_irq(&conf->device_lock);
1327 }
1328 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1329
1330 atomic_set(&r1_bio->remaining, 1);
1331 atomic_set(&r1_bio->behind_remaining, 0);
1332
1333 first_clone = 1;
1334 for (i = 0; i < disks; i++) {
1335 struct bio *mbio;
1336 if (!r1_bio->bios[i])
1337 continue;
1338
1339 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1340 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1341
1342 if (first_clone) {
1343 /* do behind I/O ?
1344 * Not if there are too many, or cannot
1345 * allocate memory, or a reader on WriteMostly
1346 * is waiting for behind writes to flush */
1347 if (bitmap &&
1348 (atomic_read(&bitmap->behind_writes)
1349 < mddev->bitmap_info.max_write_behind) &&
1350 !waitqueue_active(&bitmap->behind_wait))
1351 alloc_behind_pages(mbio, r1_bio);
1352
1353 bitmap_startwrite(bitmap, r1_bio->sector,
1354 r1_bio->sectors,
1355 test_bit(R1BIO_BehindIO,
1356 &r1_bio->state));
1357 first_clone = 0;
1358 }
1359 if (r1_bio->behind_bvecs) {
1360 struct bio_vec *bvec;
1361 int j;
1362
1363 /*
1364 * We trimmed the bio, so _all is legit
1365 */
1366 bio_for_each_segment_all(bvec, mbio, j)
1367 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1368 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1369 atomic_inc(&r1_bio->behind_remaining);
1370 }
1371
1372 r1_bio->bios[i] = mbio;
1373
1374 mbio->bi_iter.bi_sector = (r1_bio->sector +
1375 conf->mirrors[i].rdev->data_offset);
1376 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1377 mbio->bi_end_io = raid1_end_write_request;
1378 bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1379 mbio->bi_private = r1_bio;
1380
1381 atomic_inc(&r1_bio->remaining);
1382
1383 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1384 if (cb)
1385 plug = container_of(cb, struct raid1_plug_cb, cb);
1386 else
1387 plug = NULL;
1388 spin_lock_irqsave(&conf->device_lock, flags);
1389 if (plug) {
1390 bio_list_add(&plug->pending, mbio);
1391 plug->pending_cnt++;
1392 } else {
1393 bio_list_add(&conf->pending_bio_list, mbio);
1394 conf->pending_count++;
1395 }
1396 spin_unlock_irqrestore(&conf->device_lock, flags);
1397 if (!plug)
1398 md_wakeup_thread(mddev->thread);
1399 }
1400 /* Mustn't call r1_bio_write_done before this next test,
1401 * as it could result in the bio being freed.
1402 */
1403 if (sectors_handled < bio_sectors(bio)) {
1404 r1_bio_write_done(r1_bio);
1405 /* We need another r1_bio. It has already been counted
1406 * in bio->bi_phys_segments
1407 */
1408 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1409 r1_bio->master_bio = bio;
1410 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1411 r1_bio->state = 0;
1412 r1_bio->mddev = mddev;
1413 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1414 goto retry_write;
1415 }
1416
1417 r1_bio_write_done(r1_bio);
1418
1419 /* In case raid1d snuck in to freeze_array */
1420 wake_up(&conf->wait_barrier);
1421 }
1422
1423 static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1424 {
1425 struct r1conf *conf = mddev->private;
1426 int i;
1427
1428 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1429 conf->raid_disks - mddev->degraded);
1430 rcu_read_lock();
1431 for (i = 0; i < conf->raid_disks; i++) {
1432 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1433 seq_printf(seq, "%s",
1434 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1435 }
1436 rcu_read_unlock();
1437 seq_printf(seq, "]");
1438 }
1439
1440 static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1441 {
1442 char b[BDEVNAME_SIZE];
1443 struct r1conf *conf = mddev->private;
1444 unsigned long flags;
1445
1446 /*
1447 * If it is not operational, then we have already marked it as dead
1448 * else if it is the last working disks, ignore the error, let the
1449 * next level up know.
1450 * else mark the drive as failed
1451 */
1452 if (test_bit(In_sync, &rdev->flags)
1453 && (conf->raid_disks - mddev->degraded) == 1) {
1454 /*
1455 * Don't fail the drive, act as though we were just a
1456 * normal single drive.
1457 * However don't try a recovery from this drive as
1458 * it is very likely to fail.
1459 */
1460 conf->recovery_disabled = mddev->recovery_disabled;
1461 return;
1462 }
1463 set_bit(Blocked, &rdev->flags);
1464 spin_lock_irqsave(&conf->device_lock, flags);
1465 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1466 mddev->degraded++;
1467 set_bit(Faulty, &rdev->flags);
1468 } else
1469 set_bit(Faulty, &rdev->flags);
1470 spin_unlock_irqrestore(&conf->device_lock, flags);
1471 /*
1472 * if recovery is running, make sure it aborts.
1473 */
1474 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1475 set_mask_bits(&mddev->flags, 0,
1476 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1477 printk(KERN_ALERT
1478 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1479 "md/raid1:%s: Operation continuing on %d devices.\n",
1480 mdname(mddev), bdevname(rdev->bdev, b),
1481 mdname(mddev), conf->raid_disks - mddev->degraded);
1482 }
1483
1484 static void print_conf(struct r1conf *conf)
1485 {
1486 int i;
1487
1488 printk(KERN_DEBUG "RAID1 conf printout:\n");
1489 if (!conf) {
1490 printk(KERN_DEBUG "(!conf)\n");
1491 return;
1492 }
1493 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1494 conf->raid_disks);
1495
1496 rcu_read_lock();
1497 for (i = 0; i < conf->raid_disks; i++) {
1498 char b[BDEVNAME_SIZE];
1499 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1500 if (rdev)
1501 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1502 i, !test_bit(In_sync, &rdev->flags),
1503 !test_bit(Faulty, &rdev->flags),
1504 bdevname(rdev->bdev,b));
1505 }
1506 rcu_read_unlock();
1507 }
1508
1509 static void close_sync(struct r1conf *conf)
1510 {
1511 wait_barrier(conf, NULL);
1512 allow_barrier(conf, 0, 0);
1513
1514 mempool_destroy(conf->r1buf_pool);
1515 conf->r1buf_pool = NULL;
1516
1517 spin_lock_irq(&conf->resync_lock);
1518 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1519 conf->start_next_window = MaxSector;
1520 conf->current_window_requests +=
1521 conf->next_window_requests;
1522 conf->next_window_requests = 0;
1523 spin_unlock_irq(&conf->resync_lock);
1524 }
1525
1526 static int raid1_spare_active(struct mddev *mddev)
1527 {
1528 int i;
1529 struct r1conf *conf = mddev->private;
1530 int count = 0;
1531 unsigned long flags;
1532
1533 /*
1534 * Find all failed disks within the RAID1 configuration
1535 * and mark them readable.
1536 * Called under mddev lock, so rcu protection not needed.
1537 * device_lock used to avoid races with raid1_end_read_request
1538 * which expects 'In_sync' flags and ->degraded to be consistent.
