Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
43 *
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
72 */
73
74 /*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
112
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
150
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
195 }
196 }
197
198 return r10_bio;
199
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
237 }
238 r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
254 }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 struct r10conf *conf = r10_bio->mddev->private;
260
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 struct r10conf *conf = r10_bio->mddev->private;
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
271 lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
288 md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
301
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
320 free_r10bio(r10_bio);
321 }
322
323 /*
324 * Update disk head position estimator based on IRQ completion info.
325 */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335 * Find the disk number which triggered given bio
336 */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
339 {
340 int slot;
341 int repl = 0;
342
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690 /*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
697 {
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710 retry:
711 sectors = r10_bio->sectors;
712 best_slot = -1;
713 best_rdev = NULL;
714 best_dist = MaxSector;
715 best_good_sectors = 0;
716 do_balance = 1;
717 /*
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
722 */
723 if (conf->mddev->recovery_cp < MaxSector
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
726
727 for (slot = 0; slot < conf->copies ; slot++) {
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
731
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
734 disk = r10_bio->devs[slot].devnum;
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 if (rdev == NULL ||
740 test_bit(Faulty, &rdev->flags))
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 continue;
745
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
756 */
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
768 best_rdev = rdev;
769 }
770 if (!do_balance)
771 /* Must read from here */
772 break;
773 }
774 continue;
775 } else
776 best_good_sectors = sectors;
777
778 if (!do_balance)
779 break;
780
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
784 */
785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 break;
787
788 /* for far > 1 always use the lowest address */
789 if (geo->far_copies > 1)
790 new_distance = r10_bio->devs[slot].addr;
791 else
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
797 best_rdev = rdev;
798 }
799 }
800 if (slot >= conf->copies) {
801 slot = best_slot;
802 rdev = best_rdev;
803 }
804
805 if (slot >= 0) {
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
810 */
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
813 }
814 r10_bio->read_slot = slot;
815 } else
816 rdev = NULL;
817 rcu_read_unlock();
818 *max_sectors = best_good_sectors;
819
820 return rdev;
821 }
822
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825 struct r10conf *conf = mddev->private;
826 int i, ret = 0;
827
828 if ((bits & (1 << WB_async_congested)) &&
829 conf->pending_count >= max_queued_requests)
830 return 1;
831
832 rcu_read_lock();
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841 ret |= bdi_congested(&q->backing_dev_info, bits);
842 }
843 }
844 rcu_read_unlock();
845 return ret;
846 }
847
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
852 */
853 spin_lock_irq(&conf->device_lock);
854
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
858 conf->pending_count = 0;
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
863 wake_up(&conf->wait_barrier);
864
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
868 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
871 bio_endio(bio);
872 else
873 generic_make_request(bio);
874 bio = next;
875 }
876 } else
877 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
893 *
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
900 */
901
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904 BUG_ON(force && !conf->barrier);
905 spin_lock_irq(&conf->resync_lock);
906
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 conf->resync_lock);
910
911 /* block any new IO from starting */
912 conf->barrier++;
913
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 conf->resync_lock);
918
919 spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void lower_barrier(struct r10conf *conf)
923 {
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
929 }
930
931 static void wait_barrier(struct r10conf *conf)
932 {
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
944 */
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 !bio_list_empty(current->bio_list)),
950 conf->resync_lock);
951 conf->nr_waiting--;
952 }
953 conf->nr_pending++;
954 spin_unlock_irq(&conf->resync_lock);
955 }
956
957 static void allow_barrier(struct r10conf *conf)
958 {
959 unsigned long flags;
960 spin_lock_irqsave(&conf->resync_lock, flags);
961 conf->nr_pending--;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968 /* stop syncio and normal IO and wait for everything to
969 * go quiet.
970 * We increment barrier and nr_waiting, and then
971 * wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
979 */
980 spin_lock_irq(&conf->resync_lock);
981 conf->barrier++;
982 conf->nr_waiting++;
983 wait_event_lock_irq_cmd(conf->wait_barrier,
984 conf->nr_pending == conf->nr_queued+extra,
985 conf->resync_lock,
986 flush_pending_writes(conf));
987
988 spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void unfreeze_array(struct r10conf *conf)
992 {
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->barrier--;
996 conf->nr_waiting--;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 struct md_rdev *rdev)
1003 {
1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 test_bit(R10BIO_Previous, &r10_bio->state))
1006 return rdev->data_offset;
1007 else
1008 return rdev->new_data_offset;
1009 }
1010
1011 struct raid10_plug_cb {
1012 struct blk_plug_cb cb;
1013 struct bio_list pending;
1014 int pending_cnt;
1015 };
1016
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 cb);
1021 struct mddev *mddev = plug->cb.data;
1022 struct r10conf *conf = mddev->private;
1023 struct bio *bio;
1024
1025 if (from_schedule || current->bio_list) {
1026 spin_lock_irq(&conf->device_lock);
1027 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 conf->pending_count += plug->pending_cnt;
1029 spin_unlock_irq(&conf->device_lock);
1030 wake_up(&conf->wait_barrier);
1031 md_wakeup_thread(mddev->thread);
1032 kfree(plug);
1033 return;
1034 }
1035
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio = bio_list_get(&plug->pending);
1038 bitmap_unplug(mddev->bitmap);
1039 wake_up(&conf->wait_barrier);
1040
1041 while (bio) { /* submit pending writes */
1042 struct bio *next = bio->bi_next;
1043 bio->bi_next = NULL;
1044 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 /* Just ignore it */
1047 bio_endio(bio);
1048 else
1049 generic_make_request(bio);
1050 bio = next;
1051 }
1052 kfree(plug);
1053 }
1054
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057 struct r10conf *conf = mddev->private;
1058 struct r10bio *r10_bio;
1059 struct bio *read_bio;
1060 int i;
1061 const int rw = bio_data_dir(bio);
1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 const unsigned long do_discard = (bio->bi_rw
1065 & (REQ_DISCARD | REQ_SECURE));
1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067 unsigned long flags;
1068 struct md_rdev *blocked_rdev;
1069 struct blk_plug_cb *cb;
1070 struct raid10_plug_cb *plug = NULL;
1071 int sectors_handled;
1072 int max_sectors;
1073 int sectors;
1074
1075 /*
1076 * Register the new request and wait if the reconstruction
1077 * thread has put up a bar for new requests.
1078 * Continue immediately if no resync is active currently.
1079 */
1080 wait_barrier(conf);
1081
1082 sectors = bio_sectors(bio);
1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084 bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086 /* IO spans the reshape position. Need to wait for
1087 * reshape to pass
1088 */
1089 allow_barrier(conf);
1090 wait_event(conf->wait_barrier,
1091 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 sectors);
1094 wait_barrier(conf);
1095 }
1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 bio_data_dir(bio) == WRITE &&
1098 (mddev->reshape_backwards
1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103 /* Need to update reshape_position in metadata */
1104 mddev->reshape_position = conf->reshape_progress;
1105 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1106 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1107 md_wakeup_thread(mddev->thread);
1108 wait_event(mddev->sb_wait,
1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111 conf->reshape_safe = mddev->reshape_position;
1112 }
1113
1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116 r10_bio->master_bio = bio;
1117 r10_bio->sectors = sectors;
1118
1119 r10_bio->mddev = mddev;
1120 r10_bio->sector = bio->bi_iter.bi_sector;
1121 r10_bio->state = 0;
1122
1123 /* We might need to issue multiple reads to different
1124 * devices if there are bad blocks around, so we keep
1125 * track of the number of reads in bio->bi_phys_segments.
1126 * If this is 0, there is only one r10_bio and no locking
1127 * will be needed when the request completes. If it is
1128 * non-zero, then it is the number of not-completed requests.
1129 */
1130 bio->bi_phys_segments = 0;
1131 bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133 if (rw == READ) {
1134 /*
1135 * read balancing logic:
1136 */
1137 struct md_rdev *rdev;
1138 int slot;
1139
1140 read_again:
1141 rdev = read_balance(conf, r10_bio, &max_sectors);
1142 if (!rdev) {
1143 raid_end_bio_io(r10_bio);
1144 return;
1145 }
1146 slot = r10_bio->read_slot;
1147
1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150 max_sectors);
1151
1152 r10_bio->devs[slot].bio = read_bio;
1153 r10_bio->devs[slot].rdev = rdev;
1154
1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156 choose_data_offset(r10_bio, rdev);
1157 read_bio->bi_bdev = rdev->bdev;
1158 read_bio->bi_end_io = raid10_end_read_request;
1159 read_bio->bi_rw = READ | do_sync;
1160 read_bio->bi_private = r10_bio;
1161
1162 if (max_sectors < r10_bio->sectors) {
1163 /* Could not read all from this device, so we will
1164 * need another r10_bio.
1165 */
1166 sectors_handled = (r10_bio->sector + max_sectors
1167 - bio->bi_iter.bi_sector);
1168 r10_bio->sectors = max_sectors;
1169 spin_lock_irq(&conf->device_lock);
1170 if (bio->bi_phys_segments == 0)
1171 bio->bi_phys_segments = 2;
1172 else
1173 bio->bi_phys_segments++;
1174 spin_unlock_irq(&conf->device_lock);
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __generic_make_request
1177 * and subsequent mempool_alloc might block
1178 * waiting for it. so hand bio over to raid10d.
1179 */
1180 reschedule_retry(r10_bio);
1181
1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 r10_bio->state = 0;
1187 r10_bio->mddev = mddev;
1188 r10_bio->sector = bio->bi_iter.bi_sector +
1189 sectors_handled;
1190 goto read_again;
1191 } else
1192 generic_make_request(read_bio);
1193 return;
1194 }
1195
1196 /*
1197 * WRITE:
1198 */
1199 if (conf->pending_count >= max_queued_requests) {
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(conf->wait_barrier,
1202 conf->pending_count < max_queued_requests);
1203 }
1204 /* first select target devices under rcu_lock and
1205 * inc refcount on their rdev. Record them by setting
1206 * bios[x] to bio
1207 * If there are known/acknowledged bad blocks on any device
1208 * on which we have seen a write error, we want to avoid
1209 * writing to those blocks. This potentially requires several
1210 * writes to write around the bad blocks. Each set of writes
1211 * gets its own r10_bio with a set of bios attached. The number
1212 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 * the read case.
1214 */
1215
1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217 raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219 blocked_rdev = NULL;
1220 rcu_read_lock();
1221 max_sectors = r10_bio->sectors;
1222
1223 for (i = 0; i < conf->copies; i++) {
1224 int d = r10_bio->devs[i].devnum;
1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226 struct md_rdev *rrdev = rcu_dereference(
1227 conf->mirrors[d].replacement);
1228 if (rdev == rrdev)
1229 rrdev = NULL;
1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 atomic_inc(&rdev->nr_pending);
1232 blocked_rdev = rdev;
1233 break;
1234 }
1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 atomic_inc(&rrdev->nr_pending);
1237 blocked_rdev = rrdev;
1238 break;
1239 }
1240 if (rdev && (test_bit(Faulty, &rdev->flags)))
1241 rdev = NULL;
1242 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243 rrdev = NULL;
1244
1245 r10_bio->devs[i].bio = NULL;
1246 r10_bio->devs[i].repl_bio = NULL;
1247
1248 if (!rdev && !rrdev) {
1249 set_bit(R10BIO_Degraded, &r10_bio->state);
1250 continue;
1251 }
1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253 sector_t first_bad;
1254 sector_t dev_sector = r10_bio->devs[i].addr;
1255 int bad_sectors;
1256 int is_bad;
1257
1258 is_bad = is_badblock(rdev, dev_sector,
1259 max_sectors,
1260 &first_bad, &bad_sectors);
1261 if (is_bad < 0) {
1262 /* Mustn't write here until the bad block
1263 * is acknowledged
1264 */
1265 atomic_inc(&rdev->nr_pending);
1266 set_bit(BlockedBadBlocks, &rdev->flags);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1270 if (is_bad && first_bad <= dev_sector) {
1271 /* Cannot write here at all */
1272 bad_sectors -= (dev_sector - first_bad);
1273 if (bad_sectors < max_sectors)
1274 /* Mustn't write more than bad_sectors
1275 * to other devices yet
1276 */
1277 max_sectors = bad_sectors;
1278 /* We don't set R10BIO_Degraded as that
1279 * only applies if the disk is missing,
1280 * so it might be re-added, and we want to
1281 * know to recover this chunk.
1282 * In this case the device is here, and the
1283 * fact that this chunk is not in-sync is
1284 * recorded in the bad block log.
1285 */
1286 continue;
1287 }
1288 if (is_bad) {
1289 int good_sectors = first_bad - dev_sector;
1290 if (good_sectors < max_sectors)
1291 max_sectors = good_sectors;
1292 }
1293 }
1294 if (rdev) {
1295 r10_bio->devs[i].bio = bio;
1296 atomic_inc(&rdev->nr_pending);
1297 }
1298 if (rrdev) {
1299 r10_bio->devs[i].repl_bio = bio;
1300 atomic_inc(&rrdev->nr_pending);
1301 }
1302 }
1303 rcu_read_unlock();
1304
1305 if (unlikely(blocked_rdev)) {
1306 /* Have to wait for this device to get unblocked, then retry */
1307 int j;
1308 int d;
1309
1310 for (j = 0; j < i; j++) {
1311 if (r10_bio->devs[j].bio) {
1312 d = r10_bio->devs[j].devnum;
1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314 }
1315 if (r10_bio->devs[j].repl_bio) {
1316 struct md_rdev *rdev;
1317 d = r10_bio->devs[j].devnum;
1318 rdev = conf->mirrors[d].replacement;
1319 if (!rdev) {
1320 /* Race with remove_disk */
1321 smp_mb();
1322 rdev = conf->mirrors[d].rdev;
1323 }
1324 rdev_dec_pending(rdev, mddev);
1325 }
1326 }
1327 allow_barrier(conf);
1328 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 wait_barrier(conf);
1330 goto retry_write;
1331 }
1332
1333 if (max_sectors < r10_bio->sectors) {
1334 /* We are splitting this into multiple parts, so
1335 * we need to prepare for allocating another r10_bio.
