Subject: [PATCH] md:change resync_mismatches to atomic64_t to avoid races
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58 /*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61 #define NR_RAID10_BIOS 256
62
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73 #define IO_MADE_GOOD ((struct bio *)2)
74
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81 static int max_queued_requests = 1024;
82
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct r10conf *conf = data;
95 int size = offsetof(struct r10bio, devs[conf->copies]);
96
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
99 return kzalloc(size, gfp_flags);
100 }
101
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 kfree(r10_bio);
105 }
106
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115 /*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 struct r10conf *conf = data;
125 struct page *page;
126 struct r10bio *r10_bio;
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 if (!r10_bio)
133 return NULL;
134
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
161 struct bio *rbio = r10_bio->devs[j].repl_bio;
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
179 }
180 }
181
182 return r10_bio;
183
184 out_free_pages:
185 for ( ; i > 0 ; i--)
186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 j = 0;
191 out_free_bio:
192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200 }
201
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 int i;
205 struct r10conf *conf = data;
206 struct r10bio *r10bio = __r10_bio;
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
213 safe_put_page(bio->bi_io_vec[i].bv_page);
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
221 }
222 r10bio_pool_free(r10bio, conf);
223 }
224
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
231 if (!BIO_SPECIAL(*bio))
232 bio_put(*bio);
233 *bio = NULL;
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
238 }
239 }
240
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 struct r10conf *conf = r10_bio->mddev->private;
244
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247 }
248
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 struct r10conf *conf = r10_bio->mddev->private;
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
255 lower_barrier(conf);
256 }
257
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 unsigned long flags;
261 struct mddev *mddev = r10_bio->mddev;
262 struct r10conf *conf = mddev->private;
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
266 conf->nr_queued ++;
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
272 md_wakeup_thread(mddev->thread);
273 }
274
275 /*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 struct bio *bio = r10_bio->master_bio;
283 int done;
284 struct r10conf *conf = r10_bio->mddev->private;
285
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
304 free_r10bio(r10_bio);
305 }
306
307 /*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 struct r10conf *conf = r10_bio->mddev->private;
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317
318 /*
319 * Find the disk number which triggered given bio
320 */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 struct bio *bio, int *slotp, int *replp)
323 {
324 int slot;
325 int repl = 0;
326
327 for (slot = 0; slot < conf->copies; slot++) {
328 if (r10_bio->devs[slot].bio == bio)
329 break;
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
339 if (slotp)
340 *slotp = slot;
341 if (replp)
342 *replp = repl;
343 return r10_bio->devs[slot].devnum;
344 }
345
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 struct r10bio *r10_bio = bio->bi_private;
350 int slot, dev;
351 struct md_rdev *rdev;
352 struct r10conf *conf = r10_bio->mddev->private;
353
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
357 rdev = r10_bio->devs[slot].rdev;
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
397 bdevname(rdev->bdev, b),
398 (unsigned long long)r10_bio->sector);
399 set_bit(R10BIO_ReadError, &r10_bio->state);
400 reschedule_retry(r10_bio);
401 }
402 }
403
404 static void close_write(struct r10bio *r10_bio)
405 {
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412 }
413
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427 }
428
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 struct r10bio *r10_bio = bio->bi_private;
433 int dev;
434 int dec_rdev = 1;
435 struct r10conf *conf = r10_bio->mddev->private;
436 int slot, repl;
437 struct md_rdev *rdev = NULL;
438
439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
446 rdev = conf->mirrors[dev].rdev;
447 }
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
451 if (!uptodate) {
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
465 } else {
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
475 sector_t first_bad;
476 int bad_sectors;
477
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev,
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
500 one_write_done(r10_bio);
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504
505 /*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
537 int slot = 0;
538
539 /* now calculate first sector/dev */
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
542
543 chunk *= geo->near_copies;
544 stripe = chunk;
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
548
549 sector += stripe << geo->chunk_shift;
550
551 /* and calculate all the others */
552 for (n = 0; n < geo->near_copies; n++) {
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
569 if (dev >= geo->raid_disks) {
570 dev = 0;
571 sector += (geo->chunk_mask + 1);
572 }
573 }
574 }
575
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
589 }
590
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 sector_t offset, chunk, vchunk;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
597 struct geom *geo = &conf->geo;
598
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
601 int fc;
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
605 if (dev < 0)
606 dev += geo->raid_disks;
607 } else {
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
612 else
613 dev -= geo->near_copies;
614 }
615 chunk = sector >> geo->chunk_shift;
616 }
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
620 }
621
622 /**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
635 {
636 struct mddev *mddev = q->queuedata;
637 struct r10conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 int max;
640 unsigned int chunk_sectors;
641 unsigned int bio_sectors = bvm->bi_size >> 9;
642 struct geom *geo = &conf->geo;
643
644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
650 if (geo->near_copies < geo->raid_disks) {
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
662 struct {
663 struct r10bio r10_bio;
664 struct r10dev devs[conf->copies];
665 } on_stack;
666 struct r10bio *r10_bio = &on_stack.r10_bio;
667 int s;
668 if (conf->reshape_progress != MaxSector) {
669 /* Cannot give any guidance during reshape */
670 if (max <= biovec->bv_len && bio_sectors == 0)
671 return biovec->bv_len;
672 return 0;
673 }
674 r10_bio->sector = sector;
675 raid10_find_phys(conf, r10_bio);
676 rcu_read_lock();
677 for (s = 0; s < conf->copies; s++) {
678 int disk = r10_bio->devs[s].devnum;
679 struct md_rdev *rdev = rcu_dereference(
680 conf->mirrors[disk].rdev);
681 if (rdev && !test_bit(Faulty, &rdev->flags)) {
682 struct request_queue *q =
683 bdev_get_queue(rdev->bdev);
684 if (q->merge_bvec_fn) {
685 bvm->bi_sector = r10_bio->devs[s].addr
686 + rdev->data_offset;
687 bvm->bi_bdev = rdev->bdev;
688 max = min(max, q->merge_bvec_fn(
689 q, bvm, biovec));
690 }
691 }
692 rdev = rcu_dereference(conf->mirrors[disk].replacement);
693 if (rdev && !test_bit(Faulty, &rdev->flags)) {
694 struct request_queue *q =
695 bdev_get_queue(rdev->bdev);
696 if (q->merge_bvec_fn) {
697 bvm->bi_sector = r10_bio->devs[s].addr
698 + rdev->data_offset;
699 bvm->bi_bdev = rdev->bdev;
700 max = min(max, q->merge_bvec_fn(
701 q, bvm, biovec));
702 }
703 }
704 }
705 rcu_read_unlock();
706 }
707 return max;
708 }
709
710 /*
711 * This routine returns the disk from which the requested read should
712 * be done. There is a per-array 'next expected sequential IO' sector
713 * number - if this matches on the next IO then we use the last disk.
714 * There is also a per-disk 'last know head position' sector that is
715 * maintained from IRQ contexts, both the normal and the resync IO
716 * completion handlers update this position correctly. If there is no
717 * perfect sequential match then we pick the disk whose head is closest.
718 *
719 * If there are 2 mirrors in the same 2 devices, performance degrades
720 * because position is mirror, not device based.
721 *
722 * The rdev for the device selected will have nr_pending incremented.
723 */
724
725 /*
726 * FIXME: possibly should rethink readbalancing and do it differently
727 * depending on near_copies / far_copies geometry.
728 */
729 static struct md_rdev *read_balance(struct r10conf *conf,
730 struct r10bio *r10_bio,
731 int *max_sectors)
732 {
733 const sector_t this_sector = r10_bio->sector;
734 int disk, slot;
735 int sectors = r10_bio->sectors;
736 int best_good_sectors;
737 sector_t new_distance, best_dist;
738 struct md_rdev *best_rdev, *rdev = NULL;
739 int do_balance;
740 int best_slot;
741 struct geom *geo = &conf->geo;
742
743 raid10_find_phys(conf, r10_bio);
744 rcu_read_lock();
745 retry:
746 sectors = r10_bio->sectors;
747 best_slot = -1;
748 best_rdev = NULL;
749 best_dist = MaxSector;
750 best_good_sectors = 0;
751 do_balance = 1;
752 /*
753 * Check if we can balance. We can balance on the whole
754 * device if no resync is going on (recovery is ok), or below
755 * the resync window. We take the first readable disk when
756 * above the resync window.
757 */
758 if (conf->mddev->recovery_cp < MaxSector
759 && (this_sector + sectors >= conf->next_resync))
760 do_balance = 0;
761
762 for (slot = 0; slot < conf->copies ; slot++) {
763 sector_t first_bad;
764 int bad_sectors;
765 sector_t dev_sector;
766
767 if (r10_bio->devs[slot].bio == IO_BLOCKED)
768 continue;
769 disk = r10_bio->devs[slot].devnum;
770 rdev = rcu_dereference(conf->mirrors[disk].replacement);
771 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
772 test_bit(Unmerged, &rdev->flags) ||
773 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
774 rdev = rcu_dereference(conf->mirrors[disk].rdev);
775 if (rdev == NULL ||
776 test_bit(Faulty, &rdev->flags) ||
777 test_bit(Unmerged, &rdev->flags))
778 continue;
779 if (!test_bit(In_sync, &rdev->flags) &&
780 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
781 continue;
782
783 dev_sector = r10_bio->devs[slot].addr;
784 if (is_badblock(rdev, dev_sector, sectors,
785 &first_bad, &bad_sectors)) {
786 if (best_dist < MaxSector)
787 /* Already have a better slot */
788 continue;
789 if (first_bad <= dev_sector) {
790 /* Cannot read here. If this is the
791 * 'primary' device, then we must not read
792 * beyond 'bad_sectors' from another device.
793 */
794 bad_sectors -= (dev_sector - first_bad);
795 if (!do_balance && sectors > bad_sectors)
796 sectors = bad_sectors;
797 if (best_good_sectors > sectors)
798 best_good_sectors = sectors;
799 } else {
800 sector_t good_sectors =
801 first_bad - dev_sector;
802 if (good_sectors > best_good_sectors) {
803 best_good_sectors = good_sectors;
804 best_slot = slot;
805 best_rdev = rdev;
806 }
807 if (!do_balance)
808 /* Must read from here */
809 break;
810 }
811 continue;
812 } else
813 best_good_sectors = sectors;
814
815 if (!do_balance)
816 break;
817
818 /* This optimisation is debatable, and completely destroys
819 * sequential read speed for 'far copies' arrays. So only
820 * keep it for 'near' arrays, and review those later.
821 */
822 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
823 break;
824
825 /* for far > 1 always use the lowest address */
826 if (geo->far_copies > 1)
827 new_distance = r10_bio->devs[slot].addr;
828 else
829 new_distance = abs(r10_bio->devs[slot].addr -
830 conf->mirrors[disk].head_position);
831 if (new_distance < best_dist) {
832 best_dist = new_distance;
833 best_slot = slot;
834 best_rdev = rdev;
835 }
836 }
837 if (slot >= conf->copies) {
838 slot = best_slot;
839 rdev = best_rdev;
840 }
841
842 if (slot >= 0) {
843 atomic_inc(&rdev->nr_pending);
844 if (test_bit(Faulty, &rdev->flags)) {
845 /* Cannot risk returning a device that failed
846 * before we inc'ed nr_pending
847 */
848 rdev_dec_pending(rdev, conf->mddev);
849 goto retry;
850 }
851 r10_bio->read_slot = slot;
852 } else
853 rdev = NULL;
854 rcu_read_unlock();
855 *max_sectors = best_good_sectors;
856
857 return rdev;
858 }
859
860 int md_raid10_congested(struct mddev *mddev, int bits)
861 {
862 struct r10conf *conf = mddev->private;
863 int i, ret = 0;
864
865 if ((bits & (1 << BDI_async_congested)) &&
866 conf->pending_count >= max_queued_requests)
867 return 1;
868
869 rcu_read_lock();
870 for (i = 0;
871 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
872 && ret == 0;
873 i++) {
874 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
875 if (rdev && !test_bit(Faulty, &rdev->flags)) {
876 struct request_queue *q = bdev_get_queue(rdev->bdev);
877
878 ret |= bdi_congested(&q->backing_dev_info, bits);
879 }
880 }
881 rcu_read_unlock();
882 return ret;
883 }
884 EXPORT_SYMBOL_GPL(md_raid10_congested);
885
886 static int raid10_congested(void *data, int bits)
887 {
888 struct mddev *mddev = data;
889
890 return mddev_congested(mddev, bits) ||
891 md_raid10_congested(mddev, bits);
892 }
893
894 static void flush_pending_writes(struct r10conf *conf)
895 {
896 /* Any writes that have been queued but are awaiting
897 * bitmap updates get flushed here.
898 */
899 spin_lock_irq(&conf->device_lock);
900
901 if (conf->pending_bio_list.head) {
902 struct bio *bio;
903 bio = bio_list_get(&conf->pending_bio_list);
904 conf->pending_count = 0;
905 spin_unlock_irq(&conf->device_lock);
906 /* flush any pending bitmap writes to disk
907 * before proceeding w/ I/O */
908 bitmap_unplug(conf->mddev->bitmap);
909 wake_up(&conf->wait_barrier);
910
911 while (bio) { /* submit pending writes */
912 struct bio *next = bio->bi_next;
913 bio->bi_next = NULL;
914 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
915 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
916 /* Just ignore it */
917 bio_endio(bio, 0);
918 else
919 generic_make_request(bio);
920 bio = next;
921 }
922 } else
923 spin_unlock_irq(&conf->device_lock);
924 }
925
926 /* Barriers....
927 * Sometimes we need to suspend IO while we do something else,
928 * either some resync/recovery, or reconfigure the array.
929 * To do this we raise a 'barrier'.
930 * The 'barrier' is a counter that can be raised multiple times
931 * to count how many activities are happening which preclude
932 * normal IO.
933 * We can only raise the barrier if there is no pending IO.
934 * i.e. if nr_pending == 0.
935 * We choose only to raise the barrier if no-one is waiting for the
936 * barrier to go down. This means that as soon as an IO request
937 * is ready, no other operations which require a barrier will start
938 * until the IO request has had a chance.
939 *
940 * So: regular IO calls 'wait_barrier'. When that returns there
941 * is no backgroup IO happening, It must arrange to call
942 * allow_barrier when it has finished its IO.
943 * backgroup IO calls must call raise_barrier. Once that returns
944 * there is no normal IO happeing. It must arrange to call
945 * lower_barrier when the particular background IO completes.
946 */
947
948 static void raise_barrier(struct r10conf *conf, int force)
949 {
950 BUG_ON(force && !conf->barrier);
951 spin_lock_irq(&conf->resync_lock);
952
953 /* Wait until no block IO is waiting (unless 'force') */
954 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
955 conf->resync_lock, );
956
957 /* block any new IO from starting */
958 conf->barrier++;
959
960 /* Now wait for all pending IO to complete */
961 wait_event_lock_irq(conf->wait_barrier,
962 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
963 conf->resync_lock, );
964
965 spin_unlock_irq(&conf->resync_lock);
966 }
967
968 static void lower_barrier(struct r10conf *conf)
969 {
970 unsigned long flags;
971 spin_lock_irqsave(&conf->resync_lock, flags);
972 conf->barrier--;
973 spin_unlock_irqrestore(&conf->resync_lock, flags);
974 wake_up(&conf->wait_barrier);
975 }
976
977 static void wait_barrier(struct r10conf *conf)
978 {
979 spin_lock_irq(&conf->resync_lock);
980 if (conf->barrier) {
981 conf->nr_waiting++;
982 /* Wait for the barrier to drop.
983 * However if there are already pending
984 * requests (preventing the barrier from
985 * rising completely), and the
986 * pre-process bio queue isn't empty,
987 * then don't wait, as we need to empty
988 * that queue to get the nr_pending
989 * count down.
990 */
991 wait_event_lock_irq(conf->wait_barrier,
992 !conf->barrier ||
993 (conf->nr_pending &&
994 current->bio_list &&
995 !bio_list_empty(current->bio_list)),
996 conf->resync_lock,
997 );
998 conf->nr_waiting--;
999 }
1000 conf->nr_pending++;
1001 spin_unlock_irq(&conf->resync_lock);
1002 }
1003
1004 static void allow_barrier(struct r10conf *conf)
1005 {
1006 unsigned long flags;
1007 spin_lock_irqsave(&conf->resync_lock, flags);
1008 conf->nr_pending--;
1009 spin_unlock_irqrestore(&conf->resync_lock, flags);
1010 wake_up(&conf->wait_barrier);
1011 }
1012
1013 static void freeze_array(struct r10conf *conf)
1014 {
1015 /* stop syncio and normal IO and wait for everything to
1016 * go quiet.
1017 * We increment barrier and nr_waiting, and then
1018 * wait until nr_pending match nr_queued+1
1019 * This is called in the context of one normal IO request
1020 * that has failed. Thus any sync request that might be pending
1021 * will be blocked by nr_pending, and we need to wait for
1022 * pending IO requests to complete or be queued for re-try.
1023 * Thus the number queued (nr_queued) plus this request (1)
1024 * must match the number of pending IOs (nr_pending) before
1025 * we continue.