1539 */
1540 spin_lock_irqsave(&conf->device_lock, flags);
1541 for (i = 0; i < conf->raid_disks; i++) {
1542 struct md_rdev *rdev = conf->mirrors[i].rdev;
1543 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1544 if (repl
1545 && !test_bit(Candidate, &repl->flags)
1546 && repl->recovery_offset == MaxSector
1547 && !test_bit(Faulty, &repl->flags)
1548 && !test_and_set_bit(In_sync, &repl->flags)) {
1549 /* replacement has just become active */
1550 if (!rdev ||
1551 !test_and_clear_bit(In_sync, &rdev->flags))
1552 count++;
1553 if (rdev) {
1554 /* Replaced device not technically
1555 * faulty, but we need to be sure
1556 * it gets removed and never re-added
1557 */
1558 set_bit(Faulty, &rdev->flags);
1559 sysfs_notify_dirent_safe(
1560 rdev->sysfs_state);
1561 }
1562 }
1563 if (rdev
1564 && rdev->recovery_offset == MaxSector
1565 && !test_bit(Faulty, &rdev->flags)
1566 && !test_and_set_bit(In_sync, &rdev->flags)) {
1567 count++;
1568 sysfs_notify_dirent_safe(rdev->sysfs_state);
1569 }
1570 }
1571 mddev->degraded -= count;
1572 spin_unlock_irqrestore(&conf->device_lock, flags);
1573
1574 print_conf(conf);
1575 return count;
1576 }
1577
1578 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1579 {
1580 struct r1conf *conf = mddev->private;
1581 int err = -EEXIST;
1582 int mirror = 0;
1583 struct raid1_info *p;
1584 int first = 0;
1585 int last = conf->raid_disks - 1;
1586
1587 if (mddev->recovery_disabled == conf->recovery_disabled)
1588 return -EBUSY;
1589
1590 if (md_integrity_add_rdev(rdev, mddev))
1591 return -ENXIO;
1592
1593 if (rdev->raid_disk >= 0)
1594 first = last = rdev->raid_disk;
1595
1596 /*
1597 * find the disk ... but prefer rdev->saved_raid_disk
1598 * if possible.
1599 */
1600 if (rdev->saved_raid_disk >= 0 &&
1601 rdev->saved_raid_disk >= first &&
1602 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1603 first = last = rdev->saved_raid_disk;
1604
1605 for (mirror = first; mirror <= last; mirror++) {
1606 p = conf->mirrors+mirror;
1607 if (!p->rdev) {
1608
1609 if (mddev->gendisk)
1610 disk_stack_limits(mddev->gendisk, rdev->bdev,
1611 rdev->data_offset << 9);
1612
1613 p->head_position = 0;
1614 rdev->raid_disk = mirror;
1615 err = 0;
1616 /* As all devices are equivalent, we don't need a full recovery
1617 * if this was recently any drive of the array
1618 */
1619 if (rdev->saved_raid_disk < 0)
1620 conf->fullsync = 1;
1621 rcu_assign_pointer(p->rdev, rdev);
1622 break;
1623 }
1624 if (test_bit(WantReplacement, &p->rdev->flags) &&
1625 p[conf->raid_disks].rdev == NULL) {
1626 /* Add this device as a replacement */
1627 clear_bit(In_sync, &rdev->flags);
1628 set_bit(Replacement, &rdev->flags);
1629 rdev->raid_disk = mirror;
1630 err = 0;
1631 conf->fullsync = 1;
1632 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1633 break;
1634 }
1635 }
1636 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1637 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1638 print_conf(conf);
1639 return err;
1640 }
1641
1642 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1643 {
1644 struct r1conf *conf = mddev->private;
1645 int err = 0;
1646 int number = rdev->raid_disk;
1647 struct raid1_info *p = conf->mirrors + number;
1648
1649 if (rdev != p->rdev)
1650 p = conf->mirrors + conf->raid_disks + number;
1651
1652 print_conf(conf);
1653 if (rdev == p->rdev) {
1654 if (test_bit(In_sync, &rdev->flags) ||
1655 atomic_read(&rdev->nr_pending)) {
1656 err = -EBUSY;
1657 goto abort;
1658 }
1659 /* Only remove non-faulty devices if recovery
1660 * is not possible.
1661 */
1662 if (!test_bit(Faulty, &rdev->flags) &&
1663 mddev->recovery_disabled != conf->recovery_disabled &&
1664 mddev->degraded < conf->raid_disks) {
1665 err = -EBUSY;
1666 goto abort;
1667 }
1668 p->rdev = NULL;
1669 synchronize_rcu();
1670 if (atomic_read(&rdev->nr_pending)) {
1671 /* lost the race, try later */
1672 err = -EBUSY;
1673 p->rdev = rdev;
1674 goto abort;
1675 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1676 /* We just removed a device that is being replaced.
1677 * Move down the replacement. We drain all IO before
1678 * doing this to avoid confusion.
1679 */
1680 struct md_rdev *repl =
1681 conf->mirrors[conf->raid_disks + number].rdev;
1682 freeze_array(conf, 0);
1683 clear_bit(Replacement, &repl->flags);
1684 p->rdev = repl;
1685 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1686 unfreeze_array(conf);
1687 clear_bit(WantReplacement, &rdev->flags);
1688 } else
1689 clear_bit(WantReplacement, &rdev->flags);
1690 err = md_integrity_register(mddev);
1691 }
1692 abort:
1693
1694 print_conf(conf);
1695 return err;
1696 }
1697
1698 static void end_sync_read(struct bio *bio)
1699 {
1700 struct r1bio *r1_bio = bio->bi_private;
1701
1702 update_head_pos(r1_bio->read_disk, r1_bio);
1703
1704 /*
1705 * we have read a block, now it needs to be re-written,
1706 * or re-read if the read failed.
1707 * We don't do much here, just schedule handling by raid1d
1708 */
1709 if (!bio->bi_error)
1710 set_bit(R1BIO_Uptodate, &r1_bio->state);
1711
1712 if (atomic_dec_and_test(&r1_bio->remaining))
1713 reschedule_retry(r1_bio);
1714 }
1715
1716 static void end_sync_write(struct bio *bio)
1717 {
1718 int uptodate = !bio->bi_error;
1719 struct r1bio *r1_bio = bio->bi_private;
1720 struct mddev *mddev = r1_bio->mddev;
1721 struct r1conf *conf = mddev->private;
1722 int mirror=0;
1723 sector_t first_bad;
1724 int bad_sectors;
1725
1726 mirror = find_bio_disk(r1_bio, bio);
1727
1728 if (!uptodate) {
1729 sector_t sync_blocks = 0;
1730 sector_t s = r1_bio->sector;
1731 long sectors_to_go = r1_bio->sectors;
1732 /* make sure these bits doesn't get cleared. */
1733 do {
1734 bitmap_end_sync(mddev->bitmap, s,
1735 &sync_blocks, 1);
1736 s += sync_blocks;
1737 sectors_to_go -= sync_blocks;
1738 } while (sectors_to_go > 0);
1739 set_bit(WriteErrorSeen,
1740 &conf->mirrors[mirror].rdev->flags);
1741 if (!test_and_set_bit(WantReplacement,
1742 &conf->mirrors[mirror].rdev->flags))
1743 set_bit(MD_RECOVERY_NEEDED, &
1744 mddev->recovery);
1745 set_bit(R1BIO_WriteError, &r1_bio->state);
1746 } else if (is_badblock(conf->mirrors[mirror].rdev,
1747 r1_bio->sector,
1748 r1_bio->sectors,
1749 &first_bad, &bad_sectors) &&
1750 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1751 r1_bio->sector,
1752 r1_bio->sectors,
1753 &first_bad, &bad_sectors)
1754 )
1755 set_bit(R1BIO_MadeGood, &r1_bio->state);
1756
1757 if (atomic_dec_and_test(&r1_bio->remaining)) {
1758 int s = r1_bio->sectors;
1759 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1760 test_bit(R1BIO_WriteError, &r1_bio->state))
1761 reschedule_retry(r1_bio);
1762 else {
1763 put_buf(r1_bio);
1764 md_done_sync(mddev, s, uptodate);
1765 }
1766 }
1767 }
1768
1769 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1770 int sectors, struct page *page, int rw)
1771 {
1772 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1773 /* success */
1774 return 1;
1775 if (rw == WRITE) {
1776 set_bit(WriteErrorSeen, &rdev->flags);
1777 if (!test_and_set_bit(WantReplacement,
1778 &rdev->flags))
1779 set_bit(MD_RECOVERY_NEEDED, &
1780 rdev->mddev->recovery);
1781 }
1782 /* need to record an error - either for the block or the device */
1783 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1784 md_error(rdev->mddev, rdev);
1785 return 0;
1786 }
1787
1788 static int fix_sync_read_error(struct r1bio *r1_bio)
1789 {
1790 /* Try some synchronous reads of other devices to get
1791 * good data, much like with normal read errors. Only
1792 * read into the pages we already have so we don't
1793 * need to re-issue the read request.
