MD RAID10: Export md_raid10_congested
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58 /*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61 #define NR_RAID10_BIOS 256
62
63 /* when we get a read error on a read-only array, we redirect to another
64 * device without failing the first device, or trying to over-write to
65 * correct the read error. To keep track of bad blocks on a per-bio
66 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
67 */
68 #define IO_BLOCKED ((struct bio *)1)
69 /* When we successfully write to a known bad-block, we need to remove the
70 * bad-block marking which must be done from process context. So we record
71 * the success by setting devs[n].bio to IO_MADE_GOOD
72 */
73 #define IO_MADE_GOOD ((struct bio *)2)
74
75 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
76
77 /* When there are this many requests queued to be written by
78 * the raid10 thread, we become 'congested' to provide back-pressure
79 * for writeback.
80 */
81 static int max_queued_requests = 1024;
82
83 static void allow_barrier(struct r10conf *conf);
84 static void lower_barrier(struct r10conf *conf);
85 static int enough(struct r10conf *conf, int ignore);
86 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
87 int *skipped);
88 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
89 static void end_reshape_write(struct bio *bio, int error);
90 static void end_reshape(struct r10conf *conf);
91
92 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct r10conf *conf = data;
95 int size = offsetof(struct r10bio, devs[conf->copies]);
96
97 /* allocate a r10bio with room for raid_disks entries in the
98 * bios array */
99 return kzalloc(size, gfp_flags);
100 }
101
102 static void r10bio_pool_free(void *r10_bio, void *data)
103 {
104 kfree(r10_bio);
105 }
106
107 /* Maximum size of each resync request */
108 #define RESYNC_BLOCK_SIZE (64*1024)
109 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
110 /* amount of memory to reserve for resync requests */
111 #define RESYNC_WINDOW (1024*1024)
112 /* maximum number of concurrent requests, memory permitting */
113 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
114
115 /*
116 * When performing a resync, we need to read and compare, so
117 * we need as many pages are there are copies.
118 * When performing a recovery, we need 2 bios, one for read,
119 * one for write (we recover only one drive per r10buf)
120 *
121 */
122 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
123 {
124 struct r10conf *conf = data;
125 struct page *page;
126 struct r10bio *r10_bio;
127 struct bio *bio;
128 int i, j;
129 int nalloc;
130
131 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
132 if (!r10_bio)
133 return NULL;
134
135 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
136 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
137 nalloc = conf->copies; /* resync */
138 else
139 nalloc = 2; /* recovery */
140
141 /*
142 * Allocate bios.
143 */
144 for (j = nalloc ; j-- ; ) {
145 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
146 if (!bio)
147 goto out_free_bio;
148 r10_bio->devs[j].bio = bio;
149 if (!conf->have_replacement)
150 continue;
151 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
152 if (!bio)
153 goto out_free_bio;
154 r10_bio->devs[j].repl_bio = bio;
155 }
156 /*
157 * Allocate RESYNC_PAGES data pages and attach them
158 * where needed.
159 */
160 for (j = 0 ; j < nalloc; j++) {
161 struct bio *rbio = r10_bio->devs[j].repl_bio;
162 bio = r10_bio->devs[j].bio;
163 for (i = 0; i < RESYNC_PAGES; i++) {
164 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
165 &conf->mddev->recovery)) {
166 /* we can share bv_page's during recovery
167 * and reshape */
168 struct bio *rbio = r10_bio->devs[0].bio;
169 page = rbio->bi_io_vec[i].bv_page;
170 get_page(page);
171 } else
172 page = alloc_page(gfp_flags);
173 if (unlikely(!page))
174 goto out_free_pages;
175
176 bio->bi_io_vec[i].bv_page = page;
177 if (rbio)
178 rbio->bi_io_vec[i].bv_page = page;
179 }
180 }
181
182 return r10_bio;
183
184 out_free_pages:
185 for ( ; i > 0 ; i--)
186 safe_put_page(bio->bi_io_vec[i-1].bv_page);
187 while (j--)
188 for (i = 0; i < RESYNC_PAGES ; i++)
189 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
190 j = 0;
191 out_free_bio:
192 for ( ; j < nalloc; j++) {
193 if (r10_bio->devs[j].bio)
194 bio_put(r10_bio->devs[j].bio);
195 if (r10_bio->devs[j].repl_bio)
196 bio_put(r10_bio->devs[j].repl_bio);
197 }
198 r10bio_pool_free(r10_bio, conf);
199 return NULL;
200 }
201
202 static void r10buf_pool_free(void *__r10_bio, void *data)
203 {
204 int i;
205 struct r10conf *conf = data;
206 struct r10bio *r10bio = __r10_bio;
207 int j;
208
209 for (j=0; j < conf->copies; j++) {
210 struct bio *bio = r10bio->devs[j].bio;
211 if (bio) {
212 for (i = 0; i < RESYNC_PAGES; i++) {
213 safe_put_page(bio->bi_io_vec[i].bv_page);
214 bio->bi_io_vec[i].bv_page = NULL;
215 }
216 bio_put(bio);
217 }
218 bio = r10bio->devs[j].repl_bio;
219 if (bio)
220 bio_put(bio);
221 }
222 r10bio_pool_free(r10bio, conf);
223 }
224
225 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
226 {
227 int i;
228
229 for (i = 0; i < conf->copies; i++) {
230 struct bio **bio = & r10_bio->devs[i].bio;
231 if (!BIO_SPECIAL(*bio))
232 bio_put(*bio);
233 *bio = NULL;
234 bio = &r10_bio->devs[i].repl_bio;
235 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
236 bio_put(*bio);
237 *bio = NULL;
238 }
239 }
240
241 static void free_r10bio(struct r10bio *r10_bio)
242 {
243 struct r10conf *conf = r10_bio->mddev->private;
244
245 put_all_bios(conf, r10_bio);
246 mempool_free(r10_bio, conf->r10bio_pool);
247 }
248
249 static void put_buf(struct r10bio *r10_bio)
250 {
251 struct r10conf *conf = r10_bio->mddev->private;
252
253 mempool_free(r10_bio, conf->r10buf_pool);
254
255 lower_barrier(conf);
256 }
257
258 static void reschedule_retry(struct r10bio *r10_bio)
259 {
260 unsigned long flags;
261 struct mddev *mddev = r10_bio->mddev;
262 struct r10conf *conf = mddev->private;
263
264 spin_lock_irqsave(&conf->device_lock, flags);
265 list_add(&r10_bio->retry_list, &conf->retry_list);
266 conf->nr_queued ++;
267 spin_unlock_irqrestore(&conf->device_lock, flags);
268
269 /* wake up frozen array... */
270 wake_up(&conf->wait_barrier);
271
272 md_wakeup_thread(mddev->thread);
273 }
274
275 /*
276 * raid_end_bio_io() is called when we have finished servicing a mirrored
277 * operation and are ready to return a success/failure code to the buffer
278 * cache layer.
279 */
280 static void raid_end_bio_io(struct r10bio *r10_bio)
281 {
282 struct bio *bio = r10_bio->master_bio;
283 int done;
284 struct r10conf *conf = r10_bio->mddev->private;
285
286 if (bio->bi_phys_segments) {
287 unsigned long flags;
288 spin_lock_irqsave(&conf->device_lock, flags);
289 bio->bi_phys_segments--;
290 done = (bio->bi_phys_segments == 0);
291 spin_unlock_irqrestore(&conf->device_lock, flags);
292 } else
293 done = 1;
294 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
295 clear_bit(BIO_UPTODATE, &bio->bi_flags);
296 if (done) {
297 bio_endio(bio, 0);
298 /*
299 * Wake up any possible resync thread that waits for the device
300 * to go idle.
301 */
302 allow_barrier(conf);
303 }
304 free_r10bio(r10_bio);
305 }
306
307 /*
308 * Update disk head position estimator based on IRQ completion info.
309 */
310 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
311 {
312 struct r10conf *conf = r10_bio->mddev->private;
313
314 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
315 r10_bio->devs[slot].addr + (r10_bio->sectors);
316 }
317
318 /*
319 * Find the disk number which triggered given bio
320 */
321 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
322 struct bio *bio, int *slotp, int *replp)
323 {
324 int slot;
325 int repl = 0;
326
327 for (slot = 0; slot < conf->copies; slot++) {
328 if (r10_bio->devs[slot].bio == bio)
329 break;
330 if (r10_bio->devs[slot].repl_bio == bio) {
331 repl = 1;
332 break;
333 }
334 }
335
336 BUG_ON(slot == conf->copies);
337 update_head_pos(slot, r10_bio);
338
339 if (slotp)
340 *slotp = slot;
341 if (replp)
342 *replp = repl;
343 return r10_bio->devs[slot].devnum;
344 }
345
346 static void raid10_end_read_request(struct bio *bio, int error)
347 {
348 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
349 struct r10bio *r10_bio = bio->bi_private;
350 int slot, dev;
351 struct md_rdev *rdev;
352 struct r10conf *conf = r10_bio->mddev->private;
353
354
355 slot = r10_bio->read_slot;
356 dev = r10_bio->devs[slot].devnum;
357 rdev = r10_bio->devs[slot].rdev;
358 /*
359 * this branch is our 'one mirror IO has finished' event handler:
360 */
361 update_head_pos(slot, r10_bio);
362
363 if (uptodate) {
364 /*
365 * Set R10BIO_Uptodate in our master bio, so that
366 * we will return a good error code to the higher
367 * levels even if IO on some other mirrored buffer fails.
368 *
369 * The 'master' represents the composite IO operation to
370 * user-side. So if something waits for IO, then it will
371 * wait for the 'master' bio.
372 */
373 set_bit(R10BIO_Uptodate, &r10_bio->state);
374 } else {
375 /* If all other devices that store this block have
376 * failed, we want to return the error upwards rather
377 * than fail the last device. Here we redefine
378 * "uptodate" to mean "Don't want to retry"
379 */
380 unsigned long flags;
381 spin_lock_irqsave(&conf->device_lock, flags);
382 if (!enough(conf, rdev->raid_disk))
383 uptodate = 1;
384 spin_unlock_irqrestore(&conf->device_lock, flags);
385 }
386 if (uptodate) {
387 raid_end_bio_io(r10_bio);
388 rdev_dec_pending(rdev, conf->mddev);
389 } else {
390 /*
391 * oops, read error - keep the refcount on the rdev
392 */
393 char b[BDEVNAME_SIZE];
394 printk_ratelimited(KERN_ERR
395 "md/raid10:%s: %s: rescheduling sector %llu\n",
396 mdname(conf->mddev),
397 bdevname(rdev->bdev, b),
398 (unsigned long long)r10_bio->sector);
399 set_bit(R10BIO_ReadError, &r10_bio->state);
400 reschedule_retry(r10_bio);
401 }
402 }
403
404 static void close_write(struct r10bio *r10_bio)
405 {
406 /* clear the bitmap if all writes complete successfully */
407 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
408 r10_bio->sectors,
409 !test_bit(R10BIO_Degraded, &r10_bio->state),
410 0);
411 md_write_end(r10_bio->mddev);
412 }
413
414 static void one_write_done(struct r10bio *r10_bio)
415 {
416 if (atomic_dec_and_test(&r10_bio->remaining)) {
417 if (test_bit(R10BIO_WriteError, &r10_bio->state))
418 reschedule_retry(r10_bio);
419 else {
420 close_write(r10_bio);
421 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
422 reschedule_retry(r10_bio);
423 else
424 raid_end_bio_io(r10_bio);
425 }
426 }
427 }
428
429 static void raid10_end_write_request(struct bio *bio, int error)
430 {
431 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
432 struct r10bio *r10_bio = bio->bi_private;
433 int dev;
434 int dec_rdev = 1;
435 struct r10conf *conf = r10_bio->mddev->private;
436 int slot, repl;
437 struct md_rdev *rdev = NULL;
438
439 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
440
441 if (repl)
442 rdev = conf->mirrors[dev].replacement;
443 if (!rdev) {
444 smp_rmb();
445 repl = 0;
446 rdev = conf->mirrors[dev].rdev;
447 }
448 /*
449 * this branch is our 'one mirror IO has finished' event handler:
450 */
451 if (!uptodate) {
452 if (repl)
453 /* Never record new bad blocks to replacement,
454 * just fail it.
455 */
456 md_error(rdev->mddev, rdev);
457 else {
458 set_bit(WriteErrorSeen, &rdev->flags);
459 if (!test_and_set_bit(WantReplacement, &rdev->flags))
460 set_bit(MD_RECOVERY_NEEDED,
461 &rdev->mddev->recovery);
462 set_bit(R10BIO_WriteError, &r10_bio->state);
463 dec_rdev = 0;
464 }
465 } else {
466 /*
467 * Set R10BIO_Uptodate in our master bio, so that
468 * we will return a good error code for to the higher
469 * levels even if IO on some other mirrored buffer fails.
470 *
471 * The 'master' represents the composite IO operation to
472 * user-side. So if something waits for IO, then it will
473 * wait for the 'master' bio.
474 */
475 sector_t first_bad;
476 int bad_sectors;
477
478 set_bit(R10BIO_Uptodate, &r10_bio->state);
479
480 /* Maybe we can clear some bad blocks. */
481 if (is_badblock(rdev,
482 r10_bio->devs[slot].addr,
483 r10_bio->sectors,
484 &first_bad, &bad_sectors)) {
485 bio_put(bio);
486 if (repl)
487 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
488 else
489 r10_bio->devs[slot].bio = IO_MADE_GOOD;
490 dec_rdev = 0;
491 set_bit(R10BIO_MadeGood, &r10_bio->state);
492 }
493 }
494
495 /*
496 *
497 * Let's see if all mirrored write operations have finished
498 * already.
499 */
500 one_write_done(r10_bio);
501 if (dec_rdev)
502 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
503 }
504
505 /*
506 * RAID10 layout manager
507 * As well as the chunksize and raid_disks count, there are two
508 * parameters: near_copies and far_copies.
509 * near_copies * far_copies must be <= raid_disks.
510 * Normally one of these will be 1.
511 * If both are 1, we get raid0.
512 * If near_copies == raid_disks, we get raid1.
513 *
514 * Chunks are laid out in raid0 style with near_copies copies of the
515 * first chunk, followed by near_copies copies of the next chunk and
516 * so on.
517 * If far_copies > 1, then after 1/far_copies of the array has been assigned
518 * as described above, we start again with a device offset of near_copies.
519 * So we effectively have another copy of the whole array further down all
520 * the drives, but with blocks on different drives.
521 * With this layout, and block is never stored twice on the one device.
522 *
523 * raid10_find_phys finds the sector offset of a given virtual sector
524 * on each device that it is on.
525 *
526 * raid10_find_virt does the reverse mapping, from a device and a
527 * sector offset to a virtual address
528 */
529
530 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
531 {
532 int n,f;
533 sector_t sector;
534 sector_t chunk;
535 sector_t stripe;
536 int dev;
537 int slot = 0;
538
539 /* now calculate first sector/dev */
540 chunk = r10bio->sector >> geo->chunk_shift;
541 sector = r10bio->sector & geo->chunk_mask;
542
543 chunk *= geo->near_copies;
544 stripe = chunk;
545 dev = sector_div(stripe, geo->raid_disks);
546 if (geo->far_offset)
547 stripe *= geo->far_copies;
548
549 sector += stripe << geo->chunk_shift;
550
551 /* and calculate all the others */
552 for (n = 0; n < geo->near_copies; n++) {
553 int d = dev;
554 sector_t s = sector;
555 r10bio->devs[slot].addr = sector;
556 r10bio->devs[slot].devnum = d;
557 slot++;
558
559 for (f = 1; f < geo->far_copies; f++) {
560 d += geo->near_copies;
561 if (d >= geo->raid_disks)
562 d -= geo->raid_disks;
563 s += geo->stride;
564 r10bio->devs[slot].devnum = d;
565 r10bio->devs[slot].addr = s;
566 slot++;
567 }
568 dev++;
569 if (dev >= geo->raid_disks) {
570 dev = 0;
571 sector += (geo->chunk_mask + 1);
572 }
573 }
574 }
575
576 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
577 {
578 struct geom *geo = &conf->geo;
579
580 if (conf->reshape_progress != MaxSector &&
581 ((r10bio->sector >= conf->reshape_progress) !=
582 conf->mddev->reshape_backwards)) {
583 set_bit(R10BIO_Previous, &r10bio->state);
584 geo = &conf->prev;
585 } else
586 clear_bit(R10BIO_Previous, &r10bio->state);
587
588 __raid10_find_phys(geo, r10bio);
589 }
590
591 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
592 {
593 sector_t offset, chunk, vchunk;
594 /* Never use conf->prev as this is only called during resync
595 * or recovery, so reshape isn't happening
596 */
597 struct geom *geo = &conf->geo;
598
599 offset = sector & geo->chunk_mask;
600 if (geo->far_offset) {
601 int fc;
602 chunk = sector >> geo->chunk_shift;
603 fc = sector_div(chunk, geo->far_copies);
604 dev -= fc * geo->near_copies;
605 if (dev < 0)
606 dev += geo->raid_disks;
607 } else {
608 while (sector >= geo->stride) {
609 sector -= geo->stride;
610 if (dev < geo->near_copies)
611 dev += geo->raid_disks - geo->near_copies;
612 else
613 dev -= geo->near_copies;
614 }
615 chunk = sector >> geo->chunk_shift;
616 }
617 vchunk = chunk * geo->raid_disks + dev;
618 sector_div(vchunk, geo->near_copies);
619 return (vchunk << geo->chunk_shift) + offset;
620 }
621
622 /**
623 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
624 * @q: request queue
625 * @bvm: properties of new bio
626 * @biovec: the request that could be merged to it.
627 *
628 * Return amount of bytes we can accept at this offset
629 * This requires checking for end-of-chunk if near_copies != raid_disks,
630 * and for subordinate merge_bvec_fns if merge_check_needed.