1026 */
1027 spin_lock_irq(&conf->resync_lock);
1028 conf->barrier++;
1029 conf->nr_waiting++;
1030 wait_event_lock_irq(conf->wait_barrier,
1031 conf->nr_pending == conf->nr_queued+1,
1032 conf->resync_lock,
1033 flush_pending_writes(conf));
1034
1035 spin_unlock_irq(&conf->resync_lock);
1036 }
1037
1038 static void unfreeze_array(struct r10conf *conf)
1039 {
1040 /* reverse the effect of the freeze */
1041 spin_lock_irq(&conf->resync_lock);
1042 conf->barrier--;
1043 conf->nr_waiting--;
1044 wake_up(&conf->wait_barrier);
1045 spin_unlock_irq(&conf->resync_lock);
1046 }
1047
1048 static sector_t choose_data_offset(struct r10bio *r10_bio,
1049 struct md_rdev *rdev)
1050 {
1051 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1052 test_bit(R10BIO_Previous, &r10_bio->state))
1053 return rdev->data_offset;
1054 else
1055 return rdev->new_data_offset;
1056 }
1057
1058 struct raid10_plug_cb {
1059 struct blk_plug_cb cb;
1060 struct bio_list pending;
1061 int pending_cnt;
1062 };
1063
1064 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1065 {
1066 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1067 cb);
1068 struct mddev *mddev = plug->cb.data;
1069 struct r10conf *conf = mddev->private;
1070 struct bio *bio;
1071
1072 if (from_schedule) {
1073 spin_lock_irq(&conf->device_lock);
1074 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1075 conf->pending_count += plug->pending_cnt;
1076 spin_unlock_irq(&conf->device_lock);
1077 md_wakeup_thread(mddev->thread);
1078 kfree(plug);
1079 return;
1080 }
1081
1082 /* we aren't scheduling, so we can do the write-out directly. */
1083 bio = bio_list_get(&plug->pending);
1084 bitmap_unplug(mddev->bitmap);
1085 wake_up(&conf->wait_barrier);
1086
1087 while (bio) { /* submit pending writes */
1088 struct bio *next = bio->bi_next;
1089 bio->bi_next = NULL;
1090 generic_make_request(bio);
1091 bio = next;
1092 }
1093 kfree(plug);
1094 }
1095
1096 static void make_request(struct mddev *mddev, struct bio * bio)
1097 {
1098 struct r10conf *conf = mddev->private;
1099 struct r10bio *r10_bio;
1100 struct bio *read_bio;
1101 int i;
1102 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1103 int chunk_sects = chunk_mask + 1;
1104 const int rw = bio_data_dir(bio);
1105 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1106 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1107 const unsigned long do_discard = (bio->bi_rw
1108 & (REQ_DISCARD | REQ_SECURE));
1109 unsigned long flags;
1110 struct md_rdev *blocked_rdev;
1111 struct blk_plug_cb *cb;
1112 struct raid10_plug_cb *plug = NULL;
1113 int sectors_handled;
1114 int max_sectors;
1115 int sectors;
1116
1117 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1118 md_flush_request(mddev, bio);
1119 return;
1120 }
1121
1122 /* If this request crosses a chunk boundary, we need to
1123 * split it. This will only happen for 1 PAGE (or less) requests.
1124 */
1125 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1126 > chunk_sects
1127 && (conf->geo.near_copies < conf->geo.raid_disks
1128 || conf->prev.near_copies < conf->prev.raid_disks))) {
1129 struct bio_pair *bp;
1130 /* Sanity check -- queue functions should prevent this happening */
1131 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1132 bio->bi_idx != 0)
1133 goto bad_map;
1134 /* This is a one page bio that upper layers
1135 * refuse to split for us, so we need to split it.
1136 */
1137 bp = bio_split(bio,
1138 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1139
1140 /* Each of these 'make_request' calls will call 'wait_barrier'.
1141 * If the first succeeds but the second blocks due to the resync
1142 * thread raising the barrier, we will deadlock because the
1143 * IO to the underlying device will be queued in generic_make_request
1144 * and will never complete, so will never reduce nr_pending.
1145 * So increment nr_waiting here so no new raise_barriers will
1146 * succeed, and so the second wait_barrier cannot block.
1147 */
1148 spin_lock_irq(&conf->resync_lock);
1149 conf->nr_waiting++;
1150 spin_unlock_irq(&conf->resync_lock);
1151
1152 make_request(mddev, &bp->bio1);
1153 make_request(mddev, &bp->bio2);
1154
1155 spin_lock_irq(&conf->resync_lock);
1156 conf->nr_waiting--;
1157 wake_up(&conf->wait_barrier);
1158 spin_unlock_irq(&conf->resync_lock);
1159
1160 bio_pair_release(bp);
1161 return;
1162 bad_map:
1163 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1164 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1165 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1166
1167 bio_io_error(bio);
1168 return;
1169 }
1170
1171 md_write_start(mddev, bio);
1172
1173 /*
1174 * Register the new request and wait if the reconstruction
1175 * thread has put up a bar for new requests.
1176 * Continue immediately if no resync is active currently.
1177 */
1178 wait_barrier(conf);
1179
1180 sectors = bio->bi_size >> 9;
1181 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1182 bio->bi_sector < conf->reshape_progress &&
1183 bio->bi_sector + sectors > conf->reshape_progress) {
1184 /* IO spans the reshape position. Need to wait for
1185 * reshape to pass
1186 */
1187 allow_barrier(conf);
1188 wait_event(conf->wait_barrier,
1189 conf->reshape_progress <= bio->bi_sector ||
1190 conf->reshape_progress >= bio->bi_sector + sectors);
1191 wait_barrier(conf);
1192 }
1193 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1194 bio_data_dir(bio) == WRITE &&
1195 (mddev->reshape_backwards
1196 ? (bio->bi_sector < conf->reshape_safe &&
1197 bio->bi_sector + sectors > conf->reshape_progress)
1198 : (bio->bi_sector + sectors > conf->reshape_safe &&
1199 bio->bi_sector < conf->reshape_progress))) {
1200 /* Need to update reshape_position in metadata */
1201 mddev->reshape_position = conf->reshape_progress;
1202 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1203 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1204 md_wakeup_thread(mddev->thread);
1205 wait_event(mddev->sb_wait,
1206 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1207
1208 conf->reshape_safe = mddev->reshape_position;
1209 }
1210
1211 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1212
1213 r10_bio->master_bio = bio;
1214 r10_bio->sectors = sectors;
1215
1216 r10_bio->mddev = mddev;
1217 r10_bio->sector = bio->bi_sector;
1218 r10_bio->state = 0;
1219
1220 /* We might need to issue multiple reads to different
1221 * devices if there are bad blocks around, so we keep
1222 * track of the number of reads in bio->bi_phys_segments.
1223 * If this is 0, there is only one r10_bio and no locking
1224 * will be needed when the request completes. If it is
1225 * non-zero, then it is the number of not-completed requests.
1226 */
1227 bio->bi_phys_segments = 0;
1228 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1229
1230 if (rw == READ) {
1231 /*
1232 * read balancing logic:
1233 */
1234 struct md_rdev *rdev;
1235 int slot;
1236
1237 read_again:
1238 rdev = read_balance(conf, r10_bio, &max_sectors);
1239 if (!rdev) {
1240 raid_end_bio_io(r10_bio);
1241 return;
1242 }
1243 slot = r10_bio->read_slot;
1244
1245 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1246 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1247 max_sectors);
1248
1249 r10_bio->devs[slot].bio = read_bio;
1250 r10_bio->devs[slot].rdev = rdev;
1251
1252 read_bio->bi_sector = r10_bio->devs[slot].addr +
1253 choose_data_offset(r10_bio, rdev);
1254 read_bio->bi_bdev = rdev->bdev;
1255 read_bio->bi_end_io = raid10_end_read_request;
1256 read_bio->bi_rw = READ | do_sync;
1257 read_bio->bi_private = r10_bio;
1258
1259 if (max_sectors < r10_bio->sectors) {
1260 /* Could not read all from this device, so we will
1261 * need another r10_bio.
1262 */
1263 sectors_handled = (r10_bio->sectors + max_sectors
1264 - bio->bi_sector);
1265 r10_bio->sectors = max_sectors;
1266 spin_lock_irq(&conf->device_lock);
1267 if (bio->bi_phys_segments == 0)
1268 bio->bi_phys_segments = 2;
1269 else
1270 bio->bi_phys_segments++;
1271 spin_unlock(&conf->device_lock);
1272 /* Cannot call generic_make_request directly
1273 * as that will be queued in __generic_make_request
1274 * and subsequent mempool_alloc might block
1275 * waiting for it. so hand bio over to raid10d.
1276 */
1277 reschedule_retry(r10_bio);
1278
1279 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1280
1281 r10_bio->master_bio = bio;
1282 r10_bio->sectors = ((bio->bi_size >> 9)
1283 - sectors_handled);
1284 r10_bio->state = 0;
1285 r10_bio->mddev = mddev;
1286 r10_bio->sector = bio->bi_sector + sectors_handled;
1287 goto read_again;
1288 } else
1289 generic_make_request(read_bio);
1290 return;
1291 }
1292
1293 /*
1294 * WRITE:
1295 */
1296 if (conf->pending_count >= max_queued_requests) {
1297 md_wakeup_thread(mddev->thread);
1298 wait_event(conf->wait_barrier,
1299 conf->pending_count < max_queued_requests);
1300 }
1301 /* first select target devices under rcu_lock and
1302 * inc refcount on their rdev. Record them by setting
1303 * bios[x] to bio
1304 * If there are known/acknowledged bad blocks on any device
1305 * on which we have seen a write error, we want to avoid
1306 * writing to those blocks. This potentially requires several
1307 * writes to write around the bad blocks. Each set of writes
1308 * gets its own r10_bio with a set of bios attached. The number
1309 * of r10_bios is recored in bio->bi_phys_segments just as with
1310 * the read case.
1311 */
1312
1313 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1314 raid10_find_phys(conf, r10_bio);
1315 retry_write:
1316 blocked_rdev = NULL;
1317 rcu_read_lock();
1318 max_sectors = r10_bio->sectors;
1319
1320 for (i = 0; i < conf->copies; i++) {
1321 int d = r10_bio->devs[i].devnum;
1322 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1323 struct md_rdev *rrdev = rcu_dereference(
1324 conf->mirrors[d].replacement);
1325 if (rdev == rrdev)
1326 rrdev = NULL;
1327 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1328 atomic_inc(&rdev->nr_pending);
1329 blocked_rdev = rdev;
1330 break;
1331 }
1332 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1333 atomic_inc(&rrdev->nr_pending);
1334 blocked_rdev = rrdev;
1335 break;
1336 }
1337 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1338 || test_bit(Unmerged, &rrdev->flags)))
1339 rrdev = NULL;
1340
1341 r10_bio->devs[i].bio = NULL;
1342 r10_bio->devs[i].repl_bio = NULL;
1343 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1344 test_bit(Unmerged, &rdev->flags)) {
1345 set_bit(R10BIO_Degraded, &r10_bio->state);
1346 continue;
1347 }
1348 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1349 sector_t first_bad;
1350 sector_t dev_sector = r10_bio->devs[i].addr;
1351 int bad_sectors;
1352 int is_bad;
1353
1354 is_bad = is_badblock(rdev, dev_sector,
1355 max_sectors,
1356 &first_bad, &bad_sectors);
1357 if (is_bad < 0) {
1358 /* Mustn't write here until the bad block
1359 * is acknowledged
1360 */
1361 atomic_inc(&rdev->nr_pending);
1362 set_bit(BlockedBadBlocks, &rdev->flags);
1363 blocked_rdev = rdev;
1364 break;
1365 }
1366 if (is_bad && first_bad <= dev_sector) {
1367 /* Cannot write here at all */
1368 bad_sectors -= (dev_sector - first_bad);
1369 if (bad_sectors < max_sectors)
1370 /* Mustn't write more than bad_sectors
1371 * to other devices yet
1372 */
1373 max_sectors = bad_sectors;
1374 /* We don't set R10BIO_Degraded as that
1375 * only applies if the disk is missing,
1376 * so it might be re-added, and we want to
1377 * know to recover this chunk.
1378 * In this case the device is here, and the
1379 * fact that this chunk is not in-sync is
1380 * recorded in the bad block log.
1381 */
1382 continue;
1383 }
1384 if (is_bad) {
1385 int good_sectors = first_bad - dev_sector;
1386 if (good_sectors < max_sectors)
1387 max_sectors = good_sectors;
1388 }
1389 }
1390 r10_bio->devs[i].bio = bio;
1391 atomic_inc(&rdev->nr_pending);
1392 if (rrdev) {
1393 r10_bio->devs[i].repl_bio = bio;
1394 atomic_inc(&rrdev->nr_pending);
1395 }
1396 }
1397 rcu_read_unlock();
1398
1399 if (unlikely(blocked_rdev)) {
1400 /* Have to wait for this device to get unblocked, then retry */
1401 int j;
1402 int d;
1403
1404 for (j = 0; j < i; j++) {
1405 if (r10_bio->devs[j].bio) {
1406 d = r10_bio->devs[j].devnum;
1407 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1408 }
1409 if (r10_bio->devs[j].repl_bio) {
1410 struct md_rdev *rdev;
1411 d = r10_bio->devs[j].devnum;
1412 rdev = conf->mirrors[d].replacement;
1413 if (!rdev) {
1414 /* Race with remove_disk */
1415 smp_mb();
1416 rdev = conf->mirrors[d].rdev;
1417 }
1418 rdev_dec_pending(rdev, mddev);
1419 }
1420 }
1421 allow_barrier(conf);
1422 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1423 wait_barrier(conf);
1424 goto retry_write;
1425 }
1426
1427 if (max_sectors < r10_bio->sectors) {
1428 /* We are splitting this into multiple parts, so
1429 * we need to prepare for allocating another r10_bio.
1430 */
1431 r10_bio->sectors = max_sectors;
1432 spin_lock_irq(&conf->device_lock);
1433 if (bio->bi_phys_segments == 0)
1434 bio->bi_phys_segments = 2;
1435 else
1436 bio->bi_phys_segments++;
1437 spin_unlock_irq(&conf->device_lock);
1438 }
1439 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1440
1441 atomic_set(&r10_bio->remaining, 1);
1442 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1443
1444 for (i = 0; i < conf->copies; i++) {
1445 struct bio *mbio;
1446 int d = r10_bio->devs[i].devnum;
1447 if (!r10_bio->devs[i].bio)
1448 continue;
1449
1450 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1451 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1452 max_sectors);
1453 r10_bio->devs[i].bio = mbio;
1454
1455 mbio->bi_sector = (r10_bio->devs[i].addr+
1456 choose_data_offset(r10_bio,
1457 conf->mirrors[d].rdev));
1458 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1459 mbio->bi_end_io = raid10_end_write_request;
1460 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1461 mbio->bi_private = r10_bio;
1462
1463 atomic_inc(&r10_bio->remaining);
1464
1465 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1466 if (cb)
1467 plug = container_of(cb, struct raid10_plug_cb, cb);
1468 else
1469 plug = NULL;
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!plug)
1480 md_wakeup_thread(mddev->thread);
1481
1482 if (!r10_bio->devs[i].repl_bio)
1483 continue;
1484
1485 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1486 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1487 max_sectors);
1488 r10_bio->devs[i].repl_bio = mbio;
1489
1490 /* We are actively writing to the original device
1491 * so it cannot disappear, so the replacement cannot
1492 * become NULL here
1493 */
1494 mbio->bi_sector = (r10_bio->devs[i].addr +
1495 choose_data_offset(
1496 r10_bio,
1497 conf->mirrors[d].replacement));
1498 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
1500 mbio->bi_rw = WRITE | do_sync | do_fua | do_discard;
1501 mbio->bi_private = r10_bio;
1502
1503 atomic_inc(&r10_bio->remaining);
1504 spin_lock_irqsave(&conf->device_lock, flags);
1505 bio_list_add(&conf->pending_bio_list, mbio);
1506 conf->pending_count++;
1507 spin_unlock_irqrestore(&conf->device_lock, flags);
1508 if (!mddev_check_plugged(mddev))
1509 md_wakeup_thread(mddev->thread);
1510 }
1511
1512 /* Don't remove the bias on 'remaining' (one_write_done) until
1513 * after checking if we need to go around again.
1514 */
1515
1516 if (sectors_handled < (bio->bi_size >> 9)) {
1517 one_write_done(r10_bio);
1518 /* We need another r10_bio. It has already been counted
1519 * in bio->bi_phys_segments.
1520 */
1521 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1522
1523 r10_bio->master_bio = bio;
1524 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1525
1526 r10_bio->mddev = mddev;
1527 r10_bio->sector = bio->bi_sector + sectors_handled;
1528 r10_bio->state = 0;
1529 goto retry_write;
1530 }
1531 one_write_done(r10_bio);
1532
1533 /* In case raid10d snuck in to freeze_array */
1534 wake_up(&conf->wait_barrier);
1535 }
1536
1537 static void status(struct seq_file *seq, struct mddev *mddev)
1538 {
1539 struct r10conf *conf = mddev->private;
1540 int i;
1541
1542 if (conf->geo.near_copies < conf->geo.raid_disks)
1543 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1544 if (conf->geo.near_copies > 1)
1545 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1546 if (conf->geo.far_copies > 1) {
1547 if (conf->geo.far_offset)
1548 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1549 else
1550 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1551 }
1552 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1553 conf->geo.raid_disks - mddev->degraded);
1554 for (i = 0; i < conf->geo.raid_disks; i++)
1555 seq_printf(seq, "%s",
1556 conf->mirrors[i].rdev &&
1557 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1558 seq_printf(seq, "]");
1559 }
1560
1561 /* check if there are enough drives for
1562 * every block to appear on atleast one.
