Merge branch 'upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/floppy...
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 *
42 * The data to be stored is divided into chunks using chunksize.
43 * Each device is divided into far_copies sections.
44 * In each section, chunks are laid out in a style similar to raid0, but
45 * near_copies copies of each chunk is stored (each on a different drive).
46 * The starting device for each section is offset near_copies from the starting
47 * device of the previous section.
48 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
49 * drive.
50 * near_copies and far_copies must be at least one, and their product is at most
51 * raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of be very far apart
55 * on disk, there are adjacent stripes.
56 */
57
58 /*
59 * Number of guaranteed r10bios in case of extreme VM load:
60 */
61 #define NR_RAID10_BIOS 256
62
63 /* When there are this many requests queue to be written by
64 * the raid10 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r10conf *conf);
70 static void lower_barrier(struct r10conf *conf);
71 static int enough(struct r10conf *conf, int ignore);
72 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
73 int *skipped);
74 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
75 static void end_reshape_write(struct bio *bio, int error);
76 static void end_reshape(struct r10conf *conf);
77
78 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
79 {
80 struct r10conf *conf = data;
81 int size = offsetof(struct r10bio, devs[conf->copies]);
82
83 /* allocate a r10bio with room for raid_disks entries in the
84 * bios array */
85 return kzalloc(size, gfp_flags);
86 }
87
88 static void r10bio_pool_free(void *r10_bio, void *data)
89 {
90 kfree(r10_bio);
91 }
92
93 /* Maximum size of each resync request */
94 #define RESYNC_BLOCK_SIZE (64*1024)
95 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
96 /* amount of memory to reserve for resync requests */
97 #define RESYNC_WINDOW (1024*1024)
98 /* maximum number of concurrent requests, memory permitting */
99 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
100
101 /*
102 * When performing a resync, we need to read and compare, so
103 * we need as many pages are there are copies.
104 * When performing a recovery, we need 2 bios, one for read,
105 * one for write (we recover only one drive per r10buf)
106 *
107 */
108 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 struct r10conf *conf = data;
111 struct page *page;
112 struct r10bio *r10_bio;
113 struct bio *bio;
114 int i, j;
115 int nalloc;
116
117 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
118 if (!r10_bio)
119 return NULL;
120
121 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
122 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
123 nalloc = conf->copies; /* resync */
124 else
125 nalloc = 2; /* recovery */
126
127 /*
128 * Allocate bios.
129 */
130 for (j = nalloc ; j-- ; ) {
131 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
132 if (!bio)
133 goto out_free_bio;
134 r10_bio->devs[j].bio = bio;
135 if (!conf->have_replacement)
136 continue;
137 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
138 if (!bio)
139 goto out_free_bio;
140 r10_bio->devs[j].repl_bio = bio;
141 }
142 /*
143 * Allocate RESYNC_PAGES data pages and attach them
144 * where needed.
145 */
146 for (j = 0 ; j < nalloc; j++) {
147 struct bio *rbio = r10_bio->devs[j].repl_bio;
148 bio = r10_bio->devs[j].bio;
149 for (i = 0; i < RESYNC_PAGES; i++) {
150 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
151 &conf->mddev->recovery)) {
152 /* we can share bv_page's during recovery
153 * and reshape */
154 struct bio *rbio = r10_bio->devs[0].bio;
155 page = rbio->bi_io_vec[i].bv_page;
156 get_page(page);
157 } else
158 page = alloc_page(gfp_flags);
159 if (unlikely(!page))
160 goto out_free_pages;
161
162 bio->bi_io_vec[i].bv_page = page;
163 if (rbio)
164 rbio->bi_io_vec[i].bv_page = page;
165 }
166 }
167
168 return r10_bio;
169
170 out_free_pages:
171 for ( ; i > 0 ; i--)
172 safe_put_page(bio->bi_io_vec[i-1].bv_page);
173 while (j--)
174 for (i = 0; i < RESYNC_PAGES ; i++)
175 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
176 j = 0;
177 out_free_bio:
178 for ( ; j < nalloc; j++) {
179 if (r10_bio->devs[j].bio)
180 bio_put(r10_bio->devs[j].bio);
181 if (r10_bio->devs[j].repl_bio)
182 bio_put(r10_bio->devs[j].repl_bio);
183 }
184 r10bio_pool_free(r10_bio, conf);
185 return NULL;
186 }
187
188 static void r10buf_pool_free(void *__r10_bio, void *data)
189 {
190 int i;
191 struct r10conf *conf = data;
192 struct r10bio *r10bio = __r10_bio;
193 int j;
194
195 for (j=0; j < conf->copies; j++) {
196 struct bio *bio = r10bio->devs[j].bio;
197 if (bio) {
198 for (i = 0; i < RESYNC_PAGES; i++) {
199 safe_put_page(bio->bi_io_vec[i].bv_page);
200 bio->bi_io_vec[i].bv_page = NULL;
201 }
202 bio_put(bio);
203 }
204 bio = r10bio->devs[j].repl_bio;
205 if (bio)
206 bio_put(bio);
207 }
208 r10bio_pool_free(r10bio, conf);
209 }
210
211 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
212 {
213 int i;
214
215 for (i = 0; i < conf->copies; i++) {
216 struct bio **bio = & r10_bio->devs[i].bio;
217 if (!BIO_SPECIAL(*bio))
218 bio_put(*bio);
219 *bio = NULL;
220 bio = &r10_bio->devs[i].repl_bio;
221 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
222 bio_put(*bio);
223 *bio = NULL;
224 }
225 }
226
227 static void free_r10bio(struct r10bio *r10_bio)
228 {
229 struct r10conf *conf = r10_bio->mddev->private;
230
231 put_all_bios(conf, r10_bio);
232 mempool_free(r10_bio, conf->r10bio_pool);
233 }
234
235 static void put_buf(struct r10bio *r10_bio)
236 {
237 struct r10conf *conf = r10_bio->mddev->private;
238
239 mempool_free(r10_bio, conf->r10buf_pool);
240
241 lower_barrier(conf);
242 }
243
244 static void reschedule_retry(struct r10bio *r10_bio)
245 {
246 unsigned long flags;
247 struct mddev *mddev = r10_bio->mddev;
248 struct r10conf *conf = mddev->private;
249
250 spin_lock_irqsave(&conf->device_lock, flags);
251 list_add(&r10_bio->retry_list, &conf->retry_list);
252 conf->nr_queued ++;
253 spin_unlock_irqrestore(&conf->device_lock, flags);
254
255 /* wake up frozen array... */
256 wake_up(&conf->wait_barrier);
257
258 md_wakeup_thread(mddev->thread);
259 }
260
261 /*
262 * raid_end_bio_io() is called when we have finished servicing a mirrored
263 * operation and are ready to return a success/failure code to the buffer
264 * cache layer.
265 */
266 static void raid_end_bio_io(struct r10bio *r10_bio)
267 {
268 struct bio *bio = r10_bio->master_bio;
269 int done;
270 struct r10conf *conf = r10_bio->mddev->private;
271
272 if (bio->bi_phys_segments) {
273 unsigned long flags;
274 spin_lock_irqsave(&conf->device_lock, flags);
275 bio->bi_phys_segments--;
276 done = (bio->bi_phys_segments == 0);
277 spin_unlock_irqrestore(&conf->device_lock, flags);
278 } else
279 done = 1;
280 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
281 clear_bit(BIO_UPTODATE, &bio->bi_flags);
282 if (done) {
283 bio_endio(bio, 0);
284 /*
285 * Wake up any possible resync thread that waits for the device
286 * to go idle.
287 */
288 allow_barrier(conf);
289 }
290 free_r10bio(r10_bio);
291 }
292
293 /*
294 * Update disk head position estimator based on IRQ completion info.
295 */
296 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
297 {
298 struct r10conf *conf = r10_bio->mddev->private;
299
300 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
301 r10_bio->devs[slot].addr + (r10_bio->sectors);
302 }
303
304 /*
305 * Find the disk number which triggered given bio
306 */
307 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
308 struct bio *bio, int *slotp, int *replp)
309 {
310 int slot;
311 int repl = 0;
312
313 for (slot = 0; slot < conf->copies; slot++) {
314 if (r10_bio->devs[slot].bio == bio)
315 break;
316 if (r10_bio->devs[slot].repl_bio == bio) {
317 repl = 1;
318 break;
319 }
320 }
321
322 BUG_ON(slot == conf->copies);
323 update_head_pos(slot, r10_bio);
324
325 if (slotp)
326 *slotp = slot;
327 if (replp)
328 *replp = repl;
329 return r10_bio->devs[slot].devnum;
330 }
331
332 static void raid10_end_read_request(struct bio *bio, int error)
333 {
334 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
335 struct r10bio *r10_bio = bio->bi_private;
336 int slot, dev;
337 struct md_rdev *rdev;
338 struct r10conf *conf = r10_bio->mddev->private;
339
340
341 slot = r10_bio->read_slot;
342 dev = r10_bio->devs[slot].devnum;
343 rdev = r10_bio->devs[slot].rdev;
344 /*
345 * this branch is our 'one mirror IO has finished' event handler:
346 */
347 update_head_pos(slot, r10_bio);
348
349 if (uptodate) {
350 /*
351 * Set R10BIO_Uptodate in our master bio, so that
352 * we will return a good error code to the higher
353 * levels even if IO on some other mirrored buffer fails.
354 *
355 * The 'master' represents the composite IO operation to
356 * user-side. So if something waits for IO, then it will
357 * wait for the 'master' bio.
358 */
359 set_bit(R10BIO_Uptodate, &r10_bio->state);
360 } else {
361 /* If all other devices that store this block have
362 * failed, we want to return the error upwards rather
363 * than fail the last device. Here we redefine
364 * "uptodate" to mean "Don't want to retry"
365 */
366 unsigned long flags;
367 spin_lock_irqsave(&conf->device_lock, flags);
368 if (!enough(conf, rdev->raid_disk))
369 uptodate = 1;
370 spin_unlock_irqrestore(&conf->device_lock, flags);
371 }
372 if (uptodate) {
373 raid_end_bio_io(r10_bio);
374 rdev_dec_pending(rdev, conf->mddev);
375 } else {
376 /*
377 * oops, read error - keep the refcount on the rdev
378 */
379 char b[BDEVNAME_SIZE];
380 printk_ratelimited(KERN_ERR
381 "md/raid10:%s: %s: rescheduling sector %llu\n",
382 mdname(conf->mddev),
383 bdevname(rdev->bdev, b),
384 (unsigned long long)r10_bio->sector);
385 set_bit(R10BIO_ReadError, &r10_bio->state);
386 reschedule_retry(r10_bio);
387 }
388 }
389
390 static void close_write(struct r10bio *r10_bio)
391 {
392 /* clear the bitmap if all writes complete successfully */
393 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
394 r10_bio->sectors,
395 !test_bit(R10BIO_Degraded, &r10_bio->state),
396 0);
397 md_write_end(r10_bio->mddev);
398 }
399
400 static void one_write_done(struct r10bio *r10_bio)
401 {
402 if (atomic_dec_and_test(&r10_bio->remaining)) {
403 if (test_bit(R10BIO_WriteError, &r10_bio->state))
404 reschedule_retry(r10_bio);
405 else {
406 close_write(r10_bio);
407 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
408 reschedule_retry(r10_bio);
409 else
410 raid_end_bio_io(r10_bio);
411 }
412 }
413 }
414
415 static void raid10_end_write_request(struct bio *bio, int error)
416 {
417 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
418 struct r10bio *r10_bio = bio->bi_private;
419 int dev;
420 int dec_rdev = 1;
421 struct r10conf *conf = r10_bio->mddev->private;
422 int slot, repl;
423 struct md_rdev *rdev = NULL;
424
425 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
426
427 if (repl)
428 rdev = conf->mirrors[dev].replacement;
429 if (!rdev) {
430 smp_rmb();
431 repl = 0;
432 rdev = conf->mirrors[dev].rdev;
433 }
434 /*
435 * this branch is our 'one mirror IO has finished' event handler:
436 */
437 if (!uptodate) {
438 if (repl)
439 /* Never record new bad blocks to replacement,
440 * just fail it.
441 */
442 md_error(rdev->mddev, rdev);
443 else {
444 set_bit(WriteErrorSeen, &rdev->flags);
445 if (!test_and_set_bit(WantReplacement, &rdev->flags))
446 set_bit(MD_RECOVERY_NEEDED,
447 &rdev->mddev->recovery);
448 set_bit(R10BIO_WriteError, &r10_bio->state);
449 dec_rdev = 0;
450 }
451 } else {
452 /*
453 * Set R10BIO_Uptodate in our master bio, so that
454 * we will return a good error code for to the higher
455 * levels even if IO on some other mirrored buffer fails.
456 *
457 * The 'master' represents the composite IO operation to
458 * user-side. So if something waits for IO, then it will
459 * wait for the 'master' bio.
460 */
461 sector_t first_bad;
462 int bad_sectors;
463
464 set_bit(R10BIO_Uptodate, &r10_bio->state);
465
466 /* Maybe we can clear some bad blocks. */
467 if (is_badblock(rdev,
468 r10_bio->devs[slot].addr,
469 r10_bio->sectors,
470 &first_bad, &bad_sectors)) {
471 bio_put(bio);
472 if (repl)
473 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
474 else
475 r10_bio->devs[slot].bio = IO_MADE_GOOD;
476 dec_rdev = 0;
477 set_bit(R10BIO_MadeGood, &r10_bio->state);
478 }
479 }
480
481 /*
482 *
483 * Let's see if all mirrored write operations have finished
484 * already.
