ARM: 8255/1: perf: Prevent wraparound during overflow
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
396 uptodate = 1;
397 }
398 if (uptodate) {
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
401 } else {
402 /*
403 * oops, read error - keep the refcount on the rdev
404 */
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
413 }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439 }
440
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (!uptodate) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /**
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 * @q: request queue
678 * @bvm: properties of new bio
679 * @biovec: the request that could be merged to it.
680 *
681 * Return amount of bytes we can accept at this offset
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
684 */
685 static int raid10_mergeable_bvec(struct request_queue *q,
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
688 {
689 struct mddev *mddev = q->queuedata;
690 struct r10conf *conf = mddev->private;
691 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
692 int max;
693 unsigned int chunk_sectors;
694 unsigned int bio_sectors = bvm->bi_size >> 9;
695 struct geom *geo = &conf->geo;
696
697 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
698 if (conf->reshape_progress != MaxSector &&
699 ((sector >= conf->reshape_progress) !=
700 conf->mddev->reshape_backwards))
701 geo = &conf->prev;
702
703 if (geo->near_copies < geo->raid_disks) {
704 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
705 + bio_sectors)) << 9;
706 if (max < 0)
707 /* bio_add cannot handle a negative return */
708 max = 0;
709 if (max <= biovec->bv_len && bio_sectors == 0)
710 return biovec->bv_len;
711 } else
712 max = biovec->bv_len;
713
714 if (mddev->merge_check_needed) {
715 struct {
716 struct r10bio r10_bio;
717 struct r10dev devs[conf->copies];
718 } on_stack;
719 struct r10bio *r10_bio = &on_stack.r10_bio;
720 int s;
721 if (conf->reshape_progress != MaxSector) {
722 /* Cannot give any guidance during reshape */
723 if (max <= biovec->bv_len && bio_sectors == 0)
724 return biovec->bv_len;
725 return 0;
726 }
727 r10_bio->sector = sector;
728 raid10_find_phys(conf, r10_bio);
729 rcu_read_lock();
730 for (s = 0; s < conf->copies; s++) {
731 int disk = r10_bio->devs[s].devnum;
732 struct md_rdev *rdev = rcu_dereference(
733 conf->mirrors[disk].rdev);
734 if (rdev && !test_bit(Faulty, &rdev->flags)) {
735 struct request_queue *q =
736 bdev_get_queue(rdev->bdev);
737 if (q->merge_bvec_fn) {
738 bvm->bi_sector = r10_bio->devs[s].addr
739 + rdev->data_offset;
740 bvm->bi_bdev = rdev->bdev;
741 max = min(max, q->merge_bvec_fn(
742 q, bvm, biovec));
743 }
744 }
745 rdev = rcu_dereference(conf->mirrors[disk].replacement);
746 if (rdev && !test_bit(Faulty, &rdev->flags)) {
747 struct request_queue *q =
748 bdev_get_queue(rdev->bdev);
749 if (q->merge_bvec_fn) {
750 bvm->bi_sector = r10_bio->devs[s].addr
751 + rdev->data_offset;
752 bvm->bi_bdev = rdev->bdev;
753 max = min(max, q->merge_bvec_fn(
754 q, bvm, biovec));
755 }
756 }
757 }
758 rcu_read_unlock();
759 }
760 return max;
761 }
762
763 /*
764 * This routine returns the disk from which the requested read should
765 * be done. There is a per-array 'next expected sequential IO' sector
766 * number - if this matches on the next IO then we use the last disk.
767 * There is also a per-disk 'last know head position' sector that is
768 * maintained from IRQ contexts, both the normal and the resync IO
769 * completion handlers update this position correctly. If there is no
770 * perfect sequential match then we pick the disk whose head is closest.
771 *
772 * If there are 2 mirrors in the same 2 devices, performance degrades
773 * because position is mirror, not device based.
774 *
775 * The rdev for the device selected will have nr_pending incremented.
776 */
777
778 /*
779 * FIXME: possibly should rethink readbalancing and do it differently
780 * depending on near_copies / far_copies geometry.
781 */
782 static struct md_rdev *read_balance(struct r10conf *conf,
783 struct r10bio *r10_bio,
784 int *max_sectors)
785 {
786 const sector_t this_sector = r10_bio->sector;
787 int disk, slot;
788 int sectors = r10_bio->sectors;
789 int best_good_sectors;
790 sector_t new_distance, best_dist;
791 struct md_rdev *best_rdev, *rdev = NULL;
792 int do_balance;
793 int best_slot;
794 struct geom *geo = &conf->geo;
795
796 raid10_find_phys(conf, r10_bio);
797 rcu_read_lock();
798 retry:
799 sectors = r10_bio->sectors;
800 best_slot = -1;
801 best_rdev = NULL;
802 best_dist = MaxSector;
803 best_good_sectors = 0;
804 do_balance = 1;
805 /*
806 * Check if we can balance. We can balance on the whole
807 * device if no resync is going on (recovery is ok), or below
808 * the resync window. We take the first readable disk when
809 * above the resync window.
810 */
811 if (conf->mddev->recovery_cp < MaxSector
812 && (this_sector + sectors >= conf->next_resync))
813 do_balance = 0;
814
815 for (slot = 0; slot < conf->copies ; slot++) {
816 sector_t first_bad;
817 int bad_sectors;
818 sector_t dev_sector;
819
820 if (r10_bio->devs[slot].bio == IO_BLOCKED)
821 continue;
822 disk = r10_bio->devs[slot].devnum;
823 rdev = rcu_dereference(conf->mirrors[disk].replacement);
824 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
825 test_bit(Unmerged, &rdev->flags) ||
826 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
827 rdev = rcu_dereference(conf->mirrors[disk].rdev);
828 if (rdev == NULL ||
829 test_bit(Faulty, &rdev->flags) ||
830 test_bit(Unmerged, &rdev->flags))
831 continue;
832 if (!test_bit(In_sync, &rdev->flags) &&
833 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
834 continue;
835
836 dev_sector = r10_bio->devs[slot].addr;
837 if (is_badblock(rdev, dev_sector, sectors,
838 &first_bad, &bad_sectors)) {
839 if (best_dist < MaxSector)
840 /* Already have a better slot */
841 continue;
842 if (first_bad <= dev_sector) {
843 /* Cannot read here. If this is the
844 * 'primary' device, then we must not read
845 * beyond 'bad_sectors' from another device.
846 */
847 bad_sectors -= (dev_sector - first_bad);
848 if (!do_balance && sectors > bad_sectors)
849 sectors = bad_sectors;
850 if (best_good_sectors > sectors)
851 best_good_sectors = sectors;
852 } else {
853 sector_t good_sectors =
854 first_bad - dev_sector;
855 if (good_sectors > best_good_sectors) {
856 best_good_sectors = good_sectors;
857 best_slot = slot;
858 best_rdev = rdev;
859 }
860 if (!do_balance)
861 /* Must read from here */
862 break;
863 }
864 continue;
865 } else
866 best_good_sectors = sectors;
867
868 if (!do_balance)
869 break;
870
871 /* This optimisation is debatable, and completely destroys
872 * sequential read speed for 'far copies' arrays. So only
873 * keep it for 'near' arrays, and review those later.
874 */
875 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
876 break;
877
878 /* for far > 1 always use the lowest address */
879 if (geo->far_copies > 1)
880 new_distance = r10_bio->devs[slot].addr;
881 else
882 new_distance = abs(r10_bio->devs[slot].addr -
883 conf->mirrors[disk].head_position);
884 if (new_distance < best_dist) {
885 best_dist = new_distance;
886 best_slot = slot;
887 best_rdev = rdev;
888 }
889 }
890 if (slot >= conf->copies) {
891 slot = best_slot;
892 rdev = best_rdev;
893 }
894
895 if (slot >= 0) {
896 atomic_inc(&rdev->nr_pending);
897 if (test_bit(Faulty, &rdev->flags)) {
898 /* Cannot risk returning a device that failed
899 * before we inc'ed nr_pending
900 */
901 rdev_dec_pending(rdev, conf->mddev);
902 goto retry;
903 }
904 r10_bio->read_slot = slot;
905 } else
906 rdev = NULL;
907 rcu_read_unlock();
908 *max_sectors = best_good_sectors;
909
910 return rdev;
911 }
912
913 int md_raid10_congested(struct mddev *mddev, int bits)
914 {
915 struct r10conf *conf = mddev->private;
916 int i, ret = 0;
917
918 if ((bits & (1 << BDI_async_congested)) &&
919 conf->pending_count >= max_queued_requests)
920 return 1;
921
922 rcu_read_lock();
923 for (i = 0;
924 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
925 && ret == 0;
926 i++) {
927 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
928 if (rdev && !test_bit(Faulty, &rdev->flags)) {
929 struct request_queue *q = bdev_get_queue(rdev->bdev);
930
931 ret |= bdi_congested(&q->backing_dev_info, bits);
932 }
933 }
934 rcu_read_unlock();
935 return ret;
936 }
937 EXPORT_SYMBOL_GPL(md_raid10_congested);
938
939 static int raid10_congested(void *data, int bits)
940 {
941 struct mddev *mddev = data;
942
943 return mddev_congested(mddev, bits) ||
944 md_raid10_congested(mddev, bits);
945 }
946
947 static void flush_pending_writes(struct r10conf *conf)
948 {
949 /* Any writes that have been queued but are awaiting
950 * bitmap updates get flushed here.
951 */
952 spin_lock_irq(&conf->device_lock);
953
954 if (conf->pending_bio_list.head) {
955 struct bio *bio;
956 bio = bio_list_get(&conf->pending_bio_list);
957 conf->pending_count = 0;
958 spin_unlock_irq(&conf->device_lock);
959 /* flush any pending bitmap writes to disk
960 * before proceeding w/ I/O */
961 bitmap_unplug(conf->mddev->bitmap);
962 wake_up(&conf->wait_barrier);
963
964 while (bio) { /* submit pending writes */
965 struct bio *next = bio->bi_next;
966 bio->bi_next = NULL;
967 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
968 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
969 /* Just ignore it */
970 bio_endio(bio, 0);
971 else
972 generic_make_request(bio);
973 bio = next;
974 }
975 } else
976 spin_unlock_irq(&conf->device_lock);
977 }
978
979 /* Barriers....
980 * Sometimes we need to suspend IO while we do something else,
981 * either some resync/recovery, or reconfigure the array.
982 * To do this we raise a 'barrier'.
983 * The 'barrier' is a counter that can be raised multiple times
984 * to count how many activities are happening which preclude
985 * normal IO.
986 * We can only raise the barrier if there is no pending IO.
987 * i.e. if nr_pending == 0.
988 * We choose only to raise the barrier if no-one is waiting for the
989 * barrier to go down. This means that as soon as an IO request
990 * is ready, no other operations which require a barrier will start
991 * until the IO request has had a chance.
992 *
993 * So: regular IO calls 'wait_barrier'. When that returns there
994 * is no backgroup IO happening, It must arrange to call
995 * allow_barrier when it has finished its IO.
996 * backgroup IO calls must call raise_barrier. Once that returns
997 * there is no normal IO happeing. It must arrange to call
998 * lower_barrier when the particular background IO completes.
999 */
1000
1001 static void raise_barrier(struct r10conf *conf, int force)
1002 {
1003 BUG_ON(force && !conf->barrier);
1004 spin_lock_irq(&conf->resync_lock);
1005
1006 /* Wait until no block IO is waiting (unless 'force') */
1007 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1008 conf->resync_lock);
1009
1010 /* block any new IO from starting */
1011 conf->barrier++;
1012
1013 /* Now wait for all pending IO to complete */
1014 wait_event_lock_irq(conf->wait_barrier,
1015 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1016 conf->resync_lock);
1017
1018 spin_unlock_irq(&conf->resync_lock);
1019 }
1020
1021 static void lower_barrier(struct r10conf *conf)
1022 {
1023 unsigned long flags;
1024 spin_lock_irqsave(&conf->resync_lock, flags);
1025 conf->barrier--;
1026 spin_unlock_irqrestore(&conf->resync_lock, flags);
1027 wake_up(&conf->wait_barrier);
1028 }
1029
1030 static void wait_barrier(struct r10conf *conf)
1031 {
1032 spin_lock_irq(&conf->resync_lock);
1033 if (conf->barrier) {
1034 conf->nr_waiting++;
1035 /* Wait for the barrier to drop.
1036 * However if there are already pending
1037 * requests (preventing the barrier from
1038 * rising completely), and the
1039 * pre-process bio queue isn't empty,
1040 * then don't wait, as we need to empty
1041 * that queue to get the nr_pending
1042 * count down.
1043 */
1044 wait_event_lock_irq(conf->wait_barrier,
1045 !conf->barrier ||
1046 (conf->nr_pending &&
1047 current->bio_list &&
1048 !bio_list_empty(current->bio_list)),
1049 conf->resync_lock);
1050 conf->nr_waiting--;
1051 }
1052 conf->nr_pending++;
1053 spin_unlock_irq(&conf->resync_lock);
1054 }
1055
1056 static void allow_barrier(struct r10conf *conf)
1057 {
1058 unsigned long flags;
1059 spin_lock_irqsave(&conf->resync_lock, flags);
1060 conf->nr_pending--;
1061 spin_unlock_irqrestore(&conf->resync_lock, flags);
1062 wake_up(&conf->wait_barrier);
1063 }
1064
1065 static void freeze_array(struct r10conf *conf, int extra)
1066 {
1067 /* stop syncio and normal IO and wait for everything to
1068 * go quiet.
1069 * We increment barrier and nr_waiting, and then
1070 * wait until nr_pending match nr_queued+extra
1071 * This is called in the context of one normal IO request
1072 * that has failed. Thus any sync request that might be pending
1073 * will be blocked by nr_pending, and we need to wait for
1074 * pending IO requests to complete or be queued for re-try.
1075 * Thus the number queued (nr_queued) plus this request (extra)
1076 * must match the number of pending IOs (nr_pending) before
1077 * we continue.
1078 */
1079 spin_lock_irq(&conf->resync_lock);
1080 conf->barrier++;
1081 conf->nr_waiting++;
1082 wait_event_lock_irq_cmd(conf->wait_barrier,
1083 conf->nr_pending == conf->nr_queued+extra,
1084 conf->resync_lock,
1085 flush_pending_writes(conf));
1086
1087 spin_unlock_irq(&conf->resync_lock);
1088 }
1089
1090 static void unfreeze_array(struct r10conf *conf)
1091 {
1092 /* reverse the effect of the freeze */
1093 spin_lock_irq(&conf->resync_lock);
1094 conf->barrier--;
1095 conf->nr_waiting--;
1096 wake_up(&conf->wait_barrier);
1097 spin_unlock_irq(&conf->resync_lock);
1098 }
1099
1100 static sector_t choose_data_offset(struct r10bio *r10_bio,
1101 struct md_rdev *rdev)
1102 {
1103 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1104 test_bit(R10BIO_Previous, &r10_bio->state))
1105 return rdev->data_offset;
1106 else
1107 return rdev->new_data_offset;
1108 }
1109
1110 struct raid10_plug_cb {
1111 struct blk_plug_cb cb;
1112 struct bio_list pending;
1113 int pending_cnt;
1114 };
1115
1116 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1117 {
1118 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1119 cb);
1120 struct mddev *mddev = plug->cb.data;
1121 struct r10conf *conf = mddev->private;
1122 struct bio *bio;
1123
1124 if (from_schedule || current->bio_list) {
1125 spin_lock_irq(&conf->device_lock);
1126 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1127 conf->pending_count += plug->pending_cnt;
1128 spin_unlock_irq(&conf->device_lock);
1129 wake_up(&conf->wait_barrier);
1130 md_wakeup_thread(mddev->thread);
1131 kfree(plug);
1132 return;
1133 }
1134
1135 /* we aren't scheduling, so we can do the write-out directly. */
1136 bio = bio_list_get(&plug->pending);
1137 bitmap_unplug(mddev->bitmap);
1138 wake_up(&conf->wait_barrier);
1139
1140 while (bio) { /* submit pending writes */
1141 struct bio *next = bio->bi_next;
1142 bio->bi_next = NULL;
1143 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1144 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1145 /* Just ignore it */
1146 bio_endio(bio, 0);
1147 else
1148 generic_make_request(bio);
1149 bio = next;
1150 }
1151 kfree(plug);
1152 }
1153
1154 static void __make_request(struct mddev *mddev, struct bio *bio)
1155 {
1156 struct r10conf *conf = mddev->private;
1157 struct r10bio *r10_bio;
1158 struct bio *read_bio;
1159 int i;
1160 const int rw = bio_data_dir(bio);
1161 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1162 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1163 const unsigned long do_discard = (bio->bi_rw
1164 & (REQ_DISCARD | REQ_SECURE));
1165 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1166 unsigned long flags;
1167 struct md_rdev *blocked_rdev;
1168 struct blk_plug_cb *cb;
1169 struct raid10_plug_cb *plug = NULL;
1170 int sectors_handled;
1171 int max_sectors;
1172 int sectors;
1173
1174 /*
1175 * Register the new request and wait if the reconstruction
1176 * thread has put up a bar for new requests.