1563 * Don't consider the device numbered 'ignore'
1564 * as we might be about to remove it.
1565 */
1566 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1567 {
1568 int first = 0;
1569
1570 do {
1571 int n = conf->copies;
1572 int cnt = 0;
1573 while (n--) {
1574 if (conf->mirrors[first].rdev &&
1575 first != ignore)
1576 cnt++;
1577 first = (first+1) % geo->raid_disks;
1578 }
1579 if (cnt == 0)
1580 return 0;
1581 } while (first != 0);
1582 return 1;
1583 }
1584
1585 static int enough(struct r10conf *conf, int ignore)
1586 {
1587 return _enough(conf, &conf->geo, ignore) &&
1588 _enough(conf, &conf->prev, ignore);
1589 }
1590
1591 static void error(struct mddev *mddev, struct md_rdev *rdev)
1592 {
1593 char b[BDEVNAME_SIZE];
1594 struct r10conf *conf = mddev->private;
1595
1596 /*
1597 * If it is not operational, then we have already marked it as dead
1598 * else if it is the last working disks, ignore the error, let the
1599 * next level up know.
1600 * else mark the drive as failed
1601 */
1602 if (test_bit(In_sync, &rdev->flags)
1603 && !enough(conf, rdev->raid_disk))
1604 /*
1605 * Don't fail the drive, just return an IO error.
1606 */
1607 return;
1608 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1609 unsigned long flags;
1610 spin_lock_irqsave(&conf->device_lock, flags);
1611 mddev->degraded++;
1612 spin_unlock_irqrestore(&conf->device_lock, flags);
1613 /*
1614 * if recovery is running, make sure it aborts.
1615 */
1616 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1617 }
1618 set_bit(Blocked, &rdev->flags);
1619 set_bit(Faulty, &rdev->flags);
1620 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1621 printk(KERN_ALERT
1622 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1623 "md/raid10:%s: Operation continuing on %d devices.\n",
1624 mdname(mddev), bdevname(rdev->bdev, b),
1625 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1626 }
1627
1628 static void print_conf(struct r10conf *conf)
1629 {
1630 int i;
1631 struct raid10_info *tmp;
1632
1633 printk(KERN_DEBUG "RAID10 conf printout:\n");
1634 if (!conf) {
1635 printk(KERN_DEBUG "(!conf)\n");
1636 return;
1637 }
1638 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1639 conf->geo.raid_disks);
1640
1641 for (i = 0; i < conf->geo.raid_disks; i++) {
1642 char b[BDEVNAME_SIZE];
1643 tmp = conf->mirrors + i;
1644 if (tmp->rdev)
1645 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1646 i, !test_bit(In_sync, &tmp->rdev->flags),
1647 !test_bit(Faulty, &tmp->rdev->flags),
1648 bdevname(tmp->rdev->bdev,b));
1649 }
1650 }
1651
1652 static void close_sync(struct r10conf *conf)
1653 {
1654 wait_barrier(conf);
1655 allow_barrier(conf);
1656
1657 mempool_destroy(conf->r10buf_pool);
1658 conf->r10buf_pool = NULL;
1659 }
1660
1661 static int raid10_spare_active(struct mddev *mddev)
1662 {
1663 int i;
1664 struct r10conf *conf = mddev->private;
1665 struct raid10_info *tmp;
1666 int count = 0;
1667 unsigned long flags;
1668
1669 /*
1670 * Find all non-in_sync disks within the RAID10 configuration
1671 * and mark them in_sync
1672 */
1673 for (i = 0; i < conf->geo.raid_disks; i++) {
1674 tmp = conf->mirrors + i;
1675 if (tmp->replacement
1676 && tmp->replacement->recovery_offset == MaxSector
1677 && !test_bit(Faulty, &tmp->replacement->flags)
1678 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1679 /* Replacement has just become active */
1680 if (!tmp->rdev
1681 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1682 count++;
1683 if (tmp->rdev) {
1684 /* Replaced device not technically faulty,
1685 * but we need to be sure it gets removed
1686 * and never re-added.
1687 */
1688 set_bit(Faulty, &tmp->rdev->flags);
1689 sysfs_notify_dirent_safe(
1690 tmp->rdev->sysfs_state);
1691 }
1692 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1693 } else if (tmp->rdev
1694 && !test_bit(Faulty, &tmp->rdev->flags)
1695 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1696 count++;
1697 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1698 }
1699 }
1700 spin_lock_irqsave(&conf->device_lock, flags);
1701 mddev->degraded -= count;
1702 spin_unlock_irqrestore(&conf->device_lock, flags);
1703
1704 print_conf(conf);
1705 return count;
1706 }
1707
1708
1709 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1710 {
1711 struct r10conf *conf = mddev->private;
1712 int err = -EEXIST;
1713 int mirror;
1714 int first = 0;
1715 int last = conf->geo.raid_disks - 1;
1716 struct request_queue *q = bdev_get_queue(rdev->bdev);
1717
1718 if (mddev->recovery_cp < MaxSector)
1719 /* only hot-add to in-sync arrays, as recovery is
1720 * very different from resync
1721 */
1722 return -EBUSY;
1723 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1724 return -EINVAL;
1725
1726 if (rdev->raid_disk >= 0)
1727 first = last = rdev->raid_disk;
1728
1729 if (q->merge_bvec_fn) {
1730 set_bit(Unmerged, &rdev->flags);
1731 mddev->merge_check_needed = 1;
1732 }
1733
1734 if (rdev->saved_raid_disk >= first &&
1735 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1736 mirror = rdev->saved_raid_disk;
1737 else
1738 mirror = first;
1739 for ( ; mirror <= last ; mirror++) {
1740 struct raid10_info *p = &conf->mirrors[mirror];
1741 if (p->recovery_disabled == mddev->recovery_disabled)
1742 continue;
1743 if (p->rdev) {
1744 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1745 p->replacement != NULL)
1746 continue;
1747 clear_bit(In_sync, &rdev->flags);
1748 set_bit(Replacement, &rdev->flags);
1749 rdev->raid_disk = mirror;
1750 err = 0;
1751 disk_stack_limits(mddev->gendisk, rdev->bdev,
1752 rdev->data_offset << 9);
1753 conf->fullsync = 1;
1754 rcu_assign_pointer(p->replacement, rdev);
1755 break;
1756 }
1757
1758 disk_stack_limits(mddev->gendisk, rdev->bdev,
1759 rdev->data_offset << 9);
1760
1761 p->head_position = 0;
1762 p->recovery_disabled = mddev->recovery_disabled - 1;
1763 rdev->raid_disk = mirror;
1764 err = 0;
1765 if (rdev->saved_raid_disk != mirror)
1766 conf->fullsync = 1;
1767 rcu_assign_pointer(p->rdev, rdev);
1768 break;
1769 }
1770 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1771 /* Some requests might not have seen this new
1772 * merge_bvec_fn. We must wait for them to complete
1773 * before merging the device fully.
1774 * First we make sure any code which has tested
1775 * our function has submitted the request, then
1776 * we wait for all outstanding requests to complete.
1777 */
1778 synchronize_sched();
1779 raise_barrier(conf, 0);
1780 lower_barrier(conf);
1781 clear_bit(Unmerged, &rdev->flags);
1782 }
1783 md_integrity_add_rdev(rdev, mddev);
1784 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1785 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1786
1787 print_conf(conf);
1788 return err;
1789 }
1790
1791 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1792 {
1793 struct r10conf *conf = mddev->private;
1794 int err = 0;
1795 int number = rdev->raid_disk;
1796 struct md_rdev **rdevp;
1797 struct raid10_info *p = conf->mirrors + number;
1798
1799 print_conf(conf);
1800 if (rdev == p->rdev)
1801 rdevp = &p->rdev;
1802 else if (rdev == p->replacement)
1803 rdevp = &p->replacement;
1804 else
1805 return 0;
1806
1807 if (test_bit(In_sync, &rdev->flags) ||
1808 atomic_read(&rdev->nr_pending)) {
1809 err = -EBUSY;
1810 goto abort;
1811 }
1812 /* Only remove faulty devices if recovery
1813 * is not possible.
1814 */
1815 if (!test_bit(Faulty, &rdev->flags) &&
1816 mddev->recovery_disabled != p->recovery_disabled &&
1817 (!p->replacement || p->replacement == rdev) &&
1818 number < conf->geo.raid_disks &&
1819 enough(conf, -1)) {
1820 err = -EBUSY;
1821 goto abort;
1822 }
1823 *rdevp = NULL;
1824 synchronize_rcu();
1825 if (atomic_read(&rdev->nr_pending)) {
1826 /* lost the race, try later */
1827 err = -EBUSY;
1828 *rdevp = rdev;
1829 goto abort;
1830 } else if (p->replacement) {
1831 /* We must have just cleared 'rdev' */
1832 p->rdev = p->replacement;
1833 clear_bit(Replacement, &p->replacement->flags);
1834 smp_mb(); /* Make sure other CPUs may see both as identical
1835 * but will never see neither -- if they are careful.
1836 */
1837 p->replacement = NULL;
1838 clear_bit(WantReplacement, &rdev->flags);
1839 } else
1840 /* We might have just remove the Replacement as faulty
1841 * Clear the flag just in case
1842 */
1843 clear_bit(WantReplacement, &rdev->flags);
1844
1845 err = md_integrity_register(mddev);
1846
1847 abort:
1848
1849 print_conf(conf);
1850 return err;
1851 }
1852
1853
1854 static void end_sync_read(struct bio *bio, int error)
1855 {
1856 struct r10bio *r10_bio = bio->bi_private;
1857 struct r10conf *conf = r10_bio->mddev->private;
1858 int d;
1859
1860 if (bio == r10_bio->master_bio) {
1861 /* this is a reshape read */
1862 d = r10_bio->read_slot; /* really the read dev */
1863 } else
1864 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1865
1866 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1867 set_bit(R10BIO_Uptodate, &r10_bio->state);
1868 else
1869 /* The write handler will notice the lack of
1870 * R10BIO_Uptodate and record any errors etc
1871 */
1872 atomic_add(r10_bio->sectors,
1873 &conf->mirrors[d].rdev->corrected_errors);
1874
1875 /* for reconstruct, we always reschedule after a read.
1876 * for resync, only after all reads
1877 */
1878 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1879 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1880 atomic_dec_and_test(&r10_bio->remaining)) {
1881 /* we have read all the blocks,
1882 * do the comparison in process context in raid10d
1883 */
1884 reschedule_retry(r10_bio);
1885 }
1886 }
1887
1888 static void end_sync_request(struct r10bio *r10_bio)
1889 {
1890 struct mddev *mddev = r10_bio->mddev;
1891
1892 while (atomic_dec_and_test(&r10_bio->remaining)) {
1893 if (r10_bio->master_bio == NULL) {
1894 /* the primary of several recovery bios */
1895 sector_t s = r10_bio->sectors;
1896 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1897 test_bit(R10BIO_WriteError, &r10_bio->state))
1898 reschedule_retry(r10_bio);
1899 else
1900 put_buf(r10_bio);
1901 md_done_sync(mddev, s, 1);
1902 break;
1903 } else {
1904 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1905 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1906 test_bit(R10BIO_WriteError, &r10_bio->state))
1907 reschedule_retry(r10_bio);
1908 else
1909 put_buf(r10_bio);
1910 r10_bio = r10_bio2;
1911 }
1912 }
1913 }
1914
1915 static void end_sync_write(struct bio *bio, int error)
1916 {
1917 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1918 struct r10bio *r10_bio = bio->bi_private;
1919 struct mddev *mddev = r10_bio->mddev;
1920 struct r10conf *conf = mddev->private;
1921 int d;
1922 sector_t first_bad;
1923 int bad_sectors;
1924 int slot;
1925 int repl;
1926 struct md_rdev *rdev = NULL;
1927
1928 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1929 if (repl)
1930 rdev = conf->mirrors[d].replacement;
1931 else
1932 rdev = conf->mirrors[d].rdev;
1933
1934 if (!uptodate) {
1935 if (repl)
1936 md_error(mddev, rdev);
1937 else {
1938 set_bit(WriteErrorSeen, &rdev->flags);
1939 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1940 set_bit(MD_RECOVERY_NEEDED,
1941 &rdev->mddev->recovery);
1942 set_bit(R10BIO_WriteError, &r10_bio->state);
1943 }
1944 } else if (is_badblock(rdev,
1945 r10_bio->devs[slot].addr,
1946 r10_bio->sectors,
1947 &first_bad, &bad_sectors))
1948 set_bit(R10BIO_MadeGood, &r10_bio->state);
1949
1950 rdev_dec_pending(rdev, mddev);
1951
1952 end_sync_request(r10_bio);
1953 }
1954
1955 /*
1956 * Note: sync and recover and handled very differently for raid10
1957 * This code is for resync.
1958 * For resync, we read through virtual addresses and read all blocks.
1959 * If there is any error, we schedule a write. The lowest numbered
1960 * drive is authoritative.
1961 * However requests come for physical address, so we need to map.
1962 * For every physical address there are raid_disks/copies virtual addresses,
1963 * which is always are least one, but is not necessarly an integer.
1964 * This means that a physical address can span multiple chunks, so we may
1965 * have to submit multiple io requests for a single sync request.
1966 */
1967 /*
1968 * We check if all blocks are in-sync and only write to blocks that
1969 * aren't in sync
1970 */
1971 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1972 {
1973 struct r10conf *conf = mddev->private;
1974 int i, first;
1975 struct bio *tbio, *fbio;
1976 int vcnt;
1977
1978 atomic_set(&r10_bio->remaining, 1);
1979
1980 /* find the first device with a block */
1981 for (i=0; i<conf->copies; i++)
1982 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1983 break;
1984
1985 if (i == conf->copies)
1986 goto done;
1987
1988 first = i;
1989 fbio = r10_bio->devs[i].bio;
1990
1991 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1992 /* now find blocks with errors */
1993 for (i=0 ; i < conf->copies ; i++) {
1994 int j, d;
1995
1996 tbio = r10_bio->devs[i].bio;
1997
1998 if (tbio->bi_end_io != end_sync_read)
1999 continue;
2000 if (i == first)
2001 continue;
2002 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2003 /* We know that the bi_io_vec layout is the same for
2004 * both 'first' and 'i', so we just compare them.
2005 * All vec entries are PAGE_SIZE;
2006 */
2007 for (j = 0; j < vcnt; j++)
2008 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2009 page_address(tbio->bi_io_vec[j].bv_page),
2010 fbio->bi_io_vec[j].bv_len))
2011 break;
2012 if (j == vcnt)
2013 continue;
2014 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2015 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2016 /* Don't fix anything. */
2017 continue;
2018 }
2019 /* Ok, we need to write this bio, either to correct an
2020 * inconsistency or to correct an unreadable block.
2021 * First we need to fixup bv_offset, bv_len and
2022 * bi_vecs, as the read request might have corrupted these
2023 */
2024 tbio->bi_vcnt = vcnt;
2025 tbio->bi_size = r10_bio->sectors << 9;
2026 tbio->bi_idx = 0;
2027 tbio->bi_phys_segments = 0;
2028 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2029 tbio->bi_flags |= 1 << BIO_UPTODATE;
2030 tbio->bi_next = NULL;
2031 tbio->bi_rw = WRITE;
2032 tbio->bi_private = r10_bio;
2033 tbio->bi_sector = r10_bio->devs[i].addr;
2034
2035 for (j=0; j < vcnt ; j++) {
2036 tbio->bi_io_vec[j].bv_offset = 0;
2037 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2038
2039 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2040 page_address(fbio->bi_io_vec[j].bv_page),
2041 PAGE_SIZE);
2042 }
2043 tbio->bi_end_io = end_sync_write;
2044
2045 d = r10_bio->devs[i].devnum;
2046 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2047 atomic_inc(&r10_bio->remaining);
2048 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2049
2050 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2051 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2052 generic_make_request(tbio);
2053 }
2054
2055 /* Now write out to any replacement devices
2056 * that are active
2057 */
2058 for (i = 0; i < conf->copies; i++) {
2059 int j, d;
2060
2061 tbio = r10_bio->devs[i].repl_bio;
2062 if (!tbio || !tbio->bi_end_io)
2063 continue;
2064 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2065 && r10_bio->devs[i].bio != fbio)
2066 for (j = 0; j < vcnt; j++)
2067 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2068 page_address(fbio->bi_io_vec[j].bv_page),
2069 PAGE_SIZE);
2070 d = r10_bio->devs[i].devnum;
2071 atomic_inc(&r10_bio->remaining);
2072 md_sync_acct(conf->mirrors[d].replacement->bdev,
2073 tbio->bi_size >> 9);
2074 generic_make_request(tbio);
2075 }
2076
2077 done:
2078 if (atomic_dec_and_test(&r10_bio->remaining)) {
2079 md_done_sync(mddev, r10_bio->sectors, 1);
2080 put_buf(r10_bio);
2081 }
2082 }
2083
2084 /*
2085 * Now for the recovery code.