1336 */
1337 r10_bio->sectors = max_sectors;
1338 spin_lock_irq(&conf->device_lock);
1339 if (bio->bi_phys_segments == 0)
1340 bio->bi_phys_segments = 2;
1341 else
1342 bio->bi_phys_segments++;
1343 spin_unlock_irq(&conf->device_lock);
1344 }
1345 sectors_handled = r10_bio->sector + max_sectors -
1346 bio->bi_iter.bi_sector;
1347
1348 atomic_set(&r10_bio->remaining, 1);
1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351 for (i = 0; i < conf->copies; i++) {
1352 struct bio *mbio;
1353 int d = r10_bio->devs[i].devnum;
1354 if (r10_bio->devs[i].bio) {
1355 struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358 max_sectors);
1359 r10_bio->devs[i].bio = mbio;
1360
1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362 choose_data_offset(r10_bio,
1363 rdev));
1364 mbio->bi_bdev = rdev->bdev;
1365 mbio->bi_end_io = raid10_end_write_request;
1366 mbio->bi_rw =
1367 WRITE | do_sync | do_fua | do_discard | do_same;
1368 mbio->bi_private = r10_bio;
1369
1370 atomic_inc(&r10_bio->remaining);
1371
1372 cb = blk_check_plugged(raid10_unplug, mddev,
1373 sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid10_plug_cb,
1376 cb);
1377 else
1378 plug = NULL;
1379 spin_lock_irqsave(&conf->device_lock, flags);
1380 if (plug) {
1381 bio_list_add(&plug->pending, mbio);
1382 plug->pending_cnt++;
1383 } else {
1384 bio_list_add(&conf->pending_bio_list, mbio);
1385 conf->pending_count++;
1386 }
1387 spin_unlock_irqrestore(&conf->device_lock, flags);
1388 if (!plug)
1389 md_wakeup_thread(mddev->thread);
1390 }
1391
1392 if (r10_bio->devs[i].repl_bio) {
1393 struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 if (rdev == NULL) {
1395 /* Replacement just got moved to main 'rdev' */
1396 smp_mb();
1397 rdev = conf->mirrors[d].rdev;
1398 }
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401 max_sectors);
1402 r10_bio->devs[i].repl_bio = mbio;
1403
1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405 choose_data_offset(
1406 r10_bio, rdev));
1407 mbio->bi_bdev = rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
1409 mbio->bi_rw =
1410 WRITE | do_sync | do_fua | do_discard | do_same;
1411 mbio->bi_private = r10_bio;
1412
1413 atomic_inc(&r10_bio->remaining);
1414 spin_lock_irqsave(&conf->device_lock, flags);
1415 bio_list_add(&conf->pending_bio_list, mbio);
1416 conf->pending_count++;
1417 spin_unlock_irqrestore(&conf->device_lock, flags);
1418 if (!mddev_check_plugged(mddev))
1419 md_wakeup_thread(mddev->thread);
1420 }
1421 }
1422
1423 /* Don't remove the bias on 'remaining' (one_write_done) until
1424 * after checking if we need to go around again.
1425 */
1426
1427 if (sectors_handled < bio_sectors(bio)) {
1428 one_write_done(r10_bio);
1429 /* We need another r10_bio. It has already been counted
1430 * in bio->bi_phys_segments.
1431 */
1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434 r10_bio->master_bio = bio;
1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437 r10_bio->mddev = mddev;
1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 r10_bio->state = 0;
1440 goto retry_write;
1441 }
1442 one_write_done(r10_bio);
1443 }
1444
1445 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447 struct r10conf *conf = mddev->private;
1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 int chunk_sects = chunk_mask + 1;
1450
1451 struct bio *split;
1452
1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 md_flush_request(mddev, bio);
1455 return;
1456 }
1457
1458 md_write_start(mddev, bio);
1459
1460 do {
1461
1462 /*
1463 * If this request crosses a chunk boundary, we need to split
1464 * it.
1465 */
1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 bio_sectors(bio) > chunk_sects
1468 && (conf->geo.near_copies < conf->geo.raid_disks
1469 || conf->prev.near_copies <
1470 conf->prev.raid_disks))) {
1471 split = bio_split(bio, chunk_sects -
1472 (bio->bi_iter.bi_sector &
1473 (chunk_sects - 1)),
1474 GFP_NOIO, fs_bio_set);
1475 bio_chain(split, bio);
1476 } else {
1477 split = bio;
1478 }
1479
1480 __make_request(mddev, split);
1481 } while (split != bio);
1482
1483 /* In case raid10d snuck in to freeze_array */
1484 wake_up(&conf->wait_barrier);
1485 }
1486
1487 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489 struct r10conf *conf = mddev->private;
1490 int i;
1491
1492 if (conf->geo.near_copies < conf->geo.raid_disks)
1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494 if (conf->geo.near_copies > 1)
1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 if (conf->geo.far_copies > 1) {
1497 if (conf->geo.far_offset)
1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499 else
1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503 }
1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 conf->geo.raid_disks - mddev->degraded);
1506 for (i = 0; i < conf->geo.raid_disks; i++)
1507 seq_printf(seq, "%s",
1508 conf->mirrors[i].rdev &&
1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510 seq_printf(seq, "]");
1511 }
1512
1513 /* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1517 */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520 int first = 0;
1521 int has_enough = 0;
1522 int disks, ncopies;
1523 if (previous) {
1524 disks = conf->prev.raid_disks;
1525 ncopies = conf->prev.near_copies;
1526 } else {
1527 disks = conf->geo.raid_disks;
1528 ncopies = conf->geo.near_copies;
1529 }
1530
1531 rcu_read_lock();
1532 do {
1533 int n = conf->copies;
1534 int cnt = 0;
1535 int this = first;
1536 while (n--) {
1537 struct md_rdev *rdev;
1538 if (this != ignore &&
1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 test_bit(In_sync, &rdev->flags))
1541 cnt++;
1542 this = (this+1) % disks;
1543 }
1544 if (cnt == 0)
1545 goto out;
1546 first = (first + ncopies) % disks;
1547 } while (first != 0);
1548 has_enough = 1;
1549 out:
1550 rcu_read_unlock();
1551 return has_enough;
1552 }
1553
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556 /* when calling 'enough', both 'prev' and 'geo' must
1557 * be stable.
1558 * This is ensured if ->reconfig_mutex or ->device_lock
1559 * is held.
1560 */
1561 return _enough(conf, 0, ignore) &&
1562 _enough(conf, 1, ignore);
1563 }
1564
1565 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 char b[BDEVNAME_SIZE];
1568 struct r10conf *conf = mddev->private;
1569 unsigned long flags;
1570
1571 /*
1572 * If it is not operational, then we have already marked it as dead
1573 * else if it is the last working disks, ignore the error, let the
1574 * next level up know.
1575 * else mark the drive as failed
1576 */
1577 spin_lock_irqsave(&conf->device_lock, flags);
1578 if (test_bit(In_sync, &rdev->flags)
1579 && !enough(conf, rdev->raid_disk)) {
1580 /*
1581 * Don't fail the drive, just return an IO error.
1582 */
1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1584 return;
1585 }
1586 if (test_and_clear_bit(In_sync, &rdev->flags))
1587 mddev->degraded++;
1588 /*
1589 * If recovery is running, make sure it aborts.
1590 */
1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592 set_bit(Blocked, &rdev->flags);
1593 set_bit(Faulty, &rdev->flags);
1594 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1595 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1596 spin_unlock_irqrestore(&conf->device_lock, flags);
1597 printk(KERN_ALERT
1598 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 "md/raid10:%s: Operation continuing on %d devices.\n",
1600 mdname(mddev), bdevname(rdev->bdev, b),
1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603
1604 static void print_conf(struct r10conf *conf)
1605 {
1606 int i;
1607 struct raid10_info *tmp;
1608
1609 printk(KERN_DEBUG "RAID10 conf printout:\n");
1610 if (!conf) {
1611 printk(KERN_DEBUG "(!conf)\n");
1612 return;
1613 }
1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 conf->geo.raid_disks);
1616
1617 for (i = 0; i < conf->geo.raid_disks; i++) {
1618 char b[BDEVNAME_SIZE];
1619 tmp = conf->mirrors + i;
1620 if (tmp->rdev)
1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622 i, !test_bit(In_sync, &tmp->rdev->flags),
1623 !test_bit(Faulty, &tmp->rdev->flags),
1624 bdevname(tmp->rdev->bdev,b));
1625 }
1626 }
1627
1628 static void close_sync(struct r10conf *conf)
1629 {
1630 wait_barrier(conf);
1631 allow_barrier(conf);
1632
1633 mempool_destroy(conf->r10buf_pool);
1634 conf->r10buf_pool = NULL;
1635 }
1636
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639 int i;
1640 struct r10conf *conf = mddev->private;
1641 struct raid10_info *tmp;
1642 int count = 0;
1643 unsigned long flags;
1644
1645 /*
1646 * Find all non-in_sync disks within the RAID10 configuration
1647 * and mark them in_sync
1648 */
1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1650 tmp = conf->mirrors + i;
1651 if (tmp->replacement
1652 && tmp->replacement->recovery_offset == MaxSector
1653 && !test_bit(Faulty, &tmp->replacement->flags)
1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 /* Replacement has just become active */
1656 if (!tmp->rdev
1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 count++;
1659 if (tmp->rdev) {
1660 /* Replaced device not technically faulty,
1661 * but we need to be sure it gets removed
1662 * and never re-added.
1663 */
1664 set_bit(Faulty, &tmp->rdev->flags);
1665 sysfs_notify_dirent_safe(
1666 tmp->rdev->sysfs_state);
1667 }
1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 } else if (tmp->rdev
1670 && tmp->rdev->recovery_offset == MaxSector
1671 && !test_bit(Faulty, &tmp->rdev->flags)
1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673 count++;
1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675 }
1676 }
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 mddev->degraded -= count;
1679 spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681 print_conf(conf);
1682 return count;
1683 }
1684
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687 struct r10conf *conf = mddev->private;
1688 int err = -EEXIST;
1689 int mirror;
1690 int first = 0;
1691 int last = conf->geo.raid_disks - 1;
1692
1693 if (mddev->recovery_cp < MaxSector)
1694 /* only hot-add to in-sync arrays, as recovery is
1695 * very different from resync
1696 */
1697 return -EBUSY;
1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699 return -EINVAL;
1700
1701 if (md_integrity_add_rdev(rdev, mddev))
1702 return -ENXIO;
1703
1704 if (rdev->raid_disk >= 0)
1705 first = last = rdev->raid_disk;
1706
1707 if (rdev->saved_raid_disk >= first &&
1708 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1709 mirror = rdev->saved_raid_disk;
1710 else
1711 mirror = first;
1712 for ( ; mirror <= last ; mirror++) {
1713 struct raid10_info *p = &conf->mirrors[mirror];
1714 if (p->recovery_disabled == mddev->recovery_disabled)
1715 continue;
1716 if (p->rdev) {
1717 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1718 p->replacement != NULL)
1719 continue;
1720 clear_bit(In_sync, &rdev->flags);
1721 set_bit(Replacement, &rdev->flags);
1722 rdev->raid_disk = mirror;
1723 err = 0;
1724 if (mddev->gendisk)
1725 disk_stack_limits(mddev->gendisk, rdev->bdev,
1726 rdev->data_offset << 9);
1727 conf->fullsync = 1;
1728 rcu_assign_pointer(p->replacement, rdev);
1729 break;
1730 }
1731
1732 if (mddev->gendisk)
1733 disk_stack_limits(mddev->gendisk, rdev->bdev,
1734 rdev->data_offset << 9);
1735
1736 p->head_position = 0;
1737 p->recovery_disabled = mddev->recovery_disabled - 1;
1738 rdev->raid_disk = mirror;
1739 err = 0;
1740 if (rdev->saved_raid_disk != mirror)
1741 conf->fullsync = 1;
1742 rcu_assign_pointer(p->rdev, rdev);
1743 break;
1744 }
1745 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
1748 print_conf(conf);
1749 return err;
1750 }
1751
1752 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754 struct r10conf *conf = mddev->private;
1755 int err = 0;
1756 int number = rdev->raid_disk;
1757 struct md_rdev **rdevp;
1758 struct raid10_info *p = conf->mirrors + number;
1759
1760 print_conf(conf);
1761 if (rdev == p->rdev)
1762 rdevp = &p->rdev;
1763 else if (rdev == p->replacement)
1764 rdevp = &p->replacement;
1765 else
1766 return 0;
1767
1768 if (test_bit(In_sync, &rdev->flags) ||
1769 atomic_read(&rdev->nr_pending)) {
1770 err = -EBUSY;
1771 goto abort;
1772 }
1773 /* Only remove faulty devices if recovery
1774 * is not possible.
1775 */
1776 if (!test_bit(Faulty, &rdev->flags) &&
1777 mddev->recovery_disabled != p->recovery_disabled &&
1778 (!p->replacement || p->replacement == rdev) &&
1779 number < conf->geo.raid_disks &&
1780 enough(conf, -1)) {
1781 err = -EBUSY;
1782 goto abort;
1783 }
1784 *rdevp = NULL;
1785 synchronize_rcu();
1786 if (atomic_read(&rdev->nr_pending)) {
1787 /* lost the race, try later */
1788 err = -EBUSY;
1789 *rdevp = rdev;
1790 goto abort;
1791 } else if (p->replacement) {
1792 /* We must have just cleared 'rdev' */
1793 p->rdev = p->replacement;
1794 clear_bit(Replacement, &p->replacement->flags);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1797 */
1798 p->replacement = NULL;
1799 clear_bit(WantReplacement, &rdev->flags);
1800 } else
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1803 */
1804 clear_bit(WantReplacement, &rdev->flags);
1805
1806 err = md_integrity_register(mddev);
1807
1808 abort:
1809
1810 print_conf(conf);
1811 return err;
1812 }
1813
1814 static void end_sync_read(struct bio *bio)
1815 {
1816 struct r10bio *r10_bio = bio->bi_private;
1817 struct r10conf *conf = r10_bio->mddev->private;
1818 int d;
1819
1820 if (bio == r10_bio->master_bio) {
1821 /* this is a reshape read */
1822 d = r10_bio->read_slot; /* really the read dev */
1823 } else
1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826 if (!bio->bi_error)
1827 set_bit(R10BIO_Uptodate, &r10_bio->state);
1828 else
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1831 */
1832 atomic_add(r10_bio->sectors,
1833 &conf->mirrors[d].rdev->corrected_errors);
1834
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1837 */
1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840 atomic_dec_and_test(&r10_bio->remaining)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1843 */
1844 reschedule_retry(r10_bio);
1845 }
1846 }
1847
1848 static void end_sync_request(struct r10bio *r10_bio)
1849 {
1850 struct mddev *mddev = r10_bio->mddev;
1851
1852 while (atomic_dec_and_test(&r10_bio->remaining)) {
1853 if (r10_bio->master_bio == NULL) {
1854 /* the primary of several recovery bios */
1855 sector_t s = r10_bio->sectors;
1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857 test_bit(R10BIO_WriteError, &r10_bio->state))
1858 reschedule_retry(r10_bio);
1859 else
1860 put_buf(r10_bio);
1861 md_done_sync(mddev, s, 1);
1862 break;
1863 } else {
1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866 test_bit(R10BIO_WriteError, &r10_bio->state))
1867 reschedule_retry(r10_bio);
1868 else
1869 put_buf(r10_bio);
1870 r10_bio = r10_bio2;
1871 }
1872 }
1873 }
1874
1875 static void end_sync_write(struct bio *bio)
1876 {
1877 struct r10bio *r10_bio = bio->bi_private;
1878 struct mddev *mddev = r10_bio->mddev;
1879 struct r10conf *conf = mddev->private;
1880 int d;
1881 sector_t first_bad;
1882 int bad_sectors;
1883 int slot;
1884 int repl;
1885 struct md_rdev *rdev = NULL;
1886
1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888 if (repl)
1889 rdev = conf->mirrors[d].replacement;
1890 else
1891 rdev = conf->mirrors[d].rdev;
1892
1893 if (bio->bi_error) {
1894 if (repl)
1895 md_error(mddev, rdev);
1896 else {
1897 set_bit(WriteErrorSeen, &rdev->flags);
1898 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899 set_bit(MD_RECOVERY_NEEDED,
1900 &rdev->mddev->recovery);
1901 set_bit(R10BIO_WriteError, &r10_bio->state);
1902 }
1903 } else if (is_badblock(rdev,
1904 r10_bio->devs[slot].addr,
1905 r10_bio->sectors,
1906 &first_bad, &bad_sectors))
1907 set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909 rdev_dec_pending(rdev, mddev);
1910
1911 end_sync_request(r10_bio);
1912 }
1913
1914 /*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926 /*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931 {
1932 struct r10conf *conf = mddev->private;
1933 int i, first;
1934 struct bio *tbio, *fbio;
1935 int vcnt;
1936
1937 atomic_set(&r10_bio->remaining, 1);
1938
1939 /* find the first device with a block */
1940 for (i=0; i<conf->copies; i++)
1941 if (!r10_bio->devs[i].bio->bi_error)
1942 break;
1943
1944 if (i == conf->copies)
1945 goto done;
1946
1947 first = i;
1948 fbio = r10_bio->devs[i].bio;
1949 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950 fbio->bi_iter.bi_idx = 0;
1951
1952 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953 /* now find blocks with errors */
1954 for (i=0 ; i < conf->copies ; i++) {
1955 int j, d;
1956
1957 tbio = r10_bio->devs[i].bio;
1958
1959 if (tbio->bi_end_io != end_sync_read)
1960 continue;
1961 if (i == first)
1962 continue;
1963 if (!r10_bio->devs[i].bio->bi_error) {
1964 /* We know that the bi_io_vec layout is the same for
1965 * both 'first' and 'i', so we just compare them.
