block: raid fixups for removal of bi_hw_segments
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include "dm-bio-list.h"
22 #include <linux/raid/raid10.h>
23 #include <linux/raid/bitmap.h>
24
25 /*
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
32 * far_offset (stored in bit 16 of layout )
33 *
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
44 *
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
48 */
49
50 /*
51 * Number of guaranteed r10bios in case of extreme VM load:
52 */
53 #define NR_RAID10_BIOS 256
54
55 static void unplug_slaves(mddev_t *mddev);
56
57 static void allow_barrier(conf_t *conf);
58 static void lower_barrier(conf_t *conf);
59
60 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
61 {
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
65
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
69 unplug_slaves(conf->mddev);
70
71 return r10_bio;
72 }
73
74 static void r10bio_pool_free(void *r10_bio, void *data)
75 {
76 kfree(r10_bio);
77 }
78
79 /* Maximum size of each resync request */
80 #define RESYNC_BLOCK_SIZE (64*1024)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 /* amount of memory to reserve for resync requests */
83 #define RESYNC_WINDOW (1024*1024)
84 /* maximum number of concurrent requests, memory permitting */
85 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86
87 /*
88 * When performing a resync, we need to read and compare, so
89 * we need as many pages are there are copies.
90 * When performing a recovery, we need 2 bios, one for read,
91 * one for write (we recover only one drive per r10buf)
92 *
93 */
94 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
95 {
96 conf_t *conf = data;
97 struct page *page;
98 r10bio_t *r10_bio;
99 struct bio *bio;
100 int i, j;
101 int nalloc;
102
103 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
104 if (!r10_bio) {
105 unplug_slaves(conf->mddev);
106 return NULL;
107 }
108
109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
110 nalloc = conf->copies; /* resync */
111 else
112 nalloc = 2; /* recovery */
113
114 /*
115 * Allocate bios.
116 */
117 for (j = nalloc ; j-- ; ) {
118 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 if (!bio)
120 goto out_free_bio;
121 r10_bio->devs[j].bio = bio;
122 }
123 /*
124 * Allocate RESYNC_PAGES data pages and attach them
125 * where needed.
126 */
127 for (j = 0 ; j < nalloc; j++) {
128 bio = r10_bio->devs[j].bio;
129 for (i = 0; i < RESYNC_PAGES; i++) {
130 page = alloc_page(gfp_flags);
131 if (unlikely(!page))
132 goto out_free_pages;
133
134 bio->bi_io_vec[i].bv_page = page;
135 }
136 }
137
138 return r10_bio;
139
140 out_free_pages:
141 for ( ; i > 0 ; i--)
142 safe_put_page(bio->bi_io_vec[i-1].bv_page);
143 while (j--)
144 for (i = 0; i < RESYNC_PAGES ; i++)
145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
146 j = -1;
147 out_free_bio:
148 while ( ++j < nalloc )
149 bio_put(r10_bio->devs[j].bio);
150 r10bio_pool_free(r10_bio, conf);
151 return NULL;
152 }
153
154 static void r10buf_pool_free(void *__r10_bio, void *data)
155 {
156 int i;
157 conf_t *conf = data;
158 r10bio_t *r10bio = __r10_bio;
159 int j;
160
161 for (j=0; j < conf->copies; j++) {
162 struct bio *bio = r10bio->devs[j].bio;
163 if (bio) {
164 for (i = 0; i < RESYNC_PAGES; i++) {
165 safe_put_page(bio->bi_io_vec[i].bv_page);
166 bio->bi_io_vec[i].bv_page = NULL;
167 }
168 bio_put(bio);
169 }
170 }
171 r10bio_pool_free(r10bio, conf);
172 }
173
174 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
175 {
176 int i;
177
178 for (i = 0; i < conf->copies; i++) {
179 struct bio **bio = & r10_bio->devs[i].bio;
180 if (*bio && *bio != IO_BLOCKED)
181 bio_put(*bio);
182 *bio = NULL;
183 }
184 }
185
186 static void free_r10bio(r10bio_t *r10_bio)
187 {
188 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189
190 /*
191 * Wake up any possible resync thread that waits for the device
192 * to go idle.
193 */
194 allow_barrier(conf);
195
196 put_all_bios(conf, r10_bio);
197 mempool_free(r10_bio, conf->r10bio_pool);
198 }
199
200 static void put_buf(r10bio_t *r10_bio)
201 {
202 conf_t *conf = mddev_to_conf(r10_bio->mddev);
203
204 mempool_free(r10_bio, conf->r10buf_pool);
205
206 lower_barrier(conf);
207 }
208
209 static void reschedule_retry(r10bio_t *r10_bio)
210 {
211 unsigned long flags;
212 mddev_t *mddev = r10_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
214
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r10_bio->retry_list, &conf->retry_list);
217 conf->nr_queued ++;
218 spin_unlock_irqrestore(&conf->device_lock, flags);
219
220 /* wake up frozen array... */
221 wake_up(&conf->wait_barrier);
222
223 md_wakeup_thread(mddev->thread);
224 }
225
226 /*
227 * raid_end_bio_io() is called when we have finished servicing a mirrored
228 * operation and are ready to return a success/failure code to the buffer
229 * cache layer.
230 */
231 static void raid_end_bio_io(r10bio_t *r10_bio)
232 {
233 struct bio *bio = r10_bio->master_bio;
234
235 bio_endio(bio,
236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
237 free_r10bio(r10_bio);
238 }
239
240 /*
241 * Update disk head position estimator based on IRQ completion info.
242 */
243 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
244 {
245 conf_t *conf = mddev_to_conf(r10_bio->mddev);
246
247 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
248 r10_bio->devs[slot].addr + (r10_bio->sectors);
249 }
250
251 static void raid10_end_read_request(struct bio *bio, int error)
252 {
253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
255 int slot, dev;
256 conf_t *conf = mddev_to_conf(r10_bio->mddev);
257
258
259 slot = r10_bio->read_slot;
260 dev = r10_bio->devs[slot].devnum;
261 /*
262 * this branch is our 'one mirror IO has finished' event handler:
263 */
264 update_head_pos(slot, r10_bio);
265
266 if (uptodate) {
267 /*
268 * Set R10BIO_Uptodate in our master bio, so that
269 * we will return a good error code to the higher
270 * levels even if IO on some other mirrored buffer fails.
271 *
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
275 */
276 set_bit(R10BIO_Uptodate, &r10_bio->state);
277 raid_end_bio_io(r10_bio);
278 } else {
279 /*
280 * oops, read error:
281 */
282 char b[BDEVNAME_SIZE];
283 if (printk_ratelimit())
284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
286 reschedule_retry(r10_bio);
287 }
288
289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
290 }
291
292 static void raid10_end_write_request(struct bio *bio, int error)
293 {
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
296 int slot, dev;
297 conf_t *conf = mddev_to_conf(r10_bio->mddev);
298
299 for (slot = 0; slot < conf->copies; slot++)
300 if (r10_bio->devs[slot].bio == bio)
301 break;
302 dev = r10_bio->devs[slot].devnum;
303
304 /*
305 * this branch is our 'one mirror IO has finished' event handler:
306 */
307 if (!uptodate) {
308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
309 /* an I/O failed, we can't clear the bitmap */
310 set_bit(R10BIO_Degraded, &r10_bio->state);
311 } else
312 /*
313 * Set R10BIO_Uptodate in our master bio, so that
314 * we will return a good error code for to the higher
315 * levels even if IO on some other mirrored buffer fails.
316 *
317 * The 'master' represents the composite IO operation to
318 * user-side. So if something waits for IO, then it will
319 * wait for the 'master' bio.
320 */
321 set_bit(R10BIO_Uptodate, &r10_bio->state);
322
323 update_head_pos(slot, r10_bio);
324
325 /*
326 *
327 * Let's see if all mirrored write operations have finished
328 * already.
329 */
330 if (atomic_dec_and_test(&r10_bio->remaining)) {
331 /* clear the bitmap if all writes complete successfully */
332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
333 r10_bio->sectors,
334 !test_bit(R10BIO_Degraded, &r10_bio->state),
335 0);
336 md_write_end(r10_bio->mddev);
337 raid_end_bio_io(r10_bio);
338 }
339
340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
341 }
342
343
344 /*
345 * RAID10 layout manager
346 * Aswell as the chunksize and raid_disks count, there are two
347 * parameters: near_copies and far_copies.
348 * near_copies * far_copies must be <= raid_disks.
349 * Normally one of these will be 1.
350 * If both are 1, we get raid0.
351 * If near_copies == raid_disks, we get raid1.
352 *
353 * Chunks are layed out in raid0 style with near_copies copies of the
354 * first chunk, followed by near_copies copies of the next chunk and
355 * so on.