2086 * Recovery happens across physical sectors.
2087 * We recover all non-is_sync drives by finding the virtual address of
2088 * each, and then choose a working drive that also has that virt address.
2089 * There is a separate r10_bio for each non-in_sync drive.
2090 * Only the first two slots are in use. The first for reading,
2091 * The second for writing.
2092 *
2093 */
2094 static void fix_recovery_read_error(struct r10bio *r10_bio)
2095 {
2096 /* We got a read error during recovery.
2097 * We repeat the read in smaller page-sized sections.
2098 * If a read succeeds, write it to the new device or record
2099 * a bad block if we cannot.
2100 * If a read fails, record a bad block on both old and
2101 * new devices.
2102 */
2103 struct mddev *mddev = r10_bio->mddev;
2104 struct r10conf *conf = mddev->private;
2105 struct bio *bio = r10_bio->devs[0].bio;
2106 sector_t sect = 0;
2107 int sectors = r10_bio->sectors;
2108 int idx = 0;
2109 int dr = r10_bio->devs[0].devnum;
2110 int dw = r10_bio->devs[1].devnum;
2111
2112 while (sectors) {
2113 int s = sectors;
2114 struct md_rdev *rdev;
2115 sector_t addr;
2116 int ok;
2117
2118 if (s > (PAGE_SIZE>>9))
2119 s = PAGE_SIZE >> 9;
2120
2121 rdev = conf->mirrors[dr].rdev;
2122 addr = r10_bio->devs[0].addr + sect,
2123 ok = sync_page_io(rdev,
2124 addr,
2125 s << 9,
2126 bio->bi_io_vec[idx].bv_page,
2127 READ, false);
2128 if (ok) {
2129 rdev = conf->mirrors[dw].rdev;
2130 addr = r10_bio->devs[1].addr + sect;
2131 ok = sync_page_io(rdev,
2132 addr,
2133 s << 9,
2134 bio->bi_io_vec[idx].bv_page,
2135 WRITE, false);
2136 if (!ok) {
2137 set_bit(WriteErrorSeen, &rdev->flags);
2138 if (!test_and_set_bit(WantReplacement,
2139 &rdev->flags))
2140 set_bit(MD_RECOVERY_NEEDED,
2141 &rdev->mddev->recovery);
2142 }
2143 }
2144 if (!ok) {
2145 /* We don't worry if we cannot set a bad block -
2146 * it really is bad so there is no loss in not
2147 * recording it yet
2148 */
2149 rdev_set_badblocks(rdev, addr, s, 0);
2150
2151 if (rdev != conf->mirrors[dw].rdev) {
2152 /* need bad block on destination too */
2153 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2154 addr = r10_bio->devs[1].addr + sect;
2155 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2156 if (!ok) {
2157 /* just abort the recovery */
2158 printk(KERN_NOTICE
2159 "md/raid10:%s: recovery aborted"
2160 " due to read error\n",
2161 mdname(mddev));
2162
2163 conf->mirrors[dw].recovery_disabled
2164 = mddev->recovery_disabled;
2165 set_bit(MD_RECOVERY_INTR,
2166 &mddev->recovery);
2167 break;
2168 }
2169 }
2170 }
2171
2172 sectors -= s;
2173 sect += s;
2174 idx++;
2175 }
2176 }
2177
2178 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2179 {
2180 struct r10conf *conf = mddev->private;
2181 int d;
2182 struct bio *wbio, *wbio2;
2183
2184 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2185 fix_recovery_read_error(r10_bio);
2186 end_sync_request(r10_bio);
2187 return;
2188 }
2189
2190 /*
2191 * share the pages with the first bio
2192 * and submit the write request
2193 */
2194 d = r10_bio->devs[1].devnum;
2195 wbio = r10_bio->devs[1].bio;
2196 wbio2 = r10_bio->devs[1].repl_bio;
2197 if (wbio->bi_end_io) {
2198 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2199 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2200 generic_make_request(wbio);
2201 }
2202 if (wbio2 && wbio2->bi_end_io) {
2203 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2204 md_sync_acct(conf->mirrors[d].replacement->bdev,
2205 wbio2->bi_size >> 9);
2206 generic_make_request(wbio2);
2207 }
2208 }
2209
2210
2211 /*
2212 * Used by fix_read_error() to decay the per rdev read_errors.
2213 * We halve the read error count for every hour that has elapsed
2214 * since the last recorded read error.
2215 *
2216 */
2217 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2218 {
2219 struct timespec cur_time_mon;
2220 unsigned long hours_since_last;
2221 unsigned int read_errors = atomic_read(&rdev->read_errors);
2222
2223 ktime_get_ts(&cur_time_mon);
2224
2225 if (rdev->last_read_error.tv_sec == 0 &&
2226 rdev->last_read_error.tv_nsec == 0) {
2227 /* first time we've seen a read error */
2228 rdev->last_read_error = cur_time_mon;
2229 return;
2230 }
2231
2232 hours_since_last = (cur_time_mon.tv_sec -
2233 rdev->last_read_error.tv_sec) / 3600;
2234
2235 rdev->last_read_error = cur_time_mon;
2236
2237 /*
2238 * if hours_since_last is > the number of bits in read_errors
2239 * just set read errors to 0. We do this to avoid
2240 * overflowing the shift of read_errors by hours_since_last.
2241 */
2242 if (hours_since_last >= 8 * sizeof(read_errors))
2243 atomic_set(&rdev->read_errors, 0);
2244 else
2245 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2246 }
2247
2248 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2249 int sectors, struct page *page, int rw)
2250 {
2251 sector_t first_bad;
2252 int bad_sectors;
2253
2254 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2255 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2256 return -1;
2257 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2258 /* success */
2259 return 1;
2260 if (rw == WRITE) {
2261 set_bit(WriteErrorSeen, &rdev->flags);
2262 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2263 set_bit(MD_RECOVERY_NEEDED,
2264 &rdev->mddev->recovery);
2265 }
2266 /* need to record an error - either for the block or the device */
2267 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2268 md_error(rdev->mddev, rdev);
2269 return 0;
2270 }
2271
2272 /*
2273 * This is a kernel thread which:
2274 *
2275 * 1. Retries failed read operations on working mirrors.
2276 * 2. Updates the raid superblock when problems encounter.
2277 * 3. Performs writes following reads for array synchronising.
2278 */
2279
2280 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2281 {
2282 int sect = 0; /* Offset from r10_bio->sector */
2283 int sectors = r10_bio->sectors;
2284 struct md_rdev*rdev;
2285 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2286 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2287
2288 /* still own a reference to this rdev, so it cannot
2289 * have been cleared recently.
2290 */
2291 rdev = conf->mirrors[d].rdev;
2292
2293 if (test_bit(Faulty, &rdev->flags))
2294 /* drive has already been failed, just ignore any
2295 more fix_read_error() attempts */
2296 return;
2297
2298 check_decay_read_errors(mddev, rdev);
2299 atomic_inc(&rdev->read_errors);
2300 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2301 char b[BDEVNAME_SIZE];
2302 bdevname(rdev->bdev, b);
2303
2304 printk(KERN_NOTICE
2305 "md/raid10:%s: %s: Raid device exceeded "
2306 "read_error threshold [cur %d:max %d]\n",
2307 mdname(mddev), b,
2308 atomic_read(&rdev->read_errors), max_read_errors);
2309 printk(KERN_NOTICE
2310 "md/raid10:%s: %s: Failing raid device\n",
2311 mdname(mddev), b);
2312 md_error(mddev, conf->mirrors[d].rdev);
2313 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2314 return;
2315 }
2316
2317 while(sectors) {
2318 int s = sectors;
2319 int sl = r10_bio->read_slot;
2320 int success = 0;
2321 int start;
2322
2323 if (s > (PAGE_SIZE>>9))
2324 s = PAGE_SIZE >> 9;
2325
2326 rcu_read_lock();
2327 do {
2328 sector_t first_bad;
2329 int bad_sectors;
2330
2331 d = r10_bio->devs[sl].devnum;
2332 rdev = rcu_dereference(conf->mirrors[d].rdev);
2333 if (rdev &&
2334 !test_bit(Unmerged, &rdev->flags) &&
2335 test_bit(In_sync, &rdev->flags) &&
2336 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2337 &first_bad, &bad_sectors) == 0) {
2338 atomic_inc(&rdev->nr_pending);
2339 rcu_read_unlock();
2340 success = sync_page_io(rdev,
2341 r10_bio->devs[sl].addr +
2342 sect,
2343 s<<9,
2344 conf->tmppage, READ, false);
2345 rdev_dec_pending(rdev, mddev);
2346 rcu_read_lock();
2347 if (success)
2348 break;
2349 }
2350 sl++;
2351 if (sl == conf->copies)
2352 sl = 0;
2353 } while (!success && sl != r10_bio->read_slot);
2354 rcu_read_unlock();
2355
2356 if (!success) {
2357 /* Cannot read from anywhere, just mark the block
2358 * as bad on the first device to discourage future
2359 * reads.
2360 */
2361 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2362 rdev = conf->mirrors[dn].rdev;
2363
2364 if (!rdev_set_badblocks(
2365 rdev,
2366 r10_bio->devs[r10_bio->read_slot].addr
2367 + sect,
2368 s, 0)) {
2369 md_error(mddev, rdev);
2370 r10_bio->devs[r10_bio->read_slot].bio
2371 = IO_BLOCKED;
2372 }
2373 break;
2374 }
2375
2376 start = sl;
2377 /* write it back and re-read */
2378 rcu_read_lock();
2379 while (sl != r10_bio->read_slot) {
2380 char b[BDEVNAME_SIZE];
2381
2382 if (sl==0)
2383 sl = conf->copies;
2384 sl--;
2385 d = r10_bio->devs[sl].devnum;
2386 rdev = rcu_dereference(conf->mirrors[d].rdev);
2387 if (!rdev ||
2388 test_bit(Unmerged, &rdev->flags) ||
2389 !test_bit(In_sync, &rdev->flags))
2390 continue;
2391
2392 atomic_inc(&rdev->nr_pending);
2393 rcu_read_unlock();
2394 if (r10_sync_page_io(rdev,
2395 r10_bio->devs[sl].addr +
2396 sect,
2397 s, conf->tmppage, WRITE)
2398 == 0) {
2399 /* Well, this device is dead */
2400 printk(KERN_NOTICE
2401 "md/raid10:%s: read correction "
2402 "write failed"
2403 " (%d sectors at %llu on %s)\n",
2404 mdname(mddev), s,
2405 (unsigned long long)(
2406 sect +
2407 choose_data_offset(r10_bio,
2408 rdev)),
2409 bdevname(rdev->bdev, b));
2410 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2411 "drive\n",
2412 mdname(mddev),
2413 bdevname(rdev->bdev, b));
2414 }
2415 rdev_dec_pending(rdev, mddev);
2416 rcu_read_lock();
2417 }
2418 sl = start;
2419 while (sl != r10_bio->read_slot) {
2420 char b[BDEVNAME_SIZE];
2421
2422 if (sl==0)
2423 sl = conf->copies;
2424 sl--;
2425 d = r10_bio->devs[sl].devnum;
2426 rdev = rcu_dereference(conf->mirrors[d].rdev);
2427 if (!rdev ||
2428 !test_bit(In_sync, &rdev->flags))
2429 continue;
2430
2431 atomic_inc(&rdev->nr_pending);
2432 rcu_read_unlock();
2433 switch (r10_sync_page_io(rdev,
2434 r10_bio->devs[sl].addr +
2435 sect,
2436 s, conf->tmppage,
2437 READ)) {
2438 case 0:
2439 /* Well, this device is dead */
2440 printk(KERN_NOTICE
2441 "md/raid10:%s: unable to read back "
2442 "corrected sectors"
2443 " (%d sectors at %llu on %s)\n",
2444 mdname(mddev), s,
2445 (unsigned long long)(
2446 sect +
2447 choose_data_offset(r10_bio, rdev)),
2448 bdevname(rdev->bdev, b));
2449 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2450 "drive\n",
2451 mdname(mddev),
2452 bdevname(rdev->bdev, b));
2453 break;
2454 case 1:
2455 printk(KERN_INFO
2456 "md/raid10:%s: read error corrected"
2457 " (%d sectors at %llu on %s)\n",
2458 mdname(mddev), s,
2459 (unsigned long long)(
2460 sect +
2461 choose_data_offset(r10_bio, rdev)),
2462 bdevname(rdev->bdev, b));
2463 atomic_add(s, &rdev->corrected_errors);
2464 }
2465
2466 rdev_dec_pending(rdev, mddev);
2467 rcu_read_lock();
2468 }
2469 rcu_read_unlock();
2470
2471 sectors -= s;
2472 sect += s;
2473 }
2474 }
2475
2476 static void bi_complete(struct bio *bio, int error)
2477 {
2478 complete((struct completion *)bio->bi_private);
2479 }
2480
2481 static int submit_bio_wait(int rw, struct bio *bio)
2482 {
2483 struct completion event;
2484 rw |= REQ_SYNC;
2485
2486 init_completion(&event);
2487 bio->bi_private = &event;
2488 bio->bi_end_io = bi_complete;
2489 submit_bio(rw, bio);
2490 wait_for_completion(&event);
2491
2492 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2493 }
2494
2495 static int narrow_write_error(struct r10bio *r10_bio, int i)
2496 {
2497 struct bio *bio = r10_bio->master_bio;
2498 struct mddev *mddev = r10_bio->mddev;
2499 struct r10conf *conf = mddev->private;
2500 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2501 /* bio has the data to be written to slot 'i' where
2502 * we just recently had a write error.
2503 * We repeatedly clone the bio and trim down to one block,
2504 * then try the write. Where the write fails we record
2505 * a bad block.
2506 * It is conceivable that the bio doesn't exactly align with
2507 * blocks. We must handle this.
2508 *
2509 * We currently own a reference to the rdev.
2510 */
2511
2512 int block_sectors;
2513 sector_t sector;
2514 int sectors;
2515 int sect_to_write = r10_bio->sectors;
2516 int ok = 1;
2517
2518 if (rdev->badblocks.shift < 0)
2519 return 0;
2520
2521 block_sectors = 1 << rdev->badblocks.shift;
2522 sector = r10_bio->sector;
2523 sectors = ((r10_bio->sector + block_sectors)
2524 & ~(sector_t)(block_sectors - 1))
2525 - sector;
2526
2527 while (sect_to_write) {
2528 struct bio *wbio;
2529 if (sectors > sect_to_write)
2530 sectors = sect_to_write;
2531 /* Write at 'sector' for 'sectors' */
2532 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2533 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2534 wbio->bi_sector = (r10_bio->devs[i].addr+
2535 choose_data_offset(r10_bio, rdev) +
2536 (sector - r10_bio->sector));
2537 wbio->bi_bdev = rdev->bdev;
2538 if (submit_bio_wait(WRITE, wbio) == 0)
2539 /* Failure! */
2540 ok = rdev_set_badblocks(rdev, sector,
2541 sectors, 0)
2542 && ok;
2543
2544 bio_put(wbio);
2545 sect_to_write -= sectors;
2546 sector += sectors;
2547 sectors = block_sectors;
2548 }
2549 return ok;
2550 }
2551
2552 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2553 {
2554 int slot = r10_bio->read_slot;
2555 struct bio *bio;
2556 struct r10conf *conf = mddev->private;
2557 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2558 char b[BDEVNAME_SIZE];
2559 unsigned long do_sync;
2560 int max_sectors;
2561
2562 /* we got a read error. Maybe the drive is bad. Maybe just
2563 * the block and we can fix it.
2564 * We freeze all other IO, and try reading the block from
2565 * other devices. When we find one, we re-write
2566 * and check it that fixes the read error.
2567 * This is all done synchronously while the array is
2568 * frozen.