1177 * Continue immediately if no resync is active currently.
1178 */
1179 wait_barrier(conf);
1180
1181 sectors = bio_sectors(bio);
1182 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1183 bio->bi_iter.bi_sector < conf->reshape_progress &&
1184 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1185 /* IO spans the reshape position. Need to wait for
1186 * reshape to pass
1187 */
1188 allow_barrier(conf);
1189 wait_event(conf->wait_barrier,
1190 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1191 conf->reshape_progress >= bio->bi_iter.bi_sector +
1192 sectors);
1193 wait_barrier(conf);
1194 }
1195 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1196 bio_data_dir(bio) == WRITE &&
1197 (mddev->reshape_backwards
1198 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1199 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1200 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1201 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1202 /* Need to update reshape_position in metadata */
1203 mddev->reshape_position = conf->reshape_progress;
1204 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1205 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1206 md_wakeup_thread(mddev->thread);
1207 wait_event(mddev->sb_wait,
1208 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1209
1210 conf->reshape_safe = mddev->reshape_position;
1211 }
1212
1213 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1214
1215 r10_bio->master_bio = bio;
1216 r10_bio->sectors = sectors;
1217
1218 r10_bio->mddev = mddev;
1219 r10_bio->sector = bio->bi_iter.bi_sector;
1220 r10_bio->state = 0;
1221
1222 /* We might need to issue multiple reads to different
1223 * devices if there are bad blocks around, so we keep
1224 * track of the number of reads in bio->bi_phys_segments.
1225 * If this is 0, there is only one r10_bio and no locking
1226 * will be needed when the request completes. If it is
1227 * non-zero, then it is the number of not-completed requests.
1228 */
1229 bio->bi_phys_segments = 0;
1230 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1231
1232 if (rw == READ) {
1233 /*
1234 * read balancing logic:
1235 */
1236 struct md_rdev *rdev;
1237 int slot;
1238
1239 read_again:
1240 rdev = read_balance(conf, r10_bio, &max_sectors);
1241 if (!rdev) {
1242 raid_end_bio_io(r10_bio);
1243 return;
1244 }
1245 slot = r10_bio->read_slot;
1246
1247 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1248 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1249 max_sectors);
1250
1251 r10_bio->devs[slot].bio = read_bio;
1252 r10_bio->devs[slot].rdev = rdev;
1253
1254 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1255 choose_data_offset(r10_bio, rdev);
1256 read_bio->bi_bdev = rdev->bdev;
1257 read_bio->bi_end_io = raid10_end_read_request;
1258 read_bio->bi_rw = READ | do_sync;
1259 read_bio->bi_private = r10_bio;
1260
1261 if (max_sectors < r10_bio->sectors) {
1262 /* Could not read all from this device, so we will
1263 * need another r10_bio.
1264 */
1265 sectors_handled = (r10_bio->sector + max_sectors
1266 - bio->bi_iter.bi_sector);
1267 r10_bio->sectors = max_sectors;
1268 spin_lock_irq(&conf->device_lock);
1269 if (bio->bi_phys_segments == 0)
1270 bio->bi_phys_segments = 2;
1271 else
1272 bio->bi_phys_segments++;
1273 spin_unlock_irq(&conf->device_lock);
1274 /* Cannot call generic_make_request directly
1275 * as that will be queued in __generic_make_request
1276 * and subsequent mempool_alloc might block
1277 * waiting for it. so hand bio over to raid10d.
1278 */
1279 reschedule_retry(r10_bio);
1280
1281 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1282
1283 r10_bio->master_bio = bio;
1284 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1285 r10_bio->state = 0;
1286 r10_bio->mddev = mddev;
1287 r10_bio->sector = bio->bi_iter.bi_sector +
1288 sectors_handled;
1289 goto read_again;
1290 } else
1291 generic_make_request(read_bio);
1292 return;
1293 }
1294
1295 /*
1296 * WRITE:
1297 */
1298 if (conf->pending_count >= max_queued_requests) {
1299 md_wakeup_thread(mddev->thread);
1300 wait_event(conf->wait_barrier,
1301 conf->pending_count < max_queued_requests);
1302 }
1303 /* first select target devices under rcu_lock and
1304 * inc refcount on their rdev. Record them by setting
1305 * bios[x] to bio
1306 * If there are known/acknowledged bad blocks on any device
1307 * on which we have seen a write error, we want to avoid
1308 * writing to those blocks. This potentially requires several
1309 * writes to write around the bad blocks. Each set of writes
1310 * gets its own r10_bio with a set of bios attached. The number
1311 * of r10_bios is recored in bio->bi_phys_segments just as with
1312 * the read case.
1313 */
1314
1315 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1316 raid10_find_phys(conf, r10_bio);
1317 retry_write:
1318 blocked_rdev = NULL;
1319 rcu_read_lock();
1320 max_sectors = r10_bio->sectors;
1321
1322 for (i = 0; i < conf->copies; i++) {
1323 int d = r10_bio->devs[i].devnum;
1324 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1325 struct md_rdev *rrdev = rcu_dereference(
1326 conf->mirrors[d].replacement);
1327 if (rdev == rrdev)
1328 rrdev = NULL;
1329 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1330 atomic_inc(&rdev->nr_pending);
1331 blocked_rdev = rdev;
1332 break;
1333 }
1334 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1335 atomic_inc(&rrdev->nr_pending);
1336 blocked_rdev = rrdev;
1337 break;
1338 }
1339 if (rdev && (test_bit(Faulty, &rdev->flags)
1340 || test_bit(Unmerged, &rdev->flags)))
1341 rdev = NULL;
1342 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1343 || test_bit(Unmerged, &rrdev->flags)))
1344 rrdev = NULL;
1345
1346 r10_bio->devs[i].bio = NULL;
1347 r10_bio->devs[i].repl_bio = NULL;
1348
1349 if (!rdev && !rrdev) {
1350 set_bit(R10BIO_Degraded, &r10_bio->state);
1351 continue;
1352 }
1353 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1354 sector_t first_bad;
1355 sector_t dev_sector = r10_bio->devs[i].addr;
1356 int bad_sectors;
1357 int is_bad;
1358
1359 is_bad = is_badblock(rdev, dev_sector,
1360 max_sectors,
1361 &first_bad, &bad_sectors);
1362 if (is_bad < 0) {
1363 /* Mustn't write here until the bad block
1364 * is acknowledged
1365 */
1366 atomic_inc(&rdev->nr_pending);
1367 set_bit(BlockedBadBlocks, &rdev->flags);
1368 blocked_rdev = rdev;
1369 break;
1370 }
1371 if (is_bad && first_bad <= dev_sector) {
1372 /* Cannot write here at all */
1373 bad_sectors -= (dev_sector - first_bad);
1374 if (bad_sectors < max_sectors)
1375 /* Mustn't write more than bad_sectors
1376 * to other devices yet
1377 */
1378 max_sectors = bad_sectors;
1379 /* We don't set R10BIO_Degraded as that
1380 * only applies if the disk is missing,
1381 * so it might be re-added, and we want to
1382 * know to recover this chunk.
1383 * In this case the device is here, and the
1384 * fact that this chunk is not in-sync is
1385 * recorded in the bad block log.
1386 */
1387 continue;
1388 }
1389 if (is_bad) {
1390 int good_sectors = first_bad - dev_sector;
1391 if (good_sectors < max_sectors)
1392 max_sectors = good_sectors;
1393 }
1394 }
1395 if (rdev) {
1396 r10_bio->devs[i].bio = bio;
1397 atomic_inc(&rdev->nr_pending);
1398 }
1399 if (rrdev) {
1400 r10_bio->devs[i].repl_bio = bio;
1401 atomic_inc(&rrdev->nr_pending);
1402 }
1403 }
1404 rcu_read_unlock();
1405
1406 if (unlikely(blocked_rdev)) {
1407 /* Have to wait for this device to get unblocked, then retry */
1408 int j;
1409 int d;
1410
1411 for (j = 0; j < i; j++) {
1412 if (r10_bio->devs[j].bio) {
1413 d = r10_bio->devs[j].devnum;
1414 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1415 }
1416 if (r10_bio->devs[j].repl_bio) {
1417 struct md_rdev *rdev;
1418 d = r10_bio->devs[j].devnum;
1419 rdev = conf->mirrors[d].replacement;
1420 if (!rdev) {
1421 /* Race with remove_disk */
1422 smp_mb();
1423 rdev = conf->mirrors[d].rdev;
1424 }
1425 rdev_dec_pending(rdev, mddev);
1426 }
1427 }
1428 allow_barrier(conf);
1429 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1430 wait_barrier(conf);
1431 goto retry_write;
1432 }
1433
1434 if (max_sectors < r10_bio->sectors) {
1435 /* We are splitting this into multiple parts, so
1436 * we need to prepare for allocating another r10_bio.
1437 */
1438 r10_bio->sectors = max_sectors;
1439 spin_lock_irq(&conf->device_lock);
1440 if (bio->bi_phys_segments == 0)
1441 bio->bi_phys_segments = 2;
1442 else
1443 bio->bi_phys_segments++;
1444 spin_unlock_irq(&conf->device_lock);
1445 }
1446 sectors_handled = r10_bio->sector + max_sectors -
1447 bio->bi_iter.bi_sector;
1448
1449 atomic_set(&r10_bio->remaining, 1);
1450 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1451
1452 for (i = 0; i < conf->copies; i++) {
1453 struct bio *mbio;
1454 int d = r10_bio->devs[i].devnum;
1455 if (r10_bio->devs[i].bio) {
1456 struct md_rdev *rdev = conf->mirrors[d].rdev;
1457 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1458 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1459 max_sectors);
1460 r10_bio->devs[i].bio = mbio;
1461
1462 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1463 choose_data_offset(r10_bio,
1464 rdev));
1465 mbio->bi_bdev = rdev->bdev;
1466 mbio->bi_end_io = raid10_end_write_request;
1467 mbio->bi_rw =
1468 WRITE | do_sync | do_fua | do_discard | do_same;
1469 mbio->bi_private = r10_bio;
1470
1471 atomic_inc(&r10_bio->remaining);
1472
1473 cb = blk_check_plugged(raid10_unplug, mddev,
1474 sizeof(*plug));
1475 if (cb)
1476 plug = container_of(cb, struct raid10_plug_cb,
1477 cb);
1478 else
1479 plug = NULL;
1480 spin_lock_irqsave(&conf->device_lock, flags);
1481 if (plug) {
1482 bio_list_add(&plug->pending, mbio);
1483 plug->pending_cnt++;
1484 } else {
1485 bio_list_add(&conf->pending_bio_list, mbio);
1486 conf->pending_count++;
1487 }
1488 spin_unlock_irqrestore(&conf->device_lock, flags);
1489 if (!plug)
1490 md_wakeup_thread(mddev->thread);
1491 }
1492
1493 if (r10_bio->devs[i].repl_bio) {
1494 struct md_rdev *rdev = conf->mirrors[d].replacement;
1495 if (rdev == NULL) {
1496 /* Replacement just got moved to main 'rdev' */
1497 smp_mb();
1498 rdev = conf->mirrors[d].rdev;
1499 }
1500 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1501 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1502 max_sectors);
1503 r10_bio->devs[i].repl_bio = mbio;
1504
1505 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1506 choose_data_offset(
1507 r10_bio, rdev));
1508 mbio->bi_bdev = rdev->bdev;
1509 mbio->bi_end_io = raid10_end_write_request;
1510 mbio->bi_rw =
1511 WRITE | do_sync | do_fua | do_discard | do_same;
1512 mbio->bi_private = r10_bio;
1513
1514 atomic_inc(&r10_bio->remaining);
1515 spin_lock_irqsave(&conf->device_lock, flags);
1516 bio_list_add(&conf->pending_bio_list, mbio);
1517 conf->pending_count++;
1518 spin_unlock_irqrestore(&conf->device_lock, flags);
1519 if (!mddev_check_plugged(mddev))
1520 md_wakeup_thread(mddev->thread);
1521 }
1522 }
1523
1524 /* Don't remove the bias on 'remaining' (one_write_done) until
1525 * after checking if we need to go around again.
1526 */
1527
1528 if (sectors_handled < bio_sectors(bio)) {
1529 one_write_done(r10_bio);
1530 /* We need another r10_bio. It has already been counted
1531 * in bio->bi_phys_segments.
1532 */
1533 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1534
1535 r10_bio->master_bio = bio;
1536 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1537
1538 r10_bio->mddev = mddev;
1539 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1540 r10_bio->state = 0;
1541 goto retry_write;
1542 }
1543 one_write_done(r10_bio);
1544 }
1545
1546 static void make_request(struct mddev *mddev, struct bio *bio)
1547 {
1548 struct r10conf *conf = mddev->private;
1549 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1550 int chunk_sects = chunk_mask + 1;
1551
1552 struct bio *split;
1553
1554 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1555 md_flush_request(mddev, bio);
1556 return;
1557 }
1558
1559 md_write_start(mddev, bio);
1560
1561 do {
1562
1563 /*
1564 * If this request crosses a chunk boundary, we need to split
1565 * it.
1566 */
1567 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1568 bio_sectors(bio) > chunk_sects
1569 && (conf->geo.near_copies < conf->geo.raid_disks
1570 || conf->prev.near_copies <
1571 conf->prev.raid_disks))) {
1572 split = bio_split(bio, chunk_sects -
1573 (bio->bi_iter.bi_sector &
1574 (chunk_sects - 1)),
1575 GFP_NOIO, fs_bio_set);
1576 bio_chain(split, bio);
1577 } else {
1578 split = bio;
1579 }
1580
1581 __make_request(mddev, split);
1582 } while (split != bio);
1583
1584 /* In case raid10d snuck in to freeze_array */
1585 wake_up(&conf->wait_barrier);
1586 }
1587
1588 static void status(struct seq_file *seq, struct mddev *mddev)
1589 {
1590 struct r10conf *conf = mddev->private;
1591 int i;
1592
1593 if (conf->geo.near_copies < conf->geo.raid_disks)
1594 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1595 if (conf->geo.near_copies > 1)
1596 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1597 if (conf->geo.far_copies > 1) {
1598 if (conf->geo.far_offset)
1599 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1600 else
1601 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1602 }
1603 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1604 conf->geo.raid_disks - mddev->degraded);
1605 for (i = 0; i < conf->geo.raid_disks; i++)
1606 seq_printf(seq, "%s",
1607 conf->mirrors[i].rdev &&
1608 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1609 seq_printf(seq, "]");
1610 }
1611
1612 /* check if there are enough drives for
1613 * every block to appear on atleast one.
1614 * Don't consider the device numbered 'ignore'
1615 * as we might be about to remove it.
1616 */
1617 static int _enough(struct r10conf *conf, int previous, int ignore)
1618 {
1619 int first = 0;
1620 int has_enough = 0;
1621 int disks, ncopies;
1622 if (previous) {
1623 disks = conf->prev.raid_disks;
1624 ncopies = conf->prev.near_copies;
1625 } else {
1626 disks = conf->geo.raid_disks;
1627 ncopies = conf->geo.near_copies;
1628 }
1629
1630 rcu_read_lock();
1631 do {
1632 int n = conf->copies;
1633 int cnt = 0;
1634 int this = first;
1635 while (n--) {
1636 struct md_rdev *rdev;
1637 if (this != ignore &&
1638 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1639 test_bit(In_sync, &rdev->flags))
1640 cnt++;
1641 this = (this+1) % disks;
1642 }
1643 if (cnt == 0)
1644 goto out;
1645 first = (first + ncopies) % disks;
1646 } while (first != 0);
1647 has_enough = 1;
1648 out:
1649 rcu_read_unlock();
1650 return has_enough;
1651 }
1652
1653 static int enough(struct r10conf *conf, int ignore)
1654 {
1655 /* when calling 'enough', both 'prev' and 'geo' must
1656 * be stable.
1657 * This is ensured if ->reconfig_mutex or ->device_lock
1658 * is held.
1659 */
1660 return _enough(conf, 0, ignore) &&
1661 _enough(conf, 1, ignore);
1662 }
1663
1664 static void error(struct mddev *mddev, struct md_rdev *rdev)
1665 {
1666 char b[BDEVNAME_SIZE];
1667 struct r10conf *conf = mddev->private;
1668 unsigned long flags;
1669
1670 /*
1671 * If it is not operational, then we have already marked it as dead
1672 * else if it is the last working disks, ignore the error, let the
1673 * next level up know.
1674 * else mark the drive as failed
1675 */
1676 spin_lock_irqsave(&conf->device_lock, flags);
1677 if (test_bit(In_sync, &rdev->flags)
1678 && !enough(conf, rdev->raid_disk)) {
1679 /*
1680 * Don't fail the drive, just return an IO error.
1681 */
1682 spin_unlock_irqrestore(&conf->device_lock, flags);
1683 return;
1684 }
1685 if (test_and_clear_bit(In_sync, &rdev->flags))
1686 mddev->degraded++;
1687 /*
1688 * If recovery is running, make sure it aborts.