1966 * All vec entries are PAGE_SIZE;
1967 */
1968 int sectors = r10_bio->sectors;
1969 for (j = 0; j < vcnt; j++) {
1970 int len = PAGE_SIZE;
1971 if (sectors < (len / 512))
1972 len = sectors * 512;
1973 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974 page_address(tbio->bi_io_vec[j].bv_page),
1975 len))
1976 break;
1977 sectors -= len/512;
1978 }
1979 if (j == vcnt)
1980 continue;
1981 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983 /* Don't fix anything. */
1984 continue;
1985 }
1986 /* Ok, we need to write this bio, either to correct an
1987 * inconsistency or to correct an unreadable block.
1988 * First we need to fixup bv_offset, bv_len and
1989 * bi_vecs, as the read request might have corrupted these
1990 */
1991 bio_reset(tbio);
1992
1993 tbio->bi_vcnt = vcnt;
1994 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995 tbio->bi_rw = WRITE;
1996 tbio->bi_private = r10_bio;
1997 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1998 tbio->bi_end_io = end_sync_write;
1999
2000 bio_copy_data(tbio, fbio);
2001
2002 d = r10_bio->devs[i].devnum;
2003 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004 atomic_inc(&r10_bio->remaining);
2005 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009 generic_make_request(tbio);
2010 }
2011
2012 /* Now write out to any replacement devices
2013 * that are active
2014 */
2015 for (i = 0; i < conf->copies; i++) {
2016 int d;
2017
2018 tbio = r10_bio->devs[i].repl_bio;
2019 if (!tbio || !tbio->bi_end_io)
2020 continue;
2021 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022 && r10_bio->devs[i].bio != fbio)
2023 bio_copy_data(tbio, fbio);
2024 d = r10_bio->devs[i].devnum;
2025 atomic_inc(&r10_bio->remaining);
2026 md_sync_acct(conf->mirrors[d].replacement->bdev,
2027 bio_sectors(tbio));
2028 generic_make_request(tbio);
2029 }
2030
2031 done:
2032 if (atomic_dec_and_test(&r10_bio->remaining)) {
2033 md_done_sync(mddev, r10_bio->sectors, 1);
2034 put_buf(r10_bio);
2035 }
2036 }
2037
2038 /*
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2046 *
2047 */
2048 static void fix_recovery_read_error(struct r10bio *r10_bio)
2049 {
2050 /* We got a read error during recovery.
2051 * We repeat the read in smaller page-sized sections.
2052 * If a read succeeds, write it to the new device or record
2053 * a bad block if we cannot.
2054 * If a read fails, record a bad block on both old and
2055 * new devices.
2056 */
2057 struct mddev *mddev = r10_bio->mddev;
2058 struct r10conf *conf = mddev->private;
2059 struct bio *bio = r10_bio->devs[0].bio;
2060 sector_t sect = 0;
2061 int sectors = r10_bio->sectors;
2062 int idx = 0;
2063 int dr = r10_bio->devs[0].devnum;
2064 int dw = r10_bio->devs[1].devnum;
2065
2066 while (sectors) {
2067 int s = sectors;
2068 struct md_rdev *rdev;
2069 sector_t addr;
2070 int ok;
2071
2072 if (s > (PAGE_SIZE>>9))
2073 s = PAGE_SIZE >> 9;
2074
2075 rdev = conf->mirrors[dr].rdev;
2076 addr = r10_bio->devs[0].addr + sect,
2077 ok = sync_page_io(rdev,
2078 addr,
2079 s << 9,
2080 bio->bi_io_vec[idx].bv_page,
2081 READ, false);
2082 if (ok) {
2083 rdev = conf->mirrors[dw].rdev;
2084 addr = r10_bio->devs[1].addr + sect;
2085 ok = sync_page_io(rdev,
2086 addr,
2087 s << 9,
2088 bio->bi_io_vec[idx].bv_page,
2089 WRITE, false);
2090 if (!ok) {
2091 set_bit(WriteErrorSeen, &rdev->flags);
2092 if (!test_and_set_bit(WantReplacement,
2093 &rdev->flags))
2094 set_bit(MD_RECOVERY_NEEDED,
2095 &rdev->mddev->recovery);
2096 }
2097 }
2098 if (!ok) {
2099 /* We don't worry if we cannot set a bad block -
2100 * it really is bad so there is no loss in not
2101 * recording it yet
2102 */
2103 rdev_set_badblocks(rdev, addr, s, 0);
2104
2105 if (rdev != conf->mirrors[dw].rdev) {
2106 /* need bad block on destination too */
2107 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108 addr = r10_bio->devs[1].addr + sect;
2109 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110 if (!ok) {
2111 /* just abort the recovery */
2112 printk(KERN_NOTICE
2113 "md/raid10:%s: recovery aborted"
2114 " due to read error\n",
2115 mdname(mddev));
2116
2117 conf->mirrors[dw].recovery_disabled
2118 = mddev->recovery_disabled;
2119 set_bit(MD_RECOVERY_INTR,
2120 &mddev->recovery);
2121 break;
2122 }
2123 }
2124 }
2125
2126 sectors -= s;
2127 sect += s;
2128 idx++;
2129 }
2130 }
2131
2132 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133 {
2134 struct r10conf *conf = mddev->private;
2135 int d;
2136 struct bio *wbio, *wbio2;
2137
2138 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139 fix_recovery_read_error(r10_bio);
2140 end_sync_request(r10_bio);
2141 return;
2142 }
2143
2144 /*
2145 * share the pages with the first bio
2146 * and submit the write request
2147 */
2148 d = r10_bio->devs[1].devnum;
2149 wbio = r10_bio->devs[1].bio;
2150 wbio2 = r10_bio->devs[1].repl_bio;
2151 /* Need to test wbio2->bi_end_io before we call
2152 * generic_make_request as if the former is NULL,
2153 * the latter is free to free wbio2.
2154 */
2155 if (wbio2 && !wbio2->bi_end_io)
2156 wbio2 = NULL;
2157 if (wbio->bi_end_io) {
2158 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160 generic_make_request(wbio);
2161 }
2162 if (wbio2) {
2163 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164 md_sync_acct(conf->mirrors[d].replacement->bdev,
2165 bio_sectors(wbio2));
2166 generic_make_request(wbio2);
2167 }
2168 }
2169
2170 /*
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2174 *
2175 */
2176 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177 {
2178 struct timespec cur_time_mon;
2179 unsigned long hours_since_last;
2180 unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182 ktime_get_ts(&cur_time_mon);
2183
2184 if (rdev->last_read_error.tv_sec == 0 &&
2185 rdev->last_read_error.tv_nsec == 0) {
2186 /* first time we've seen a read error */
2187 rdev->last_read_error = cur_time_mon;
2188 return;
2189 }
2190
2191 hours_since_last = (cur_time_mon.tv_sec -
2192 rdev->last_read_error.tv_sec) / 3600;
2193
2194 rdev->last_read_error = cur_time_mon;
2195
2196 /*
2197 * if hours_since_last is > the number of bits in read_errors
2198 * just set read errors to 0. We do this to avoid
2199 * overflowing the shift of read_errors by hours_since_last.
2200 */
2201 if (hours_since_last >= 8 * sizeof(read_errors))
2202 atomic_set(&rdev->read_errors, 0);
2203 else
2204 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2205 }
2206
2207 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2208 int sectors, struct page *page, int rw)
2209 {
2210 sector_t first_bad;
2211 int bad_sectors;
2212
2213 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2214 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2215 return -1;
2216 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2217 /* success */
2218 return 1;
2219 if (rw == WRITE) {
2220 set_bit(WriteErrorSeen, &rdev->flags);
2221 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2222 set_bit(MD_RECOVERY_NEEDED,
2223 &rdev->mddev->recovery);
2224 }
2225 /* need to record an error - either for the block or the device */
2226 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2227 md_error(rdev->mddev, rdev);
2228 return 0;
2229 }
2230
2231 /*
2232 * This is a kernel thread which:
2233 *
2234 * 1. Retries failed read operations on working mirrors.
2235 * 2. Updates the raid superblock when problems encounter.
2236 * 3. Performs writes following reads for array synchronising.
2237 */
2238
2239 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2240 {
2241 int sect = 0; /* Offset from r10_bio->sector */
2242 int sectors = r10_bio->sectors;
2243 struct md_rdev*rdev;
2244 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2245 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2246
2247 /* still own a reference to this rdev, so it cannot
2248 * have been cleared recently.
2249 */
2250 rdev = conf->mirrors[d].rdev;
2251
2252 if (test_bit(Faulty, &rdev->flags))
2253 /* drive has already been failed, just ignore any
2254 more fix_read_error() attempts */
2255 return;
2256
2257 check_decay_read_errors(mddev, rdev);
2258 atomic_inc(&rdev->read_errors);
2259 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2260 char b[BDEVNAME_SIZE];
2261 bdevname(rdev->bdev, b);
2262
2263 printk(KERN_NOTICE
2264 "md/raid10:%s: %s: Raid device exceeded "
2265 "read_error threshold [cur %d:max %d]\n",
2266 mdname(mddev), b,
2267 atomic_read(&rdev->read_errors), max_read_errors);
2268 printk(KERN_NOTICE
2269 "md/raid10:%s: %s: Failing raid device\n",
2270 mdname(mddev), b);
2271 md_error(mddev, conf->mirrors[d].rdev);
2272 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2273 return;
2274 }
2275
2276 while(sectors) {
2277 int s = sectors;
2278 int sl = r10_bio->read_slot;
2279 int success = 0;
2280 int start;
2281
2282 if (s > (PAGE_SIZE>>9))
2283 s = PAGE_SIZE >> 9;
2284
2285 rcu_read_lock();
2286 do {
2287 sector_t first_bad;
2288 int bad_sectors;
2289
2290 d = r10_bio->devs[sl].devnum;
2291 rdev = rcu_dereference(conf->mirrors[d].rdev);
2292 if (rdev &&
2293 test_bit(In_sync, &rdev->flags) &&
2294 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295 &first_bad, &bad_sectors) == 0) {
2296 atomic_inc(&rdev->nr_pending);
2297 rcu_read_unlock();
2298 success = sync_page_io(rdev,
2299 r10_bio->devs[sl].addr +
2300 sect,
2301 s<<9,
2302 conf->tmppage, READ, false);
2303 rdev_dec_pending(rdev, mddev);
2304 rcu_read_lock();
2305 if (success)
2306 break;
2307 }
2308 sl++;
2309 if (sl == conf->copies)
2310 sl = 0;
2311 } while (!success && sl != r10_bio->read_slot);
2312 rcu_read_unlock();
2313
2314 if (!success) {
2315 /* Cannot read from anywhere, just mark the block
2316 * as bad on the first device to discourage future
2317 * reads.
2318 */
2319 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2320 rdev = conf->mirrors[dn].rdev;
2321
2322 if (!rdev_set_badblocks(
2323 rdev,
2324 r10_bio->devs[r10_bio->read_slot].addr
2325 + sect,
2326 s, 0)) {
2327 md_error(mddev, rdev);
2328 r10_bio->devs[r10_bio->read_slot].bio
2329 = IO_BLOCKED;
2330 }
2331 break;
2332 }
2333
2334 start = sl;
2335 /* write it back and re-read */
2336 rcu_read_lock();
2337 while (sl != r10_bio->read_slot) {
2338 char b[BDEVNAME_SIZE];
2339
2340 if (sl==0)
2341 sl = conf->copies;
2342 sl--;
2343 d = r10_bio->devs[sl].devnum;
2344 rdev = rcu_dereference(conf->mirrors[d].rdev);
2345 if (!rdev ||
2346 !test_bit(In_sync, &rdev->flags))
2347 continue;
2348
2349 atomic_inc(&rdev->nr_pending);
2350 rcu_read_unlock();
2351 if (r10_sync_page_io(rdev,
2352 r10_bio->devs[sl].addr +
2353 sect,
2354 s, conf->tmppage, WRITE)
2355 == 0) {
2356 /* Well, this device is dead */
2357 printk(KERN_NOTICE
2358 "md/raid10:%s: read correction "
2359 "write failed"
2360 " (%d sectors at %llu on %s)\n",
2361 mdname(mddev), s,
2362 (unsigned long long)(
2363 sect +
2364 choose_data_offset(r10_bio,
2365 rdev)),
2366 bdevname(rdev->bdev, b));
2367 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2368 "drive\n",
2369 mdname(mddev),
2370 bdevname(rdev->bdev, b));
2371 }
2372 rdev_dec_pending(rdev, mddev);
2373 rcu_read_lock();
2374 }
2375 sl = start;
2376 while (sl != r10_bio->read_slot) {
2377 char b[BDEVNAME_SIZE];
2378
2379 if (sl==0)
2380 sl = conf->copies;
2381 sl--;
2382 d = r10_bio->devs[sl].devnum;
2383 rdev = rcu_dereference(conf->mirrors[d].rdev);
2384 if (!rdev ||
2385 !test_bit(In_sync, &rdev->flags))
2386 continue;
2387
2388 atomic_inc(&rdev->nr_pending);
2389 rcu_read_unlock();
2390 switch (r10_sync_page_io(rdev,
2391 r10_bio->devs[sl].addr +
2392 sect,
2393 s, conf->tmppage,
2394 READ)) {
2395 case 0:
2396 /* Well, this device is dead */
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: unable to read back "
2399 "corrected sectors"
2400 " (%d sectors at %llu on %s)\n",
2401 mdname(mddev), s,
2402 (unsigned long long)(
2403 sect +
2404 choose_data_offset(r10_bio, rdev)),
2405 bdevname(rdev->bdev, b));
2406 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 "drive\n",
2408 mdname(mddev),
2409 bdevname(rdev->bdev, b));
2410 break;
2411 case 1:
2412 printk(KERN_INFO
2413 "md/raid10:%s: read error corrected"
2414 " (%d sectors at %llu on %s)\n",
2415 mdname(mddev), s,
2416 (unsigned long long)(
2417 sect +
2418 choose_data_offset(r10_bio, rdev)),
2419 bdevname(rdev->bdev, b));
2420 atomic_add(s, &rdev->corrected_errors);
2421 }
2422
2423 rdev_dec_pending(rdev, mddev);
2424 rcu_read_lock();
2425 }
2426 rcu_read_unlock();
2427
2428 sectors -= s;
2429 sect += s;
2430 }
2431 }
2432
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435 struct bio *bio = r10_bio->master_bio;
2436 struct mddev *mddev = r10_bio->mddev;
2437 struct r10conf *conf = mddev->private;
2438 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439 /* bio has the data to be written to slot 'i' where
2440 * we just recently had a write error.