2569 */
2570 bio = r10_bio->devs[slot].bio;
2571 bdevname(bio->bi_bdev, b);
2572 bio_put(bio);
2573 r10_bio->devs[slot].bio = NULL;
2574
2575 if (mddev->ro == 0) {
2576 freeze_array(conf);
2577 fix_read_error(conf, mddev, r10_bio);
2578 unfreeze_array(conf);
2579 } else
2580 r10_bio->devs[slot].bio = IO_BLOCKED;
2581
2582 rdev_dec_pending(rdev, mddev);
2583
2584 read_more:
2585 rdev = read_balance(conf, r10_bio, &max_sectors);
2586 if (rdev == NULL) {
2587 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2588 " read error for block %llu\n",
2589 mdname(mddev), b,
2590 (unsigned long long)r10_bio->sector);
2591 raid_end_bio_io(r10_bio);
2592 return;
2593 }
2594
2595 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2596 slot = r10_bio->read_slot;
2597 printk_ratelimited(
2598 KERN_ERR
2599 "md/raid10:%s: %s: redirecting "
2600 "sector %llu to another mirror\n",
2601 mdname(mddev),
2602 bdevname(rdev->bdev, b),
2603 (unsigned long long)r10_bio->sector);
2604 bio = bio_clone_mddev(r10_bio->master_bio,
2605 GFP_NOIO, mddev);
2606 md_trim_bio(bio,
2607 r10_bio->sector - bio->bi_sector,
2608 max_sectors);
2609 r10_bio->devs[slot].bio = bio;
2610 r10_bio->devs[slot].rdev = rdev;
2611 bio->bi_sector = r10_bio->devs[slot].addr
2612 + choose_data_offset(r10_bio, rdev);
2613 bio->bi_bdev = rdev->bdev;
2614 bio->bi_rw = READ | do_sync;
2615 bio->bi_private = r10_bio;
2616 bio->bi_end_io = raid10_end_read_request;
2617 if (max_sectors < r10_bio->sectors) {
2618 /* Drat - have to split this up more */
2619 struct bio *mbio = r10_bio->master_bio;
2620 int sectors_handled =
2621 r10_bio->sector + max_sectors
2622 - mbio->bi_sector;
2623 r10_bio->sectors = max_sectors;
2624 spin_lock_irq(&conf->device_lock);
2625 if (mbio->bi_phys_segments == 0)
2626 mbio->bi_phys_segments = 2;
2627 else
2628 mbio->bi_phys_segments++;
2629 spin_unlock_irq(&conf->device_lock);
2630 generic_make_request(bio);
2631
2632 r10_bio = mempool_alloc(conf->r10bio_pool,
2633 GFP_NOIO);
2634 r10_bio->master_bio = mbio;
2635 r10_bio->sectors = (mbio->bi_size >> 9)
2636 - sectors_handled;
2637 r10_bio->state = 0;
2638 set_bit(R10BIO_ReadError,
2639 &r10_bio->state);
2640 r10_bio->mddev = mddev;
2641 r10_bio->sector = mbio->bi_sector
2642 + sectors_handled;
2643
2644 goto read_more;
2645 } else
2646 generic_make_request(bio);
2647 }
2648
2649 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2650 {
2651 /* Some sort of write request has finished and it
2652 * succeeded in writing where we thought there was a
2653 * bad block. So forget the bad block.
2654 * Or possibly if failed and we need to record
2655 * a bad block.
2656 */
2657 int m;
2658 struct md_rdev *rdev;
2659
2660 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2661 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2662 for (m = 0; m < conf->copies; m++) {
2663 int dev = r10_bio->devs[m].devnum;
2664 rdev = conf->mirrors[dev].rdev;
2665 if (r10_bio->devs[m].bio == NULL)
2666 continue;
2667 if (test_bit(BIO_UPTODATE,
2668 &r10_bio->devs[m].bio->bi_flags)) {
2669 rdev_clear_badblocks(
2670 rdev,
2671 r10_bio->devs[m].addr,
2672 r10_bio->sectors, 0);
2673 } else {
2674 if (!rdev_set_badblocks(
2675 rdev,
2676 r10_bio->devs[m].addr,
2677 r10_bio->sectors, 0))
2678 md_error(conf->mddev, rdev);
2679 }
2680 rdev = conf->mirrors[dev].replacement;
2681 if (r10_bio->devs[m].repl_bio == NULL)
2682 continue;
2683 if (test_bit(BIO_UPTODATE,
2684 &r10_bio->devs[m].repl_bio->bi_flags)) {
2685 rdev_clear_badblocks(
2686 rdev,
2687 r10_bio->devs[m].addr,
2688 r10_bio->sectors, 0);
2689 } else {
2690 if (!rdev_set_badblocks(
2691 rdev,
2692 r10_bio->devs[m].addr,
2693 r10_bio->sectors, 0))
2694 md_error(conf->mddev, rdev);
2695 }
2696 }
2697 put_buf(r10_bio);
2698 } else {
2699 for (m = 0; m < conf->copies; m++) {
2700 int dev = r10_bio->devs[m].devnum;
2701 struct bio *bio = r10_bio->devs[m].bio;
2702 rdev = conf->mirrors[dev].rdev;
2703 if (bio == IO_MADE_GOOD) {
2704 rdev_clear_badblocks(
2705 rdev,
2706 r10_bio->devs[m].addr,
2707 r10_bio->sectors, 0);
2708 rdev_dec_pending(rdev, conf->mddev);
2709 } else if (bio != NULL &&
2710 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2711 if (!narrow_write_error(r10_bio, m)) {
2712 md_error(conf->mddev, rdev);
2713 set_bit(R10BIO_Degraded,
2714 &r10_bio->state);
2715 }
2716 rdev_dec_pending(rdev, conf->mddev);
2717 }
2718 bio = r10_bio->devs[m].repl_bio;
2719 rdev = conf->mirrors[dev].replacement;
2720 if (rdev && bio == IO_MADE_GOOD) {
2721 rdev_clear_badblocks(
2722 rdev,
2723 r10_bio->devs[m].addr,
2724 r10_bio->sectors, 0);
2725 rdev_dec_pending(rdev, conf->mddev);
2726 }
2727 }
2728 if (test_bit(R10BIO_WriteError,
2729 &r10_bio->state))
2730 close_write(r10_bio);
2731 raid_end_bio_io(r10_bio);
2732 }
2733 }
2734
2735 static void raid10d(struct md_thread *thread)
2736 {
2737 struct mddev *mddev = thread->mddev;
2738 struct r10bio *r10_bio;
2739 unsigned long flags;
2740 struct r10conf *conf = mddev->private;
2741 struct list_head *head = &conf->retry_list;
2742 struct blk_plug plug;
2743
2744 md_check_recovery(mddev);
2745
2746 blk_start_plug(&plug);
2747 for (;;) {
2748
2749 flush_pending_writes(conf);
2750
2751 spin_lock_irqsave(&conf->device_lock, flags);
2752 if (list_empty(head)) {
2753 spin_unlock_irqrestore(&conf->device_lock, flags);
2754 break;
2755 }
2756 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2757 list_del(head->prev);
2758 conf->nr_queued--;
2759 spin_unlock_irqrestore(&conf->device_lock, flags);
2760
2761 mddev = r10_bio->mddev;
2762 conf = mddev->private;
2763 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2764 test_bit(R10BIO_WriteError, &r10_bio->state))
2765 handle_write_completed(conf, r10_bio);
2766 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2767 reshape_request_write(mddev, r10_bio);
2768 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2769 sync_request_write(mddev, r10_bio);
2770 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2771 recovery_request_write(mddev, r10_bio);
2772 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2773 handle_read_error(mddev, r10_bio);
2774 else {
2775 /* just a partial read to be scheduled from a
2776 * separate context
2777 */
2778 int slot = r10_bio->read_slot;
2779 generic_make_request(r10_bio->devs[slot].bio);
2780 }
2781
2782 cond_resched();
2783 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2784 md_check_recovery(mddev);
2785 }
2786 blk_finish_plug(&plug);
2787 }
2788
2789
2790 static int init_resync(struct r10conf *conf)
2791 {
2792 int buffs;
2793 int i;
2794
2795 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2796 BUG_ON(conf->r10buf_pool);
2797 conf->have_replacement = 0;
2798 for (i = 0; i < conf->geo.raid_disks; i++)
2799 if (conf->mirrors[i].replacement)
2800 conf->have_replacement = 1;
2801 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2802 if (!conf->r10buf_pool)
2803 return -ENOMEM;
2804 conf->next_resync = 0;
2805 return 0;
2806 }
2807
2808 /*
2809 * perform a "sync" on one "block"
2810 *
2811 * We need to make sure that no normal I/O request - particularly write
2812 * requests - conflict with active sync requests.
2813 *
2814 * This is achieved by tracking pending requests and a 'barrier' concept
2815 * that can be installed to exclude normal IO requests.
2816 *
2817 * Resync and recovery are handled very differently.
2818 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2819 *
2820 * For resync, we iterate over virtual addresses, read all copies,
2821 * and update if there are differences. If only one copy is live,
2822 * skip it.
2823 * For recovery, we iterate over physical addresses, read a good
2824 * value for each non-in_sync drive, and over-write.
2825 *
2826 * So, for recovery we may have several outstanding complex requests for a
2827 * given address, one for each out-of-sync device. We model this by allocating
2828 * a number of r10_bio structures, one for each out-of-sync device.
2829 * As we setup these structures, we collect all bio's together into a list
2830 * which we then process collectively to add pages, and then process again
2831 * to pass to generic_make_request.
2832 *
2833 * The r10_bio structures are linked using a borrowed master_bio pointer.
2834 * This link is counted in ->remaining. When the r10_bio that points to NULL
2835 * has its remaining count decremented to 0, the whole complex operation
2836 * is complete.
2837 *
2838 */
2839
2840 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2841 int *skipped, int go_faster)
2842 {
2843 struct r10conf *conf = mddev->private;
2844 struct r10bio *r10_bio;
2845 struct bio *biolist = NULL, *bio;
2846 sector_t max_sector, nr_sectors;
2847 int i;
2848 int max_sync;
2849 sector_t sync_blocks;
2850 sector_t sectors_skipped = 0;
2851 int chunks_skipped = 0;
2852 sector_t chunk_mask = conf->geo.chunk_mask;
2853
2854 if (!conf->r10buf_pool)
2855 if (init_resync(conf))
2856 return 0;
2857
2858 skipped:
2859 max_sector = mddev->dev_sectors;
2860 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2861 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2862 max_sector = mddev->resync_max_sectors;
2863 if (sector_nr >= max_sector) {
2864 /* If we aborted, we need to abort the
2865 * sync on the 'current' bitmap chucks (there can
2866 * be several when recovering multiple devices).
2867 * as we may have started syncing it but not finished.
2868 * We can find the current address in
2869 * mddev->curr_resync, but for recovery,
2870 * we need to convert that to several
2871 * virtual addresses.
2872 */
2873 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2874 end_reshape(conf);
2875 return 0;
2876 }
2877
2878 if (mddev->curr_resync < max_sector) { /* aborted */
2879 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2880 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2881 &sync_blocks, 1);
2882 else for (i = 0; i < conf->geo.raid_disks; i++) {
2883 sector_t sect =
2884 raid10_find_virt(conf, mddev->curr_resync, i);
2885 bitmap_end_sync(mddev->bitmap, sect,
2886 &sync_blocks, 1);
2887 }
2888 } else {
2889 /* completed sync */
2890 if ((!mddev->bitmap || conf->fullsync)
2891 && conf->have_replacement
2892 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2893 /* Completed a full sync so the replacements
2894 * are now fully recovered.
2895 */
2896 for (i = 0; i < conf->geo.raid_disks; i++)
2897 if (conf->mirrors[i].replacement)
2898 conf->mirrors[i].replacement
2899 ->recovery_offset
2900 = MaxSector;
2901 }
2902 conf->fullsync = 0;
2903 }
2904 bitmap_close_sync(mddev->bitmap);
2905 close_sync(conf);
2906 *skipped = 1;
2907 return sectors_skipped;
2908 }
2909
2910 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2911 return reshape_request(mddev, sector_nr, skipped);
2912
2913 if (chunks_skipped >= conf->geo.raid_disks) {
2914 /* if there has been nothing to do on any drive,
2915 * then there is nothing to do at all..
2916 */
2917 *skipped = 1;
2918 return (max_sector - sector_nr) + sectors_skipped;
2919 }
2920
2921 if (max_sector > mddev->resync_max)
2922 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2923
2924 /* make sure whole request will fit in a chunk - if chunks
2925 * are meaningful
2926 */
2927 if (conf->geo.near_copies < conf->geo.raid_disks &&
2928 max_sector > (sector_nr | chunk_mask))
2929 max_sector = (sector_nr | chunk_mask) + 1;
2930 /*
2931 * If there is non-resync activity waiting for us then
2932 * put in a delay to throttle resync.
2933 */
2934 if (!go_faster && conf->nr_waiting)
2935 msleep_interruptible(1000);
2936
2937 /* Again, very different code for resync and recovery.
2938 * Both must result in an r10bio with a list of bios that
2939 * have bi_end_io, bi_sector, bi_bdev set,
2940 * and bi_private set to the r10bio.
2941 * For recovery, we may actually create several r10bios
2942 * with 2 bios in each, that correspond to the bios in the main one.
2943 * In this case, the subordinate r10bios link back through a
2944 * borrowed master_bio pointer, and the counter in the master
2945 * includes a ref from each subordinate.
2946 */
2947 /* First, we decide what to do and set ->bi_end_io
2948 * To end_sync_read if we want to read, and
2949 * end_sync_write if we will want to write.
2950 */
2951
2952 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2953 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2954 /* recovery... the complicated one */
2955 int j;
2956 r10_bio = NULL;
2957
2958 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2959 int still_degraded;
2960 struct r10bio *rb2;
2961 sector_t sect;
2962 int must_sync;
2963 int any_working;
2964 struct raid10_info *mirror = &conf->mirrors[i];
2965
2966 if ((mirror->rdev == NULL ||
2967 test_bit(In_sync, &mirror->rdev->flags))
2968 &&
2969 (mirror->replacement == NULL ||
2970 test_bit(Faulty,
2971 &mirror->replacement->flags)))
2972 continue;
2973
2974 still_degraded = 0;
2975 /* want to reconstruct this device */
2976 rb2 = r10_bio;
2977 sect = raid10_find_virt(conf, sector_nr, i);
2978 if (sect >= mddev->resync_max_sectors) {
2979 /* last stripe is not complete - don't
2980 * try to recover this sector.
2981 */
2982 continue;
2983 }
2984 /* Unless we are doing a full sync, or a replacement
2985 * we only need to recover the block if it is set in
2986 * the bitmap
2987 */
2988 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2989 &sync_blocks, 1);
2990 if (sync_blocks < max_sync)
2991 max_sync = sync_blocks;
2992 if (!must_sync &&
2993 mirror->replacement == NULL &&
2994 !conf->fullsync) {
2995 /* yep, skip the sync_blocks here, but don't assume
2996 * that there will never be anything to do here
2997 */
2998 chunks_skipped = -1;
2999 continue;
3000 }
3001
3002 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3003 raise_barrier(conf, rb2 != NULL);
3004 atomic_set(&r10_bio->remaining, 0);
3005
3006 r10_bio->master_bio = (struct bio*)rb2;
3007 if (rb2)
3008 atomic_inc(&rb2->remaining);
3009 r10_bio->mddev = mddev;
3010 set_bit(R10BIO_IsRecover, &r10_bio->state);
3011 r10_bio->sector = sect;
3012
3013 raid10_find_phys(conf, r10_bio);
3014
3015 /* Need to check if the array will still be
3016 * degraded
3017 */
3018 for (j = 0; j < conf->geo.raid_disks; j++)
3019 if (conf->mirrors[j].rdev == NULL ||
3020 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3021 still_degraded = 1;
3022 break;
3023 }
3024
3025 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3026 &sync_blocks, still_degraded);
3027
3028 any_working = 0;
3029 for (j=0; j<conf->copies;j++) {
3030 int k;
3031 int d = r10_bio->devs[j].devnum;
3032 sector_t from_addr, to_addr;
3033 struct md_rdev *rdev;
3034 sector_t sector, first_bad;
3035 int bad_sectors;
3036 if (!conf->mirrors[d].rdev ||
3037 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3038 continue;
3039 /* This is where we read from */
3040 any_working = 1;
3041 rdev = conf->mirrors[d].rdev;
3042 sector = r10_bio->devs[j].addr;
3043
3044 if (is_badblock(rdev, sector, max_sync,
3045 &first_bad, &bad_sectors)) {
3046 if (first_bad > sector)
3047 max_sync = first_bad - sector;
3048 else {
3049 bad_sectors -= (sector
3050 - first_bad);
3051 if (max_sync > bad_sectors)
3052 max_sync = bad_sectors;
3053 continue;
3054 }
3055 }
3056 bio = r10_bio->devs[0].bio;
3057 bio->bi_next = biolist;
3058 biolist = bio;
3059 bio->bi_private = r10_bio;
3060 bio->bi_end_io = end_sync_read;
3061 bio->bi_rw = READ;
3062 from_addr = r10_bio->devs[j].addr;
3063 bio->bi_sector = from_addr + rdev->data_offset;
3064 bio->bi_bdev = rdev->bdev;
3065 atomic_inc(&rdev->nr_pending);
3066 /* and we write to 'i' (if not in_sync) */
3067
3068 for (k=0; k<conf->copies; k++)
3069 if (r10_bio->devs[k].devnum == i)
3070 break;
3071 BUG_ON(k == conf->copies);
3072 to_addr = r10_bio->devs[k].addr;
3073 r10_bio->devs[0].devnum = d;
3074 r10_bio->devs[0].addr = from_addr;
3075 r10_bio->devs[1].devnum = i;
3076 r10_bio->devs[1].addr = to_addr;
3077
3078 rdev = mirror->rdev;
3079 if (!test_bit(In_sync, &rdev->flags)) {
3080 bio = r10_bio->devs[1].bio;
3081 bio->bi_next = biolist;
3082 biolist = bio;
3083 bio->bi_private = r10_bio;
3084 bio->bi_end_io = end_sync_write;
3085 bio->bi_rw = WRITE;
3086 bio->bi_sector = to_addr
3087 + rdev->data_offset;
3088 bio->bi_bdev = rdev->bdev;
3089 atomic_inc(&r10_bio->remaining);
3090 } else
3091 r10_bio->devs[1].bio->bi_end_io = NULL;
3092
3093 /* and maybe write to replacement */
3094 bio = r10_bio->devs[1].repl_bio;
3095 if (bio)
3096 bio->bi_end_io = NULL;
3097 rdev = mirror->replacement;
3098 /* Note: if rdev != NULL, then bio
3099 * cannot be NULL as r10buf_pool_alloc will
3100 * have allocated it.