356 * If far_copies > 1, then after 1/far_copies of the array has been assigned
357 * as described above, we start again with a device offset of near_copies.
358 * So we effectively have another copy of the whole array further down all
359 * the drives, but with blocks on different drives.
360 * With this layout, and block is never stored twice on the one device.
361 *
362 * raid10_find_phys finds the sector offset of a given virtual sector
363 * on each device that it is on.
364 *
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
367 */
368
369 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
370 {
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
376
377 int slot = 0;
378
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
382
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
386 if (conf->far_offset)
387 stripe *= conf->far_copies;
388
389 sector += stripe << conf->chunk_shift;
390
391 /* and calculate all the others */
392 for (n=0; n < conf->near_copies; n++) {
393 int d = dev;
394 sector_t s = sector;
395 r10bio->devs[slot].addr = sector;
396 r10bio->devs[slot].devnum = d;
397 slot++;
398
399 for (f = 1; f < conf->far_copies; f++) {
400 d += conf->near_copies;
401 if (d >= conf->raid_disks)
402 d -= conf->raid_disks;
403 s += conf->stride;
404 r10bio->devs[slot].devnum = d;
405 r10bio->devs[slot].addr = s;
406 slot++;
407 }
408 dev++;
409 if (dev >= conf->raid_disks) {
410 dev = 0;
411 sector += (conf->chunk_mask + 1);
412 }
413 }
414 BUG_ON(slot != conf->copies);
415 }
416
417 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
418 {
419 sector_t offset, chunk, vchunk;
420
421 offset = sector & conf->chunk_mask;
422 if (conf->far_offset) {
423 int fc;
424 chunk = sector >> conf->chunk_shift;
425 fc = sector_div(chunk, conf->far_copies);
426 dev -= fc * conf->near_copies;
427 if (dev < 0)
428 dev += conf->raid_disks;
429 } else {
430 while (sector >= conf->stride) {
431 sector -= conf->stride;
432 if (dev < conf->near_copies)
433 dev += conf->raid_disks - conf->near_copies;
434 else
435 dev -= conf->near_copies;
436 }
437 chunk = sector >> conf->chunk_shift;
438 }
439 vchunk = chunk * conf->raid_disks + dev;
440 sector_div(vchunk, conf->near_copies);
441 return (vchunk << conf->chunk_shift) + offset;
442 }
443
444 /**
445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
446 * @q: request queue
447 * @bvm: properties of new bio
448 * @biovec: the request that could be merged to it.
449 *
450 * Return amount of bytes we can accept at this offset
451 * If near_copies == raid_disk, there are no striping issues,
452 * but in that case, the function isn't called at all.
453 */
454 static int raid10_mergeable_bvec(struct request_queue *q,
455 struct bvec_merge_data *bvm,
456 struct bio_vec *biovec)
457 {
458 mddev_t *mddev = q->queuedata;
459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
460 int max;
461 unsigned int chunk_sectors = mddev->chunk_size >> 9;
462 unsigned int bio_sectors = bvm->bi_size >> 9;
463
464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
466 if (max <= biovec->bv_len && bio_sectors == 0)
467 return biovec->bv_len;
468 else
469 return max;
470 }
471
472 /*
473 * This routine returns the disk from which the requested read should
474 * be done. There is a per-array 'next expected sequential IO' sector
475 * number - if this matches on the next IO then we use the last disk.
476 * There is also a per-disk 'last know head position' sector that is
477 * maintained from IRQ contexts, both the normal and the resync IO
478 * completion handlers update this position correctly. If there is no
479 * perfect sequential match then we pick the disk whose head is closest.
480 *
481 * If there are 2 mirrors in the same 2 devices, performance degrades
482 * because position is mirror, not device based.
483 *
484 * The rdev for the device selected will have nr_pending incremented.
485 */
486
487 /*
488 * FIXME: possibly should rethink readbalancing and do it differently
489 * depending on near_copies / far_copies geometry.
490 */
491 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
492 {
493 const unsigned long this_sector = r10_bio->sector;
494 int disk, slot, nslot;
495 const int sectors = r10_bio->sectors;
496 sector_t new_distance, current_distance;
497 mdk_rdev_t *rdev;
498
499 raid10_find_phys(conf, r10_bio);
500 rcu_read_lock();
501 /*
502 * Check if we can balance. We can balance on the whole
503 * device if no resync is going on (recovery is ok), or below
504 * the resync window. We take the first readable disk when
505 * above the resync window.
506 */
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
512
513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
514 r10_bio->devs[slot].bio == IO_BLOCKED ||
515 !test_bit(In_sync, &rdev->flags)) {
516 slot++;
517 if (slot == conf->copies) {
518 slot = 0;
519 disk = -1;
520 break;
521 }
522 disk = r10_bio->devs[slot].devnum;
523 }
524 goto rb_out;
525 }
526
527
528 /* make sure the disk is operational */
529 slot = 0;
530 disk = r10_bio->devs[slot].devnum;
531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
532 r10_bio->devs[slot].bio == IO_BLOCKED ||
533 !test_bit(In_sync, &rdev->flags)) {
534 slot ++;
535 if (slot == conf->copies) {
536 disk = -1;
537 goto rb_out;
538 }
539 disk = r10_bio->devs[slot].devnum;
540 }
541
542
543 current_distance = abs(r10_bio->devs[slot].addr -
544 conf->mirrors[disk].head_position);
545
546 /* Find the disk whose head is closest,
547 * or - for far > 1 - find the closest to partition beginning */
548
549 for (nslot = slot; nslot < conf->copies; nslot++) {
550 int ndisk = r10_bio->devs[nslot].devnum;
551
552
553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
554 r10_bio->devs[nslot].bio == IO_BLOCKED ||
555 !test_bit(In_sync, &rdev->flags))
556 continue;
557
558 /* This optimisation is debatable, and completely destroys
559 * sequential read speed for 'far copies' arrays. So only
560 * keep it for 'near' arrays, and review those later.
561 */
562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
563 disk = ndisk;
564 slot = nslot;
565 break;
566 }
567
568 /* for far > 1 always use the lowest address */
569 if (conf->far_copies > 1)
570 new_distance = r10_bio->devs[nslot].addr;
571 else
572 new_distance = abs(r10_bio->devs[nslot].addr -
573 conf->mirrors[ndisk].head_position);
574 if (new_distance < current_distance) {
575 current_distance = new_distance;
576 disk = ndisk;
577 slot = nslot;
578 }
579 }
580
581 rb_out:
582 r10_bio->read_slot = slot;
583 /* conf->next_seq_sect = this_sector + sectors;*/
584
585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
587 else
588 disk = -1;
589 rcu_read_unlock();
590
591 return disk;
592 }
593
594 static void unplug_slaves(mddev_t *mddev)
595 {
596 conf_t *conf = mddev_to_conf(mddev);
597 int i;
598
599 rcu_read_lock();
600 for (i=0; i<mddev->raid_disks; i++) {
601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
604
605 atomic_inc(&rdev->nr_pending);
606 rcu_read_unlock();
607
608 blk_unplug(r_queue);
609
610 rdev_dec_pending(rdev, mddev);
611 rcu_read_lock();
612 }
613 }
614 rcu_read_unlock();
615 }
616
617 static void raid10_unplug(struct request_queue *q)
618 {
619 mddev_t *mddev = q->queuedata;
620
621 unplug_slaves(q->queuedata);
622 md_wakeup_thread(mddev->thread);
623 }
624
625 static int raid10_congested(void *data, int bits)
626 {
627 mddev_t *mddev = data;
628 conf_t *conf = mddev_to_conf(mddev);
629 int i, ret = 0;
630
631 rcu_read_lock();
632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
634 if (rdev && !test_bit(Faulty, &rdev->flags)) {
635 struct request_queue *q = bdev_get_queue(rdev->bdev);
636
637 ret |= bdi_congested(&q->backing_dev_info, bits);
638 }
639 }
640 rcu_read_unlock();
641 return ret;
642 }
643
644 static int flush_pending_writes(conf_t *conf)
645 {
646 /* Any writes that have been queued but are awaiting
647 * bitmap updates get flushed here.
648 * We return 1 if any requests were actually submitted.
649 */
650 int rv = 0;
651
652 spin_lock_irq(&conf->device_lock);
653
654 if (conf->pending_bio_list.head) {
655 struct bio *bio;
656 bio = bio_list_get(&conf->pending_bio_list);
657 blk_remove_plug(conf->mddev->queue);
658 spin_unlock_irq(&conf->device_lock);
659 /* flush any pending bitmap writes to disk
660 * before proceeding w/ I/O */
661 bitmap_unplug(conf->mddev->bitmap);
662
663 while (bio) { /* submit pending writes */
664 struct bio *next = bio->bi_next;
665 bio->bi_next = NULL;
666 generic_make_request(bio);
667 bio = next;
668 }
669 rv = 1;
670 } else
671 spin_unlock_irq(&conf->device_lock);
672 return rv;
673 }
674 /* Barriers....