1794 * We don't need to freeze the array, because being in an
1795 * active sync request, there is no normal IO, and
1796 * no overlapping syncs.
1797 * We don't need to check is_badblock() again as we
1798 * made sure that anything with a bad block in range
1799 * will have bi_end_io clear.
1800 */
1801 struct mddev *mddev = r1_bio->mddev;
1802 struct r1conf *conf = mddev->private;
1803 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1804 sector_t sect = r1_bio->sector;
1805 int sectors = r1_bio->sectors;
1806 int idx = 0;
1807
1808 while(sectors) {
1809 int s = sectors;
1810 int d = r1_bio->read_disk;
1811 int success = 0;
1812 struct md_rdev *rdev;
1813 int start;
1814
1815 if (s > (PAGE_SIZE>>9))
1816 s = PAGE_SIZE >> 9;
1817 do {
1818 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1819 /* No rcu protection needed here devices
1820 * can only be removed when no resync is
1821 * active, and resync is currently active
1822 */
1823 rdev = conf->mirrors[d].rdev;
1824 if (sync_page_io(rdev, sect, s<<9,
1825 bio->bi_io_vec[idx].bv_page,
1826 REQ_OP_READ, 0, false)) {
1827 success = 1;
1828 break;
1829 }
1830 }
1831 d++;
1832 if (d == conf->raid_disks * 2)
1833 d = 0;
1834 } while (!success && d != r1_bio->read_disk);
1835
1836 if (!success) {
1837 char b[BDEVNAME_SIZE];
1838 int abort = 0;
1839 /* Cannot read from anywhere, this block is lost.
1840 * Record a bad block on each device. If that doesn't
1841 * work just disable and interrupt the recovery.
1842 * Don't fail devices as that won't really help.
1843 */
1844 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1845 " for block %llu\n",
1846 mdname(mddev),
1847 bdevname(bio->bi_bdev, b),
1848 (unsigned long long)r1_bio->sector);
1849 for (d = 0; d < conf->raid_disks * 2; d++) {
1850 rdev = conf->mirrors[d].rdev;
1851 if (!rdev || test_bit(Faulty, &rdev->flags))
1852 continue;
1853 if (!rdev_set_badblocks(rdev, sect, s, 0))
1854 abort = 1;
1855 }
1856 if (abort) {
1857 conf->recovery_disabled =
1858 mddev->recovery_disabled;
1859 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1860 md_done_sync(mddev, r1_bio->sectors, 0);
1861 put_buf(r1_bio);
1862 return 0;
1863 }
1864 /* Try next page */
1865 sectors -= s;
1866 sect += s;
1867 idx++;
1868 continue;
1869 }
1870
1871 start = d;
1872 /* write it back and re-read */
1873 while (d != r1_bio->read_disk) {
1874 if (d == 0)
1875 d = conf->raid_disks * 2;
1876 d--;
1877 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1878 continue;
1879 rdev = conf->mirrors[d].rdev;
1880 if (r1_sync_page_io(rdev, sect, s,
1881 bio->bi_io_vec[idx].bv_page,
1882 WRITE) == 0) {
1883 r1_bio->bios[d]->bi_end_io = NULL;
1884 rdev_dec_pending(rdev, mddev);
1885 }
1886 }
1887 d = start;
1888 while (d != r1_bio->read_disk) {
1889 if (d == 0)
1890 d = conf->raid_disks * 2;
1891 d--;
1892 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1893 continue;
1894 rdev = conf->mirrors[d].rdev;
1895 if (r1_sync_page_io(rdev, sect, s,
1896 bio->bi_io_vec[idx].bv_page,
1897 READ) != 0)
1898 atomic_add(s, &rdev->corrected_errors);
1899 }
1900 sectors -= s;
1901 sect += s;
1902 idx ++;
1903 }
1904 set_bit(R1BIO_Uptodate, &r1_bio->state);
1905 bio->bi_error = 0;
1906 return 1;
1907 }
1908
1909 static void process_checks(struct r1bio *r1_bio)
1910 {
1911 /* We have read all readable devices. If we haven't
1912 * got the block, then there is no hope left.
1913 * If we have, then we want to do a comparison
1914 * and skip the write if everything is the same.
1915 * If any blocks failed to read, then we need to
1916 * attempt an over-write
1917 */
1918 struct mddev *mddev = r1_bio->mddev;
1919 struct r1conf *conf = mddev->private;
1920 int primary;
1921 int i;
1922 int vcnt;
1923
1924 /* Fix variable parts of all bios */
1925 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1926 for (i = 0; i < conf->raid_disks * 2; i++) {
1927 int j;
1928 int size;
1929 int error;
1930 struct bio *b = r1_bio->bios[i];
1931 if (b->bi_end_io != end_sync_read)
1932 continue;
1933 /* fixup the bio for reuse, but preserve errno */
1934 error = b->bi_error;
1935 bio_reset(b);
1936 b->bi_error = error;
1937 b->bi_vcnt = vcnt;
1938 b->bi_iter.bi_size = r1_bio->sectors << 9;
1939 b->bi_iter.bi_sector = r1_bio->sector +
1940 conf->mirrors[i].rdev->data_offset;
1941 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1942 b->bi_end_io = end_sync_read;
1943 b->bi_private = r1_bio;
1944
1945 size = b->bi_iter.bi_size;
1946 for (j = 0; j < vcnt ; j++) {
1947 struct bio_vec *bi;
1948 bi = &b->bi_io_vec[j];
1949 bi->bv_offset = 0;
1950 if (size > PAGE_SIZE)
1951 bi->bv_len = PAGE_SIZE;
1952 else
1953 bi->bv_len = size;
1954 size -= PAGE_SIZE;
1955 }
1956 }
1957 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1958 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1959 !r1_bio->bios[primary]->bi_error) {
1960 r1_bio->bios[primary]->bi_end_io = NULL;
1961 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1962 break;
1963 }
1964 r1_bio->read_disk = primary;
1965 for (i = 0; i < conf->raid_disks * 2; i++) {
1966 int j;
1967 struct bio *pbio = r1_bio->bios[primary];
1968 struct bio *sbio = r1_bio->bios[i];
1969 int error = sbio->bi_error;
1970
1971 if (sbio->bi_end_io != end_sync_read)
1972 continue;
1973 /* Now we can 'fixup' the error value */
1974 sbio->bi_error = 0;
1975
1976 if (!error) {
1977 for (j = vcnt; j-- ; ) {
1978 struct page *p, *s;
1979 p = pbio->bi_io_vec[j].bv_page;
1980 s = sbio->bi_io_vec[j].bv_page;
1981 if (memcmp(page_address(p),
1982 page_address(s),
1983 sbio->bi_io_vec[j].bv_len))
1984 break;
1985 }
1986 } else
1987 j = 0;
1988 if (j >= 0)
1989 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1990 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1991 && !error)) {
1992 /* No need to write to this device. */
1993 sbio->bi_end_io = NULL;
1994 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1995 continue;
1996 }
1997
1998 bio_copy_data(sbio, pbio);
1999 }
2000 }
2001
2002 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2003 {
2004 struct r1conf *conf = mddev->private;
2005 int i;
2006 int disks = conf->raid_disks * 2;
2007 struct bio *bio, *wbio;
2008
2009 bio = r1_bio->bios[r1_bio->read_disk];
2010
2011 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2012 /* ouch - failed to read all of that. */
2013 if (!fix_sync_read_error(r1_bio))
2014 return;
2015
2016 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2017 process_checks(r1_bio);
2018
2019 /*
2020 * schedule writes
2021 */
2022 atomic_set(&r1_bio->remaining, 1);
2023 for (i = 0; i < disks ; i++) {
2024 wbio = r1_bio->bios[i];
2025 if (wbio->bi_end_io == NULL ||
2026 (wbio->bi_end_io == end_sync_read &&
2027 (i == r1_bio->read_disk ||
2028 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2029 continue;
2030
2031 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2032 wbio->bi_end_io = end_sync_write;
2033 atomic_inc(&r1_bio->remaining);
2034 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2035
2036 generic_make_request(wbio);
2037 }
2038
2039 if (atomic_dec_and_test(&r1_bio->remaining)) {
2040 /* if we're here, all write(s) have completed, so clean up */
2041 int s = r1_bio->sectors;
2042 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2043 test_bit(R1BIO_WriteError, &r1_bio->state))
2044 reschedule_retry(r1_bio);
2045 else {
2046 put_buf(r1_bio);
2047 md_done_sync(mddev, s, 1);
2048 }
2049 }
2050 }
2051
2052 /*
2053 * This is a kernel thread which:
2054 *
2055 * 1. Retries failed read operations on working mirrors.