1689 */
1690 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1691 set_bit(Blocked, &rdev->flags);
1692 set_bit(Faulty, &rdev->flags);
1693 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1694 spin_unlock_irqrestore(&conf->device_lock, flags);
1695 printk(KERN_ALERT
1696 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1697 "md/raid10:%s: Operation continuing on %d devices.\n",
1698 mdname(mddev), bdevname(rdev->bdev, b),
1699 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1700 }
1701
1702 static void print_conf(struct r10conf *conf)
1703 {
1704 int i;
1705 struct raid10_info *tmp;
1706
1707 printk(KERN_DEBUG "RAID10 conf printout:\n");
1708 if (!conf) {
1709 printk(KERN_DEBUG "(!conf)\n");
1710 return;
1711 }
1712 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1713 conf->geo.raid_disks);
1714
1715 for (i = 0; i < conf->geo.raid_disks; i++) {
1716 char b[BDEVNAME_SIZE];
1717 tmp = conf->mirrors + i;
1718 if (tmp->rdev)
1719 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1720 i, !test_bit(In_sync, &tmp->rdev->flags),
1721 !test_bit(Faulty, &tmp->rdev->flags),
1722 bdevname(tmp->rdev->bdev,b));
1723 }
1724 }
1725
1726 static void close_sync(struct r10conf *conf)
1727 {
1728 wait_barrier(conf);
1729 allow_barrier(conf);
1730
1731 mempool_destroy(conf->r10buf_pool);
1732 conf->r10buf_pool = NULL;
1733 }
1734
1735 static int raid10_spare_active(struct mddev *mddev)
1736 {
1737 int i;
1738 struct r10conf *conf = mddev->private;
1739 struct raid10_info *tmp;
1740 int count = 0;
1741 unsigned long flags;
1742
1743 /*
1744 * Find all non-in_sync disks within the RAID10 configuration
1745 * and mark them in_sync
1746 */
1747 for (i = 0; i < conf->geo.raid_disks; i++) {
1748 tmp = conf->mirrors + i;
1749 if (tmp->replacement
1750 && tmp->replacement->recovery_offset == MaxSector
1751 && !test_bit(Faulty, &tmp->replacement->flags)
1752 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1753 /* Replacement has just become active */
1754 if (!tmp->rdev
1755 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1756 count++;
1757 if (tmp->rdev) {
1758 /* Replaced device not technically faulty,
1759 * but we need to be sure it gets removed
1760 * and never re-added.
1761 */
1762 set_bit(Faulty, &tmp->rdev->flags);
1763 sysfs_notify_dirent_safe(
1764 tmp->rdev->sysfs_state);
1765 }
1766 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1767 } else if (tmp->rdev
1768 && tmp->rdev->recovery_offset == MaxSector
1769 && !test_bit(Faulty, &tmp->rdev->flags)
1770 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1771 count++;
1772 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1773 }
1774 }
1775 spin_lock_irqsave(&conf->device_lock, flags);
1776 mddev->degraded -= count;
1777 spin_unlock_irqrestore(&conf->device_lock, flags);
1778
1779 print_conf(conf);
1780 return count;
1781 }
1782
1783 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1784 {
1785 struct r10conf *conf = mddev->private;
1786 int err = -EEXIST;
1787 int mirror;
1788 int first = 0;
1789 int last = conf->geo.raid_disks - 1;
1790 struct request_queue *q = bdev_get_queue(rdev->bdev);
1791
1792 if (mddev->recovery_cp < MaxSector)
1793 /* only hot-add to in-sync arrays, as recovery is
1794 * very different from resync
1795 */
1796 return -EBUSY;
1797 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1798 return -EINVAL;
1799
1800 if (rdev->raid_disk >= 0)
1801 first = last = rdev->raid_disk;
1802
1803 if (q->merge_bvec_fn) {
1804 set_bit(Unmerged, &rdev->flags);
1805 mddev->merge_check_needed = 1;
1806 }
1807
1808 if (rdev->saved_raid_disk >= first &&
1809 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1810 mirror = rdev->saved_raid_disk;
1811 else
1812 mirror = first;
1813 for ( ; mirror <= last ; mirror++) {
1814 struct raid10_info *p = &conf->mirrors[mirror];
1815 if (p->recovery_disabled == mddev->recovery_disabled)
1816 continue;
1817 if (p->rdev) {
1818 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1819 p->replacement != NULL)
1820 continue;
1821 clear_bit(In_sync, &rdev->flags);
1822 set_bit(Replacement, &rdev->flags);
1823 rdev->raid_disk = mirror;
1824 err = 0;
1825 if (mddev->gendisk)
1826 disk_stack_limits(mddev->gendisk, rdev->bdev,
1827 rdev->data_offset << 9);
1828 conf->fullsync = 1;
1829 rcu_assign_pointer(p->replacement, rdev);
1830 break;
1831 }
1832
1833 if (mddev->gendisk)
1834 disk_stack_limits(mddev->gendisk, rdev->bdev,
1835 rdev->data_offset << 9);
1836
1837 p->head_position = 0;
1838 p->recovery_disabled = mddev->recovery_disabled - 1;
1839 rdev->raid_disk = mirror;
1840 err = 0;
1841 if (rdev->saved_raid_disk != mirror)
1842 conf->fullsync = 1;
1843 rcu_assign_pointer(p->rdev, rdev);
1844 break;
1845 }
1846 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1847 /* Some requests might not have seen this new
1848 * merge_bvec_fn. We must wait for them to complete
1849 * before merging the device fully.
1850 * First we make sure any code which has tested
1851 * our function has submitted the request, then
1852 * we wait for all outstanding requests to complete.
1853 */
1854 synchronize_sched();
1855 freeze_array(conf, 0);
1856 unfreeze_array(conf);
1857 clear_bit(Unmerged, &rdev->flags);
1858 }
1859 md_integrity_add_rdev(rdev, mddev);
1860 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1861 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1862
1863 print_conf(conf);
1864 return err;
1865 }
1866
1867 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1868 {
1869 struct r10conf *conf = mddev->private;
1870 int err = 0;
1871 int number = rdev->raid_disk;
1872 struct md_rdev **rdevp;
1873 struct raid10_info *p = conf->mirrors + number;
1874
1875 print_conf(conf);
1876 if (rdev == p->rdev)
1877 rdevp = &p->rdev;
1878 else if (rdev == p->replacement)
1879 rdevp = &p->replacement;
1880 else
1881 return 0;
1882
1883 if (test_bit(In_sync, &rdev->flags) ||
1884 atomic_read(&rdev->nr_pending)) {
1885 err = -EBUSY;
1886 goto abort;
1887 }
1888 /* Only remove faulty devices if recovery
1889 * is not possible.
1890 */
1891 if (!test_bit(Faulty, &rdev->flags) &&
1892 mddev->recovery_disabled != p->recovery_disabled &&
1893 (!p->replacement || p->replacement == rdev) &&
1894 number < conf->geo.raid_disks &&
1895 enough(conf, -1)) {
1896 err = -EBUSY;
1897 goto abort;
1898 }
1899 *rdevp = NULL;
1900 synchronize_rcu();
1901 if (atomic_read(&rdev->nr_pending)) {
1902 /* lost the race, try later */
1903 err = -EBUSY;
1904 *rdevp = rdev;
1905 goto abort;
1906 } else if (p->replacement) {
1907 /* We must have just cleared 'rdev' */
1908 p->rdev = p->replacement;
1909 clear_bit(Replacement, &p->replacement->flags);
1910 smp_mb(); /* Make sure other CPUs may see both as identical
1911 * but will never see neither -- if they are careful.
1912 */
1913 p->replacement = NULL;
1914 clear_bit(WantReplacement, &rdev->flags);
1915 } else
1916 /* We might have just remove the Replacement as faulty
1917 * Clear the flag just in case
1918 */
1919 clear_bit(WantReplacement, &rdev->flags);
1920
1921 err = md_integrity_register(mddev);
1922
1923 abort:
1924
1925 print_conf(conf);
1926 return err;
1927 }
1928
1929 static void end_sync_read(struct bio *bio, int error)
1930 {
1931 struct r10bio *r10_bio = bio->bi_private;
1932 struct r10conf *conf = r10_bio->mddev->private;
1933 int d;
1934
1935 if (bio == r10_bio->master_bio) {
1936 /* this is a reshape read */
1937 d = r10_bio->read_slot; /* really the read dev */
1938 } else
1939 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1940
1941 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1942 set_bit(R10BIO_Uptodate, &r10_bio->state);
1943 else
1944 /* The write handler will notice the lack of
1945 * R10BIO_Uptodate and record any errors etc
1946 */
1947 atomic_add(r10_bio->sectors,
1948 &conf->mirrors[d].rdev->corrected_errors);
1949
1950 /* for reconstruct, we always reschedule after a read.
1951 * for resync, only after all reads
1952 */
1953 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1954 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1955 atomic_dec_and_test(&r10_bio->remaining)) {
1956 /* we have read all the blocks,
1957 * do the comparison in process context in raid10d
1958 */
1959 reschedule_retry(r10_bio);
1960 }
1961 }
1962
1963 static void end_sync_request(struct r10bio *r10_bio)
1964 {
1965 struct mddev *mddev = r10_bio->mddev;
1966
1967 while (atomic_dec_and_test(&r10_bio->remaining)) {
1968 if (r10_bio->master_bio == NULL) {
1969 /* the primary of several recovery bios */
1970 sector_t s = r10_bio->sectors;
1971 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972 test_bit(R10BIO_WriteError, &r10_bio->state))
1973 reschedule_retry(r10_bio);
1974 else
1975 put_buf(r10_bio);
1976 md_done_sync(mddev, s, 1);
1977 break;
1978 } else {
1979 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1980 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1981 test_bit(R10BIO_WriteError, &r10_bio->state))
1982 reschedule_retry(r10_bio);
1983 else
1984 put_buf(r10_bio);
1985 r10_bio = r10_bio2;
1986 }
1987 }
1988 }
1989
1990 static void end_sync_write(struct bio *bio, int error)
1991 {
1992 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1993 struct r10bio *r10_bio = bio->bi_private;
1994 struct mddev *mddev = r10_bio->mddev;
1995 struct r10conf *conf = mddev->private;
1996 int d;
1997 sector_t first_bad;
1998 int bad_sectors;
1999 int slot;
2000 int repl;
2001 struct md_rdev *rdev = NULL;
2002
2003 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2004 if (repl)
2005 rdev = conf->mirrors[d].replacement;
2006 else
2007 rdev = conf->mirrors[d].rdev;
2008
2009 if (!uptodate) {
2010 if (repl)
2011 md_error(mddev, rdev);
2012 else {
2013 set_bit(WriteErrorSeen, &rdev->flags);
2014 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2015 set_bit(MD_RECOVERY_NEEDED,
2016 &rdev->mddev->recovery);
2017 set_bit(R10BIO_WriteError, &r10_bio->state);
2018 }
2019 } else if (is_badblock(rdev,
2020 r10_bio->devs[slot].addr,
2021 r10_bio->sectors,
2022 &first_bad, &bad_sectors))
2023 set_bit(R10BIO_MadeGood, &r10_bio->state);
2024
2025 rdev_dec_pending(rdev, mddev);
2026
2027 end_sync_request(r10_bio);
2028 }
2029
2030 /*
2031 * Note: sync and recover and handled very differently for raid10
2032 * This code is for resync.
2033 * For resync, we read through virtual addresses and read all blocks.
2034 * If there is any error, we schedule a write. The lowest numbered
2035 * drive is authoritative.
2036 * However requests come for physical address, so we need to map.
2037 * For every physical address there are raid_disks/copies virtual addresses,
2038 * which is always are least one, but is not necessarly an integer.
2039 * This means that a physical address can span multiple chunks, so we may
2040 * have to submit multiple io requests for a single sync request.
2041 */
2042 /*
2043 * We check if all blocks are in-sync and only write to blocks that
2044 * aren't in sync
2045 */
2046 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2047 {
2048 struct r10conf *conf = mddev->private;
2049 int i, first;
2050 struct bio *tbio, *fbio;
2051 int vcnt;
2052
2053 atomic_set(&r10_bio->remaining, 1);
2054
2055 /* find the first device with a block */
2056 for (i=0; i<conf->copies; i++)
2057 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2058 break;
2059
2060 if (i == conf->copies)
2061 goto done;
2062
2063 first = i;
2064 fbio = r10_bio->devs[i].bio;
2065
2066 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2067 /* now find blocks with errors */
2068 for (i=0 ; i < conf->copies ; i++) {
2069 int j, d;
2070
2071 tbio = r10_bio->devs[i].bio;
2072
2073 if (tbio->bi_end_io != end_sync_read)
2074 continue;
2075 if (i == first)
2076 continue;
2077 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2078 /* We know that the bi_io_vec layout is the same for
2079 * both 'first' and 'i', so we just compare them.
2080 * All vec entries are PAGE_SIZE;
2081 */
2082 int sectors = r10_bio->sectors;
2083 for (j = 0; j < vcnt; j++) {
2084 int len = PAGE_SIZE;
2085 if (sectors < (len / 512))
2086 len = sectors * 512;
2087 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2088 page_address(tbio->bi_io_vec[j].bv_page),
2089 len))
2090 break;
2091 sectors -= len/512;
2092 }
2093 if (j == vcnt)
2094 continue;
2095 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2096 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2097 /* Don't fix anything. */
2098 continue;
2099 }
2100 /* Ok, we need to write this bio, either to correct an
2101 * inconsistency or to correct an unreadable block.
2102 * First we need to fixup bv_offset, bv_len and
2103 * bi_vecs, as the read request might have corrupted these
2104 */
2105 bio_reset(tbio);
2106
2107 tbio->bi_vcnt = vcnt;
2108 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2109 tbio->bi_rw = WRITE;
2110 tbio->bi_private = r10_bio;
2111 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2112
2113 for (j=0; j < vcnt ; j++) {
2114 tbio->bi_io_vec[j].bv_offset = 0;
2115 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2116
2117 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2118 page_address(fbio->bi_io_vec[j].bv_page),
2119 PAGE_SIZE);
2120 }
2121 tbio->bi_end_io = end_sync_write;
2122
2123 d = r10_bio->devs[i].devnum;
2124 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2125 atomic_inc(&r10_bio->remaining);
2126 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2127
2128 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2129 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2130 generic_make_request(tbio);
2131 }
2132
2133 /* Now write out to any replacement devices
2134 * that are active
2135 */
2136 for (i = 0; i < conf->copies; i++) {
2137 int j, d;
2138
2139 tbio = r10_bio->devs[i].repl_bio;
2140 if (!tbio || !tbio->bi_end_io)
2141 continue;
2142 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2143 && r10_bio->devs[i].bio != fbio)
2144 for (j = 0; j < vcnt; j++)
2145 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2146 page_address(fbio->bi_io_vec[j].bv_page),
2147 PAGE_SIZE);
2148 d = r10_bio->devs[i].devnum;
2149 atomic_inc(&r10_bio->remaining);
2150 md_sync_acct(conf->mirrors[d].replacement->bdev,
2151 bio_sectors(tbio));
2152 generic_make_request(tbio);
2153 }
2154
2155 done:
2156 if (atomic_dec_and_test(&r10_bio->remaining)) {
2157 md_done_sync(mddev, r10_bio->sectors, 1);
2158 put_buf(r10_bio);
2159 }
2160 }
2161
2162 /*
2163 * Now for the recovery code.
2164 * Recovery happens across physical sectors.
2165 * We recover all non-is_sync drives by finding the virtual address of
2166 * each, and then choose a working drive that also has that virt address.
2167 * There is a separate r10_bio for each non-in_sync drive.
2168 * Only the first two slots are in use. The first for reading,
2169 * The second for writing.
2170 *
2171 */
2172 static void fix_recovery_read_error(struct r10bio *r10_bio)
2173 {
2174 /* We got a read error during recovery.
2175 * We repeat the read in smaller page-sized sections.
2176 * If a read succeeds, write it to the new device or record
2177 * a bad block if we cannot.
2178 * If a read fails, record a bad block on both old and
2179 * new devices.