631 */
632 static int raid10_mergeable_bvec(struct request_queue *q,
633 struct bvec_merge_data *bvm,
634 struct bio_vec *biovec)
635 {
636 struct mddev *mddev = q->queuedata;
637 struct r10conf *conf = mddev->private;
638 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
639 int max;
640 unsigned int chunk_sectors;
641 unsigned int bio_sectors = bvm->bi_size >> 9;
642 struct geom *geo = &conf->geo;
643
644 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
645 if (conf->reshape_progress != MaxSector &&
646 ((sector >= conf->reshape_progress) !=
647 conf->mddev->reshape_backwards))
648 geo = &conf->prev;
649
650 if (geo->near_copies < geo->raid_disks) {
651 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
652 + bio_sectors)) << 9;
653 if (max < 0)
654 /* bio_add cannot handle a negative return */
655 max = 0;
656 if (max <= biovec->bv_len && bio_sectors == 0)
657 return biovec->bv_len;
658 } else
659 max = biovec->bv_len;
660
661 if (mddev->merge_check_needed) {
662 struct r10bio r10_bio;
663 int s;
664 if (conf->reshape_progress != MaxSector) {
665 /* Cannot give any guidance during reshape */
666 if (max <= biovec->bv_len && bio_sectors == 0)
667 return biovec->bv_len;
668 return 0;
669 }
670 r10_bio.sector = sector;
671 raid10_find_phys(conf, &r10_bio);
672 rcu_read_lock();
673 for (s = 0; s < conf->copies; s++) {
674 int disk = r10_bio.devs[s].devnum;
675 struct md_rdev *rdev = rcu_dereference(
676 conf->mirrors[disk].rdev);
677 if (rdev && !test_bit(Faulty, &rdev->flags)) {
678 struct request_queue *q =
679 bdev_get_queue(rdev->bdev);
680 if (q->merge_bvec_fn) {
681 bvm->bi_sector = r10_bio.devs[s].addr
682 + rdev->data_offset;
683 bvm->bi_bdev = rdev->bdev;
684 max = min(max, q->merge_bvec_fn(
685 q, bvm, biovec));
686 }
687 }
688 rdev = rcu_dereference(conf->mirrors[disk].replacement);
689 if (rdev && !test_bit(Faulty, &rdev->flags)) {
690 struct request_queue *q =
691 bdev_get_queue(rdev->bdev);
692 if (q->merge_bvec_fn) {
693 bvm->bi_sector = r10_bio.devs[s].addr
694 + rdev->data_offset;
695 bvm->bi_bdev = rdev->bdev;
696 max = min(max, q->merge_bvec_fn(
697 q, bvm, biovec));
698 }
699 }
700 }
701 rcu_read_unlock();
702 }
703 return max;
704 }
705
706 /*
707 * This routine returns the disk from which the requested read should
708 * be done. There is a per-array 'next expected sequential IO' sector
709 * number - if this matches on the next IO then we use the last disk.
710 * There is also a per-disk 'last know head position' sector that is
711 * maintained from IRQ contexts, both the normal and the resync IO
712 * completion handlers update this position correctly. If there is no
713 * perfect sequential match then we pick the disk whose head is closest.
714 *
715 * If there are 2 mirrors in the same 2 devices, performance degrades
716 * because position is mirror, not device based.
717 *
718 * The rdev for the device selected will have nr_pending incremented.
719 */
720
721 /*
722 * FIXME: possibly should rethink readbalancing and do it differently
723 * depending on near_copies / far_copies geometry.
724 */
725 static struct md_rdev *read_balance(struct r10conf *conf,
726 struct r10bio *r10_bio,
727 int *max_sectors)
728 {
729 const sector_t this_sector = r10_bio->sector;
730 int disk, slot;
731 int sectors = r10_bio->sectors;
732 int best_good_sectors;
733 sector_t new_distance, best_dist;
734 struct md_rdev *best_rdev, *rdev = NULL;
735 int do_balance;
736 int best_slot;
737 struct geom *geo = &conf->geo;
738
739 raid10_find_phys(conf, r10_bio);
740 rcu_read_lock();
741 retry:
742 sectors = r10_bio->sectors;
743 best_slot = -1;
744 best_rdev = NULL;
745 best_dist = MaxSector;
746 best_good_sectors = 0;
747 do_balance = 1;
748 /*
749 * Check if we can balance. We can balance on the whole
750 * device if no resync is going on (recovery is ok), or below
751 * the resync window. We take the first readable disk when
752 * above the resync window.
753 */
754 if (conf->mddev->recovery_cp < MaxSector
755 && (this_sector + sectors >= conf->next_resync))
756 do_balance = 0;
757
758 for (slot = 0; slot < conf->copies ; slot++) {
759 sector_t first_bad;
760 int bad_sectors;
761 sector_t dev_sector;
762
763 if (r10_bio->devs[slot].bio == IO_BLOCKED)
764 continue;
765 disk = r10_bio->devs[slot].devnum;
766 rdev = rcu_dereference(conf->mirrors[disk].replacement);
767 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
768 test_bit(Unmerged, &rdev->flags) ||
769 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
770 rdev = rcu_dereference(conf->mirrors[disk].rdev);
771 if (rdev == NULL ||
772 test_bit(Faulty, &rdev->flags) ||
773 test_bit(Unmerged, &rdev->flags))
774 continue;
775 if (!test_bit(In_sync, &rdev->flags) &&
776 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
777 continue;
778
779 dev_sector = r10_bio->devs[slot].addr;
780 if (is_badblock(rdev, dev_sector, sectors,
781 &first_bad, &bad_sectors)) {
782 if (best_dist < MaxSector)
783 /* Already have a better slot */
784 continue;
785 if (first_bad <= dev_sector) {
786 /* Cannot read here. If this is the
787 * 'primary' device, then we must not read
788 * beyond 'bad_sectors' from another device.
789 */
790 bad_sectors -= (dev_sector - first_bad);
791 if (!do_balance && sectors > bad_sectors)
792 sectors = bad_sectors;
793 if (best_good_sectors > sectors)
794 best_good_sectors = sectors;
795 } else {
796 sector_t good_sectors =
797 first_bad - dev_sector;
798 if (good_sectors > best_good_sectors) {
799 best_good_sectors = good_sectors;
800 best_slot = slot;
801 best_rdev = rdev;
802 }
803 if (!do_balance)
804 /* Must read from here */
805 break;
806 }
807 continue;
808 } else
809 best_good_sectors = sectors;
810
811 if (!do_balance)
812 break;
813
814 /* This optimisation is debatable, and completely destroys
815 * sequential read speed for 'far copies' arrays. So only
816 * keep it for 'near' arrays, and review those later.
817 */
818 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
819 break;
820
821 /* for far > 1 always use the lowest address */
822 if (geo->far_copies > 1)
823 new_distance = r10_bio->devs[slot].addr;
824 else
825 new_distance = abs(r10_bio->devs[slot].addr -
826 conf->mirrors[disk].head_position);
827 if (new_distance < best_dist) {
828 best_dist = new_distance;
829 best_slot = slot;
830 best_rdev = rdev;
831 }
832 }
833 if (slot >= conf->copies) {
834 slot = best_slot;
835 rdev = best_rdev;
836 }
837
838 if (slot >= 0) {
839 atomic_inc(&rdev->nr_pending);
840 if (test_bit(Faulty, &rdev->flags)) {
841 /* Cannot risk returning a device that failed
842 * before we inc'ed nr_pending
843 */
844 rdev_dec_pending(rdev, conf->mddev);
845 goto retry;
846 }
847 r10_bio->read_slot = slot;
848 } else
849 rdev = NULL;
850 rcu_read_unlock();
851 *max_sectors = best_good_sectors;
852
853 return rdev;
854 }
855
856 int md_raid10_congested(struct mddev *mddev, int bits)
857 {
858 struct r10conf *conf = mddev->private;
859 int i, ret = 0;
860
861 if ((bits & (1 << BDI_async_congested)) &&
862 conf->pending_count >= max_queued_requests)
863 return 1;
864
865 rcu_read_lock();
866 for (i = 0;
867 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
868 && ret == 0;
869 i++) {
870 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
871 if (rdev && !test_bit(Faulty, &rdev->flags)) {
872 struct request_queue *q = bdev_get_queue(rdev->bdev);
873
874 ret |= bdi_congested(&q->backing_dev_info, bits);
875 }
876 }
877 rcu_read_unlock();
878 return ret;
879 }
880 EXPORT_SYMBOL_GPL(md_raid10_congested);
881
882 static int raid10_congested(void *data, int bits)
883 {
884 struct mddev *mddev = data;
885
886 return mddev_congested(mddev, bits) ||
887 md_raid10_congested(mddev, bits);
888 }
889
890 static void flush_pending_writes(struct r10conf *conf)
891 {
892 /* Any writes that have been queued but are awaiting
893 * bitmap updates get flushed here.
894 */
895 spin_lock_irq(&conf->device_lock);
896
897 if (conf->pending_bio_list.head) {
898 struct bio *bio;
899 bio = bio_list_get(&conf->pending_bio_list);
900 conf->pending_count = 0;
901 spin_unlock_irq(&conf->device_lock);
902 /* flush any pending bitmap writes to disk
903 * before proceeding w/ I/O */
904 bitmap_unplug(conf->mddev->bitmap);
905 wake_up(&conf->wait_barrier);
906
907 while (bio) { /* submit pending writes */
908 struct bio *next = bio->bi_next;
909 bio->bi_next = NULL;
910 generic_make_request(bio);
911 bio = next;
912 }
913 } else
914 spin_unlock_irq(&conf->device_lock);
915 }
916
917 /* Barriers....
918 * Sometimes we need to suspend IO while we do something else,
919 * either some resync/recovery, or reconfigure the array.
920 * To do this we raise a 'barrier'.
921 * The 'barrier' is a counter that can be raised multiple times
922 * to count how many activities are happening which preclude
923 * normal IO.
924 * We can only raise the barrier if there is no pending IO.
925 * i.e. if nr_pending == 0.
926 * We choose only to raise the barrier if no-one is waiting for the
927 * barrier to go down. This means that as soon as an IO request
928 * is ready, no other operations which require a barrier will start
929 * until the IO request has had a chance.
930 *
931 * So: regular IO calls 'wait_barrier'. When that returns there
932 * is no backgroup IO happening, It must arrange to call
933 * allow_barrier when it has finished its IO.
934 * backgroup IO calls must call raise_barrier. Once that returns
935 * there is no normal IO happeing. It must arrange to call
936 * lower_barrier when the particular background IO completes.
937 */
938
939 static void raise_barrier(struct r10conf *conf, int force)
940 {
941 BUG_ON(force && !conf->barrier);
942 spin_lock_irq(&conf->resync_lock);
943
944 /* Wait until no block IO is waiting (unless 'force') */
945 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
946 conf->resync_lock, );
947
948 /* block any new IO from starting */
949 conf->barrier++;
950
951 /* Now wait for all pending IO to complete */
952 wait_event_lock_irq(conf->wait_barrier,
953 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
954 conf->resync_lock, );
955
956 spin_unlock_irq(&conf->resync_lock);
957 }
958
959 static void lower_barrier(struct r10conf *conf)
960 {
961 unsigned long flags;
962 spin_lock_irqsave(&conf->resync_lock, flags);
963 conf->barrier--;
964 spin_unlock_irqrestore(&conf->resync_lock, flags);
965 wake_up(&conf->wait_barrier);
966 }
967
968 static void wait_barrier(struct r10conf *conf)
969 {
970 spin_lock_irq(&conf->resync_lock);
971 if (conf->barrier) {
972 conf->nr_waiting++;
973 /* Wait for the barrier to drop.
974 * However if there are already pending
975 * requests (preventing the barrier from
976 * rising completely), and the
977 * pre-process bio queue isn't empty,
978 * then don't wait, as we need to empty
979 * that queue to get the nr_pending
980 * count down.
981 */
982 wait_event_lock_irq(conf->wait_barrier,
983 !conf->barrier ||
984 (conf->nr_pending &&
985 current->bio_list &&
986 !bio_list_empty(current->bio_list)),
987 conf->resync_lock,
988 );
989 conf->nr_waiting--;
990 }
991 conf->nr_pending++;
992 spin_unlock_irq(&conf->resync_lock);
993 }
994
995 static void allow_barrier(struct r10conf *conf)
996 {
997 unsigned long flags;
998 spin_lock_irqsave(&conf->resync_lock, flags);
999 conf->nr_pending--;
1000 spin_unlock_irqrestore(&conf->resync_lock, flags);
1001 wake_up(&conf->wait_barrier);
1002 }
1003
1004 static void freeze_array(struct r10conf *conf)
1005 {
1006 /* stop syncio and normal IO and wait for everything to
1007 * go quiet.
1008 * We increment barrier and nr_waiting, and then
1009 * wait until nr_pending match nr_queued+1
1010 * This is called in the context of one normal IO request
1011 * that has failed. Thus any sync request that might be pending
1012 * will be blocked by nr_pending, and we need to wait for
1013 * pending IO requests to complete or be queued for re-try.
1014 * Thus the number queued (nr_queued) plus this request (1)
1015 * must match the number of pending IOs (nr_pending) before
1016 * we continue.
1017 */
1018 spin_lock_irq(&conf->resync_lock);
1019 conf->barrier++;
1020 conf->nr_waiting++;
1021 wait_event_lock_irq(conf->wait_barrier,
1022 conf->nr_pending == conf->nr_queued+1,
1023 conf->resync_lock,
1024 flush_pending_writes(conf));
1025
1026 spin_unlock_irq(&conf->resync_lock);
1027 }
1028
1029 static void unfreeze_array(struct r10conf *conf)
1030 {
1031 /* reverse the effect of the freeze */
1032 spin_lock_irq(&conf->resync_lock);
1033 conf->barrier--;
1034 conf->nr_waiting--;
1035 wake_up(&conf->wait_barrier);
1036 spin_unlock_irq(&conf->resync_lock);
1037 }
1038
1039 static sector_t choose_data_offset(struct r10bio *r10_bio,
1040 struct md_rdev *rdev)
1041 {
1042 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1043 test_bit(R10BIO_Previous, &r10_bio->state))
1044 return rdev->data_offset;
1045 else
1046 return rdev->new_data_offset;
1047 }
1048
1049 static void make_request(struct mddev *mddev, struct bio * bio)
1050 {
1051 struct r10conf *conf = mddev->private;
1052 struct r10bio *r10_bio;
1053 struct bio *read_bio;
1054 int i;
1055 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1056 int chunk_sects = chunk_mask + 1;
1057 const int rw = bio_data_dir(bio);
1058 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1059 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1060 unsigned long flags;
1061 struct md_rdev *blocked_rdev;
1062 int sectors_handled;
1063 int max_sectors;
1064 int sectors;
1065
1066 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1067 md_flush_request(mddev, bio);
1068 return;
1069 }
1070
1071 /* If this request crosses a chunk boundary, we need to
1072 * split it. This will only happen for 1 PAGE (or less) requests.
1073 */
1074 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1075 > chunk_sects
1076 && (conf->geo.near_copies < conf->geo.raid_disks
1077 || conf->prev.near_copies < conf->prev.raid_disks))) {
1078 struct bio_pair *bp;
1079 /* Sanity check -- queue functions should prevent this happening */
1080 if (bio->bi_vcnt != 1 ||
1081 bio->bi_idx != 0)
1082 goto bad_map;
1083 /* This is a one page bio that upper layers
1084 * refuse to split for us, so we need to split it.
1085 */
1086 bp = bio_split(bio,
1087 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1088
1089 /* Each of these 'make_request' calls will call 'wait_barrier'.
1090 * If the first succeeds but the second blocks due to the resync
1091 * thread raising the barrier, we will deadlock because the
1092 * IO to the underlying device will be queued in generic_make_request
1093 * and will never complete, so will never reduce nr_pending.
1094 * So increment nr_waiting here so no new raise_barriers will
1095 * succeed, and so the second wait_barrier cannot block.
1096 */
1097 spin_lock_irq(&conf->resync_lock);
1098 conf->nr_waiting++;
1099 spin_unlock_irq(&conf->resync_lock);
1100
1101 make_request(mddev, &bp->bio1);
1102 make_request(mddev, &bp->bio2);
1103
1104 spin_lock_irq(&conf->resync_lock);
1105 conf->nr_waiting--;
1106 wake_up(&conf->wait_barrier);
1107 spin_unlock_irq(&conf->resync_lock);
1108
1109 bio_pair_release(bp);
1110 return;
1111 bad_map:
1112 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1113 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1114 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1115
1116 bio_io_error(bio);
1117 return;
1118 }
1119
1120 md_write_start(mddev, bio);
1121
1122 /*
1123 * Register the new request and wait if the reconstruction
1124 * thread has put up a bar for new requests.
1125 * Continue immediately if no resync is active currently.
1126 */
1127 wait_barrier(conf);
1128
1129 sectors = bio->bi_size >> 9;
1130 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1131 bio->bi_sector < conf->reshape_progress &&
1132 bio->bi_sector + sectors > conf->reshape_progress) {
1133 /* IO spans the reshape position. Need to wait for
1134 * reshape to pass
1135 */
1136 allow_barrier(conf);
1137 wait_event(conf->wait_barrier,
1138 conf->reshape_progress <= bio->bi_sector ||
1139 conf->reshape_progress >= bio->bi_sector + sectors);
1140 wait_barrier(conf);
1141 }
1142 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1143 bio_data_dir(bio) == WRITE &&
1144 (mddev->reshape_backwards
1145 ? (bio->bi_sector < conf->reshape_safe &&
1146 bio->bi_sector + sectors > conf->reshape_progress)
1147 : (bio->bi_sector + sectors > conf->reshape_safe &&
1148 bio->bi_sector < conf->reshape_progress))) {
1149 /* Need to update reshape_position in metadata */
1150 mddev->reshape_position = conf->reshape_progress;
1151 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1152 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1153 md_wakeup_thread(mddev->thread);
1154 wait_event(mddev->sb_wait,
1155 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1156
1157 conf->reshape_safe = mddev->reshape_position;
1158 }
1159
1160 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1161
1162 r10_bio->master_bio = bio;
1163 r10_bio->sectors = sectors;
1164
1165 r10_bio->mddev = mddev;
1166 r10_bio->sector = bio->bi_sector;
1167 r10_bio->state = 0;
1168
1169 /* We might need to issue multiple reads to different
1170 * devices if there are bad blocks around, so we keep
1171 * track of the number of reads in bio->bi_phys_segments.
1172 * If this is 0, there is only one r10_bio and no locking
1173 * will be needed when the request completes. If it is
1174 * non-zero, then it is the number of not-completed requests.
1175 */
1176 bio->bi_phys_segments = 0;
1177 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1178
1179 if (rw == READ) {
1180 /*
1181 * read balancing logic:
1182 */
1183 struct md_rdev *rdev;
1184 int slot;
1185
1186 read_again:
1187 rdev = read_balance(conf, r10_bio, &max_sectors);
1188 if (!rdev) {
1189 raid_end_bio_io(r10_bio);
1190 return;
1191 }
1192 slot = r10_bio->read_slot;
1193
1194 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1195 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1196 max_sectors);
1197
1198 r10_bio->devs[slot].bio = read_bio;
1199 r10_bio->devs[slot].rdev = rdev;
1200
1201 read_bio->bi_sector = r10_bio->devs[slot].addr +
1202 choose_data_offset(r10_bio, rdev);
1203 read_bio->bi_bdev = rdev->bdev;
1204 read_bio->bi_end_io = raid10_end_read_request;
1205 read_bio->bi_rw = READ | do_sync;
1206 read_bio->bi_private = r10_bio;
1207
1208 if (max_sectors < r10_bio->sectors) {
1209 /* Could not read all from this device, so we will
1210 * need another r10_bio.