2056 * 2. Updates the raid superblock when problems encounter.
2057 * 3. Performs writes following reads for array synchronising.
2058 */
2059
2060 static void fix_read_error(struct r1conf *conf, int read_disk,
2061 sector_t sect, int sectors)
2062 {
2063 struct mddev *mddev = conf->mddev;
2064 while(sectors) {
2065 int s = sectors;
2066 int d = read_disk;
2067 int success = 0;
2068 int start;
2069 struct md_rdev *rdev;
2070
2071 if (s > (PAGE_SIZE>>9))
2072 s = PAGE_SIZE >> 9;
2073
2074 do {
2075 /* Note: no rcu protection needed here
2076 * as this is synchronous in the raid1d thread
2077 * which is the thread that might remove
2078 * a device. If raid1d ever becomes multi-threaded....
2079 */
2080 sector_t first_bad;
2081 int bad_sectors;
2082
2083 rdev = conf->mirrors[d].rdev;
2084 if (rdev &&
2085 (test_bit(In_sync, &rdev->flags) ||
2086 (!test_bit(Faulty, &rdev->flags) &&
2087 rdev->recovery_offset >= sect + s)) &&
2088 is_badblock(rdev, sect, s,
2089 &first_bad, &bad_sectors) == 0 &&
2090 sync_page_io(rdev, sect, s<<9,
2091 conf->tmppage, REQ_OP_READ, 0, false))
2092 success = 1;
2093 else {
2094 d++;
2095 if (d == conf->raid_disks * 2)
2096 d = 0;
2097 }
2098 } while (!success && d != read_disk);
2099
2100 if (!success) {
2101 /* Cannot read from anywhere - mark it bad */
2102 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2103 if (!rdev_set_badblocks(rdev, sect, s, 0))
2104 md_error(mddev, rdev);
2105 break;
2106 }
2107 /* write it back and re-read */
2108 start = d;
2109 while (d != read_disk) {
2110 if (d==0)
2111 d = conf->raid_disks * 2;
2112 d--;
2113 rdev = conf->mirrors[d].rdev;
2114 if (rdev &&
2115 !test_bit(Faulty, &rdev->flags))
2116 r1_sync_page_io(rdev, sect, s,
2117 conf->tmppage, WRITE);
2118 }
2119 d = start;
2120 while (d != read_disk) {
2121 char b[BDEVNAME_SIZE];
2122 if (d==0)
2123 d = conf->raid_disks * 2;
2124 d--;
2125 rdev = conf->mirrors[d].rdev;
2126 if (rdev &&
2127 !test_bit(Faulty, &rdev->flags)) {
2128 if (r1_sync_page_io(rdev, sect, s,
2129 conf->tmppage, READ)) {
2130 atomic_add(s, &rdev->corrected_errors);
2131 printk(KERN_INFO
2132 "md/raid1:%s: read error corrected "
2133 "(%d sectors at %llu on %s)\n",
2134 mdname(mddev), s,
2135 (unsigned long long)(sect +
2136 rdev->data_offset),
2137 bdevname(rdev->bdev, b));
2138 }
2139 }
2140 }
2141 sectors -= s;
2142 sect += s;
2143 }
2144 }
2145
2146 static int narrow_write_error(struct r1bio *r1_bio, int i)
2147 {
2148 struct mddev *mddev = r1_bio->mddev;
2149 struct r1conf *conf = mddev->private;
2150 struct md_rdev *rdev = conf->mirrors[i].rdev;
2151
2152 /* bio has the data to be written to device 'i' where
2153 * we just recently had a write error.
2154 * We repeatedly clone the bio and trim down to one block,
2155 * then try the write. Where the write fails we record
2156 * a bad block.
2157 * It is conceivable that the bio doesn't exactly align with
2158 * blocks. We must handle this somehow.
2159 *
2160 * We currently own a reference on the rdev.
2161 */
2162
2163 int block_sectors;
2164 sector_t sector;
2165 int sectors;
2166 int sect_to_write = r1_bio->sectors;
2167 int ok = 1;
2168
2169 if (rdev->badblocks.shift < 0)
2170 return 0;
2171
2172 block_sectors = roundup(1 << rdev->badblocks.shift,
2173 bdev_logical_block_size(rdev->bdev) >> 9);
2174 sector = r1_bio->sector;
2175 sectors = ((sector + block_sectors)
2176 & ~(sector_t)(block_sectors - 1))
2177 - sector;
2178
2179 while (sect_to_write) {
2180 struct bio *wbio;
2181 if (sectors > sect_to_write)
2182 sectors = sect_to_write;
2183 /* Write at 'sector' for 'sectors'*/
2184
2185 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2186 unsigned vcnt = r1_bio->behind_page_count;
2187 struct bio_vec *vec = r1_bio->behind_bvecs;
2188
2189 while (!vec->bv_page) {
2190 vec++;
2191 vcnt--;
2192 }
2193
2194 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2195 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2196
2197 wbio->bi_vcnt = vcnt;
2198 } else {
2199 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2200 }
2201
2202 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2203 wbio->bi_iter.bi_sector = r1_bio->sector;
2204 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2205
2206 bio_trim(wbio, sector - r1_bio->sector, sectors);
2207 wbio->bi_iter.bi_sector += rdev->data_offset;
2208 wbio->bi_bdev = rdev->bdev;
2209
2210 if (submit_bio_wait(wbio) < 0)
2211 /* failure! */
2212 ok = rdev_set_badblocks(rdev, sector,
2213 sectors, 0)
2214 && ok;
2215
2216 bio_put(wbio);
2217 sect_to_write -= sectors;
2218 sector += sectors;
2219 sectors = block_sectors;
2220 }
2221 return ok;
2222 }
2223
2224 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2225 {
2226 int m;
2227 int s = r1_bio->sectors;
2228 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2229 struct md_rdev *rdev = conf->mirrors[m].rdev;
2230 struct bio *bio = r1_bio->bios[m];
2231 if (bio->bi_end_io == NULL)
2232 continue;
2233 if (!bio->bi_error &&
2234 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2235 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2236 }
2237 if (bio->bi_error &&
2238 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2239 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2240 md_error(conf->mddev, rdev);
2241 }
2242 }
2243 put_buf(r1_bio);
2244 md_done_sync(conf->mddev, s, 1);
2245 }
2246
2247 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2248 {
2249 int m;
2250 bool fail = false;
2251 for (m = 0; m < conf->raid_disks * 2 ; m++)
2252 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2253 struct md_rdev *rdev = conf->mirrors[m].rdev;
2254 rdev_clear_badblocks(rdev,
2255 r1_bio->sector,
2256 r1_bio->sectors, 0);
2257 rdev_dec_pending(rdev, conf->mddev);
2258 } else if (r1_bio->bios[m] != NULL) {
2259 /* This drive got a write error. We need to
2260 * narrow down and record precise write
2261 * errors.