2180 */
2181 struct mddev *mddev = r10_bio->mddev;
2182 struct r10conf *conf = mddev->private;
2183 struct bio *bio = r10_bio->devs[0].bio;
2184 sector_t sect = 0;
2185 int sectors = r10_bio->sectors;
2186 int idx = 0;
2187 int dr = r10_bio->devs[0].devnum;
2188 int dw = r10_bio->devs[1].devnum;
2189
2190 while (sectors) {
2191 int s = sectors;
2192 struct md_rdev *rdev;
2193 sector_t addr;
2194 int ok;
2195
2196 if (s > (PAGE_SIZE>>9))
2197 s = PAGE_SIZE >> 9;
2198
2199 rdev = conf->mirrors[dr].rdev;
2200 addr = r10_bio->devs[0].addr + sect,
2201 ok = sync_page_io(rdev,
2202 addr,
2203 s << 9,
2204 bio->bi_io_vec[idx].bv_page,
2205 READ, false);
2206 if (ok) {
2207 rdev = conf->mirrors[dw].rdev;
2208 addr = r10_bio->devs[1].addr + sect;
2209 ok = sync_page_io(rdev,
2210 addr,
2211 s << 9,
2212 bio->bi_io_vec[idx].bv_page,
2213 WRITE, false);
2214 if (!ok) {
2215 set_bit(WriteErrorSeen, &rdev->flags);
2216 if (!test_and_set_bit(WantReplacement,
2217 &rdev->flags))
2218 set_bit(MD_RECOVERY_NEEDED,
2219 &rdev->mddev->recovery);
2220 }
2221 }
2222 if (!ok) {
2223 /* We don't worry if we cannot set a bad block -
2224 * it really is bad so there is no loss in not
2225 * recording it yet
2226 */
2227 rdev_set_badblocks(rdev, addr, s, 0);
2228
2229 if (rdev != conf->mirrors[dw].rdev) {
2230 /* need bad block on destination too */
2231 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2232 addr = r10_bio->devs[1].addr + sect;
2233 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2234 if (!ok) {
2235 /* just abort the recovery */
2236 printk(KERN_NOTICE
2237 "md/raid10:%s: recovery aborted"
2238 " due to read error\n",
2239 mdname(mddev));
2240
2241 conf->mirrors[dw].recovery_disabled
2242 = mddev->recovery_disabled;
2243 set_bit(MD_RECOVERY_INTR,
2244 &mddev->recovery);
2245 break;
2246 }
2247 }
2248 }
2249
2250 sectors -= s;
2251 sect += s;
2252 idx++;
2253 }
2254 }
2255
2256 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2257 {
2258 struct r10conf *conf = mddev->private;
2259 int d;
2260 struct bio *wbio, *wbio2;
2261
2262 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2263 fix_recovery_read_error(r10_bio);
2264 end_sync_request(r10_bio);
2265 return;
2266 }
2267
2268 /*
2269 * share the pages with the first bio
2270 * and submit the write request
2271 */
2272 d = r10_bio->devs[1].devnum;
2273 wbio = r10_bio->devs[1].bio;
2274 wbio2 = r10_bio->devs[1].repl_bio;
2275 /* Need to test wbio2->bi_end_io before we call
2276 * generic_make_request as if the former is NULL,
2277 * the latter is free to free wbio2.
2278 */
2279 if (wbio2 && !wbio2->bi_end_io)
2280 wbio2 = NULL;
2281 if (wbio->bi_end_io) {
2282 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2283 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2284 generic_make_request(wbio);
2285 }
2286 if (wbio2) {
2287 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2288 md_sync_acct(conf->mirrors[d].replacement->bdev,
2289 bio_sectors(wbio2));
2290 generic_make_request(wbio2);
2291 }
2292 }
2293
2294 /*
2295 * Used by fix_read_error() to decay the per rdev read_errors.
2296 * We halve the read error count for every hour that has elapsed
2297 * since the last recorded read error.
2298 *
2299 */
2300 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2301 {
2302 struct timespec cur_time_mon;
2303 unsigned long hours_since_last;
2304 unsigned int read_errors = atomic_read(&rdev->read_errors);
2305
2306 ktime_get_ts(&cur_time_mon);
2307
2308 if (rdev->last_read_error.tv_sec == 0 &&
2309 rdev->last_read_error.tv_nsec == 0) {
2310 /* first time we've seen a read error */
2311 rdev->last_read_error = cur_time_mon;
2312 return;
2313 }
2314
2315 hours_since_last = (cur_time_mon.tv_sec -
2316 rdev->last_read_error.tv_sec) / 3600;
2317
2318 rdev->last_read_error = cur_time_mon;
2319
2320 /*
2321 * if hours_since_last is > the number of bits in read_errors
2322 * just set read errors to 0. We do this to avoid
2323 * overflowing the shift of read_errors by hours_since_last.
2324 */
2325 if (hours_since_last >= 8 * sizeof(read_errors))
2326 atomic_set(&rdev->read_errors, 0);
2327 else
2328 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2329 }
2330
2331 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2332 int sectors, struct page *page, int rw)
2333 {
2334 sector_t first_bad;
2335 int bad_sectors;
2336
2337 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2338 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2339 return -1;
2340 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2341 /* success */
2342 return 1;
2343 if (rw == WRITE) {
2344 set_bit(WriteErrorSeen, &rdev->flags);
2345 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2346 set_bit(MD_RECOVERY_NEEDED,
2347 &rdev->mddev->recovery);
2348 }
2349 /* need to record an error - either for the block or the device */
2350 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2351 md_error(rdev->mddev, rdev);
2352 return 0;
2353 }
2354
2355 /*
2356 * This is a kernel thread which:
2357 *
2358 * 1. Retries failed read operations on working mirrors.
2359 * 2. Updates the raid superblock when problems encounter.
2360 * 3. Performs writes following reads for array synchronising.
2361 */
2362
2363 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2364 {
2365 int sect = 0; /* Offset from r10_bio->sector */
2366 int sectors = r10_bio->sectors;
2367 struct md_rdev*rdev;
2368 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2369 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2370
2371 /* still own a reference to this rdev, so it cannot
2372 * have been cleared recently.
2373 */
2374 rdev = conf->mirrors[d].rdev;
2375
2376 if (test_bit(Faulty, &rdev->flags))
2377 /* drive has already been failed, just ignore any
2378 more fix_read_error() attempts */
2379 return;
2380
2381 check_decay_read_errors(mddev, rdev);
2382 atomic_inc(&rdev->read_errors);
2383 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2384 char b[BDEVNAME_SIZE];
2385 bdevname(rdev->bdev, b);
2386
2387 printk(KERN_NOTICE
2388 "md/raid10:%s: %s: Raid device exceeded "
2389 "read_error threshold [cur %d:max %d]\n",
2390 mdname(mddev), b,
2391 atomic_read(&rdev->read_errors), max_read_errors);
2392 printk(KERN_NOTICE
2393 "md/raid10:%s: %s: Failing raid device\n",
2394 mdname(mddev), b);
2395 md_error(mddev, conf->mirrors[d].rdev);
2396 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2397 return;
2398 }
2399
2400 while(sectors) {
2401 int s = sectors;
2402 int sl = r10_bio->read_slot;
2403 int success = 0;
2404 int start;
2405
2406 if (s > (PAGE_SIZE>>9))
2407 s = PAGE_SIZE >> 9;
2408
2409 rcu_read_lock();
2410 do {
2411 sector_t first_bad;
2412 int bad_sectors;
2413
2414 d = r10_bio->devs[sl].devnum;
2415 rdev = rcu_dereference(conf->mirrors[d].rdev);
2416 if (rdev &&
2417 !test_bit(Unmerged, &rdev->flags) &&
2418 test_bit(In_sync, &rdev->flags) &&
2419 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2420 &first_bad, &bad_sectors) == 0) {
2421 atomic_inc(&rdev->nr_pending);
2422 rcu_read_unlock();
2423 success = sync_page_io(rdev,
2424 r10_bio->devs[sl].addr +
2425 sect,
2426 s<<9,
2427 conf->tmppage, READ, false);
2428 rdev_dec_pending(rdev, mddev);
2429 rcu_read_lock();
2430 if (success)
2431 break;
2432 }
2433 sl++;
2434 if (sl == conf->copies)
2435 sl = 0;
2436 } while (!success && sl != r10_bio->read_slot);
2437 rcu_read_unlock();
2438
2439 if (!success) {
2440 /* Cannot read from anywhere, just mark the block
2441 * as bad on the first device to discourage future
2442 * reads.
2443 */
2444 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445 rdev = conf->mirrors[dn].rdev;
2446
2447 if (!rdev_set_badblocks(
2448 rdev,
2449 r10_bio->devs[r10_bio->read_slot].addr
2450 + sect,
2451 s, 0)) {
2452 md_error(mddev, rdev);
2453 r10_bio->devs[r10_bio->read_slot].bio
2454 = IO_BLOCKED;
2455 }
2456 break;
2457 }
2458
2459 start = sl;
2460 /* write it back and re-read */
2461 rcu_read_lock();
2462 while (sl != r10_bio->read_slot) {
2463 char b[BDEVNAME_SIZE];
2464
2465 if (sl==0)
2466 sl = conf->copies;
2467 sl--;
2468 d = r10_bio->devs[sl].devnum;
2469 rdev = rcu_dereference(conf->mirrors[d].rdev);
2470 if (!rdev ||
2471 test_bit(Unmerged, &rdev->flags) ||
2472 !test_bit(In_sync, &rdev->flags))
2473 continue;
2474
2475 atomic_inc(&rdev->nr_pending);
2476 rcu_read_unlock();
2477 if (r10_sync_page_io(rdev,
2478 r10_bio->devs[sl].addr +
2479 sect,
2480 s, conf->tmppage, WRITE)
2481 == 0) {
2482 /* Well, this device is dead */
2483 printk(KERN_NOTICE
2484 "md/raid10:%s: read correction "
2485 "write failed"
2486 " (%d sectors at %llu on %s)\n",
2487 mdname(mddev), s,
2488 (unsigned long long)(
2489 sect +
2490 choose_data_offset(r10_bio,
2491 rdev)),
2492 bdevname(rdev->bdev, b));
2493 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2494 "drive\n",
2495 mdname(mddev),
2496 bdevname(rdev->bdev, b));
2497 }
2498 rdev_dec_pending(rdev, mddev);
2499 rcu_read_lock();
2500 }
2501 sl = start;
2502 while (sl != r10_bio->read_slot) {
2503 char b[BDEVNAME_SIZE];
2504
2505 if (sl==0)
2506 sl = conf->copies;
2507 sl--;
2508 d = r10_bio->devs[sl].devnum;
2509 rdev = rcu_dereference(conf->mirrors[d].rdev);
2510 if (!rdev ||
2511 !test_bit(In_sync, &rdev->flags))
2512 continue;
2513
2514 atomic_inc(&rdev->nr_pending);
2515 rcu_read_unlock();
2516 switch (r10_sync_page_io(rdev,
2517 r10_bio->devs[sl].addr +
2518 sect,
2519 s, conf->tmppage,
2520 READ)) {
2521 case 0:
2522 /* Well, this device is dead */
2523 printk(KERN_NOTICE
2524 "md/raid10:%s: unable to read back "
2525 "corrected sectors"
2526 " (%d sectors at %llu on %s)\n",
2527 mdname(mddev), s,
2528 (unsigned long long)(
2529 sect +
2530 choose_data_offset(r10_bio, rdev)),
2531 bdevname(rdev->bdev, b));
2532 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2533 "drive\n",
2534 mdname(mddev),
2535 bdevname(rdev->bdev, b));
2536 break;
2537 case 1:
2538 printk(KERN_INFO
2539 "md/raid10:%s: read error corrected"
2540 " (%d sectors at %llu on %s)\n",
2541 mdname(mddev), s,
2542 (unsigned long long)(
2543 sect +
2544 choose_data_offset(r10_bio, rdev)),
2545 bdevname(rdev->bdev, b));
2546 atomic_add(s, &rdev->corrected_errors);
2547 }
2548
2549 rdev_dec_pending(rdev, mddev);
2550 rcu_read_lock();
2551 }
2552 rcu_read_unlock();
2553
2554 sectors -= s;
2555 sect += s;
2556 }
2557 }
2558
2559 static int narrow_write_error(struct r10bio *r10_bio, int i)
2560 {
2561 struct bio *bio = r10_bio->master_bio;
2562 struct mddev *mddev = r10_bio->mddev;
2563 struct r10conf *conf = mddev->private;
2564 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2565 /* bio has the data to be written to slot 'i' where
2566 * we just recently had a write error.
2567 * We repeatedly clone the bio and trim down to one block,
2568 * then try the write. Where the write fails we record
2569 * a bad block.
2570 * It is conceivable that the bio doesn't exactly align with
2571 * blocks. We must handle this.
2572 *
2573 * We currently own a reference to the rdev.
2574 */
2575
2576 int block_sectors;
2577 sector_t sector;
2578 int sectors;
2579 int sect_to_write = r10_bio->sectors;
2580 int ok = 1;
2581
2582 if (rdev->badblocks.shift < 0)
2583 return 0;
2584
2585 block_sectors = 1 << rdev->badblocks.shift;
2586 sector = r10_bio->sector;
2587 sectors = ((r10_bio->sector + block_sectors)
2588 & ~(sector_t)(block_sectors - 1))
2589 - sector;
2590
2591 while (sect_to_write) {
2592 struct bio *wbio;
2593 if (sectors > sect_to_write)
2594 sectors = sect_to_write;
2595 /* Write at 'sector' for 'sectors' */
2596 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2597 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2598 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2599 choose_data_offset(r10_bio, rdev) +
2600 (sector - r10_bio->sector));
2601 wbio->bi_bdev = rdev->bdev;
2602 if (submit_bio_wait(WRITE, wbio) == 0)
2603 /* Failure! */
2604 ok = rdev_set_badblocks(rdev, sector,
2605 sectors, 0)
2606 && ok;
2607
2608 bio_put(wbio);
2609 sect_to_write -= sectors;
2610 sector += sectors;
2611 sectors = block_sectors;
2612 }
2613 return ok;
2614 }
2615
2616 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2617 {
2618 int slot = r10_bio->read_slot;
2619 struct bio *bio;
2620 struct r10conf *conf = mddev->private;
2621 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2622 char b[BDEVNAME_SIZE];
2623 unsigned long do_sync;
2624 int max_sectors;
2625
2626 /* we got a read error. Maybe the drive is bad. Maybe just
2627 * the block and we can fix it.
2628 * We freeze all other IO, and try reading the block from
2629 * other devices. When we find one, we re-write
2630 * and check it that fixes the read error.
2631 * This is all done synchronously while the array is
2632 * frozen.
2633 */
2634 bio = r10_bio->devs[slot].bio;
2635 bdevname(bio->bi_bdev, b);
2636 bio_put(bio);
2637 r10_bio->devs[slot].bio = NULL;
2638
2639 if (mddev->ro == 0) {
2640 freeze_array(conf, 1);
2641 fix_read_error(conf, mddev, r10_bio);
2642 unfreeze_array(conf);
2643 } else
2644 r10_bio->devs[slot].bio = IO_BLOCKED;
2645
2646 rdev_dec_pending(rdev, mddev);
2647
2648 read_more:
2649 rdev = read_balance(conf, r10_bio, &max_sectors);
2650 if (rdev == NULL) {
2651 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2652 " read error for block %llu\n",
2653 mdname(mddev), b,
2654 (unsigned long long)r10_bio->sector);
2655 raid_end_bio_io(r10_bio);
2656 return;
2657 }
2658
2659 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2660 slot = r10_bio->read_slot;
2661 printk_ratelimited(
2662 KERN_ERR
2663 "md/raid10:%s: %s: redirecting "
2664 "sector %llu to another mirror\n",
2665 mdname(mddev),
2666 bdevname(rdev->bdev, b),
2667 (unsigned long long)r10_bio->sector);
2668 bio = bio_clone_mddev(r10_bio->master_bio,
2669 GFP_NOIO, mddev);
2670 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2671 r10_bio->devs[slot].bio = bio;
2672 r10_bio->devs[slot].rdev = rdev;
2673 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2674 + choose_data_offset(r10_bio, rdev);
2675 bio->bi_bdev = rdev->bdev;
2676 bio->bi_rw = READ | do_sync;
2677 bio->bi_private = r10_bio;
2678 bio->bi_end_io = raid10_end_read_request;
2679 if (max_sectors < r10_bio->sectors) {
2680 /* Drat - have to split this up more */
2681 struct bio *mbio = r10_bio->master_bio;
2682 int sectors_handled =
2683 r10_bio->sector + max_sectors
2684 - mbio->bi_iter.bi_sector;
2685 r10_bio->sectors = max_sectors;
2686 spin_lock_irq(&conf->device_lock);
2687 if (mbio->bi_phys_segments == 0)
2688 mbio->bi_phys_segments = 2;
2689 else
2690 mbio->bi_phys_segments++;
2691 spin_unlock_irq(&conf->device_lock);
2692 generic_make_request(bio);
2693
2694 r10_bio = mempool_alloc(conf->r10bio_pool,
2695 GFP_NOIO);
2696 r10_bio->master_bio = mbio;
2697 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2698 r10_bio->state = 0;
2699 set_bit(R10BIO_ReadError,
2700 &r10_bio->state);
2701 r10_bio->mddev = mddev;
2702 r10_bio->sector = mbio->bi_iter.bi_sector
2703 + sectors_handled;
2704
2705 goto read_more;
2706 } else
2707 generic_make_request(bio);
2708 }
2709
2710 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2711 {
2712 /* Some sort of write request has finished and it
2713 * succeeded in writing where we thought there was a
2714 * bad block. So forget the bad block.
2715 * Or possibly if failed and we need to record
2716 * a bad block.