3101 * So the second test here is pointless.
3102 * But it keeps semantic-checkers happy, and
3103 * this comment keeps human reviewers
3104 * happy.
3105 */
3106 if (rdev == NULL || bio == NULL ||
3107 test_bit(Faulty, &rdev->flags))
3108 break;
3109 bio->bi_next = biolist;
3110 biolist = bio;
3111 bio->bi_private = r10_bio;
3112 bio->bi_end_io = end_sync_write;
3113 bio->bi_rw = WRITE;
3114 bio->bi_sector = to_addr + rdev->data_offset;
3115 bio->bi_bdev = rdev->bdev;
3116 atomic_inc(&r10_bio->remaining);
3117 break;
3118 }
3119 if (j == conf->copies) {
3120 /* Cannot recover, so abort the recovery or
3121 * record a bad block */
3122 put_buf(r10_bio);
3123 if (rb2)
3124 atomic_dec(&rb2->remaining);
3125 r10_bio = rb2;
3126 if (any_working) {
3127 /* problem is that there are bad blocks
3128 * on other device(s)
3129 */
3130 int k;
3131 for (k = 0; k < conf->copies; k++)
3132 if (r10_bio->devs[k].devnum == i)
3133 break;
3134 if (!test_bit(In_sync,
3135 &mirror->rdev->flags)
3136 && !rdev_set_badblocks(
3137 mirror->rdev,
3138 r10_bio->devs[k].addr,
3139 max_sync, 0))
3140 any_working = 0;
3141 if (mirror->replacement &&
3142 !rdev_set_badblocks(
3143 mirror->replacement,
3144 r10_bio->devs[k].addr,
3145 max_sync, 0))
3146 any_working = 0;
3147 }
3148 if (!any_working) {
3149 if (!test_and_set_bit(MD_RECOVERY_INTR,
3150 &mddev->recovery))
3151 printk(KERN_INFO "md/raid10:%s: insufficient "
3152 "working devices for recovery.\n",
3153 mdname(mddev));
3154 mirror->recovery_disabled
3155 = mddev->recovery_disabled;
3156 }
3157 break;
3158 }
3159 }
3160 if (biolist == NULL) {
3161 while (r10_bio) {
3162 struct r10bio *rb2 = r10_bio;
3163 r10_bio = (struct r10bio*) rb2->master_bio;
3164 rb2->master_bio = NULL;
3165 put_buf(rb2);
3166 }
3167 goto giveup;
3168 }
3169 } else {
3170 /* resync. Schedule a read for every block at this virt offset */
3171 int count = 0;
3172
3173 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3174
3175 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3176 &sync_blocks, mddev->degraded) &&
3177 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3178 &mddev->recovery)) {
3179 /* We can skip this block */
3180 *skipped = 1;
3181 return sync_blocks + sectors_skipped;
3182 }
3183 if (sync_blocks < max_sync)
3184 max_sync = sync_blocks;
3185 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3186
3187 r10_bio->mddev = mddev;
3188 atomic_set(&r10_bio->remaining, 0);
3189 raise_barrier(conf, 0);
3190 conf->next_resync = sector_nr;
3191
3192 r10_bio->master_bio = NULL;
3193 r10_bio->sector = sector_nr;
3194 set_bit(R10BIO_IsSync, &r10_bio->state);
3195 raid10_find_phys(conf, r10_bio);
3196 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3197
3198 for (i = 0; i < conf->copies; i++) {
3199 int d = r10_bio->devs[i].devnum;
3200 sector_t first_bad, sector;
3201 int bad_sectors;
3202
3203 if (r10_bio->devs[i].repl_bio)
3204 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3205
3206 bio = r10_bio->devs[i].bio;
3207 bio->bi_end_io = NULL;
3208 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3209 if (conf->mirrors[d].rdev == NULL ||
3210 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3211 continue;
3212 sector = r10_bio->devs[i].addr;
3213 if (is_badblock(conf->mirrors[d].rdev,
3214 sector, max_sync,
3215 &first_bad, &bad_sectors)) {
3216 if (first_bad > sector)
3217 max_sync = first_bad - sector;
3218 else {
3219 bad_sectors -= (sector - first_bad);
3220 if (max_sync > bad_sectors)
3221 max_sync = max_sync;
3222 continue;
3223 }
3224 }
3225 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3226 atomic_inc(&r10_bio->remaining);
3227 bio->bi_next = biolist;
3228 biolist = bio;
3229 bio->bi_private = r10_bio;
3230 bio->bi_end_io = end_sync_read;
3231 bio->bi_rw = READ;
3232 bio->bi_sector = sector +
3233 conf->mirrors[d].rdev->data_offset;
3234 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3235 count++;
3236
3237 if (conf->mirrors[d].replacement == NULL ||
3238 test_bit(Faulty,
3239 &conf->mirrors[d].replacement->flags))
3240 continue;
3241
3242 /* Need to set up for writing to the replacement */
3243 bio = r10_bio->devs[i].repl_bio;
3244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3245
3246 sector = r10_bio->devs[i].addr;
3247 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3248 bio->bi_next = biolist;
3249 biolist = bio;
3250 bio->bi_private = r10_bio;
3251 bio->bi_end_io = end_sync_write;
3252 bio->bi_rw = WRITE;
3253 bio->bi_sector = sector +
3254 conf->mirrors[d].replacement->data_offset;
3255 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3256 count++;
3257 }
3258
3259 if (count < 2) {
3260 for (i=0; i<conf->copies; i++) {
3261 int d = r10_bio->devs[i].devnum;
3262 if (r10_bio->devs[i].bio->bi_end_io)
3263 rdev_dec_pending(conf->mirrors[d].rdev,
3264 mddev);
3265 if (r10_bio->devs[i].repl_bio &&
3266 r10_bio->devs[i].repl_bio->bi_end_io)
3267 rdev_dec_pending(
3268 conf->mirrors[d].replacement,
3269 mddev);
3270 }
3271 put_buf(r10_bio);
3272 biolist = NULL;
3273 goto giveup;
3274 }
3275 }
3276
3277 for (bio = biolist; bio ; bio=bio->bi_next) {
3278
3279 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3280 if (bio->bi_end_io)
3281 bio->bi_flags |= 1 << BIO_UPTODATE;
3282 bio->bi_vcnt = 0;
3283 bio->bi_idx = 0;
3284 bio->bi_phys_segments = 0;
3285 bio->bi_size = 0;
3286 }
3287
3288 nr_sectors = 0;
3289 if (sector_nr + max_sync < max_sector)
3290 max_sector = sector_nr + max_sync;
3291 do {
3292 struct page *page;
3293 int len = PAGE_SIZE;
3294 if (sector_nr + (len>>9) > max_sector)
3295 len = (max_sector - sector_nr) << 9;
3296 if (len == 0)
3297 break;
3298 for (bio= biolist ; bio ; bio=bio->bi_next) {
3299 struct bio *bio2;
3300 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3301 if (bio_add_page(bio, page, len, 0))
3302 continue;
3303
3304 /* stop here */
3305 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3306 for (bio2 = biolist;
3307 bio2 && bio2 != bio;
3308 bio2 = bio2->bi_next) {
3309 /* remove last page from this bio */
3310 bio2->bi_vcnt--;
3311 bio2->bi_size -= len;
3312 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3313 }
3314 goto bio_full;
3315 }
3316 nr_sectors += len>>9;
3317 sector_nr += len>>9;
3318 } while (biolist->bi_vcnt < RESYNC_PAGES);
3319 bio_full:
3320 r10_bio->sectors = nr_sectors;
3321
3322 while (biolist) {
3323 bio = biolist;
3324 biolist = biolist->bi_next;
3325
3326 bio->bi_next = NULL;
3327 r10_bio = bio->bi_private;
3328 r10_bio->sectors = nr_sectors;
3329
3330 if (bio->bi_end_io == end_sync_read) {
3331 md_sync_acct(bio->bi_bdev, nr_sectors);
3332 generic_make_request(bio);
3333 }
3334 }
3335
3336 if (sectors_skipped)
3337 /* pretend they weren't skipped, it makes
3338 * no important difference in this case
3339 */
3340 md_done_sync(mddev, sectors_skipped, 1);
3341
3342 return sectors_skipped + nr_sectors;
3343 giveup:
3344 /* There is nowhere to write, so all non-sync
3345 * drives must be failed or in resync, all drives
3346 * have a bad block, so try the next chunk...
3347 */
3348 if (sector_nr + max_sync < max_sector)
3349 max_sector = sector_nr + max_sync;
3350
3351 sectors_skipped += (max_sector - sector_nr);
3352 chunks_skipped ++;
3353 sector_nr = max_sector;
3354 goto skipped;
3355 }
3356
3357 static sector_t
3358 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3359 {
3360 sector_t size;
3361 struct r10conf *conf = mddev->private;
3362
3363 if (!raid_disks)
3364 raid_disks = min(conf->geo.raid_disks,
3365 conf->prev.raid_disks);
3366 if (!sectors)
3367 sectors = conf->dev_sectors;
3368
3369 size = sectors >> conf->geo.chunk_shift;
3370 sector_div(size, conf->geo.far_copies);
3371 size = size * raid_disks;
3372 sector_div(size, conf->geo.near_copies);
3373
3374 return size << conf->geo.chunk_shift;
3375 }
3376
3377 static void calc_sectors(struct r10conf *conf, sector_t size)
3378 {
3379 /* Calculate the number of sectors-per-device that will
3380 * actually be used, and set conf->dev_sectors and
3381 * conf->stride
3382 */
3383
3384 size = size >> conf->geo.chunk_shift;
3385 sector_div(size, conf->geo.far_copies);
3386 size = size * conf->geo.raid_disks;
3387 sector_div(size, conf->geo.near_copies);
3388 /* 'size' is now the number of chunks in the array */
3389 /* calculate "used chunks per device" */
3390 size = size * conf->copies;
3391
3392 /* We need to round up when dividing by raid_disks to
3393 * get the stride size.
3394 */
3395 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3396
3397 conf->dev_sectors = size << conf->geo.chunk_shift;
3398
3399 if (conf->geo.far_offset)
3400 conf->geo.stride = 1 << conf->geo.chunk_shift;
3401 else {
3402 sector_div(size, conf->geo.far_copies);
3403 conf->geo.stride = size << conf->geo.chunk_shift;
3404 }
3405 }
3406
3407 enum geo_type {geo_new, geo_old, geo_start};
3408 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3409 {
3410 int nc, fc, fo;
3411 int layout, chunk, disks;
3412 switch (new) {
3413 case geo_old:
3414 layout = mddev->layout;
3415 chunk = mddev->chunk_sectors;
3416 disks = mddev->raid_disks - mddev->delta_disks;
3417 break;
3418 case geo_new:
3419 layout = mddev->new_layout;
3420 chunk = mddev->new_chunk_sectors;
3421 disks = mddev->raid_disks;
3422 break;
3423 default: /* avoid 'may be unused' warnings */
3424 case geo_start: /* new when starting reshape - raid_disks not
3425 * updated yet. */
3426 layout = mddev->new_layout;
3427 chunk = mddev->new_chunk_sectors;
3428 disks = mddev->raid_disks + mddev->delta_disks;
3429 break;
3430 }
3431 if (layout >> 17)
3432 return -1;
3433 if (chunk < (PAGE_SIZE >> 9) ||
3434 !is_power_of_2(chunk))
3435 return -2;
3436 nc = layout & 255;
3437 fc = (layout >> 8) & 255;
3438 fo = layout & (1<<16);
3439 geo->raid_disks = disks;
3440 geo->near_copies = nc;
3441 geo->far_copies = fc;
3442 geo->far_offset = fo;
3443 geo->chunk_mask = chunk - 1;
3444 geo->chunk_shift = ffz(~chunk);
3445 return nc*fc;
3446 }
3447
3448 static struct r10conf *setup_conf(struct mddev *mddev)
3449 {
3450 struct r10conf *conf = NULL;
3451 int err = -EINVAL;
3452 struct geom geo;
3453 int copies;
3454
3455 copies = setup_geo(&geo, mddev, geo_new);
3456
3457 if (copies == -2) {
3458 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3459 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3460 mdname(mddev), PAGE_SIZE);
3461 goto out;
3462 }
3463
3464 if (copies < 2 || copies > mddev->raid_disks) {
3465 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3466 mdname(mddev), mddev->new_layout);
3467 goto out;
3468 }
3469
3470 err = -ENOMEM;
3471 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3472 if (!conf)
3473 goto out;
3474
3475 /* FIXME calc properly */
3476 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3477 max(0,mddev->delta_disks)),
3478 GFP_KERNEL);
3479 if (!conf->mirrors)
3480 goto out;
3481
3482 conf->tmppage = alloc_page(GFP_KERNEL);
3483 if (!conf->tmppage)
3484 goto out;
3485
3486 conf->geo = geo;
3487 conf->copies = copies;
3488 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3489 r10bio_pool_free, conf);
3490 if (!conf->r10bio_pool)
3491 goto out;
3492
3493 calc_sectors(conf, mddev->dev_sectors);
3494 if (mddev->reshape_position == MaxSector) {
3495 conf->prev = conf->geo;
3496 conf->reshape_progress = MaxSector;
3497 } else {
3498 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3499 err = -EINVAL;
3500 goto out;
3501 }
3502 conf->reshape_progress = mddev->reshape_position;
3503 if (conf->prev.far_offset)
3504 conf->prev.stride = 1 << conf->prev.chunk_shift;
3505 else
3506 /* far_copies must be 1 */
3507 conf->prev.stride = conf->dev_sectors;
3508 }
3509 spin_lock_init(&conf->device_lock);
3510 INIT_LIST_HEAD(&conf->retry_list);
3511
3512 spin_lock_init(&conf->resync_lock);
3513 init_waitqueue_head(&conf->wait_barrier);
3514
3515 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3516 if (!conf->thread)
3517 goto out;
3518
3519 conf->mddev = mddev;
3520 return conf;
3521
3522 out:
3523 if (err == -ENOMEM)
3524 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3525 mdname(mddev));
3526 if (conf) {
3527 if (conf->r10bio_pool)
3528 mempool_destroy(conf->r10bio_pool);
3529 kfree(conf->mirrors);
3530 safe_put_page(conf->tmppage);
3531 kfree(conf);
3532 }
3533 return ERR_PTR(err);
3534 }
3535
3536 static int run(struct mddev *mddev)
3537 {
3538 struct r10conf *conf;
3539 int i, disk_idx, chunk_size;
3540 struct raid10_info *disk;
3541 struct md_rdev *rdev;
3542 sector_t size;
3543 sector_t min_offset_diff = 0;
3544 int first = 1;
3545 bool discard_supported = false;
3546
3547 if (mddev->private == NULL) {
3548 conf = setup_conf(mddev);
3549 if (IS_ERR(conf))
3550 return PTR_ERR(conf);
3551 mddev->private = conf;
3552 }
3553 conf = mddev->private;
3554 if (!conf)
3555 goto out;
3556
3557 mddev->thread = conf->thread;
3558 conf->thread = NULL;
3559
3560 chunk_size = mddev->chunk_sectors << 9;
3561 if (mddev->queue) {
3562 blk_queue_max_discard_sectors(mddev->queue,
3563 mddev->chunk_sectors);
3564 blk_queue_io_min(mddev->queue, chunk_size);
3565 if (conf->geo.raid_disks % conf->geo.near_copies)
3566 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3567 else
3568 blk_queue_io_opt(mddev->queue, chunk_size *
3569 (conf->geo.raid_disks / conf->geo.near_copies));
3570 }
3571
3572 rdev_for_each(rdev, mddev) {
3573 long long diff;
3574 struct request_queue *q;
3575
3576 disk_idx = rdev->raid_disk;
3577 if (disk_idx < 0)
3578 continue;
3579 if (disk_idx >= conf->geo.raid_disks &&
3580 disk_idx >= conf->prev.raid_disks)
3581 continue;
3582 disk = conf->mirrors + disk_idx;
3583
3584 if (test_bit(Replacement, &rdev->flags)) {
3585 if (disk->replacement)
3586 goto out_free_conf;
3587 disk->replacement = rdev;
3588 } else {
3589 if (disk->rdev)
3590 goto out_free_conf;
3591 disk->rdev = rdev;
3592 }
3593 q = bdev_get_queue(rdev->bdev);
3594 if (q->merge_bvec_fn)
3595 mddev->merge_check_needed = 1;
3596 diff = (rdev->new_data_offset - rdev->data_offset);
3597 if (!mddev->reshape_backwards)
3598 diff = -diff;
3599 if (diff < 0)
3600 diff = 0;
3601 if (first || diff < min_offset_diff)
3602 min_offset_diff = diff;
3603
3604 if (mddev->gendisk)
3605 disk_stack_limits(mddev->gendisk, rdev->bdev,
3606 rdev->data_offset << 9);
3607
3608 disk->head_position = 0;
3609
3610 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3611 discard_supported = true;
3612 }
3613
3614 if (discard_supported)
3615 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3616 else
3617 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
3618
3619 /* need to check that every block has at least one working mirror */
3620 if (!enough(conf, -1)) {
3621 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3622 mdname(mddev));
3623 goto out_free_conf;
3624 }
3625
3626 if (conf->reshape_progress != MaxSector) {
3627 /* must ensure that shape change is supported */
3628 if (conf->geo.far_copies != 1 &&
3629 conf->geo.far_offset == 0)
3630 goto out_free_conf;
3631 if (conf->prev.far_copies != 1 &&
3632 conf->geo.far_offset == 0)
3633 goto out_free_conf;
3634 }
3635
3636 mddev->degraded = 0;
3637 for (i = 0;
3638 i < conf->geo.raid_disks
3639 || i < conf->prev.raid_disks;
3640 i++) {
3641
3642 disk = conf->mirrors + i;
3643
3644 if (!disk->rdev && disk->replacement) {
3645 /* The replacement is all we have - use it */
3646 disk->rdev = disk->replacement;
3647 disk->replacement = NULL;
3648 clear_bit(Replacement, &disk->rdev->flags);
3649 }
3650
3651 if (!disk->rdev ||
3652 !test_bit(In_sync, &disk->rdev->flags)) {
3653 disk->head_position = 0;
3654 mddev->degraded++;
3655 if (disk->rdev)
3656 conf->fullsync = 1;
3657 }
3658 disk->recovery_disabled = mddev->recovery_disabled - 1;
3659 }
3660
3661 if (mddev->recovery_cp != MaxSector)
3662 printk(KERN_NOTICE "md/raid10:%s: not clean"
3663 " -- starting background reconstruction\n",
3664 mdname(mddev));
3665 printk(KERN_INFO
3666 "md/raid10:%s: active with %d out of %d devices\n",
3667 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3668 conf->geo.raid_disks);
3669 /*
3670 * Ok, everything is just fine now
3671 */
3672 mddev->dev_sectors = conf->dev_sectors;
3673 size = raid10_size(mddev, 0, 0);
3674 md_set_array_sectors(mddev, size);
3675 mddev->resync_max_sectors = size;
3676
3677 if (mddev->queue) {
3678 int stripe = conf->geo.raid_disks *
3679 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3680 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3681 mddev->queue->backing_dev_info.congested_data = mddev;
3682
3683 /* Calculate max read-ahead size.