485 */
486 one_write_done(r10_bio);
487 if (dec_rdev)
488 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
489 }
490
491 /*
492 * RAID10 layout manager
493 * As well as the chunksize and raid_disks count, there are two
494 * parameters: near_copies and far_copies.
495 * near_copies * far_copies must be <= raid_disks.
496 * Normally one of these will be 1.
497 * If both are 1, we get raid0.
498 * If near_copies == raid_disks, we get raid1.
499 *
500 * Chunks are laid out in raid0 style with near_copies copies of the
501 * first chunk, followed by near_copies copies of the next chunk and
502 * so on.
503 * If far_copies > 1, then after 1/far_copies of the array has been assigned
504 * as described above, we start again with a device offset of near_copies.
505 * So we effectively have another copy of the whole array further down all
506 * the drives, but with blocks on different drives.
507 * With this layout, and block is never stored twice on the one device.
508 *
509 * raid10_find_phys finds the sector offset of a given virtual sector
510 * on each device that it is on.
511 *
512 * raid10_find_virt does the reverse mapping, from a device and a
513 * sector offset to a virtual address
514 */
515
516 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
517 {
518 int n,f;
519 sector_t sector;
520 sector_t chunk;
521 sector_t stripe;
522 int dev;
523 int slot = 0;
524
525 /* now calculate first sector/dev */
526 chunk = r10bio->sector >> geo->chunk_shift;
527 sector = r10bio->sector & geo->chunk_mask;
528
529 chunk *= geo->near_copies;
530 stripe = chunk;
531 dev = sector_div(stripe, geo->raid_disks);
532 if (geo->far_offset)
533 stripe *= geo->far_copies;
534
535 sector += stripe << geo->chunk_shift;
536
537 /* and calculate all the others */
538 for (n = 0; n < geo->near_copies; n++) {
539 int d = dev;
540 sector_t s = sector;
541 r10bio->devs[slot].addr = sector;
542 r10bio->devs[slot].devnum = d;
543 slot++;
544
545 for (f = 1; f < geo->far_copies; f++) {
546 d += geo->near_copies;
547 if (d >= geo->raid_disks)
548 d -= geo->raid_disks;
549 s += geo->stride;
550 r10bio->devs[slot].devnum = d;
551 r10bio->devs[slot].addr = s;
552 slot++;
553 }
554 dev++;
555 if (dev >= geo->raid_disks) {
556 dev = 0;
557 sector += (geo->chunk_mask + 1);
558 }
559 }
560 }
561
562 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
563 {
564 struct geom *geo = &conf->geo;
565
566 if (conf->reshape_progress != MaxSector &&
567 ((r10bio->sector >= conf->reshape_progress) !=
568 conf->mddev->reshape_backwards)) {
569 set_bit(R10BIO_Previous, &r10bio->state);
570 geo = &conf->prev;
571 } else
572 clear_bit(R10BIO_Previous, &r10bio->state);
573
574 __raid10_find_phys(geo, r10bio);
575 }
576
577 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
578 {
579 sector_t offset, chunk, vchunk;
580 /* Never use conf->prev as this is only called during resync
581 * or recovery, so reshape isn't happening
582 */
583 struct geom *geo = &conf->geo;
584
585 offset = sector & geo->chunk_mask;
586 if (geo->far_offset) {
587 int fc;
588 chunk = sector >> geo->chunk_shift;
589 fc = sector_div(chunk, geo->far_copies);
590 dev -= fc * geo->near_copies;
591 if (dev < 0)
592 dev += geo->raid_disks;
593 } else {
594 while (sector >= geo->stride) {
595 sector -= geo->stride;
596 if (dev < geo->near_copies)
597 dev += geo->raid_disks - geo->near_copies;
598 else
599 dev -= geo->near_copies;
600 }
601 chunk = sector >> geo->chunk_shift;
602 }
603 vchunk = chunk * geo->raid_disks + dev;
604 sector_div(vchunk, geo->near_copies);
605 return (vchunk << geo->chunk_shift) + offset;
606 }
607
608 /**
609 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
610 * @q: request queue
611 * @bvm: properties of new bio
612 * @biovec: the request that could be merged to it.
613 *
614 * Return amount of bytes we can accept at this offset
615 * This requires checking for end-of-chunk if near_copies != raid_disks,
616 * and for subordinate merge_bvec_fns if merge_check_needed.
617 */
618 static int raid10_mergeable_bvec(struct request_queue *q,
619 struct bvec_merge_data *bvm,
620 struct bio_vec *biovec)
621 {
622 struct mddev *mddev = q->queuedata;
623 struct r10conf *conf = mddev->private;
624 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
625 int max;
626 unsigned int chunk_sectors;
627 unsigned int bio_sectors = bvm->bi_size >> 9;
628 struct geom *geo = &conf->geo;
629
630 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
631 if (conf->reshape_progress != MaxSector &&
632 ((sector >= conf->reshape_progress) !=
633 conf->mddev->reshape_backwards))
634 geo = &conf->prev;
635
636 if (geo->near_copies < geo->raid_disks) {
637 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
638 + bio_sectors)) << 9;
639 if (max < 0)
640 /* bio_add cannot handle a negative return */
641 max = 0;
642 if (max <= biovec->bv_len && bio_sectors == 0)
643 return biovec->bv_len;
644 } else
645 max = biovec->bv_len;
646
647 if (mddev->merge_check_needed) {
648 struct r10bio r10_bio;
649 int s;
650 if (conf->reshape_progress != MaxSector) {
651 /* Cannot give any guidance during reshape */
652 if (max <= biovec->bv_len && bio_sectors == 0)
653 return biovec->bv_len;
654 return 0;
655 }
656 r10_bio.sector = sector;
657 raid10_find_phys(conf, &r10_bio);
658 rcu_read_lock();
659 for (s = 0; s < conf->copies; s++) {
660 int disk = r10_bio.devs[s].devnum;
661 struct md_rdev *rdev = rcu_dereference(
662 conf->mirrors[disk].rdev);
663 if (rdev && !test_bit(Faulty, &rdev->flags)) {
664 struct request_queue *q =
665 bdev_get_queue(rdev->bdev);
666 if (q->merge_bvec_fn) {
667 bvm->bi_sector = r10_bio.devs[s].addr
668 + rdev->data_offset;
669 bvm->bi_bdev = rdev->bdev;
670 max = min(max, q->merge_bvec_fn(
671 q, bvm, biovec));
672 }
673 }
674 rdev = rcu_dereference(conf->mirrors[disk].replacement);
675 if (rdev && !test_bit(Faulty, &rdev->flags)) {
676 struct request_queue *q =
677 bdev_get_queue(rdev->bdev);
678 if (q->merge_bvec_fn) {
679 bvm->bi_sector = r10_bio.devs[s].addr
680 + rdev->data_offset;
681 bvm->bi_bdev = rdev->bdev;
682 max = min(max, q->merge_bvec_fn(
683 q, bvm, biovec));
684 }
685 }
686 }
687 rcu_read_unlock();
688 }
689 return max;
690 }
691
692 /*
693 * This routine returns the disk from which the requested read should
694 * be done. There is a per-array 'next expected sequential IO' sector
695 * number - if this matches on the next IO then we use the last disk.
696 * There is also a per-disk 'last know head position' sector that is
697 * maintained from IRQ contexts, both the normal and the resync IO
698 * completion handlers update this position correctly. If there is no
699 * perfect sequential match then we pick the disk whose head is closest.
700 *
701 * If there are 2 mirrors in the same 2 devices, performance degrades
702 * because position is mirror, not device based.
703 *
704 * The rdev for the device selected will have nr_pending incremented.
705 */
706
707 /*
708 * FIXME: possibly should rethink readbalancing and do it differently
709 * depending on near_copies / far_copies geometry.
710 */
711 static struct md_rdev *read_balance(struct r10conf *conf,
712 struct r10bio *r10_bio,
713 int *max_sectors)
714 {
715 const sector_t this_sector = r10_bio->sector;
716 int disk, slot;
717 int sectors = r10_bio->sectors;
718 int best_good_sectors;
719 sector_t new_distance, best_dist;
720 struct md_rdev *rdev, *best_rdev;
721 int do_balance;
722 int best_slot;
723 struct geom *geo = &conf->geo;
724
725 raid10_find_phys(conf, r10_bio);
726 rcu_read_lock();
727 retry:
728 sectors = r10_bio->sectors;
729 best_slot = -1;
730 best_rdev = NULL;
731 best_dist = MaxSector;
732 best_good_sectors = 0;
733 do_balance = 1;
734 /*
735 * Check if we can balance. We can balance on the whole
736 * device if no resync is going on (recovery is ok), or below
737 * the resync window. We take the first readable disk when
738 * above the resync window.
739 */
740 if (conf->mddev->recovery_cp < MaxSector
741 && (this_sector + sectors >= conf->next_resync))
742 do_balance = 0;
743
744 for (slot = 0; slot < conf->copies ; slot++) {
745 sector_t first_bad;
746 int bad_sectors;
747 sector_t dev_sector;
748
749 if (r10_bio->devs[slot].bio == IO_BLOCKED)
750 continue;
751 disk = r10_bio->devs[slot].devnum;
752 rdev = rcu_dereference(conf->mirrors[disk].replacement);
753 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
754 test_bit(Unmerged, &rdev->flags) ||
755 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
756 rdev = rcu_dereference(conf->mirrors[disk].rdev);
757 if (rdev == NULL ||
758 test_bit(Faulty, &rdev->flags) ||
759 test_bit(Unmerged, &rdev->flags))
760 continue;
761 if (!test_bit(In_sync, &rdev->flags) &&
762 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
763 continue;
764
765 dev_sector = r10_bio->devs[slot].addr;
766 if (is_badblock(rdev, dev_sector, sectors,
767 &first_bad, &bad_sectors)) {
768 if (best_dist < MaxSector)
769 /* Already have a better slot */
770 continue;
771 if (first_bad <= dev_sector) {
772 /* Cannot read here. If this is the
773 * 'primary' device, then we must not read
774 * beyond 'bad_sectors' from another device.
775 */
776 bad_sectors -= (dev_sector - first_bad);
777 if (!do_balance && sectors > bad_sectors)
778 sectors = bad_sectors;
779 if (best_good_sectors > sectors)
780 best_good_sectors = sectors;
781 } else {
782 sector_t good_sectors =
783 first_bad - dev_sector;
784 if (good_sectors > best_good_sectors) {
785 best_good_sectors = good_sectors;
786 best_slot = slot;
787 best_rdev = rdev;
788 }
789 if (!do_balance)
790 /* Must read from here */
791 break;
792 }
793 continue;
794 } else
795 best_good_sectors = sectors;
796
797 if (!do_balance)
798 break;
799
800 /* This optimisation is debatable, and completely destroys
801 * sequential read speed for 'far copies' arrays. So only
802 * keep it for 'near' arrays, and review those later.
803 */
804 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
805 break;
806
807 /* for far > 1 always use the lowest address */
808 if (geo->far_copies > 1)
809 new_distance = r10_bio->devs[slot].addr;
810 else
811 new_distance = abs(r10_bio->devs[slot].addr -
812 conf->mirrors[disk].head_position);
813 if (new_distance < best_dist) {
814 best_dist = new_distance;
815 best_slot = slot;
816 best_rdev = rdev;
817 }
818 }
819 if (slot >= conf->copies) {
820 slot = best_slot;
821 rdev = best_rdev;
822 }
823
824 if (slot >= 0) {
825 atomic_inc(&rdev->nr_pending);
826 if (test_bit(Faulty, &rdev->flags)) {
827 /* Cannot risk returning a device that failed
828 * before we inc'ed nr_pending
829 */
830 rdev_dec_pending(rdev, conf->mddev);
831 goto retry;
832 }
833 r10_bio->read_slot = slot;
834 } else
835 rdev = NULL;
836 rcu_read_unlock();
837 *max_sectors = best_good_sectors;
838
839 return rdev;
840 }
841
842 static int raid10_congested(void *data, int bits)
843 {
844 struct mddev *mddev = data;
845 struct r10conf *conf = mddev->private;
846 int i, ret = 0;
847
848 if ((bits & (1 << BDI_async_congested)) &&
849 conf->pending_count >= max_queued_requests)
850 return 1;
851
852 if (mddev_congested(mddev, bits))
853 return 1;
854 rcu_read_lock();
855 for (i = 0;
856 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
857 && ret == 0;
858 i++) {
859 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
860 if (rdev && !test_bit(Faulty, &rdev->flags)) {
861 struct request_queue *q = bdev_get_queue(rdev->bdev);
862
863 ret |= bdi_congested(&q->backing_dev_info, bits);
864 }
865 }
866 rcu_read_unlock();
867 return ret;
868 }
869
870 static void flush_pending_writes(struct r10conf *conf)
871 {
872 /* Any writes that have been queued but are awaiting
873 * bitmap updates get flushed here.
874 */
875 spin_lock_irq(&conf->device_lock);
876
877 if (conf->pending_bio_list.head) {
878 struct bio *bio;
879 bio = bio_list_get(&conf->pending_bio_list);
880 conf->pending_count = 0;
881 spin_unlock_irq(&conf->device_lock);
882 /* flush any pending bitmap writes to disk
883 * before proceeding w/ I/O */
884 bitmap_unplug(conf->mddev->bitmap);
885 wake_up(&conf->wait_barrier);
886
887 while (bio) { /* submit pending writes */
888 struct bio *next = bio->bi_next;
889 bio->bi_next = NULL;
890 generic_make_request(bio);
891 bio = next;
892 }
893 } else
894 spin_unlock_irq(&conf->device_lock);
895 }
896
897 /* Barriers....
898 * Sometimes we need to suspend IO while we do something else,
899 * either some resync/recovery, or reconfigure the array.