2262 */
2263 fail = true;
2264 if (!narrow_write_error(r1_bio, m)) {
2265 md_error(conf->mddev,
2266 conf->mirrors[m].rdev);
2267 /* an I/O failed, we can't clear the bitmap */
2268 set_bit(R1BIO_Degraded, &r1_bio->state);
2269 }
2270 rdev_dec_pending(conf->mirrors[m].rdev,
2271 conf->mddev);
2272 }
2273 if (fail) {
2274 spin_lock_irq(&conf->device_lock);
2275 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2276 conf->nr_queued++;
2277 spin_unlock_irq(&conf->device_lock);
2278 md_wakeup_thread(conf->mddev->thread);
2279 } else {
2280 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2281 close_write(r1_bio);
2282 raid_end_bio_io(r1_bio);
2283 }
2284 }
2285
2286 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2287 {
2288 int disk;
2289 int max_sectors;
2290 struct mddev *mddev = conf->mddev;
2291 struct bio *bio;
2292 char b[BDEVNAME_SIZE];
2293 struct md_rdev *rdev;
2294
2295 clear_bit(R1BIO_ReadError, &r1_bio->state);
2296 /* we got a read error. Maybe the drive is bad. Maybe just
2297 * the block and we can fix it.
2298 * We freeze all other IO, and try reading the block from
2299 * other devices. When we find one, we re-write
2300 * and check it that fixes the read error.
2301 * This is all done synchronously while the array is
2302 * frozen
2303 */
2304 if (mddev->ro == 0) {
2305 freeze_array(conf, 1);
2306 fix_read_error(conf, r1_bio->read_disk,
2307 r1_bio->sector, r1_bio->sectors);
2308 unfreeze_array(conf);
2309 } else
2310 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2311 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2312
2313 bio = r1_bio->bios[r1_bio->read_disk];
2314 bdevname(bio->bi_bdev, b);
2315 read_more:
2316 disk = read_balance(conf, r1_bio, &max_sectors);
2317 if (disk == -1) {
2318 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2319 " read error for block %llu\n",
2320 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2321 raid_end_bio_io(r1_bio);
2322 } else {
2323 const unsigned long do_sync
2324 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2325 if (bio) {
2326 r1_bio->bios[r1_bio->read_disk] =
2327 mddev->ro ? IO_BLOCKED : NULL;
2328 bio_put(bio);
2329 }
2330 r1_bio->read_disk = disk;
2331 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2332 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2333 max_sectors);
2334 r1_bio->bios[r1_bio->read_disk] = bio;
2335 rdev = conf->mirrors[disk].rdev;
2336 printk_ratelimited(KERN_ERR
2337 "md/raid1:%s: redirecting sector %llu"
2338 " to other mirror: %s\n",
2339 mdname(mddev),
2340 (unsigned long long)r1_bio->sector,
2341 bdevname(rdev->bdev, b));
2342 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2343 bio->bi_bdev = rdev->bdev;
2344 bio->bi_end_io = raid1_end_read_request;
2345 bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2346 bio->bi_private = r1_bio;
2347 if (max_sectors < r1_bio->sectors) {
2348 /* Drat - have to split this up more */
2349 struct bio *mbio = r1_bio->master_bio;
2350 int sectors_handled = (r1_bio->sector + max_sectors
2351 - mbio->bi_iter.bi_sector);
2352 r1_bio->sectors = max_sectors;
2353 spin_lock_irq(&conf->device_lock);
2354 if (mbio->bi_phys_segments == 0)
2355 mbio->bi_phys_segments = 2;
2356 else
2357 mbio->bi_phys_segments++;
2358 spin_unlock_irq(&conf->device_lock);
2359 generic_make_request(bio);
2360 bio = NULL;
2361
2362 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2363
2364 r1_bio->master_bio = mbio;
2365 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2366 r1_bio->state = 0;
2367 set_bit(R1BIO_ReadError, &r1_bio->state);
2368 r1_bio->mddev = mddev;
2369 r1_bio->sector = mbio->bi_iter.bi_sector +
2370 sectors_handled;
2371
2372 goto read_more;
2373 } else
2374 generic_make_request(bio);
2375 }
2376 }
2377
2378 static void raid1d(struct md_thread *thread)
2379 {
2380 struct mddev *mddev = thread->mddev;
2381 struct r1bio *r1_bio;
2382 unsigned long flags;
2383 struct r1conf *conf = mddev->private;
2384 struct list_head *head = &conf->retry_list;
2385 struct blk_plug plug;
2386
2387 md_check_recovery(mddev);
2388
2389 if (!list_empty_careful(&conf->bio_end_io_list) &&
2390 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2391 LIST_HEAD(tmp);
2392 spin_lock_irqsave(&conf->device_lock, flags);
2393 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2394 while (!list_empty(&conf->bio_end_io_list)) {
2395 list_move(conf->bio_end_io_list.prev, &tmp);
2396 conf->nr_queued--;
2397 }
2398 }
2399 spin_unlock_irqrestore(&conf->device_lock, flags);
2400 while (!list_empty(&tmp)) {
2401 r1_bio = list_first_entry(&tmp, struct r1bio,
2402 retry_list);
2403 list_del(&r1_bio->retry_list);
2404 if (mddev->degraded)
2405 set_bit(R1BIO_Degraded, &r1_bio->state);
2406 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2407 close_write(r1_bio);
2408 raid_end_bio_io(r1_bio);
2409 }
2410 }
2411
2412 blk_start_plug(&plug);
2413 for (;;) {
2414
2415 flush_pending_writes(conf);
2416
2417 spin_lock_irqsave(&conf->device_lock, flags);
2418 if (list_empty(head)) {
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2420 break;
2421 }
2422 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2423 list_del(head->prev);
2424 conf->nr_queued--;
2425 spin_unlock_irqrestore(&conf->device_lock, flags);
2426
2427 mddev = r1_bio->mddev;
2428 conf = mddev->private;
2429 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2430 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2431 test_bit(R1BIO_WriteError, &r1_bio->state))
2432 handle_sync_write_finished(conf, r1_bio);
2433 else
2434 sync_request_write(mddev, r1_bio);
2435 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2436 test_bit(R1BIO_WriteError, &r1_bio->state))
2437 handle_write_finished(conf, r1_bio);
2438 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2439 handle_read_error(conf, r1_bio);
2440 else
2441 /* just a partial read to be scheduled from separate
2442 * context
2443 */
2444 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2445
2446 cond_resched();
2447 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2448 md_check_recovery(mddev);
2449 }
2450 blk_finish_plug(&plug);
2451 }
2452
2453 static int init_resync(struct r1conf *conf)
2454 {
2455 int buffs;
2456
2457 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2458 BUG_ON(conf->r1buf_pool);
2459 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2460 conf->poolinfo);
2461 if (!conf->r1buf_pool)
2462 return -ENOMEM;
2463 conf->next_resync = 0;
2464 return 0;
2465 }
2466
2467 /*
2468 * perform a "sync" on one "block"
2469 *
2470 * We need to make sure that no normal I/O request - particularly write
2471 * requests - conflict with active sync requests.
2472 *
2473 * This is achieved by tracking pending requests and a 'barrier' concept
2474 * that can be installed to exclude normal IO requests.