675 * Sometimes we need to suspend IO while we do something else,
676 * either some resync/recovery, or reconfigure the array.
677 * To do this we raise a 'barrier'.
678 * The 'barrier' is a counter that can be raised multiple times
679 * to count how many activities are happening which preclude
680 * normal IO.
681 * We can only raise the barrier if there is no pending IO.
682 * i.e. if nr_pending == 0.
683 * We choose only to raise the barrier if no-one is waiting for the
684 * barrier to go down. This means that as soon as an IO request
685 * is ready, no other operations which require a barrier will start
686 * until the IO request has had a chance.
687 *
688 * So: regular IO calls 'wait_barrier'. When that returns there
689 * is no backgroup IO happening, It must arrange to call
690 * allow_barrier when it has finished its IO.
691 * backgroup IO calls must call raise_barrier. Once that returns
692 * there is no normal IO happeing. It must arrange to call
693 * lower_barrier when the particular background IO completes.
694 */
695
696 static void raise_barrier(conf_t *conf, int force)
697 {
698 BUG_ON(force && !conf->barrier);
699 spin_lock_irq(&conf->resync_lock);
700
701 /* Wait until no block IO is waiting (unless 'force') */
702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
703 conf->resync_lock,
704 raid10_unplug(conf->mddev->queue));
705
706 /* block any new IO from starting */
707 conf->barrier++;
708
709 /* No wait for all pending IO to complete */
710 wait_event_lock_irq(conf->wait_barrier,
711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
712 conf->resync_lock,
713 raid10_unplug(conf->mddev->queue));
714
715 spin_unlock_irq(&conf->resync_lock);
716 }
717
718 static void lower_barrier(conf_t *conf)
719 {
720 unsigned long flags;
721 spin_lock_irqsave(&conf->resync_lock, flags);
722 conf->barrier--;
723 spin_unlock_irqrestore(&conf->resync_lock, flags);
724 wake_up(&conf->wait_barrier);
725 }
726
727 static void wait_barrier(conf_t *conf)
728 {
729 spin_lock_irq(&conf->resync_lock);
730 if (conf->barrier) {
731 conf->nr_waiting++;
732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
733 conf->resync_lock,
734 raid10_unplug(conf->mddev->queue));
735 conf->nr_waiting--;
736 }
737 conf->nr_pending++;
738 spin_unlock_irq(&conf->resync_lock);
739 }
740
741 static void allow_barrier(conf_t *conf)
742 {
743 unsigned long flags;
744 spin_lock_irqsave(&conf->resync_lock, flags);
745 conf->nr_pending--;
746 spin_unlock_irqrestore(&conf->resync_lock, flags);
747 wake_up(&conf->wait_barrier);
748 }
749
750 static void freeze_array(conf_t *conf)
751 {
752 /* stop syncio and normal IO and wait for everything to
753 * go quiet.
754 * We increment barrier and nr_waiting, and then
755 * wait until nr_pending match nr_queued+1
756 * This is called in the context of one normal IO request
757 * that has failed. Thus any sync request that might be pending
758 * will be blocked by nr_pending, and we need to wait for
759 * pending IO requests to complete or be queued for re-try.
760 * Thus the number queued (nr_queued) plus this request (1)
761 * must match the number of pending IOs (nr_pending) before
762 * we continue.
763 */
764 spin_lock_irq(&conf->resync_lock);
765 conf->barrier++;
766 conf->nr_waiting++;
767 wait_event_lock_irq(conf->wait_barrier,
768 conf->nr_pending == conf->nr_queued+1,
769 conf->resync_lock,
770 ({ flush_pending_writes(conf);
771 raid10_unplug(conf->mddev->queue); }));
772 spin_unlock_irq(&conf->resync_lock);
773 }
774
775 static void unfreeze_array(conf_t *conf)
776 {
777 /* reverse the effect of the freeze */
778 spin_lock_irq(&conf->resync_lock);
779 conf->barrier--;
780 conf->nr_waiting--;
781 wake_up(&conf->wait_barrier);
782 spin_unlock_irq(&conf->resync_lock);
783 }
784
785 static int make_request(struct request_queue *q, struct bio * bio)
786 {
787 mddev_t *mddev = q->queuedata;
788 conf_t *conf = mddev_to_conf(mddev);
789 mirror_info_t *mirror;
790 r10bio_t *r10_bio;
791 struct bio *read_bio;
792 int i;
793 int chunk_sects = conf->chunk_mask + 1;
794 const int rw = bio_data_dir(bio);
795 const int do_sync = bio_sync(bio);
796 struct bio_list bl;
797 unsigned long flags;
798 mdk_rdev_t *blocked_rdev;
799
800 if (unlikely(bio_barrier(bio))) {
801 bio_endio(bio, -EOPNOTSUPP);
802 return 0;
803 }
804
805 /* If this request crosses a chunk boundary, we need to
806 * split it. This will only happen for 1 PAGE (or less) requests.
807 */
808 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
809 > chunk_sects &&
810 conf->near_copies < conf->raid_disks)) {
811 struct bio_pair *bp;
812 /* Sanity check -- queue functions should prevent this happening */
813 if (bio->bi_vcnt != 1 ||
814 bio->bi_idx != 0)
815 goto bad_map;
816 /* This is a one page bio that upper layers
817 * refuse to split for us, so we need to split it.
818 */
819 bp = bio_split(bio, bio_split_pool,
820 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
821 if (make_request(q, &bp->bio1))
822 generic_make_request(&bp->bio1);
823 if (make_request(q, &bp->bio2))
824 generic_make_request(&bp->bio2);
825
826 bio_pair_release(bp);
827 return 0;
828 bad_map:
829 printk("raid10_make_request bug: can't convert block across chunks"
830 " or bigger than %dk %llu %d\n", chunk_sects/2,
831 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
832
833 bio_io_error(bio);
834 return 0;
835 }
836
837 md_write_start(mddev, bio);
838
839 /*
840 * Register the new request and wait if the reconstruction
841 * thread has put up a bar for new requests.
842 * Continue immediately if no resync is active currently.