1211 */
1212 sectors_handled = (r10_bio->sectors + max_sectors
1213 - bio->bi_sector);
1214 r10_bio->sectors = max_sectors;
1215 spin_lock_irq(&conf->device_lock);
1216 if (bio->bi_phys_segments == 0)
1217 bio->bi_phys_segments = 2;
1218 else
1219 bio->bi_phys_segments++;
1220 spin_unlock(&conf->device_lock);
1221 /* Cannot call generic_make_request directly
1222 * as that will be queued in __generic_make_request
1223 * and subsequent mempool_alloc might block
1224 * waiting for it. so hand bio over to raid10d.
1225 */
1226 reschedule_retry(r10_bio);
1227
1228 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1229
1230 r10_bio->master_bio = bio;
1231 r10_bio->sectors = ((bio->bi_size >> 9)
1232 - sectors_handled);
1233 r10_bio->state = 0;
1234 r10_bio->mddev = mddev;
1235 r10_bio->sector = bio->bi_sector + sectors_handled;
1236 goto read_again;
1237 } else
1238 generic_make_request(read_bio);
1239 return;
1240 }
1241
1242 /*
1243 * WRITE:
1244 */
1245 if (conf->pending_count >= max_queued_requests) {
1246 md_wakeup_thread(mddev->thread);
1247 wait_event(conf->wait_barrier,
1248 conf->pending_count < max_queued_requests);
1249 }
1250 /* first select target devices under rcu_lock and
1251 * inc refcount on their rdev. Record them by setting
1252 * bios[x] to bio
1253 * If there are known/acknowledged bad blocks on any device
1254 * on which we have seen a write error, we want to avoid
1255 * writing to those blocks. This potentially requires several
1256 * writes to write around the bad blocks. Each set of writes
1257 * gets its own r10_bio with a set of bios attached. The number
1258 * of r10_bios is recored in bio->bi_phys_segments just as with
1259 * the read case.
1260 */
1261
1262 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1263 raid10_find_phys(conf, r10_bio);
1264 retry_write:
1265 blocked_rdev = NULL;
1266 rcu_read_lock();
1267 max_sectors = r10_bio->sectors;
1268
1269 for (i = 0; i < conf->copies; i++) {
1270 int d = r10_bio->devs[i].devnum;
1271 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1272 struct md_rdev *rrdev = rcu_dereference(
1273 conf->mirrors[d].replacement);
1274 if (rdev == rrdev)
1275 rrdev = NULL;
1276 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1277 atomic_inc(&rdev->nr_pending);
1278 blocked_rdev = rdev;
1279 break;
1280 }
1281 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1282 atomic_inc(&rrdev->nr_pending);
1283 blocked_rdev = rrdev;
1284 break;
1285 }
1286 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1287 || test_bit(Unmerged, &rrdev->flags)))
1288 rrdev = NULL;
1289
1290 r10_bio->devs[i].bio = NULL;
1291 r10_bio->devs[i].repl_bio = NULL;
1292 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1293 test_bit(Unmerged, &rdev->flags)) {
1294 set_bit(R10BIO_Degraded, &r10_bio->state);
1295 continue;
1296 }
1297 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1298 sector_t first_bad;
1299 sector_t dev_sector = r10_bio->devs[i].addr;
1300 int bad_sectors;
1301 int is_bad;
1302
1303 is_bad = is_badblock(rdev, dev_sector,
1304 max_sectors,
1305 &first_bad, &bad_sectors);
1306 if (is_bad < 0) {
1307 /* Mustn't write here until the bad block
1308 * is acknowledged
1309 */
1310 atomic_inc(&rdev->nr_pending);
1311 set_bit(BlockedBadBlocks, &rdev->flags);
1312 blocked_rdev = rdev;
1313 break;
1314 }
1315 if (is_bad && first_bad <= dev_sector) {
1316 /* Cannot write here at all */
1317 bad_sectors -= (dev_sector - first_bad);
1318 if (bad_sectors < max_sectors)
1319 /* Mustn't write more than bad_sectors
1320 * to other devices yet
1321 */
1322 max_sectors = bad_sectors;
1323 /* We don't set R10BIO_Degraded as that
1324 * only applies if the disk is missing,
1325 * so it might be re-added, and we want to
1326 * know to recover this chunk.
1327 * In this case the device is here, and the
1328 * fact that this chunk is not in-sync is
1329 * recorded in the bad block log.
1330 */
1331 continue;
1332 }
1333 if (is_bad) {
1334 int good_sectors = first_bad - dev_sector;
1335 if (good_sectors < max_sectors)
1336 max_sectors = good_sectors;
1337 }
1338 }
1339 r10_bio->devs[i].bio = bio;
1340 atomic_inc(&rdev->nr_pending);
1341 if (rrdev) {
1342 r10_bio->devs[i].repl_bio = bio;
1343 atomic_inc(&rrdev->nr_pending);
1344 }
1345 }
1346 rcu_read_unlock();
1347
1348 if (unlikely(blocked_rdev)) {
1349 /* Have to wait for this device to get unblocked, then retry */
1350 int j;
1351 int d;
1352
1353 for (j = 0; j < i; j++) {
1354 if (r10_bio->devs[j].bio) {
1355 d = r10_bio->devs[j].devnum;
1356 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1357 }
1358 if (r10_bio->devs[j].repl_bio) {
1359 struct md_rdev *rdev;
1360 d = r10_bio->devs[j].devnum;
1361 rdev = conf->mirrors[d].replacement;
1362 if (!rdev) {
1363 /* Race with remove_disk */
1364 smp_mb();
1365 rdev = conf->mirrors[d].rdev;
1366 }
1367 rdev_dec_pending(rdev, mddev);
1368 }
1369 }
1370 allow_barrier(conf);
1371 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1372 wait_barrier(conf);
1373 goto retry_write;
1374 }
1375
1376 if (max_sectors < r10_bio->sectors) {
1377 /* We are splitting this into multiple parts, so
1378 * we need to prepare for allocating another r10_bio.
1379 */
1380 r10_bio->sectors = max_sectors;
1381 spin_lock_irq(&conf->device_lock);
1382 if (bio->bi_phys_segments == 0)
1383 bio->bi_phys_segments = 2;
1384 else
1385 bio->bi_phys_segments++;
1386 spin_unlock_irq(&conf->device_lock);
1387 }
1388 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1389
1390 atomic_set(&r10_bio->remaining, 1);
1391 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1392
1393 for (i = 0; i < conf->copies; i++) {
1394 struct bio *mbio;
1395 int d = r10_bio->devs[i].devnum;
1396 if (!r10_bio->devs[i].bio)
1397 continue;
1398
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1401 max_sectors);
1402 r10_bio->devs[i].bio = mbio;
1403
1404 mbio->bi_sector = (r10_bio->devs[i].addr+
1405 choose_data_offset(r10_bio,
1406 conf->mirrors[d].rdev));
1407 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
1409 mbio->bi_rw = WRITE | do_sync | do_fua;
1410 mbio->bi_private = r10_bio;
1411
1412 atomic_inc(&r10_bio->remaining);
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 bio_list_add(&conf->pending_bio_list, mbio);
1415 conf->pending_count++;
1416 spin_unlock_irqrestore(&conf->device_lock, flags);
1417 if (!mddev_check_plugged(mddev))
1418 md_wakeup_thread(mddev->thread);
1419
1420 if (!r10_bio->devs[i].repl_bio)
1421 continue;
1422
1423 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1424 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1425 max_sectors);
1426 r10_bio->devs[i].repl_bio = mbio;
1427
1428 /* We are actively writing to the original device
1429 * so it cannot disappear, so the replacement cannot
1430 * become NULL here
1431 */
1432 mbio->bi_sector = (r10_bio->devs[i].addr +
1433 choose_data_offset(
1434 r10_bio,
1435 conf->mirrors[d].replacement));
1436 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1437 mbio->bi_end_io = raid10_end_write_request;
1438 mbio->bi_rw = WRITE | do_sync | do_fua;
1439 mbio->bi_private = r10_bio;
1440
1441 atomic_inc(&r10_bio->remaining);
1442 spin_lock_irqsave(&conf->device_lock, flags);
1443 bio_list_add(&conf->pending_bio_list, mbio);
1444 conf->pending_count++;
1445 spin_unlock_irqrestore(&conf->device_lock, flags);
1446 if (!mddev_check_plugged(mddev))
1447 md_wakeup_thread(mddev->thread);
1448 }
1449
1450 /* Don't remove the bias on 'remaining' (one_write_done) until
1451 * after checking if we need to go around again.
1452 */
1453
1454 if (sectors_handled < (bio->bi_size >> 9)) {
1455 one_write_done(r10_bio);
1456 /* We need another r10_bio. It has already been counted
1457 * in bio->bi_phys_segments.
1458 */
1459 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1460
1461 r10_bio->master_bio = bio;
1462 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1463
1464 r10_bio->mddev = mddev;
1465 r10_bio->sector = bio->bi_sector + sectors_handled;
1466 r10_bio->state = 0;
1467 goto retry_write;
1468 }
1469 one_write_done(r10_bio);
1470
1471 /* In case raid10d snuck in to freeze_array */
1472 wake_up(&conf->wait_barrier);
1473 }
1474
1475 static void status(struct seq_file *seq, struct mddev *mddev)
1476 {
1477 struct r10conf *conf = mddev->private;
1478 int i;
1479
1480 if (conf->geo.near_copies < conf->geo.raid_disks)
1481 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1482 if (conf->geo.near_copies > 1)
1483 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1484 if (conf->geo.far_copies > 1) {
1485 if (conf->geo.far_offset)
1486 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1487 else
1488 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1489 }
1490 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1491 conf->geo.raid_disks - mddev->degraded);
1492 for (i = 0; i < conf->geo.raid_disks; i++)
1493 seq_printf(seq, "%s",
1494 conf->mirrors[i].rdev &&
1495 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1496 seq_printf(seq, "]");
1497 }
1498
1499 /* check if there are enough drives for
1500 * every block to appear on atleast one.
1501 * Don't consider the device numbered 'ignore'
1502 * as we might be about to remove it.
1503 */
1504 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1505 {
1506 int first = 0;
1507
1508 do {
1509 int n = conf->copies;
1510 int cnt = 0;
1511 while (n--) {
1512 if (conf->mirrors[first].rdev &&
1513 first != ignore)
1514 cnt++;
1515 first = (first+1) % geo->raid_disks;
1516 }
1517 if (cnt == 0)
1518 return 0;
1519 } while (first != 0);
1520 return 1;
1521 }
1522
1523 static int enough(struct r10conf *conf, int ignore)
1524 {
1525 return _enough(conf, &conf->geo, ignore) &&
1526 _enough(conf, &conf->prev, ignore);
1527 }
1528
1529 static void error(struct mddev *mddev, struct md_rdev *rdev)
1530 {
1531 char b[BDEVNAME_SIZE];
1532 struct r10conf *conf = mddev->private;
1533
1534 /*
1535 * If it is not operational, then we have already marked it as dead
1536 * else if it is the last working disks, ignore the error, let the
1537 * next level up know.
1538 * else mark the drive as failed
1539 */
1540 if (test_bit(In_sync, &rdev->flags)
1541 && !enough(conf, rdev->raid_disk))
1542 /*
1543 * Don't fail the drive, just return an IO error.
1544 */
1545 return;
1546 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1547 unsigned long flags;
1548 spin_lock_irqsave(&conf->device_lock, flags);
1549 mddev->degraded++;
1550 spin_unlock_irqrestore(&conf->device_lock, flags);
1551 /*
1552 * if recovery is running, make sure it aborts.
1553 */
1554 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1555 }
1556 set_bit(Blocked, &rdev->flags);
1557 set_bit(Faulty, &rdev->flags);
1558 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1559 printk(KERN_ALERT
1560 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1561 "md/raid10:%s: Operation continuing on %d devices.\n",
1562 mdname(mddev), bdevname(rdev->bdev, b),
1563 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1564 }
1565
1566 static void print_conf(struct r10conf *conf)
1567 {
1568 int i;
1569 struct raid10_info *tmp;
1570
1571 printk(KERN_DEBUG "RAID10 conf printout:\n");
1572 if (!conf) {
1573 printk(KERN_DEBUG "(!conf)\n");
1574 return;
1575 }
1576 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1577 conf->geo.raid_disks);
1578
1579 for (i = 0; i < conf->geo.raid_disks; i++) {
1580 char b[BDEVNAME_SIZE];
1581 tmp = conf->mirrors + i;
1582 if (tmp->rdev)
1583 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1584 i, !test_bit(In_sync, &tmp->rdev->flags),
1585 !test_bit(Faulty, &tmp->rdev->flags),
1586 bdevname(tmp->rdev->bdev,b));
1587 }
1588 }
1589
1590 static void close_sync(struct r10conf *conf)
1591 {
1592 wait_barrier(conf);
1593 allow_barrier(conf);
1594
1595 mempool_destroy(conf->r10buf_pool);
1596 conf->r10buf_pool = NULL;
1597 }
1598
1599 static int raid10_spare_active(struct mddev *mddev)
1600 {
1601 int i;
1602 struct r10conf *conf = mddev->private;
1603 struct raid10_info *tmp;
1604 int count = 0;
1605 unsigned long flags;
1606
1607 /*
1608 * Find all non-in_sync disks within the RAID10 configuration
1609 * and mark them in_sync
1610 */
1611 for (i = 0; i < conf->geo.raid_disks; i++) {
1612 tmp = conf->mirrors + i;
1613 if (tmp->replacement
1614 && tmp->replacement->recovery_offset == MaxSector
1615 && !test_bit(Faulty, &tmp->replacement->flags)
1616 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1617 /* Replacement has just become active */
1618 if (!tmp->rdev
1619 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1620 count++;
1621 if (tmp->rdev) {
1622 /* Replaced device not technically faulty,
1623 * but we need to be sure it gets removed
1624 * and never re-added.
1625 */
1626 set_bit(Faulty, &tmp->rdev->flags);
1627 sysfs_notify_dirent_safe(
1628 tmp->rdev->sysfs_state);
1629 }
1630 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1631 } else if (tmp->rdev
1632 && !test_bit(Faulty, &tmp->rdev->flags)
1633 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1634 count++;
1635 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1636 }
1637 }
1638 spin_lock_irqsave(&conf->device_lock, flags);
1639 mddev->degraded -= count;
1640 spin_unlock_irqrestore(&conf->device_lock, flags);
1641
1642 print_conf(conf);
1643 return count;
1644 }
1645
1646
1647 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1648 {
1649 struct r10conf *conf = mddev->private;
1650 int err = -EEXIST;
1651 int mirror;
1652 int first = 0;
1653 int last = conf->geo.raid_disks - 1;
1654 struct request_queue *q = bdev_get_queue(rdev->bdev);
1655
1656 if (mddev->recovery_cp < MaxSector)
1657 /* only hot-add to in-sync arrays, as recovery is
1658 * very different from resync
1659 */
1660 return -EBUSY;
1661 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1662 return -EINVAL;
1663
1664 if (rdev->raid_disk >= 0)
1665 first = last = rdev->raid_disk;
1666
1667 if (q->merge_bvec_fn) {
1668 set_bit(Unmerged, &rdev->flags);
1669 mddev->merge_check_needed = 1;
1670 }
1671
1672 if (rdev->saved_raid_disk >= first &&
1673 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1674 mirror = rdev->saved_raid_disk;
1675 else
1676 mirror = first;
1677 for ( ; mirror <= last ; mirror++) {
1678 struct raid10_info *p = &conf->mirrors[mirror];
1679 if (p->recovery_disabled == mddev->recovery_disabled)
1680 continue;
1681 if (p->rdev) {
1682 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1683 p->replacement != NULL)
1684 continue;
1685 clear_bit(In_sync, &rdev->flags);
1686 set_bit(Replacement, &rdev->flags);
1687 rdev->raid_disk = mirror;
1688 err = 0;
1689 disk_stack_limits(mddev->gendisk, rdev->bdev,
1690 rdev->data_offset << 9);
1691 conf->fullsync = 1;
1692 rcu_assign_pointer(p->replacement, rdev);
1693 break;
1694 }
1695
1696 disk_stack_limits(mddev->gendisk, rdev->bdev,
1697 rdev->data_offset << 9);
1698
1699 p->head_position = 0;
1700 p->recovery_disabled = mddev->recovery_disabled - 1;
1701 rdev->raid_disk = mirror;
1702 err = 0;
1703 if (rdev->saved_raid_disk != mirror)
1704 conf->fullsync = 1;
1705 rcu_assign_pointer(p->rdev, rdev);
1706 break;
1707 }
1708 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1709 /* Some requests might not have seen this new
1710 * merge_bvec_fn. We must wait for them to complete
1711 * before merging the device fully.
1712 * First we make sure any code which has tested
1713 * our function has submitted the request, then
1714 * we wait for all outstanding requests to complete.
1715 */
1716 synchronize_sched();
1717 raise_barrier(conf, 0);
1718 lower_barrier(conf);
1719 clear_bit(Unmerged, &rdev->flags);
1720 }
1721 md_integrity_add_rdev(rdev, mddev);
1722 print_conf(conf);
1723 return err;
1724 }
1725
1726 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1727 {
1728 struct r10conf *conf = mddev->private;
1729 int err = 0;
1730 int number = rdev->raid_disk;
1731 struct md_rdev **rdevp;
1732 struct raid10_info *p = conf->mirrors + number;
1733
1734 print_conf(conf);
1735 if (rdev == p->rdev)
1736 rdevp = &p->rdev;
1737 else if (rdev == p->replacement)
1738 rdevp = &p->replacement;
1739 else
1740 return 0;
1741
1742 if (test_bit(In_sync, &rdev->flags) ||
1743 atomic_read(&rdev->nr_pending)) {
1744 err = -EBUSY;
1745 goto abort;
1746 }
1747 /* Only remove faulty devices if recovery
1748 * is not possible.
1749 */
1750 if (!test_bit(Faulty, &rdev->flags) &&
1751 mddev->recovery_disabled != p->recovery_disabled &&
1752 (!p->replacement || p->replacement == rdev) &&
1753 number < conf->geo.raid_disks &&
1754 enough(conf, -1)) {
1755 err = -EBUSY;
1756 goto abort;
1757 }
1758 *rdevp = NULL;
1759 synchronize_rcu();
1760 if (atomic_read(&rdev->nr_pending)) {
1761 /* lost the race, try later */
1762 err = -EBUSY;
1763 *rdevp = rdev;
1764 goto abort;
1765 } else if (p->replacement) {
1766 /* We must have just cleared 'rdev' */
1767 p->rdev = p->replacement;
1768 clear_bit(Replacement, &p->replacement->flags);
1769 smp_mb(); /* Make sure other CPUs may see both as identical
1770 * but will never see neither -- if they are careful.