2441 * We repeatedly clone the bio and trim down to one block,
2442 * then try the write. Where the write fails we record
2443 * a bad block.
2444 * It is conceivable that the bio doesn't exactly align with
2445 * blocks. We must handle this.
2446 *
2447 * We currently own a reference to the rdev.
2448 */
2449
2450 int block_sectors;
2451 sector_t sector;
2452 int sectors;
2453 int sect_to_write = r10_bio->sectors;
2454 int ok = 1;
2455
2456 if (rdev->badblocks.shift < 0)
2457 return 0;
2458
2459 block_sectors = roundup(1 << rdev->badblocks.shift,
2460 bdev_logical_block_size(rdev->bdev) >> 9);
2461 sector = r10_bio->sector;
2462 sectors = ((r10_bio->sector + block_sectors)
2463 & ~(sector_t)(block_sectors - 1))
2464 - sector;
2465
2466 while (sect_to_write) {
2467 struct bio *wbio;
2468 if (sectors > sect_to_write)
2469 sectors = sect_to_write;
2470 /* Write at 'sector' for 'sectors' */
2471 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474 choose_data_offset(r10_bio, rdev) +
2475 (sector - r10_bio->sector));
2476 wbio->bi_bdev = rdev->bdev;
2477 if (submit_bio_wait(WRITE, wbio) < 0)
2478 /* Failure! */
2479 ok = rdev_set_badblocks(rdev, sector,
2480 sectors, 0)
2481 && ok;
2482
2483 bio_put(wbio);
2484 sect_to_write -= sectors;
2485 sector += sectors;
2486 sectors = block_sectors;
2487 }
2488 return ok;
2489 }
2490
2491 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2492 {
2493 int slot = r10_bio->read_slot;
2494 struct bio *bio;
2495 struct r10conf *conf = mddev->private;
2496 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2497 char b[BDEVNAME_SIZE];
2498 unsigned long do_sync;
2499 int max_sectors;
2500
2501 /* we got a read error. Maybe the drive is bad. Maybe just
2502 * the block and we can fix it.
2503 * We freeze all other IO, and try reading the block from
2504 * other devices. When we find one, we re-write
2505 * and check it that fixes the read error.
2506 * This is all done synchronously while the array is
2507 * frozen.
2508 */
2509 bio = r10_bio->devs[slot].bio;
2510 bdevname(bio->bi_bdev, b);
2511 bio_put(bio);
2512 r10_bio->devs[slot].bio = NULL;
2513
2514 if (mddev->ro == 0) {
2515 freeze_array(conf, 1);
2516 fix_read_error(conf, mddev, r10_bio);
2517 unfreeze_array(conf);
2518 } else
2519 r10_bio->devs[slot].bio = IO_BLOCKED;
2520
2521 rdev_dec_pending(rdev, mddev);
2522
2523 read_more:
2524 rdev = read_balance(conf, r10_bio, &max_sectors);
2525 if (rdev == NULL) {
2526 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2527 " read error for block %llu\n",
2528 mdname(mddev), b,
2529 (unsigned long long)r10_bio->sector);
2530 raid_end_bio_io(r10_bio);
2531 return;
2532 }
2533
2534 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2535 slot = r10_bio->read_slot;
2536 printk_ratelimited(
2537 KERN_ERR
2538 "md/raid10:%s: %s: redirecting "
2539 "sector %llu to another mirror\n",
2540 mdname(mddev),
2541 bdevname(rdev->bdev, b),
2542 (unsigned long long)r10_bio->sector);
2543 bio = bio_clone_mddev(r10_bio->master_bio,
2544 GFP_NOIO, mddev);
2545 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2546 r10_bio->devs[slot].bio = bio;
2547 r10_bio->devs[slot].rdev = rdev;
2548 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2549 + choose_data_offset(r10_bio, rdev);
2550 bio->bi_bdev = rdev->bdev;
2551 bio->bi_rw = READ | do_sync;
2552 bio->bi_private = r10_bio;
2553 bio->bi_end_io = raid10_end_read_request;
2554 if (max_sectors < r10_bio->sectors) {
2555 /* Drat - have to split this up more */
2556 struct bio *mbio = r10_bio->master_bio;
2557 int sectors_handled =
2558 r10_bio->sector + max_sectors
2559 - mbio->bi_iter.bi_sector;
2560 r10_bio->sectors = max_sectors;
2561 spin_lock_irq(&conf->device_lock);
2562 if (mbio->bi_phys_segments == 0)
2563 mbio->bi_phys_segments = 2;
2564 else
2565 mbio->bi_phys_segments++;
2566 spin_unlock_irq(&conf->device_lock);
2567 generic_make_request(bio);
2568
2569 r10_bio = mempool_alloc(conf->r10bio_pool,
2570 GFP_NOIO);
2571 r10_bio->master_bio = mbio;
2572 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2573 r10_bio->state = 0;
2574 set_bit(R10BIO_ReadError,
2575 &r10_bio->state);
2576 r10_bio->mddev = mddev;
2577 r10_bio->sector = mbio->bi_iter.bi_sector
2578 + sectors_handled;
2579
2580 goto read_more;
2581 } else
2582 generic_make_request(bio);
2583 }
2584
2585 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2586 {
2587 /* Some sort of write request has finished and it
2588 * succeeded in writing where we thought there was a
2589 * bad block. So forget the bad block.
2590 * Or possibly if failed and we need to record
2591 * a bad block.
2592 */
2593 int m;
2594 struct md_rdev *rdev;
2595
2596 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2597 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2598 for (m = 0; m < conf->copies; m++) {
2599 int dev = r10_bio->devs[m].devnum;
2600 rdev = conf->mirrors[dev].rdev;
2601 if (r10_bio->devs[m].bio == NULL)
2602 continue;
2603 if (!r10_bio->devs[m].bio->bi_error) {
2604 rdev_clear_badblocks(
2605 rdev,
2606 r10_bio->devs[m].addr,
2607 r10_bio->sectors, 0);
2608 } else {
2609 if (!rdev_set_badblocks(
2610 rdev,
2611 r10_bio->devs[m].addr,
2612 r10_bio->sectors, 0))
2613 md_error(conf->mddev, rdev);
2614 }
2615 rdev = conf->mirrors[dev].replacement;
2616 if (r10_bio->devs[m].repl_bio == NULL)
2617 continue;
2618
2619 if (!r10_bio->devs[m].repl_bio->bi_error) {
2620 rdev_clear_badblocks(
2621 rdev,
2622 r10_bio->devs[m].addr,
2623 r10_bio->sectors, 0);
2624 } else {
2625 if (!rdev_set_badblocks(
2626 rdev,
2627 r10_bio->devs[m].addr,
2628 r10_bio->sectors, 0))
2629 md_error(conf->mddev, rdev);
2630 }
2631 }
2632 put_buf(r10_bio);
2633 } else {
2634 bool fail = false;
2635 for (m = 0; m < conf->copies; m++) {
2636 int dev = r10_bio->devs[m].devnum;
2637 struct bio *bio = r10_bio->devs[m].bio;
2638 rdev = conf->mirrors[dev].rdev;
2639 if (bio == IO_MADE_GOOD) {
2640 rdev_clear_badblocks(
2641 rdev,
2642 r10_bio->devs[m].addr,
2643 r10_bio->sectors, 0);
2644 rdev_dec_pending(rdev, conf->mddev);
2645 } else if (bio != NULL && bio->bi_error) {
2646 fail = true;
2647 if (!narrow_write_error(r10_bio, m)) {
2648 md_error(conf->mddev, rdev);
2649 set_bit(R10BIO_Degraded,
2650 &r10_bio->state);
2651 }
2652 rdev_dec_pending(rdev, conf->mddev);
2653 }
2654 bio = r10_bio->devs[m].repl_bio;
2655 rdev = conf->mirrors[dev].replacement;
2656 if (rdev && bio == IO_MADE_GOOD) {
2657 rdev_clear_badblocks(
2658 rdev,
2659 r10_bio->devs[m].addr,
2660 r10_bio->sectors, 0);
2661 rdev_dec_pending(rdev, conf->mddev);
2662 }
2663 }
2664 if (fail) {
2665 spin_lock_irq(&conf->device_lock);
2666 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2667 spin_unlock_irq(&conf->device_lock);
2668 md_wakeup_thread(conf->mddev->thread);
2669 } else {
2670 if (test_bit(R10BIO_WriteError,
2671 &r10_bio->state))
2672 close_write(r10_bio);
2673 raid_end_bio_io(r10_bio);
2674 }
2675 }
2676 }
2677
2678 static void raid10d(struct md_thread *thread)
2679 {
2680 struct mddev *mddev = thread->mddev;
2681 struct r10bio *r10_bio;
2682 unsigned long flags;
2683 struct r10conf *conf = mddev->private;
2684 struct list_head *head = &conf->retry_list;
2685 struct blk_plug plug;
2686
2687 md_check_recovery(mddev);
2688
2689 if (!list_empty_careful(&conf->bio_end_io_list) &&
2690 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2691 LIST_HEAD(tmp);
2692 spin_lock_irqsave(&conf->device_lock, flags);
2693 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694 list_add(&tmp, &conf->bio_end_io_list);
2695 list_del_init(&conf->bio_end_io_list);
2696 }
2697 spin_unlock_irqrestore(&conf->device_lock, flags);
2698 while (!list_empty(&tmp)) {
2699 r10_bio = list_first_entry(&tmp, struct r10bio,
2700 retry_list);
2701 list_del(&r10_bio->retry_list);
2702 if (mddev->degraded)
2703 set_bit(R10BIO_Degraded, &r10_bio->state);
2704
2705 if (test_bit(R10BIO_WriteError,
2706 &r10_bio->state))
2707 close_write(r10_bio);
2708 raid_end_bio_io(r10_bio);
2709 }
2710 }
2711
2712 blk_start_plug(&plug);
2713 for (;;) {
2714
2715 flush_pending_writes(conf);
2716
2717 spin_lock_irqsave(&conf->device_lock, flags);
2718 if (list_empty(head)) {
2719 spin_unlock_irqrestore(&conf->device_lock, flags);
2720 break;
2721 }
2722 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2723 list_del(head->prev);
2724 conf->nr_queued--;
2725 spin_unlock_irqrestore(&conf->device_lock, flags);
2726
2727 mddev = r10_bio->mddev;
2728 conf = mddev->private;
2729 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2730 test_bit(R10BIO_WriteError, &r10_bio->state))
2731 handle_write_completed(conf, r10_bio);
2732 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2733 reshape_request_write(mddev, r10_bio);
2734 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2735 sync_request_write(mddev, r10_bio);
2736 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2737 recovery_request_write(mddev, r10_bio);
2738 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2739 handle_read_error(mddev, r10_bio);
2740 else {
2741 /* just a partial read to be scheduled from a
2742 * separate context
2743 */
2744 int slot = r10_bio->read_slot;
2745 generic_make_request(r10_bio->devs[slot].bio);
2746 }
2747
2748 cond_resched();
2749 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2750 md_check_recovery(mddev);
2751 }
2752 blk_finish_plug(&plug);
2753 }
2754
2755 static int init_resync(struct r10conf *conf)
2756 {
2757 int buffs;
2758 int i;
2759
2760 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2761 BUG_ON(conf->r10buf_pool);
2762 conf->have_replacement = 0;
2763 for (i = 0; i < conf->geo.raid_disks; i++)
2764 if (conf->mirrors[i].replacement)
2765 conf->have_replacement = 1;
2766 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2767 if (!conf->r10buf_pool)
2768 return -ENOMEM;
2769 conf->next_resync = 0;
2770 return 0;
2771 }
2772
2773 /*
2774 * perform a "sync" on one "block"
2775 *
2776 * We need to make sure that no normal I/O request - particularly write
2777 * requests - conflict with active sync requests.
2778 *
2779 * This is achieved by tracking pending requests and a 'barrier' concept
2780 * that can be installed to exclude normal IO requests.
2781 *
2782 * Resync and recovery are handled very differently.
2783 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2784 *
2785 * For resync, we iterate over virtual addresses, read all copies,
2786 * and update if there are differences. If only one copy is live,
2787 * skip it.
2788 * For recovery, we iterate over physical addresses, read a good
2789 * value for each non-in_sync drive, and over-write.
2790 *
2791 * So, for recovery we may have several outstanding complex requests for a
2792 * given address, one for each out-of-sync device. We model this by allocating
2793 * a number of r10_bio structures, one for each out-of-sync device.
2794 * As we setup these structures, we collect all bio's together into a list
2795 * which we then process collectively to add pages, and then process again
2796 * to pass to generic_make_request.
2797 *
2798 * The r10_bio structures are linked using a borrowed master_bio pointer.
2799 * This link is counted in ->remaining. When the r10_bio that points to NULL
2800 * has its remaining count decremented to 0, the whole complex operation
2801 * is complete.
2802 *
2803 */
2804
2805 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2806 int *skipped)
2807 {
2808 struct r10conf *conf = mddev->private;
2809 struct r10bio *r10_bio;
2810 struct bio *biolist = NULL, *bio;
2811 sector_t max_sector, nr_sectors;
2812 int i;
2813 int max_sync;
2814 sector_t sync_blocks;
2815 sector_t sectors_skipped = 0;
2816 int chunks_skipped = 0;
2817 sector_t chunk_mask = conf->geo.chunk_mask;
2818
2819 if (!conf->r10buf_pool)
2820 if (init_resync(conf))
2821 return 0;
2822
2823 /*
2824 * Allow skipping a full rebuild for incremental assembly
2825 * of a clean array, like RAID1 does.
2826 */
2827 if (mddev->bitmap == NULL &&
2828 mddev->recovery_cp == MaxSector &&
2829 mddev->reshape_position == MaxSector &&
2830 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2831 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2832 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2833 conf->fullsync == 0) {
2834 *skipped = 1;
2835 return mddev->dev_sectors - sector_nr;
2836 }
2837
2838 skipped:
2839 max_sector = mddev->dev_sectors;
2840 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2841 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2842 max_sector = mddev->resync_max_sectors;
2843 if (sector_nr >= max_sector) {
2844 /* If we aborted, we need to abort the
2845 * sync on the 'current' bitmap chucks (there can
2846 * be several when recovering multiple devices).
2847 * as we may have started syncing it but not finished.
2848 * We can find the current address in
2849 * mddev->curr_resync, but for recovery,
2850 * we need to convert that to several
2851 * virtual addresses.