843 */
844 wait_barrier(conf);
845
846 disk_stat_inc(mddev->gendisk, ios[rw]);
847 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bio));
848
849 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
850
851 r10_bio->master_bio = bio;
852 r10_bio->sectors = bio->bi_size >> 9;
853
854 r10_bio->mddev = mddev;
855 r10_bio->sector = bio->bi_sector;
856 r10_bio->state = 0;
857
858 if (rw == READ) {
859 /*
860 * read balancing logic:
861 */
862 int disk = read_balance(conf, r10_bio);
863 int slot = r10_bio->read_slot;
864 if (disk < 0) {
865 raid_end_bio_io(r10_bio);
866 return 0;
867 }
868 mirror = conf->mirrors + disk;
869
870 read_bio = bio_clone(bio, GFP_NOIO);
871
872 r10_bio->devs[slot].bio = read_bio;
873
874 read_bio->bi_sector = r10_bio->devs[slot].addr +
875 mirror->rdev->data_offset;
876 read_bio->bi_bdev = mirror->rdev->bdev;
877 read_bio->bi_end_io = raid10_end_read_request;
878 read_bio->bi_rw = READ | do_sync;
879 read_bio->bi_private = r10_bio;
880
881 generic_make_request(read_bio);
882 return 0;
883 }
884
885 /*
886 * WRITE:
887 */
888 /* first select target devices under rcu_lock and
889 * inc refcount on their rdev. Record them by setting
890 * bios[x] to bio
891 */
892 raid10_find_phys(conf, r10_bio);
893 retry_write:
894 blocked_rdev = NULL;
895 rcu_read_lock();
896 for (i = 0; i < conf->copies; i++) {
897 int d = r10_bio->devs[i].devnum;
898 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
899 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
900 atomic_inc(&rdev->nr_pending);
901 blocked_rdev = rdev;
902 break;
903 }
904 if (rdev && !test_bit(Faulty, &rdev->flags)) {
905 atomic_inc(&rdev->nr_pending);
906 r10_bio->devs[i].bio = bio;
907 } else {
908 r10_bio->devs[i].bio = NULL;
909 set_bit(R10BIO_Degraded, &r10_bio->state);
910 }
911 }
912 rcu_read_unlock();
913
914 if (unlikely(blocked_rdev)) {
915 /* Have to wait for this device to get unblocked, then retry */
916 int j;
917 int d;
918
919 for (j = 0; j < i; j++)
920 if (r10_bio->devs[j].bio) {
921 d = r10_bio->devs[j].devnum;
922 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
923 }
924 allow_barrier(conf);
925 md_wait_for_blocked_rdev(blocked_rdev, mddev);
926 wait_barrier(conf);
927 goto retry_write;
928 }
929
930 atomic_set(&r10_bio->remaining, 0);
931
932 bio_list_init(&bl);
933 for (i = 0; i < conf->copies; i++) {
934 struct bio *mbio;
935 int d = r10_bio->devs[i].devnum;
936 if (!r10_bio->devs[i].bio)
937 continue;
938
939 mbio = bio_clone(bio, GFP_NOIO);
940 r10_bio->devs[i].bio = mbio;
941
942 mbio->bi_sector = r10_bio->devs[i].addr+
943 conf->mirrors[d].rdev->data_offset;
944 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
945 mbio->bi_end_io = raid10_end_write_request;
946 mbio->bi_rw = WRITE | do_sync;
947 mbio->bi_private = r10_bio;
948
949 atomic_inc(&r10_bio->remaining);
950 bio_list_add(&bl, mbio);
951 }
952
953 if (unlikely(!atomic_read(&r10_bio->remaining))) {
954 /* the array is dead */
955 md_write_end(mddev);
956 raid_end_bio_io(r10_bio);
957 return 0;
958 }
959
960 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
961 spin_lock_irqsave(&conf->device_lock, flags);
962 bio_list_merge(&conf->pending_bio_list, &bl);
963 blk_plug_device(mddev->queue);
964 spin_unlock_irqrestore(&conf->device_lock, flags);
965
966 /* In case raid10d snuck in to freeze_array */
967 wake_up(&conf->wait_barrier);
968
969 if (do_sync)
970 md_wakeup_thread(mddev->thread);
971
972 return 0;
973 }
974
975 static void status(struct seq_file *seq, mddev_t *mddev)
976 {
977 conf_t *conf = mddev_to_conf(mddev);
978 int i;
979
980 if (conf->near_copies < conf->raid_disks)
981 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
982 if (conf->near_copies > 1)
983 seq_printf(seq, " %d near-copies", conf->near_copies);
984 if (conf->far_copies > 1) {
985 if (conf->far_offset)
986 seq_printf(seq, " %d offset-copies", conf->far_copies);
987 else
988 seq_printf(seq, " %d far-copies", conf->far_copies);
989 }
990 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
991 conf->raid_disks - mddev->degraded);
992 for (i = 0; i < conf->raid_disks; i++)
993 seq_printf(seq, "%s",
994 conf->mirrors[i].rdev &&
995 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
996 seq_printf(seq, "]");
997 }
998
999 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1000 {
1001 char b[BDEVNAME_SIZE];
1002 conf_t *conf = mddev_to_conf(mddev);
1003
1004 /*
1005 * If it is not operational, then we have already marked it as dead
1006 * else if it is the last working disks, ignore the error, let the
1007 * next level up know.
1008 * else mark the drive as failed
1009 */
1010 if (test_bit(In_sync, &rdev->flags)
1011 && conf->raid_disks-mddev->degraded == 1)
1012 /*
1013 * Don't fail the drive, just return an IO error.
1014 * The test should really be more sophisticated than
1015 * "working_disks == 1", but it isn't critical, and
1016 * can wait until we do more sophisticated "is the drive
1017 * really dead" tests...
1018 */
1019 return;
1020 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1021 unsigned long flags;
1022 spin_lock_irqsave(&conf->device_lock, flags);
1023 mddev->degraded++;
1024 spin_unlock_irqrestore(&conf->device_lock, flags);
1025 /*
1026 * if recovery is running, make sure it aborts.
1027 */
1028 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1029 }
1030 set_bit(Faulty, &rdev->flags);
1031 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1032 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1033 "raid10: Operation continuing on %d devices.\n",
1034 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1035 }
1036
1037 static void print_conf(conf_t *conf)
1038 {
1039 int i;
1040 mirror_info_t *tmp;
1041
1042 printk("RAID10 conf printout:\n");
1043 if (!conf) {
1044 printk("(!conf)\n");
1045 return;
1046 }
1047 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1048 conf->raid_disks);
1049
1050 for (i = 0; i < conf->raid_disks; i++) {
1051 char b[BDEVNAME_SIZE];
1052 tmp = conf->mirrors + i;
1053 if (tmp->rdev)
1054 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1055 i, !test_bit(In_sync, &tmp->rdev->flags),
1056 !test_bit(Faulty, &tmp->rdev->flags),
1057 bdevname(tmp->rdev->bdev,b));
1058 }
1059 }
1060
1061 static void close_sync(conf_t *conf)
1062 {
1063 wait_barrier(conf);
1064 allow_barrier(conf);
1065
1066 mempool_destroy(conf->r10buf_pool);
1067 conf->r10buf_pool = NULL;
1068 }
1069
1070 /* check if there are enough drives for
1071 * every block to appear on atleast one
1072 */
1073 static int enough(conf_t *conf)
1074 {
1075 int first = 0;
1076
1077 do {
1078 int n = conf->copies;
1079 int cnt = 0;
1080 while (n--) {
1081 if (conf->mirrors[first].rdev)
1082 cnt++;
1083 first = (first+1) % conf->raid_disks;
1084 }
1085 if (cnt == 0)
1086 return 0;
1087 } while (first != 0);
1088 return 1;
1089 }
1090
1091 static int raid10_spare_active(mddev_t *mddev)
1092 {
1093 int i;
1094 conf_t *conf = mddev->private;
1095 mirror_info_t *tmp;
1096
1097 /*
1098 * Find all non-in_sync disks within the RAID10 configuration
1099 * and mark them in_sync
1100 */
1101 for (i = 0; i < conf->raid_disks; i++) {
1102 tmp = conf->mirrors + i;
1103 if (tmp->rdev
1104 && !test_bit(Faulty, &tmp->rdev->flags)
1105 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1106 unsigned long flags;
1107 spin_lock_irqsave(&conf->device_lock, flags);
1108 mddev->degraded--;
1109 spin_unlock_irqrestore(&conf->device_lock, flags);
1110 }
1111 }
1112
1113 print_conf(conf);
1114 return 0;
1115 }
1116
1117
1118 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1119 {
1120 conf_t *conf = mddev->private;
1121 int err = -EEXIST;
1122 int mirror;
1123 mirror_info_t *p;
1124 int first = 0;
1125 int last = mddev->raid_disks - 1;
1126
1127 if (mddev->recovery_cp < MaxSector)
1128 /* only hot-add to in-sync arrays, as recovery is
1129 * very different from resync
1130 */
1131 return -EBUSY;
1132 if (!enough(conf))
1133 return -EINVAL;
1134
1135 if (rdev->raid_disk)
1136 first = last = rdev->raid_disk;
1137
1138 if (rdev->saved_raid_disk >= 0 &&
1139 rdev->saved_raid_disk >= first &&
1140 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1141 mirror = rdev->saved_raid_disk;
1142 else
1143 mirror = first;
1144 for ( ; mirror <= last ; mirror++)
1145 if ( !(p=conf->mirrors+mirror)->rdev) {
1146
1147 blk_queue_stack_limits(mddev->queue,
1148 rdev->bdev->bd_disk->queue);
1149 /* as we don't honour merge_bvec_fn, we must never risk
1150 * violating it, so limit ->max_sector to one PAGE, as
1151 * a one page request is never in violation.
1152 */
1153 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1154 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1155 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1156
1157 p->head_position = 0;
1158 rdev->raid_disk = mirror;
1159 err = 0;
1160 if (rdev->saved_raid_disk != mirror)
1161 conf->fullsync = 1;
1162 rcu_assign_pointer(p->rdev, rdev);
1163 break;
1164 }
1165
1166 print_conf(conf);
1167 return err;
1168 }
1169
1170 static int raid10_remove_disk(mddev_t *mddev, int number)
1171 {
1172 conf_t *conf = mddev->private;
1173 int err = 0;
1174 mdk_rdev_t *rdev;
1175 mirror_info_t *p = conf->mirrors+ number;
1176
1177 print_conf(conf);
1178 rdev = p->rdev;
1179 if (rdev) {
1180 if (test_bit(In_sync, &rdev->flags) ||
1181 atomic_read(&rdev->nr_pending)) {
1182 err = -EBUSY;
1183 goto abort;
1184 }
1185 /* Only remove faulty devices in recovery
1186 * is not possible.