900 * To do this we raise a 'barrier'.
901 * The 'barrier' is a counter that can be raised multiple times
902 * to count how many activities are happening which preclude
903 * normal IO.
904 * We can only raise the barrier if there is no pending IO.
905 * i.e. if nr_pending == 0.
906 * We choose only to raise the barrier if no-one is waiting for the
907 * barrier to go down. This means that as soon as an IO request
908 * is ready, no other operations which require a barrier will start
909 * until the IO request has had a chance.
910 *
911 * So: regular IO calls 'wait_barrier'. When that returns there
912 * is no backgroup IO happening, It must arrange to call
913 * allow_barrier when it has finished its IO.
914 * backgroup IO calls must call raise_barrier. Once that returns
915 * there is no normal IO happeing. It must arrange to call
916 * lower_barrier when the particular background IO completes.
917 */
918
919 static void raise_barrier(struct r10conf *conf, int force)
920 {
921 BUG_ON(force && !conf->barrier);
922 spin_lock_irq(&conf->resync_lock);
923
924 /* Wait until no block IO is waiting (unless 'force') */
925 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
926 conf->resync_lock, );
927
928 /* block any new IO from starting */
929 conf->barrier++;
930
931 /* Now wait for all pending IO to complete */
932 wait_event_lock_irq(conf->wait_barrier,
933 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
934 conf->resync_lock, );
935
936 spin_unlock_irq(&conf->resync_lock);
937 }
938
939 static void lower_barrier(struct r10conf *conf)
940 {
941 unsigned long flags;
942 spin_lock_irqsave(&conf->resync_lock, flags);
943 conf->barrier--;
944 spin_unlock_irqrestore(&conf->resync_lock, flags);
945 wake_up(&conf->wait_barrier);
946 }
947
948 static void wait_barrier(struct r10conf *conf)
949 {
950 spin_lock_irq(&conf->resync_lock);
951 if (conf->barrier) {
952 conf->nr_waiting++;
953 /* Wait for the barrier to drop.
954 * However if there are already pending
955 * requests (preventing the barrier from
956 * rising completely), and the
957 * pre-process bio queue isn't empty,
958 * then don't wait, as we need to empty
959 * that queue to get the nr_pending
960 * count down.
961 */
962 wait_event_lock_irq(conf->wait_barrier,
963 !conf->barrier ||
964 (conf->nr_pending &&
965 current->bio_list &&
966 !bio_list_empty(current->bio_list)),
967 conf->resync_lock,
968 );
969 conf->nr_waiting--;
970 }
971 conf->nr_pending++;
972 spin_unlock_irq(&conf->resync_lock);
973 }
974
975 static void allow_barrier(struct r10conf *conf)
976 {
977 unsigned long flags;
978 spin_lock_irqsave(&conf->resync_lock, flags);
979 conf->nr_pending--;
980 spin_unlock_irqrestore(&conf->resync_lock, flags);
981 wake_up(&conf->wait_barrier);
982 }
983
984 static void freeze_array(struct r10conf *conf)
985 {
986 /* stop syncio and normal IO and wait for everything to
987 * go quiet.
988 * We increment barrier and nr_waiting, and then
989 * wait until nr_pending match nr_queued+1
990 * This is called in the context of one normal IO request
991 * that has failed. Thus any sync request that might be pending
992 * will be blocked by nr_pending, and we need to wait for
993 * pending IO requests to complete or be queued for re-try.
994 * Thus the number queued (nr_queued) plus this request (1)
995 * must match the number of pending IOs (nr_pending) before
996 * we continue.
997 */
998 spin_lock_irq(&conf->resync_lock);
999 conf->barrier++;
1000 conf->nr_waiting++;
1001 wait_event_lock_irq(conf->wait_barrier,
1002 conf->nr_pending == conf->nr_queued+1,
1003 conf->resync_lock,
1004 flush_pending_writes(conf));
1005
1006 spin_unlock_irq(&conf->resync_lock);
1007 }
1008
1009 static void unfreeze_array(struct r10conf *conf)
1010 {
1011 /* reverse the effect of the freeze */
1012 spin_lock_irq(&conf->resync_lock);
1013 conf->barrier--;
1014 conf->nr_waiting--;
1015 wake_up(&conf->wait_barrier);
1016 spin_unlock_irq(&conf->resync_lock);
1017 }
1018
1019 static sector_t choose_data_offset(struct r10bio *r10_bio,
1020 struct md_rdev *rdev)
1021 {
1022 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1023 test_bit(R10BIO_Previous, &r10_bio->state))
1024 return rdev->data_offset;
1025 else
1026 return rdev->new_data_offset;
1027 }
1028
1029 static void make_request(struct mddev *mddev, struct bio * bio)
1030 {
1031 struct r10conf *conf = mddev->private;
1032 struct r10bio *r10_bio;
1033 struct bio *read_bio;
1034 int i;
1035 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1036 int chunk_sects = chunk_mask + 1;
1037 const int rw = bio_data_dir(bio);
1038 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1039 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1040 unsigned long flags;
1041 struct md_rdev *blocked_rdev;
1042 int sectors_handled;
1043 int max_sectors;
1044 int sectors;
1045
1046 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1047 md_flush_request(mddev, bio);
1048 return;
1049 }
1050
1051 /* If this request crosses a chunk boundary, we need to
1052 * split it. This will only happen for 1 PAGE (or less) requests.
1053 */
1054 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1055 > chunk_sects
1056 && (conf->geo.near_copies < conf->geo.raid_disks
1057 || conf->prev.near_copies < conf->prev.raid_disks))) {
1058 struct bio_pair *bp;
1059 /* Sanity check -- queue functions should prevent this happening */
1060 if (bio->bi_vcnt != 1 ||
1061 bio->bi_idx != 0)
1062 goto bad_map;
1063 /* This is a one page bio that upper layers
1064 * refuse to split for us, so we need to split it.
1065 */
1066 bp = bio_split(bio,
1067 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1068
1069 /* Each of these 'make_request' calls will call 'wait_barrier'.
1070 * If the first succeeds but the second blocks due to the resync
1071 * thread raising the barrier, we will deadlock because the
1072 * IO to the underlying device will be queued in generic_make_request
1073 * and will never complete, so will never reduce nr_pending.
1074 * So increment nr_waiting here so no new raise_barriers will
1075 * succeed, and so the second wait_barrier cannot block.
1076 */
1077 spin_lock_irq(&conf->resync_lock);
1078 conf->nr_waiting++;
1079 spin_unlock_irq(&conf->resync_lock);
1080
1081 make_request(mddev, &bp->bio1);
1082 make_request(mddev, &bp->bio2);
1083
1084 spin_lock_irq(&conf->resync_lock);
1085 conf->nr_waiting--;
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1088
1089 bio_pair_release(bp);
1090 return;
1091 bad_map:
1092 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1093 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1094 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1095
1096 bio_io_error(bio);
1097 return;
1098 }
1099
1100 md_write_start(mddev, bio);
1101
1102 /*
1103 * Register the new request and wait if the reconstruction
1104 * thread has put up a bar for new requests.
1105 * Continue immediately if no resync is active currently.
1106 */
1107 wait_barrier(conf);
1108
1109 sectors = bio->bi_size >> 9;
1110 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1111 bio->bi_sector < conf->reshape_progress &&
1112 bio->bi_sector + sectors > conf->reshape_progress) {
1113 /* IO spans the reshape position. Need to wait for
1114 * reshape to pass
1115 */
1116 allow_barrier(conf);
1117 wait_event(conf->wait_barrier,
1118 conf->reshape_progress <= bio->bi_sector ||
1119 conf->reshape_progress >= bio->bi_sector + sectors);
1120 wait_barrier(conf);
1121 }
1122 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1123 bio_data_dir(bio) == WRITE &&
1124 (mddev->reshape_backwards
1125 ? (bio->bi_sector < conf->reshape_safe &&
1126 bio->bi_sector + sectors > conf->reshape_progress)
1127 : (bio->bi_sector + sectors > conf->reshape_safe &&
1128 bio->bi_sector < conf->reshape_progress))) {
1129 /* Need to update reshape_position in metadata */
1130 mddev->reshape_position = conf->reshape_progress;
1131 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1132 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1133 md_wakeup_thread(mddev->thread);
1134 wait_event(mddev->sb_wait,
1135 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1136
1137 conf->reshape_safe = mddev->reshape_position;
1138 }
1139
1140 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1141
1142 r10_bio->master_bio = bio;
1143 r10_bio->sectors = sectors;
1144
1145 r10_bio->mddev = mddev;
1146 r10_bio->sector = bio->bi_sector;
1147 r10_bio->state = 0;
1148
1149 /* We might need to issue multiple reads to different
1150 * devices if there are bad blocks around, so we keep
1151 * track of the number of reads in bio->bi_phys_segments.
1152 * If this is 0, there is only one r10_bio and no locking
1153 * will be needed when the request completes. If it is
1154 * non-zero, then it is the number of not-completed requests.
1155 */
1156 bio->bi_phys_segments = 0;
1157 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1158
1159 if (rw == READ) {
1160 /*
1161 * read balancing logic:
1162 */
1163 struct md_rdev *rdev;
1164 int slot;
1165
1166 read_again:
1167 rdev = read_balance(conf, r10_bio, &max_sectors);
1168 if (!rdev) {
1169 raid_end_bio_io(r10_bio);
1170 return;
1171 }
1172 slot = r10_bio->read_slot;
1173
1174 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1175 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1176 max_sectors);
1177
1178 r10_bio->devs[slot].bio = read_bio;
1179 r10_bio->devs[slot].rdev = rdev;
1180
1181 read_bio->bi_sector = r10_bio->devs[slot].addr +
1182 choose_data_offset(r10_bio, rdev);
1183 read_bio->bi_bdev = rdev->bdev;
1184 read_bio->bi_end_io = raid10_end_read_request;
1185 read_bio->bi_rw = READ | do_sync;
1186 read_bio->bi_private = r10_bio;
1187
1188 if (max_sectors < r10_bio->sectors) {
1189 /* Could not read all from this device, so we will
1190 * need another r10_bio.
1191 */
1192 sectors_handled = (r10_bio->sectors + max_sectors
1193 - bio->bi_sector);
1194 r10_bio->sectors = max_sectors;
1195 spin_lock_irq(&conf->device_lock);
1196 if (bio->bi_phys_segments == 0)
1197 bio->bi_phys_segments = 2;
1198 else
1199 bio->bi_phys_segments++;
1200 spin_unlock(&conf->device_lock);
1201 /* Cannot call generic_make_request directly
1202 * as that will be queued in __generic_make_request
1203 * and subsequent mempool_alloc might block
1204 * waiting for it. so hand bio over to raid10d.
1205 */
1206 reschedule_retry(r10_bio);
1207
1208 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1209
1210 r10_bio->master_bio = bio;
1211 r10_bio->sectors = ((bio->bi_size >> 9)
1212 - sectors_handled);
1213 r10_bio->state = 0;
1214 r10_bio->mddev = mddev;
1215 r10_bio->sector = bio->bi_sector + sectors_handled;
1216 goto read_again;
1217 } else
1218 generic_make_request(read_bio);
1219 return;
1220 }
1221
1222 /*
1223 * WRITE:
1224 */
1225 if (conf->pending_count >= max_queued_requests) {
1226 md_wakeup_thread(mddev->thread);
1227 wait_event(conf->wait_barrier,
1228 conf->pending_count < max_queued_requests);
1229 }
1230 /* first select target devices under rcu_lock and
1231 * inc refcount on their rdev. Record them by setting
1232 * bios[x] to bio
1233 * If there are known/acknowledged bad blocks on any device
1234 * on which we have seen a write error, we want to avoid
1235 * writing to those blocks. This potentially requires several
1236 * writes to write around the bad blocks. Each set of writes
1237 * gets its own r10_bio with a set of bios attached. The number
1238 * of r10_bios is recored in bio->bi_phys_segments just as with
1239 * the read case.
1240 */
1241
1242 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1243 raid10_find_phys(conf, r10_bio);
1244 retry_write:
1245 blocked_rdev = NULL;
1246 rcu_read_lock();
1247 max_sectors = r10_bio->sectors;
1248
1249 for (i = 0; i < conf->copies; i++) {
1250 int d = r10_bio->devs[i].devnum;
1251 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1252 struct md_rdev *rrdev = rcu_dereference(
1253 conf->mirrors[d].replacement);
1254 if (rdev == rrdev)
1255 rrdev = NULL;
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1259 break;
1260 }
1261 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1262 atomic_inc(&rrdev->nr_pending);
1263 blocked_rdev = rrdev;
1264 break;
1265 }
1266 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1267 || test_bit(Unmerged, &rrdev->flags)))
1268 rrdev = NULL;
1269
1270 r10_bio->devs[i].bio = NULL;
1271 r10_bio->devs[i].repl_bio = NULL;
1272 if (!rdev || test_bit(Faulty, &rdev->flags) ||
1273 test_bit(Unmerged, &rdev->flags)) {
1274 set_bit(R10BIO_Degraded, &r10_bio->state);
1275 continue;
1276 }
1277 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1278 sector_t first_bad;
1279 sector_t dev_sector = r10_bio->devs[i].addr;
1280 int bad_sectors;
1281 int is_bad;
1282
1283 is_bad = is_badblock(rdev, dev_sector,
1284 max_sectors,
1285 &first_bad, &bad_sectors);
1286 if (is_bad < 0) {
1287 /* Mustn't write here until the bad block
1288 * is acknowledged
1289 */
1290 atomic_inc(&rdev->nr_pending);
1291 set_bit(BlockedBadBlocks, &rdev->flags);
1292 blocked_rdev = rdev;
1293 break;
1294 }
1295 if (is_bad && first_bad <= dev_sector) {
1296 /* Cannot write here at all */
1297 bad_sectors -= (dev_sector - first_bad);
1298 if (bad_sectors < max_sectors)
1299 /* Mustn't write more than bad_sectors
1300 * to other devices yet
1301 */
1302 max_sectors = bad_sectors;
1303 /* We don't set R10BIO_Degraded as that
1304 * only applies if the disk is missing,
1305 * so it might be re-added, and we want to
1306 * know to recover this chunk.