2475 */
2476
2477 static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2478 int *skipped)
2479 {
2480 struct r1conf *conf = mddev->private;
2481 struct r1bio *r1_bio;
2482 struct bio *bio;
2483 sector_t max_sector, nr_sectors;
2484 int disk = -1;
2485 int i;
2486 int wonly = -1;
2487 int write_targets = 0, read_targets = 0;
2488 sector_t sync_blocks;
2489 int still_degraded = 0;
2490 int good_sectors = RESYNC_SECTORS;
2491 int min_bad = 0; /* number of sectors that are bad in all devices */
2492
2493 if (!conf->r1buf_pool)
2494 if (init_resync(conf))
2495 return 0;
2496
2497 max_sector = mddev->dev_sectors;
2498 if (sector_nr >= max_sector) {
2499 /* If we aborted, we need to abort the
2500 * sync on the 'current' bitmap chunk (there will
2501 * only be one in raid1 resync.
2502 * We can find the current addess in mddev->curr_resync
2503 */
2504 if (mddev->curr_resync < max_sector) /* aborted */
2505 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2506 &sync_blocks, 1);
2507 else /* completed sync */
2508 conf->fullsync = 0;
2509
2510 bitmap_close_sync(mddev->bitmap);
2511 close_sync(conf);
2512
2513 if (mddev_is_clustered(mddev)) {
2514 conf->cluster_sync_low = 0;
2515 conf->cluster_sync_high = 0;
2516 }
2517 return 0;
2518 }
2519
2520 if (mddev->bitmap == NULL &&
2521 mddev->recovery_cp == MaxSector &&
2522 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2523 conf->fullsync == 0) {
2524 *skipped = 1;
2525 return max_sector - sector_nr;
2526 }
2527 /* before building a request, check if we can skip these blocks..
2528 * This call the bitmap_start_sync doesn't actually record anything
2529 */
2530 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2531 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2532 /* We can skip this block, and probably several more */
2533 *skipped = 1;
2534 return sync_blocks;
2535 }
2536
2537 /* we are incrementing sector_nr below. To be safe, we check against
2538 * sector_nr + two times RESYNC_SECTORS
2539 */
2540
2541 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2542 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2543 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2544
2545 raise_barrier(conf, sector_nr);
2546
2547 rcu_read_lock();
2548 /*
2549 * If we get a correctably read error during resync or recovery,
2550 * we might want to read from a different device. So we
2551 * flag all drives that could conceivably be read from for READ,
2552 * and any others (which will be non-In_sync devices) for WRITE.
2553 * If a read fails, we try reading from something else for which READ
2554 * is OK.
2555 */
2556
2557 r1_bio->mddev = mddev;
2558 r1_bio->sector = sector_nr;
2559 r1_bio->state = 0;
2560 set_bit(R1BIO_IsSync, &r1_bio->state);
2561
2562 for (i = 0; i < conf->raid_disks * 2; i++) {
2563 struct md_rdev *rdev;
2564 bio = r1_bio->bios[i];
2565 bio_reset(bio);
2566
2567 rdev = rcu_dereference(conf->mirrors[i].rdev);
2568 if (rdev == NULL ||
2569 test_bit(Faulty, &rdev->flags)) {
2570 if (i < conf->raid_disks)
2571 still_degraded = 1;
2572 } else if (!test_bit(In_sync, &rdev->flags)) {
2573 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2574 bio->bi_end_io = end_sync_write;
2575 write_targets ++;
2576 } else {
2577 /* may need to read from here */
2578 sector_t first_bad = MaxSector;
2579 int bad_sectors;
2580
2581 if (is_badblock(rdev, sector_nr, good_sectors,
2582 &first_bad, &bad_sectors)) {
2583 if (first_bad > sector_nr)
2584 good_sectors = first_bad - sector_nr;
2585 else {
2586 bad_sectors -= (sector_nr - first_bad);
2587 if (min_bad == 0 ||
2588 min_bad > bad_sectors)
2589 min_bad = bad_sectors;
2590 }
2591 }
2592 if (sector_nr < first_bad) {
2593 if (test_bit(WriteMostly, &rdev->flags)) {
2594 if (wonly < 0)
2595 wonly = i;
2596 } else {
2597 if (disk < 0)
2598 disk = i;
2599 }
2600 bio_set_op_attrs(bio, REQ_OP_READ, 0);
2601 bio->bi_end_io = end_sync_read;
2602 read_targets++;
2603 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2604 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2605 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2606 /*
2607 * The device is suitable for reading (InSync),
2608 * but has bad block(s) here. Let's try to correct them,
2609 * if we are doing resync or repair. Otherwise, leave
2610 * this device alone for this sync request.
2611 */
2612 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2613 bio->bi_end_io = end_sync_write;
2614 write_targets++;
2615 }
2616 }
2617 if (bio->bi_end_io) {
2618 atomic_inc(&rdev->nr_pending);
2619 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2620 bio->bi_bdev = rdev->bdev;
2621 bio->bi_private = r1_bio;
2622 }
2623 }
2624 rcu_read_unlock();
2625 if (disk < 0)
2626 disk = wonly;
2627 r1_bio->read_disk = disk;
2628
2629 if (read_targets == 0 && min_bad > 0) {
2630 /* These sectors are bad on all InSync devices, so we
2631 * need to mark them bad on all write targets
2632 */
2633 int ok = 1;
2634 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2635 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2636 struct md_rdev *rdev = conf->mirrors[i].rdev;
2637 ok = rdev_set_badblocks(rdev, sector_nr,
2638 min_bad, 0
2639 ) && ok;
2640 }
2641 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2642 *skipped = 1;
2643 put_buf(r1_bio);
2644
2645 if (!ok) {
2646 /* Cannot record the badblocks, so need to
2647 * abort the resync.
2648 * If there are multiple read targets, could just
2649 * fail the really bad ones ???
2650 */
2651 conf->recovery_disabled = mddev->recovery_disabled;
2652 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2653 return 0;
2654 } else
2655 return min_bad;
2656
2657 }
2658 if (min_bad > 0 && min_bad < good_sectors) {
2659 /* only resync enough to reach the next bad->good
2660 * transition */
2661 good_sectors = min_bad;
2662 }
2663
2664 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2665 /* extra read targets are also write targets */
2666 write_targets += read_targets-1;
2667
2668 if (write_targets == 0 || read_targets == 0) {
2669 /* There is nowhere to write, so all non-sync
2670 * drives must be failed - so we are finished
2671 */
2672 sector_t rv;
2673 if (min_bad > 0)
2674 max_sector = sector_nr + min_bad;
2675 rv = max_sector - sector_nr;
2676 *skipped = 1;
2677 put_buf(r1_bio);
2678 return rv;
2679 }
2680
2681 if (max_sector > mddev->resync_max)
2682 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2683 if (max_sector > sector_nr + good_sectors)
2684 max_sector = sector_nr + good_sectors;
2685 nr_sectors = 0;
2686 sync_blocks = 0;
2687 do {
2688 struct page *page;
2689 int len = PAGE_SIZE;
2690 if (sector_nr + (len>>9) > max_sector)
2691 len = (max_sector - sector_nr) << 9;
2692 if (len == 0)
2693 break;
2694 if (sync_blocks == 0) {
2695 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2696 &sync_blocks, still_degraded) &&
2697 !conf->fullsync &&
2698 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2699 break;
2700 if ((len >> 9) > sync_blocks)
2701 len = sync_blocks<<9;
2702 }
2703
2704 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2705 bio = r1_bio->bios[i];
2706 if (bio->bi_end_io) {
2707 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2708 if (bio_add_page(bio, page, len, 0) == 0) {
2709 /* stop here */
2710 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2711 while (i > 0) {
2712 i--;
2713 bio = r1_bio->bios[i];
2714 if (bio->bi_end_io==NULL)
2715 continue;
2716 /* remove last page from this bio */
2717 bio->bi_vcnt--;
2718 bio->bi_iter.bi_size -= len;
2719 bio_clear_flag(bio, BIO_SEG_VALID);