1187 */
1188 if (!test_bit(Faulty, &rdev->flags) &&
1189 enough(conf)) {
1190 err = -EBUSY;
1191 goto abort;
1192 }
1193 p->rdev = NULL;
1194 synchronize_rcu();
1195 if (atomic_read(&rdev->nr_pending)) {
1196 /* lost the race, try later */
1197 err = -EBUSY;
1198 p->rdev = rdev;
1199 }
1200 }
1201 abort:
1202
1203 print_conf(conf);
1204 return err;
1205 }
1206
1207
1208 static void end_sync_read(struct bio *bio, int error)
1209 {
1210 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1211 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1212 int i,d;
1213
1214 for (i=0; i<conf->copies; i++)
1215 if (r10_bio->devs[i].bio == bio)
1216 break;
1217 BUG_ON(i == conf->copies);
1218 update_head_pos(i, r10_bio);
1219 d = r10_bio->devs[i].devnum;
1220
1221 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1222 set_bit(R10BIO_Uptodate, &r10_bio->state);
1223 else {
1224 atomic_add(r10_bio->sectors,
1225 &conf->mirrors[d].rdev->corrected_errors);
1226 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1227 md_error(r10_bio->mddev,
1228 conf->mirrors[d].rdev);
1229 }
1230
1231 /* for reconstruct, we always reschedule after a read.
1232 * for resync, only after all reads
1233 */
1234 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1235 atomic_dec_and_test(&r10_bio->remaining)) {
1236 /* we have read all the blocks,
1237 * do the comparison in process context in raid10d
1238 */
1239 reschedule_retry(r10_bio);
1240 }
1241 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1242 }
1243
1244 static void end_sync_write(struct bio *bio, int error)
1245 {
1246 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1247 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1248 mddev_t *mddev = r10_bio->mddev;
1249 conf_t *conf = mddev_to_conf(mddev);
1250 int i,d;
1251
1252 for (i = 0; i < conf->copies; i++)
1253 if (r10_bio->devs[i].bio == bio)
1254 break;
1255 d = r10_bio->devs[i].devnum;
1256
1257 if (!uptodate)
1258 md_error(mddev, conf->mirrors[d].rdev);
1259
1260 update_head_pos(i, r10_bio);
1261
1262 while (atomic_dec_and_test(&r10_bio->remaining)) {
1263 if (r10_bio->master_bio == NULL) {
1264 /* the primary of several recovery bios */
1265 md_done_sync(mddev, r10_bio->sectors, 1);
1266 put_buf(r10_bio);
1267 break;
1268 } else {
1269 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1270 put_buf(r10_bio);
1271 r10_bio = r10_bio2;
1272 }
1273 }
1274 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1275 }
1276
1277 /*
1278 * Note: sync and recover and handled very differently for raid10
1279 * This code is for resync.
1280 * For resync, we read through virtual addresses and read all blocks.
1281 * If there is any error, we schedule a write. The lowest numbered
1282 * drive is authoritative.
1283 * However requests come for physical address, so we need to map.
1284 * For every physical address there are raid_disks/copies virtual addresses,
1285 * which is always are least one, but is not necessarly an integer.
1286 * This means that a physical address can span multiple chunks, so we may
1287 * have to submit multiple io requests for a single sync request.
1288 */
1289 /*
1290 * We check if all blocks are in-sync and only write to blocks that
1291 * aren't in sync
1292 */
1293 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1294 {
1295 conf_t *conf = mddev_to_conf(mddev);
1296 int i, first;
1297 struct bio *tbio, *fbio;
1298
1299 atomic_set(&r10_bio->remaining, 1);
1300
1301 /* find the first device with a block */
1302 for (i=0; i<conf->copies; i++)
1303 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1304 break;
1305
1306 if (i == conf->copies)
1307 goto done;
1308
1309 first = i;
1310 fbio = r10_bio->devs[i].bio;
1311
1312 /* now find blocks with errors */
1313 for (i=0 ; i < conf->copies ; i++) {
1314 int j, d;
1315 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1316
1317 tbio = r10_bio->devs[i].bio;
1318
1319 if (tbio->bi_end_io != end_sync_read)
1320 continue;
1321 if (i == first)
1322 continue;
1323 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1324 /* We know that the bi_io_vec layout is the same for
1325 * both 'first' and 'i', so we just compare them.
1326 * All vec entries are PAGE_SIZE;
1327 */
1328 for (j = 0; j < vcnt; j++)
1329 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1330 page_address(tbio->bi_io_vec[j].bv_page),
1331 PAGE_SIZE))
1332 break;
1333 if (j == vcnt)
1334 continue;
1335 mddev->resync_mismatches += r10_bio->sectors;
1336 }
1337 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1338 /* Don't fix anything. */
1339 continue;
1340 /* Ok, we need to write this bio
1341 * First we need to fixup bv_offset, bv_len and
1342 * bi_vecs, as the read request might have corrupted these
1343 */
1344 tbio->bi_vcnt = vcnt;
1345 tbio->bi_size = r10_bio->sectors << 9;
1346 tbio->bi_idx = 0;
1347 tbio->bi_phys_segments = 0;
1348 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1349 tbio->bi_flags |= 1 << BIO_UPTODATE;
1350 tbio->bi_next = NULL;
1351 tbio->bi_rw = WRITE;
1352 tbio->bi_private = r10_bio;
1353 tbio->bi_sector = r10_bio->devs[i].addr;
1354
1355 for (j=0; j < vcnt ; j++) {
1356 tbio->bi_io_vec[j].bv_offset = 0;
1357 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1358
1359 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1360 page_address(fbio->bi_io_vec[j].bv_page),
1361 PAGE_SIZE);
1362 }
1363 tbio->bi_end_io = end_sync_write;
1364
1365 d = r10_bio->devs[i].devnum;
1366 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1367 atomic_inc(&r10_bio->remaining);
1368 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1369
1370 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1371 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1372 generic_make_request(tbio);
1373 }
1374
1375 done:
1376 if (atomic_dec_and_test(&r10_bio->remaining)) {
1377 md_done_sync(mddev, r10_bio->sectors, 1);
1378 put_buf(r10_bio);
1379 }
1380 }
1381
1382 /*
1383 * Now for the recovery code.
1384 * Recovery happens across physical sectors.
1385 * We recover all non-is_sync drives by finding the virtual address of
1386 * each, and then choose a working drive that also has that virt address.
1387 * There is a separate r10_bio for each non-in_sync drive.
1388 * Only the first two slots are in use. The first for reading,
1389 * The second for writing.
1390 *
1391 */
1392
1393 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1394 {
1395 conf_t *conf = mddev_to_conf(mddev);
1396 int i, d;
1397 struct bio *bio, *wbio;
1398
1399
1400 /* move the pages across to the second bio
1401 * and submit the write request
1402 */
1403 bio = r10_bio->devs[0].bio;
1404 wbio = r10_bio->devs[1].bio;
1405 for (i=0; i < wbio->bi_vcnt; i++) {
1406 struct page *p = bio->bi_io_vec[i].bv_page;
1407 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1408 wbio->bi_io_vec[i].bv_page = p;
1409 }
1410 d = r10_bio->devs[1].devnum;
1411
1412 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1413 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1414 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1415 generic_make_request(wbio);
1416 else
1417 bio_endio(wbio, -EIO);
1418 }
1419
1420
1421 /*
1422 * This is a kernel thread which:
1423 *
1424 * 1. Retries failed read operations on working mirrors.
1425 * 2. Updates the raid superblock when problems encounter.
1426 * 3. Performs writes following reads for array synchronising.