1307 * In this case the device is here, and the
1308 * fact that this chunk is not in-sync is
1309 * recorded in the bad block log.
1310 */
1311 continue;
1312 }
1313 if (is_bad) {
1314 int good_sectors = first_bad - dev_sector;
1315 if (good_sectors < max_sectors)
1316 max_sectors = good_sectors;
1317 }
1318 }
1319 r10_bio->devs[i].bio = bio;
1320 atomic_inc(&rdev->nr_pending);
1321 if (rrdev) {
1322 r10_bio->devs[i].repl_bio = bio;
1323 atomic_inc(&rrdev->nr_pending);
1324 }
1325 }
1326 rcu_read_unlock();
1327
1328 if (unlikely(blocked_rdev)) {
1329 /* Have to wait for this device to get unblocked, then retry */
1330 int j;
1331 int d;
1332
1333 for (j = 0; j < i; j++) {
1334 if (r10_bio->devs[j].bio) {
1335 d = r10_bio->devs[j].devnum;
1336 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1337 }
1338 if (r10_bio->devs[j].repl_bio) {
1339 struct md_rdev *rdev;
1340 d = r10_bio->devs[j].devnum;
1341 rdev = conf->mirrors[d].replacement;
1342 if (!rdev) {
1343 /* Race with remove_disk */
1344 smp_mb();
1345 rdev = conf->mirrors[d].rdev;
1346 }
1347 rdev_dec_pending(rdev, mddev);
1348 }
1349 }
1350 allow_barrier(conf);
1351 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1352 wait_barrier(conf);
1353 goto retry_write;
1354 }
1355
1356 if (max_sectors < r10_bio->sectors) {
1357 /* We are splitting this into multiple parts, so
1358 * we need to prepare for allocating another r10_bio.
1359 */
1360 r10_bio->sectors = max_sectors;
1361 spin_lock_irq(&conf->device_lock);
1362 if (bio->bi_phys_segments == 0)
1363 bio->bi_phys_segments = 2;
1364 else
1365 bio->bi_phys_segments++;
1366 spin_unlock_irq(&conf->device_lock);
1367 }
1368 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1369
1370 atomic_set(&r10_bio->remaining, 1);
1371 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1372
1373 for (i = 0; i < conf->copies; i++) {
1374 struct bio *mbio;
1375 int d = r10_bio->devs[i].devnum;
1376 if (!r10_bio->devs[i].bio)
1377 continue;
1378
1379 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1380 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1381 max_sectors);
1382 r10_bio->devs[i].bio = mbio;
1383
1384 mbio->bi_sector = (r10_bio->devs[i].addr+
1385 choose_data_offset(r10_bio,
1386 conf->mirrors[d].rdev));
1387 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1388 mbio->bi_end_io = raid10_end_write_request;
1389 mbio->bi_rw = WRITE | do_sync | do_fua;
1390 mbio->bi_private = r10_bio;
1391
1392 atomic_inc(&r10_bio->remaining);
1393 spin_lock_irqsave(&conf->device_lock, flags);
1394 bio_list_add(&conf->pending_bio_list, mbio);
1395 conf->pending_count++;
1396 spin_unlock_irqrestore(&conf->device_lock, flags);
1397 if (!mddev_check_plugged(mddev))
1398 md_wakeup_thread(mddev->thread);
1399
1400 if (!r10_bio->devs[i].repl_bio)
1401 continue;
1402
1403 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1404 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1405 max_sectors);
1406 r10_bio->devs[i].repl_bio = mbio;
1407
1408 /* We are actively writing to the original device
1409 * so it cannot disappear, so the replacement cannot
1410 * become NULL here
1411 */
1412 mbio->bi_sector = (r10_bio->devs[i].addr +
1413 choose_data_offset(
1414 r10_bio,
1415 conf->mirrors[d].replacement));
1416 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1417 mbio->bi_end_io = raid10_end_write_request;
1418 mbio->bi_rw = WRITE | do_sync | do_fua;
1419 mbio->bi_private = r10_bio;
1420
1421 atomic_inc(&r10_bio->remaining);
1422 spin_lock_irqsave(&conf->device_lock, flags);
1423 bio_list_add(&conf->pending_bio_list, mbio);
1424 conf->pending_count++;
1425 spin_unlock_irqrestore(&conf->device_lock, flags);
1426 if (!mddev_check_plugged(mddev))
1427 md_wakeup_thread(mddev->thread);
1428 }
1429
1430 /* Don't remove the bias on 'remaining' (one_write_done) until
1431 * after checking if we need to go around again.
1432 */
1433
1434 if (sectors_handled < (bio->bi_size >> 9)) {
1435 one_write_done(r10_bio);
1436 /* We need another r10_bio. It has already been counted
1437 * in bio->bi_phys_segments.
1438 */
1439 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1440
1441 r10_bio->master_bio = bio;
1442 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1443
1444 r10_bio->mddev = mddev;
1445 r10_bio->sector = bio->bi_sector + sectors_handled;
1446 r10_bio->state = 0;
1447 goto retry_write;
1448 }
1449 one_write_done(r10_bio);
1450
1451 /* In case raid10d snuck in to freeze_array */
1452 wake_up(&conf->wait_barrier);
1453 }
1454
1455 static void status(struct seq_file *seq, struct mddev *mddev)
1456 {
1457 struct r10conf *conf = mddev->private;
1458 int i;
1459
1460 if (conf->geo.near_copies < conf->geo.raid_disks)
1461 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1462 if (conf->geo.near_copies > 1)
1463 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1464 if (conf->geo.far_copies > 1) {
1465 if (conf->geo.far_offset)
1466 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1467 else
1468 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1469 }
1470 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1471 conf->geo.raid_disks - mddev->degraded);
1472 for (i = 0; i < conf->geo.raid_disks; i++)
1473 seq_printf(seq, "%s",
1474 conf->mirrors[i].rdev &&
1475 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1476 seq_printf(seq, "]");
1477 }
1478
1479 /* check if there are enough drives for
1480 * every block to appear on atleast one.
1481 * Don't consider the device numbered 'ignore'
1482 * as we might be about to remove it.
1483 */
1484 static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
1485 {
1486 int first = 0;
1487
1488 do {
1489 int n = conf->copies;
1490 int cnt = 0;
1491 while (n--) {
1492 if (conf->mirrors[first].rdev &&
1493 first != ignore)
1494 cnt++;
1495 first = (first+1) % geo->raid_disks;
1496 }
1497 if (cnt == 0)
1498 return 0;
1499 } while (first != 0);
1500 return 1;
1501 }
1502
1503 static int enough(struct r10conf *conf, int ignore)
1504 {
1505 return _enough(conf, &conf->geo, ignore) &&
1506 _enough(conf, &conf->prev, ignore);
1507 }
1508
1509 static void error(struct mddev *mddev, struct md_rdev *rdev)
1510 {
1511 char b[BDEVNAME_SIZE];
1512 struct r10conf *conf = mddev->private;
1513
1514 /*
1515 * If it is not operational, then we have already marked it as dead
1516 * else if it is the last working disks, ignore the error, let the
1517 * next level up know.
1518 * else mark the drive as failed
1519 */
1520 if (test_bit(In_sync, &rdev->flags)
1521 && !enough(conf, rdev->raid_disk))
1522 /*
1523 * Don't fail the drive, just return an IO error.
1524 */
1525 return;
1526 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1527 unsigned long flags;
1528 spin_lock_irqsave(&conf->device_lock, flags);
1529 mddev->degraded++;
1530 spin_unlock_irqrestore(&conf->device_lock, flags);
1531 /*
1532 * if recovery is running, make sure it aborts.
1533 */
1534 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535 }
1536 set_bit(Blocked, &rdev->flags);
1537 set_bit(Faulty, &rdev->flags);
1538 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1539 printk(KERN_ALERT
1540 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1541 "md/raid10:%s: Operation continuing on %d devices.\n",
1542 mdname(mddev), bdevname(rdev->bdev, b),
1543 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1544 }
1545
1546 static void print_conf(struct r10conf *conf)
1547 {
1548 int i;
1549 struct mirror_info *tmp;
1550
1551 printk(KERN_DEBUG "RAID10 conf printout:\n");
1552 if (!conf) {
1553 printk(KERN_DEBUG "(!conf)\n");
1554 return;
1555 }
1556 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1557 conf->geo.raid_disks);
1558
1559 for (i = 0; i < conf->geo.raid_disks; i++) {
1560 char b[BDEVNAME_SIZE];
1561 tmp = conf->mirrors + i;
1562 if (tmp->rdev)
1563 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1564 i, !test_bit(In_sync, &tmp->rdev->flags),
1565 !test_bit(Faulty, &tmp->rdev->flags),
1566 bdevname(tmp->rdev->bdev,b));
1567 }
1568 }
1569
1570 static void close_sync(struct r10conf *conf)
1571 {
1572 wait_barrier(conf);
1573 allow_barrier(conf);
1574
1575 mempool_destroy(conf->r10buf_pool);
1576 conf->r10buf_pool = NULL;
1577 }
1578
1579 static int raid10_spare_active(struct mddev *mddev)
1580 {
1581 int i;
1582 struct r10conf *conf = mddev->private;
1583 struct mirror_info *tmp;
1584 int count = 0;
1585 unsigned long flags;
1586
1587 /*
1588 * Find all non-in_sync disks within the RAID10 configuration
1589 * and mark them in_sync
1590 */
1591 for (i = 0; i < conf->geo.raid_disks; i++) {
1592 tmp = conf->mirrors + i;
1593 if (tmp->replacement
1594 && tmp->replacement->recovery_offset == MaxSector
1595 && !test_bit(Faulty, &tmp->replacement->flags)
1596 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1597 /* Replacement has just become active */
1598 if (!tmp->rdev
1599 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1600 count++;
1601 if (tmp->rdev) {
1602 /* Replaced device not technically faulty,
1603 * but we need to be sure it gets removed
1604 * and never re-added.
1605 */
1606 set_bit(Faulty, &tmp->rdev->flags);
1607 sysfs_notify_dirent_safe(
1608 tmp->rdev->sysfs_state);
1609 }
1610 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1611 } else if (tmp->rdev
1612 && !test_bit(Faulty, &tmp->rdev->flags)
1613 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1614 count++;
1615 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1616 }
1617 }
1618 spin_lock_irqsave(&conf->device_lock, flags);
1619 mddev->degraded -= count;
1620 spin_unlock_irqrestore(&conf->device_lock, flags);
1621
1622 print_conf(conf);
1623 return count;
1624 }
1625
1626
1627 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1628 {
1629 struct r10conf *conf = mddev->private;
1630 int err = -EEXIST;
1631 int mirror;
1632 int first = 0;
1633 int last = conf->geo.raid_disks - 1;
1634 struct request_queue *q = bdev_get_queue(rdev->bdev);
1635
1636 if (mddev->recovery_cp < MaxSector)
1637 /* only hot-add to in-sync arrays, as recovery is
1638 * very different from resync
1639 */
1640 return -EBUSY;
1641 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
1642 return -EINVAL;
1643
1644 if (rdev->raid_disk >= 0)
1645 first = last = rdev->raid_disk;
1646
1647 if (q->merge_bvec_fn) {
1648 set_bit(Unmerged, &rdev->flags);
1649 mddev->merge_check_needed = 1;
1650 }
1651
1652 if (rdev->saved_raid_disk >= first &&
1653 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1654 mirror = rdev->saved_raid_disk;
1655 else
1656 mirror = first;
1657 for ( ; mirror <= last ; mirror++) {
1658 struct mirror_info *p = &conf->mirrors[mirror];
1659 if (p->recovery_disabled == mddev->recovery_disabled)
1660 continue;
1661 if (p->rdev) {
1662 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1663 p->replacement != NULL)
1664 continue;
1665 clear_bit(In_sync, &rdev->flags);
1666 set_bit(Replacement, &rdev->flags);
1667 rdev->raid_disk = mirror;
1668 err = 0;
1669 disk_stack_limits(mddev->gendisk, rdev->bdev,
1670 rdev->data_offset << 9);
1671 conf->fullsync = 1;
1672 rcu_assign_pointer(p->replacement, rdev);
1673 break;
1674 }
1675
1676 disk_stack_limits(mddev->gendisk, rdev->bdev,
1677 rdev->data_offset << 9);
1678
1679 p->head_position = 0;
1680 p->recovery_disabled = mddev->recovery_disabled - 1;
1681 rdev->raid_disk = mirror;
1682 err = 0;
1683 if (rdev->saved_raid_disk != mirror)
1684 conf->fullsync = 1;
1685 rcu_assign_pointer(p->rdev, rdev);
1686 break;
1687 }
1688 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1689 /* Some requests might not have seen this new
1690 * merge_bvec_fn. We must wait for them to complete
1691 * before merging the device fully.
1692 * First we make sure any code which has tested
1693 * our function has submitted the request, then
1694 * we wait for all outstanding requests to complete.