2717 */
2718 int m;
2719 struct md_rdev *rdev;
2720
2721 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2722 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2723 for (m = 0; m < conf->copies; m++) {
2724 int dev = r10_bio->devs[m].devnum;
2725 rdev = conf->mirrors[dev].rdev;
2726 if (r10_bio->devs[m].bio == NULL)
2727 continue;
2728 if (test_bit(BIO_UPTODATE,
2729 &r10_bio->devs[m].bio->bi_flags)) {
2730 rdev_clear_badblocks(
2731 rdev,
2732 r10_bio->devs[m].addr,
2733 r10_bio->sectors, 0);
2734 } else {
2735 if (!rdev_set_badblocks(
2736 rdev,
2737 r10_bio->devs[m].addr,
2738 r10_bio->sectors, 0))
2739 md_error(conf->mddev, rdev);
2740 }
2741 rdev = conf->mirrors[dev].replacement;
2742 if (r10_bio->devs[m].repl_bio == NULL)
2743 continue;
2744 if (test_bit(BIO_UPTODATE,
2745 &r10_bio->devs[m].repl_bio->bi_flags)) {
2746 rdev_clear_badblocks(
2747 rdev,
2748 r10_bio->devs[m].addr,
2749 r10_bio->sectors, 0);
2750 } else {
2751 if (!rdev_set_badblocks(
2752 rdev,
2753 r10_bio->devs[m].addr,
2754 r10_bio->sectors, 0))
2755 md_error(conf->mddev, rdev);
2756 }
2757 }
2758 put_buf(r10_bio);
2759 } else {
2760 for (m = 0; m < conf->copies; m++) {
2761 int dev = r10_bio->devs[m].devnum;
2762 struct bio *bio = r10_bio->devs[m].bio;
2763 rdev = conf->mirrors[dev].rdev;
2764 if (bio == IO_MADE_GOOD) {
2765 rdev_clear_badblocks(
2766 rdev,
2767 r10_bio->devs[m].addr,
2768 r10_bio->sectors, 0);
2769 rdev_dec_pending(rdev, conf->mddev);
2770 } else if (bio != NULL &&
2771 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2772 if (!narrow_write_error(r10_bio, m)) {
2773 md_error(conf->mddev, rdev);
2774 set_bit(R10BIO_Degraded,
2775 &r10_bio->state);
2776 }
2777 rdev_dec_pending(rdev, conf->mddev);
2778 }
2779 bio = r10_bio->devs[m].repl_bio;
2780 rdev = conf->mirrors[dev].replacement;
2781 if (rdev && bio == IO_MADE_GOOD) {
2782 rdev_clear_badblocks(
2783 rdev,
2784 r10_bio->devs[m].addr,
2785 r10_bio->sectors, 0);
2786 rdev_dec_pending(rdev, conf->mddev);
2787 }
2788 }
2789 if (test_bit(R10BIO_WriteError,
2790 &r10_bio->state))
2791 close_write(r10_bio);
2792 raid_end_bio_io(r10_bio);
2793 }
2794 }
2795
2796 static void raid10d(struct md_thread *thread)
2797 {
2798 struct mddev *mddev = thread->mddev;
2799 struct r10bio *r10_bio;
2800 unsigned long flags;
2801 struct r10conf *conf = mddev->private;
2802 struct list_head *head = &conf->retry_list;
2803 struct blk_plug plug;
2804
2805 md_check_recovery(mddev);
2806
2807 blk_start_plug(&plug);
2808 for (;;) {
2809
2810 flush_pending_writes(conf);
2811
2812 spin_lock_irqsave(&conf->device_lock, flags);
2813 if (list_empty(head)) {
2814 spin_unlock_irqrestore(&conf->device_lock, flags);
2815 break;
2816 }
2817 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2818 list_del(head->prev);
2819 conf->nr_queued--;
2820 spin_unlock_irqrestore(&conf->device_lock, flags);
2821
2822 mddev = r10_bio->mddev;
2823 conf = mddev->private;
2824 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2825 test_bit(R10BIO_WriteError, &r10_bio->state))
2826 handle_write_completed(conf, r10_bio);
2827 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2828 reshape_request_write(mddev, r10_bio);
2829 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2830 sync_request_write(mddev, r10_bio);
2831 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2832 recovery_request_write(mddev, r10_bio);
2833 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2834 handle_read_error(mddev, r10_bio);
2835 else {
2836 /* just a partial read to be scheduled from a
2837 * separate context
2838 */
2839 int slot = r10_bio->read_slot;
2840 generic_make_request(r10_bio->devs[slot].bio);
2841 }
2842
2843 cond_resched();
2844 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2845 md_check_recovery(mddev);
2846 }
2847 blk_finish_plug(&plug);
2848 }
2849
2850 static int init_resync(struct r10conf *conf)
2851 {
2852 int buffs;
2853 int i;
2854
2855 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2856 BUG_ON(conf->r10buf_pool);
2857 conf->have_replacement = 0;
2858 for (i = 0; i < conf->geo.raid_disks; i++)
2859 if (conf->mirrors[i].replacement)
2860 conf->have_replacement = 1;
2861 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2862 if (!conf->r10buf_pool)
2863 return -ENOMEM;
2864 conf->next_resync = 0;
2865 return 0;
2866 }
2867
2868 /*
2869 * perform a "sync" on one "block"
2870 *
2871 * We need to make sure that no normal I/O request - particularly write
2872 * requests - conflict with active sync requests.
2873 *
2874 * This is achieved by tracking pending requests and a 'barrier' concept
2875 * that can be installed to exclude normal IO requests.
2876 *
2877 * Resync and recovery are handled very differently.
2878 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2879 *
2880 * For resync, we iterate over virtual addresses, read all copies,
2881 * and update if there are differences. If only one copy is live,
2882 * skip it.
2883 * For recovery, we iterate over physical addresses, read a good
2884 * value for each non-in_sync drive, and over-write.
2885 *
2886 * So, for recovery we may have several outstanding complex requests for a
2887 * given address, one for each out-of-sync device. We model this by allocating
2888 * a number of r10_bio structures, one for each out-of-sync device.
2889 * As we setup these structures, we collect all bio's together into a list
2890 * which we then process collectively to add pages, and then process again
2891 * to pass to generic_make_request.
2892 *
2893 * The r10_bio structures are linked using a borrowed master_bio pointer.
2894 * This link is counted in ->remaining. When the r10_bio that points to NULL
2895 * has its remaining count decremented to 0, the whole complex operation
2896 * is complete.
2897 *
2898 */
2899
2900 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2901 int *skipped, int go_faster)
2902 {
2903 struct r10conf *conf = mddev->private;
2904 struct r10bio *r10_bio;
2905 struct bio *biolist = NULL, *bio;
2906 sector_t max_sector, nr_sectors;
2907 int i;
2908 int max_sync;
2909 sector_t sync_blocks;
2910 sector_t sectors_skipped = 0;
2911 int chunks_skipped = 0;
2912 sector_t chunk_mask = conf->geo.chunk_mask;
2913
2914 if (!conf->r10buf_pool)
2915 if (init_resync(conf))
2916 return 0;
2917
2918 /*
2919 * Allow skipping a full rebuild for incremental assembly
2920 * of a clean array, like RAID1 does.
2921 */
2922 if (mddev->bitmap == NULL &&
2923 mddev->recovery_cp == MaxSector &&
2924 mddev->reshape_position == MaxSector &&
2925 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2926 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2927 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2928 conf->fullsync == 0) {
2929 *skipped = 1;
2930 return mddev->dev_sectors - sector_nr;
2931 }
2932
2933 skipped:
2934 max_sector = mddev->dev_sectors;
2935 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2936 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2937 max_sector = mddev->resync_max_sectors;
2938 if (sector_nr >= max_sector) {
2939 /* If we aborted, we need to abort the
2940 * sync on the 'current' bitmap chucks (there can
2941 * be several when recovering multiple devices).
2942 * as we may have started syncing it but not finished.
2943 * We can find the current address in
2944 * mddev->curr_resync, but for recovery,
2945 * we need to convert that to several
2946 * virtual addresses.
2947 */
2948 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2949 end_reshape(conf);
2950 close_sync(conf);
2951 return 0;
2952 }
2953
2954 if (mddev->curr_resync < max_sector) { /* aborted */
2955 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2956 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2957 &sync_blocks, 1);
2958 else for (i = 0; i < conf->geo.raid_disks; i++) {
2959 sector_t sect =
2960 raid10_find_virt(conf, mddev->curr_resync, i);
2961 bitmap_end_sync(mddev->bitmap, sect,
2962 &sync_blocks, 1);
2963 }
2964 } else {
2965 /* completed sync */
2966 if ((!mddev->bitmap || conf->fullsync)
2967 && conf->have_replacement
2968 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2969 /* Completed a full sync so the replacements
2970 * are now fully recovered.
2971 */
2972 for (i = 0; i < conf->geo.raid_disks; i++)
2973 if (conf->mirrors[i].replacement)
2974 conf->mirrors[i].replacement
2975 ->recovery_offset
2976 = MaxSector;
2977 }
2978 conf->fullsync = 0;
2979 }
2980 bitmap_close_sync(mddev->bitmap);
2981 close_sync(conf);
2982 *skipped = 1;
2983 return sectors_skipped;
2984 }
2985
2986 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2987 return reshape_request(mddev, sector_nr, skipped);
2988
2989 if (chunks_skipped >= conf->geo.raid_disks) {
2990 /* if there has been nothing to do on any drive,
2991 * then there is nothing to do at all..
2992 */
2993 *skipped = 1;
2994 return (max_sector - sector_nr) + sectors_skipped;
2995 }
2996
2997 if (max_sector > mddev->resync_max)
2998 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2999
3000 /* make sure whole request will fit in a chunk - if chunks
3001 * are meaningful
3002 */
3003 if (conf->geo.near_copies < conf->geo.raid_disks &&
3004 max_sector > (sector_nr | chunk_mask))
3005 max_sector = (sector_nr | chunk_mask) + 1;
3006 /*
3007 * If there is non-resync activity waiting for us then
3008 * put in a delay to throttle resync.
3009 */
3010 if (!go_faster && conf->nr_waiting)
3011 msleep_interruptible(1000);
3012
3013 /* Again, very different code for resync and recovery.
3014 * Both must result in an r10bio with a list of bios that
3015 * have bi_end_io, bi_sector, bi_bdev set,
3016 * and bi_private set to the r10bio.
3017 * For recovery, we may actually create several r10bios
3018 * with 2 bios in each, that correspond to the bios in the main one.
3019 * In this case, the subordinate r10bios link back through a
3020 * borrowed master_bio pointer, and the counter in the master
3021 * includes a ref from each subordinate.
3022 */
3023 /* First, we decide what to do and set ->bi_end_io
3024 * To end_sync_read if we want to read, and
3025 * end_sync_write if we will want to write.
3026 */
3027
3028 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3029 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3030 /* recovery... the complicated one */
3031 int j;
3032 r10_bio = NULL;
3033
3034 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3035 int still_degraded;
3036 struct r10bio *rb2;
3037 sector_t sect;
3038 int must_sync;
3039 int any_working;
3040 struct raid10_info *mirror = &conf->mirrors[i];
3041
3042 if ((mirror->rdev == NULL ||
3043 test_bit(In_sync, &mirror->rdev->flags))
3044 &&
3045 (mirror->replacement == NULL ||
3046 test_bit(Faulty,
3047 &mirror->replacement->flags)))
3048 continue;
3049
3050 still_degraded = 0;
3051 /* want to reconstruct this device */
3052 rb2 = r10_bio;
3053 sect = raid10_find_virt(conf, sector_nr, i);
3054 if (sect >= mddev->resync_max_sectors) {
3055 /* last stripe is not complete - don't
3056 * try to recover this sector.
3057 */
3058 continue;
3059 }
3060 /* Unless we are doing a full sync, or a replacement
3061 * we only need to recover the block if it is set in
3062 * the bitmap
3063 */
3064 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3065 &sync_blocks, 1);
3066 if (sync_blocks < max_sync)
3067 max_sync = sync_blocks;
3068 if (!must_sync &&
3069 mirror->replacement == NULL &&
3070 !conf->fullsync) {
3071 /* yep, skip the sync_blocks here, but don't assume
3072 * that there will never be anything to do here
3073 */
3074 chunks_skipped = -1;
3075 continue;
3076 }
3077
3078 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3079 r10_bio->state = 0;
3080 raise_barrier(conf, rb2 != NULL);
3081 atomic_set(&r10_bio->remaining, 0);
3082
3083 r10_bio->master_bio = (struct bio*)rb2;
3084 if (rb2)
3085 atomic_inc(&rb2->remaining);
3086 r10_bio->mddev = mddev;
3087 set_bit(R10BIO_IsRecover, &r10_bio->state);
3088 r10_bio->sector = sect;
3089
3090 raid10_find_phys(conf, r10_bio);
3091
3092 /* Need to check if the array will still be
3093 * degraded
3094 */
3095 for (j = 0; j < conf->geo.raid_disks; j++)
3096 if (conf->mirrors[j].rdev == NULL ||
3097 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3098 still_degraded = 1;
3099 break;
3100 }
3101
3102 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3103 &sync_blocks, still_degraded);
3104
3105 any_working = 0;
3106 for (j=0; j<conf->copies;j++) {
3107 int k;
3108 int d = r10_bio->devs[j].devnum;
3109 sector_t from_addr, to_addr;
3110 struct md_rdev *rdev;
3111 sector_t sector, first_bad;
3112 int bad_sectors;
3113 if (!conf->mirrors[d].rdev ||
3114 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3115 continue;
3116 /* This is where we read from */
3117 any_working = 1;
3118 rdev = conf->mirrors[d].rdev;
3119 sector = r10_bio->devs[j].addr;
3120
3121 if (is_badblock(rdev, sector, max_sync,
3122 &first_bad, &bad_sectors)) {
3123 if (first_bad > sector)
3124 max_sync = first_bad - sector;
3125 else {
3126 bad_sectors -= (sector
3127 - first_bad);
3128 if (max_sync > bad_sectors)
3129 max_sync = bad_sectors;
3130 continue;
3131 }
3132 }
3133 bio = r10_bio->devs[0].bio;
3134 bio_reset(bio);
3135 bio->bi_next = biolist;
3136 biolist = bio;
3137 bio->bi_private = r10_bio;
3138 bio->bi_end_io = end_sync_read;
3139 bio->bi_rw = READ;
3140 from_addr = r10_bio->devs[j].addr;
3141 bio->bi_iter.bi_sector = from_addr +
3142 rdev->data_offset;
3143 bio->bi_bdev = rdev->bdev;
3144 atomic_inc(&rdev->nr_pending);
3145 /* and we write to 'i' (if not in_sync) */
3146
3147 for (k=0; k<conf->copies; k++)
3148 if (r10_bio->devs[k].devnum == i)
3149 break;
3150 BUG_ON(k == conf->copies);
3151 to_addr = r10_bio->devs[k].addr;
3152 r10_bio->devs[0].devnum = d;
3153 r10_bio->devs[0].addr = from_addr;
3154 r10_bio->devs[1].devnum = i;
3155 r10_bio->devs[1].addr = to_addr;
3156
3157 rdev = mirror->rdev;
3158 if (!test_bit(In_sync, &rdev->flags)) {
3159 bio = r10_bio->devs[1].bio;
3160 bio_reset(bio);
3161 bio->bi_next = biolist;
3162 biolist = bio;
3163 bio->bi_private = r10_bio;
3164 bio->bi_end_io = end_sync_write;
3165 bio->bi_rw = WRITE;
3166 bio->bi_iter.bi_sector = to_addr
3167 + rdev->data_offset;
3168 bio->bi_bdev = rdev->bdev;
3169 atomic_inc(&r10_bio->remaining);
3170 } else
3171 r10_bio->devs[1].bio->bi_end_io = NULL;
3172
3173 /* and maybe write to replacement */
3174 bio = r10_bio->devs[1].repl_bio;
3175 if (bio)
3176 bio->bi_end_io = NULL;
3177 rdev = mirror->replacement;
3178 /* Note: if rdev != NULL, then bio
3179 * cannot be NULL as r10buf_pool_alloc will
3180 * have allocated it.
3181 * So the second test here is pointless.
3182 * But it keeps semantic-checkers happy, and
3183 * this comment keeps human reviewers
3184 * happy.