1771 */
1772 p->replacement = NULL;
1773 clear_bit(WantReplacement, &rdev->flags);
1774 } else
1775 /* We might have just remove the Replacement as faulty
1776 * Clear the flag just in case
1777 */
1778 clear_bit(WantReplacement, &rdev->flags);
1779
1780 err = md_integrity_register(mddev);
1781
1782 abort:
1783
1784 print_conf(conf);
1785 return err;
1786 }
1787
1788
1789 static void end_sync_read(struct bio *bio, int error)
1790 {
1791 struct r10bio *r10_bio = bio->bi_private;
1792 struct r10conf *conf = r10_bio->mddev->private;
1793 int d;
1794
1795 if (bio == r10_bio->master_bio) {
1796 /* this is a reshape read */
1797 d = r10_bio->read_slot; /* really the read dev */
1798 } else
1799 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1800
1801 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1802 set_bit(R10BIO_Uptodate, &r10_bio->state);
1803 else
1804 /* The write handler will notice the lack of
1805 * R10BIO_Uptodate and record any errors etc
1806 */
1807 atomic_add(r10_bio->sectors,
1808 &conf->mirrors[d].rdev->corrected_errors);
1809
1810 /* for reconstruct, we always reschedule after a read.
1811 * for resync, only after all reads
1812 */
1813 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1814 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1815 atomic_dec_and_test(&r10_bio->remaining)) {
1816 /* we have read all the blocks,
1817 * do the comparison in process context in raid10d
1818 */
1819 reschedule_retry(r10_bio);
1820 }
1821 }
1822
1823 static void end_sync_request(struct r10bio *r10_bio)
1824 {
1825 struct mddev *mddev = r10_bio->mddev;
1826
1827 while (atomic_dec_and_test(&r10_bio->remaining)) {
1828 if (r10_bio->master_bio == NULL) {
1829 /* the primary of several recovery bios */
1830 sector_t s = r10_bio->sectors;
1831 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1832 test_bit(R10BIO_WriteError, &r10_bio->state))
1833 reschedule_retry(r10_bio);
1834 else
1835 put_buf(r10_bio);
1836 md_done_sync(mddev, s, 1);
1837 break;
1838 } else {
1839 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1840 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1841 test_bit(R10BIO_WriteError, &r10_bio->state))
1842 reschedule_retry(r10_bio);
1843 else
1844 put_buf(r10_bio);
1845 r10_bio = r10_bio2;
1846 }
1847 }
1848 }
1849
1850 static void end_sync_write(struct bio *bio, int error)
1851 {
1852 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1853 struct r10bio *r10_bio = bio->bi_private;
1854 struct mddev *mddev = r10_bio->mddev;
1855 struct r10conf *conf = mddev->private;
1856 int d;
1857 sector_t first_bad;
1858 int bad_sectors;
1859 int slot;
1860 int repl;
1861 struct md_rdev *rdev = NULL;
1862
1863 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1864 if (repl)
1865 rdev = conf->mirrors[d].replacement;
1866 else
1867 rdev = conf->mirrors[d].rdev;
1868
1869 if (!uptodate) {
1870 if (repl)
1871 md_error(mddev, rdev);
1872 else {
1873 set_bit(WriteErrorSeen, &rdev->flags);
1874 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1875 set_bit(MD_RECOVERY_NEEDED,
1876 &rdev->mddev->recovery);
1877 set_bit(R10BIO_WriteError, &r10_bio->state);
1878 }
1879 } else if (is_badblock(rdev,
1880 r10_bio->devs[slot].addr,
1881 r10_bio->sectors,
1882 &first_bad, &bad_sectors))
1883 set_bit(R10BIO_MadeGood, &r10_bio->state);
1884
1885 rdev_dec_pending(rdev, mddev);
1886
1887 end_sync_request(r10_bio);
1888 }
1889
1890 /*
1891 * Note: sync and recover and handled very differently for raid10
1892 * This code is for resync.
1893 * For resync, we read through virtual addresses and read all blocks.
1894 * If there is any error, we schedule a write. The lowest numbered
1895 * drive is authoritative.
1896 * However requests come for physical address, so we need to map.
1897 * For every physical address there are raid_disks/copies virtual addresses,
1898 * which is always are least one, but is not necessarly an integer.
1899 * This means that a physical address can span multiple chunks, so we may
1900 * have to submit multiple io requests for a single sync request.
1901 */
1902 /*
1903 * We check if all blocks are in-sync and only write to blocks that
1904 * aren't in sync
1905 */
1906 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1907 {
1908 struct r10conf *conf = mddev->private;
1909 int i, first;
1910 struct bio *tbio, *fbio;
1911 int vcnt;
1912
1913 atomic_set(&r10_bio->remaining, 1);
1914
1915 /* find the first device with a block */
1916 for (i=0; i<conf->copies; i++)
1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1918 break;
1919
1920 if (i == conf->copies)
1921 goto done;
1922
1923 first = i;
1924 fbio = r10_bio->devs[i].bio;
1925
1926 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1927 /* now find blocks with errors */
1928 for (i=0 ; i < conf->copies ; i++) {
1929 int j, d;
1930
1931 tbio = r10_bio->devs[i].bio;
1932
1933 if (tbio->bi_end_io != end_sync_read)
1934 continue;
1935 if (i == first)
1936 continue;
1937 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1938 /* We know that the bi_io_vec layout is the same for
1939 * both 'first' and 'i', so we just compare them.
1940 * All vec entries are PAGE_SIZE;
1941 */
1942 for (j = 0; j < vcnt; j++)
1943 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1944 page_address(tbio->bi_io_vec[j].bv_page),
1945 fbio->bi_io_vec[j].bv_len))
1946 break;
1947 if (j == vcnt)
1948 continue;
1949 mddev->resync_mismatches += r10_bio->sectors;
1950 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1951 /* Don't fix anything. */
1952 continue;
1953 }
1954 /* Ok, we need to write this bio, either to correct an
1955 * inconsistency or to correct an unreadable block.
1956 * First we need to fixup bv_offset, bv_len and
1957 * bi_vecs, as the read request might have corrupted these
1958 */
1959 tbio->bi_vcnt = vcnt;
1960 tbio->bi_size = r10_bio->sectors << 9;
1961 tbio->bi_idx = 0;
1962 tbio->bi_phys_segments = 0;
1963 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1964 tbio->bi_flags |= 1 << BIO_UPTODATE;
1965 tbio->bi_next = NULL;
1966 tbio->bi_rw = WRITE;
1967 tbio->bi_private = r10_bio;
1968 tbio->bi_sector = r10_bio->devs[i].addr;
1969
1970 for (j=0; j < vcnt ; j++) {
1971 tbio->bi_io_vec[j].bv_offset = 0;
1972 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1973
1974 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1975 page_address(fbio->bi_io_vec[j].bv_page),
1976 PAGE_SIZE);
1977 }
1978 tbio->bi_end_io = end_sync_write;
1979
1980 d = r10_bio->devs[i].devnum;
1981 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1982 atomic_inc(&r10_bio->remaining);
1983 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1984
1985 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1986 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1987 generic_make_request(tbio);
1988 }
1989
1990 /* Now write out to any replacement devices
1991 * that are active
1992 */
1993 for (i = 0; i < conf->copies; i++) {
1994 int j, d;
1995
1996 tbio = r10_bio->devs[i].repl_bio;
1997 if (!tbio || !tbio->bi_end_io)
1998 continue;
1999 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2000 && r10_bio->devs[i].bio != fbio)
2001 for (j = 0; j < vcnt; j++)
2002 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2003 page_address(fbio->bi_io_vec[j].bv_page),
2004 PAGE_SIZE);
2005 d = r10_bio->devs[i].devnum;
2006 atomic_inc(&r10_bio->remaining);
2007 md_sync_acct(conf->mirrors[d].replacement->bdev,
2008 tbio->bi_size >> 9);
2009 generic_make_request(tbio);
2010 }
2011
2012 done:
2013 if (atomic_dec_and_test(&r10_bio->remaining)) {
2014 md_done_sync(mddev, r10_bio->sectors, 1);
2015 put_buf(r10_bio);
2016 }
2017 }
2018
2019 /*
2020 * Now for the recovery code.
2021 * Recovery happens across physical sectors.
2022 * We recover all non-is_sync drives by finding the virtual address of
2023 * each, and then choose a working drive that also has that virt address.
2024 * There is a separate r10_bio for each non-in_sync drive.
2025 * Only the first two slots are in use. The first for reading,
2026 * The second for writing.
2027 *
2028 */
2029 static void fix_recovery_read_error(struct r10bio *r10_bio)
2030 {
2031 /* We got a read error during recovery.
2032 * We repeat the read in smaller page-sized sections.
2033 * If a read succeeds, write it to the new device or record
2034 * a bad block if we cannot.
2035 * If a read fails, record a bad block on both old and
2036 * new devices.
2037 */
2038 struct mddev *mddev = r10_bio->mddev;
2039 struct r10conf *conf = mddev->private;
2040 struct bio *bio = r10_bio->devs[0].bio;
2041 sector_t sect = 0;
2042 int sectors = r10_bio->sectors;
2043 int idx = 0;
2044 int dr = r10_bio->devs[0].devnum;
2045 int dw = r10_bio->devs[1].devnum;
2046
2047 while (sectors) {
2048 int s = sectors;
2049 struct md_rdev *rdev;
2050 sector_t addr;
2051 int ok;
2052
2053 if (s > (PAGE_SIZE>>9))
2054 s = PAGE_SIZE >> 9;
2055
2056 rdev = conf->mirrors[dr].rdev;
2057 addr = r10_bio->devs[0].addr + sect,
2058 ok = sync_page_io(rdev,
2059 addr,
2060 s << 9,
2061 bio->bi_io_vec[idx].bv_page,
2062 READ, false);
2063 if (ok) {
2064 rdev = conf->mirrors[dw].rdev;
2065 addr = r10_bio->devs[1].addr + sect;
2066 ok = sync_page_io(rdev,
2067 addr,
2068 s << 9,
2069 bio->bi_io_vec[idx].bv_page,
2070 WRITE, false);
2071 if (!ok) {
2072 set_bit(WriteErrorSeen, &rdev->flags);
2073 if (!test_and_set_bit(WantReplacement,
2074 &rdev->flags))
2075 set_bit(MD_RECOVERY_NEEDED,
2076 &rdev->mddev->recovery);
2077 }
2078 }
2079 if (!ok) {
2080 /* We don't worry if we cannot set a bad block -
2081 * it really is bad so there is no loss in not
2082 * recording it yet
2083 */
2084 rdev_set_badblocks(rdev, addr, s, 0);
2085
2086 if (rdev != conf->mirrors[dw].rdev) {
2087 /* need bad block on destination too */
2088 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2089 addr = r10_bio->devs[1].addr + sect;
2090 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2091 if (!ok) {
2092 /* just abort the recovery */
2093 printk(KERN_NOTICE
2094 "md/raid10:%s: recovery aborted"
2095 " due to read error\n",
2096 mdname(mddev));
2097
2098 conf->mirrors[dw].recovery_disabled
2099 = mddev->recovery_disabled;
2100 set_bit(MD_RECOVERY_INTR,
2101 &mddev->recovery);
2102 break;
2103 }
2104 }
2105 }
2106
2107 sectors -= s;
2108 sect += s;
2109 idx++;
2110 }
2111 }
2112
2113 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2114 {
2115 struct r10conf *conf = mddev->private;
2116 int d;
2117 struct bio *wbio, *wbio2;
2118
2119 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2120 fix_recovery_read_error(r10_bio);
2121 end_sync_request(r10_bio);
2122 return;
2123 }
2124
2125 /*
2126 * share the pages with the first bio
2127 * and submit the write request
2128 */
2129 d = r10_bio->devs[1].devnum;
2130 wbio = r10_bio->devs[1].bio;
2131 wbio2 = r10_bio->devs[1].repl_bio;
2132 if (wbio->bi_end_io) {
2133 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2134 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2135 generic_make_request(wbio);
2136 }
2137 if (wbio2 && wbio2->bi_end_io) {
2138 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2139 md_sync_acct(conf->mirrors[d].replacement->bdev,
2140 wbio2->bi_size >> 9);
2141 generic_make_request(wbio2);
2142 }
2143 }
2144
2145
2146 /*
2147 * Used by fix_read_error() to decay the per rdev read_errors.
2148 * We halve the read error count for every hour that has elapsed
2149 * since the last recorded read error.
2150 *
2151 */
2152 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2153 {
2154 struct timespec cur_time_mon;
2155 unsigned long hours_since_last;
2156 unsigned int read_errors = atomic_read(&rdev->read_errors);
2157
2158 ktime_get_ts(&cur_time_mon);
2159
2160 if (rdev->last_read_error.tv_sec == 0 &&
2161 rdev->last_read_error.tv_nsec == 0) {
2162 /* first time we've seen a read error */
2163 rdev->last_read_error = cur_time_mon;
2164 return;
2165 }
2166
2167 hours_since_last = (cur_time_mon.tv_sec -
2168 rdev->last_read_error.tv_sec) / 3600;
2169
2170 rdev->last_read_error = cur_time_mon;
2171
2172 /*
2173 * if hours_since_last is > the number of bits in read_errors
2174 * just set read errors to 0. We do this to avoid
2175 * overflowing the shift of read_errors by hours_since_last.
2176 */
2177 if (hours_since_last >= 8 * sizeof(read_errors))
2178 atomic_set(&rdev->read_errors, 0);
2179 else
2180 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2181 }
2182
2183 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2184 int sectors, struct page *page, int rw)
2185 {
2186 sector_t first_bad;
2187 int bad_sectors;
2188
2189 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2190 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2191 return -1;
2192 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2193 /* success */
2194 return 1;
2195 if (rw == WRITE) {
2196 set_bit(WriteErrorSeen, &rdev->flags);
2197 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
2201 /* need to record an error - either for the block or the device */
2202 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2203 md_error(rdev->mddev, rdev);
2204 return 0;
2205 }
2206
2207 /*
2208 * This is a kernel thread which:
2209 *
2210 * 1. Retries failed read operations on working mirrors.
2211 * 2. Updates the raid superblock when problems encounter.
2212 * 3. Performs writes following reads for array synchronising.
2213 */
2214
2215 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2216 {
2217 int sect = 0; /* Offset from r10_bio->sector */
2218 int sectors = r10_bio->sectors;
2219 struct md_rdev*rdev;
2220 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2221 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2222
2223 /* still own a reference to this rdev, so it cannot
2224 * have been cleared recently.
2225 */
2226 rdev = conf->mirrors[d].rdev;
2227
2228 if (test_bit(Faulty, &rdev->flags))
2229 /* drive has already been failed, just ignore any
2230 more fix_read_error() attempts */
2231 return;
2232
2233 check_decay_read_errors(mddev, rdev);
2234 atomic_inc(&rdev->read_errors);
2235 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2236 char b[BDEVNAME_SIZE];
2237 bdevname(rdev->bdev, b);
2238
2239 printk(KERN_NOTICE
2240 "md/raid10:%s: %s: Raid device exceeded "
2241 "read_error threshold [cur %d:max %d]\n",
2242 mdname(mddev), b,
2243 atomic_read(&rdev->read_errors), max_read_errors);
2244 printk(KERN_NOTICE
2245 "md/raid10:%s: %s: Failing raid device\n",
2246 mdname(mddev), b);
2247 md_error(mddev, conf->mirrors[d].rdev);
2248 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2249 return;
2250 }
2251
2252 while(sectors) {
2253 int s = sectors;
2254 int sl = r10_bio->read_slot;
2255 int success = 0;
2256 int start;
2257
2258 if (s > (PAGE_SIZE>>9))
2259 s = PAGE_SIZE >> 9;
2260
2261 rcu_read_lock();
2262 do {
2263 sector_t first_bad;
2264 int bad_sectors;
2265
2266 d = r10_bio->devs[sl].devnum;
2267 rdev = rcu_dereference(conf->mirrors[d].rdev);
2268 if (rdev &&
2269 !test_bit(Unmerged, &rdev->flags) &&
2270 test_bit(In_sync, &rdev->flags) &&
2271 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2272 &first_bad, &bad_sectors) == 0) {
2273 atomic_inc(&rdev->nr_pending);
2274 rcu_read_unlock();
2275 success = sync_page_io(rdev,
2276 r10_bio->devs[sl].addr +
2277 sect,
2278 s<<9,
2279 conf->tmppage, READ, false);
2280 rdev_dec_pending(rdev, mddev);
2281 rcu_read_lock();
2282 if (success)
2283 break;
2284 }
2285 sl++;
2286 if (sl == conf->copies)
2287 sl = 0;
2288 } while (!success && sl != r10_bio->read_slot);
2289 rcu_read_unlock();
2290
2291 if (!success) {
2292 /* Cannot read from anywhere, just mark the block
2293 * as bad on the first device to discourage future
2294 * reads.