1695 */
1696 synchronize_sched();
1697 raise_barrier(conf, 0);
1698 lower_barrier(conf);
1699 clear_bit(Unmerged, &rdev->flags);
1700 }
1701 md_integrity_add_rdev(rdev, mddev);
1702 print_conf(conf);
1703 return err;
1704 }
1705
1706 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1707 {
1708 struct r10conf *conf = mddev->private;
1709 int err = 0;
1710 int number = rdev->raid_disk;
1711 struct md_rdev **rdevp;
1712 struct mirror_info *p = conf->mirrors + number;
1713
1714 print_conf(conf);
1715 if (rdev == p->rdev)
1716 rdevp = &p->rdev;
1717 else if (rdev == p->replacement)
1718 rdevp = &p->replacement;
1719 else
1720 return 0;
1721
1722 if (test_bit(In_sync, &rdev->flags) ||
1723 atomic_read(&rdev->nr_pending)) {
1724 err = -EBUSY;
1725 goto abort;
1726 }
1727 /* Only remove faulty devices if recovery
1728 * is not possible.
1729 */
1730 if (!test_bit(Faulty, &rdev->flags) &&
1731 mddev->recovery_disabled != p->recovery_disabled &&
1732 (!p->replacement || p->replacement == rdev) &&
1733 number < conf->geo.raid_disks &&
1734 enough(conf, -1)) {
1735 err = -EBUSY;
1736 goto abort;
1737 }
1738 *rdevp = NULL;
1739 synchronize_rcu();
1740 if (atomic_read(&rdev->nr_pending)) {
1741 /* lost the race, try later */
1742 err = -EBUSY;
1743 *rdevp = rdev;
1744 goto abort;
1745 } else if (p->replacement) {
1746 /* We must have just cleared 'rdev' */
1747 p->rdev = p->replacement;
1748 clear_bit(Replacement, &p->replacement->flags);
1749 smp_mb(); /* Make sure other CPUs may see both as identical
1750 * but will never see neither -- if they are careful.
1751 */
1752 p->replacement = NULL;
1753 clear_bit(WantReplacement, &rdev->flags);
1754 } else
1755 /* We might have just remove the Replacement as faulty
1756 * Clear the flag just in case
1757 */
1758 clear_bit(WantReplacement, &rdev->flags);
1759
1760 err = md_integrity_register(mddev);
1761
1762 abort:
1763
1764 print_conf(conf);
1765 return err;
1766 }
1767
1768
1769 static void end_sync_read(struct bio *bio, int error)
1770 {
1771 struct r10bio *r10_bio = bio->bi_private;
1772 struct r10conf *conf = r10_bio->mddev->private;
1773 int d;
1774
1775 if (bio == r10_bio->master_bio) {
1776 /* this is a reshape read */
1777 d = r10_bio->read_slot; /* really the read dev */
1778 } else
1779 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1780
1781 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1782 set_bit(R10BIO_Uptodate, &r10_bio->state);
1783 else
1784 /* The write handler will notice the lack of
1785 * R10BIO_Uptodate and record any errors etc
1786 */
1787 atomic_add(r10_bio->sectors,
1788 &conf->mirrors[d].rdev->corrected_errors);
1789
1790 /* for reconstruct, we always reschedule after a read.
1791 * for resync, only after all reads
1792 */
1793 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1794 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1795 atomic_dec_and_test(&r10_bio->remaining)) {
1796 /* we have read all the blocks,
1797 * do the comparison in process context in raid10d
1798 */
1799 reschedule_retry(r10_bio);
1800 }
1801 }
1802
1803 static void end_sync_request(struct r10bio *r10_bio)
1804 {
1805 struct mddev *mddev = r10_bio->mddev;
1806
1807 while (atomic_dec_and_test(&r10_bio->remaining)) {
1808 if (r10_bio->master_bio == NULL) {
1809 /* the primary of several recovery bios */
1810 sector_t s = r10_bio->sectors;
1811 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1812 test_bit(R10BIO_WriteError, &r10_bio->state))
1813 reschedule_retry(r10_bio);
1814 else
1815 put_buf(r10_bio);
1816 md_done_sync(mddev, s, 1);
1817 break;
1818 } else {
1819 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1820 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1821 test_bit(R10BIO_WriteError, &r10_bio->state))
1822 reschedule_retry(r10_bio);
1823 else
1824 put_buf(r10_bio);
1825 r10_bio = r10_bio2;
1826 }
1827 }
1828 }
1829
1830 static void end_sync_write(struct bio *bio, int error)
1831 {
1832 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1833 struct r10bio *r10_bio = bio->bi_private;
1834 struct mddev *mddev = r10_bio->mddev;
1835 struct r10conf *conf = mddev->private;
1836 int d;
1837 sector_t first_bad;
1838 int bad_sectors;
1839 int slot;
1840 int repl;
1841 struct md_rdev *rdev = NULL;
1842
1843 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1844 if (repl)
1845 rdev = conf->mirrors[d].replacement;
1846 else
1847 rdev = conf->mirrors[d].rdev;
1848
1849 if (!uptodate) {
1850 if (repl)
1851 md_error(mddev, rdev);
1852 else {
1853 set_bit(WriteErrorSeen, &rdev->flags);
1854 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1855 set_bit(MD_RECOVERY_NEEDED,
1856 &rdev->mddev->recovery);
1857 set_bit(R10BIO_WriteError, &r10_bio->state);
1858 }
1859 } else if (is_badblock(rdev,
1860 r10_bio->devs[slot].addr,
1861 r10_bio->sectors,
1862 &first_bad, &bad_sectors))
1863 set_bit(R10BIO_MadeGood, &r10_bio->state);
1864
1865 rdev_dec_pending(rdev, mddev);
1866
1867 end_sync_request(r10_bio);
1868 }
1869
1870 /*
1871 * Note: sync and recover and handled very differently for raid10
1872 * This code is for resync.
1873 * For resync, we read through virtual addresses and read all blocks.
1874 * If there is any error, we schedule a write. The lowest numbered
1875 * drive is authoritative.
1876 * However requests come for physical address, so we need to map.
1877 * For every physical address there are raid_disks/copies virtual addresses,
1878 * which is always are least one, but is not necessarly an integer.
1879 * This means that a physical address can span multiple chunks, so we may
1880 * have to submit multiple io requests for a single sync request.
1881 */
1882 /*
1883 * We check if all blocks are in-sync and only write to blocks that
1884 * aren't in sync
1885 */
1886 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1887 {
1888 struct r10conf *conf = mddev->private;
1889 int i, first;
1890 struct bio *tbio, *fbio;
1891 int vcnt;
1892
1893 atomic_set(&r10_bio->remaining, 1);
1894
1895 /* find the first device with a block */
1896 for (i=0; i<conf->copies; i++)
1897 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1898 break;
1899
1900 if (i == conf->copies)
1901 goto done;
1902
1903 first = i;
1904 fbio = r10_bio->devs[i].bio;
1905
1906 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1907 /* now find blocks with errors */
1908 for (i=0 ; i < conf->copies ; i++) {
1909 int j, d;
1910
1911 tbio = r10_bio->devs[i].bio;
1912
1913 if (tbio->bi_end_io != end_sync_read)
1914 continue;
1915 if (i == first)
1916 continue;
1917 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1918 /* We know that the bi_io_vec layout is the same for
1919 * both 'first' and 'i', so we just compare them.
1920 * All vec entries are PAGE_SIZE;
1921 */
1922 for (j = 0; j < vcnt; j++)
1923 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1924 page_address(tbio->bi_io_vec[j].bv_page),
1925 fbio->bi_io_vec[j].bv_len))
1926 break;
1927 if (j == vcnt)
1928 continue;
1929 mddev->resync_mismatches += r10_bio->sectors;
1930 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1931 /* Don't fix anything. */
1932 continue;
1933 }
1934 /* Ok, we need to write this bio, either to correct an
1935 * inconsistency or to correct an unreadable block.
1936 * First we need to fixup bv_offset, bv_len and
1937 * bi_vecs, as the read request might have corrupted these
1938 */
1939 tbio->bi_vcnt = vcnt;
1940 tbio->bi_size = r10_bio->sectors << 9;
1941 tbio->bi_idx = 0;
1942 tbio->bi_phys_segments = 0;
1943 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1944 tbio->bi_flags |= 1 << BIO_UPTODATE;
1945 tbio->bi_next = NULL;
1946 tbio->bi_rw = WRITE;
1947 tbio->bi_private = r10_bio;
1948 tbio->bi_sector = r10_bio->devs[i].addr;
1949
1950 for (j=0; j < vcnt ; j++) {
1951 tbio->bi_io_vec[j].bv_offset = 0;
1952 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1953
1954 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1955 page_address(fbio->bi_io_vec[j].bv_page),
1956 PAGE_SIZE);
1957 }
1958 tbio->bi_end_io = end_sync_write;
1959
1960 d = r10_bio->devs[i].devnum;
1961 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1962 atomic_inc(&r10_bio->remaining);
1963 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1964
1965 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1966 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1967 generic_make_request(tbio);
1968 }
1969
1970 /* Now write out to any replacement devices
1971 * that are active
1972 */
1973 for (i = 0; i < conf->copies; i++) {
1974 int j, d;
1975
1976 tbio = r10_bio->devs[i].repl_bio;
1977 if (!tbio || !tbio->bi_end_io)
1978 continue;
1979 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1980 && r10_bio->devs[i].bio != fbio)
1981 for (j = 0; j < vcnt; j++)
1982 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1983 page_address(fbio->bi_io_vec[j].bv_page),
1984 PAGE_SIZE);
1985 d = r10_bio->devs[i].devnum;
1986 atomic_inc(&r10_bio->remaining);
1987 md_sync_acct(conf->mirrors[d].replacement->bdev,
1988 tbio->bi_size >> 9);
1989 generic_make_request(tbio);
1990 }
1991
1992 done:
1993 if (atomic_dec_and_test(&r10_bio->remaining)) {
1994 md_done_sync(mddev, r10_bio->sectors, 1);
1995 put_buf(r10_bio);
1996 }
1997 }
1998
1999 /*
2000 * Now for the recovery code.
2001 * Recovery happens across physical sectors.
2002 * We recover all non-is_sync drives by finding the virtual address of
2003 * each, and then choose a working drive that also has that virt address.
2004 * There is a separate r10_bio for each non-in_sync drive.
2005 * Only the first two slots are in use. The first for reading,
2006 * The second for writing.
2007 *
2008 */
2009 static void fix_recovery_read_error(struct r10bio *r10_bio)
2010 {
2011 /* We got a read error during recovery.
2012 * We repeat the read in smaller page-sized sections.
2013 * If a read succeeds, write it to the new device or record
2014 * a bad block if we cannot.
2015 * If a read fails, record a bad block on both old and
2016 * new devices.
2017 */
2018 struct mddev *mddev = r10_bio->mddev;
2019 struct r10conf *conf = mddev->private;
2020 struct bio *bio = r10_bio->devs[0].bio;
2021 sector_t sect = 0;
2022 int sectors = r10_bio->sectors;
2023 int idx = 0;
2024 int dr = r10_bio->devs[0].devnum;
2025 int dw = r10_bio->devs[1].devnum;
2026
2027 while (sectors) {
2028 int s = sectors;
2029 struct md_rdev *rdev;
2030 sector_t addr;
2031 int ok;
2032
2033 if (s > (PAGE_SIZE>>9))
2034 s = PAGE_SIZE >> 9;
2035
2036 rdev = conf->mirrors[dr].rdev;
2037 addr = r10_bio->devs[0].addr + sect,
2038 ok = sync_page_io(rdev,
2039 addr,
2040 s << 9,
2041 bio->bi_io_vec[idx].bv_page,
2042 READ, false);
2043 if (ok) {
2044 rdev = conf->mirrors[dw].rdev;
2045 addr = r10_bio->devs[1].addr + sect;
2046 ok = sync_page_io(rdev,
2047 addr,
2048 s << 9,
2049 bio->bi_io_vec[idx].bv_page,
2050 WRITE, false);
2051 if (!ok) {
2052 set_bit(WriteErrorSeen, &rdev->flags);
2053 if (!test_and_set_bit(WantReplacement,
2054 &rdev->flags))
2055 set_bit(MD_RECOVERY_NEEDED,
2056 &rdev->mddev->recovery);
2057 }
2058 }
2059 if (!ok) {
2060 /* We don't worry if we cannot set a bad block -
2061 * it really is bad so there is no loss in not
2062 * recording it yet
2063 */
2064 rdev_set_badblocks(rdev, addr, s, 0);
2065
2066 if (rdev != conf->mirrors[dw].rdev) {
2067 /* need bad block on destination too */
2068 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2069 addr = r10_bio->devs[1].addr + sect;
2070 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2071 if (!ok) {
2072 /* just abort the recovery */
2073 printk(KERN_NOTICE
2074 "md/raid10:%s: recovery aborted"
2075 " due to read error\n",
2076 mdname(mddev));
2077
2078 conf->mirrors[dw].recovery_disabled
2079 = mddev->recovery_disabled;
2080 set_bit(MD_RECOVERY_INTR,
2081 &mddev->recovery);
2082 break;
2083 }
2084 }
2085 }
2086
2087 sectors -= s;
2088 sect += s;
2089 idx++;
2090 }
2091 }
2092
2093 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2094 {
2095 struct r10conf *conf = mddev->private;
2096 int d;
2097 struct bio *wbio, *wbio2;
2098
2099 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2100 fix_recovery_read_error(r10_bio);
2101 end_sync_request(r10_bio);
2102 return;
2103 }
2104
2105 /*
2106 * share the pages with the first bio
2107 * and submit the write request
2108 */
2109 d = r10_bio->devs[1].devnum;
2110 wbio = r10_bio->devs[1].bio;
2111 wbio2 = r10_bio->devs[1].repl_bio;
2112 if (wbio->bi_end_io) {
2113 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2114 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2115 generic_make_request(wbio);
2116 }
2117 if (wbio2 && wbio2->bi_end_io) {
2118 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2119 md_sync_acct(conf->mirrors[d].replacement->bdev,
2120 wbio2->bi_size >> 9);
2121 generic_make_request(wbio2);
2122 }
2123 }
2124
2125
2126 /*
2127 * Used by fix_read_error() to decay the per rdev read_errors.