3185 */
3186 if (rdev == NULL || bio == NULL ||
3187 test_bit(Faulty, &rdev->flags))
3188 break;
3189 bio_reset(bio);
3190 bio->bi_next = biolist;
3191 biolist = bio;
3192 bio->bi_private = r10_bio;
3193 bio->bi_end_io = end_sync_write;
3194 bio->bi_rw = WRITE;
3195 bio->bi_iter.bi_sector = to_addr +
3196 rdev->data_offset;
3197 bio->bi_bdev = rdev->bdev;
3198 atomic_inc(&r10_bio->remaining);
3199 break;
3200 }
3201 if (j == conf->copies) {
3202 /* Cannot recover, so abort the recovery or
3203 * record a bad block */
3204 if (any_working) {
3205 /* problem is that there are bad blocks
3206 * on other device(s)
3207 */
3208 int k;
3209 for (k = 0; k < conf->copies; k++)
3210 if (r10_bio->devs[k].devnum == i)
3211 break;
3212 if (!test_bit(In_sync,
3213 &mirror->rdev->flags)
3214 && !rdev_set_badblocks(
3215 mirror->rdev,
3216 r10_bio->devs[k].addr,
3217 max_sync, 0))
3218 any_working = 0;
3219 if (mirror->replacement &&
3220 !rdev_set_badblocks(
3221 mirror->replacement,
3222 r10_bio->devs[k].addr,
3223 max_sync, 0))
3224 any_working = 0;
3225 }
3226 if (!any_working) {
3227 if (!test_and_set_bit(MD_RECOVERY_INTR,
3228 &mddev->recovery))
3229 printk(KERN_INFO "md/raid10:%s: insufficient "
3230 "working devices for recovery.\n",
3231 mdname(mddev));
3232 mirror->recovery_disabled
3233 = mddev->recovery_disabled;
3234 }
3235 put_buf(r10_bio);
3236 if (rb2)
3237 atomic_dec(&rb2->remaining);
3238 r10_bio = rb2;
3239 break;
3240 }
3241 }
3242 if (biolist == NULL) {
3243 while (r10_bio) {
3244 struct r10bio *rb2 = r10_bio;
3245 r10_bio = (struct r10bio*) rb2->master_bio;
3246 rb2->master_bio = NULL;
3247 put_buf(rb2);
3248 }
3249 goto giveup;
3250 }
3251 } else {
3252 /* resync. Schedule a read for every block at this virt offset */
3253 int count = 0;
3254
3255 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3256
3257 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3258 &sync_blocks, mddev->degraded) &&
3259 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3260 &mddev->recovery)) {
3261 /* We can skip this block */
3262 *skipped = 1;
3263 return sync_blocks + sectors_skipped;
3264 }
3265 if (sync_blocks < max_sync)
3266 max_sync = sync_blocks;
3267 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3268 r10_bio->state = 0;
3269
3270 r10_bio->mddev = mddev;
3271 atomic_set(&r10_bio->remaining, 0);
3272 raise_barrier(conf, 0);
3273 conf->next_resync = sector_nr;
3274
3275 r10_bio->master_bio = NULL;
3276 r10_bio->sector = sector_nr;
3277 set_bit(R10BIO_IsSync, &r10_bio->state);
3278 raid10_find_phys(conf, r10_bio);
3279 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3280
3281 for (i = 0; i < conf->copies; i++) {
3282 int d = r10_bio->devs[i].devnum;
3283 sector_t first_bad, sector;
3284 int bad_sectors;
3285
3286 if (r10_bio->devs[i].repl_bio)
3287 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3288
3289 bio = r10_bio->devs[i].bio;
3290 bio_reset(bio);
3291 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3292 if (conf->mirrors[d].rdev == NULL ||
3293 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3294 continue;
3295 sector = r10_bio->devs[i].addr;
3296 if (is_badblock(conf->mirrors[d].rdev,
3297 sector, max_sync,
3298 &first_bad, &bad_sectors)) {
3299 if (first_bad > sector)
3300 max_sync = first_bad - sector;
3301 else {
3302 bad_sectors -= (sector - first_bad);
3303 if (max_sync > bad_sectors)
3304 max_sync = bad_sectors;
3305 continue;
3306 }
3307 }
3308 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3309 atomic_inc(&r10_bio->remaining);
3310 bio->bi_next = biolist;
3311 biolist = bio;
3312 bio->bi_private = r10_bio;
3313 bio->bi_end_io = end_sync_read;
3314 bio->bi_rw = READ;
3315 bio->bi_iter.bi_sector = sector +
3316 conf->mirrors[d].rdev->data_offset;
3317 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3318 count++;
3319
3320 if (conf->mirrors[d].replacement == NULL ||
3321 test_bit(Faulty,
3322 &conf->mirrors[d].replacement->flags))
3323 continue;
3324
3325 /* Need to set up for writing to the replacement */
3326 bio = r10_bio->devs[i].repl_bio;
3327 bio_reset(bio);
3328 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3329
3330 sector = r10_bio->devs[i].addr;
3331 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3332 bio->bi_next = biolist;
3333 biolist = bio;
3334 bio->bi_private = r10_bio;
3335 bio->bi_end_io = end_sync_write;
3336 bio->bi_rw = WRITE;
3337 bio->bi_iter.bi_sector = sector +
3338 conf->mirrors[d].replacement->data_offset;
3339 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3340 count++;
3341 }
3342
3343 if (count < 2) {
3344 for (i=0; i<conf->copies; i++) {
3345 int d = r10_bio->devs[i].devnum;
3346 if (r10_bio->devs[i].bio->bi_end_io)
3347 rdev_dec_pending(conf->mirrors[d].rdev,
3348 mddev);
3349 if (r10_bio->devs[i].repl_bio &&
3350 r10_bio->devs[i].repl_bio->bi_end_io)
3351 rdev_dec_pending(
3352 conf->mirrors[d].replacement,
3353 mddev);
3354 }
3355 put_buf(r10_bio);
3356 biolist = NULL;
3357 goto giveup;
3358 }
3359 }
3360
3361 nr_sectors = 0;
3362 if (sector_nr + max_sync < max_sector)
3363 max_sector = sector_nr + max_sync;
3364 do {
3365 struct page *page;
3366 int len = PAGE_SIZE;
3367 if (sector_nr + (len>>9) > max_sector)
3368 len = (max_sector - sector_nr) << 9;
3369 if (len == 0)
3370 break;
3371 for (bio= biolist ; bio ; bio=bio->bi_next) {
3372 struct bio *bio2;
3373 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3374 if (bio_add_page(bio, page, len, 0))
3375 continue;
3376
3377 /* stop here */
3378 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3379 for (bio2 = biolist;
3380 bio2 && bio2 != bio;
3381 bio2 = bio2->bi_next) {
3382 /* remove last page from this bio */
3383 bio2->bi_vcnt--;
3384 bio2->bi_iter.bi_size -= len;
3385 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3386 }
3387 goto bio_full;
3388 }
3389 nr_sectors += len>>9;
3390 sector_nr += len>>9;
3391 } while (biolist->bi_vcnt < RESYNC_PAGES);
3392 bio_full:
3393 r10_bio->sectors = nr_sectors;
3394
3395 while (biolist) {
3396 bio = biolist;
3397 biolist = biolist->bi_next;
3398
3399 bio->bi_next = NULL;
3400 r10_bio = bio->bi_private;
3401 r10_bio->sectors = nr_sectors;
3402
3403 if (bio->bi_end_io == end_sync_read) {
3404 md_sync_acct(bio->bi_bdev, nr_sectors);
3405 set_bit(BIO_UPTODATE, &bio->bi_flags);
3406 generic_make_request(bio);
3407 }
3408 }
3409
3410 if (sectors_skipped)
3411 /* pretend they weren't skipped, it makes
3412 * no important difference in this case
3413 */
3414 md_done_sync(mddev, sectors_skipped, 1);
3415
3416 return sectors_skipped + nr_sectors;
3417 giveup:
3418 /* There is nowhere to write, so all non-sync
3419 * drives must be failed or in resync, all drives
3420 * have a bad block, so try the next chunk...
3421 */
3422 if (sector_nr + max_sync < max_sector)
3423 max_sector = sector_nr + max_sync;
3424
3425 sectors_skipped += (max_sector - sector_nr);
3426 chunks_skipped ++;
3427 sector_nr = max_sector;
3428 goto skipped;
3429 }
3430
3431 static sector_t
3432 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3433 {
3434 sector_t size;
3435 struct r10conf *conf = mddev->private;
3436
3437 if (!raid_disks)
3438 raid_disks = min(conf->geo.raid_disks,
3439 conf->prev.raid_disks);
3440 if (!sectors)
3441 sectors = conf->dev_sectors;
3442
3443 size = sectors >> conf->geo.chunk_shift;
3444 sector_div(size, conf->geo.far_copies);
3445 size = size * raid_disks;
3446 sector_div(size, conf->geo.near_copies);
3447
3448 return size << conf->geo.chunk_shift;
3449 }
3450
3451 static void calc_sectors(struct r10conf *conf, sector_t size)
3452 {
3453 /* Calculate the number of sectors-per-device that will
3454 * actually be used, and set conf->dev_sectors and
3455 * conf->stride
3456 */
3457
3458 size = size >> conf->geo.chunk_shift;
3459 sector_div(size, conf->geo.far_copies);
3460 size = size * conf->geo.raid_disks;
3461 sector_div(size, conf->geo.near_copies);
3462 /* 'size' is now the number of chunks in the array */
3463 /* calculate "used chunks per device" */
3464 size = size * conf->copies;
3465
3466 /* We need to round up when dividing by raid_disks to
3467 * get the stride size.
3468 */
3469 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3470
3471 conf->dev_sectors = size << conf->geo.chunk_shift;
3472
3473 if (conf->geo.far_offset)
3474 conf->geo.stride = 1 << conf->geo.chunk_shift;
3475 else {
3476 sector_div(size, conf->geo.far_copies);
3477 conf->geo.stride = size << conf->geo.chunk_shift;
3478 }
3479 }
3480
3481 enum geo_type {geo_new, geo_old, geo_start};
3482 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3483 {
3484 int nc, fc, fo;
3485 int layout, chunk, disks;
3486 switch (new) {
3487 case geo_old:
3488 layout = mddev->layout;
3489 chunk = mddev->chunk_sectors;
3490 disks = mddev->raid_disks - mddev->delta_disks;
3491 break;
3492 case geo_new:
3493 layout = mddev->new_layout;
3494 chunk = mddev->new_chunk_sectors;
3495 disks = mddev->raid_disks;
3496 break;
3497 default: /* avoid 'may be unused' warnings */
3498 case geo_start: /* new when starting reshape - raid_disks not
3499 * updated yet. */
3500 layout = mddev->new_layout;
3501 chunk = mddev->new_chunk_sectors;
3502 disks = mddev->raid_disks + mddev->delta_disks;
3503 break;
3504 }
3505 if (layout >> 18)
3506 return -1;
3507 if (chunk < (PAGE_SIZE >> 9) ||
3508 !is_power_of_2(chunk))
3509 return -2;
3510 nc = layout & 255;
3511 fc = (layout >> 8) & 255;
3512 fo = layout & (1<<16);
3513 geo->raid_disks = disks;
3514 geo->near_copies = nc;
3515 geo->far_copies = fc;
3516 geo->far_offset = fo;
3517 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3518 geo->chunk_mask = chunk - 1;
3519 geo->chunk_shift = ffz(~chunk);
3520 return nc*fc;
3521 }
3522
3523 static struct r10conf *setup_conf(struct mddev *mddev)
3524 {
3525 struct r10conf *conf = NULL;
3526 int err = -EINVAL;
3527 struct geom geo;
3528 int copies;
3529
3530 copies = setup_geo(&geo, mddev, geo_new);
3531
3532 if (copies == -2) {
3533 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3534 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3535 mdname(mddev), PAGE_SIZE);
3536 goto out;
3537 }
3538
3539 if (copies < 2 || copies > mddev->raid_disks) {
3540 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3541 mdname(mddev), mddev->new_layout);
3542 goto out;
3543 }
3544
3545 err = -ENOMEM;
3546 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3547 if (!conf)
3548 goto out;
3549
3550 /* FIXME calc properly */
3551 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3552 max(0,-mddev->delta_disks)),
3553 GFP_KERNEL);
3554 if (!conf->mirrors)
3555 goto out;
3556
3557 conf->tmppage = alloc_page(GFP_KERNEL);
3558 if (!conf->tmppage)
3559 goto out;
3560
3561 conf->geo = geo;
3562 conf->copies = copies;
3563 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3564 r10bio_pool_free, conf);
3565 if (!conf->r10bio_pool)
3566 goto out;
3567
3568 calc_sectors(conf, mddev->dev_sectors);
3569 if (mddev->reshape_position == MaxSector) {
3570 conf->prev = conf->geo;
3571 conf->reshape_progress = MaxSector;
3572 } else {
3573 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3574 err = -EINVAL;
3575 goto out;
3576 }
3577 conf->reshape_progress = mddev->reshape_position;
3578 if (conf->prev.far_offset)
3579 conf->prev.stride = 1 << conf->prev.chunk_shift;
3580 else
3581 /* far_copies must be 1 */
3582 conf->prev.stride = conf->dev_sectors;
3583 }
3584 spin_lock_init(&conf->device_lock);
3585 INIT_LIST_HEAD(&conf->retry_list);
3586
3587 spin_lock_init(&conf->resync_lock);
3588 init_waitqueue_head(&conf->wait_barrier);
3589
3590 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3591 if (!conf->thread)
3592 goto out;
3593
3594 conf->mddev = mddev;
3595 return conf;
3596
3597 out:
3598 if (err == -ENOMEM)
3599 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3600 mdname(mddev));
3601 if (conf) {
3602 if (conf->r10bio_pool)
3603 mempool_destroy(conf->r10bio_pool);
3604 kfree(conf->mirrors);
3605 safe_put_page(conf->tmppage);
3606 kfree(conf);
3607 }
3608 return ERR_PTR(err);
3609 }
3610
3611 static int run(struct mddev *mddev)
3612 {
3613 struct r10conf *conf;
3614 int i, disk_idx, chunk_size;
3615 struct raid10_info *disk;
3616 struct md_rdev *rdev;
3617 sector_t size;
3618 sector_t min_offset_diff = 0;
3619 int first = 1;
3620 bool discard_supported = false;
3621
3622 if (mddev->private == NULL) {
3623 conf = setup_conf(mddev);
3624 if (IS_ERR(conf))
3625 return PTR_ERR(conf);
3626 mddev->private = conf;
3627 }
3628 conf = mddev->private;
3629 if (!conf)
3630 goto out;
3631
3632 mddev->thread = conf->thread;
3633 conf->thread = NULL;
3634
3635 chunk_size = mddev->chunk_sectors << 9;
3636 if (mddev->queue) {
3637 blk_queue_max_discard_sectors(mddev->queue,
3638 mddev->chunk_sectors);
3639 blk_queue_max_write_same_sectors(mddev->queue, 0);
3640 blk_queue_io_min(mddev->queue, chunk_size);
3641 if (conf->geo.raid_disks % conf->geo.near_copies)
3642 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3643 else
3644 blk_queue_io_opt(mddev->queue, chunk_size *
3645 (conf->geo.raid_disks / conf->geo.near_copies));
3646 }
3647
3648 rdev_for_each(rdev, mddev) {
3649 long long diff;
3650 struct request_queue *q;
3651
3652 disk_idx = rdev->raid_disk;
3653 if (disk_idx < 0)
3654 continue;
3655 if (disk_idx >= conf->geo.raid_disks &&
3656 disk_idx >= conf->prev.raid_disks)
3657 continue;
3658 disk = conf->mirrors + disk_idx;
3659
3660 if (test_bit(Replacement, &rdev->flags)) {
3661 if (disk->replacement)
3662 goto out_free_conf;
3663 disk->replacement = rdev;
3664 } else {
3665 if (disk->rdev)
3666 goto out_free_conf;
3667 disk->rdev = rdev;
3668 }
3669 q = bdev_get_queue(rdev->bdev);
3670 if (q->merge_bvec_fn)
3671 mddev->merge_check_needed = 1;
3672 diff = (rdev->new_data_offset - rdev->data_offset);
3673 if (!mddev->reshape_backwards)
3674 diff = -diff;
3675 if (diff < 0)
3676 diff = 0;
3677 if (first || diff < min_offset_diff)
3678 min_offset_diff = diff;
3679
3680 if (mddev->gendisk)
3681 disk_stack_limits(mddev->gendisk, rdev->bdev,
3682 rdev->data_offset << 9);
3683
3684 disk->head_position = 0;
3685
3686 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3687 discard_supported = true;
3688 }
3689
3690 if (mddev->queue) {
3691 if (discard_supported)
3692 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3693 mddev->queue);
3694 else
3695 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3696 mddev->queue);
3697 }
3698 /* need to check that every block has at least one working mirror */
3699 if (!enough(conf, -1)) {
3700 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3701 mdname(mddev));
3702 goto out_free_conf;
3703 }
3704
3705 if (conf->reshape_progress != MaxSector) {
3706 /* must ensure that shape change is supported */
3707 if (conf->geo.far_copies != 1 &&
3708 conf->geo.far_offset == 0)
3709 goto out_free_conf;
3710 if (conf->prev.far_copies != 1 &&
3711 conf->prev.far_offset == 0)
3712 goto out_free_conf;
3713 }
3714
3715 mddev->degraded = 0;
3716 for (i = 0;
3717 i < conf->geo.raid_disks
3718 || i < conf->prev.raid_disks;
3719 i++) {
3720
3721 disk = conf->mirrors + i;
3722
3723 if (!disk->rdev && disk->replacement) {
3724 /* The replacement is all we have - use it */
3725 disk->rdev = disk->replacement;
3726 disk->replacement = NULL;
3727 clear_bit(Replacement, &disk->rdev->flags);
3728 }
3729
3730 if (!disk->rdev ||
3731 !test_bit(In_sync, &disk->rdev->flags)) {
3732 disk->head_position = 0;
3733 mddev->degraded++;
3734 if (disk->rdev &&
3735 disk->rdev->saved_raid_disk < 0)
3736 conf->fullsync = 1;
3737 }
3738 disk->recovery_disabled = mddev->recovery_disabled - 1;
3739 }
3740
3741 if (mddev->recovery_cp != MaxSector)
3742 printk(KERN_NOTICE "md/raid10:%s: not clean"
3743 " -- starting background reconstruction\n",
3744 mdname(mddev));
3745 printk(KERN_INFO
3746 "md/raid10:%s: active with %d out of %d devices\n",
3747 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3748 conf->geo.raid_disks);
3749 /*
3750 * Ok, everything is just fine now
3751 */
3752 mddev->dev_sectors = conf->dev_sectors;
3753 size = raid10_size(mddev, 0, 0);
3754 md_set_array_sectors(mddev, size);
3755 mddev->resync_max_sectors = size;
3756
3757 if (mddev->queue) {
3758 int stripe = conf->geo.raid_disks *
3759 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3760 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3761 mddev->queue->backing_dev_info.congested_data = mddev;
3762
3763 /* Calculate max read-ahead size.