2852 */
2853 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2854 end_reshape(conf);
2855 close_sync(conf);
2856 return 0;
2857 }
2858
2859 if (mddev->curr_resync < max_sector) { /* aborted */
2860 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2861 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2862 &sync_blocks, 1);
2863 else for (i = 0; i < conf->geo.raid_disks; i++) {
2864 sector_t sect =
2865 raid10_find_virt(conf, mddev->curr_resync, i);
2866 bitmap_end_sync(mddev->bitmap, sect,
2867 &sync_blocks, 1);
2868 }
2869 } else {
2870 /* completed sync */
2871 if ((!mddev->bitmap || conf->fullsync)
2872 && conf->have_replacement
2873 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2874 /* Completed a full sync so the replacements
2875 * are now fully recovered.
2876 */
2877 for (i = 0; i < conf->geo.raid_disks; i++)
2878 if (conf->mirrors[i].replacement)
2879 conf->mirrors[i].replacement
2880 ->recovery_offset
2881 = MaxSector;
2882 }
2883 conf->fullsync = 0;
2884 }
2885 bitmap_close_sync(mddev->bitmap);
2886 close_sync(conf);
2887 *skipped = 1;
2888 return sectors_skipped;
2889 }
2890
2891 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2892 return reshape_request(mddev, sector_nr, skipped);
2893
2894 if (chunks_skipped >= conf->geo.raid_disks) {
2895 /* if there has been nothing to do on any drive,
2896 * then there is nothing to do at all..
2897 */
2898 *skipped = 1;
2899 return (max_sector - sector_nr) + sectors_skipped;
2900 }
2901
2902 if (max_sector > mddev->resync_max)
2903 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2904
2905 /* make sure whole request will fit in a chunk - if chunks
2906 * are meaningful
2907 */
2908 if (conf->geo.near_copies < conf->geo.raid_disks &&
2909 max_sector > (sector_nr | chunk_mask))
2910 max_sector = (sector_nr | chunk_mask) + 1;
2911
2912 /* Again, very different code for resync and recovery.
2913 * Both must result in an r10bio with a list of bios that
2914 * have bi_end_io, bi_sector, bi_bdev set,
2915 * and bi_private set to the r10bio.
2916 * For recovery, we may actually create several r10bios
2917 * with 2 bios in each, that correspond to the bios in the main one.
2918 * In this case, the subordinate r10bios link back through a
2919 * borrowed master_bio pointer, and the counter in the master
2920 * includes a ref from each subordinate.
2921 */
2922 /* First, we decide what to do and set ->bi_end_io
2923 * To end_sync_read if we want to read, and
2924 * end_sync_write if we will want to write.
2925 */
2926
2927 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2928 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2929 /* recovery... the complicated one */
2930 int j;
2931 r10_bio = NULL;
2932
2933 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2934 int still_degraded;
2935 struct r10bio *rb2;
2936 sector_t sect;
2937 int must_sync;
2938 int any_working;
2939 struct raid10_info *mirror = &conf->mirrors[i];
2940
2941 if ((mirror->rdev == NULL ||
2942 test_bit(In_sync, &mirror->rdev->flags))
2943 &&
2944 (mirror->replacement == NULL ||
2945 test_bit(Faulty,
2946 &mirror->replacement->flags)))
2947 continue;
2948
2949 still_degraded = 0;
2950 /* want to reconstruct this device */
2951 rb2 = r10_bio;
2952 sect = raid10_find_virt(conf, sector_nr, i);
2953 if (sect >= mddev->resync_max_sectors) {
2954 /* last stripe is not complete - don't
2955 * try to recover this sector.
2956 */
2957 continue;
2958 }
2959 /* Unless we are doing a full sync, or a replacement
2960 * we only need to recover the block if it is set in
2961 * the bitmap
2962 */
2963 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2964 &sync_blocks, 1);
2965 if (sync_blocks < max_sync)
2966 max_sync = sync_blocks;
2967 if (!must_sync &&
2968 mirror->replacement == NULL &&
2969 !conf->fullsync) {
2970 /* yep, skip the sync_blocks here, but don't assume
2971 * that there will never be anything to do here
2972 */
2973 chunks_skipped = -1;
2974 continue;
2975 }
2976
2977 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2978 r10_bio->state = 0;
2979 raise_barrier(conf, rb2 != NULL);
2980 atomic_set(&r10_bio->remaining, 0);
2981
2982 r10_bio->master_bio = (struct bio*)rb2;
2983 if (rb2)
2984 atomic_inc(&rb2->remaining);
2985 r10_bio->mddev = mddev;
2986 set_bit(R10BIO_IsRecover, &r10_bio->state);
2987 r10_bio->sector = sect;
2988
2989 raid10_find_phys(conf, r10_bio);
2990
2991 /* Need to check if the array will still be
2992 * degraded
2993 */
2994 for (j = 0; j < conf->geo.raid_disks; j++)
2995 if (conf->mirrors[j].rdev == NULL ||
2996 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2997 still_degraded = 1;
2998 break;
2999 }
3000
3001 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3002 &sync_blocks, still_degraded);
3003
3004 any_working = 0;
3005 for (j=0; j<conf->copies;j++) {
3006 int k;
3007 int d = r10_bio->devs[j].devnum;
3008 sector_t from_addr, to_addr;
3009 struct md_rdev *rdev;
3010 sector_t sector, first_bad;
3011 int bad_sectors;
3012 if (!conf->mirrors[d].rdev ||
3013 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3014 continue;
3015 /* This is where we read from */
3016 any_working = 1;
3017 rdev = conf->mirrors[d].rdev;
3018 sector = r10_bio->devs[j].addr;
3019
3020 if (is_badblock(rdev, sector, max_sync,
3021 &first_bad, &bad_sectors)) {
3022 if (first_bad > sector)
3023 max_sync = first_bad - sector;
3024 else {
3025 bad_sectors -= (sector
3026 - first_bad);
3027 if (max_sync > bad_sectors)
3028 max_sync = bad_sectors;
3029 continue;
3030 }
3031 }
3032 bio = r10_bio->devs[0].bio;
3033 bio_reset(bio);
3034 bio->bi_next = biolist;
3035 biolist = bio;
3036 bio->bi_private = r10_bio;
3037 bio->bi_end_io = end_sync_read;
3038 bio->bi_rw = READ;
3039 from_addr = r10_bio->devs[j].addr;
3040 bio->bi_iter.bi_sector = from_addr +
3041 rdev->data_offset;
3042 bio->bi_bdev = rdev->bdev;
3043 atomic_inc(&rdev->nr_pending);
3044 /* and we write to 'i' (if not in_sync) */
3045
3046 for (k=0; k<conf->copies; k++)
3047 if (r10_bio->devs[k].devnum == i)
3048 break;
3049 BUG_ON(k == conf->copies);
3050 to_addr = r10_bio->devs[k].addr;
3051 r10_bio->devs[0].devnum = d;
3052 r10_bio->devs[0].addr = from_addr;
3053 r10_bio->devs[1].devnum = i;
3054 r10_bio->devs[1].addr = to_addr;
3055
3056 rdev = mirror->rdev;
3057 if (!test_bit(In_sync, &rdev->flags)) {
3058 bio = r10_bio->devs[1].bio;
3059 bio_reset(bio);
3060 bio->bi_next = biolist;
3061 biolist = bio;
3062 bio->bi_private = r10_bio;
3063 bio->bi_end_io = end_sync_write;
3064 bio->bi_rw = WRITE;
3065 bio->bi_iter.bi_sector = to_addr
3066 + rdev->data_offset;
3067 bio->bi_bdev = rdev->bdev;
3068 atomic_inc(&r10_bio->remaining);
3069 } else
3070 r10_bio->devs[1].bio->bi_end_io = NULL;
3071
3072 /* and maybe write to replacement */
3073 bio = r10_bio->devs[1].repl_bio;
3074 if (bio)
3075 bio->bi_end_io = NULL;
3076 rdev = mirror->replacement;
3077 /* Note: if rdev != NULL, then bio
3078 * cannot be NULL as r10buf_pool_alloc will
3079 * have allocated it.
3080 * So the second test here is pointless.
3081 * But it keeps semantic-checkers happy, and
3082 * this comment keeps human reviewers
3083 * happy.
3084 */
3085 if (rdev == NULL || bio == NULL ||
3086 test_bit(Faulty, &rdev->flags))
3087 break;
3088 bio_reset(bio);
3089 bio->bi_next = biolist;
3090 biolist = bio;
3091 bio->bi_private = r10_bio;
3092 bio->bi_end_io = end_sync_write;
3093 bio->bi_rw = WRITE;
3094 bio->bi_iter.bi_sector = to_addr +
3095 rdev->data_offset;
3096 bio->bi_bdev = rdev->bdev;
3097 atomic_inc(&r10_bio->remaining);
3098 break;
3099 }
3100 if (j == conf->copies) {
3101 /* Cannot recover, so abort the recovery or
3102 * record a bad block */
3103 if (any_working) {
3104 /* problem is that there are bad blocks
3105 * on other device(s)
3106 */
3107 int k;
3108 for (k = 0; k < conf->copies; k++)
3109 if (r10_bio->devs[k].devnum == i)
3110 break;
3111 if (!test_bit(In_sync,
3112 &mirror->rdev->flags)
3113 && !rdev_set_badblocks(
3114 mirror->rdev,
3115 r10_bio->devs[k].addr,
3116 max_sync, 0))
3117 any_working = 0;
3118 if (mirror->replacement &&
3119 !rdev_set_badblocks(
3120 mirror->replacement,
3121 r10_bio->devs[k].addr,
3122 max_sync, 0))
3123 any_working = 0;
3124 }
3125 if (!any_working) {
3126 if (!test_and_set_bit(MD_RECOVERY_INTR,
3127 &mddev->recovery))
3128 printk(KERN_INFO "md/raid10:%s: insufficient "
3129 "working devices for recovery.\n",
3130 mdname(mddev));
3131 mirror->recovery_disabled
3132 = mddev->recovery_disabled;
3133 }
3134 put_buf(r10_bio);
3135 if (rb2)
3136 atomic_dec(&rb2->remaining);
3137 r10_bio = rb2;
3138 break;
3139 }
3140 }
3141 if (biolist == NULL) {
3142 while (r10_bio) {
3143 struct r10bio *rb2 = r10_bio;
3144 r10_bio = (struct r10bio*) rb2->master_bio;
3145 rb2->master_bio = NULL;
3146 put_buf(rb2);
3147 }
3148 goto giveup;
3149 }
3150 } else {
3151 /* resync. Schedule a read for every block at this virt offset */
3152 int count = 0;
3153
3154 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3155
3156 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3157 &sync_blocks, mddev->degraded) &&
3158 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3159 &mddev->recovery)) {
3160 /* We can skip this block */
3161 *skipped = 1;
3162 return sync_blocks + sectors_skipped;
3163 }
3164 if (sync_blocks < max_sync)
3165 max_sync = sync_blocks;
3166 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3167 r10_bio->state = 0;
3168
3169 r10_bio->mddev = mddev;
3170 atomic_set(&r10_bio->remaining, 0);
3171 raise_barrier(conf, 0);
3172 conf->next_resync = sector_nr;
3173
3174 r10_bio->master_bio = NULL;
3175 r10_bio->sector = sector_nr;
3176 set_bit(R10BIO_IsSync, &r10_bio->state);
3177 raid10_find_phys(conf, r10_bio);
3178 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3179
3180 for (i = 0; i < conf->copies; i++) {
3181 int d = r10_bio->devs[i].devnum;
3182 sector_t first_bad, sector;
3183 int bad_sectors;
3184
3185 if (r10_bio->devs[i].repl_bio)
3186 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3187
3188 bio = r10_bio->devs[i].bio;
3189 bio_reset(bio);
3190 bio->bi_error = -EIO;
3191 if (conf->mirrors[d].rdev == NULL ||
3192 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3193 continue;
3194 sector = r10_bio->devs[i].addr;
3195 if (is_badblock(conf->mirrors[d].rdev,
3196 sector, max_sync,
3197 &first_bad, &bad_sectors)) {
3198 if (first_bad > sector)
3199 max_sync = first_bad - sector;
3200 else {
3201 bad_sectors -= (sector - first_bad);
3202 if (max_sync > bad_sectors)
3203 max_sync = bad_sectors;
3204 continue;
3205 }
3206 }
3207 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3208 atomic_inc(&r10_bio->remaining);
3209 bio->bi_next = biolist;
3210 biolist = bio;
3211 bio->bi_private = r10_bio;
3212 bio->bi_end_io = end_sync_read;
3213 bio->bi_rw = READ;
3214 bio->bi_iter.bi_sector = sector +
3215 conf->mirrors[d].rdev->data_offset;
3216 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3217 count++;
3218
3219 if (conf->mirrors[d].replacement == NULL ||
3220 test_bit(Faulty,
3221 &conf->mirrors[d].replacement->flags))
3222 continue;
3223
3224 /* Need to set up for writing to the replacement */
3225 bio = r10_bio->devs[i].repl_bio;
3226 bio_reset(bio);
3227 bio->bi_error = -EIO;
3228
3229 sector = r10_bio->devs[i].addr;
3230 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3231 bio->bi_next = biolist;
3232 biolist = bio;
3233 bio->bi_private = r10_bio;
3234 bio->bi_end_io = end_sync_write;
3235 bio->bi_rw = WRITE;
3236 bio->bi_iter.bi_sector = sector +
3237 conf->mirrors[d].replacement->data_offset;
3238 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3239 count++;
3240 }
3241
3242 if (count < 2) {
3243 for (i=0; i<conf->copies; i++) {
3244 int d = r10_bio->devs[i].devnum;
3245 if (r10_bio->devs[i].bio->bi_end_io)
3246 rdev_dec_pending(conf->mirrors[d].rdev,
3247 mddev);
3248 if (r10_bio->devs[i].repl_bio &&
3249 r10_bio->devs[i].repl_bio->bi_end_io)
3250 rdev_dec_pending(
3251 conf->mirrors[d].replacement,
3252 mddev);
3253 }
3254 put_buf(r10_bio);
3255 biolist = NULL;
3256 goto giveup;
3257 }
3258 }
3259
3260 nr_sectors = 0;
3261 if (sector_nr + max_sync < max_sector)
3262 max_sector = sector_nr + max_sync;
3263 do {
3264 struct page *page;
3265 int len = PAGE_SIZE;
3266 if (sector_nr + (len>>9) > max_sector)
3267 len = (max_sector - sector_nr) << 9;
3268 if (len == 0)
3269 break;
3270 for (bio= biolist ; bio ; bio=bio->bi_next) {
3271 struct bio *bio2;
3272 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3273 if (bio_add_page(bio, page, len, 0))
3274 continue;
3275
3276 /* stop here */
3277 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3278 for (bio2 = biolist;
3279 bio2 && bio2 != bio;
3280 bio2 = bio2->bi_next) {
3281 /* remove last page from this bio */
3282 bio2->bi_vcnt--;
3283 bio2->bi_iter.bi_size -= len;
3284 bio_clear_flag(bio2, BIO_SEG_VALID);
3285 }
3286 goto bio_full;
3287 }
3288 nr_sectors += len>>9;
3289 sector_nr += len>>9;
3290 } while (biolist->bi_vcnt < RESYNC_PAGES);
3291 bio_full:
3292 r10_bio->sectors = nr_sectors;
3293
3294 while (biolist) {
3295 bio = biolist;
3296 biolist = biolist->bi_next;
3297
3298 bio->bi_next = NULL;
3299 r10_bio = bio->bi_private;
3300 r10_bio->sectors = nr_sectors;
3301
3302 if (bio->bi_end_io == end_sync_read) {
3303 md_sync_acct(bio->bi_bdev, nr_sectors);
3304 bio->bi_error = 0;
3305 generic_make_request(bio);
3306 }
3307 }
3308
3309 if (sectors_skipped)
3310 /* pretend they weren't skipped, it makes
3311 * no important difference in this case
3312 */
3313 md_done_sync(mddev, sectors_skipped, 1);
3314
3315 return sectors_skipped + nr_sectors;
3316 giveup:
3317 /* There is nowhere to write, so all non-sync
3318 * drives must be failed or in resync, all drives
3319 * have a bad block, so try the next chunk...