2720 }
2721 goto bio_full;
2722 }
2723 }
2724 }
2725 nr_sectors += len>>9;
2726 sector_nr += len>>9;
2727 sync_blocks -= (len>>9);
2728 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2729 bio_full:
2730 r1_bio->sectors = nr_sectors;
2731
2732 if (mddev_is_clustered(mddev) &&
2733 conf->cluster_sync_high < sector_nr + nr_sectors) {
2734 conf->cluster_sync_low = mddev->curr_resync_completed;
2735 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2736 /* Send resync message */
2737 md_cluster_ops->resync_info_update(mddev,
2738 conf->cluster_sync_low,
2739 conf->cluster_sync_high);
2740 }
2741
2742 /* For a user-requested sync, we read all readable devices and do a
2743 * compare
2744 */
2745 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2746 atomic_set(&r1_bio->remaining, read_targets);
2747 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2748 bio = r1_bio->bios[i];
2749 if (bio->bi_end_io == end_sync_read) {
2750 read_targets--;
2751 md_sync_acct(bio->bi_bdev, nr_sectors);
2752 generic_make_request(bio);
2753 }
2754 }
2755 } else {
2756 atomic_set(&r1_bio->remaining, 1);
2757 bio = r1_bio->bios[r1_bio->read_disk];
2758 md_sync_acct(bio->bi_bdev, nr_sectors);
2759 generic_make_request(bio);
2760
2761 }
2762 return nr_sectors;
2763 }
2764
2765 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2766 {
2767 if (sectors)
2768 return sectors;
2769
2770 return mddev->dev_sectors;
2771 }
2772
2773 static struct r1conf *setup_conf(struct mddev *mddev)
2774 {
2775 struct r1conf *conf;
2776 int i;
2777 struct raid1_info *disk;
2778 struct md_rdev *rdev;
2779 int err = -ENOMEM;
2780
2781 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2782 if (!conf)
2783 goto abort;
2784
2785 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2786 * mddev->raid_disks * 2,
2787 GFP_KERNEL);
2788 if (!conf->mirrors)
2789 goto abort;
2790
2791 conf->tmppage = alloc_page(GFP_KERNEL);
2792 if (!conf->tmppage)
2793 goto abort;
2794
2795 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2796 if (!conf->poolinfo)
2797 goto abort;
2798 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2799 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2800 r1bio_pool_free,
2801 conf->poolinfo);
2802 if (!conf->r1bio_pool)
2803 goto abort;
2804
2805 conf->poolinfo->mddev = mddev;
2806
2807 err = -EINVAL;
2808 spin_lock_init(&conf->device_lock);
2809 rdev_for_each(rdev, mddev) {
2810 struct request_queue *q;
2811 int disk_idx = rdev->raid_disk;
2812 if (disk_idx >= mddev->raid_disks
2813 || disk_idx < 0)
2814 continue;
2815 if (test_bit(Replacement, &rdev->flags))
2816 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2817 else
2818 disk = conf->mirrors + disk_idx;
2819
2820 if (disk->rdev)
2821 goto abort;
2822 disk->rdev = rdev;
2823 q = bdev_get_queue(rdev->bdev);
2824
2825 disk->head_position = 0;
2826 disk->seq_start = MaxSector;
2827 }
2828 conf->raid_disks = mddev->raid_disks;
2829 conf->mddev = mddev;
2830 INIT_LIST_HEAD(&conf->retry_list);
2831 INIT_LIST_HEAD(&conf->bio_end_io_list);
2832
2833 spin_lock_init(&conf->resync_lock);
2834 init_waitqueue_head(&conf->wait_barrier);
2835
2836 bio_list_init(&conf->pending_bio_list);
2837 conf->pending_count = 0;
2838 conf->recovery_disabled = mddev->recovery_disabled - 1;
2839
2840 conf->start_next_window = MaxSector;
2841 conf->current_window_requests = conf->next_window_requests = 0;
2842
2843 err = -EIO;
2844 for (i = 0; i < conf->raid_disks * 2; i++) {
2845
2846 disk = conf->mirrors + i;
2847
2848 if (i < conf->raid_disks &&
2849 disk[conf->raid_disks].rdev) {
2850 /* This slot has a replacement. */
2851 if (!disk->rdev) {
2852 /* No original, just make the replacement
2853 * a recovering spare
2854 */
2855 disk->rdev =
2856 disk[conf->raid_disks].rdev;
2857 disk[conf->raid_disks].rdev = NULL;
2858 } else if (!test_bit(In_sync, &disk->rdev->flags))
2859 /* Original is not in_sync - bad */
2860 goto abort;
2861 }
2862
2863 if (!disk->rdev ||
2864 !test_bit(In_sync, &disk->rdev->flags)) {
2865 disk->head_position = 0;
2866 if (disk->rdev &&
2867 (disk->rdev->saved_raid_disk < 0))
2868 conf->fullsync = 1;
2869 }
2870 }
2871
2872 err = -ENOMEM;
2873 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2874 if (!conf->thread) {
2875 printk(KERN_ERR
2876 "md/raid1:%s: couldn't allocate thread\n",
2877 mdname(mddev));
2878 goto abort;
2879 }
2880
2881 return conf;
2882
2883 abort:
2884 if (conf) {
2885 mempool_destroy(conf->r1bio_pool);
2886 kfree(conf->mirrors);
2887 safe_put_page(conf->tmppage);
2888 kfree(conf->poolinfo);
2889 kfree(conf);
2890 }
2891 return ERR_PTR(err);
2892 }
2893
2894 static void raid1_free(struct mddev *mddev, void *priv);
2895 static int raid1_run(struct mddev *mddev)
2896 {
2897 struct r1conf *conf;
2898 int i;
2899 struct md_rdev *rdev;
2900 int ret;
2901 bool discard_supported = false;
2902
2903 if (mddev->level != 1) {
2904 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2905 mdname(mddev), mddev->level);
2906 return -EIO;
2907 }
2908 if (mddev->reshape_position != MaxSector) {
2909 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2910 mdname(mddev));
2911 return -EIO;
2912 }
2913 /*
2914 * copy the already verified devices into our private RAID1
2915 * bookkeeping area. [whatever we allocate in run(),
2916 * should be freed in raid1_free()]
2917 */
2918 if (mddev->private == NULL)
2919 conf = setup_conf(mddev);
2920 else
2921 conf = mddev->private;
2922
2923 if (IS_ERR(conf))
2924 return PTR_ERR(conf);
2925
2926 if (mddev->queue)
2927 blk_queue_max_write_same_sectors(mddev->queue, 0);
2928
2929 rdev_for_each(rdev, mddev) {
2930 if (!mddev->gendisk)
2931 continue;
2932 disk_stack_limits(mddev->gendisk, rdev->bdev,
2933 rdev->data_offset << 9);
2934 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2935 discard_supported = true;
2936 }
2937
2938 mddev->degraded = 0;
2939 for (i=0; i < conf->raid_disks; i++)
2940 if (conf->mirrors[i].rdev == NULL ||
2941 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2942 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2943 mddev->degraded++;
2944
2945 if (conf->raid_disks - mddev->degraded == 1)
2946 mddev->recovery_cp = MaxSector;
2947
2948 if (mddev->recovery_cp != MaxSector)
2949 printk(KERN_NOTICE "md/raid1:%s: not clean"
2950 " -- starting background reconstruction\n",
2951 mdname(mddev));
2952 printk(KERN_INFO
2953 "md/raid1:%s: active with %d out of %d mirrors\n",
2954 mdname(mddev), mddev->raid_disks - mddev->degraded,
2955 mddev->raid_disks);
2956
2957 /*
2958 * Ok, everything is just fine now
2959 */
2960 mddev->thread = conf->thread;
2961 conf->thread = NULL;
2962 mddev->private = conf;
2963
2964 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2965
2966 if (mddev->queue) {
2967 if (discard_supported)
2968 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2969 mddev->queue);
2970 else
2971 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2972 mddev->queue);
2973 }
2974
2975 ret = md_integrity_register(mddev);
2976 if (ret) {
2977 md_unregister_thread(&mddev->thread);
2978 raid1_free(mddev, conf);
2979 }
2980 return ret;
2981 }
2982
2983 static void raid1_free(struct mddev *mddev, void *priv)
2984 {
2985 struct r1conf *conf = priv;
2986
2987 mempool_destroy(conf->r1bio_pool);
2988 kfree(conf->mirrors);
2989 safe_put_page(conf->tmppage);
2990 kfree(conf->poolinfo);
2991 kfree(conf);
2992 }
2993
2994 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2995 {
2996 /* no resync is happening, and there is enough space
2997 * on all devices, so we can resize.