1427 */
1428
1429 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1430 {
1431 int sect = 0; /* Offset from r10_bio->sector */
1432 int sectors = r10_bio->sectors;
1433 mdk_rdev_t*rdev;
1434 while(sectors) {
1435 int s = sectors;
1436 int sl = r10_bio->read_slot;
1437 int success = 0;
1438 int start;
1439
1440 if (s > (PAGE_SIZE>>9))
1441 s = PAGE_SIZE >> 9;
1442
1443 rcu_read_lock();
1444 do {
1445 int d = r10_bio->devs[sl].devnum;
1446 rdev = rcu_dereference(conf->mirrors[d].rdev);
1447 if (rdev &&
1448 test_bit(In_sync, &rdev->flags)) {
1449 atomic_inc(&rdev->nr_pending);
1450 rcu_read_unlock();
1451 success = sync_page_io(rdev->bdev,
1452 r10_bio->devs[sl].addr +
1453 sect + rdev->data_offset,
1454 s<<9,
1455 conf->tmppage, READ);
1456 rdev_dec_pending(rdev, mddev);
1457 rcu_read_lock();
1458 if (success)
1459 break;
1460 }
1461 sl++;
1462 if (sl == conf->copies)
1463 sl = 0;
1464 } while (!success && sl != r10_bio->read_slot);
1465 rcu_read_unlock();
1466
1467 if (!success) {
1468 /* Cannot read from anywhere -- bye bye array */
1469 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1470 md_error(mddev, conf->mirrors[dn].rdev);
1471 break;
1472 }
1473
1474 start = sl;
1475 /* write it back and re-read */
1476 rcu_read_lock();
1477 while (sl != r10_bio->read_slot) {
1478 int d;
1479 if (sl==0)
1480 sl = conf->copies;
1481 sl--;
1482 d = r10_bio->devs[sl].devnum;
1483 rdev = rcu_dereference(conf->mirrors[d].rdev);
1484 if (rdev &&
1485 test_bit(In_sync, &rdev->flags)) {
1486 atomic_inc(&rdev->nr_pending);
1487 rcu_read_unlock();
1488 atomic_add(s, &rdev->corrected_errors);
1489 if (sync_page_io(rdev->bdev,
1490 r10_bio->devs[sl].addr +
1491 sect + rdev->data_offset,
1492 s<<9, conf->tmppage, WRITE)
1493 == 0)
1494 /* Well, this device is dead */
1495 md_error(mddev, rdev);
1496 rdev_dec_pending(rdev, mddev);
1497 rcu_read_lock();
1498 }
1499 }
1500 sl = start;
1501 while (sl != r10_bio->read_slot) {
1502 int d;
1503 if (sl==0)
1504 sl = conf->copies;
1505 sl--;
1506 d = r10_bio->devs[sl].devnum;
1507 rdev = rcu_dereference(conf->mirrors[d].rdev);
1508 if (rdev &&
1509 test_bit(In_sync, &rdev->flags)) {
1510 char b[BDEVNAME_SIZE];
1511 atomic_inc(&rdev->nr_pending);
1512 rcu_read_unlock();
1513 if (sync_page_io(rdev->bdev,
1514 r10_bio->devs[sl].addr +
1515 sect + rdev->data_offset,
1516 s<<9, conf->tmppage, READ) == 0)
1517 /* Well, this device is dead */
1518 md_error(mddev, rdev);
1519 else
1520 printk(KERN_INFO
1521 "raid10:%s: read error corrected"
1522 " (%d sectors at %llu on %s)\n",
1523 mdname(mddev), s,
1524 (unsigned long long)(sect+
1525 rdev->data_offset),
1526 bdevname(rdev->bdev, b));
1527
1528 rdev_dec_pending(rdev, mddev);
1529 rcu_read_lock();
1530 }
1531 }
1532 rcu_read_unlock();
1533
1534 sectors -= s;
1535 sect += s;
1536 }
1537 }
1538
1539 static void raid10d(mddev_t *mddev)
1540 {
1541 r10bio_t *r10_bio;
1542 struct bio *bio;
1543 unsigned long flags;
1544 conf_t *conf = mddev_to_conf(mddev);
1545 struct list_head *head = &conf->retry_list;
1546 int unplug=0;
1547 mdk_rdev_t *rdev;
1548
1549 md_check_recovery(mddev);
1550
1551 for (;;) {
1552 char b[BDEVNAME_SIZE];
1553
1554 unplug += flush_pending_writes(conf);
1555
1556 spin_lock_irqsave(&conf->device_lock, flags);
1557 if (list_empty(head)) {
1558 spin_unlock_irqrestore(&conf->device_lock, flags);
1559 break;
1560 }
1561 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1562 list_del(head->prev);
1563 conf->nr_queued--;
1564 spin_unlock_irqrestore(&conf->device_lock, flags);
1565
1566 mddev = r10_bio->mddev;
1567 conf = mddev_to_conf(mddev);
1568 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1569 sync_request_write(mddev, r10_bio);
1570 unplug = 1;
1571 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1572 recovery_request_write(mddev, r10_bio);
1573 unplug = 1;
1574 } else {
1575 int mirror;
1576 /* we got a read error. Maybe the drive is bad. Maybe just
1577 * the block and we can fix it.
1578 * We freeze all other IO, and try reading the block from
1579 * other devices. When we find one, we re-write
1580 * and check it that fixes the read error.
1581 * This is all done synchronously while the array is
1582 * frozen.
1583 */
1584 if (mddev->ro == 0) {
1585 freeze_array(conf);
1586 fix_read_error(conf, mddev, r10_bio);
1587 unfreeze_array(conf);
1588 }
1589
1590 bio = r10_bio->devs[r10_bio->read_slot].bio;
1591 r10_bio->devs[r10_bio->read_slot].bio =
1592 mddev->ro ? IO_BLOCKED : NULL;
1593 mirror = read_balance(conf, r10_bio);
1594 if (mirror == -1) {
1595 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1596 " read error for block %llu\n",
1597 bdevname(bio->bi_bdev,b),
1598 (unsigned long long)r10_bio->sector);
1599 raid_end_bio_io(r10_bio);
1600 bio_put(bio);
1601 } else {
1602 const int do_sync = bio_sync(r10_bio->master_bio);
1603 bio_put(bio);
1604 rdev = conf->mirrors[mirror].rdev;
1605 if (printk_ratelimit())
1606 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1607 " another mirror\n",
1608 bdevname(rdev->bdev,b),
1609 (unsigned long long)r10_bio->sector);
1610 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1611 r10_bio->devs[r10_bio->read_slot].bio = bio;
1612 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1613 + rdev->data_offset;
1614 bio->bi_bdev = rdev->bdev;
1615 bio->bi_rw = READ | do_sync;
1616 bio->bi_private = r10_bio;
1617 bio->bi_end_io = raid10_end_read_request;
1618 unplug = 1;
1619 generic_make_request(bio);
1620 }
1621 }
1622 }
1623 if (unplug)
1624 unplug_slaves(mddev);
1625 }
1626
1627
1628 static int init_resync(conf_t *conf)
1629 {
1630 int buffs;
1631
1632 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1633 BUG_ON(conf->r10buf_pool);
1634 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1635 if (!conf->r10buf_pool)
1636 return -ENOMEM;
1637 conf->next_resync = 0;
1638 return 0;
1639 }
1640
1641 /*
1642 * perform a "sync" on one "block"
1643 *
1644 * We need to make sure that no normal I/O request - particularly write
1645 * requests - conflict with active sync requests.
1646 *
1647 * This is achieved by tracking pending requests and a 'barrier' concept
1648 * that can be installed to exclude normal IO requests.
1649 *
1650 * Resync and recovery are handled very differently.
1651 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1652 *
1653 * For resync, we iterate over virtual addresses, read all copies,
1654 * and update if there are differences. If only one copy is live,
1655 * skip it.
1656 * For recovery, we iterate over physical addresses, read a good
1657 * value for each non-in_sync drive, and over-write.
1658 *
1659 * So, for recovery we may have several outstanding complex requests for a
1660 * given address, one for each out-of-sync device. We model this by allocating
1661 * a number of r10_bio structures, one for each out-of-sync device.
1662 * As we setup these structures, we collect all bio's together into a list
1663 * which we then process collectively to add pages, and then process again
1664 * to pass to generic_make_request.
1665 *
1666 * The r10_bio structures are linked using a borrowed master_bio pointer.
1667 * This link is counted in ->remaining. When the r10_bio that points to NULL
1668 * has its remaining count decremented to 0, the whole complex operation
1669 * is complete.
1670 *
1671 */
1672
1673 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1674 {
1675 conf_t *conf = mddev_to_conf(mddev);
1676 r10bio_t *r10_bio;
1677 struct bio *biolist = NULL, *bio;
1678 sector_t max_sector, nr_sectors;
1679 int disk;
1680 int i;
1681 int max_sync;
1682 int sync_blocks;
1683
1684 sector_t sectors_skipped = 0;
1685 int chunks_skipped = 0;
1686
1687 if (!conf->r10buf_pool)
1688 if (init_resync(conf))
1689 return 0;
1690
1691 skipped:
1692 max_sector = mddev->size << 1;
1693 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1694 max_sector = mddev->resync_max_sectors;
1695 if (sector_nr >= max_sector) {
1696 /* If we aborted, we need to abort the
1697 * sync on the 'current' bitmap chucks (there can
1698 * be several when recovering multiple devices).
1699 * as we may have started syncing it but not finished.
1700 * We can find the current address in
1701 * mddev->curr_resync, but for recovery,
1702 * we need to convert that to several
1703 * virtual addresses.
1704 */
1705 if (mddev->curr_resync < max_sector) { /* aborted */
1706 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1707 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1708 &sync_blocks, 1);
1709 else for (i=0; i<conf->raid_disks; i++) {
1710 sector_t sect =
1711 raid10_find_virt(conf, mddev->curr_resync, i);
1712 bitmap_end_sync(mddev->bitmap, sect,
1713 &sync_blocks, 1);
1714 }
1715 } else /* completed sync */
1716 conf->fullsync = 0;
1717
1718 bitmap_close_sync(mddev->bitmap);
1719 close_sync(conf);
1720 *skipped = 1;
1721 return sectors_skipped;
1722 }
1723 if (chunks_skipped >= conf->raid_disks) {
1724 /* if there has been nothing to do on any drive,
1725 * then there is nothing to do at all..