3320 */
3321 if (sector_nr + max_sync < max_sector)
3322 max_sector = sector_nr + max_sync;
3323
3324 sectors_skipped += (max_sector - sector_nr);
3325 chunks_skipped ++;
3326 sector_nr = max_sector;
3327 goto skipped;
3328 }
3329
3330 static sector_t
3331 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3332 {
3333 sector_t size;
3334 struct r10conf *conf = mddev->private;
3335
3336 if (!raid_disks)
3337 raid_disks = min(conf->geo.raid_disks,
3338 conf->prev.raid_disks);
3339 if (!sectors)
3340 sectors = conf->dev_sectors;
3341
3342 size = sectors >> conf->geo.chunk_shift;
3343 sector_div(size, conf->geo.far_copies);
3344 size = size * raid_disks;
3345 sector_div(size, conf->geo.near_copies);
3346
3347 return size << conf->geo.chunk_shift;
3348 }
3349
3350 static void calc_sectors(struct r10conf *conf, sector_t size)
3351 {
3352 /* Calculate the number of sectors-per-device that will
3353 * actually be used, and set conf->dev_sectors and
3354 * conf->stride
3355 */
3356
3357 size = size >> conf->geo.chunk_shift;
3358 sector_div(size, conf->geo.far_copies);
3359 size = size * conf->geo.raid_disks;
3360 sector_div(size, conf->geo.near_copies);
3361 /* 'size' is now the number of chunks in the array */
3362 /* calculate "used chunks per device" */
3363 size = size * conf->copies;
3364
3365 /* We need to round up when dividing by raid_disks to
3366 * get the stride size.
3367 */
3368 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3369
3370 conf->dev_sectors = size << conf->geo.chunk_shift;
3371
3372 if (conf->geo.far_offset)
3373 conf->geo.stride = 1 << conf->geo.chunk_shift;
3374 else {
3375 sector_div(size, conf->geo.far_copies);
3376 conf->geo.stride = size << conf->geo.chunk_shift;
3377 }
3378 }
3379
3380 enum geo_type {geo_new, geo_old, geo_start};
3381 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3382 {
3383 int nc, fc, fo;
3384 int layout, chunk, disks;
3385 switch (new) {
3386 case geo_old:
3387 layout = mddev->layout;
3388 chunk = mddev->chunk_sectors;
3389 disks = mddev->raid_disks - mddev->delta_disks;
3390 break;
3391 case geo_new:
3392 layout = mddev->new_layout;
3393 chunk = mddev->new_chunk_sectors;
3394 disks = mddev->raid_disks;
3395 break;
3396 default: /* avoid 'may be unused' warnings */
3397 case geo_start: /* new when starting reshape - raid_disks not
3398 * updated yet. */
3399 layout = mddev->new_layout;
3400 chunk = mddev->new_chunk_sectors;
3401 disks = mddev->raid_disks + mddev->delta_disks;
3402 break;
3403 }
3404 if (layout >> 19)
3405 return -1;
3406 if (chunk < (PAGE_SIZE >> 9) ||
3407 !is_power_of_2(chunk))
3408 return -2;
3409 nc = layout & 255;
3410 fc = (layout >> 8) & 255;
3411 fo = layout & (1<<16);
3412 geo->raid_disks = disks;
3413 geo->near_copies = nc;
3414 geo->far_copies = fc;
3415 geo->far_offset = fo;
3416 switch (layout >> 17) {
3417 case 0: /* original layout. simple but not always optimal */
3418 geo->far_set_size = disks;
3419 break;
3420 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3421 * actually using this, but leave code here just in case.*/
3422 geo->far_set_size = disks/fc;
3423 WARN(geo->far_set_size < fc,
3424 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3425 break;
3426 case 2: /* "improved" layout fixed to match documentation */
3427 geo->far_set_size = fc * nc;
3428 break;
3429 default: /* Not a valid layout */
3430 return -1;
3431 }
3432 geo->chunk_mask = chunk - 1;
3433 geo->chunk_shift = ffz(~chunk);
3434 return nc*fc;
3435 }
3436
3437 static struct r10conf *setup_conf(struct mddev *mddev)
3438 {
3439 struct r10conf *conf = NULL;
3440 int err = -EINVAL;
3441 struct geom geo;
3442 int copies;
3443
3444 copies = setup_geo(&geo, mddev, geo_new);
3445
3446 if (copies == -2) {
3447 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3448 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3449 mdname(mddev), PAGE_SIZE);
3450 goto out;
3451 }
3452
3453 if (copies < 2 || copies > mddev->raid_disks) {
3454 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3455 mdname(mddev), mddev->new_layout);
3456 goto out;
3457 }
3458
3459 err = -ENOMEM;
3460 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3461 if (!conf)
3462 goto out;
3463
3464 /* FIXME calc properly */
3465 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3466 max(0,-mddev->delta_disks)),
3467 GFP_KERNEL);
3468 if (!conf->mirrors)
3469 goto out;
3470
3471 conf->tmppage = alloc_page(GFP_KERNEL);
3472 if (!conf->tmppage)
3473 goto out;
3474
3475 conf->geo = geo;
3476 conf->copies = copies;
3477 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3478 r10bio_pool_free, conf);
3479 if (!conf->r10bio_pool)
3480 goto out;
3481
3482 calc_sectors(conf, mddev->dev_sectors);
3483 if (mddev->reshape_position == MaxSector) {
3484 conf->prev = conf->geo;
3485 conf->reshape_progress = MaxSector;
3486 } else {
3487 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3488 err = -EINVAL;
3489 goto out;
3490 }
3491 conf->reshape_progress = mddev->reshape_position;
3492 if (conf->prev.far_offset)
3493 conf->prev.stride = 1 << conf->prev.chunk_shift;
3494 else
3495 /* far_copies must be 1 */
3496 conf->prev.stride = conf->dev_sectors;
3497 }
3498 conf->reshape_safe = conf->reshape_progress;
3499 spin_lock_init(&conf->device_lock);
3500 INIT_LIST_HEAD(&conf->retry_list);
3501 INIT_LIST_HEAD(&conf->bio_end_io_list);
3502
3503 spin_lock_init(&conf->resync_lock);
3504 init_waitqueue_head(&conf->wait_barrier);
3505
3506 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3507 if (!conf->thread)
3508 goto out;
3509
3510 conf->mddev = mddev;
3511 return conf;
3512
3513 out:
3514 if (err == -ENOMEM)
3515 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3516 mdname(mddev));
3517 if (conf) {
3518 mempool_destroy(conf->r10bio_pool);
3519 kfree(conf->mirrors);
3520 safe_put_page(conf->tmppage);
3521 kfree(conf);
3522 }
3523 return ERR_PTR(err);
3524 }
3525
3526 static int raid10_run(struct mddev *mddev)
3527 {
3528 struct r10conf *conf;
3529 int i, disk_idx, chunk_size;
3530 struct raid10_info *disk;
3531 struct md_rdev *rdev;
3532 sector_t size;
3533 sector_t min_offset_diff = 0;
3534 int first = 1;
3535 bool discard_supported = false;
3536
3537 if (mddev->private == NULL) {
3538 conf = setup_conf(mddev);
3539 if (IS_ERR(conf))
3540 return PTR_ERR(conf);
3541 mddev->private = conf;
3542 }
3543 conf = mddev->private;
3544 if (!conf)
3545 goto out;
3546
3547 mddev->thread = conf->thread;
3548 conf->thread = NULL;
3549
3550 chunk_size = mddev->chunk_sectors << 9;
3551 if (mddev->queue) {
3552 blk_queue_max_discard_sectors(mddev->queue,
3553 mddev->chunk_sectors);
3554 blk_queue_max_write_same_sectors(mddev->queue, 0);
3555 blk_queue_io_min(mddev->queue, chunk_size);
3556 if (conf->geo.raid_disks % conf->geo.near_copies)
3557 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3558 else
3559 blk_queue_io_opt(mddev->queue, chunk_size *
3560 (conf->geo.raid_disks / conf->geo.near_copies));
3561 }
3562
3563 rdev_for_each(rdev, mddev) {
3564 long long diff;
3565 struct request_queue *q;
3566
3567 disk_idx = rdev->raid_disk;
3568 if (disk_idx < 0)
3569 continue;
3570 if (disk_idx >= conf->geo.raid_disks &&
3571 disk_idx >= conf->prev.raid_disks)
3572 continue;
3573 disk = conf->mirrors + disk_idx;
3574
3575 if (test_bit(Replacement, &rdev->flags)) {
3576 if (disk->replacement)
3577 goto out_free_conf;
3578 disk->replacement = rdev;
3579 } else {
3580 if (disk->rdev)
3581 goto out_free_conf;
3582 disk->rdev = rdev;
3583 }
3584 q = bdev_get_queue(rdev->bdev);
3585 diff = (rdev->new_data_offset - rdev->data_offset);
3586 if (!mddev->reshape_backwards)
3587 diff = -diff;
3588 if (diff < 0)
3589 diff = 0;
3590 if (first || diff < min_offset_diff)
3591 min_offset_diff = diff;
3592
3593 if (mddev->gendisk)
3594 disk_stack_limits(mddev->gendisk, rdev->bdev,
3595 rdev->data_offset << 9);
3596
3597 disk->head_position = 0;
3598
3599 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3600 discard_supported = true;
3601 }
3602
3603 if (mddev->queue) {
3604 if (discard_supported)
3605 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3606 mddev->queue);
3607 else
3608 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3609 mddev->queue);
3610 }
3611 /* need to check that every block has at least one working mirror */
3612 if (!enough(conf, -1)) {
3613 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3614 mdname(mddev));
3615 goto out_free_conf;
3616 }
3617
3618 if (conf->reshape_progress != MaxSector) {
3619 /* must ensure that shape change is supported */
3620 if (conf->geo.far_copies != 1 &&
3621 conf->geo.far_offset == 0)
3622 goto out_free_conf;
3623 if (conf->prev.far_copies != 1 &&
3624 conf->prev.far_offset == 0)
3625 goto out_free_conf;
3626 }
3627
3628 mddev->degraded = 0;
3629 for (i = 0;
3630 i < conf->geo.raid_disks
3631 || i < conf->prev.raid_disks;
3632 i++) {
3633
3634 disk = conf->mirrors + i;
3635
3636 if (!disk->rdev && disk->replacement) {
3637 /* The replacement is all we have - use it */
3638 disk->rdev = disk->replacement;
3639 disk->replacement = NULL;
3640 clear_bit(Replacement, &disk->rdev->flags);
3641 }
3642
3643 if (!disk->rdev ||
3644 !test_bit(In_sync, &disk->rdev->flags)) {
3645 disk->head_position = 0;
3646 mddev->degraded++;
3647 if (disk->rdev &&
3648 disk->rdev->saved_raid_disk < 0)
3649 conf->fullsync = 1;
3650 }
3651 disk->recovery_disabled = mddev->recovery_disabled - 1;
3652 }
3653
3654 if (mddev->recovery_cp != MaxSector)
3655 printk(KERN_NOTICE "md/raid10:%s: not clean"
3656 " -- starting background reconstruction\n",
3657 mdname(mddev));
3658 printk(KERN_INFO
3659 "md/raid10:%s: active with %d out of %d devices\n",
3660 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3661 conf->geo.raid_disks);
3662 /*
3663 * Ok, everything is just fine now
3664 */
3665 mddev->dev_sectors = conf->dev_sectors;
3666 size = raid10_size(mddev, 0, 0);
3667 md_set_array_sectors(mddev, size);
3668 mddev->resync_max_sectors = size;
3669
3670 if (mddev->queue) {
3671 int stripe = conf->geo.raid_disks *
3672 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3673
3674 /* Calculate max read-ahead size.
3675 * We need to readahead at least twice a whole stripe....
3676 * maybe...
3677 */
3678 stripe /= conf->geo.near_copies;
3679 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3680 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3681 }
3682
3683 if (md_integrity_register(mddev))
3684 goto out_free_conf;
3685
3686 if (conf->reshape_progress != MaxSector) {
3687 unsigned long before_length, after_length;
3688
3689 before_length = ((1 << conf->prev.chunk_shift) *
3690 conf->prev.far_copies);
3691 after_length = ((1 << conf->geo.chunk_shift) *
3692 conf->geo.far_copies);
3693
3694 if (max(before_length, after_length) > min_offset_diff) {
3695 /* This cannot work */
3696 printk("md/raid10: offset difference not enough to continue reshape\n");
3697 goto out_free_conf;
3698 }
3699 conf->offset_diff = min_offset_diff;
3700
3701 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3702 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3703 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3704 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3705 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3706 "reshape");
3707 }
3708
3709 return 0;
3710
3711 out_free_conf:
3712 md_unregister_thread(&mddev->thread);
3713 mempool_destroy(conf->r10bio_pool);
3714 safe_put_page(conf->tmppage);
3715 kfree(conf->mirrors);
3716 kfree(conf);
3717 mddev->private = NULL;
3718 out:
3719 return -EIO;
3720 }
3721
3722 static void raid10_free(struct mddev *mddev, void *priv)
3723 {
3724 struct r10conf *conf = priv;
3725
3726 mempool_destroy(conf->r10bio_pool);
3727 safe_put_page(conf->tmppage);
3728 kfree(conf->mirrors);
3729 kfree(conf->mirrors_old);
3730 kfree(conf->mirrors_new);
3731 kfree(conf);
3732 }
3733
3734 static void raid10_quiesce(struct mddev *mddev, int state)
3735 {
3736 struct r10conf *conf = mddev->private;
3737
3738 switch(state) {
3739 case 1:
3740 raise_barrier(conf, 0);
3741 break;
3742 case 0:
3743 lower_barrier(conf);
3744 break;
3745 }
3746 }
3747
3748 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3749 {
3750 /* Resize of 'far' arrays is not supported.
3751 * For 'near' and 'offset' arrays we can set the
3752 * number of sectors used to be an appropriate multiple
3753 * of the chunk size.
3754 * For 'offset', this is far_copies*chunksize.
3755 * For 'near' the multiplier is the LCM of
3756 * near_copies and raid_disks.
3757 * So if far_copies > 1 && !far_offset, fail.