2998 * We need to make sure resync covers any new space.
2999 * If the array is shrinking we should possibly wait until
3000 * any io in the removed space completes, but it hardly seems
3001 * worth it.
3002 */
3003 sector_t newsize = raid1_size(mddev, sectors, 0);
3004 if (mddev->external_size &&
3005 mddev->array_sectors > newsize)
3006 return -EINVAL;
3007 if (mddev->bitmap) {
3008 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3009 if (ret)
3010 return ret;
3011 }
3012 md_set_array_sectors(mddev, newsize);
3013 set_capacity(mddev->gendisk, mddev->array_sectors);
3014 revalidate_disk(mddev->gendisk);
3015 if (sectors > mddev->dev_sectors &&
3016 mddev->recovery_cp > mddev->dev_sectors) {
3017 mddev->recovery_cp = mddev->dev_sectors;
3018 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3019 }
3020 mddev->dev_sectors = sectors;
3021 mddev->resync_max_sectors = sectors;
3022 return 0;
3023 }
3024
3025 static int raid1_reshape(struct mddev *mddev)
3026 {
3027 /* We need to:
3028 * 1/ resize the r1bio_pool
3029 * 2/ resize conf->mirrors
3030 *
3031 * We allocate a new r1bio_pool if we can.
3032 * Then raise a device barrier and wait until all IO stops.
3033 * Then resize conf->mirrors and swap in the new r1bio pool.
3034 *
3035 * At the same time, we "pack" the devices so that all the missing
3036 * devices have the higher raid_disk numbers.
3037 */
3038 mempool_t *newpool, *oldpool;
3039 struct pool_info *newpoolinfo;
3040 struct raid1_info *newmirrors;
3041 struct r1conf *conf = mddev->private;
3042 int cnt, raid_disks;
3043 unsigned long flags;
3044 int d, d2, err;
3045
3046 /* Cannot change chunk_size, layout, or level */
3047 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3048 mddev->layout != mddev->new_layout ||
3049 mddev->level != mddev->new_level) {
3050 mddev->new_chunk_sectors = mddev->chunk_sectors;
3051 mddev->new_layout = mddev->layout;
3052 mddev->new_level = mddev->level;
3053 return -EINVAL;
3054 }
3055
3056 if (!mddev_is_clustered(mddev)) {
3057 err = md_allow_write(mddev);
3058 if (err)
3059 return err;
3060 }
3061
3062 raid_disks = mddev->raid_disks + mddev->delta_disks;
3063
3064 if (raid_disks < conf->raid_disks) {
3065 cnt=0;
3066 for (d= 0; d < conf->raid_disks; d++)
3067 if (conf->mirrors[d].rdev)
3068 cnt++;
3069 if (cnt > raid_disks)
3070 return -EBUSY;
3071 }
3072
3073 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3074 if (!newpoolinfo)
3075 return -ENOMEM;
3076 newpoolinfo->mddev = mddev;
3077 newpoolinfo->raid_disks = raid_disks * 2;
3078
3079 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3080 r1bio_pool_free, newpoolinfo);
3081 if (!newpool) {
3082 kfree(newpoolinfo);
3083 return -ENOMEM;
3084 }
3085 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3086 GFP_KERNEL);
3087 if (!newmirrors) {
3088 kfree(newpoolinfo);
3089 mempool_destroy(newpool);
3090 return -ENOMEM;
3091 }
3092
3093 freeze_array(conf, 0);
3094
3095 /* ok, everything is stopped */
3096 oldpool = conf->r1bio_pool;
3097 conf->r1bio_pool = newpool;
3098
3099 for (d = d2 = 0; d < conf->raid_disks; d++) {
3100 struct md_rdev *rdev = conf->mirrors[d].rdev;
3101 if (rdev && rdev->raid_disk != d2) {
3102 sysfs_unlink_rdev(mddev, rdev);
3103 rdev->raid_disk = d2;
3104 sysfs_unlink_rdev(mddev, rdev);
3105 if (sysfs_link_rdev(mddev, rdev))
3106 printk(KERN_WARNING
3107 "md/raid1:%s: cannot register rd%d\n",
3108 mdname(mddev), rdev->raid_disk);
3109 }
3110 if (rdev)
3111 newmirrors[d2++].rdev = rdev;
3112 }
3113 kfree(conf->mirrors);
3114 conf->mirrors = newmirrors;
3115 kfree(conf->poolinfo);
3116 conf->poolinfo = newpoolinfo;
3117
3118 spin_lock_irqsave(&conf->device_lock, flags);
3119 mddev->degraded += (raid_disks - conf->raid_disks);
3120 spin_unlock_irqrestore(&conf->device_lock, flags);
3121 conf->raid_disks = mddev->raid_disks = raid_disks;
3122 mddev->delta_disks = 0;
3123
3124 unfreeze_array(conf);
3125
3126 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3127 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3128 md_wakeup_thread(mddev->thread);
3129
3130 mempool_destroy(oldpool);
3131 return 0;
3132 }
3133
3134 static void raid1_quiesce(struct mddev *mddev, int state)
3135 {
3136 struct r1conf *conf = mddev->private;
3137
3138 switch(state) {
3139 case 2: /* wake for suspend */
3140 wake_up(&conf->wait_barrier);
3141 break;
3142 case 1:
3143 freeze_array(conf, 0);
3144 break;
3145 case 0:
3146 unfreeze_array(conf);
3147 break;
3148 }
3149 }
3150
3151 static void *raid1_takeover(struct mddev *mddev)
3152 {
3153 /* raid1 can take over:
3154 * raid5 with 2 devices, any layout or chunk size
3155 */
3156 if (mddev->level == 5 && mddev->raid_disks == 2) {
3157 struct r1conf *conf;
3158 mddev->new_level = 1;
3159 mddev->new_layout = 0;
3160 mddev->new_chunk_sectors = 0;
3161 conf = setup_conf(mddev);
3162 if (!IS_ERR(conf))
3163 /* Array must appear to be quiesced */
3164 conf->array_frozen = 1;
3165 return conf;
3166 }
3167 return ERR_PTR(-EINVAL);
3168 }
3169
3170 static struct md_personality raid1_personality =
3171 {
3172 .name = "raid1",
3173 .level = 1,
3174 .owner = THIS_MODULE,
3175 .make_request = raid1_make_request,
3176 .run = raid1_run,
3177 .free = raid1_free,
3178 .status = raid1_status,
3179 .error_handler = raid1_error,
3180 .hot_add_disk = raid1_add_disk,
3181 .hot_remove_disk= raid1_remove_disk,
3182 .spare_active = raid1_spare_active,
3183 .sync_request = raid1_sync_request,
3184 .resize = raid1_resize,
3185 .size = raid1_size,
3186 .check_reshape = raid1_reshape,
3187 .quiesce = raid1_quiesce,
3188 .takeover = raid1_takeover,
3189 .congested = raid1_congested,
3190 };
3191
3192 static int __init raid_init(void)
3193 {
3194 return register_md_personality(&raid1_personality);
3195 }
3196
3197 static void raid_exit(void)
3198 {
3199 unregister_md_personality(&raid1_personality);
3200 }
3201
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.102737 seconds and 6 git commands to generate.