2295 */
2296 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2297 rdev = conf->mirrors[dn].rdev;
2298
2299 if (!rdev_set_badblocks(
2300 rdev,
2301 r10_bio->devs[r10_bio->read_slot].addr
2302 + sect,
2303 s, 0)) {
2304 md_error(mddev, rdev);
2305 r10_bio->devs[r10_bio->read_slot].bio
2306 = IO_BLOCKED;
2307 }
2308 break;
2309 }
2310
2311 start = sl;
2312 /* write it back and re-read */
2313 rcu_read_lock();
2314 while (sl != r10_bio->read_slot) {
2315 char b[BDEVNAME_SIZE];
2316
2317 if (sl==0)
2318 sl = conf->copies;
2319 sl--;
2320 d = r10_bio->devs[sl].devnum;
2321 rdev = rcu_dereference(conf->mirrors[d].rdev);
2322 if (!rdev ||
2323 test_bit(Unmerged, &rdev->flags) ||
2324 !test_bit(In_sync, &rdev->flags))
2325 continue;
2326
2327 atomic_inc(&rdev->nr_pending);
2328 rcu_read_unlock();
2329 if (r10_sync_page_io(rdev,
2330 r10_bio->devs[sl].addr +
2331 sect,
2332 s, conf->tmppage, WRITE)
2333 == 0) {
2334 /* Well, this device is dead */
2335 printk(KERN_NOTICE
2336 "md/raid10:%s: read correction "
2337 "write failed"
2338 " (%d sectors at %llu on %s)\n",
2339 mdname(mddev), s,
2340 (unsigned long long)(
2341 sect +
2342 choose_data_offset(r10_bio,
2343 rdev)),
2344 bdevname(rdev->bdev, b));
2345 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2346 "drive\n",
2347 mdname(mddev),
2348 bdevname(rdev->bdev, b));
2349 }
2350 rdev_dec_pending(rdev, mddev);
2351 rcu_read_lock();
2352 }
2353 sl = start;
2354 while (sl != r10_bio->read_slot) {
2355 char b[BDEVNAME_SIZE];
2356
2357 if (sl==0)
2358 sl = conf->copies;
2359 sl--;
2360 d = r10_bio->devs[sl].devnum;
2361 rdev = rcu_dereference(conf->mirrors[d].rdev);
2362 if (!rdev ||
2363 !test_bit(In_sync, &rdev->flags))
2364 continue;
2365
2366 atomic_inc(&rdev->nr_pending);
2367 rcu_read_unlock();
2368 switch (r10_sync_page_io(rdev,
2369 r10_bio->devs[sl].addr +
2370 sect,
2371 s, conf->tmppage,
2372 READ)) {
2373 case 0:
2374 /* Well, this device is dead */
2375 printk(KERN_NOTICE
2376 "md/raid10:%s: unable to read back "
2377 "corrected sectors"
2378 " (%d sectors at %llu on %s)\n",
2379 mdname(mddev), s,
2380 (unsigned long long)(
2381 sect +
2382 choose_data_offset(r10_bio, rdev)),
2383 bdevname(rdev->bdev, b));
2384 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2385 "drive\n",
2386 mdname(mddev),
2387 bdevname(rdev->bdev, b));
2388 break;
2389 case 1:
2390 printk(KERN_INFO
2391 "md/raid10:%s: read error corrected"
2392 " (%d sectors at %llu on %s)\n",
2393 mdname(mddev), s,
2394 (unsigned long long)(
2395 sect +
2396 choose_data_offset(r10_bio, rdev)),
2397 bdevname(rdev->bdev, b));
2398 atomic_add(s, &rdev->corrected_errors);
2399 }
2400
2401 rdev_dec_pending(rdev, mddev);
2402 rcu_read_lock();
2403 }
2404 rcu_read_unlock();
2405
2406 sectors -= s;
2407 sect += s;
2408 }
2409 }
2410
2411 static void bi_complete(struct bio *bio, int error)
2412 {
2413 complete((struct completion *)bio->bi_private);
2414 }
2415
2416 static int submit_bio_wait(int rw, struct bio *bio)
2417 {
2418 struct completion event;
2419 rw |= REQ_SYNC;
2420
2421 init_completion(&event);
2422 bio->bi_private = &event;
2423 bio->bi_end_io = bi_complete;
2424 submit_bio(rw, bio);
2425 wait_for_completion(&event);
2426
2427 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2428 }
2429
2430 static int narrow_write_error(struct r10bio *r10_bio, int i)
2431 {
2432 struct bio *bio = r10_bio->master_bio;
2433 struct mddev *mddev = r10_bio->mddev;
2434 struct r10conf *conf = mddev->private;
2435 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2436 /* bio has the data to be written to slot 'i' where
2437 * we just recently had a write error.
2438 * We repeatedly clone the bio and trim down to one block,
2439 * then try the write. Where the write fails we record
2440 * a bad block.
2441 * It is conceivable that the bio doesn't exactly align with
2442 * blocks. We must handle this.
2443 *
2444 * We currently own a reference to the rdev.
2445 */
2446
2447 int block_sectors;
2448 sector_t sector;
2449 int sectors;
2450 int sect_to_write = r10_bio->sectors;
2451 int ok = 1;
2452
2453 if (rdev->badblocks.shift < 0)
2454 return 0;
2455
2456 block_sectors = 1 << rdev->badblocks.shift;
2457 sector = r10_bio->sector;
2458 sectors = ((r10_bio->sector + block_sectors)
2459 & ~(sector_t)(block_sectors - 1))
2460 - sector;
2461
2462 while (sect_to_write) {
2463 struct bio *wbio;
2464 if (sectors > sect_to_write)
2465 sectors = sect_to_write;
2466 /* Write at 'sector' for 'sectors' */
2467 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2468 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2469 wbio->bi_sector = (r10_bio->devs[i].addr+
2470 choose_data_offset(r10_bio, rdev) +
2471 (sector - r10_bio->sector));
2472 wbio->bi_bdev = rdev->bdev;
2473 if (submit_bio_wait(WRITE, wbio) == 0)
2474 /* Failure! */
2475 ok = rdev_set_badblocks(rdev, sector,
2476 sectors, 0)
2477 && ok;
2478
2479 bio_put(wbio);
2480 sect_to_write -= sectors;
2481 sector += sectors;
2482 sectors = block_sectors;
2483 }
2484 return ok;
2485 }
2486
2487 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2488 {
2489 int slot = r10_bio->read_slot;
2490 struct bio *bio;
2491 struct r10conf *conf = mddev->private;
2492 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2493 char b[BDEVNAME_SIZE];
2494 unsigned long do_sync;
2495 int max_sectors;
2496
2497 /* we got a read error. Maybe the drive is bad. Maybe just
2498 * the block and we can fix it.
2499 * We freeze all other IO, and try reading the block from
2500 * other devices. When we find one, we re-write
2501 * and check it that fixes the read error.
2502 * This is all done synchronously while the array is
2503 * frozen.
2504 */
2505 bio = r10_bio->devs[slot].bio;
2506 bdevname(bio->bi_bdev, b);
2507 bio_put(bio);
2508 r10_bio->devs[slot].bio = NULL;
2509
2510 if (mddev->ro == 0) {
2511 freeze_array(conf);
2512 fix_read_error(conf, mddev, r10_bio);
2513 unfreeze_array(conf);
2514 } else
2515 r10_bio->devs[slot].bio = IO_BLOCKED;
2516
2517 rdev_dec_pending(rdev, mddev);
2518
2519 read_more:
2520 rdev = read_balance(conf, r10_bio, &max_sectors);
2521 if (rdev == NULL) {
2522 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2523 " read error for block %llu\n",
2524 mdname(mddev), b,
2525 (unsigned long long)r10_bio->sector);
2526 raid_end_bio_io(r10_bio);
2527 return;
2528 }
2529
2530 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2531 slot = r10_bio->read_slot;
2532 printk_ratelimited(
2533 KERN_ERR
2534 "md/raid10:%s: %s: redirecting "
2535 "sector %llu to another mirror\n",
2536 mdname(mddev),
2537 bdevname(rdev->bdev, b),
2538 (unsigned long long)r10_bio->sector);
2539 bio = bio_clone_mddev(r10_bio->master_bio,
2540 GFP_NOIO, mddev);
2541 md_trim_bio(bio,
2542 r10_bio->sector - bio->bi_sector,
2543 max_sectors);
2544 r10_bio->devs[slot].bio = bio;
2545 r10_bio->devs[slot].rdev = rdev;
2546 bio->bi_sector = r10_bio->devs[slot].addr
2547 + choose_data_offset(r10_bio, rdev);
2548 bio->bi_bdev = rdev->bdev;
2549 bio->bi_rw = READ | do_sync;
2550 bio->bi_private = r10_bio;
2551 bio->bi_end_io = raid10_end_read_request;
2552 if (max_sectors < r10_bio->sectors) {
2553 /* Drat - have to split this up more */
2554 struct bio *mbio = r10_bio->master_bio;
2555 int sectors_handled =
2556 r10_bio->sector + max_sectors
2557 - mbio->bi_sector;
2558 r10_bio->sectors = max_sectors;
2559 spin_lock_irq(&conf->device_lock);
2560 if (mbio->bi_phys_segments == 0)
2561 mbio->bi_phys_segments = 2;
2562 else
2563 mbio->bi_phys_segments++;
2564 spin_unlock_irq(&conf->device_lock);
2565 generic_make_request(bio);
2566
2567 r10_bio = mempool_alloc(conf->r10bio_pool,
2568 GFP_NOIO);
2569 r10_bio->master_bio = mbio;
2570 r10_bio->sectors = (mbio->bi_size >> 9)
2571 - sectors_handled;
2572 r10_bio->state = 0;
2573 set_bit(R10BIO_ReadError,
2574 &r10_bio->state);
2575 r10_bio->mddev = mddev;
2576 r10_bio->sector = mbio->bi_sector
2577 + sectors_handled;
2578
2579 goto read_more;
2580 } else
2581 generic_make_request(bio);
2582 }
2583
2584 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2585 {
2586 /* Some sort of write request has finished and it
2587 * succeeded in writing where we thought there was a
2588 * bad block. So forget the bad block.
2589 * Or possibly if failed and we need to record
2590 * a bad block.
2591 */
2592 int m;
2593 struct md_rdev *rdev;
2594
2595 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2596 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2597 for (m = 0; m < conf->copies; m++) {
2598 int dev = r10_bio->devs[m].devnum;
2599 rdev = conf->mirrors[dev].rdev;
2600 if (r10_bio->devs[m].bio == NULL)
2601 continue;
2602 if (test_bit(BIO_UPTODATE,
2603 &r10_bio->devs[m].bio->bi_flags)) {
2604 rdev_clear_badblocks(
2605 rdev,
2606 r10_bio->devs[m].addr,
2607 r10_bio->sectors, 0);
2608 } else {
2609 if (!rdev_set_badblocks(
2610 rdev,
2611 r10_bio->devs[m].addr,
2612 r10_bio->sectors, 0))
2613 md_error(conf->mddev, rdev);
2614 }
2615 rdev = conf->mirrors[dev].replacement;
2616 if (r10_bio->devs[m].repl_bio == NULL)
2617 continue;
2618 if (test_bit(BIO_UPTODATE,
2619 &r10_bio->devs[m].repl_bio->bi_flags)) {
2620 rdev_clear_badblocks(
2621 rdev,
2622 r10_bio->devs[m].addr,
2623 r10_bio->sectors, 0);
2624 } else {
2625 if (!rdev_set_badblocks(
2626 rdev,
2627 r10_bio->devs[m].addr,
2628 r10_bio->sectors, 0))
2629 md_error(conf->mddev, rdev);
2630 }
2631 }
2632 put_buf(r10_bio);
2633 } else {
2634 for (m = 0; m < conf->copies; m++) {
2635 int dev = r10_bio->devs[m].devnum;
2636 struct bio *bio = r10_bio->devs[m].bio;
2637 rdev = conf->mirrors[dev].rdev;
2638 if (bio == IO_MADE_GOOD) {
2639 rdev_clear_badblocks(
2640 rdev,
2641 r10_bio->devs[m].addr,
2642 r10_bio->sectors, 0);
2643 rdev_dec_pending(rdev, conf->mddev);
2644 } else if (bio != NULL &&
2645 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2646 if (!narrow_write_error(r10_bio, m)) {
2647 md_error(conf->mddev, rdev);
2648 set_bit(R10BIO_Degraded,
2649 &r10_bio->state);
2650 }
2651 rdev_dec_pending(rdev, conf->mddev);
2652 }
2653 bio = r10_bio->devs[m].repl_bio;
2654 rdev = conf->mirrors[dev].replacement;
2655 if (rdev && bio == IO_MADE_GOOD) {
2656 rdev_clear_badblocks(
2657 rdev,
2658 r10_bio->devs[m].addr,
2659 r10_bio->sectors, 0);
2660 rdev_dec_pending(rdev, conf->mddev);
2661 }
2662 }
2663 if (test_bit(R10BIO_WriteError,
2664 &r10_bio->state))
2665 close_write(r10_bio);
2666 raid_end_bio_io(r10_bio);
2667 }
2668 }
2669
2670 static void raid10d(struct mddev *mddev)
2671 {
2672 struct r10bio *r10_bio;
2673 unsigned long flags;
2674 struct r10conf *conf = mddev->private;
2675 struct list_head *head = &conf->retry_list;
2676 struct blk_plug plug;
2677
2678 md_check_recovery(mddev);
2679
2680 blk_start_plug(&plug);
2681 for (;;) {
2682
2683 if (atomic_read(&mddev->plug_cnt) == 0)
2684 flush_pending_writes(conf);
2685
2686 spin_lock_irqsave(&conf->device_lock, flags);
2687 if (list_empty(head)) {
2688 spin_unlock_irqrestore(&conf->device_lock, flags);
2689 break;
2690 }
2691 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2692 list_del(head->prev);
2693 conf->nr_queued--;
2694 spin_unlock_irqrestore(&conf->device_lock, flags);
2695
2696 mddev = r10_bio->mddev;
2697 conf = mddev->private;
2698 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2699 test_bit(R10BIO_WriteError, &r10_bio->state))
2700 handle_write_completed(conf, r10_bio);
2701 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2702 reshape_request_write(mddev, r10_bio);
2703 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2704 sync_request_write(mddev, r10_bio);
2705 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2706 recovery_request_write(mddev, r10_bio);
2707 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2708 handle_read_error(mddev, r10_bio);
2709 else {
2710 /* just a partial read to be scheduled from a
2711 * separate context
2712 */
2713 int slot = r10_bio->read_slot;
2714 generic_make_request(r10_bio->devs[slot].bio);
2715 }
2716
2717 cond_resched();
2718 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2719 md_check_recovery(mddev);
2720 }
2721 blk_finish_plug(&plug);
2722 }
2723
2724
2725 static int init_resync(struct r10conf *conf)
2726 {
2727 int buffs;
2728 int i;
2729
2730 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2731 BUG_ON(conf->r10buf_pool);
2732 conf->have_replacement = 0;
2733 for (i = 0; i < conf->geo.raid_disks; i++)
2734 if (conf->mirrors[i].replacement)
2735 conf->have_replacement = 1;
2736 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2737 if (!conf->r10buf_pool)
2738 return -ENOMEM;
2739 conf->next_resync = 0;
2740 return 0;
2741 }
2742
2743 /*
2744 * perform a "sync" on one "block"
2745 *
2746 * We need to make sure that no normal I/O request - particularly write
2747 * requests - conflict with active sync requests.
2748 *
2749 * This is achieved by tracking pending requests and a 'barrier' concept
2750 * that can be installed to exclude normal IO requests.
2751 *
2752 * Resync and recovery are handled very differently.
2753 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2754 *
2755 * For resync, we iterate over virtual addresses, read all copies,
2756 * and update if there are differences. If only one copy is live,
2757 * skip it.
2758 * For recovery, we iterate over physical addresses, read a good
2759 * value for each non-in_sync drive, and over-write.
2760 *
2761 * So, for recovery we may have several outstanding complex requests for a
2762 * given address, one for each out-of-sync device. We model this by allocating
2763 * a number of r10_bio structures, one for each out-of-sync device.
2764 * As we setup these structures, we collect all bio's together into a list
2765 * which we then process collectively to add pages, and then process again
2766 * to pass to generic_make_request.
2767 *
2768 * The r10_bio structures are linked using a borrowed master_bio pointer.
2769 * This link is counted in ->remaining. When the r10_bio that points to NULL
2770 * has its remaining count decremented to 0, the whole complex operation
2771 * is complete.
2772 *
2773 */
2774
2775 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2776 int *skipped, int go_faster)
2777 {
2778 struct r10conf *conf = mddev->private;
2779 struct r10bio *r10_bio;
2780 struct bio *biolist = NULL, *bio;
2781 sector_t max_sector, nr_sectors;
2782 int i;
2783 int max_sync;
2784 sector_t sync_blocks;
2785 sector_t sectors_skipped = 0;
2786 int chunks_skipped = 0;
2787 sector_t chunk_mask = conf->geo.chunk_mask;
2788
2789 if (!conf->r10buf_pool)
2790 if (init_resync(conf))
2791 return 0;
2792
2793 skipped:
2794 max_sector = mddev->dev_sectors;
2795 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2796 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2797 max_sector = mddev->resync_max_sectors;
2798 if (sector_nr >= max_sector) {
2799 /* If we aborted, we need to abort the
2800 * sync on the 'current' bitmap chucks (there can
2801 * be several when recovering multiple devices).
2802 * as we may have started syncing it but not finished.
2803 * We can find the current address in
2804 * mddev->curr_resync, but for recovery,
2805 * we need to convert that to several
2806 * virtual addresses.
2807 */
2808 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2809 end_reshape(conf);
2810 return 0;
2811 }
2812
2813 if (mddev->curr_resync < max_sector) { /* aborted */
2814 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2815 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2816 &sync_blocks, 1);
2817 else for (i = 0; i < conf->geo.raid_disks; i++) {
2818 sector_t sect =
2819 raid10_find_virt(conf, mddev->curr_resync, i);
2820 bitmap_end_sync(mddev->bitmap, sect,
2821 &sync_blocks, 1);
2822 }
2823 } else {
2824 /* completed sync */
2825 if ((!mddev->bitmap || conf->fullsync)
2826 && conf->have_replacement
2827 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2828 /* Completed a full sync so the replacements
2829 * are now fully recovered.
2830 */
2831 for (i = 0; i < conf->geo.raid_disks; i++)
2832 if (conf->mirrors[i].replacement)
2833 conf->mirrors[i].replacement
2834 ->recovery_offset
2835 = MaxSector;
2836 }
2837 conf->fullsync = 0;
2838 }
2839 bitmap_close_sync(mddev->bitmap);
2840 close_sync(conf);
2841 *skipped = 1;
2842 return sectors_skipped;
2843 }
2844
2845 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2846 return reshape_request(mddev, sector_nr, skipped);
2847
2848 if (chunks_skipped >= conf->geo.raid_disks) {
2849 /* if there has been nothing to do on any drive,
2850 * then there is nothing to do at all..
2851 */
2852 *skipped = 1;
2853 return (max_sector - sector_nr) + sectors_skipped;
2854 }
2855
2856 if (max_sector > mddev->resync_max)
2857 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2858
2859 /* make sure whole request will fit in a chunk - if chunks
2860 * are meaningful
2861 */
2862 if (conf->geo.near_copies < conf->geo.raid_disks &&
2863 max_sector > (sector_nr | chunk_mask))
2864 max_sector = (sector_nr | chunk_mask) + 1;
2865 /*
2866 * If there is non-resync activity waiting for us then
2867 * put in a delay to throttle resync.
2868 */
2869 if (!go_faster && conf->nr_waiting)
2870 msleep_interruptible(1000);
2871
2872 /* Again, very different code for resync and recovery.
2873 * Both must result in an r10bio with a list of bios that
2874 * have bi_end_io, bi_sector, bi_bdev set,
2875 * and bi_private set to the r10bio.
2876 * For recovery, we may actually create several r10bios
2877 * with 2 bios in each, that correspond to the bios in the main one.
2878 * In this case, the subordinate r10bios link back through a
2879 * borrowed master_bio pointer, and the counter in the master
2880 * includes a ref from each subordinate.
2881 */
2882 /* First, we decide what to do and set ->bi_end_io
2883 * To end_sync_read if we want to read, and
2884 * end_sync_write if we will want to write.