3764 * We need to readahead at least twice a whole stripe....
3765 * maybe...
3766 */
3767 stripe /= conf->geo.near_copies;
3768 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3769 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3770 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3771 }
3772
3773 if (md_integrity_register(mddev))
3774 goto out_free_conf;
3775
3776 if (conf->reshape_progress != MaxSector) {
3777 unsigned long before_length, after_length;
3778
3779 before_length = ((1 << conf->prev.chunk_shift) *
3780 conf->prev.far_copies);
3781 after_length = ((1 << conf->geo.chunk_shift) *
3782 conf->geo.far_copies);
3783
3784 if (max(before_length, after_length) > min_offset_diff) {
3785 /* This cannot work */
3786 printk("md/raid10: offset difference not enough to continue reshape\n");
3787 goto out_free_conf;
3788 }
3789 conf->offset_diff = min_offset_diff;
3790
3791 conf->reshape_safe = conf->reshape_progress;
3792 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3793 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3794 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3795 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3796 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3797 "reshape");
3798 }
3799
3800 return 0;
3801
3802 out_free_conf:
3803 md_unregister_thread(&mddev->thread);
3804 if (conf->r10bio_pool)
3805 mempool_destroy(conf->r10bio_pool);
3806 safe_put_page(conf->tmppage);
3807 kfree(conf->mirrors);
3808 kfree(conf);
3809 mddev->private = NULL;
3810 out:
3811 return -EIO;
3812 }
3813
3814 static int stop(struct mddev *mddev)
3815 {
3816 struct r10conf *conf = mddev->private;
3817
3818 raise_barrier(conf, 0);
3819 lower_barrier(conf);
3820
3821 md_unregister_thread(&mddev->thread);
3822 if (mddev->queue)
3823 /* the unplug fn references 'conf'*/
3824 blk_sync_queue(mddev->queue);
3825
3826 if (conf->r10bio_pool)
3827 mempool_destroy(conf->r10bio_pool);
3828 safe_put_page(conf->tmppage);
3829 kfree(conf->mirrors);
3830 kfree(conf->mirrors_old);
3831 kfree(conf->mirrors_new);
3832 kfree(conf);
3833 mddev->private = NULL;
3834 return 0;
3835 }
3836
3837 static void raid10_quiesce(struct mddev *mddev, int state)
3838 {
3839 struct r10conf *conf = mddev->private;
3840
3841 switch(state) {
3842 case 1:
3843 raise_barrier(conf, 0);
3844 break;
3845 case 0:
3846 lower_barrier(conf);
3847 break;
3848 }
3849 }
3850
3851 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3852 {
3853 /* Resize of 'far' arrays is not supported.
3854 * For 'near' and 'offset' arrays we can set the
3855 * number of sectors used to be an appropriate multiple
3856 * of the chunk size.
3857 * For 'offset', this is far_copies*chunksize.
3858 * For 'near' the multiplier is the LCM of
3859 * near_copies and raid_disks.
3860 * So if far_copies > 1 && !far_offset, fail.
3861 * Else find LCM(raid_disks, near_copy)*far_copies and
3862 * multiply by chunk_size. Then round to this number.
3863 * This is mostly done by raid10_size()
3864 */
3865 struct r10conf *conf = mddev->private;
3866 sector_t oldsize, size;
3867
3868 if (mddev->reshape_position != MaxSector)
3869 return -EBUSY;
3870
3871 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3872 return -EINVAL;
3873
3874 oldsize = raid10_size(mddev, 0, 0);
3875 size = raid10_size(mddev, sectors, 0);
3876 if (mddev->external_size &&
3877 mddev->array_sectors > size)
3878 return -EINVAL;
3879 if (mddev->bitmap) {
3880 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3881 if (ret)
3882 return ret;
3883 }
3884 md_set_array_sectors(mddev, size);
3885 set_capacity(mddev->gendisk, mddev->array_sectors);
3886 revalidate_disk(mddev->gendisk);
3887 if (sectors > mddev->dev_sectors &&
3888 mddev->recovery_cp > oldsize) {
3889 mddev->recovery_cp = oldsize;
3890 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3891 }
3892 calc_sectors(conf, sectors);
3893 mddev->dev_sectors = conf->dev_sectors;
3894 mddev->resync_max_sectors = size;
3895 return 0;
3896 }
3897
3898 static void *raid10_takeover_raid0(struct mddev *mddev)
3899 {
3900 struct md_rdev *rdev;
3901 struct r10conf *conf;
3902
3903 if (mddev->degraded > 0) {
3904 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3905 mdname(mddev));
3906 return ERR_PTR(-EINVAL);
3907 }
3908
3909 /* Set new parameters */
3910 mddev->new_level = 10;
3911 /* new layout: far_copies = 1, near_copies = 2 */
3912 mddev->new_layout = (1<<8) + 2;
3913 mddev->new_chunk_sectors = mddev->chunk_sectors;
3914 mddev->delta_disks = mddev->raid_disks;
3915 mddev->raid_disks *= 2;
3916 /* make sure it will be not marked as dirty */
3917 mddev->recovery_cp = MaxSector;
3918
3919 conf = setup_conf(mddev);
3920 if (!IS_ERR(conf)) {
3921 rdev_for_each(rdev, mddev)
3922 if (rdev->raid_disk >= 0)
3923 rdev->new_raid_disk = rdev->raid_disk * 2;
3924 conf->barrier = 1;
3925 }
3926
3927 return conf;
3928 }
3929
3930 static void *raid10_takeover(struct mddev *mddev)
3931 {
3932 struct r0conf *raid0_conf;
3933
3934 /* raid10 can take over:
3935 * raid0 - providing it has only two drives
3936 */
3937 if (mddev->level == 0) {
3938 /* for raid0 takeover only one zone is supported */
3939 raid0_conf = mddev->private;
3940 if (raid0_conf->nr_strip_zones > 1) {
3941 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3942 " with more than one zone.\n",
3943 mdname(mddev));
3944 return ERR_PTR(-EINVAL);
3945 }
3946 return raid10_takeover_raid0(mddev);
3947 }
3948 return ERR_PTR(-EINVAL);
3949 }
3950
3951 static int raid10_check_reshape(struct mddev *mddev)
3952 {
3953 /* Called when there is a request to change
3954 * - layout (to ->new_layout)
3955 * - chunk size (to ->new_chunk_sectors)
3956 * - raid_disks (by delta_disks)
3957 * or when trying to restart a reshape that was ongoing.
3958 *
3959 * We need to validate the request and possibly allocate
3960 * space if that might be an issue later.
3961 *
3962 * Currently we reject any reshape of a 'far' mode array,
3963 * allow chunk size to change if new is generally acceptable,
3964 * allow raid_disks to increase, and allow
3965 * a switch between 'near' mode and 'offset' mode.
3966 */
3967 struct r10conf *conf = mddev->private;
3968 struct geom geo;
3969
3970 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3971 return -EINVAL;
3972
3973 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3974 /* mustn't change number of copies */
3975 return -EINVAL;
3976 if (geo.far_copies > 1 && !geo.far_offset)
3977 /* Cannot switch to 'far' mode */
3978 return -EINVAL;
3979
3980 if (mddev->array_sectors & geo.chunk_mask)
3981 /* not factor of array size */
3982 return -EINVAL;
3983
3984 if (!enough(conf, -1))
3985 return -EINVAL;
3986
3987 kfree(conf->mirrors_new);
3988 conf->mirrors_new = NULL;
3989 if (mddev->delta_disks > 0) {
3990 /* allocate new 'mirrors' list */
3991 conf->mirrors_new = kzalloc(
3992 sizeof(struct raid10_info)
3993 *(mddev->raid_disks +
3994 mddev->delta_disks),
3995 GFP_KERNEL);
3996 if (!conf->mirrors_new)
3997 return -ENOMEM;
3998 }
3999 return 0;
4000 }
4001
4002 /*
4003 * Need to check if array has failed when deciding whether to:
4004 * - start an array
4005 * - remove non-faulty devices
4006 * - add a spare
4007 * - allow a reshape
4008 * This determination is simple when no reshape is happening.
4009 * However if there is a reshape, we need to carefully check
4010 * both the before and after sections.
4011 * This is because some failed devices may only affect one
4012 * of the two sections, and some non-in_sync devices may
4013 * be insync in the section most affected by failed devices.
4014 */
4015 static int calc_degraded(struct r10conf *conf)
4016 {
4017 int degraded, degraded2;
4018 int i;
4019
4020 rcu_read_lock();
4021 degraded = 0;
4022 /* 'prev' section first */
4023 for (i = 0; i < conf->prev.raid_disks; i++) {
4024 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4025 if (!rdev || test_bit(Faulty, &rdev->flags))
4026 degraded++;
4027 else if (!test_bit(In_sync, &rdev->flags))
4028 /* When we can reduce the number of devices in
4029 * an array, this might not contribute to
4030 * 'degraded'. It does now.
4031 */
4032 degraded++;
4033 }
4034 rcu_read_unlock();
4035 if (conf->geo.raid_disks == conf->prev.raid_disks)
4036 return degraded;
4037 rcu_read_lock();
4038 degraded2 = 0;
4039 for (i = 0; i < conf->geo.raid_disks; i++) {
4040 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4041 if (!rdev || test_bit(Faulty, &rdev->flags))
4042 degraded2++;
4043 else if (!test_bit(In_sync, &rdev->flags)) {
4044 /* If reshape is increasing the number of devices,
4045 * this section has already been recovered, so
4046 * it doesn't contribute to degraded.
4047 * else it does.
4048 */
4049 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4050 degraded2++;
4051 }
4052 }
4053 rcu_read_unlock();
4054 if (degraded2 > degraded)
4055 return degraded2;
4056 return degraded;
4057 }
4058
4059 static int raid10_start_reshape(struct mddev *mddev)
4060 {
4061 /* A 'reshape' has been requested. This commits
4062 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4063 * This also checks if there are enough spares and adds them
4064 * to the array.
4065 * We currently require enough spares to make the final
4066 * array non-degraded. We also require that the difference
4067 * between old and new data_offset - on each device - is
4068 * enough that we never risk over-writing.
4069 */
4070
4071 unsigned long before_length, after_length;
4072 sector_t min_offset_diff = 0;
4073 int first = 1;
4074 struct geom new;
4075 struct r10conf *conf = mddev->private;
4076 struct md_rdev *rdev;
4077 int spares = 0;
4078 int ret;
4079
4080 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4081 return -EBUSY;
4082
4083 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4084 return -EINVAL;
4085
4086 before_length = ((1 << conf->prev.chunk_shift) *
4087 conf->prev.far_copies);
4088 after_length = ((1 << conf->geo.chunk_shift) *
4089 conf->geo.far_copies);
4090
4091 rdev_for_each(rdev, mddev) {
4092 if (!test_bit(In_sync, &rdev->flags)
4093 && !test_bit(Faulty, &rdev->flags))
4094 spares++;
4095 if (rdev->raid_disk >= 0) {
4096 long long diff = (rdev->new_data_offset
4097 - rdev->data_offset);
4098 if (!mddev->reshape_backwards)
4099 diff = -diff;
4100 if (diff < 0)
4101 diff = 0;
4102 if (first || diff < min_offset_diff)
4103 min_offset_diff = diff;
4104 }
4105 }
4106
4107 if (max(before_length, after_length) > min_offset_diff)
4108 return -EINVAL;
4109
4110 if (spares < mddev->delta_disks)
4111 return -EINVAL;
4112
4113 conf->offset_diff = min_offset_diff;
4114 spin_lock_irq(&conf->device_lock);
4115 if (conf->mirrors_new) {
4116 memcpy(conf->mirrors_new, conf->mirrors,
4117 sizeof(struct raid10_info)*conf->prev.raid_disks);
4118 smp_mb();
4119 kfree(conf->mirrors_old);
4120 conf->mirrors_old = conf->mirrors;
4121 conf->mirrors = conf->mirrors_new;
4122 conf->mirrors_new = NULL;
4123 }
4124 setup_geo(&conf->geo, mddev, geo_start);
4125 smp_mb();
4126 if (mddev->reshape_backwards) {
4127 sector_t size = raid10_size(mddev, 0, 0);
4128 if (size < mddev->array_sectors) {
4129 spin_unlock_irq(&conf->device_lock);
4130 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4131 mdname(mddev));
4132 return -EINVAL;
4133 }
4134 mddev->resync_max_sectors = size;
4135 conf->reshape_progress = size;
4136 } else
4137 conf->reshape_progress = 0;
4138 spin_unlock_irq(&conf->device_lock);
4139
4140 if (mddev->delta_disks && mddev->bitmap) {
4141 ret = bitmap_resize(mddev->bitmap,
4142 raid10_size(mddev, 0,
4143 conf->geo.raid_disks),
4144 0, 0);
4145 if (ret)
4146 goto abort;
4147 }
4148 if (mddev->delta_disks > 0) {
4149 rdev_for_each(rdev, mddev)
4150 if (rdev->raid_disk < 0 &&
4151 !test_bit(Faulty, &rdev->flags)) {
4152 if (raid10_add_disk(mddev, rdev) == 0) {
4153 if (rdev->raid_disk >=
4154 conf->prev.raid_disks)
4155 set_bit(In_sync, &rdev->flags);
4156 else
4157 rdev->recovery_offset = 0;
4158
4159 if (sysfs_link_rdev(mddev, rdev))
4160 /* Failure here is OK */;
4161 }
4162 } else if (rdev->raid_disk >= conf->prev.raid_disks
4163 && !test_bit(Faulty, &rdev->flags)) {
4164 /* This is a spare that was manually added */
4165 set_bit(In_sync, &rdev->flags);
4166 }
4167 }
4168 /* When a reshape changes the number of devices,
4169 * ->degraded is measured against the larger of the
4170 * pre and post numbers.
4171 */
4172 spin_lock_irq(&conf->device_lock);
4173 mddev->degraded = calc_degraded(conf);
4174 spin_unlock_irq(&conf->device_lock);
4175 mddev->raid_disks = conf->geo.raid_disks;
4176 mddev->reshape_position = conf->reshape_progress;
4177 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4178
4179 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4180 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4181 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4182 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4183
4184 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4185 "reshape");
4186 if (!mddev->sync_thread) {
4187 ret = -EAGAIN;
4188 goto abort;
4189 }
4190 conf->reshape_checkpoint = jiffies;
4191 md_wakeup_thread(mddev->sync_thread);
4192 md_new_event(mddev);
4193 return 0;
4194
4195 abort:
4196 mddev->recovery = 0;
4197 spin_lock_irq(&conf->device_lock);
4198 conf->geo = conf->prev;
4199 mddev->raid_disks = conf->geo.raid_disks;
4200 rdev_for_each(rdev, mddev)
4201 rdev->new_data_offset = rdev->data_offset;
4202 smp_wmb();
4203 conf->reshape_progress = MaxSector;
4204 mddev->reshape_position = MaxSector;
4205 spin_unlock_irq(&conf->device_lock);
4206 return ret;
4207 }
4208
4209 /* Calculate the last device-address that could contain
4210 * any block from the chunk that includes the array-address 's'
4211 * and report the next address.
4212 * i.e. the address returned will be chunk-aligned and after
4213 * any data that is in the chunk containing 's'.
4214 */
4215 static sector_t last_dev_address(sector_t s, struct geom *geo)
4216 {
4217 s = (s | geo->chunk_mask) + 1;
4218 s >>= geo->chunk_shift;
4219 s *= geo->near_copies;
4220 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4221 s *= geo->far_copies;
4222 s <<= geo->chunk_shift;
4223 return s;
4224 }
4225
4226 /* Calculate the first device-address that could contain
4227 * any block from the chunk that includes the array-address 's'.