2128 * We halve the read error count for every hour that has elapsed
2129 * since the last recorded read error.
2130 *
2131 */
2132 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2133 {
2134 struct timespec cur_time_mon;
2135 unsigned long hours_since_last;
2136 unsigned int read_errors = atomic_read(&rdev->read_errors);
2137
2138 ktime_get_ts(&cur_time_mon);
2139
2140 if (rdev->last_read_error.tv_sec == 0 &&
2141 rdev->last_read_error.tv_nsec == 0) {
2142 /* first time we've seen a read error */
2143 rdev->last_read_error = cur_time_mon;
2144 return;
2145 }
2146
2147 hours_since_last = (cur_time_mon.tv_sec -
2148 rdev->last_read_error.tv_sec) / 3600;
2149
2150 rdev->last_read_error = cur_time_mon;
2151
2152 /*
2153 * if hours_since_last is > the number of bits in read_errors
2154 * just set read errors to 0. We do this to avoid
2155 * overflowing the shift of read_errors by hours_since_last.
2156 */
2157 if (hours_since_last >= 8 * sizeof(read_errors))
2158 atomic_set(&rdev->read_errors, 0);
2159 else
2160 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2161 }
2162
2163 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2164 int sectors, struct page *page, int rw)
2165 {
2166 sector_t first_bad;
2167 int bad_sectors;
2168
2169 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2170 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2171 return -1;
2172 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2173 /* success */
2174 return 1;
2175 if (rw == WRITE) {
2176 set_bit(WriteErrorSeen, &rdev->flags);
2177 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2178 set_bit(MD_RECOVERY_NEEDED,
2179 &rdev->mddev->recovery);
2180 }
2181 /* need to record an error - either for the block or the device */
2182 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2183 md_error(rdev->mddev, rdev);
2184 return 0;
2185 }
2186
2187 /*
2188 * This is a kernel thread which:
2189 *
2190 * 1. Retries failed read operations on working mirrors.
2191 * 2. Updates the raid superblock when problems encounter.
2192 * 3. Performs writes following reads for array synchronising.
2193 */
2194
2195 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2196 {
2197 int sect = 0; /* Offset from r10_bio->sector */
2198 int sectors = r10_bio->sectors;
2199 struct md_rdev*rdev;
2200 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2201 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2202
2203 /* still own a reference to this rdev, so it cannot
2204 * have been cleared recently.
2205 */
2206 rdev = conf->mirrors[d].rdev;
2207
2208 if (test_bit(Faulty, &rdev->flags))
2209 /* drive has already been failed, just ignore any
2210 more fix_read_error() attempts */
2211 return;
2212
2213 check_decay_read_errors(mddev, rdev);
2214 atomic_inc(&rdev->read_errors);
2215 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2216 char b[BDEVNAME_SIZE];
2217 bdevname(rdev->bdev, b);
2218
2219 printk(KERN_NOTICE
2220 "md/raid10:%s: %s: Raid device exceeded "
2221 "read_error threshold [cur %d:max %d]\n",
2222 mdname(mddev), b,
2223 atomic_read(&rdev->read_errors), max_read_errors);
2224 printk(KERN_NOTICE
2225 "md/raid10:%s: %s: Failing raid device\n",
2226 mdname(mddev), b);
2227 md_error(mddev, conf->mirrors[d].rdev);
2228 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2229 return;
2230 }
2231
2232 while(sectors) {
2233 int s = sectors;
2234 int sl = r10_bio->read_slot;
2235 int success = 0;
2236 int start;
2237
2238 if (s > (PAGE_SIZE>>9))
2239 s = PAGE_SIZE >> 9;
2240
2241 rcu_read_lock();
2242 do {
2243 sector_t first_bad;
2244 int bad_sectors;
2245
2246 d = r10_bio->devs[sl].devnum;
2247 rdev = rcu_dereference(conf->mirrors[d].rdev);
2248 if (rdev &&
2249 !test_bit(Unmerged, &rdev->flags) &&
2250 test_bit(In_sync, &rdev->flags) &&
2251 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2252 &first_bad, &bad_sectors) == 0) {
2253 atomic_inc(&rdev->nr_pending);
2254 rcu_read_unlock();
2255 success = sync_page_io(rdev,
2256 r10_bio->devs[sl].addr +
2257 sect,
2258 s<<9,
2259 conf->tmppage, READ, false);
2260 rdev_dec_pending(rdev, mddev);
2261 rcu_read_lock();
2262 if (success)
2263 break;
2264 }
2265 sl++;
2266 if (sl == conf->copies)
2267 sl = 0;
2268 } while (!success && sl != r10_bio->read_slot);
2269 rcu_read_unlock();
2270
2271 if (!success) {
2272 /* Cannot read from anywhere, just mark the block
2273 * as bad on the first device to discourage future
2274 * reads.
2275 */
2276 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2277 rdev = conf->mirrors[dn].rdev;
2278
2279 if (!rdev_set_badblocks(
2280 rdev,
2281 r10_bio->devs[r10_bio->read_slot].addr
2282 + sect,
2283 s, 0)) {
2284 md_error(mddev, rdev);
2285 r10_bio->devs[r10_bio->read_slot].bio
2286 = IO_BLOCKED;
2287 }
2288 break;
2289 }
2290
2291 start = sl;
2292 /* write it back and re-read */
2293 rcu_read_lock();
2294 while (sl != r10_bio->read_slot) {
2295 char b[BDEVNAME_SIZE];
2296
2297 if (sl==0)
2298 sl = conf->copies;
2299 sl--;
2300 d = r10_bio->devs[sl].devnum;
2301 rdev = rcu_dereference(conf->mirrors[d].rdev);
2302 if (!rdev ||
2303 test_bit(Unmerged, &rdev->flags) ||
2304 !test_bit(In_sync, &rdev->flags))
2305 continue;
2306
2307 atomic_inc(&rdev->nr_pending);
2308 rcu_read_unlock();
2309 if (r10_sync_page_io(rdev,
2310 r10_bio->devs[sl].addr +
2311 sect,
2312 s, conf->tmppage, WRITE)
2313 == 0) {
2314 /* Well, this device is dead */
2315 printk(KERN_NOTICE
2316 "md/raid10:%s: read correction "
2317 "write failed"
2318 " (%d sectors at %llu on %s)\n",
2319 mdname(mddev), s,
2320 (unsigned long long)(
2321 sect +
2322 choose_data_offset(r10_bio,
2323 rdev)),
2324 bdevname(rdev->bdev, b));
2325 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2326 "drive\n",
2327 mdname(mddev),
2328 bdevname(rdev->bdev, b));
2329 }
2330 rdev_dec_pending(rdev, mddev);
2331 rcu_read_lock();
2332 }
2333 sl = start;
2334 while (sl != r10_bio->read_slot) {
2335 char b[BDEVNAME_SIZE];
2336
2337 if (sl==0)
2338 sl = conf->copies;
2339 sl--;
2340 d = r10_bio->devs[sl].devnum;
2341 rdev = rcu_dereference(conf->mirrors[d].rdev);
2342 if (!rdev ||
2343 !test_bit(In_sync, &rdev->flags))
2344 continue;
2345
2346 atomic_inc(&rdev->nr_pending);
2347 rcu_read_unlock();
2348 switch (r10_sync_page_io(rdev,
2349 r10_bio->devs[sl].addr +
2350 sect,
2351 s, conf->tmppage,
2352 READ)) {
2353 case 0:
2354 /* Well, this device is dead */
2355 printk(KERN_NOTICE
2356 "md/raid10:%s: unable to read back "
2357 "corrected sectors"
2358 " (%d sectors at %llu on %s)\n",
2359 mdname(mddev), s,
2360 (unsigned long long)(
2361 sect +
2362 choose_data_offset(r10_bio, rdev)),
2363 bdevname(rdev->bdev, b));
2364 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2365 "drive\n",
2366 mdname(mddev),
2367 bdevname(rdev->bdev, b));
2368 break;
2369 case 1:
2370 printk(KERN_INFO
2371 "md/raid10:%s: read error corrected"
2372 " (%d sectors at %llu on %s)\n",
2373 mdname(mddev), s,
2374 (unsigned long long)(
2375 sect +
2376 choose_data_offset(r10_bio, rdev)),
2377 bdevname(rdev->bdev, b));
2378 atomic_add(s, &rdev->corrected_errors);
2379 }
2380
2381 rdev_dec_pending(rdev, mddev);
2382 rcu_read_lock();
2383 }
2384 rcu_read_unlock();
2385
2386 sectors -= s;
2387 sect += s;
2388 }
2389 }
2390
2391 static void bi_complete(struct bio *bio, int error)
2392 {
2393 complete((struct completion *)bio->bi_private);
2394 }
2395
2396 static int submit_bio_wait(int rw, struct bio *bio)
2397 {
2398 struct completion event;
2399 rw |= REQ_SYNC;
2400
2401 init_completion(&event);
2402 bio->bi_private = &event;
2403 bio->bi_end_io = bi_complete;
2404 submit_bio(rw, bio);
2405 wait_for_completion(&event);
2406
2407 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2408 }
2409
2410 static int narrow_write_error(struct r10bio *r10_bio, int i)
2411 {
2412 struct bio *bio = r10_bio->master_bio;
2413 struct mddev *mddev = r10_bio->mddev;
2414 struct r10conf *conf = mddev->private;
2415 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2416 /* bio has the data to be written to slot 'i' where
2417 * we just recently had a write error.
2418 * We repeatedly clone the bio and trim down to one block,
2419 * then try the write. Where the write fails we record
2420 * a bad block.
2421 * It is conceivable that the bio doesn't exactly align with
2422 * blocks. We must handle this.
2423 *
2424 * We currently own a reference to the rdev.
2425 */
2426
2427 int block_sectors;
2428 sector_t sector;
2429 int sectors;
2430 int sect_to_write = r10_bio->sectors;
2431 int ok = 1;
2432
2433 if (rdev->badblocks.shift < 0)
2434 return 0;
2435
2436 block_sectors = 1 << rdev->badblocks.shift;
2437 sector = r10_bio->sector;
2438 sectors = ((r10_bio->sector + block_sectors)
2439 & ~(sector_t)(block_sectors - 1))
2440 - sector;
2441
2442 while (sect_to_write) {
2443 struct bio *wbio;
2444 if (sectors > sect_to_write)
2445 sectors = sect_to_write;
2446 /* Write at 'sector' for 'sectors' */
2447 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2448 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2449 wbio->bi_sector = (r10_bio->devs[i].addr+
2450 choose_data_offset(r10_bio, rdev) +
2451 (sector - r10_bio->sector));
2452 wbio->bi_bdev = rdev->bdev;
2453 if (submit_bio_wait(WRITE, wbio) == 0)
2454 /* Failure! */
2455 ok = rdev_set_badblocks(rdev, sector,
2456 sectors, 0)
2457 && ok;
2458
2459 bio_put(wbio);
2460 sect_to_write -= sectors;
2461 sector += sectors;
2462 sectors = block_sectors;
2463 }
2464 return ok;
2465 }
2466
2467 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2468 {
2469 int slot = r10_bio->read_slot;
2470 struct bio *bio;
2471 struct r10conf *conf = mddev->private;
2472 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2473 char b[BDEVNAME_SIZE];
2474 unsigned long do_sync;
2475 int max_sectors;
2476
2477 /* we got a read error. Maybe the drive is bad. Maybe just
2478 * the block and we can fix it.
2479 * We freeze all other IO, and try reading the block from
2480 * other devices. When we find one, we re-write
2481 * and check it that fixes the read error.
2482 * This is all done synchronously while the array is
2483 * frozen.
2484 */
2485 bio = r10_bio->devs[slot].bio;
2486 bdevname(bio->bi_bdev, b);
2487 bio_put(bio);
2488 r10_bio->devs[slot].bio = NULL;
2489
2490 if (mddev->ro == 0) {
2491 freeze_array(conf);
2492 fix_read_error(conf, mddev, r10_bio);
2493 unfreeze_array(conf);
2494 } else
2495 r10_bio->devs[slot].bio = IO_BLOCKED;
2496
2497 rdev_dec_pending(rdev, mddev);
2498
2499 read_more:
2500 rdev = read_balance(conf, r10_bio, &max_sectors);
2501 if (rdev == NULL) {
2502 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2503 " read error for block %llu\n",
2504 mdname(mddev), b,
2505 (unsigned long long)r10_bio->sector);
2506 raid_end_bio_io(r10_bio);
2507 return;
2508 }
2509
2510 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2511 slot = r10_bio->read_slot;
2512 printk_ratelimited(
2513 KERN_ERR
2514 "md/raid10:%s: %s: redirecting "
2515 "sector %llu to another mirror\n",
2516 mdname(mddev),
2517 bdevname(rdev->bdev, b),
2518 (unsigned long long)r10_bio->sector);
2519 bio = bio_clone_mddev(r10_bio->master_bio,
2520 GFP_NOIO, mddev);
2521 md_trim_bio(bio,
2522 r10_bio->sector - bio->bi_sector,
2523 max_sectors);
2524 r10_bio->devs[slot].bio = bio;
2525 r10_bio->devs[slot].rdev = rdev;
2526 bio->bi_sector = r10_bio->devs[slot].addr
2527 + choose_data_offset(r10_bio, rdev);
2528 bio->bi_bdev = rdev->bdev;
2529 bio->bi_rw = READ | do_sync;
2530 bio->bi_private = r10_bio;
2531 bio->bi_end_io = raid10_end_read_request;
2532 if (max_sectors < r10_bio->sectors) {
2533 /* Drat - have to split this up more */
2534 struct bio *mbio = r10_bio->master_bio;
2535 int sectors_handled =
2536 r10_bio->sector + max_sectors
2537 - mbio->bi_sector;
2538 r10_bio->sectors = max_sectors;
2539 spin_lock_irq(&conf->device_lock);
2540 if (mbio->bi_phys_segments == 0)
2541 mbio->bi_phys_segments = 2;
2542 else
2543 mbio->bi_phys_segments++;
2544 spin_unlock_irq(&conf->device_lock);
2545 generic_make_request(bio);
2546
2547 r10_bio = mempool_alloc(conf->r10bio_pool,
2548 GFP_NOIO);
2549 r10_bio->master_bio = mbio;
2550 r10_bio->sectors = (mbio->bi_size >> 9)
2551 - sectors_handled;
2552 r10_bio->state = 0;
2553 set_bit(R10BIO_ReadError,
2554 &r10_bio->state);
2555 r10_bio->mddev = mddev;
2556 r10_bio->sector = mbio->bi_sector
2557 + sectors_handled;
2558
2559 goto read_more;
2560 } else
2561 generic_make_request(bio);
2562 }
2563
2564 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2565 {
2566 /* Some sort of write request has finished and it
2567 * succeeded in writing where we thought there was a
2568 * bad block. So forget the bad block.