2885 */
2886
2887 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2888 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2889 /* recovery... the complicated one */
2890 int j;
2891 r10_bio = NULL;
2892
2893 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2894 int still_degraded;
2895 struct r10bio *rb2;
2896 sector_t sect;
2897 int must_sync;
2898 int any_working;
2899 struct raid10_info *mirror = &conf->mirrors[i];
2900
2901 if ((mirror->rdev == NULL ||
2902 test_bit(In_sync, &mirror->rdev->flags))
2903 &&
2904 (mirror->replacement == NULL ||
2905 test_bit(Faulty,
2906 &mirror->replacement->flags)))
2907 continue;
2908
2909 still_degraded = 0;
2910 /* want to reconstruct this device */
2911 rb2 = r10_bio;
2912 sect = raid10_find_virt(conf, sector_nr, i);
2913 if (sect >= mddev->resync_max_sectors) {
2914 /* last stripe is not complete - don't
2915 * try to recover this sector.
2916 */
2917 continue;
2918 }
2919 /* Unless we are doing a full sync, or a replacement
2920 * we only need to recover the block if it is set in
2921 * the bitmap
2922 */
2923 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2924 &sync_blocks, 1);
2925 if (sync_blocks < max_sync)
2926 max_sync = sync_blocks;
2927 if (!must_sync &&
2928 mirror->replacement == NULL &&
2929 !conf->fullsync) {
2930 /* yep, skip the sync_blocks here, but don't assume
2931 * that there will never be anything to do here
2932 */
2933 chunks_skipped = -1;
2934 continue;
2935 }
2936
2937 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2938 raise_barrier(conf, rb2 != NULL);
2939 atomic_set(&r10_bio->remaining, 0);
2940
2941 r10_bio->master_bio = (struct bio*)rb2;
2942 if (rb2)
2943 atomic_inc(&rb2->remaining);
2944 r10_bio->mddev = mddev;
2945 set_bit(R10BIO_IsRecover, &r10_bio->state);
2946 r10_bio->sector = sect;
2947
2948 raid10_find_phys(conf, r10_bio);
2949
2950 /* Need to check if the array will still be
2951 * degraded
2952 */
2953 for (j = 0; j < conf->geo.raid_disks; j++)
2954 if (conf->mirrors[j].rdev == NULL ||
2955 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2956 still_degraded = 1;
2957 break;
2958 }
2959
2960 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2961 &sync_blocks, still_degraded);
2962
2963 any_working = 0;
2964 for (j=0; j<conf->copies;j++) {
2965 int k;
2966 int d = r10_bio->devs[j].devnum;
2967 sector_t from_addr, to_addr;
2968 struct md_rdev *rdev;
2969 sector_t sector, first_bad;
2970 int bad_sectors;
2971 if (!conf->mirrors[d].rdev ||
2972 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2973 continue;
2974 /* This is where we read from */
2975 any_working = 1;
2976 rdev = conf->mirrors[d].rdev;
2977 sector = r10_bio->devs[j].addr;
2978
2979 if (is_badblock(rdev, sector, max_sync,
2980 &first_bad, &bad_sectors)) {
2981 if (first_bad > sector)
2982 max_sync = first_bad - sector;
2983 else {
2984 bad_sectors -= (sector
2985 - first_bad);
2986 if (max_sync > bad_sectors)
2987 max_sync = bad_sectors;
2988 continue;
2989 }
2990 }
2991 bio = r10_bio->devs[0].bio;
2992 bio->bi_next = biolist;
2993 biolist = bio;
2994 bio->bi_private = r10_bio;
2995 bio->bi_end_io = end_sync_read;
2996 bio->bi_rw = READ;
2997 from_addr = r10_bio->devs[j].addr;
2998 bio->bi_sector = from_addr + rdev->data_offset;
2999 bio->bi_bdev = rdev->bdev;
3000 atomic_inc(&rdev->nr_pending);
3001 /* and we write to 'i' (if not in_sync) */
3002
3003 for (k=0; k<conf->copies; k++)
3004 if (r10_bio->devs[k].devnum == i)
3005 break;
3006 BUG_ON(k == conf->copies);
3007 to_addr = r10_bio->devs[k].addr;
3008 r10_bio->devs[0].devnum = d;
3009 r10_bio->devs[0].addr = from_addr;
3010 r10_bio->devs[1].devnum = i;
3011 r10_bio->devs[1].addr = to_addr;
3012
3013 rdev = mirror->rdev;
3014 if (!test_bit(In_sync, &rdev->flags)) {
3015 bio = r10_bio->devs[1].bio;
3016 bio->bi_next = biolist;
3017 biolist = bio;
3018 bio->bi_private = r10_bio;
3019 bio->bi_end_io = end_sync_write;
3020 bio->bi_rw = WRITE;
3021 bio->bi_sector = to_addr
3022 + rdev->data_offset;
3023 bio->bi_bdev = rdev->bdev;
3024 atomic_inc(&r10_bio->remaining);
3025 } else
3026 r10_bio->devs[1].bio->bi_end_io = NULL;
3027
3028 /* and maybe write to replacement */
3029 bio = r10_bio->devs[1].repl_bio;
3030 if (bio)
3031 bio->bi_end_io = NULL;
3032 rdev = mirror->replacement;
3033 /* Note: if rdev != NULL, then bio
3034 * cannot be NULL as r10buf_pool_alloc will
3035 * have allocated it.
3036 * So the second test here is pointless.
3037 * But it keeps semantic-checkers happy, and
3038 * this comment keeps human reviewers
3039 * happy.
3040 */
3041 if (rdev == NULL || bio == NULL ||
3042 test_bit(Faulty, &rdev->flags))
3043 break;
3044 bio->bi_next = biolist;
3045 biolist = bio;
3046 bio->bi_private = r10_bio;
3047 bio->bi_end_io = end_sync_write;
3048 bio->bi_rw = WRITE;
3049 bio->bi_sector = to_addr + rdev->data_offset;
3050 bio->bi_bdev = rdev->bdev;
3051 atomic_inc(&r10_bio->remaining);
3052 break;
3053 }
3054 if (j == conf->copies) {
3055 /* Cannot recover, so abort the recovery or
3056 * record a bad block */
3057 put_buf(r10_bio);
3058 if (rb2)
3059 atomic_dec(&rb2->remaining);
3060 r10_bio = rb2;
3061 if (any_working) {
3062 /* problem is that there are bad blocks
3063 * on other device(s)
3064 */
3065 int k;
3066 for (k = 0; k < conf->copies; k++)
3067 if (r10_bio->devs[k].devnum == i)
3068 break;
3069 if (!test_bit(In_sync,
3070 &mirror->rdev->flags)
3071 && !rdev_set_badblocks(
3072 mirror->rdev,
3073 r10_bio->devs[k].addr,
3074 max_sync, 0))
3075 any_working = 0;
3076 if (mirror->replacement &&
3077 !rdev_set_badblocks(
3078 mirror->replacement,
3079 r10_bio->devs[k].addr,
3080 max_sync, 0))
3081 any_working = 0;
3082 }
3083 if (!any_working) {
3084 if (!test_and_set_bit(MD_RECOVERY_INTR,
3085 &mddev->recovery))
3086 printk(KERN_INFO "md/raid10:%s: insufficient "
3087 "working devices for recovery.\n",
3088 mdname(mddev));
3089 mirror->recovery_disabled
3090 = mddev->recovery_disabled;
3091 }
3092 break;
3093 }
3094 }
3095 if (biolist == NULL) {
3096 while (r10_bio) {
3097 struct r10bio *rb2 = r10_bio;
3098 r10_bio = (struct r10bio*) rb2->master_bio;
3099 rb2->master_bio = NULL;
3100 put_buf(rb2);
3101 }
3102 goto giveup;
3103 }
3104 } else {
3105 /* resync. Schedule a read for every block at this virt offset */
3106 int count = 0;
3107
3108 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3109
3110 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3111 &sync_blocks, mddev->degraded) &&
3112 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3113 &mddev->recovery)) {
3114 /* We can skip this block */
3115 *skipped = 1;
3116 return sync_blocks + sectors_skipped;
3117 }
3118 if (sync_blocks < max_sync)
3119 max_sync = sync_blocks;
3120 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3121
3122 r10_bio->mddev = mddev;
3123 atomic_set(&r10_bio->remaining, 0);
3124 raise_barrier(conf, 0);
3125 conf->next_resync = sector_nr;
3126
3127 r10_bio->master_bio = NULL;
3128 r10_bio->sector = sector_nr;
3129 set_bit(R10BIO_IsSync, &r10_bio->state);
3130 raid10_find_phys(conf, r10_bio);
3131 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3132
3133 for (i = 0; i < conf->copies; i++) {
3134 int d = r10_bio->devs[i].devnum;
3135 sector_t first_bad, sector;
3136 int bad_sectors;
3137
3138 if (r10_bio->devs[i].repl_bio)
3139 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3140
3141 bio = r10_bio->devs[i].bio;
3142 bio->bi_end_io = NULL;
3143 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3144 if (conf->mirrors[d].rdev == NULL ||
3145 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3146 continue;
3147 sector = r10_bio->devs[i].addr;
3148 if (is_badblock(conf->mirrors[d].rdev,
3149 sector, max_sync,
3150 &first_bad, &bad_sectors)) {
3151 if (first_bad > sector)
3152 max_sync = first_bad - sector;
3153 else {
3154 bad_sectors -= (sector - first_bad);
3155 if (max_sync > bad_sectors)
3156 max_sync = max_sync;
3157 continue;
3158 }
3159 }
3160 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3161 atomic_inc(&r10_bio->remaining);
3162 bio->bi_next = biolist;
3163 biolist = bio;
3164 bio->bi_private = r10_bio;
3165 bio->bi_end_io = end_sync_read;
3166 bio->bi_rw = READ;
3167 bio->bi_sector = sector +
3168 conf->mirrors[d].rdev->data_offset;
3169 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3170 count++;
3171
3172 if (conf->mirrors[d].replacement == NULL ||
3173 test_bit(Faulty,
3174 &conf->mirrors[d].replacement->flags))
3175 continue;
3176
3177 /* Need to set up for writing to the replacement */
3178 bio = r10_bio->devs[i].repl_bio;
3179 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3180
3181 sector = r10_bio->devs[i].addr;
3182 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3183 bio->bi_next = biolist;
3184 biolist = bio;
3185 bio->bi_private = r10_bio;
3186 bio->bi_end_io = end_sync_write;
3187 bio->bi_rw = WRITE;
3188 bio->bi_sector = sector +
3189 conf->mirrors[d].replacement->data_offset;
3190 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3191 count++;
3192 }
3193
3194 if (count < 2) {
3195 for (i=0; i<conf->copies; i++) {
3196 int d = r10_bio->devs[i].devnum;
3197 if (r10_bio->devs[i].bio->bi_end_io)
3198 rdev_dec_pending(conf->mirrors[d].rdev,
3199 mddev);
3200 if (r10_bio->devs[i].repl_bio &&
3201 r10_bio->devs[i].repl_bio->bi_end_io)
3202 rdev_dec_pending(
3203 conf->mirrors[d].replacement,
3204 mddev);
3205 }
3206 put_buf(r10_bio);
3207 biolist = NULL;
3208 goto giveup;
3209 }
3210 }
3211
3212 for (bio = biolist; bio ; bio=bio->bi_next) {
3213
3214 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3215 if (bio->bi_end_io)
3216 bio->bi_flags |= 1 << BIO_UPTODATE;
3217 bio->bi_vcnt = 0;
3218 bio->bi_idx = 0;
3219 bio->bi_phys_segments = 0;
3220 bio->bi_size = 0;
3221 }
3222
3223 nr_sectors = 0;
3224 if (sector_nr + max_sync < max_sector)
3225 max_sector = sector_nr + max_sync;
3226 do {
3227 struct page *page;
3228 int len = PAGE_SIZE;
3229 if (sector_nr + (len>>9) > max_sector)
3230 len = (max_sector - sector_nr) << 9;
3231 if (len == 0)
3232 break;
3233 for (bio= biolist ; bio ; bio=bio->bi_next) {
3234 struct bio *bio2;
3235 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3236 if (bio_add_page(bio, page, len, 0))
3237 continue;
3238
3239 /* stop here */
3240 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3241 for (bio2 = biolist;
3242 bio2 && bio2 != bio;
3243 bio2 = bio2->bi_next) {
3244 /* remove last page from this bio */
3245 bio2->bi_vcnt--;
3246 bio2->bi_size -= len;
3247 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3248 }
3249 goto bio_full;
3250 }
3251 nr_sectors += len>>9;
3252 sector_nr += len>>9;
3253 } while (biolist->bi_vcnt < RESYNC_PAGES);
3254 bio_full:
3255 r10_bio->sectors = nr_sectors;
3256
3257 while (biolist) {
3258 bio = biolist;
3259 biolist = biolist->bi_next;
3260
3261 bio->bi_next = NULL;
3262 r10_bio = bio->bi_private;
3263 r10_bio->sectors = nr_sectors;
3264
3265 if (bio->bi_end_io == end_sync_read) {
3266 md_sync_acct(bio->bi_bdev, nr_sectors);
3267 generic_make_request(bio);
3268 }
3269 }
3270
3271 if (sectors_skipped)
3272 /* pretend they weren't skipped, it makes
3273 * no important difference in this case
3274 */
3275 md_done_sync(mddev, sectors_skipped, 1);
3276
3277 return sectors_skipped + nr_sectors;
3278 giveup:
3279 /* There is nowhere to write, so all non-sync
3280 * drives must be failed or in resync, all drives
3281 * have a bad block, so try the next chunk...
3282 */
3283 if (sector_nr + max_sync < max_sector)
3284 max_sector = sector_nr + max_sync;
3285
3286 sectors_skipped += (max_sector - sector_nr);
3287 chunks_skipped ++;
3288 sector_nr = max_sector;
3289 goto skipped;
3290 }
3291
3292 static sector_t
3293 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3294 {
3295 sector_t size;
3296 struct r10conf *conf = mddev->private;
3297
3298 if (!raid_disks)
3299 raid_disks = min(conf->geo.raid_disks,
3300 conf->prev.raid_disks);
3301 if (!sectors)
3302 sectors = conf->dev_sectors;
3303
3304 size = sectors >> conf->geo.chunk_shift;
3305 sector_div(size, conf->geo.far_copies);
3306 size = size * raid_disks;
3307 sector_div(size, conf->geo.near_copies);
3308
3309 return size << conf->geo.chunk_shift;
3310 }
3311
3312 static void calc_sectors(struct r10conf *conf, sector_t size)
3313 {
3314 /* Calculate the number of sectors-per-device that will
3315 * actually be used, and set conf->dev_sectors and
3316 * conf->stride
3317 */
3318
3319 size = size >> conf->geo.chunk_shift;
3320 sector_div(size, conf->geo.far_copies);
3321 size = size * conf->geo.raid_disks;
3322 sector_div(size, conf->geo.near_copies);
3323 /* 'size' is now the number of chunks in the array */
3324 /* calculate "used chunks per device" */
3325 size = size * conf->copies;
3326
3327 /* We need to round up when dividing by raid_disks to
3328 * get the stride size.