4228 * This too will be the start of a chunk
4229 */
4230 static sector_t first_dev_address(sector_t s, struct geom *geo)
4231 {
4232 s >>= geo->chunk_shift;
4233 s *= geo->near_copies;
4234 sector_div(s, geo->raid_disks);
4235 s *= geo->far_copies;
4236 s <<= geo->chunk_shift;
4237 return s;
4238 }
4239
4240 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4241 int *skipped)
4242 {
4243 /* We simply copy at most one chunk (smallest of old and new)
4244 * at a time, possibly less if that exceeds RESYNC_PAGES,
4245 * or we hit a bad block or something.
4246 * This might mean we pause for normal IO in the middle of
4247 * a chunk, but that is not a problem was mddev->reshape_position
4248 * can record any location.
4249 *
4250 * If we will want to write to a location that isn't
4251 * yet recorded as 'safe' (i.e. in metadata on disk) then
4252 * we need to flush all reshape requests and update the metadata.
4253 *
4254 * When reshaping forwards (e.g. to more devices), we interpret
4255 * 'safe' as the earliest block which might not have been copied
4256 * down yet. We divide this by previous stripe size and multiply
4257 * by previous stripe length to get lowest device offset that we
4258 * cannot write to yet.
4259 * We interpret 'sector_nr' as an address that we want to write to.
4260 * From this we use last_device_address() to find where we might
4261 * write to, and first_device_address on the 'safe' position.
4262 * If this 'next' write position is after the 'safe' position,
4263 * we must update the metadata to increase the 'safe' position.
4264 *
4265 * When reshaping backwards, we round in the opposite direction
4266 * and perform the reverse test: next write position must not be
4267 * less than current safe position.
4268 *
4269 * In all this the minimum difference in data offsets
4270 * (conf->offset_diff - always positive) allows a bit of slack,
4271 * so next can be after 'safe', but not by more than offset_disk
4272 *
4273 * We need to prepare all the bios here before we start any IO
4274 * to ensure the size we choose is acceptable to all devices.
4275 * The means one for each copy for write-out and an extra one for
4276 * read-in.
4277 * We store the read-in bio in ->master_bio and the others in
4278 * ->devs[x].bio and ->devs[x].repl_bio.
4279 */
4280 struct r10conf *conf = mddev->private;
4281 struct r10bio *r10_bio;
4282 sector_t next, safe, last;
4283 int max_sectors;
4284 int nr_sectors;
4285 int s;
4286 struct md_rdev *rdev;
4287 int need_flush = 0;
4288 struct bio *blist;
4289 struct bio *bio, *read_bio;
4290 int sectors_done = 0;
4291
4292 if (sector_nr == 0) {
4293 /* If restarting in the middle, skip the initial sectors */
4294 if (mddev->reshape_backwards &&
4295 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4296 sector_nr = (raid10_size(mddev, 0, 0)
4297 - conf->reshape_progress);
4298 } else if (!mddev->reshape_backwards &&
4299 conf->reshape_progress > 0)
4300 sector_nr = conf->reshape_progress;
4301 if (sector_nr) {
4302 mddev->curr_resync_completed = sector_nr;
4303 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4304 *skipped = 1;
4305 return sector_nr;
4306 }
4307 }
4308
4309 /* We don't use sector_nr to track where we are up to
4310 * as that doesn't work well for ->reshape_backwards.
4311 * So just use ->reshape_progress.
4312 */
4313 if (mddev->reshape_backwards) {
4314 /* 'next' is the earliest device address that we might
4315 * write to for this chunk in the new layout
4316 */
4317 next = first_dev_address(conf->reshape_progress - 1,
4318 &conf->geo);
4319
4320 /* 'safe' is the last device address that we might read from
4321 * in the old layout after a restart
4322 */
4323 safe = last_dev_address(conf->reshape_safe - 1,
4324 &conf->prev);
4325
4326 if (next + conf->offset_diff < safe)
4327 need_flush = 1;
4328
4329 last = conf->reshape_progress - 1;
4330 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4331 & conf->prev.chunk_mask);
4332 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4333 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4334 } else {
4335 /* 'next' is after the last device address that we
4336 * might write to for this chunk in the new layout
4337 */
4338 next = last_dev_address(conf->reshape_progress, &conf->geo);
4339
4340 /* 'safe' is the earliest device address that we might
4341 * read from in the old layout after a restart
4342 */
4343 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4344
4345 /* Need to update metadata if 'next' might be beyond 'safe'
4346 * as that would possibly corrupt data
4347 */
4348 if (next > safe + conf->offset_diff)
4349 need_flush = 1;
4350
4351 sector_nr = conf->reshape_progress;
4352 last = sector_nr | (conf->geo.chunk_mask
4353 & conf->prev.chunk_mask);
4354
4355 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4356 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4357 }
4358
4359 if (need_flush ||
4360 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4361 /* Need to update reshape_position in metadata */
4362 wait_barrier(conf);
4363 mddev->reshape_position = conf->reshape_progress;
4364 if (mddev->reshape_backwards)
4365 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4366 - conf->reshape_progress;
4367 else
4368 mddev->curr_resync_completed = conf->reshape_progress;
4369 conf->reshape_checkpoint = jiffies;
4370 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4371 md_wakeup_thread(mddev->thread);
4372 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4373 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4374 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4375 allow_barrier(conf);
4376 return sectors_done;
4377 }
4378 conf->reshape_safe = mddev->reshape_position;
4379 allow_barrier(conf);
4380 }
4381
4382 read_more:
4383 /* Now schedule reads for blocks from sector_nr to last */
4384 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4385 r10_bio->state = 0;
4386 raise_barrier(conf, sectors_done != 0);
4387 atomic_set(&r10_bio->remaining, 0);
4388 r10_bio->mddev = mddev;
4389 r10_bio->sector = sector_nr;
4390 set_bit(R10BIO_IsReshape, &r10_bio->state);
4391 r10_bio->sectors = last - sector_nr + 1;
4392 rdev = read_balance(conf, r10_bio, &max_sectors);
4393 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4394
4395 if (!rdev) {
4396 /* Cannot read from here, so need to record bad blocks
4397 * on all the target devices.
4398 */
4399 // FIXME
4400 mempool_free(r10_bio, conf->r10buf_pool);
4401 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4402 return sectors_done;
4403 }
4404
4405 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4406
4407 read_bio->bi_bdev = rdev->bdev;
4408 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4409 + rdev->data_offset);
4410 read_bio->bi_private = r10_bio;
4411 read_bio->bi_end_io = end_sync_read;
4412 read_bio->bi_rw = READ;
4413 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4414 __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4415 read_bio->bi_vcnt = 0;
4416 read_bio->bi_iter.bi_size = 0;
4417 r10_bio->master_bio = read_bio;
4418 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4419
4420 /* Now find the locations in the new layout */
4421 __raid10_find_phys(&conf->geo, r10_bio);
4422
4423 blist = read_bio;
4424 read_bio->bi_next = NULL;
4425
4426 for (s = 0; s < conf->copies*2; s++) {
4427 struct bio *b;
4428 int d = r10_bio->devs[s/2].devnum;
4429 struct md_rdev *rdev2;
4430 if (s&1) {
4431 rdev2 = conf->mirrors[d].replacement;
4432 b = r10_bio->devs[s/2].repl_bio;
4433 } else {
4434 rdev2 = conf->mirrors[d].rdev;
4435 b = r10_bio->devs[s/2].bio;
4436 }
4437 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4438 continue;
4439
4440 bio_reset(b);
4441 b->bi_bdev = rdev2->bdev;
4442 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4443 rdev2->new_data_offset;
4444 b->bi_private = r10_bio;
4445 b->bi_end_io = end_reshape_write;
4446 b->bi_rw = WRITE;
4447 b->bi_next = blist;
4448 blist = b;
4449 }
4450
4451 /* Now add as many pages as possible to all of these bios. */
4452
4453 nr_sectors = 0;
4454 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4455 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4456 int len = (max_sectors - s) << 9;
4457 if (len > PAGE_SIZE)
4458 len = PAGE_SIZE;
4459 for (bio = blist; bio ; bio = bio->bi_next) {
4460 struct bio *bio2;
4461 if (bio_add_page(bio, page, len, 0))
4462 continue;
4463
4464 /* Didn't fit, must stop */
4465 for (bio2 = blist;
4466 bio2 && bio2 != bio;
4467 bio2 = bio2->bi_next) {
4468 /* Remove last page from this bio */
4469 bio2->bi_vcnt--;
4470 bio2->bi_iter.bi_size -= len;
4471 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4472 }
4473 goto bio_full;
4474 }
4475 sector_nr += len >> 9;
4476 nr_sectors += len >> 9;
4477 }
4478 bio_full:
4479 r10_bio->sectors = nr_sectors;
4480
4481 /* Now submit the read */
4482 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4483 atomic_inc(&r10_bio->remaining);
4484 read_bio->bi_next = NULL;
4485 generic_make_request(read_bio);
4486 sector_nr += nr_sectors;
4487 sectors_done += nr_sectors;
4488 if (sector_nr <= last)
4489 goto read_more;
4490
4491 /* Now that we have done the whole section we can
4492 * update reshape_progress
4493 */
4494 if (mddev->reshape_backwards)
4495 conf->reshape_progress -= sectors_done;
4496 else
4497 conf->reshape_progress += sectors_done;
4498
4499 return sectors_done;
4500 }
4501
4502 static void end_reshape_request(struct r10bio *r10_bio);
4503 static int handle_reshape_read_error(struct mddev *mddev,
4504 struct r10bio *r10_bio);
4505 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4506 {
4507 /* Reshape read completed. Hopefully we have a block
4508 * to write out.
4509 * If we got a read error then we do sync 1-page reads from
4510 * elsewhere until we find the data - or give up.
4511 */
4512 struct r10conf *conf = mddev->private;
4513 int s;
4514
4515 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4516 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4517 /* Reshape has been aborted */
4518 md_done_sync(mddev, r10_bio->sectors, 0);
4519 return;
4520 }
4521
4522 /* We definitely have the data in the pages, schedule the
4523 * writes.
4524 */
4525 atomic_set(&r10_bio->remaining, 1);
4526 for (s = 0; s < conf->copies*2; s++) {
4527 struct bio *b;
4528 int d = r10_bio->devs[s/2].devnum;
4529 struct md_rdev *rdev;
4530 if (s&1) {
4531 rdev = conf->mirrors[d].replacement;
4532 b = r10_bio->devs[s/2].repl_bio;
4533 } else {
4534 rdev = conf->mirrors[d].rdev;
4535 b = r10_bio->devs[s/2].bio;
4536 }
4537 if (!rdev || test_bit(Faulty, &rdev->flags))
4538 continue;
4539 atomic_inc(&rdev->nr_pending);
4540 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4541 atomic_inc(&r10_bio->remaining);
4542 b->bi_next = NULL;
4543 generic_make_request(b);
4544 }
4545 end_reshape_request(r10_bio);
4546 }
4547
4548 static void end_reshape(struct r10conf *conf)
4549 {
4550 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4551 return;
4552
4553 spin_lock_irq(&conf->device_lock);
4554 conf->prev = conf->geo;
4555 md_finish_reshape(conf->mddev);
4556 smp_wmb();
4557 conf->reshape_progress = MaxSector;
4558 spin_unlock_irq(&conf->device_lock);
4559
4560 /* read-ahead size must cover two whole stripes, which is
4561 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4562 */
4563 if (conf->mddev->queue) {
4564 int stripe = conf->geo.raid_disks *
4565 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4566 stripe /= conf->geo.near_copies;
4567 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4568 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4569 }
4570 conf->fullsync = 0;
4571 }
4572
4573 static int handle_reshape_read_error(struct mddev *mddev,
4574 struct r10bio *r10_bio)
4575 {
4576 /* Use sync reads to get the blocks from somewhere else */
4577 int sectors = r10_bio->sectors;
4578 struct r10conf *conf = mddev->private;
4579 struct {
4580 struct r10bio r10_bio;
4581 struct r10dev devs[conf->copies];
4582 } on_stack;
4583 struct r10bio *r10b = &on_stack.r10_bio;
4584 int slot = 0;
4585 int idx = 0;
4586 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4587
4588 r10b->sector = r10_bio->sector;
4589 __raid10_find_phys(&conf->prev, r10b);
4590
4591 while (sectors) {
4592 int s = sectors;
4593 int success = 0;
4594 int first_slot = slot;
4595
4596 if (s > (PAGE_SIZE >> 9))
4597 s = PAGE_SIZE >> 9;
4598
4599 while (!success) {
4600 int d = r10b->devs[slot].devnum;
4601 struct md_rdev *rdev = conf->mirrors[d].rdev;
4602 sector_t addr;
4603 if (rdev == NULL ||
4604 test_bit(Faulty, &rdev->flags) ||
4605 !test_bit(In_sync, &rdev->flags))
4606 goto failed;
4607
4608 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4609 success = sync_page_io(rdev,
4610 addr,
4611 s << 9,
4612 bvec[idx].bv_page,
4613 READ, false);
4614 if (success)
4615 break;
4616 failed:
4617 slot++;
4618 if (slot >= conf->copies)
4619 slot = 0;
4620 if (slot == first_slot)
4621 break;
4622 }
4623 if (!success) {
4624 /* couldn't read this block, must give up */
4625 set_bit(MD_RECOVERY_INTR,
4626 &mddev->recovery);
4627 return -EIO;
4628 }
4629 sectors -= s;
4630 idx++;
4631 }
4632 return 0;
4633 }
4634
4635 static void end_reshape_write(struct bio *bio, int error)
4636 {
4637 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4638 struct r10bio *r10_bio = bio->bi_private;
4639 struct mddev *mddev = r10_bio->mddev;
4640 struct r10conf *conf = mddev->private;
4641 int d;
4642 int slot;
4643 int repl;
4644 struct md_rdev *rdev = NULL;
4645
4646 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4647 if (repl)
4648 rdev = conf->mirrors[d].replacement;
4649 if (!rdev) {
4650 smp_mb();
4651 rdev = conf->mirrors[d].rdev;
4652 }
4653
4654 if (!uptodate) {
4655 /* FIXME should record badblock */
4656 md_error(mddev, rdev);
4657 }
4658
4659 rdev_dec_pending(rdev, mddev);
4660 end_reshape_request(r10_bio);
4661 }
4662
4663 static void end_reshape_request(struct r10bio *r10_bio)
4664 {
4665 if (!atomic_dec_and_test(&r10_bio->remaining))
4666 return;
4667 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4668 bio_put(r10_bio->master_bio);
4669 put_buf(r10_bio);
4670 }
4671
4672 static void raid10_finish_reshape(struct mddev *mddev)
4673 {
4674 struct r10conf *conf = mddev->private;
4675
4676 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4677 return;
4678
4679 if (mddev->delta_disks > 0) {
4680 sector_t size = raid10_size(mddev, 0, 0);
4681 md_set_array_sectors(mddev, size);
4682 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4683 mddev->recovery_cp = mddev->resync_max_sectors;
4684 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4685 }
4686 mddev->resync_max_sectors = size;
4687 set_capacity(mddev->gendisk, mddev->array_sectors);
4688 revalidate_disk(mddev->gendisk);
4689 } else {
4690 int d;
4691 for (d = conf->geo.raid_disks ;
4692 d < conf->geo.raid_disks - mddev->delta_disks;
4693 d++) {
4694 struct md_rdev *rdev = conf->mirrors[d].rdev;
4695 if (rdev)
4696 clear_bit(In_sync, &rdev->flags);
4697 rdev = conf->mirrors[d].replacement;
4698 if (rdev)
4699 clear_bit(In_sync, &rdev->flags);
4700 }
4701 }
4702 mddev->layout = mddev->new_layout;
4703 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4704 mddev->reshape_position = MaxSector;
4705 mddev->delta_disks = 0;
4706 mddev->reshape_backwards = 0;
4707 }
4708
4709 static struct md_personality raid10_personality =
4710 {
4711 .name = "raid10",
4712 .level = 10,
4713 .owner = THIS_MODULE,
4714 .make_request = make_request,
4715 .run = run,
4716 .stop = stop,
4717 .status = status,
4718 .error_handler = error,
4719 .hot_add_disk = raid10_add_disk,
4720 .hot_remove_disk= raid10_remove_disk,
4721 .spare_active = raid10_spare_active,
4722 .sync_request = sync_request,
4723 .quiesce = raid10_quiesce,
4724 .size = raid10_size,
4725 .resize = raid10_resize,
4726 .takeover = raid10_takeover,
4727 .check_reshape = raid10_check_reshape,
4728 .start_reshape = raid10_start_reshape,
4729 .finish_reshape = raid10_finish_reshape,
4730 };
4731
4732 static int __init raid_init(void)
4733 {
4734 return register_md_personality(&raid10_personality);
4735 }
4736
4737 static void raid_exit(void)
4738 {
4739 unregister_md_personality(&raid10_personality);
4740 }
4741
4742 module_init(raid_init);
4743 module_exit(raid_exit);
4744 MODULE_LICENSE("GPL");
4745 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4746 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4747 MODULE_ALIAS("md-raid10");
4748 MODULE_ALIAS("md-level-10");
4749
4750 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.138316 seconds and 5 git commands to generate.