3758 * Else find LCM(raid_disks, near_copy)*far_copies and
3759 * multiply by chunk_size. Then round to this number.
3760 * This is mostly done by raid10_size()
3761 */
3762 struct r10conf *conf = mddev->private;
3763 sector_t oldsize, size;
3764
3765 if (mddev->reshape_position != MaxSector)
3766 return -EBUSY;
3767
3768 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3769 return -EINVAL;
3770
3771 oldsize = raid10_size(mddev, 0, 0);
3772 size = raid10_size(mddev, sectors, 0);
3773 if (mddev->external_size &&
3774 mddev->array_sectors > size)
3775 return -EINVAL;
3776 if (mddev->bitmap) {
3777 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3778 if (ret)
3779 return ret;
3780 }
3781 md_set_array_sectors(mddev, size);
3782 set_capacity(mddev->gendisk, mddev->array_sectors);
3783 revalidate_disk(mddev->gendisk);
3784 if (sectors > mddev->dev_sectors &&
3785 mddev->recovery_cp > oldsize) {
3786 mddev->recovery_cp = oldsize;
3787 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3788 }
3789 calc_sectors(conf, sectors);
3790 mddev->dev_sectors = conf->dev_sectors;
3791 mddev->resync_max_sectors = size;
3792 return 0;
3793 }
3794
3795 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3796 {
3797 struct md_rdev *rdev;
3798 struct r10conf *conf;
3799
3800 if (mddev->degraded > 0) {
3801 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3802 mdname(mddev));
3803 return ERR_PTR(-EINVAL);
3804 }
3805 sector_div(size, devs);
3806
3807 /* Set new parameters */
3808 mddev->new_level = 10;
3809 /* new layout: far_copies = 1, near_copies = 2 */
3810 mddev->new_layout = (1<<8) + 2;
3811 mddev->new_chunk_sectors = mddev->chunk_sectors;
3812 mddev->delta_disks = mddev->raid_disks;
3813 mddev->raid_disks *= 2;
3814 /* make sure it will be not marked as dirty */
3815 mddev->recovery_cp = MaxSector;
3816 mddev->dev_sectors = size;
3817
3818 conf = setup_conf(mddev);
3819 if (!IS_ERR(conf)) {
3820 rdev_for_each(rdev, mddev)
3821 if (rdev->raid_disk >= 0) {
3822 rdev->new_raid_disk = rdev->raid_disk * 2;
3823 rdev->sectors = size;
3824 }
3825 conf->barrier = 1;
3826 }
3827
3828 return conf;
3829 }
3830
3831 static void *raid10_takeover(struct mddev *mddev)
3832 {
3833 struct r0conf *raid0_conf;
3834
3835 /* raid10 can take over:
3836 * raid0 - providing it has only two drives
3837 */
3838 if (mddev->level == 0) {
3839 /* for raid0 takeover only one zone is supported */
3840 raid0_conf = mddev->private;
3841 if (raid0_conf->nr_strip_zones > 1) {
3842 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3843 " with more than one zone.\n",
3844 mdname(mddev));
3845 return ERR_PTR(-EINVAL);
3846 }
3847 return raid10_takeover_raid0(mddev,
3848 raid0_conf->strip_zone->zone_end,
3849 raid0_conf->strip_zone->nb_dev);
3850 }
3851 return ERR_PTR(-EINVAL);
3852 }
3853
3854 static int raid10_check_reshape(struct mddev *mddev)
3855 {
3856 /* Called when there is a request to change
3857 * - layout (to ->new_layout)
3858 * - chunk size (to ->new_chunk_sectors)
3859 * - raid_disks (by delta_disks)
3860 * or when trying to restart a reshape that was ongoing.
3861 *
3862 * We need to validate the request and possibly allocate
3863 * space if that might be an issue later.
3864 *
3865 * Currently we reject any reshape of a 'far' mode array,
3866 * allow chunk size to change if new is generally acceptable,
3867 * allow raid_disks to increase, and allow
3868 * a switch between 'near' mode and 'offset' mode.
3869 */
3870 struct r10conf *conf = mddev->private;
3871 struct geom geo;
3872
3873 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3874 return -EINVAL;
3875
3876 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3877 /* mustn't change number of copies */
3878 return -EINVAL;
3879 if (geo.far_copies > 1 && !geo.far_offset)
3880 /* Cannot switch to 'far' mode */
3881 return -EINVAL;
3882
3883 if (mddev->array_sectors & geo.chunk_mask)
3884 /* not factor of array size */
3885 return -EINVAL;
3886
3887 if (!enough(conf, -1))
3888 return -EINVAL;
3889
3890 kfree(conf->mirrors_new);
3891 conf->mirrors_new = NULL;
3892 if (mddev->delta_disks > 0) {
3893 /* allocate new 'mirrors' list */
3894 conf->mirrors_new = kzalloc(
3895 sizeof(struct raid10_info)
3896 *(mddev->raid_disks +
3897 mddev->delta_disks),
3898 GFP_KERNEL);
3899 if (!conf->mirrors_new)
3900 return -ENOMEM;
3901 }
3902 return 0;
3903 }
3904
3905 /*
3906 * Need to check if array has failed when deciding whether to:
3907 * - start an array
3908 * - remove non-faulty devices
3909 * - add a spare
3910 * - allow a reshape
3911 * This determination is simple when no reshape is happening.
3912 * However if there is a reshape, we need to carefully check
3913 * both the before and after sections.
3914 * This is because some failed devices may only affect one
3915 * of the two sections, and some non-in_sync devices may
3916 * be insync in the section most affected by failed devices.
3917 */
3918 static int calc_degraded(struct r10conf *conf)
3919 {
3920 int degraded, degraded2;
3921 int i;
3922
3923 rcu_read_lock();
3924 degraded = 0;
3925 /* 'prev' section first */
3926 for (i = 0; i < conf->prev.raid_disks; i++) {
3927 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3928 if (!rdev || test_bit(Faulty, &rdev->flags))
3929 degraded++;
3930 else if (!test_bit(In_sync, &rdev->flags))
3931 /* When we can reduce the number of devices in
3932 * an array, this might not contribute to
3933 * 'degraded'. It does now.
3934 */
3935 degraded++;
3936 }
3937 rcu_read_unlock();
3938 if (conf->geo.raid_disks == conf->prev.raid_disks)
3939 return degraded;
3940 rcu_read_lock();
3941 degraded2 = 0;
3942 for (i = 0; i < conf->geo.raid_disks; i++) {
3943 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3944 if (!rdev || test_bit(Faulty, &rdev->flags))
3945 degraded2++;
3946 else if (!test_bit(In_sync, &rdev->flags)) {
3947 /* If reshape is increasing the number of devices,
3948 * this section has already been recovered, so
3949 * it doesn't contribute to degraded.
3950 * else it does.
3951 */
3952 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3953 degraded2++;
3954 }
3955 }
3956 rcu_read_unlock();
3957 if (degraded2 > degraded)
3958 return degraded2;
3959 return degraded;
3960 }
3961
3962 static int raid10_start_reshape(struct mddev *mddev)
3963 {
3964 /* A 'reshape' has been requested. This commits
3965 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3966 * This also checks if there are enough spares and adds them
3967 * to the array.
3968 * We currently require enough spares to make the final
3969 * array non-degraded. We also require that the difference
3970 * between old and new data_offset - on each device - is
3971 * enough that we never risk over-writing.
3972 */
3973
3974 unsigned long before_length, after_length;
3975 sector_t min_offset_diff = 0;
3976 int first = 1;
3977 struct geom new;
3978 struct r10conf *conf = mddev->private;
3979 struct md_rdev *rdev;
3980 int spares = 0;
3981 int ret;
3982
3983 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3984 return -EBUSY;
3985
3986 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3987 return -EINVAL;
3988
3989 before_length = ((1 << conf->prev.chunk_shift) *
3990 conf->prev.far_copies);
3991 after_length = ((1 << conf->geo.chunk_shift) *
3992 conf->geo.far_copies);
3993
3994 rdev_for_each(rdev, mddev) {
3995 if (!test_bit(In_sync, &rdev->flags)
3996 && !test_bit(Faulty, &rdev->flags))
3997 spares++;
3998 if (rdev->raid_disk >= 0) {
3999 long long diff = (rdev->new_data_offset
4000 - rdev->data_offset);
4001 if (!mddev->reshape_backwards)
4002 diff = -diff;
4003 if (diff < 0)
4004 diff = 0;
4005 if (first || diff < min_offset_diff)
4006 min_offset_diff = diff;
4007 }
4008 }
4009
4010 if (max(before_length, after_length) > min_offset_diff)
4011 return -EINVAL;
4012
4013 if (spares < mddev->delta_disks)
4014 return -EINVAL;
4015
4016 conf->offset_diff = min_offset_diff;
4017 spin_lock_irq(&conf->device_lock);
4018 if (conf->mirrors_new) {
4019 memcpy(conf->mirrors_new, conf->mirrors,
4020 sizeof(struct raid10_info)*conf->prev.raid_disks);
4021 smp_mb();
4022 kfree(conf->mirrors_old);
4023 conf->mirrors_old = conf->mirrors;
4024 conf->mirrors = conf->mirrors_new;
4025 conf->mirrors_new = NULL;
4026 }
4027 setup_geo(&conf->geo, mddev, geo_start);
4028 smp_mb();
4029 if (mddev->reshape_backwards) {
4030 sector_t size = raid10_size(mddev, 0, 0);
4031 if (size < mddev->array_sectors) {
4032 spin_unlock_irq(&conf->device_lock);
4033 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4034 mdname(mddev));
4035 return -EINVAL;
4036 }
4037 mddev->resync_max_sectors = size;
4038 conf->reshape_progress = size;
4039 } else
4040 conf->reshape_progress = 0;
4041 conf->reshape_safe = conf->reshape_progress;
4042 spin_unlock_irq(&conf->device_lock);
4043
4044 if (mddev->delta_disks && mddev->bitmap) {
4045 ret = bitmap_resize(mddev->bitmap,
4046 raid10_size(mddev, 0,
4047 conf->geo.raid_disks),
4048 0, 0);
4049 if (ret)
4050 goto abort;
4051 }
4052 if (mddev->delta_disks > 0) {
4053 rdev_for_each(rdev, mddev)
4054 if (rdev->raid_disk < 0 &&
4055 !test_bit(Faulty, &rdev->flags)) {
4056 if (raid10_add_disk(mddev, rdev) == 0) {
4057 if (rdev->raid_disk >=
4058 conf->prev.raid_disks)
4059 set_bit(In_sync, &rdev->flags);
4060 else
4061 rdev->recovery_offset = 0;
4062
4063 if (sysfs_link_rdev(mddev, rdev))
4064 /* Failure here is OK */;
4065 }
4066 } else if (rdev->raid_disk >= conf->prev.raid_disks
4067 && !test_bit(Faulty, &rdev->flags)) {
4068 /* This is a spare that was manually added */
4069 set_bit(In_sync, &rdev->flags);
4070 }
4071 }
4072 /* When a reshape changes the number of devices,
4073 * ->degraded is measured against the larger of the
4074 * pre and post numbers.
4075 */
4076 spin_lock_irq(&conf->device_lock);
4077 mddev->degraded = calc_degraded(conf);
4078 spin_unlock_irq(&conf->device_lock);
4079 mddev->raid_disks = conf->geo.raid_disks;
4080 mddev->reshape_position = conf->reshape_progress;
4081 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4082
4083 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4084 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4085 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4086 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4087 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4088
4089 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4090 "reshape");
4091 if (!mddev->sync_thread) {
4092 ret = -EAGAIN;
4093 goto abort;
4094 }
4095 conf->reshape_checkpoint = jiffies;
4096 md_wakeup_thread(mddev->sync_thread);
4097 md_new_event(mddev);
4098 return 0;
4099
4100 abort:
4101 mddev->recovery = 0;
4102 spin_lock_irq(&conf->device_lock);
4103 conf->geo = conf->prev;
4104 mddev->raid_disks = conf->geo.raid_disks;
4105 rdev_for_each(rdev, mddev)
4106 rdev->new_data_offset = rdev->data_offset;
4107 smp_wmb();
4108 conf->reshape_progress = MaxSector;
4109 conf->reshape_safe = MaxSector;
4110 mddev->reshape_position = MaxSector;
4111 spin_unlock_irq(&conf->device_lock);
4112 return ret;
4113 }
4114
4115 /* Calculate the last device-address that could contain
4116 * any block from the chunk that includes the array-address 's'
4117 * and report the next address.
4118 * i.e. the address returned will be chunk-aligned and after
4119 * any data that is in the chunk containing 's'.
4120 */
4121 static sector_t last_dev_address(sector_t s, struct geom *geo)
4122 {
4123 s = (s | geo->chunk_mask) + 1;
4124 s >>= geo->chunk_shift;
4125 s *= geo->near_copies;
4126 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4127 s *= geo->far_copies;
4128 s <<= geo->chunk_shift;
4129 return s;
4130 }
4131
4132 /* Calculate the first device-address that could contain
4133 * any block from the chunk that includes the array-address 's'.
4134 * This too will be the start of a chunk
4135 */
4136 static sector_t first_dev_address(sector_t s, struct geom *geo)
4137 {
4138 s >>= geo->chunk_shift;
4139 s *= geo->near_copies;
4140 sector_div(s, geo->raid_disks);
4141 s *= geo->far_copies;
4142 s <<= geo->chunk_shift;
4143 return s;
4144 }
4145
4146 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4147 int *skipped)
4148 {
4149 /* We simply copy at most one chunk (smallest of old and new)
4150 * at a time, possibly less if that exceeds RESYNC_PAGES,
4151 * or we hit a bad block or something.
4152 * This might mean we pause for normal IO in the middle of
4153 * a chunk, but that is not a problem as mddev->reshape_position
4154 * can record any location.
4155 *
4156 * If we will want to write to a location that isn't
4157 * yet recorded as 'safe' (i.e. in metadata on disk) then
4158 * we need to flush all reshape requests and update the metadata.
4159 *
4160 * When reshaping forwards (e.g. to more devices), we interpret
4161 * 'safe' as the earliest block which might not have been copied
4162 * down yet. We divide this by previous stripe size and multiply
4163 * by previous stripe length to get lowest device offset that we
4164 * cannot write to yet.
4165 * We interpret 'sector_nr' as an address that we want to write to.
4166 * From this we use last_device_address() to find where we might
4167 * write to, and first_device_address on the 'safe' position.
4168 * If this 'next' write position is after the 'safe' position,
4169 * we must update the metadata to increase the 'safe' position.
4170 *
4171 * When reshaping backwards, we round in the opposite direction
4172 * and perform the reverse test: next write position must not be
4173 * less than current safe position.
4174 *
4175 * In all this the minimum difference in data offsets
4176 * (conf->offset_diff - always positive) allows a bit of slack,
4177 * so next can be after 'safe', but not by more than offset_diff
4178 *
4179 * We need to prepare all the bios here before we start any IO
4180 * to ensure the size we choose is acceptable to all devices.
4181 * The means one for each copy for write-out and an extra one for
4182 * read-in.
4183 * We store the read-in bio in ->master_bio and the others in
4184 * ->devs[x].bio and ->devs[x].repl_bio.