2569 * Or possibly if failed and we need to record
2570 * a bad block.
2571 */
2572 int m;
2573 struct md_rdev *rdev;
2574
2575 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2576 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2577 for (m = 0; m < conf->copies; m++) {
2578 int dev = r10_bio->devs[m].devnum;
2579 rdev = conf->mirrors[dev].rdev;
2580 if (r10_bio->devs[m].bio == NULL)
2581 continue;
2582 if (test_bit(BIO_UPTODATE,
2583 &r10_bio->devs[m].bio->bi_flags)) {
2584 rdev_clear_badblocks(
2585 rdev,
2586 r10_bio->devs[m].addr,
2587 r10_bio->sectors, 0);
2588 } else {
2589 if (!rdev_set_badblocks(
2590 rdev,
2591 r10_bio->devs[m].addr,
2592 r10_bio->sectors, 0))
2593 md_error(conf->mddev, rdev);
2594 }
2595 rdev = conf->mirrors[dev].replacement;
2596 if (r10_bio->devs[m].repl_bio == NULL)
2597 continue;
2598 if (test_bit(BIO_UPTODATE,
2599 &r10_bio->devs[m].repl_bio->bi_flags)) {
2600 rdev_clear_badblocks(
2601 rdev,
2602 r10_bio->devs[m].addr,
2603 r10_bio->sectors, 0);
2604 } else {
2605 if (!rdev_set_badblocks(
2606 rdev,
2607 r10_bio->devs[m].addr,
2608 r10_bio->sectors, 0))
2609 md_error(conf->mddev, rdev);
2610 }
2611 }
2612 put_buf(r10_bio);
2613 } else {
2614 for (m = 0; m < conf->copies; m++) {
2615 int dev = r10_bio->devs[m].devnum;
2616 struct bio *bio = r10_bio->devs[m].bio;
2617 rdev = conf->mirrors[dev].rdev;
2618 if (bio == IO_MADE_GOOD) {
2619 rdev_clear_badblocks(
2620 rdev,
2621 r10_bio->devs[m].addr,
2622 r10_bio->sectors, 0);
2623 rdev_dec_pending(rdev, conf->mddev);
2624 } else if (bio != NULL &&
2625 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2626 if (!narrow_write_error(r10_bio, m)) {
2627 md_error(conf->mddev, rdev);
2628 set_bit(R10BIO_Degraded,
2629 &r10_bio->state);
2630 }
2631 rdev_dec_pending(rdev, conf->mddev);
2632 }
2633 bio = r10_bio->devs[m].repl_bio;
2634 rdev = conf->mirrors[dev].replacement;
2635 if (rdev && bio == IO_MADE_GOOD) {
2636 rdev_clear_badblocks(
2637 rdev,
2638 r10_bio->devs[m].addr,
2639 r10_bio->sectors, 0);
2640 rdev_dec_pending(rdev, conf->mddev);
2641 }
2642 }
2643 if (test_bit(R10BIO_WriteError,
2644 &r10_bio->state))
2645 close_write(r10_bio);
2646 raid_end_bio_io(r10_bio);
2647 }
2648 }
2649
2650 static void raid10d(struct mddev *mddev)
2651 {
2652 struct r10bio *r10_bio;
2653 unsigned long flags;
2654 struct r10conf *conf = mddev->private;
2655 struct list_head *head = &conf->retry_list;
2656 struct blk_plug plug;
2657
2658 md_check_recovery(mddev);
2659
2660 blk_start_plug(&plug);
2661 for (;;) {
2662
2663 flush_pending_writes(conf);
2664
2665 spin_lock_irqsave(&conf->device_lock, flags);
2666 if (list_empty(head)) {
2667 spin_unlock_irqrestore(&conf->device_lock, flags);
2668 break;
2669 }
2670 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2671 list_del(head->prev);
2672 conf->nr_queued--;
2673 spin_unlock_irqrestore(&conf->device_lock, flags);
2674
2675 mddev = r10_bio->mddev;
2676 conf = mddev->private;
2677 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2678 test_bit(R10BIO_WriteError, &r10_bio->state))
2679 handle_write_completed(conf, r10_bio);
2680 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2681 reshape_request_write(mddev, r10_bio);
2682 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2683 sync_request_write(mddev, r10_bio);
2684 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2685 recovery_request_write(mddev, r10_bio);
2686 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2687 handle_read_error(mddev, r10_bio);
2688 else {
2689 /* just a partial read to be scheduled from a
2690 * separate context
2691 */
2692 int slot = r10_bio->read_slot;
2693 generic_make_request(r10_bio->devs[slot].bio);
2694 }
2695
2696 cond_resched();
2697 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2698 md_check_recovery(mddev);
2699 }
2700 blk_finish_plug(&plug);
2701 }
2702
2703
2704 static int init_resync(struct r10conf *conf)
2705 {
2706 int buffs;
2707 int i;
2708
2709 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2710 BUG_ON(conf->r10buf_pool);
2711 conf->have_replacement = 0;
2712 for (i = 0; i < conf->geo.raid_disks; i++)
2713 if (conf->mirrors[i].replacement)
2714 conf->have_replacement = 1;
2715 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2716 if (!conf->r10buf_pool)
2717 return -ENOMEM;
2718 conf->next_resync = 0;
2719 return 0;
2720 }
2721
2722 /*
2723 * perform a "sync" on one "block"
2724 *
2725 * We need to make sure that no normal I/O request - particularly write
2726 * requests - conflict with active sync requests.
2727 *
2728 * This is achieved by tracking pending requests and a 'barrier' concept
2729 * that can be installed to exclude normal IO requests.
2730 *
2731 * Resync and recovery are handled very differently.
2732 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2733 *
2734 * For resync, we iterate over virtual addresses, read all copies,
2735 * and update if there are differences. If only one copy is live,
2736 * skip it.
2737 * For recovery, we iterate over physical addresses, read a good
2738 * value for each non-in_sync drive, and over-write.
2739 *
2740 * So, for recovery we may have several outstanding complex requests for a
2741 * given address, one for each out-of-sync device. We model this by allocating
2742 * a number of r10_bio structures, one for each out-of-sync device.
2743 * As we setup these structures, we collect all bio's together into a list
2744 * which we then process collectively to add pages, and then process again
2745 * to pass to generic_make_request.
2746 *
2747 * The r10_bio structures are linked using a borrowed master_bio pointer.
2748 * This link is counted in ->remaining. When the r10_bio that points to NULL
2749 * has its remaining count decremented to 0, the whole complex operation
2750 * is complete.
2751 *
2752 */
2753
2754 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2755 int *skipped, int go_faster)
2756 {
2757 struct r10conf *conf = mddev->private;
2758 struct r10bio *r10_bio;
2759 struct bio *biolist = NULL, *bio;
2760 sector_t max_sector, nr_sectors;
2761 int i;
2762 int max_sync;
2763 sector_t sync_blocks;
2764 sector_t sectors_skipped = 0;
2765 int chunks_skipped = 0;
2766 sector_t chunk_mask = conf->geo.chunk_mask;
2767
2768 if (!conf->r10buf_pool)
2769 if (init_resync(conf))
2770 return 0;
2771
2772 skipped:
2773 max_sector = mddev->dev_sectors;
2774 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2775 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2776 max_sector = mddev->resync_max_sectors;
2777 if (sector_nr >= max_sector) {
2778 /* If we aborted, we need to abort the
2779 * sync on the 'current' bitmap chucks (there can
2780 * be several when recovering multiple devices).
2781 * as we may have started syncing it but not finished.
2782 * We can find the current address in
2783 * mddev->curr_resync, but for recovery,
2784 * we need to convert that to several
2785 * virtual addresses.
2786 */
2787 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2788 end_reshape(conf);
2789 return 0;
2790 }
2791
2792 if (mddev->curr_resync < max_sector) { /* aborted */
2793 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2794 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2795 &sync_blocks, 1);
2796 else for (i = 0; i < conf->geo.raid_disks; i++) {
2797 sector_t sect =
2798 raid10_find_virt(conf, mddev->curr_resync, i);
2799 bitmap_end_sync(mddev->bitmap, sect,
2800 &sync_blocks, 1);
2801 }
2802 } else {
2803 /* completed sync */
2804 if ((!mddev->bitmap || conf->fullsync)
2805 && conf->have_replacement
2806 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2807 /* Completed a full sync so the replacements
2808 * are now fully recovered.
2809 */
2810 for (i = 0; i < conf->geo.raid_disks; i++)
2811 if (conf->mirrors[i].replacement)
2812 conf->mirrors[i].replacement
2813 ->recovery_offset
2814 = MaxSector;
2815 }
2816 conf->fullsync = 0;
2817 }
2818 bitmap_close_sync(mddev->bitmap);
2819 close_sync(conf);
2820 *skipped = 1;
2821 return sectors_skipped;
2822 }
2823
2824 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2825 return reshape_request(mddev, sector_nr, skipped);
2826
2827 if (chunks_skipped >= conf->geo.raid_disks) {
2828 /* if there has been nothing to do on any drive,
2829 * then there is nothing to do at all..
2830 */
2831 *skipped = 1;
2832 return (max_sector - sector_nr) + sectors_skipped;
2833 }
2834
2835 if (max_sector > mddev->resync_max)
2836 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2837
2838 /* make sure whole request will fit in a chunk - if chunks
2839 * are meaningful
2840 */
2841 if (conf->geo.near_copies < conf->geo.raid_disks &&
2842 max_sector > (sector_nr | chunk_mask))
2843 max_sector = (sector_nr | chunk_mask) + 1;
2844 /*
2845 * If there is non-resync activity waiting for us then
2846 * put in a delay to throttle resync.
2847 */
2848 if (!go_faster && conf->nr_waiting)
2849 msleep_interruptible(1000);
2850
2851 /* Again, very different code for resync and recovery.
2852 * Both must result in an r10bio with a list of bios that
2853 * have bi_end_io, bi_sector, bi_bdev set,
2854 * and bi_private set to the r10bio.
2855 * For recovery, we may actually create several r10bios
2856 * with 2 bios in each, that correspond to the bios in the main one.
2857 * In this case, the subordinate r10bios link back through a
2858 * borrowed master_bio pointer, and the counter in the master
2859 * includes a ref from each subordinate.
2860 */
2861 /* First, we decide what to do and set ->bi_end_io
2862 * To end_sync_read if we want to read, and
2863 * end_sync_write if we will want to write.
2864 */
2865
2866 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2867 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2868 /* recovery... the complicated one */
2869 int j;
2870 r10_bio = NULL;
2871
2872 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2873 int still_degraded;
2874 struct r10bio *rb2;
2875 sector_t sect;
2876 int must_sync;
2877 int any_working;
2878 struct mirror_info *mirror = &conf->mirrors[i];
2879
2880 if ((mirror->rdev == NULL ||
2881 test_bit(In_sync, &mirror->rdev->flags))
2882 &&
2883 (mirror->replacement == NULL ||
2884 test_bit(Faulty,
2885 &mirror->replacement->flags)))
2886 continue;
2887
2888 still_degraded = 0;
2889 /* want to reconstruct this device */
2890 rb2 = r10_bio;
2891 sect = raid10_find_virt(conf, sector_nr, i);
2892 if (sect >= mddev->resync_max_sectors) {
2893 /* last stripe is not complete - don't
2894 * try to recover this sector.