1726 */
1727 *skipped = 1;
1728 return (max_sector - sector_nr) + sectors_skipped;
1729 }
1730
1731 if (max_sector > mddev->resync_max)
1732 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1733
1734 /* make sure whole request will fit in a chunk - if chunks
1735 * are meaningful
1736 */
1737 if (conf->near_copies < conf->raid_disks &&
1738 max_sector > (sector_nr | conf->chunk_mask))
1739 max_sector = (sector_nr | conf->chunk_mask) + 1;
1740 /*
1741 * If there is non-resync activity waiting for us then
1742 * put in a delay to throttle resync.
1743 */
1744 if (!go_faster && conf->nr_waiting)
1745 msleep_interruptible(1000);
1746
1747 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1748
1749 /* Again, very different code for resync and recovery.
1750 * Both must result in an r10bio with a list of bios that
1751 * have bi_end_io, bi_sector, bi_bdev set,
1752 * and bi_private set to the r10bio.
1753 * For recovery, we may actually create several r10bios
1754 * with 2 bios in each, that correspond to the bios in the main one.
1755 * In this case, the subordinate r10bios link back through a
1756 * borrowed master_bio pointer, and the counter in the master
1757 * includes a ref from each subordinate.
1758 */
1759 /* First, we decide what to do and set ->bi_end_io
1760 * To end_sync_read if we want to read, and
1761 * end_sync_write if we will want to write.
1762 */
1763
1764 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1765 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1766 /* recovery... the complicated one */
1767 int i, j, k;
1768 r10_bio = NULL;
1769
1770 for (i=0 ; i<conf->raid_disks; i++)
1771 if (conf->mirrors[i].rdev &&
1772 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
1773 int still_degraded = 0;
1774 /* want to reconstruct this device */
1775 r10bio_t *rb2 = r10_bio;
1776 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1777 int must_sync;
1778 /* Unless we are doing a full sync, we only need
1779 * to recover the block if it is set in the bitmap
1780 */
1781 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1782 &sync_blocks, 1);
1783 if (sync_blocks < max_sync)
1784 max_sync = sync_blocks;
1785 if (!must_sync &&
1786 !conf->fullsync) {
1787 /* yep, skip the sync_blocks here, but don't assume
1788 * that there will never be anything to do here
1789 */
1790 chunks_skipped = -1;
1791 continue;
1792 }
1793
1794 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1795 raise_barrier(conf, rb2 != NULL);
1796 atomic_set(&r10_bio->remaining, 0);
1797
1798 r10_bio->master_bio = (struct bio*)rb2;
1799 if (rb2)
1800 atomic_inc(&rb2->remaining);
1801 r10_bio->mddev = mddev;
1802 set_bit(R10BIO_IsRecover, &r10_bio->state);
1803 r10_bio->sector = sect;
1804
1805 raid10_find_phys(conf, r10_bio);
1806 /* Need to check if this section will still be
1807 * degraded
1808 */
1809 for (j=0; j<conf->copies;j++) {
1810 int d = r10_bio->devs[j].devnum;
1811 if (conf->mirrors[d].rdev == NULL ||
1812 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
1813 still_degraded = 1;
1814 break;
1815 }
1816 }
1817 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1818 &sync_blocks, still_degraded);
1819
1820 for (j=0; j<conf->copies;j++) {
1821 int d = r10_bio->devs[j].devnum;
1822 if (conf->mirrors[d].rdev &&
1823 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1824 /* This is where we read from */
1825 bio = r10_bio->devs[0].bio;
1826 bio->bi_next = biolist;
1827 biolist = bio;
1828 bio->bi_private = r10_bio;
1829 bio->bi_end_io = end_sync_read;
1830 bio->bi_rw = READ;
1831 bio->bi_sector = r10_bio->devs[j].addr +
1832 conf->mirrors[d].rdev->data_offset;
1833 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1834 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1835 atomic_inc(&r10_bio->remaining);
1836 /* and we write to 'i' */
1837
1838 for (k=0; k<conf->copies; k++)
1839 if (r10_bio->devs[k].devnum == i)
1840 break;
1841 BUG_ON(k == conf->copies);
1842 bio = r10_bio->devs[1].bio;
1843 bio->bi_next = biolist;
1844 biolist = bio;
1845 bio->bi_private = r10_bio;
1846 bio->bi_end_io = end_sync_write;
1847 bio->bi_rw = WRITE;
1848 bio->bi_sector = r10_bio->devs[k].addr +
1849 conf->mirrors[i].rdev->data_offset;
1850 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1851
1852 r10_bio->devs[0].devnum = d;
1853 r10_bio->devs[1].devnum = i;
1854
1855 break;
1856 }
1857 }
1858 if (j == conf->copies) {
1859 /* Cannot recover, so abort the recovery */
1860 put_buf(r10_bio);
1861 if (rb2)
1862 atomic_dec(&rb2->remaining);
1863 r10_bio = rb2;
1864 if (!test_and_set_bit(MD_RECOVERY_INTR,
1865 &mddev->recovery))
1866 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1867 mdname(mddev));
1868 break;
1869 }
1870 }
1871 if (biolist == NULL) {
1872 while (r10_bio) {
1873 r10bio_t *rb2 = r10_bio;
1874 r10_bio = (r10bio_t*) rb2->master_bio;
1875 rb2->master_bio = NULL;
1876 put_buf(rb2);
1877 }
1878 goto giveup;
1879 }
1880 } else {
1881 /* resync. Schedule a read for every block at this virt offset */
1882 int count = 0;
1883
1884 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1885 &sync_blocks, mddev->degraded) &&
1886 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1887 /* We can skip this block */
1888 *skipped = 1;
1889 return sync_blocks + sectors_skipped;
1890 }
1891 if (sync_blocks < max_sync)
1892 max_sync = sync_blocks;
1893 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1894
1895 r10_bio->mddev = mddev;
1896 atomic_set(&r10_bio->remaining, 0);
1897 raise_barrier(conf, 0);
1898 conf->next_resync = sector_nr;
1899
1900 r10_bio->master_bio = NULL;
1901 r10_bio->sector = sector_nr;
1902 set_bit(R10BIO_IsSync, &r10_bio->state);
1903 raid10_find_phys(conf, r10_bio);
1904 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1905
1906 for (i=0; i<conf->copies; i++) {
1907 int d = r10_bio->devs[i].devnum;
1908 bio = r10_bio->devs[i].bio;
1909 bio->bi_end_io = NULL;
1910 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1911 if (conf->mirrors[d].rdev == NULL ||
1912 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1913 continue;
1914 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1915 atomic_inc(&r10_bio->remaining);
1916 bio->bi_next = biolist;
1917 biolist = bio;
1918 bio->bi_private = r10_bio;
1919 bio->bi_end_io = end_sync_read;
1920 bio->bi_rw = READ;
1921 bio->bi_sector = r10_bio->devs[i].addr +
1922 conf->mirrors[d].rdev->data_offset;
1923 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1924 count++;
1925 }
1926
1927 if (count < 2) {
1928 for (i=0; i<conf->copies; i++) {
1929 int d = r10_bio->devs[i].devnum;
1930 if (r10_bio->devs[i].bio->bi_end_io)
1931 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1932 }
1933 put_buf(r10_bio);
1934 biolist = NULL;
1935 goto giveup;
1936 }
1937 }
1938
1939 for (bio = biolist; bio ; bio=bio->bi_next) {
1940
1941 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1942 if (bio->bi_end_io)
1943 bio->bi_flags |= 1 << BIO_UPTODATE;
1944 bio->bi_vcnt = 0;
1945 bio->bi_idx = 0;
1946 bio->bi_phys_segments = 0;
1947 bio->bi_size = 0;
1948 }
1949
1950 nr_sectors = 0;
1951 if (sector_nr + max_sync < max_sector)
1952 max_sector = sector_nr + max_sync;
1953 do {
1954 struct page *page;
1955 int len = PAGE_SIZE;
1956 disk = 0;
1957 if (sector_nr + (len>>9) > max_sector)
1958 len = (max_sector - sector_nr) << 9;
1959 if (len == 0)
1960 break;
1961 for (bio= biolist ; bio ; bio=bio->bi_next) {
1962 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1963 if (bio_add_page(bio, page, len, 0) == 0) {
1964 /* stop here */
1965 struct bio *bio2;
1966 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1967 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1968 /* remove last page from this bio */
1969 bio2->bi_vcnt--;
1970 bio2->bi_size -= len;
1971 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1972 }
1973 goto bio_full;
1974 }
1975 disk = i;
1976 }
1977 nr_sectors += len>>9;
1978 sector_nr += len>>9;
1979 } while (biolist->bi_vcnt < RESYNC_PAGES);
1980 bio_full:
1981 r10_bio->sectors = nr_sectors;
1982
1983 while (biolist) {
1984 bio = biolist;
1985 biolist = biolist->bi_next;
1986
1987 bio->bi_next = NULL;
1988 r10_bio = bio->bi_private;
1989 r10_bio->sectors = nr_sectors;
1990
1991 if (bio->bi_end_io == end_sync_read) {
1992 md_sync_acct(bio->bi_bdev, nr_sectors);
1993 generic_make_request(bio);
1994 }
1995 }
1996
1997 if (sectors_skipped)
1998 /* pretend they weren't skipped, it makes
1999 * no important difference in this case
2000 */
2001 md_done_sync(mddev, sectors_skipped, 1);
2002
2003 return sectors_skipped + nr_sectors;
2004 giveup:
2005 /* There is nowhere to write, so all non-sync
2006 * drives must be failed, so try the next chunk...