3684 * We need to readahead at least twice a whole stripe....
3685 * maybe...
3686 */
3687 stripe /= conf->geo.near_copies;
3688 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3689 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3690 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3691 }
3692
3693
3694 if (md_integrity_register(mddev))
3695 goto out_free_conf;
3696
3697 if (conf->reshape_progress != MaxSector) {
3698 unsigned long before_length, after_length;
3699
3700 before_length = ((1 << conf->prev.chunk_shift) *
3701 conf->prev.far_copies);
3702 after_length = ((1 << conf->geo.chunk_shift) *
3703 conf->geo.far_copies);
3704
3705 if (max(before_length, after_length) > min_offset_diff) {
3706 /* This cannot work */
3707 printk("md/raid10: offset difference not enough to continue reshape\n");
3708 goto out_free_conf;
3709 }
3710 conf->offset_diff = min_offset_diff;
3711
3712 conf->reshape_safe = conf->reshape_progress;
3713 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3714 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3715 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3716 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3717 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3718 "reshape");
3719 }
3720
3721 return 0;
3722
3723 out_free_conf:
3724 md_unregister_thread(&mddev->thread);
3725 if (conf->r10bio_pool)
3726 mempool_destroy(conf->r10bio_pool);
3727 safe_put_page(conf->tmppage);
3728 kfree(conf->mirrors);
3729 kfree(conf);
3730 mddev->private = NULL;
3731 out:
3732 return -EIO;
3733 }
3734
3735 static int stop(struct mddev *mddev)
3736 {
3737 struct r10conf *conf = mddev->private;
3738
3739 raise_barrier(conf, 0);
3740 lower_barrier(conf);
3741
3742 md_unregister_thread(&mddev->thread);
3743 if (mddev->queue)
3744 /* the unplug fn references 'conf'*/
3745 blk_sync_queue(mddev->queue);
3746
3747 if (conf->r10bio_pool)
3748 mempool_destroy(conf->r10bio_pool);
3749 kfree(conf->mirrors);
3750 kfree(conf);
3751 mddev->private = NULL;
3752 return 0;
3753 }
3754
3755 static void raid10_quiesce(struct mddev *mddev, int state)
3756 {
3757 struct r10conf *conf = mddev->private;
3758
3759 switch(state) {
3760 case 1:
3761 raise_barrier(conf, 0);
3762 break;
3763 case 0:
3764 lower_barrier(conf);
3765 break;
3766 }
3767 }
3768
3769 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3770 {
3771 /* Resize of 'far' arrays is not supported.
3772 * For 'near' and 'offset' arrays we can set the
3773 * number of sectors used to be an appropriate multiple
3774 * of the chunk size.
3775 * For 'offset', this is far_copies*chunksize.
3776 * For 'near' the multiplier is the LCM of
3777 * near_copies and raid_disks.
3778 * So if far_copies > 1 && !far_offset, fail.
3779 * Else find LCM(raid_disks, near_copy)*far_copies and
3780 * multiply by chunk_size. Then round to this number.
3781 * This is mostly done by raid10_size()
3782 */
3783 struct r10conf *conf = mddev->private;
3784 sector_t oldsize, size;
3785
3786 if (mddev->reshape_position != MaxSector)
3787 return -EBUSY;
3788
3789 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3790 return -EINVAL;
3791
3792 oldsize = raid10_size(mddev, 0, 0);
3793 size = raid10_size(mddev, sectors, 0);
3794 if (mddev->external_size &&
3795 mddev->array_sectors > size)
3796 return -EINVAL;
3797 if (mddev->bitmap) {
3798 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3799 if (ret)
3800 return ret;
3801 }
3802 md_set_array_sectors(mddev, size);
3803 set_capacity(mddev->gendisk, mddev->array_sectors);
3804 revalidate_disk(mddev->gendisk);
3805 if (sectors > mddev->dev_sectors &&
3806 mddev->recovery_cp > oldsize) {
3807 mddev->recovery_cp = oldsize;
3808 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3809 }
3810 calc_sectors(conf, sectors);
3811 mddev->dev_sectors = conf->dev_sectors;
3812 mddev->resync_max_sectors = size;
3813 return 0;
3814 }
3815
3816 static void *raid10_takeover_raid0(struct mddev *mddev)
3817 {
3818 struct md_rdev *rdev;
3819 struct r10conf *conf;
3820
3821 if (mddev->degraded > 0) {
3822 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3823 mdname(mddev));
3824 return ERR_PTR(-EINVAL);
3825 }
3826
3827 /* Set new parameters */
3828 mddev->new_level = 10;
3829 /* new layout: far_copies = 1, near_copies = 2 */
3830 mddev->new_layout = (1<<8) + 2;
3831 mddev->new_chunk_sectors = mddev->chunk_sectors;
3832 mddev->delta_disks = mddev->raid_disks;
3833 mddev->raid_disks *= 2;
3834 /* make sure it will be not marked as dirty */
3835 mddev->recovery_cp = MaxSector;
3836
3837 conf = setup_conf(mddev);
3838 if (!IS_ERR(conf)) {
3839 rdev_for_each(rdev, mddev)
3840 if (rdev->raid_disk >= 0)
3841 rdev->new_raid_disk = rdev->raid_disk * 2;
3842 conf->barrier = 1;
3843 }
3844
3845 return conf;
3846 }
3847
3848 static void *raid10_takeover(struct mddev *mddev)
3849 {
3850 struct r0conf *raid0_conf;
3851
3852 /* raid10 can take over:
3853 * raid0 - providing it has only two drives
3854 */
3855 if (mddev->level == 0) {
3856 /* for raid0 takeover only one zone is supported */
3857 raid0_conf = mddev->private;
3858 if (raid0_conf->nr_strip_zones > 1) {
3859 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3860 " with more than one zone.\n",
3861 mdname(mddev));
3862 return ERR_PTR(-EINVAL);
3863 }
3864 return raid10_takeover_raid0(mddev);
3865 }
3866 return ERR_PTR(-EINVAL);
3867 }
3868
3869 static int raid10_check_reshape(struct mddev *mddev)
3870 {
3871 /* Called when there is a request to change
3872 * - layout (to ->new_layout)
3873 * - chunk size (to ->new_chunk_sectors)
3874 * - raid_disks (by delta_disks)
3875 * or when trying to restart a reshape that was ongoing.
3876 *
3877 * We need to validate the request and possibly allocate
3878 * space if that might be an issue later.
3879 *
3880 * Currently we reject any reshape of a 'far' mode array,
3881 * allow chunk size to change if new is generally acceptable,
3882 * allow raid_disks to increase, and allow
3883 * a switch between 'near' mode and 'offset' mode.
3884 */
3885 struct r10conf *conf = mddev->private;
3886 struct geom geo;
3887
3888 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3889 return -EINVAL;
3890
3891 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3892 /* mustn't change number of copies */
3893 return -EINVAL;
3894 if (geo.far_copies > 1 && !geo.far_offset)
3895 /* Cannot switch to 'far' mode */
3896 return -EINVAL;
3897
3898 if (mddev->array_sectors & geo.chunk_mask)
3899 /* not factor of array size */
3900 return -EINVAL;
3901
3902 if (!enough(conf, -1))
3903 return -EINVAL;
3904
3905 kfree(conf->mirrors_new);
3906 conf->mirrors_new = NULL;
3907 if (mddev->delta_disks > 0) {
3908 /* allocate new 'mirrors' list */
3909 conf->mirrors_new = kzalloc(
3910 sizeof(struct raid10_info)
3911 *(mddev->raid_disks +
3912 mddev->delta_disks),
3913 GFP_KERNEL);
3914 if (!conf->mirrors_new)
3915 return -ENOMEM;
3916 }
3917 return 0;
3918 }
3919
3920 /*
3921 * Need to check if array has failed when deciding whether to:
3922 * - start an array
3923 * - remove non-faulty devices
3924 * - add a spare
3925 * - allow a reshape
3926 * This determination is simple when no reshape is happening.
3927 * However if there is a reshape, we need to carefully check
3928 * both the before and after sections.
3929 * This is because some failed devices may only affect one
3930 * of the two sections, and some non-in_sync devices may
3931 * be insync in the section most affected by failed devices.
3932 */
3933 static int calc_degraded(struct r10conf *conf)
3934 {
3935 int degraded, degraded2;
3936 int i;
3937
3938 rcu_read_lock();
3939 degraded = 0;
3940 /* 'prev' section first */
3941 for (i = 0; i < conf->prev.raid_disks; i++) {
3942 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3943 if (!rdev || test_bit(Faulty, &rdev->flags))
3944 degraded++;
3945 else if (!test_bit(In_sync, &rdev->flags))
3946 /* When we can reduce the number of devices in
3947 * an array, this might not contribute to
3948 * 'degraded'. It does now.
3949 */
3950 degraded++;
3951 }
3952 rcu_read_unlock();
3953 if (conf->geo.raid_disks == conf->prev.raid_disks)
3954 return degraded;
3955 rcu_read_lock();
3956 degraded2 = 0;
3957 for (i = 0; i < conf->geo.raid_disks; i++) {
3958 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3959 if (!rdev || test_bit(Faulty, &rdev->flags))
3960 degraded2++;
3961 else if (!test_bit(In_sync, &rdev->flags)) {
3962 /* If reshape is increasing the number of devices,
3963 * this section has already been recovered, so
3964 * it doesn't contribute to degraded.
3965 * else it does.
3966 */
3967 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3968 degraded2++;
3969 }
3970 }
3971 rcu_read_unlock();
3972 if (degraded2 > degraded)
3973 return degraded2;
3974 return degraded;
3975 }
3976
3977 static int raid10_start_reshape(struct mddev *mddev)
3978 {
3979 /* A 'reshape' has been requested. This commits
3980 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3981 * This also checks if there are enough spares and adds them
3982 * to the array.
3983 * We currently require enough spares to make the final
3984 * array non-degraded. We also require that the difference
3985 * between old and new data_offset - on each device - is
3986 * enough that we never risk over-writing.
3987 */
3988
3989 unsigned long before_length, after_length;
3990 sector_t min_offset_diff = 0;
3991 int first = 1;
3992 struct geom new;
3993 struct r10conf *conf = mddev->private;
3994 struct md_rdev *rdev;
3995 int spares = 0;
3996 int ret;
3997
3998 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3999 return -EBUSY;
4000
4001 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4002 return -EINVAL;
4003
4004 before_length = ((1 << conf->prev.chunk_shift) *
4005 conf->prev.far_copies);
4006 after_length = ((1 << conf->geo.chunk_shift) *
4007 conf->geo.far_copies);
4008
4009 rdev_for_each(rdev, mddev) {
4010 if (!test_bit(In_sync, &rdev->flags)
4011 && !test_bit(Faulty, &rdev->flags))
4012 spares++;
4013 if (rdev->raid_disk >= 0) {
4014 long long diff = (rdev->new_data_offset
4015 - rdev->data_offset);
4016 if (!mddev->reshape_backwards)
4017 diff = -diff;
4018 if (diff < 0)
4019 diff = 0;
4020 if (first || diff < min_offset_diff)
4021 min_offset_diff = diff;
4022 }
4023 }
4024
4025 if (max(before_length, after_length) > min_offset_diff)
4026 return -EINVAL;
4027
4028 if (spares < mddev->delta_disks)
4029 return -EINVAL;
4030
4031 conf->offset_diff = min_offset_diff;
4032 spin_lock_irq(&conf->device_lock);
4033 if (conf->mirrors_new) {
4034 memcpy(conf->mirrors_new, conf->mirrors,
4035 sizeof(struct raid10_info)*conf->prev.raid_disks);
4036 smp_mb();
4037 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4038 conf->mirrors_old = conf->mirrors;
4039 conf->mirrors = conf->mirrors_new;
4040 conf->mirrors_new = NULL;
4041 }
4042 setup_geo(&conf->geo, mddev, geo_start);
4043 smp_mb();
4044 if (mddev->reshape_backwards) {
4045 sector_t size = raid10_size(mddev, 0, 0);
4046 if (size < mddev->array_sectors) {
4047 spin_unlock_irq(&conf->device_lock);
4048 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4049 mdname(mddev));
4050 return -EINVAL;
4051 }
4052 mddev->resync_max_sectors = size;
4053 conf->reshape_progress = size;
4054 } else
4055 conf->reshape_progress = 0;
4056 spin_unlock_irq(&conf->device_lock);
4057
4058 if (mddev->delta_disks && mddev->bitmap) {
4059 ret = bitmap_resize(mddev->bitmap,
4060 raid10_size(mddev, 0,
4061 conf->geo.raid_disks),
4062 0, 0);
4063 if (ret)
4064 goto abort;
4065 }
4066 if (mddev->delta_disks > 0) {
4067 rdev_for_each(rdev, mddev)
4068 if (rdev->raid_disk < 0 &&
4069 !test_bit(Faulty, &rdev->flags)) {
4070 if (raid10_add_disk(mddev, rdev) == 0) {
4071 if (rdev->raid_disk >=
4072 conf->prev.raid_disks)
4073 set_bit(In_sync, &rdev->flags);
4074 else
4075 rdev->recovery_offset = 0;
4076
4077 if (sysfs_link_rdev(mddev, rdev))
4078 /* Failure here is OK */;
4079 }
4080 } else if (rdev->raid_disk >= conf->prev.raid_disks
4081 && !test_bit(Faulty, &rdev->flags)) {
4082 /* This is a spare that was manually added */
4083 set_bit(In_sync, &rdev->flags);
4084 }
4085 }
4086 /* When a reshape changes the number of devices,
4087 * ->degraded is measured against the larger of the
4088 * pre and post numbers.
4089 */
4090 spin_lock_irq(&conf->device_lock);
4091 mddev->degraded = calc_degraded(conf);
4092 spin_unlock_irq(&conf->device_lock);
4093 mddev->raid_disks = conf->geo.raid_disks;
4094 mddev->reshape_position = conf->reshape_progress;
4095 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4096
4097 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4098 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4099 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4100 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4101
4102 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4103 "reshape");
4104 if (!mddev->sync_thread) {
4105 ret = -EAGAIN;
4106 goto abort;
4107 }
4108 conf->reshape_checkpoint = jiffies;
4109 md_wakeup_thread(mddev->sync_thread);
4110 md_new_event(mddev);
4111 return 0;
4112
4113 abort:
4114 mddev->recovery = 0;
4115 spin_lock_irq(&conf->device_lock);
4116 conf->geo = conf->prev;
4117 mddev->raid_disks = conf->geo.raid_disks;
4118 rdev_for_each(rdev, mddev)
4119 rdev->new_data_offset = rdev->data_offset;
4120 smp_wmb();
4121 conf->reshape_progress = MaxSector;
4122 mddev->reshape_position = MaxSector;
4123 spin_unlock_irq(&conf->device_lock);
4124 return ret;
4125 }
4126
4127 /* Calculate the last device-address that could contain
4128 * any block from the chunk that includes the array-address 's'
4129 * and report the next address.
4130 * i.e. the address returned will be chunk-aligned and after
4131 * any data that is in the chunk containing 's'.
4132 */
4133 static sector_t last_dev_address(sector_t s, struct geom *geo)
4134 {
4135 s = (s | geo->chunk_mask) + 1;
4136 s >>= geo->chunk_shift;
4137 s *= geo->near_copies;
4138 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4139 s *= geo->far_copies;
4140 s <<= geo->chunk_shift;
4141 return s;
4142 }
4143
4144 /* Calculate the first device-address that could contain
4145 * any block from the chunk that includes the array-address 's'.