3329 */
3330 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3331
3332 conf->dev_sectors = size << conf->geo.chunk_shift;
3333
3334 if (conf->geo.far_offset)
3335 conf->geo.stride = 1 << conf->geo.chunk_shift;
3336 else {
3337 sector_div(size, conf->geo.far_copies);
3338 conf->geo.stride = size << conf->geo.chunk_shift;
3339 }
3340 }
3341
3342 enum geo_type {geo_new, geo_old, geo_start};
3343 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3344 {
3345 int nc, fc, fo;
3346 int layout, chunk, disks;
3347 switch (new) {
3348 case geo_old:
3349 layout = mddev->layout;
3350 chunk = mddev->chunk_sectors;
3351 disks = mddev->raid_disks - mddev->delta_disks;
3352 break;
3353 case geo_new:
3354 layout = mddev->new_layout;
3355 chunk = mddev->new_chunk_sectors;
3356 disks = mddev->raid_disks;
3357 break;
3358 default: /* avoid 'may be unused' warnings */
3359 case geo_start: /* new when starting reshape - raid_disks not
3360 * updated yet. */
3361 layout = mddev->new_layout;
3362 chunk = mddev->new_chunk_sectors;
3363 disks = mddev->raid_disks + mddev->delta_disks;
3364 break;
3365 }
3366 if (layout >> 17)
3367 return -1;
3368 if (chunk < (PAGE_SIZE >> 9) ||
3369 !is_power_of_2(chunk))
3370 return -2;
3371 nc = layout & 255;
3372 fc = (layout >> 8) & 255;
3373 fo = layout & (1<<16);
3374 geo->raid_disks = disks;
3375 geo->near_copies = nc;
3376 geo->far_copies = fc;
3377 geo->far_offset = fo;
3378 geo->chunk_mask = chunk - 1;
3379 geo->chunk_shift = ffz(~chunk);
3380 return nc*fc;
3381 }
3382
3383 static struct r10conf *setup_conf(struct mddev *mddev)
3384 {
3385 struct r10conf *conf = NULL;
3386 int err = -EINVAL;
3387 struct geom geo;
3388 int copies;
3389
3390 copies = setup_geo(&geo, mddev, geo_new);
3391
3392 if (copies == -2) {
3393 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3394 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3395 mdname(mddev), PAGE_SIZE);
3396 goto out;
3397 }
3398
3399 if (copies < 2 || copies > mddev->raid_disks) {
3400 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3401 mdname(mddev), mddev->new_layout);
3402 goto out;
3403 }
3404
3405 err = -ENOMEM;
3406 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3407 if (!conf)
3408 goto out;
3409
3410 /* FIXME calc properly */
3411 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3412 max(0,mddev->delta_disks)),
3413 GFP_KERNEL);
3414 if (!conf->mirrors)
3415 goto out;
3416
3417 conf->tmppage = alloc_page(GFP_KERNEL);
3418 if (!conf->tmppage)
3419 goto out;
3420
3421 conf->geo = geo;
3422 conf->copies = copies;
3423 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3424 r10bio_pool_free, conf);
3425 if (!conf->r10bio_pool)
3426 goto out;
3427
3428 calc_sectors(conf, mddev->dev_sectors);
3429 if (mddev->reshape_position == MaxSector) {
3430 conf->prev = conf->geo;
3431 conf->reshape_progress = MaxSector;
3432 } else {
3433 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3434 err = -EINVAL;
3435 goto out;
3436 }
3437 conf->reshape_progress = mddev->reshape_position;
3438 if (conf->prev.far_offset)
3439 conf->prev.stride = 1 << conf->prev.chunk_shift;
3440 else
3441 /* far_copies must be 1 */
3442 conf->prev.stride = conf->dev_sectors;
3443 }
3444 spin_lock_init(&conf->device_lock);
3445 INIT_LIST_HEAD(&conf->retry_list);
3446
3447 spin_lock_init(&conf->resync_lock);
3448 init_waitqueue_head(&conf->wait_barrier);
3449
3450 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3451 if (!conf->thread)
3452 goto out;
3453
3454 conf->mddev = mddev;
3455 return conf;
3456
3457 out:
3458 if (err == -ENOMEM)
3459 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3460 mdname(mddev));
3461 if (conf) {
3462 if (conf->r10bio_pool)
3463 mempool_destroy(conf->r10bio_pool);
3464 kfree(conf->mirrors);
3465 safe_put_page(conf->tmppage);
3466 kfree(conf);
3467 }
3468 return ERR_PTR(err);
3469 }
3470
3471 static int run(struct mddev *mddev)
3472 {
3473 struct r10conf *conf;
3474 int i, disk_idx, chunk_size;
3475 struct raid10_info *disk;
3476 struct md_rdev *rdev;
3477 sector_t size;
3478 sector_t min_offset_diff = 0;
3479 int first = 1;
3480
3481 if (mddev->private == NULL) {
3482 conf = setup_conf(mddev);
3483 if (IS_ERR(conf))
3484 return PTR_ERR(conf);
3485 mddev->private = conf;
3486 }
3487 conf = mddev->private;
3488 if (!conf)
3489 goto out;
3490
3491 mddev->thread = conf->thread;
3492 conf->thread = NULL;
3493
3494 chunk_size = mddev->chunk_sectors << 9;
3495 if (mddev->queue) {
3496 blk_queue_io_min(mddev->queue, chunk_size);
3497 if (conf->geo.raid_disks % conf->geo.near_copies)
3498 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3499 else
3500 blk_queue_io_opt(mddev->queue, chunk_size *
3501 (conf->geo.raid_disks / conf->geo.near_copies));
3502 }
3503
3504 rdev_for_each(rdev, mddev) {
3505 long long diff;
3506 struct request_queue *q;
3507
3508 disk_idx = rdev->raid_disk;
3509 if (disk_idx < 0)
3510 continue;
3511 if (disk_idx >= conf->geo.raid_disks &&
3512 disk_idx >= conf->prev.raid_disks)
3513 continue;
3514 disk = conf->mirrors + disk_idx;
3515
3516 if (test_bit(Replacement, &rdev->flags)) {
3517 if (disk->replacement)
3518 goto out_free_conf;
3519 disk->replacement = rdev;
3520 } else {
3521 if (disk->rdev)
3522 goto out_free_conf;
3523 disk->rdev = rdev;
3524 }
3525 q = bdev_get_queue(rdev->bdev);
3526 if (q->merge_bvec_fn)
3527 mddev->merge_check_needed = 1;
3528 diff = (rdev->new_data_offset - rdev->data_offset);
3529 if (!mddev->reshape_backwards)
3530 diff = -diff;
3531 if (diff < 0)
3532 diff = 0;
3533 if (first || diff < min_offset_diff)
3534 min_offset_diff = diff;
3535
3536 if (mddev->gendisk)
3537 disk_stack_limits(mddev->gendisk, rdev->bdev,
3538 rdev->data_offset << 9);
3539
3540 disk->head_position = 0;
3541 }
3542
3543 /* need to check that every block has at least one working mirror */
3544 if (!enough(conf, -1)) {
3545 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3546 mdname(mddev));
3547 goto out_free_conf;
3548 }
3549
3550 if (conf->reshape_progress != MaxSector) {
3551 /* must ensure that shape change is supported */
3552 if (conf->geo.far_copies != 1 &&
3553 conf->geo.far_offset == 0)
3554 goto out_free_conf;
3555 if (conf->prev.far_copies != 1 &&
3556 conf->geo.far_offset == 0)
3557 goto out_free_conf;
3558 }
3559
3560 mddev->degraded = 0;
3561 for (i = 0;
3562 i < conf->geo.raid_disks
3563 || i < conf->prev.raid_disks;
3564 i++) {
3565
3566 disk = conf->mirrors + i;
3567
3568 if (!disk->rdev && disk->replacement) {
3569 /* The replacement is all we have - use it */
3570 disk->rdev = disk->replacement;
3571 disk->replacement = NULL;
3572 clear_bit(Replacement, &disk->rdev->flags);
3573 }
3574
3575 if (!disk->rdev ||
3576 !test_bit(In_sync, &disk->rdev->flags)) {
3577 disk->head_position = 0;
3578 mddev->degraded++;
3579 if (disk->rdev)
3580 conf->fullsync = 1;
3581 }
3582 disk->recovery_disabled = mddev->recovery_disabled - 1;
3583 }
3584
3585 if (mddev->recovery_cp != MaxSector)
3586 printk(KERN_NOTICE "md/raid10:%s: not clean"
3587 " -- starting background reconstruction\n",
3588 mdname(mddev));
3589 printk(KERN_INFO
3590 "md/raid10:%s: active with %d out of %d devices\n",
3591 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3592 conf->geo.raid_disks);
3593 /*
3594 * Ok, everything is just fine now
3595 */
3596 mddev->dev_sectors = conf->dev_sectors;
3597 size = raid10_size(mddev, 0, 0);
3598 md_set_array_sectors(mddev, size);
3599 mddev->resync_max_sectors = size;
3600
3601 if (mddev->queue) {
3602 int stripe = conf->geo.raid_disks *
3603 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3604 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3605 mddev->queue->backing_dev_info.congested_data = mddev;
3606
3607 /* Calculate max read-ahead size.
3608 * We need to readahead at least twice a whole stripe....
3609 * maybe...
3610 */
3611 stripe /= conf->geo.near_copies;
3612 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3613 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3614 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3615 }
3616
3617
3618 if (md_integrity_register(mddev))
3619 goto out_free_conf;
3620
3621 if (conf->reshape_progress != MaxSector) {
3622 unsigned long before_length, after_length;
3623
3624 before_length = ((1 << conf->prev.chunk_shift) *
3625 conf->prev.far_copies);
3626 after_length = ((1 << conf->geo.chunk_shift) *
3627 conf->geo.far_copies);
3628
3629 if (max(before_length, after_length) > min_offset_diff) {
3630 /* This cannot work */
3631 printk("md/raid10: offset difference not enough to continue reshape\n");
3632 goto out_free_conf;
3633 }
3634 conf->offset_diff = min_offset_diff;
3635
3636 conf->reshape_safe = conf->reshape_progress;
3637 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3638 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3639 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3640 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3641 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3642 "reshape");
3643 }
3644
3645 return 0;
3646
3647 out_free_conf:
3648 md_unregister_thread(&mddev->thread);
3649 if (conf->r10bio_pool)
3650 mempool_destroy(conf->r10bio_pool);
3651 safe_put_page(conf->tmppage);
3652 kfree(conf->mirrors);
3653 kfree(conf);
3654 mddev->private = NULL;
3655 out:
3656 return -EIO;
3657 }
3658
3659 static int stop(struct mddev *mddev)
3660 {
3661 struct r10conf *conf = mddev->private;
3662
3663 raise_barrier(conf, 0);
3664 lower_barrier(conf);
3665
3666 md_unregister_thread(&mddev->thread);
3667 if (mddev->queue)
3668 /* the unplug fn references 'conf'*/
3669 blk_sync_queue(mddev->queue);
3670
3671 if (conf->r10bio_pool)
3672 mempool_destroy(conf->r10bio_pool);
3673 kfree(conf->mirrors);
3674 kfree(conf);
3675 mddev->private = NULL;
3676 return 0;
3677 }
3678
3679 static void raid10_quiesce(struct mddev *mddev, int state)
3680 {
3681 struct r10conf *conf = mddev->private;
3682
3683 switch(state) {
3684 case 1:
3685 raise_barrier(conf, 0);
3686 break;
3687 case 0:
3688 lower_barrier(conf);
3689 break;
3690 }
3691 }
3692
3693 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3694 {
3695 /* Resize of 'far' arrays is not supported.
3696 * For 'near' and 'offset' arrays we can set the
3697 * number of sectors used to be an appropriate multiple
3698 * of the chunk size.
3699 * For 'offset', this is far_copies*chunksize.
3700 * For 'near' the multiplier is the LCM of
3701 * near_copies and raid_disks.
3702 * So if far_copies > 1 && !far_offset, fail.
3703 * Else find LCM(raid_disks, near_copy)*far_copies and
3704 * multiply by chunk_size. Then round to this number.
3705 * This is mostly done by raid10_size()
3706 */
3707 struct r10conf *conf = mddev->private;
3708 sector_t oldsize, size;
3709
3710 if (mddev->reshape_position != MaxSector)
3711 return -EBUSY;
3712
3713 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3714 return -EINVAL;
3715
3716 oldsize = raid10_size(mddev, 0, 0);
3717 size = raid10_size(mddev, sectors, 0);
3718 if (mddev->external_size &&
3719 mddev->array_sectors > size)
3720 return -EINVAL;
3721 if (mddev->bitmap) {
3722 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3723 if (ret)
3724 return ret;
3725 }
3726 md_set_array_sectors(mddev, size);
3727 set_capacity(mddev->gendisk, mddev->array_sectors);
3728 revalidate_disk(mddev->gendisk);
3729 if (sectors > mddev->dev_sectors &&
3730 mddev->recovery_cp > oldsize) {
3731 mddev->recovery_cp = oldsize;
3732 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3733 }
3734 calc_sectors(conf, sectors);
3735 mddev->dev_sectors = conf->dev_sectors;
3736 mddev->resync_max_sectors = size;
3737 return 0;
3738 }
3739
3740 static void *raid10_takeover_raid0(struct mddev *mddev)
3741 {
3742 struct md_rdev *rdev;
3743 struct r10conf *conf;
3744
3745 if (mddev->degraded > 0) {
3746 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3747 mdname(mddev));
3748 return ERR_PTR(-EINVAL);
3749 }
3750
3751 /* Set new parameters */
3752 mddev->new_level = 10;
3753 /* new layout: far_copies = 1, near_copies = 2 */
3754 mddev->new_layout = (1<<8) + 2;
3755 mddev->new_chunk_sectors = mddev->chunk_sectors;
3756 mddev->delta_disks = mddev->raid_disks;
3757 mddev->raid_disks *= 2;
3758 /* make sure it will be not marked as dirty */
3759 mddev->recovery_cp = MaxSector;
3760
3761 conf = setup_conf(mddev);
3762 if (!IS_ERR(conf)) {
3763 rdev_for_each(rdev, mddev)
3764 if (rdev->raid_disk >= 0)
3765 rdev->new_raid_disk = rdev->raid_disk * 2;
3766 conf->barrier = 1;
3767 }
3768
3769 return conf;
3770 }
3771
3772 static void *raid10_takeover(struct mddev *mddev)
3773 {
3774 struct r0conf *raid0_conf;
3775
3776 /* raid10 can take over:
3777 * raid0 - providing it has only two drives
3778 */
3779 if (mddev->level == 0) {
3780 /* for raid0 takeover only one zone is supported */
3781 raid0_conf = mddev->private;
3782 if (raid0_conf->nr_strip_zones > 1) {
3783 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3784 " with more than one zone.\n",
3785 mdname(mddev));
3786 return ERR_PTR(-EINVAL);
3787 }
3788 return raid10_takeover_raid0(mddev);
3789 }
3790 return ERR_PTR(-EINVAL);
3791 }
3792
3793 static int raid10_check_reshape(struct mddev *mddev)
3794 {
3795 /* Called when there is a request to change
3796 * - layout (to ->new_layout)
3797 * - chunk size (to ->new_chunk_sectors)
3798 * - raid_disks (by delta_disks)
3799 * or when trying to restart a reshape that was ongoing.
3800 *
3801 * We need to validate the request and possibly allocate
3802 * space if that might be an issue later.
3803 *
3804 * Currently we reject any reshape of a 'far' mode array,
3805 * allow chunk size to change if new is generally acceptable,
3806 * allow raid_disks to increase, and allow
3807 * a switch between 'near' mode and 'offset' mode.
3808 */
3809 struct r10conf *conf = mddev->private;
3810 struct geom geo;
3811
3812 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3813 return -EINVAL;
3814
3815 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3816 /* mustn't change number of copies */
3817 return -EINVAL;
3818 if (geo.far_copies > 1 && !geo.far_offset)
3819 /* Cannot switch to 'far' mode */
3820 return -EINVAL;
3821
3822 if (mddev->array_sectors & geo.chunk_mask)
3823 /* not factor of array size */
3824 return -EINVAL;
3825
3826 if (!enough(conf, -1))
3827 return -EINVAL;
3828
3829 kfree(conf->mirrors_new);
3830 conf->mirrors_new = NULL;
3831 if (mddev->delta_disks > 0) {
3832 /* allocate new 'mirrors' list */
3833 conf->mirrors_new = kzalloc(
3834 sizeof(struct raid10_info)
3835 *(mddev->raid_disks +
3836 mddev->delta_disks),
3837 GFP_KERNEL);
3838 if (!conf->mirrors_new)
3839 return -ENOMEM;
3840 }
3841 return 0;
3842 }
3843
3844 /*
3845 * Need to check if array has failed when deciding whether to:
3846 * - start an array
3847 * - remove non-faulty devices
3848 * - add a spare
3849 * - allow a reshape
3850 * This determination is simple when no reshape is happening.
3851 * However if there is a reshape, we need to carefully check
3852 * both the before and after sections.
3853 * This is because some failed devices may only affect one
3854 * of the two sections, and some non-in_sync devices may
3855 * be insync in the section most affected by failed devices.
3856 */
3857 static int calc_degraded(struct r10conf *conf)
3858 {
3859 int degraded, degraded2;
3860 int i;
3861
3862 rcu_read_lock();
3863 degraded = 0;
3864 /* 'prev' section first */
3865 for (i = 0; i < conf->prev.raid_disks; i++) {
3866 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3867 if (!rdev || test_bit(Faulty, &rdev->flags))
3868 degraded++;
3869 else if (!test_bit(In_sync, &rdev->flags))
3870 /* When we can reduce the number of devices in
3871 * an array, this might not contribute to
3872 * 'degraded'. It does now.
3873 */
3874 degraded++;
3875 }
3876 rcu_read_unlock();
3877 if (conf->geo.raid_disks == conf->prev.raid_disks)
3878 return degraded;
3879 rcu_read_lock();
3880 degraded2 = 0;
3881 for (i = 0; i < conf->geo.raid_disks; i++) {
3882 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3883 if (!rdev || test_bit(Faulty, &rdev->flags))
3884 degraded2++;
3885 else if (!test_bit(In_sync, &rdev->flags)) {
3886 /* If reshape is increasing the number of devices,
3887 * this section has already been recovered, so
3888 * it doesn't contribute to degraded.
3889 * else it does.
3890 */
3891 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3892 degraded2++;
3893 }
3894 }
3895 rcu_read_unlock();
3896 if (degraded2 > degraded)
3897 return degraded2;
3898 return degraded;
3899 }
3900
3901 static int raid10_start_reshape(struct mddev *mddev)
3902 {
3903 /* A 'reshape' has been requested. This commits
3904 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3905 * This also checks if there are enough spares and adds them
3906 * to the array.
3907 * We currently require enough spares to make the final
3908 * array non-degraded. We also require that the difference
3909 * between old and new data_offset - on each device - is
3910 * enough that we never risk over-writing.
3911 */
3912
3913 unsigned long before_length, after_length;
3914 sector_t min_offset_diff = 0;
3915 int first = 1;
3916 struct geom new;
3917 struct r10conf *conf = mddev->private;
3918 struct md_rdev *rdev;
3919 int spares = 0;
3920 int ret;
3921
3922 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3923 return -EBUSY;
3924
3925 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3926 return -EINVAL;
3927
3928 before_length = ((1 << conf->prev.chunk_shift) *
3929 conf->prev.far_copies);
3930 after_length = ((1 << conf->geo.chunk_shift) *
3931 conf->geo.far_copies);
3932
3933 rdev_for_each(rdev, mddev) {
3934 if (!test_bit(In_sync, &rdev->flags)
3935 && !test_bit(Faulty, &rdev->flags))
3936 spares++;
3937 if (rdev->raid_disk >= 0) {
3938 long long diff = (rdev->new_data_offset
3939 - rdev->data_offset);
3940 if (!mddev->reshape_backwards)
3941 diff = -diff;
3942 if (diff < 0)
3943 diff = 0;
3944 if (first || diff < min_offset_diff)
3945 min_offset_diff = diff;
3946 }
3947 }
3948
3949 if (max(before_length, after_length) > min_offset_diff)
3950 return -EINVAL;
3951
3952 if (spares < mddev->delta_disks)
3953 return -EINVAL;
3954
3955 conf->offset_diff = min_offset_diff;
3956 spin_lock_irq(&conf->device_lock);
3957 if (conf->mirrors_new) {
3958 memcpy(conf->mirrors_new, conf->mirrors,
3959 sizeof(struct raid10_info)*conf->prev.raid_disks);
3960 smp_mb();
3961 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3962 conf->mirrors_old = conf->mirrors;
3963 conf->mirrors = conf->mirrors_new;
3964 conf->mirrors_new = NULL;
3965 }
3966 setup_geo(&conf->geo, mddev, geo_start);
3967 smp_mb();
3968 if (mddev->reshape_backwards) {
3969 sector_t size = raid10_size(mddev, 0, 0);
3970 if (size < mddev->array_sectors) {
3971 spin_unlock_irq(&conf->device_lock);
3972 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3973 mdname(mddev));
3974 return -EINVAL;
3975 }
3976 mddev->resync_max_sectors = size;
3977 conf->reshape_progress = size;
3978 } else
3979 conf->reshape_progress = 0;
3980 spin_unlock_irq(&conf->device_lock);
3981
3982 if (mddev->delta_disks && mddev->bitmap) {
3983 ret = bitmap_resize(mddev->bitmap,
3984 raid10_size(mddev, 0,
3985 conf->geo.raid_disks),
3986 0, 0);
3987 if (ret)
3988 goto abort;
3989 }
3990 if (mddev->delta_disks > 0) {
3991 rdev_for_each(rdev, mddev)
3992 if (rdev->raid_disk < 0 &&
3993 !test_bit(Faulty, &rdev->flags)) {
3994 if (raid10_add_disk(mddev, rdev) == 0) {
3995 if (rdev->raid_disk >=
3996 conf->prev.raid_disks)
3997 set_bit(In_sync, &rdev->flags);
3998 else
3999 rdev->recovery_offset = 0;
4000
4001 if (sysfs_link_rdev(mddev, rdev))
4002 /* Failure here is OK */;
4003 }
4004 } else if (rdev->raid_disk >= conf->prev.raid_disks
4005 && !test_bit(Faulty, &rdev->flags)) {
4006 /* This is a spare that was manually added */
4007 set_bit(In_sync, &rdev->flags);
4008 }
4009 }
4010 /* When a reshape changes the number of devices,
4011 * ->degraded is measured against the larger of the
4012 * pre and post numbers.