2007 */
2008 {
2009 sector_t sec = max_sector - sector_nr;
2010 sectors_skipped += sec;
2011 chunks_skipped ++;
2012 sector_nr = max_sector;
2013 goto skipped;
2014 }
2015 }
2016
2017 static int run(mddev_t *mddev)
2018 {
2019 conf_t *conf;
2020 int i, disk_idx;
2021 mirror_info_t *disk;
2022 mdk_rdev_t *rdev;
2023 struct list_head *tmp;
2024 int nc, fc, fo;
2025 sector_t stride, size;
2026
2027 if (mddev->chunk_size == 0) {
2028 printk(KERN_ERR "md/raid10: non-zero chunk size required.\n");
2029 return -EINVAL;
2030 }
2031
2032 nc = mddev->layout & 255;
2033 fc = (mddev->layout >> 8) & 255;
2034 fo = mddev->layout & (1<<16);
2035 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2036 (mddev->layout >> 17)) {
2037 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2038 mdname(mddev), mddev->layout);
2039 goto out;
2040 }
2041 /*
2042 * copy the already verified devices into our private RAID10
2043 * bookkeeping area. [whatever we allocate in run(),
2044 * should be freed in stop()]
2045 */
2046 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2047 mddev->private = conf;
2048 if (!conf) {
2049 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2050 mdname(mddev));
2051 goto out;
2052 }
2053 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2054 GFP_KERNEL);
2055 if (!conf->mirrors) {
2056 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2057 mdname(mddev));
2058 goto out_free_conf;
2059 }
2060
2061 conf->tmppage = alloc_page(GFP_KERNEL);
2062 if (!conf->tmppage)
2063 goto out_free_conf;
2064
2065 conf->mddev = mddev;
2066 conf->raid_disks = mddev->raid_disks;
2067 conf->near_copies = nc;
2068 conf->far_copies = fc;
2069 conf->copies = nc*fc;
2070 conf->far_offset = fo;
2071 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2072 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
2073 size = mddev->size >> (conf->chunk_shift-1);
2074 sector_div(size, fc);
2075 size = size * conf->raid_disks;
2076 sector_div(size, nc);
2077 /* 'size' is now the number of chunks in the array */
2078 /* calculate "used chunks per device" in 'stride' */
2079 stride = size * conf->copies;
2080
2081 /* We need to round up when dividing by raid_disks to
2082 * get the stride size.
2083 */
2084 stride += conf->raid_disks - 1;
2085 sector_div(stride, conf->raid_disks);
2086 mddev->size = stride << (conf->chunk_shift-1);
2087
2088 if (fo)
2089 stride = 1;
2090 else
2091 sector_div(stride, fc);
2092 conf->stride = stride << conf->chunk_shift;
2093
2094 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2095 r10bio_pool_free, conf);
2096 if (!conf->r10bio_pool) {
2097 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2098 mdname(mddev));
2099 goto out_free_conf;
2100 }
2101
2102 spin_lock_init(&conf->device_lock);
2103 mddev->queue->queue_lock = &conf->device_lock;
2104
2105 rdev_for_each(rdev, tmp, mddev) {
2106 disk_idx = rdev->raid_disk;
2107 if (disk_idx >= mddev->raid_disks
2108 || disk_idx < 0)
2109 continue;
2110 disk = conf->mirrors + disk_idx;
2111
2112 disk->rdev = rdev;
2113
2114 blk_queue_stack_limits(mddev->queue,
2115 rdev->bdev->bd_disk->queue);
2116 /* as we don't honour merge_bvec_fn, we must never risk
2117 * violating it, so limit ->max_sector to one PAGE, as
2118 * a one page request is never in violation.
2119 */
2120 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2121 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2122 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2123
2124 disk->head_position = 0;
2125 }
2126 INIT_LIST_HEAD(&conf->retry_list);
2127
2128 spin_lock_init(&conf->resync_lock);
2129 init_waitqueue_head(&conf->wait_barrier);
2130
2131 /* need to check that every block has at least one working mirror */
2132 if (!enough(conf)) {
2133 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2134 mdname(mddev));
2135 goto out_free_conf;
2136 }
2137
2138 mddev->degraded = 0;
2139 for (i = 0; i < conf->raid_disks; i++) {
2140
2141 disk = conf->mirrors + i;
2142
2143 if (!disk->rdev ||
2144 !test_bit(In_sync, &disk->rdev->flags)) {
2145 disk->head_position = 0;
2146 mddev->degraded++;
2147 if (disk->rdev)
2148 conf->fullsync = 1;
2149 }
2150 }
2151
2152
2153 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2154 if (!mddev->thread) {
2155 printk(KERN_ERR
2156 "raid10: couldn't allocate thread for %s\n",
2157 mdname(mddev));
2158 goto out_free_conf;
2159 }
2160
2161 printk(KERN_INFO
2162 "raid10: raid set %s active with %d out of %d devices\n",
2163 mdname(mddev), mddev->raid_disks - mddev->degraded,
2164 mddev->raid_disks);
2165 /*
2166 * Ok, everything is just fine now
2167 */
2168 mddev->array_sectors = size << conf->chunk_shift;
2169 mddev->resync_max_sectors = size << conf->chunk_shift;
2170
2171 mddev->queue->unplug_fn = raid10_unplug;
2172 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2173 mddev->queue->backing_dev_info.congested_data = mddev;
2174
2175 /* Calculate max read-ahead size.
2176 * We need to readahead at least twice a whole stripe....
2177 * maybe...
2178 */
2179 {
2180 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
2181 stripe /= conf->near_copies;
2182 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2183 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2184 }
2185
2186 if (conf->near_copies < mddev->raid_disks)
2187 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2188 return 0;
2189
2190 out_free_conf:
2191 if (conf->r10bio_pool)
2192 mempool_destroy(conf->r10bio_pool);
2193 safe_put_page(conf->tmppage);
2194 kfree(conf->mirrors);
2195 kfree(conf);
2196 mddev->private = NULL;
2197 out:
2198 return -EIO;
2199 }
2200
2201 static int stop(mddev_t *mddev)
2202 {
2203 conf_t *conf = mddev_to_conf(mddev);
2204
2205 md_unregister_thread(mddev->thread);
2206 mddev->thread = NULL;
2207 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2208 if (conf->r10bio_pool)
2209 mempool_destroy(conf->r10bio_pool);
2210 kfree(conf->mirrors);
2211 kfree(conf);
2212 mddev->private = NULL;
2213 return 0;
2214 }
2215
2216 static void raid10_quiesce(mddev_t *mddev, int state)
2217 {
2218 conf_t *conf = mddev_to_conf(mddev);
2219
2220 switch(state) {
2221 case 1:
2222 raise_barrier(conf, 0);
2223 break;
2224 case 0:
2225 lower_barrier(conf);
2226 break;
2227 }
2228 if (mddev->thread) {
2229 if (mddev->bitmap)
2230 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2231 else
2232 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2233 md_wakeup_thread(mddev->thread);
2234 }
2235 }
2236
2237 static struct mdk_personality raid10_personality =
2238 {
2239 .name = "raid10",
2240 .level = 10,
2241 .owner = THIS_MODULE,
2242 .make_request = make_request,
2243 .run = run,
2244 .stop = stop,
2245 .status = status,
2246 .error_handler = error,
2247 .hot_add_disk = raid10_add_disk,
2248 .hot_remove_disk= raid10_remove_disk,
2249 .spare_active = raid10_spare_active,
2250 .sync_request = sync_request,
2251 .quiesce = raid10_quiesce,
2252 };
2253
2254 static int __init raid_init(void)
2255 {
2256 return register_md_personality(&raid10_personality);
2257 }
2258
2259 static void raid_exit(void)
2260 {
2261 unregister_md_personality(&raid10_personality);
2262 }
2263
2264 module_init(raid_init);
2265 module_exit(raid_exit);
2266 MODULE_LICENSE("GPL");
2267 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2268 MODULE_ALIAS("md-raid10");
2269 MODULE_ALIAS("md-level-10");
This page took 0.077719 seconds and 5 git commands to generate.