4146 * This too will be the start of a chunk
4147 */
4148 static sector_t first_dev_address(sector_t s, struct geom *geo)
4149 {
4150 s >>= geo->chunk_shift;
4151 s *= geo->near_copies;
4152 sector_div(s, geo->raid_disks);
4153 s *= geo->far_copies;
4154 s <<= geo->chunk_shift;
4155 return s;
4156 }
4157
4158 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4159 int *skipped)
4160 {
4161 /* We simply copy at most one chunk (smallest of old and new)
4162 * at a time, possibly less if that exceeds RESYNC_PAGES,
4163 * or we hit a bad block or something.
4164 * This might mean we pause for normal IO in the middle of
4165 * a chunk, but that is not a problem was mddev->reshape_position
4166 * can record any location.
4167 *
4168 * If we will want to write to a location that isn't
4169 * yet recorded as 'safe' (i.e. in metadata on disk) then
4170 * we need to flush all reshape requests and update the metadata.
4171 *
4172 * When reshaping forwards (e.g. to more devices), we interpret
4173 * 'safe' as the earliest block which might not have been copied
4174 * down yet. We divide this by previous stripe size and multiply
4175 * by previous stripe length to get lowest device offset that we
4176 * cannot write to yet.
4177 * We interpret 'sector_nr' as an address that we want to write to.
4178 * From this we use last_device_address() to find where we might
4179 * write to, and first_device_address on the 'safe' position.
4180 * If this 'next' write position is after the 'safe' position,
4181 * we must update the metadata to increase the 'safe' position.
4182 *
4183 * When reshaping backwards, we round in the opposite direction
4184 * and perform the reverse test: next write position must not be
4185 * less than current safe position.
4186 *
4187 * In all this the minimum difference in data offsets
4188 * (conf->offset_diff - always positive) allows a bit of slack,
4189 * so next can be after 'safe', but not by more than offset_disk
4190 *
4191 * We need to prepare all the bios here before we start any IO
4192 * to ensure the size we choose is acceptable to all devices.
4193 * The means one for each copy for write-out and an extra one for
4194 * read-in.
4195 * We store the read-in bio in ->master_bio and the others in
4196 * ->devs[x].bio and ->devs[x].repl_bio.
4197 */
4198 struct r10conf *conf = mddev->private;
4199 struct r10bio *r10_bio;
4200 sector_t next, safe, last;
4201 int max_sectors;
4202 int nr_sectors;
4203 int s;
4204 struct md_rdev *rdev;
4205 int need_flush = 0;
4206 struct bio *blist;
4207 struct bio *bio, *read_bio;
4208 int sectors_done = 0;
4209
4210 if (sector_nr == 0) {
4211 /* If restarting in the middle, skip the initial sectors */
4212 if (mddev->reshape_backwards &&
4213 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4214 sector_nr = (raid10_size(mddev, 0, 0)
4215 - conf->reshape_progress);
4216 } else if (!mddev->reshape_backwards &&
4217 conf->reshape_progress > 0)
4218 sector_nr = conf->reshape_progress;
4219 if (sector_nr) {
4220 mddev->curr_resync_completed = sector_nr;
4221 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4222 *skipped = 1;
4223 return sector_nr;
4224 }
4225 }
4226
4227 /* We don't use sector_nr to track where we are up to
4228 * as that doesn't work well for ->reshape_backwards.
4229 * So just use ->reshape_progress.
4230 */
4231 if (mddev->reshape_backwards) {
4232 /* 'next' is the earliest device address that we might
4233 * write to for this chunk in the new layout
4234 */
4235 next = first_dev_address(conf->reshape_progress - 1,
4236 &conf->geo);
4237
4238 /* 'safe' is the last device address that we might read from
4239 * in the old layout after a restart
4240 */
4241 safe = last_dev_address(conf->reshape_safe - 1,
4242 &conf->prev);
4243
4244 if (next + conf->offset_diff < safe)
4245 need_flush = 1;
4246
4247 last = conf->reshape_progress - 1;
4248 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4249 & conf->prev.chunk_mask);
4250 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4251 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4252 } else {
4253 /* 'next' is after the last device address that we
4254 * might write to for this chunk in the new layout
4255 */
4256 next = last_dev_address(conf->reshape_progress, &conf->geo);
4257
4258 /* 'safe' is the earliest device address that we might
4259 * read from in the old layout after a restart
4260 */
4261 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4262
4263 /* Need to update metadata if 'next' might be beyond 'safe'
4264 * as that would possibly corrupt data
4265 */
4266 if (next > safe + conf->offset_diff)
4267 need_flush = 1;
4268
4269 sector_nr = conf->reshape_progress;
4270 last = sector_nr | (conf->geo.chunk_mask
4271 & conf->prev.chunk_mask);
4272
4273 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4274 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4275 }
4276
4277 if (need_flush ||
4278 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4279 /* Need to update reshape_position in metadata */
4280 wait_barrier(conf);
4281 mddev->reshape_position = conf->reshape_progress;
4282 if (mddev->reshape_backwards)
4283 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4284 - conf->reshape_progress;
4285 else
4286 mddev->curr_resync_completed = conf->reshape_progress;
4287 conf->reshape_checkpoint = jiffies;
4288 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4289 md_wakeup_thread(mddev->thread);
4290 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4291 kthread_should_stop());
4292 conf->reshape_safe = mddev->reshape_position;
4293 allow_barrier(conf);
4294 }
4295
4296 read_more:
4297 /* Now schedule reads for blocks from sector_nr to last */
4298 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4299 raise_barrier(conf, sectors_done != 0);
4300 atomic_set(&r10_bio->remaining, 0);
4301 r10_bio->mddev = mddev;
4302 r10_bio->sector = sector_nr;
4303 set_bit(R10BIO_IsReshape, &r10_bio->state);
4304 r10_bio->sectors = last - sector_nr + 1;
4305 rdev = read_balance(conf, r10_bio, &max_sectors);
4306 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4307
4308 if (!rdev) {
4309 /* Cannot read from here, so need to record bad blocks
4310 * on all the target devices.
4311 */
4312 // FIXME
4313 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4314 return sectors_done;
4315 }
4316
4317 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4318
4319 read_bio->bi_bdev = rdev->bdev;
4320 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4321 + rdev->data_offset);
4322 read_bio->bi_private = r10_bio;
4323 read_bio->bi_end_io = end_sync_read;
4324 read_bio->bi_rw = READ;
4325 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4326 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4327 read_bio->bi_vcnt = 0;
4328 read_bio->bi_idx = 0;
4329 read_bio->bi_size = 0;
4330 r10_bio->master_bio = read_bio;
4331 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4332
4333 /* Now find the locations in the new layout */
4334 __raid10_find_phys(&conf->geo, r10_bio);
4335
4336 blist = read_bio;
4337 read_bio->bi_next = NULL;
4338
4339 for (s = 0; s < conf->copies*2; s++) {
4340 struct bio *b;
4341 int d = r10_bio->devs[s/2].devnum;
4342 struct md_rdev *rdev2;
4343 if (s&1) {
4344 rdev2 = conf->mirrors[d].replacement;
4345 b = r10_bio->devs[s/2].repl_bio;
4346 } else {
4347 rdev2 = conf->mirrors[d].rdev;
4348 b = r10_bio->devs[s/2].bio;
4349 }
4350 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4351 continue;
4352 b->bi_bdev = rdev2->bdev;
4353 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4354 b->bi_private = r10_bio;
4355 b->bi_end_io = end_reshape_write;
4356 b->bi_rw = WRITE;
4357 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4358 b->bi_flags |= 1 << BIO_UPTODATE;
4359 b->bi_next = blist;
4360 b->bi_vcnt = 0;
4361 b->bi_idx = 0;
4362 b->bi_size = 0;
4363 blist = b;
4364 }
4365
4366 /* Now add as many pages as possible to all of these bios. */
4367
4368 nr_sectors = 0;
4369 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4370 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4371 int len = (max_sectors - s) << 9;
4372 if (len > PAGE_SIZE)
4373 len = PAGE_SIZE;
4374 for (bio = blist; bio ; bio = bio->bi_next) {
4375 struct bio *bio2;
4376 if (bio_add_page(bio, page, len, 0))
4377 continue;
4378
4379 /* Didn't fit, must stop */
4380 for (bio2 = blist;
4381 bio2 && bio2 != bio;
4382 bio2 = bio2->bi_next) {
4383 /* Remove last page from this bio */
4384 bio2->bi_vcnt--;
4385 bio2->bi_size -= len;
4386 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4387 }
4388 goto bio_full;
4389 }
4390 sector_nr += len >> 9;
4391 nr_sectors += len >> 9;
4392 }
4393 bio_full:
4394 r10_bio->sectors = nr_sectors;
4395
4396 /* Now submit the read */
4397 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4398 atomic_inc(&r10_bio->remaining);
4399 read_bio->bi_next = NULL;
4400 generic_make_request(read_bio);
4401 sector_nr += nr_sectors;
4402 sectors_done += nr_sectors;
4403 if (sector_nr <= last)
4404 goto read_more;
4405
4406 /* Now that we have done the whole section we can
4407 * update reshape_progress
4408 */
4409 if (mddev->reshape_backwards)
4410 conf->reshape_progress -= sectors_done;
4411 else
4412 conf->reshape_progress += sectors_done;
4413
4414 return sectors_done;
4415 }
4416
4417 static void end_reshape_request(struct r10bio *r10_bio);
4418 static int handle_reshape_read_error(struct mddev *mddev,
4419 struct r10bio *r10_bio);
4420 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4421 {
4422 /* Reshape read completed. Hopefully we have a block
4423 * to write out.
4424 * If we got a read error then we do sync 1-page reads from
4425 * elsewhere until we find the data - or give up.
4426 */
4427 struct r10conf *conf = mddev->private;
4428 int s;
4429
4430 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4431 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4432 /* Reshape has been aborted */
4433 md_done_sync(mddev, r10_bio->sectors, 0);
4434 return;
4435 }
4436
4437 /* We definitely have the data in the pages, schedule the
4438 * writes.
4439 */
4440 atomic_set(&r10_bio->remaining, 1);
4441 for (s = 0; s < conf->copies*2; s++) {
4442 struct bio *b;
4443 int d = r10_bio->devs[s/2].devnum;
4444 struct md_rdev *rdev;
4445 if (s&1) {
4446 rdev = conf->mirrors[d].replacement;
4447 b = r10_bio->devs[s/2].repl_bio;
4448 } else {
4449 rdev = conf->mirrors[d].rdev;
4450 b = r10_bio->devs[s/2].bio;
4451 }
4452 if (!rdev || test_bit(Faulty, &rdev->flags))
4453 continue;
4454 atomic_inc(&rdev->nr_pending);
4455 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4456 atomic_inc(&r10_bio->remaining);
4457 b->bi_next = NULL;
4458 generic_make_request(b);
4459 }
4460 end_reshape_request(r10_bio);
4461 }
4462
4463 static void end_reshape(struct r10conf *conf)
4464 {
4465 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4466 return;
4467
4468 spin_lock_irq(&conf->device_lock);
4469 conf->prev = conf->geo;
4470 md_finish_reshape(conf->mddev);
4471 smp_wmb();
4472 conf->reshape_progress = MaxSector;
4473 spin_unlock_irq(&conf->device_lock);
4474
4475 /* read-ahead size must cover two whole stripes, which is
4476 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4477 */
4478 if (conf->mddev->queue) {
4479 int stripe = conf->geo.raid_disks *
4480 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4481 stripe /= conf->geo.near_copies;
4482 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4483 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4484 }
4485 conf->fullsync = 0;
4486 }
4487
4488
4489 static int handle_reshape_read_error(struct mddev *mddev,
4490 struct r10bio *r10_bio)
4491 {
4492 /* Use sync reads to get the blocks from somewhere else */
4493 int sectors = r10_bio->sectors;
4494 struct r10conf *conf = mddev->private;
4495 struct {
4496 struct r10bio r10_bio;
4497 struct r10dev devs[conf->copies];
4498 } on_stack;
4499 struct r10bio *r10b = &on_stack.r10_bio;
4500 int slot = 0;
4501 int idx = 0;
4502 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4503
4504 r10b->sector = r10_bio->sector;
4505 __raid10_find_phys(&conf->prev, r10b);
4506
4507 while (sectors) {
4508 int s = sectors;
4509 int success = 0;
4510 int first_slot = slot;
4511
4512 if (s > (PAGE_SIZE >> 9))
4513 s = PAGE_SIZE >> 9;
4514
4515 while (!success) {
4516 int d = r10b->devs[slot].devnum;
4517 struct md_rdev *rdev = conf->mirrors[d].rdev;
4518 sector_t addr;
4519 if (rdev == NULL ||
4520 test_bit(Faulty, &rdev->flags) ||
4521 !test_bit(In_sync, &rdev->flags))
4522 goto failed;
4523
4524 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4525 success = sync_page_io(rdev,
4526 addr,
4527 s << 9,
4528 bvec[idx].bv_page,
4529 READ, false);
4530 if (success)
4531 break;
4532 failed:
4533 slot++;
4534 if (slot >= conf->copies)
4535 slot = 0;
4536 if (slot == first_slot)
4537 break;
4538 }
4539 if (!success) {
4540 /* couldn't read this block, must give up */
4541 set_bit(MD_RECOVERY_INTR,
4542 &mddev->recovery);
4543 return -EIO;
4544 }
4545 sectors -= s;
4546 idx++;
4547 }
4548 return 0;
4549 }
4550
4551 static void end_reshape_write(struct bio *bio, int error)
4552 {
4553 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4554 struct r10bio *r10_bio = bio->bi_private;
4555 struct mddev *mddev = r10_bio->mddev;
4556 struct r10conf *conf = mddev->private;
4557 int d;
4558 int slot;
4559 int repl;
4560 struct md_rdev *rdev = NULL;
4561
4562 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4563 if (repl)
4564 rdev = conf->mirrors[d].replacement;
4565 if (!rdev) {
4566 smp_mb();
4567 rdev = conf->mirrors[d].rdev;
4568 }
4569
4570 if (!uptodate) {
4571 /* FIXME should record badblock */
4572 md_error(mddev, rdev);
4573 }
4574
4575 rdev_dec_pending(rdev, mddev);
4576 end_reshape_request(r10_bio);
4577 }
4578
4579 static void end_reshape_request(struct r10bio *r10_bio)
4580 {
4581 if (!atomic_dec_and_test(&r10_bio->remaining))
4582 return;
4583 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4584 bio_put(r10_bio->master_bio);
4585 put_buf(r10_bio);
4586 }
4587
4588 static void raid10_finish_reshape(struct mddev *mddev)
4589 {
4590 struct r10conf *conf = mddev->private;
4591
4592 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4593 return;
4594
4595 if (mddev->delta_disks > 0) {
4596 sector_t size = raid10_size(mddev, 0, 0);
4597 md_set_array_sectors(mddev, size);
4598 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4599 mddev->recovery_cp = mddev->resync_max_sectors;
4600 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4601 }
4602 mddev->resync_max_sectors = size;
4603 set_capacity(mddev->gendisk, mddev->array_sectors);
4604 revalidate_disk(mddev->gendisk);
4605 } else {
4606 int d;
4607 for (d = conf->geo.raid_disks ;
4608 d < conf->geo.raid_disks - mddev->delta_disks;
4609 d++) {
4610 struct md_rdev *rdev = conf->mirrors[d].rdev;
4611 if (rdev)
4612 clear_bit(In_sync, &rdev->flags);
4613 rdev = conf->mirrors[d].replacement;
4614 if (rdev)
4615 clear_bit(In_sync, &rdev->flags);
4616 }
4617 }
4618 mddev->layout = mddev->new_layout;
4619 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4620 mddev->reshape_position = MaxSector;
4621 mddev->delta_disks = 0;
4622 mddev->reshape_backwards = 0;
4623 }
4624
4625 static struct md_personality raid10_personality =
4626 {
4627 .name = "raid10",
4628 .level = 10,
4629 .owner = THIS_MODULE,
4630 .make_request = make_request,
4631 .run = run,
4632 .stop = stop,
4633 .status = status,
4634 .error_handler = error,
4635 .hot_add_disk = raid10_add_disk,
4636 .hot_remove_disk= raid10_remove_disk,
4637 .spare_active = raid10_spare_active,
4638 .sync_request = sync_request,
4639 .quiesce = raid10_quiesce,
4640 .size = raid10_size,
4641 .resize = raid10_resize,
4642 .takeover = raid10_takeover,
4643 .check_reshape = raid10_check_reshape,
4644 .start_reshape = raid10_start_reshape,
4645 .finish_reshape = raid10_finish_reshape,
4646 };
4647
4648 static int __init raid_init(void)
4649 {
4650 return register_md_personality(&raid10_personality);
4651 }
4652
4653 static void raid_exit(void)
4654 {
4655 unregister_md_personality(&raid10_personality);
4656 }
4657
4658 module_init(raid_init);
4659 module_exit(raid_exit);
4660 MODULE_LICENSE("GPL");
4661 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4662 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4663 MODULE_ALIAS("md-raid10");
4664 MODULE_ALIAS("md-level-10");
4665
4666 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.169033 seconds and 5 git commands to generate.