4013 */
4014 spin_lock_irq(&conf->device_lock);
4015 mddev->degraded = calc_degraded(conf);
4016 spin_unlock_irq(&conf->device_lock);
4017 mddev->raid_disks = conf->geo.raid_disks;
4018 mddev->reshape_position = conf->reshape_progress;
4019 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4020
4021 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4022 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4023 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4024 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4025
4026 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4027 "reshape");
4028 if (!mddev->sync_thread) {
4029 ret = -EAGAIN;
4030 goto abort;
4031 }
4032 conf->reshape_checkpoint = jiffies;
4033 md_wakeup_thread(mddev->sync_thread);
4034 md_new_event(mddev);
4035 return 0;
4036
4037 abort:
4038 mddev->recovery = 0;
4039 spin_lock_irq(&conf->device_lock);
4040 conf->geo = conf->prev;
4041 mddev->raid_disks = conf->geo.raid_disks;
4042 rdev_for_each(rdev, mddev)
4043 rdev->new_data_offset = rdev->data_offset;
4044 smp_wmb();
4045 conf->reshape_progress = MaxSector;
4046 mddev->reshape_position = MaxSector;
4047 spin_unlock_irq(&conf->device_lock);
4048 return ret;
4049 }
4050
4051 /* Calculate the last device-address that could contain
4052 * any block from the chunk that includes the array-address 's'
4053 * and report the next address.
4054 * i.e. the address returned will be chunk-aligned and after
4055 * any data that is in the chunk containing 's'.
4056 */
4057 static sector_t last_dev_address(sector_t s, struct geom *geo)
4058 {
4059 s = (s | geo->chunk_mask) + 1;
4060 s >>= geo->chunk_shift;
4061 s *= geo->near_copies;
4062 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4063 s *= geo->far_copies;
4064 s <<= geo->chunk_shift;
4065 return s;
4066 }
4067
4068 /* Calculate the first device-address that could contain
4069 * any block from the chunk that includes the array-address 's'.
4070 * This too will be the start of a chunk
4071 */
4072 static sector_t first_dev_address(sector_t s, struct geom *geo)
4073 {
4074 s >>= geo->chunk_shift;
4075 s *= geo->near_copies;
4076 sector_div(s, geo->raid_disks);
4077 s *= geo->far_copies;
4078 s <<= geo->chunk_shift;
4079 return s;
4080 }
4081
4082 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4083 int *skipped)
4084 {
4085 /* We simply copy at most one chunk (smallest of old and new)
4086 * at a time, possibly less if that exceeds RESYNC_PAGES,
4087 * or we hit a bad block or something.
4088 * This might mean we pause for normal IO in the middle of
4089 * a chunk, but that is not a problem was mddev->reshape_position
4090 * can record any location.
4091 *
4092 * If we will want to write to a location that isn't
4093 * yet recorded as 'safe' (i.e. in metadata on disk) then
4094 * we need to flush all reshape requests and update the metadata.
4095 *
4096 * When reshaping forwards (e.g. to more devices), we interpret
4097 * 'safe' as the earliest block which might not have been copied
4098 * down yet. We divide this by previous stripe size and multiply
4099 * by previous stripe length to get lowest device offset that we
4100 * cannot write to yet.
4101 * We interpret 'sector_nr' as an address that we want to write to.
4102 * From this we use last_device_address() to find where we might
4103 * write to, and first_device_address on the 'safe' position.
4104 * If this 'next' write position is after the 'safe' position,
4105 * we must update the metadata to increase the 'safe' position.
4106 *
4107 * When reshaping backwards, we round in the opposite direction
4108 * and perform the reverse test: next write position must not be
4109 * less than current safe position.
4110 *
4111 * In all this the minimum difference in data offsets
4112 * (conf->offset_diff - always positive) allows a bit of slack,
4113 * so next can be after 'safe', but not by more than offset_disk
4114 *
4115 * We need to prepare all the bios here before we start any IO
4116 * to ensure the size we choose is acceptable to all devices.
4117 * The means one for each copy for write-out and an extra one for
4118 * read-in.
4119 * We store the read-in bio in ->master_bio and the others in
4120 * ->devs[x].bio and ->devs[x].repl_bio.
4121 */
4122 struct r10conf *conf = mddev->private;
4123 struct r10bio *r10_bio;
4124 sector_t next, safe, last;
4125 int max_sectors;
4126 int nr_sectors;
4127 int s;
4128 struct md_rdev *rdev;
4129 int need_flush = 0;
4130 struct bio *blist;
4131 struct bio *bio, *read_bio;
4132 int sectors_done = 0;
4133
4134 if (sector_nr == 0) {
4135 /* If restarting in the middle, skip the initial sectors */
4136 if (mddev->reshape_backwards &&
4137 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4138 sector_nr = (raid10_size(mddev, 0, 0)
4139 - conf->reshape_progress);
4140 } else if (!mddev->reshape_backwards &&
4141 conf->reshape_progress > 0)
4142 sector_nr = conf->reshape_progress;
4143 if (sector_nr) {
4144 mddev->curr_resync_completed = sector_nr;
4145 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4146 *skipped = 1;
4147 return sector_nr;
4148 }
4149 }
4150
4151 /* We don't use sector_nr to track where we are up to
4152 * as that doesn't work well for ->reshape_backwards.
4153 * So just use ->reshape_progress.
4154 */
4155 if (mddev->reshape_backwards) {
4156 /* 'next' is the earliest device address that we might
4157 * write to for this chunk in the new layout
4158 */
4159 next = first_dev_address(conf->reshape_progress - 1,
4160 &conf->geo);
4161
4162 /* 'safe' is the last device address that we might read from
4163 * in the old layout after a restart
4164 */
4165 safe = last_dev_address(conf->reshape_safe - 1,
4166 &conf->prev);
4167
4168 if (next + conf->offset_diff < safe)
4169 need_flush = 1;
4170
4171 last = conf->reshape_progress - 1;
4172 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4173 & conf->prev.chunk_mask);
4174 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4175 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4176 } else {
4177 /* 'next' is after the last device address that we
4178 * might write to for this chunk in the new layout
4179 */
4180 next = last_dev_address(conf->reshape_progress, &conf->geo);
4181
4182 /* 'safe' is the earliest device address that we might
4183 * read from in the old layout after a restart
4184 */
4185 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4186
4187 /* Need to update metadata if 'next' might be beyond 'safe'
4188 * as that would possibly corrupt data
4189 */
4190 if (next > safe + conf->offset_diff)
4191 need_flush = 1;
4192
4193 sector_nr = conf->reshape_progress;
4194 last = sector_nr | (conf->geo.chunk_mask
4195 & conf->prev.chunk_mask);
4196
4197 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4198 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4199 }
4200
4201 if (need_flush ||
4202 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4203 /* Need to update reshape_position in metadata */
4204 wait_barrier(conf);
4205 mddev->reshape_position = conf->reshape_progress;
4206 if (mddev->reshape_backwards)
4207 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4208 - conf->reshape_progress;
4209 else
4210 mddev->curr_resync_completed = conf->reshape_progress;
4211 conf->reshape_checkpoint = jiffies;
4212 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4213 md_wakeup_thread(mddev->thread);
4214 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4215 kthread_should_stop());
4216 conf->reshape_safe = mddev->reshape_position;
4217 allow_barrier(conf);
4218 }
4219
4220 read_more:
4221 /* Now schedule reads for blocks from sector_nr to last */
4222 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4223 raise_barrier(conf, sectors_done != 0);
4224 atomic_set(&r10_bio->remaining, 0);
4225 r10_bio->mddev = mddev;
4226 r10_bio->sector = sector_nr;
4227 set_bit(R10BIO_IsReshape, &r10_bio->state);
4228 r10_bio->sectors = last - sector_nr + 1;
4229 rdev = read_balance(conf, r10_bio, &max_sectors);
4230 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4231
4232 if (!rdev) {
4233 /* Cannot read from here, so need to record bad blocks
4234 * on all the target devices.
4235 */
4236 // FIXME
4237 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4238 return sectors_done;
4239 }
4240
4241 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4242
4243 read_bio->bi_bdev = rdev->bdev;
4244 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4245 + rdev->data_offset);
4246 read_bio->bi_private = r10_bio;
4247 read_bio->bi_end_io = end_sync_read;
4248 read_bio->bi_rw = READ;
4249 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4250 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4251 read_bio->bi_vcnt = 0;
4252 read_bio->bi_idx = 0;
4253 read_bio->bi_size = 0;
4254 r10_bio->master_bio = read_bio;
4255 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4256
4257 /* Now find the locations in the new layout */
4258 __raid10_find_phys(&conf->geo, r10_bio);
4259
4260 blist = read_bio;
4261 read_bio->bi_next = NULL;
4262
4263 for (s = 0; s < conf->copies*2; s++) {
4264 struct bio *b;
4265 int d = r10_bio->devs[s/2].devnum;
4266 struct md_rdev *rdev2;
4267 if (s&1) {
4268 rdev2 = conf->mirrors[d].replacement;
4269 b = r10_bio->devs[s/2].repl_bio;
4270 } else {
4271 rdev2 = conf->mirrors[d].rdev;
4272 b = r10_bio->devs[s/2].bio;
4273 }
4274 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4275 continue;
4276 b->bi_bdev = rdev2->bdev;
4277 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4278 b->bi_private = r10_bio;
4279 b->bi_end_io = end_reshape_write;
4280 b->bi_rw = WRITE;
4281 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4282 b->bi_flags |= 1 << BIO_UPTODATE;
4283 b->bi_next = blist;
4284 b->bi_vcnt = 0;
4285 b->bi_idx = 0;
4286 b->bi_size = 0;
4287 blist = b;
4288 }
4289
4290 /* Now add as many pages as possible to all of these bios. */
4291
4292 nr_sectors = 0;
4293 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4294 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4295 int len = (max_sectors - s) << 9;
4296 if (len > PAGE_SIZE)
4297 len = PAGE_SIZE;
4298 for (bio = blist; bio ; bio = bio->bi_next) {
4299 struct bio *bio2;
4300 if (bio_add_page(bio, page, len, 0))
4301 continue;
4302
4303 /* Didn't fit, must stop */
4304 for (bio2 = blist;
4305 bio2 && bio2 != bio;
4306 bio2 = bio2->bi_next) {
4307 /* Remove last page from this bio */
4308 bio2->bi_vcnt--;
4309 bio2->bi_size -= len;
4310 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4311 }
4312 goto bio_full;
4313 }
4314 sector_nr += len >> 9;
4315 nr_sectors += len >> 9;
4316 }
4317 bio_full:
4318 r10_bio->sectors = nr_sectors;
4319
4320 /* Now submit the read */
4321 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4322 atomic_inc(&r10_bio->remaining);
4323 read_bio->bi_next = NULL;
4324 generic_make_request(read_bio);
4325 sector_nr += nr_sectors;
4326 sectors_done += nr_sectors;
4327 if (sector_nr <= last)
4328 goto read_more;
4329
4330 /* Now that we have done the whole section we can
4331 * update reshape_progress
4332 */
4333 if (mddev->reshape_backwards)
4334 conf->reshape_progress -= sectors_done;
4335 else
4336 conf->reshape_progress += sectors_done;
4337
4338 return sectors_done;
4339 }
4340
4341 static void end_reshape_request(struct r10bio *r10_bio);
4342 static int handle_reshape_read_error(struct mddev *mddev,
4343 struct r10bio *r10_bio);
4344 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4345 {
4346 /* Reshape read completed. Hopefully we have a block
4347 * to write out.
4348 * If we got a read error then we do sync 1-page reads from
4349 * elsewhere until we find the data - or give up.
4350 */
4351 struct r10conf *conf = mddev->private;
4352 int s;
4353
4354 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4355 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4356 /* Reshape has been aborted */
4357 md_done_sync(mddev, r10_bio->sectors, 0);
4358 return;
4359 }
4360
4361 /* We definitely have the data in the pages, schedule the
4362 * writes.
4363 */
4364 atomic_set(&r10_bio->remaining, 1);
4365 for (s = 0; s < conf->copies*2; s++) {
4366 struct bio *b;
4367 int d = r10_bio->devs[s/2].devnum;
4368 struct md_rdev *rdev;
4369 if (s&1) {
4370 rdev = conf->mirrors[d].replacement;
4371 b = r10_bio->devs[s/2].repl_bio;
4372 } else {
4373 rdev = conf->mirrors[d].rdev;
4374 b = r10_bio->devs[s/2].bio;
4375 }
4376 if (!rdev || test_bit(Faulty, &rdev->flags))
4377 continue;
4378 atomic_inc(&rdev->nr_pending);
4379 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4380 atomic_inc(&r10_bio->remaining);
4381 b->bi_next = NULL;
4382 generic_make_request(b);
4383 }
4384 end_reshape_request(r10_bio);
4385 }
4386
4387 static void end_reshape(struct r10conf *conf)
4388 {
4389 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4390 return;
4391
4392 spin_lock_irq(&conf->device_lock);
4393 conf->prev = conf->geo;
4394 md_finish_reshape(conf->mddev);
4395 smp_wmb();
4396 conf->reshape_progress = MaxSector;
4397 spin_unlock_irq(&conf->device_lock);
4398
4399 /* read-ahead size must cover two whole stripes, which is
4400 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4401 */
4402 if (conf->mddev->queue) {
4403 int stripe = conf->geo.raid_disks *
4404 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4405 stripe /= conf->geo.near_copies;
4406 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4407 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4408 }
4409 conf->fullsync = 0;
4410 }
4411
4412
4413 static int handle_reshape_read_error(struct mddev *mddev,
4414 struct r10bio *r10_bio)
4415 {
4416 /* Use sync reads to get the blocks from somewhere else */
4417 int sectors = r10_bio->sectors;
4418 struct r10bio r10b;
4419 struct r10conf *conf = mddev->private;
4420 int slot = 0;
4421 int idx = 0;
4422 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4423
4424 r10b.sector = r10_bio->sector;
4425 __raid10_find_phys(&conf->prev, &r10b);
4426
4427 while (sectors) {
4428 int s = sectors;
4429 int success = 0;
4430 int first_slot = slot;
4431
4432 if (s > (PAGE_SIZE >> 9))
4433 s = PAGE_SIZE >> 9;
4434
4435 while (!success) {
4436 int d = r10b.devs[slot].devnum;
4437 struct md_rdev *rdev = conf->mirrors[d].rdev;
4438 sector_t addr;
4439 if (rdev == NULL ||
4440 test_bit(Faulty, &rdev->flags) ||
4441 !test_bit(In_sync, &rdev->flags))
4442 goto failed;
4443
4444 addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4445 success = sync_page_io(rdev,
4446 addr,
4447 s << 9,
4448 bvec[idx].bv_page,
4449 READ, false);
4450 if (success)
4451 break;
4452 failed:
4453 slot++;
4454 if (slot >= conf->copies)
4455 slot = 0;
4456 if (slot == first_slot)
4457 break;
4458 }
4459 if (!success) {
4460 /* couldn't read this block, must give up */
4461 set_bit(MD_RECOVERY_INTR,
4462 &mddev->recovery);
4463 return -EIO;
4464 }
4465 sectors -= s;
4466 idx++;
4467 }
4468 return 0;
4469 }
4470
4471 static void end_reshape_write(struct bio *bio, int error)
4472 {
4473 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4474 struct r10bio *r10_bio = bio->bi_private;
4475 struct mddev *mddev = r10_bio->mddev;
4476 struct r10conf *conf = mddev->private;
4477 int d;
4478 int slot;
4479 int repl;
4480 struct md_rdev *rdev = NULL;
4481
4482 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4483 if (repl)
4484 rdev = conf->mirrors[d].replacement;
4485 if (!rdev) {
4486 smp_mb();
4487 rdev = conf->mirrors[d].rdev;
4488 }
4489
4490 if (!uptodate) {
4491 /* FIXME should record badblock */
4492 md_error(mddev, rdev);
4493 }
4494
4495 rdev_dec_pending(rdev, mddev);
4496 end_reshape_request(r10_bio);
4497 }
4498
4499 static void end_reshape_request(struct r10bio *r10_bio)
4500 {
4501 if (!atomic_dec_and_test(&r10_bio->remaining))
4502 return;
4503 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4504 bio_put(r10_bio->master_bio);
4505 put_buf(r10_bio);
4506 }
4507
4508 static void raid10_finish_reshape(struct mddev *mddev)
4509 {
4510 struct r10conf *conf = mddev->private;
4511
4512 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4513 return;
4514
4515 if (mddev->delta_disks > 0) {
4516 sector_t size = raid10_size(mddev, 0, 0);
4517 md_set_array_sectors(mddev, size);
4518 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4519 mddev->recovery_cp = mddev->resync_max_sectors;
4520 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4521 }
4522 mddev->resync_max_sectors = size;
4523 set_capacity(mddev->gendisk, mddev->array_sectors);
4524 revalidate_disk(mddev->gendisk);
4525 } else {
4526 int d;
4527 for (d = conf->geo.raid_disks ;
4528 d < conf->geo.raid_disks - mddev->delta_disks;
4529 d++) {
4530 struct md_rdev *rdev = conf->mirrors[d].rdev;
4531 if (rdev)
4532 clear_bit(In_sync, &rdev->flags);
4533 rdev = conf->mirrors[d].replacement;
4534 if (rdev)
4535 clear_bit(In_sync, &rdev->flags);
4536 }
4537 }
4538 mddev->layout = mddev->new_layout;
4539 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4540 mddev->reshape_position = MaxSector;
4541 mddev->delta_disks = 0;
4542 mddev->reshape_backwards = 0;
4543 }
4544
4545 static struct md_personality raid10_personality =
4546 {
4547 .name = "raid10",
4548 .level = 10,
4549 .owner = THIS_MODULE,
4550 .make_request = make_request,
4551 .run = run,
4552 .stop = stop,
4553 .status = status,
4554 .error_handler = error,
4555 .hot_add_disk = raid10_add_disk,
4556 .hot_remove_disk= raid10_remove_disk,
4557 .spare_active = raid10_spare_active,
4558 .sync_request = sync_request,
4559 .quiesce = raid10_quiesce,
4560 .size = raid10_size,
4561 .resize = raid10_resize,
4562 .takeover = raid10_takeover,
4563 .check_reshape = raid10_check_reshape,
4564 .start_reshape = raid10_start_reshape,
4565 .finish_reshape = raid10_finish_reshape,
4566 };
4567
4568 static int __init raid_init(void)
4569 {
4570 return register_md_personality(&raid10_personality);
4571 }
4572
4573 static void raid_exit(void)
4574 {
4575 unregister_md_personality(&raid10_personality);
4576 }
4577
4578 module_init(raid_init);
4579 module_exit(raid_exit);
4580 MODULE_LICENSE("GPL");
4581 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4582 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4583 MODULE_ALIAS("md-raid10");
4584 MODULE_ALIAS("md-level-10");
4585
4586 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.171467 seconds and 5 git commands to generate.