4185 */
4186 struct r10conf *conf = mddev->private;
4187 struct r10bio *r10_bio;
4188 sector_t next, safe, last;
4189 int max_sectors;
4190 int nr_sectors;
4191 int s;
4192 struct md_rdev *rdev;
4193 int need_flush = 0;
4194 struct bio *blist;
4195 struct bio *bio, *read_bio;
4196 int sectors_done = 0;
4197
4198 if (sector_nr == 0) {
4199 /* If restarting in the middle, skip the initial sectors */
4200 if (mddev->reshape_backwards &&
4201 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4202 sector_nr = (raid10_size(mddev, 0, 0)
4203 - conf->reshape_progress);
4204 } else if (!mddev->reshape_backwards &&
4205 conf->reshape_progress > 0)
4206 sector_nr = conf->reshape_progress;
4207 if (sector_nr) {
4208 mddev->curr_resync_completed = sector_nr;
4209 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4210 *skipped = 1;
4211 return sector_nr;
4212 }
4213 }
4214
4215 /* We don't use sector_nr to track where we are up to
4216 * as that doesn't work well for ->reshape_backwards.
4217 * So just use ->reshape_progress.
4218 */
4219 if (mddev->reshape_backwards) {
4220 /* 'next' is the earliest device address that we might
4221 * write to for this chunk in the new layout
4222 */
4223 next = first_dev_address(conf->reshape_progress - 1,
4224 &conf->geo);
4225
4226 /* 'safe' is the last device address that we might read from
4227 * in the old layout after a restart
4228 */
4229 safe = last_dev_address(conf->reshape_safe - 1,
4230 &conf->prev);
4231
4232 if (next + conf->offset_diff < safe)
4233 need_flush = 1;
4234
4235 last = conf->reshape_progress - 1;
4236 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4237 & conf->prev.chunk_mask);
4238 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4239 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4240 } else {
4241 /* 'next' is after the last device address that we
4242 * might write to for this chunk in the new layout
4243 */
4244 next = last_dev_address(conf->reshape_progress, &conf->geo);
4245
4246 /* 'safe' is the earliest device address that we might
4247 * read from in the old layout after a restart
4248 */
4249 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4250
4251 /* Need to update metadata if 'next' might be beyond 'safe'
4252 * as that would possibly corrupt data
4253 */
4254 if (next > safe + conf->offset_diff)
4255 need_flush = 1;
4256
4257 sector_nr = conf->reshape_progress;
4258 last = sector_nr | (conf->geo.chunk_mask
4259 & conf->prev.chunk_mask);
4260
4261 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4262 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4263 }
4264
4265 if (need_flush ||
4266 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4267 /* Need to update reshape_position in metadata */
4268 wait_barrier(conf);
4269 mddev->reshape_position = conf->reshape_progress;
4270 if (mddev->reshape_backwards)
4271 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4272 - conf->reshape_progress;
4273 else
4274 mddev->curr_resync_completed = conf->reshape_progress;
4275 conf->reshape_checkpoint = jiffies;
4276 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4277 md_wakeup_thread(mddev->thread);
4278 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4279 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4280 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4281 allow_barrier(conf);
4282 return sectors_done;
4283 }
4284 conf->reshape_safe = mddev->reshape_position;
4285 allow_barrier(conf);
4286 }
4287
4288 read_more:
4289 /* Now schedule reads for blocks from sector_nr to last */
4290 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4291 r10_bio->state = 0;
4292 raise_barrier(conf, sectors_done != 0);
4293 atomic_set(&r10_bio->remaining, 0);
4294 r10_bio->mddev = mddev;
4295 r10_bio->sector = sector_nr;
4296 set_bit(R10BIO_IsReshape, &r10_bio->state);
4297 r10_bio->sectors = last - sector_nr + 1;
4298 rdev = read_balance(conf, r10_bio, &max_sectors);
4299 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4300
4301 if (!rdev) {
4302 /* Cannot read from here, so need to record bad blocks
4303 * on all the target devices.
4304 */
4305 // FIXME
4306 mempool_free(r10_bio, conf->r10buf_pool);
4307 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4308 return sectors_done;
4309 }
4310
4311 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4312
4313 read_bio->bi_bdev = rdev->bdev;
4314 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4315 + rdev->data_offset);
4316 read_bio->bi_private = r10_bio;
4317 read_bio->bi_end_io = end_sync_read;
4318 read_bio->bi_rw = READ;
4319 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4320 read_bio->bi_error = 0;
4321 read_bio->bi_vcnt = 0;
4322 read_bio->bi_iter.bi_size = 0;
4323 r10_bio->master_bio = read_bio;
4324 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4325
4326 /* Now find the locations in the new layout */
4327 __raid10_find_phys(&conf->geo, r10_bio);
4328
4329 blist = read_bio;
4330 read_bio->bi_next = NULL;
4331
4332 for (s = 0; s < conf->copies*2; s++) {
4333 struct bio *b;
4334 int d = r10_bio->devs[s/2].devnum;
4335 struct md_rdev *rdev2;
4336 if (s&1) {
4337 rdev2 = conf->mirrors[d].replacement;
4338 b = r10_bio->devs[s/2].repl_bio;
4339 } else {
4340 rdev2 = conf->mirrors[d].rdev;
4341 b = r10_bio->devs[s/2].bio;
4342 }
4343 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4344 continue;
4345
4346 bio_reset(b);
4347 b->bi_bdev = rdev2->bdev;
4348 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4349 rdev2->new_data_offset;
4350 b->bi_private = r10_bio;
4351 b->bi_end_io = end_reshape_write;
4352 b->bi_rw = WRITE;
4353 b->bi_next = blist;
4354 blist = b;
4355 }
4356
4357 /* Now add as many pages as possible to all of these bios. */
4358
4359 nr_sectors = 0;
4360 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4361 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4362 int len = (max_sectors - s) << 9;
4363 if (len > PAGE_SIZE)
4364 len = PAGE_SIZE;
4365 for (bio = blist; bio ; bio = bio->bi_next) {
4366 struct bio *bio2;
4367 if (bio_add_page(bio, page, len, 0))
4368 continue;
4369
4370 /* Didn't fit, must stop */
4371 for (bio2 = blist;
4372 bio2 && bio2 != bio;
4373 bio2 = bio2->bi_next) {
4374 /* Remove last page from this bio */
4375 bio2->bi_vcnt--;
4376 bio2->bi_iter.bi_size -= len;
4377 bio_clear_flag(bio2, BIO_SEG_VALID);
4378 }
4379 goto bio_full;
4380 }
4381 sector_nr += len >> 9;
4382 nr_sectors += len >> 9;
4383 }
4384 bio_full:
4385 r10_bio->sectors = nr_sectors;
4386
4387 /* Now submit the read */
4388 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4389 atomic_inc(&r10_bio->remaining);
4390 read_bio->bi_next = NULL;
4391 generic_make_request(read_bio);
4392 sector_nr += nr_sectors;
4393 sectors_done += nr_sectors;
4394 if (sector_nr <= last)
4395 goto read_more;
4396
4397 /* Now that we have done the whole section we can
4398 * update reshape_progress
4399 */
4400 if (mddev->reshape_backwards)
4401 conf->reshape_progress -= sectors_done;
4402 else
4403 conf->reshape_progress += sectors_done;
4404
4405 return sectors_done;
4406 }
4407
4408 static void end_reshape_request(struct r10bio *r10_bio);
4409 static int handle_reshape_read_error(struct mddev *mddev,
4410 struct r10bio *r10_bio);
4411 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4412 {
4413 /* Reshape read completed. Hopefully we have a block
4414 * to write out.
4415 * If we got a read error then we do sync 1-page reads from
4416 * elsewhere until we find the data - or give up.
4417 */
4418 struct r10conf *conf = mddev->private;
4419 int s;
4420
4421 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4422 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4423 /* Reshape has been aborted */
4424 md_done_sync(mddev, r10_bio->sectors, 0);
4425 return;
4426 }
4427
4428 /* We definitely have the data in the pages, schedule the
4429 * writes.
4430 */
4431 atomic_set(&r10_bio->remaining, 1);
4432 for (s = 0; s < conf->copies*2; s++) {
4433 struct bio *b;
4434 int d = r10_bio->devs[s/2].devnum;
4435 struct md_rdev *rdev;
4436 if (s&1) {
4437 rdev = conf->mirrors[d].replacement;
4438 b = r10_bio->devs[s/2].repl_bio;
4439 } else {
4440 rdev = conf->mirrors[d].rdev;
4441 b = r10_bio->devs[s/2].bio;
4442 }
4443 if (!rdev || test_bit(Faulty, &rdev->flags))
4444 continue;
4445 atomic_inc(&rdev->nr_pending);
4446 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4447 atomic_inc(&r10_bio->remaining);
4448 b->bi_next = NULL;
4449 generic_make_request(b);
4450 }
4451 end_reshape_request(r10_bio);
4452 }
4453
4454 static void end_reshape(struct r10conf *conf)
4455 {
4456 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4457 return;
4458
4459 spin_lock_irq(&conf->device_lock);
4460 conf->prev = conf->geo;
4461 md_finish_reshape(conf->mddev);
4462 smp_wmb();
4463 conf->reshape_progress = MaxSector;
4464 conf->reshape_safe = MaxSector;
4465 spin_unlock_irq(&conf->device_lock);
4466
4467 /* read-ahead size must cover two whole stripes, which is
4468 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4469 */
4470 if (conf->mddev->queue) {
4471 int stripe = conf->geo.raid_disks *
4472 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4473 stripe /= conf->geo.near_copies;
4474 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4475 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4476 }
4477 conf->fullsync = 0;
4478 }
4479
4480 static int handle_reshape_read_error(struct mddev *mddev,
4481 struct r10bio *r10_bio)
4482 {
4483 /* Use sync reads to get the blocks from somewhere else */
4484 int sectors = r10_bio->sectors;
4485 struct r10conf *conf = mddev->private;
4486 struct {
4487 struct r10bio r10_bio;
4488 struct r10dev devs[conf->copies];
4489 } on_stack;
4490 struct r10bio *r10b = &on_stack.r10_bio;
4491 int slot = 0;
4492 int idx = 0;
4493 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4494
4495 r10b->sector = r10_bio->sector;
4496 __raid10_find_phys(&conf->prev, r10b);
4497
4498 while (sectors) {
4499 int s = sectors;
4500 int success = 0;
4501 int first_slot = slot;
4502
4503 if (s > (PAGE_SIZE >> 9))
4504 s = PAGE_SIZE >> 9;
4505
4506 while (!success) {
4507 int d = r10b->devs[slot].devnum;
4508 struct md_rdev *rdev = conf->mirrors[d].rdev;
4509 sector_t addr;
4510 if (rdev == NULL ||
4511 test_bit(Faulty, &rdev->flags) ||
4512 !test_bit(In_sync, &rdev->flags))
4513 goto failed;
4514
4515 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4516 success = sync_page_io(rdev,
4517 addr,
4518 s << 9,
4519 bvec[idx].bv_page,
4520 READ, false);
4521 if (success)
4522 break;
4523 failed:
4524 slot++;
4525 if (slot >= conf->copies)
4526 slot = 0;
4527 if (slot == first_slot)
4528 break;
4529 }
4530 if (!success) {
4531 /* couldn't read this block, must give up */
4532 set_bit(MD_RECOVERY_INTR,
4533 &mddev->recovery);
4534 return -EIO;
4535 }
4536 sectors -= s;
4537 idx++;
4538 }
4539 return 0;
4540 }
4541
4542 static void end_reshape_write(struct bio *bio)
4543 {
4544 struct r10bio *r10_bio = bio->bi_private;
4545 struct mddev *mddev = r10_bio->mddev;
4546 struct r10conf *conf = mddev->private;
4547 int d;
4548 int slot;
4549 int repl;
4550 struct md_rdev *rdev = NULL;
4551
4552 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4553 if (repl)
4554 rdev = conf->mirrors[d].replacement;
4555 if (!rdev) {
4556 smp_mb();
4557 rdev = conf->mirrors[d].rdev;
4558 }
4559
4560 if (bio->bi_error) {
4561 /* FIXME should record badblock */
4562 md_error(mddev, rdev);
4563 }
4564
4565 rdev_dec_pending(rdev, mddev);
4566 end_reshape_request(r10_bio);
4567 }
4568
4569 static void end_reshape_request(struct r10bio *r10_bio)
4570 {
4571 if (!atomic_dec_and_test(&r10_bio->remaining))
4572 return;
4573 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4574 bio_put(r10_bio->master_bio);
4575 put_buf(r10_bio);
4576 }
4577
4578 static void raid10_finish_reshape(struct mddev *mddev)
4579 {
4580 struct r10conf *conf = mddev->private;
4581
4582 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4583 return;
4584
4585 if (mddev->delta_disks > 0) {
4586 sector_t size = raid10_size(mddev, 0, 0);
4587 md_set_array_sectors(mddev, size);
4588 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4589 mddev->recovery_cp = mddev->resync_max_sectors;
4590 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4591 }
4592 mddev->resync_max_sectors = size;
4593 set_capacity(mddev->gendisk, mddev->array_sectors);
4594 revalidate_disk(mddev->gendisk);
4595 } else {
4596 int d;
4597 for (d = conf->geo.raid_disks ;
4598 d < conf->geo.raid_disks - mddev->delta_disks;
4599 d++) {
4600 struct md_rdev *rdev = conf->mirrors[d].rdev;
4601 if (rdev)
4602 clear_bit(In_sync, &rdev->flags);
4603 rdev = conf->mirrors[d].replacement;
4604 if (rdev)
4605 clear_bit(In_sync, &rdev->flags);
4606 }
4607 }
4608 mddev->layout = mddev->new_layout;
4609 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4610 mddev->reshape_position = MaxSector;
4611 mddev->delta_disks = 0;
4612 mddev->reshape_backwards = 0;
4613 }
4614
4615 static struct md_personality raid10_personality =
4616 {
4617 .name = "raid10",
4618 .level = 10,
4619 .owner = THIS_MODULE,
4620 .make_request = raid10_make_request,
4621 .run = raid10_run,
4622 .free = raid10_free,
4623 .status = raid10_status,
4624 .error_handler = raid10_error,
4625 .hot_add_disk = raid10_add_disk,
4626 .hot_remove_disk= raid10_remove_disk,
4627 .spare_active = raid10_spare_active,
4628 .sync_request = raid10_sync_request,
4629 .quiesce = raid10_quiesce,
4630 .size = raid10_size,
4631 .resize = raid10_resize,
4632 .takeover = raid10_takeover,
4633 .check_reshape = raid10_check_reshape,
4634 .start_reshape = raid10_start_reshape,
4635 .finish_reshape = raid10_finish_reshape,
4636 .congested = raid10_congested,
4637 };
4638
4639 static int __init raid_init(void)
4640 {
4641 return register_md_personality(&raid10_personality);
4642 }
4643
4644 static void raid_exit(void)
4645 {
4646 unregister_md_personality(&raid10_personality);
4647 }
4648
4649 module_init(raid_init);
4650 module_exit(raid_exit);
4651 MODULE_LICENSE("GPL");
4652 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4653 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4654 MODULE_ALIAS("md-raid10");
4655 MODULE_ALIAS("md-level-10");
4656
4657 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.130024 seconds and 5 git commands to generate.