2895 */
2896 continue;
2897 }
2898 /* Unless we are doing a full sync, or a replacement
2899 * we only need to recover the block if it is set in
2900 * the bitmap
2901 */
2902 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2903 &sync_blocks, 1);
2904 if (sync_blocks < max_sync)
2905 max_sync = sync_blocks;
2906 if (!must_sync &&
2907 mirror->replacement == NULL &&
2908 !conf->fullsync) {
2909 /* yep, skip the sync_blocks here, but don't assume
2910 * that there will never be anything to do here
2911 */
2912 chunks_skipped = -1;
2913 continue;
2914 }
2915
2916 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2917 raise_barrier(conf, rb2 != NULL);
2918 atomic_set(&r10_bio->remaining, 0);
2919
2920 r10_bio->master_bio = (struct bio*)rb2;
2921 if (rb2)
2922 atomic_inc(&rb2->remaining);
2923 r10_bio->mddev = mddev;
2924 set_bit(R10BIO_IsRecover, &r10_bio->state);
2925 r10_bio->sector = sect;
2926
2927 raid10_find_phys(conf, r10_bio);
2928
2929 /* Need to check if the array will still be
2930 * degraded
2931 */
2932 for (j = 0; j < conf->geo.raid_disks; j++)
2933 if (conf->mirrors[j].rdev == NULL ||
2934 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2935 still_degraded = 1;
2936 break;
2937 }
2938
2939 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2940 &sync_blocks, still_degraded);
2941
2942 any_working = 0;
2943 for (j=0; j<conf->copies;j++) {
2944 int k;
2945 int d = r10_bio->devs[j].devnum;
2946 sector_t from_addr, to_addr;
2947 struct md_rdev *rdev;
2948 sector_t sector, first_bad;
2949 int bad_sectors;
2950 if (!conf->mirrors[d].rdev ||
2951 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2952 continue;
2953 /* This is where we read from */
2954 any_working = 1;
2955 rdev = conf->mirrors[d].rdev;
2956 sector = r10_bio->devs[j].addr;
2957
2958 if (is_badblock(rdev, sector, max_sync,
2959 &first_bad, &bad_sectors)) {
2960 if (first_bad > sector)
2961 max_sync = first_bad - sector;
2962 else {
2963 bad_sectors -= (sector
2964 - first_bad);
2965 if (max_sync > bad_sectors)
2966 max_sync = bad_sectors;
2967 continue;
2968 }
2969 }
2970 bio = r10_bio->devs[0].bio;
2971 bio->bi_next = biolist;
2972 biolist = bio;
2973 bio->bi_private = r10_bio;
2974 bio->bi_end_io = end_sync_read;
2975 bio->bi_rw = READ;
2976 from_addr = r10_bio->devs[j].addr;
2977 bio->bi_sector = from_addr + rdev->data_offset;
2978 bio->bi_bdev = rdev->bdev;
2979 atomic_inc(&rdev->nr_pending);
2980 /* and we write to 'i' (if not in_sync) */
2981
2982 for (k=0; k<conf->copies; k++)
2983 if (r10_bio->devs[k].devnum == i)
2984 break;
2985 BUG_ON(k == conf->copies);
2986 to_addr = r10_bio->devs[k].addr;
2987 r10_bio->devs[0].devnum = d;
2988 r10_bio->devs[0].addr = from_addr;
2989 r10_bio->devs[1].devnum = i;
2990 r10_bio->devs[1].addr = to_addr;
2991
2992 rdev = mirror->rdev;
2993 if (!test_bit(In_sync, &rdev->flags)) {
2994 bio = r10_bio->devs[1].bio;
2995 bio->bi_next = biolist;
2996 biolist = bio;
2997 bio->bi_private = r10_bio;
2998 bio->bi_end_io = end_sync_write;
2999 bio->bi_rw = WRITE;
3000 bio->bi_sector = to_addr
3001 + rdev->data_offset;
3002 bio->bi_bdev = rdev->bdev;
3003 atomic_inc(&r10_bio->remaining);
3004 } else
3005 r10_bio->devs[1].bio->bi_end_io = NULL;
3006
3007 /* and maybe write to replacement */
3008 bio = r10_bio->devs[1].repl_bio;
3009 if (bio)
3010 bio->bi_end_io = NULL;
3011 rdev = mirror->replacement;
3012 /* Note: if rdev != NULL, then bio
3013 * cannot be NULL as r10buf_pool_alloc will
3014 * have allocated it.
3015 * So the second test here is pointless.
3016 * But it keeps semantic-checkers happy, and
3017 * this comment keeps human reviewers
3018 * happy.
3019 */
3020 if (rdev == NULL || bio == NULL ||
3021 test_bit(Faulty, &rdev->flags))
3022 break;
3023 bio->bi_next = biolist;
3024 biolist = bio;
3025 bio->bi_private = r10_bio;
3026 bio->bi_end_io = end_sync_write;
3027 bio->bi_rw = WRITE;
3028 bio->bi_sector = to_addr + rdev->data_offset;
3029 bio->bi_bdev = rdev->bdev;
3030 atomic_inc(&r10_bio->remaining);
3031 break;
3032 }
3033 if (j == conf->copies) {
3034 /* Cannot recover, so abort the recovery or
3035 * record a bad block */
3036 put_buf(r10_bio);
3037 if (rb2)
3038 atomic_dec(&rb2->remaining);
3039 r10_bio = rb2;
3040 if (any_working) {
3041 /* problem is that there are bad blocks
3042 * on other device(s)
3043 */
3044 int k;
3045 for (k = 0; k < conf->copies; k++)
3046 if (r10_bio->devs[k].devnum == i)
3047 break;
3048 if (!test_bit(In_sync,
3049 &mirror->rdev->flags)
3050 && !rdev_set_badblocks(
3051 mirror->rdev,
3052 r10_bio->devs[k].addr,
3053 max_sync, 0))
3054 any_working = 0;
3055 if (mirror->replacement &&
3056 !rdev_set_badblocks(
3057 mirror->replacement,
3058 r10_bio->devs[k].addr,
3059 max_sync, 0))
3060 any_working = 0;
3061 }
3062 if (!any_working) {
3063 if (!test_and_set_bit(MD_RECOVERY_INTR,
3064 &mddev->recovery))
3065 printk(KERN_INFO "md/raid10:%s: insufficient "
3066 "working devices for recovery.\n",
3067 mdname(mddev));
3068 mirror->recovery_disabled
3069 = mddev->recovery_disabled;
3070 }
3071 break;
3072 }
3073 }
3074 if (biolist == NULL) {
3075 while (r10_bio) {
3076 struct r10bio *rb2 = r10_bio;
3077 r10_bio = (struct r10bio*) rb2->master_bio;
3078 rb2->master_bio = NULL;
3079 put_buf(rb2);
3080 }
3081 goto giveup;
3082 }
3083 } else {
3084 /* resync. Schedule a read for every block at this virt offset */
3085 int count = 0;
3086
3087 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3088
3089 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3090 &sync_blocks, mddev->degraded) &&
3091 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3092 &mddev->recovery)) {
3093 /* We can skip this block */
3094 *skipped = 1;
3095 return sync_blocks + sectors_skipped;
3096 }
3097 if (sync_blocks < max_sync)
3098 max_sync = sync_blocks;
3099 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3100
3101 r10_bio->mddev = mddev;
3102 atomic_set(&r10_bio->remaining, 0);
3103 raise_barrier(conf, 0);
3104 conf->next_resync = sector_nr;
3105
3106 r10_bio->master_bio = NULL;
3107 r10_bio->sector = sector_nr;
3108 set_bit(R10BIO_IsSync, &r10_bio->state);
3109 raid10_find_phys(conf, r10_bio);
3110 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3111
3112 for (i = 0; i < conf->copies; i++) {
3113 int d = r10_bio->devs[i].devnum;
3114 sector_t first_bad, sector;
3115 int bad_sectors;
3116
3117 if (r10_bio->devs[i].repl_bio)
3118 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3119
3120 bio = r10_bio->devs[i].bio;
3121 bio->bi_end_io = NULL;
3122 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3123 if (conf->mirrors[d].rdev == NULL ||
3124 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3125 continue;
3126 sector = r10_bio->devs[i].addr;
3127 if (is_badblock(conf->mirrors[d].rdev,
3128 sector, max_sync,
3129 &first_bad, &bad_sectors)) {
3130 if (first_bad > sector)
3131 max_sync = first_bad - sector;
3132 else {
3133 bad_sectors -= (sector - first_bad);
3134 if (max_sync > bad_sectors)
3135 max_sync = max_sync;
3136 continue;
3137 }
3138 }
3139 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3140 atomic_inc(&r10_bio->remaining);
3141 bio->bi_next = biolist;
3142 biolist = bio;
3143 bio->bi_private = r10_bio;
3144 bio->bi_end_io = end_sync_read;
3145 bio->bi_rw = READ;
3146 bio->bi_sector = sector +
3147 conf->mirrors[d].rdev->data_offset;
3148 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3149 count++;
3150
3151 if (conf->mirrors[d].replacement == NULL ||
3152 test_bit(Faulty,
3153 &conf->mirrors[d].replacement->flags))
3154 continue;
3155
3156 /* Need to set up for writing to the replacement */
3157 bio = r10_bio->devs[i].repl_bio;
3158 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3159
3160 sector = r10_bio->devs[i].addr;
3161 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3162 bio->bi_next = biolist;
3163 biolist = bio;
3164 bio->bi_private = r10_bio;
3165 bio->bi_end_io = end_sync_write;
3166 bio->bi_rw = WRITE;
3167 bio->bi_sector = sector +
3168 conf->mirrors[d].replacement->data_offset;
3169 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3170 count++;
3171 }
3172
3173 if (count < 2) {
3174 for (i=0; i<conf->copies; i++) {
3175 int d = r10_bio->devs[i].devnum;
3176 if (r10_bio->devs[i].bio->bi_end_io)
3177 rdev_dec_pending(conf->mirrors[d].rdev,
3178 mddev);
3179 if (r10_bio->devs[i].repl_bio &&
3180 r10_bio->devs[i].repl_bio->bi_end_io)
3181 rdev_dec_pending(
3182 conf->mirrors[d].replacement,
3183 mddev);
3184 }
3185 put_buf(r10_bio);
3186 biolist = NULL;
3187 goto giveup;
3188 }
3189 }
3190
3191 for (bio = biolist; bio ; bio=bio->bi_next) {
3192
3193 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3194 if (bio->bi_end_io)
3195 bio->bi_flags |= 1 << BIO_UPTODATE;
3196 bio->bi_vcnt = 0;
3197 bio->bi_idx = 0;
3198 bio->bi_phys_segments = 0;
3199 bio->bi_size = 0;
3200 }
3201
3202 nr_sectors = 0;
3203 if (sector_nr + max_sync < max_sector)
3204 max_sector = sector_nr + max_sync;
3205 do {
3206 struct page *page;
3207 int len = PAGE_SIZE;
3208 if (sector_nr + (len>>9) > max_sector)
3209 len = (max_sector - sector_nr) << 9;
3210 if (len == 0)
3211 break;
3212 for (bio= biolist ; bio ; bio=bio->bi_next) {
3213 struct bio *bio2;
3214 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3215 if (bio_add_page(bio, page, len, 0))
3216 continue;
3217
3218 /* stop here */
3219 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3220 for (bio2 = biolist;
3221 bio2 && bio2 != bio;
3222 bio2 = bio2->bi_next) {
3223 /* remove last page from this bio */
3224 bio2->bi_vcnt--;
3225 bio2->bi_size -= len;
3226 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3227 }
3228 goto bio_full;
3229 }
3230 nr_sectors += len>>9;
3231 sector_nr += len>>9;
3232 } while (biolist->bi_vcnt < RESYNC_PAGES);
3233 bio_full:
3234 r10_bio->sectors = nr_sectors;
3235
3236 while (biolist) {
3237 bio = biolist;
3238 biolist = biolist->bi_next;
3239
3240 bio->bi_next = NULL;
3241 r10_bio = bio->bi_private;
3242 r10_bio->sectors = nr_sectors;
3243
3244 if (bio->bi_end_io == end_sync_read) {
3245 md_sync_acct(bio->bi_bdev, nr_sectors);
3246 generic_make_request(bio);
3247 }
3248 }
3249
3250 if (sectors_skipped)
3251 /* pretend they weren't skipped, it makes
3252 * no important difference in this case
3253 */
3254 md_done_sync(mddev, sectors_skipped, 1);
3255
3256 return sectors_skipped + nr_sectors;
3257 giveup:
3258 /* There is nowhere to write, so all non-sync
3259 * drives must be failed or in resync, all drives
3260 * have a bad block, so try the next chunk...
3261 */
3262 if (sector_nr + max_sync < max_sector)
3263 max_sector = sector_nr + max_sync;
3264
3265 sectors_skipped += (max_sector - sector_nr);
3266 chunks_skipped ++;
3267 sector_nr = max_sector;
3268 goto skipped;
3269 }
3270
3271 static sector_t
3272 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3273 {
3274 sector_t size;
3275 struct r10conf *conf = mddev->private;
3276
3277 if (!raid_disks)
3278 raid_disks = min(conf->geo.raid_disks,
3279 conf->prev.raid_disks);
3280 if (!sectors)
3281 sectors = conf->dev_sectors;
3282
3283 size = sectors >> conf->geo.chunk_shift;
3284 sector_div(size, conf->geo.far_copies);
3285 size = size * raid_disks;
3286 sector_div(size, conf->geo.near_copies);
3287
3288 return size << conf->geo.chunk_shift;
3289 }
3290
3291 static void calc_sectors(struct r10conf *conf, sector_t size)
3292 {
3293 /* Calculate the number of sectors-per-device that will
3294 * actually be used, and set conf->dev_sectors and
3295 * conf->stride
3296 */
3297
3298 size = size >> conf->geo.chunk_shift;
3299 sector_div(size, conf->geo.far_copies);
3300 size = size * conf->geo.raid_disks;
3301 sector_div(size, conf->geo.near_copies);
3302 /* 'size' is now the number of chunks in the array */
3303 /* calculate "used chunks per device" */
3304 size = size * conf->copies;
3305
3306 /* We need to round up when dividing by raid_disks to
3307 * get the stride size.
3308 */
3309 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3310
3311 conf->dev_sectors = size << conf->geo.chunk_shift;
3312
3313 if (conf->geo.far_offset)
3314 conf->geo.stride = 1 << conf->geo.chunk_shift;
3315 else {
3316 sector_div(size, conf->geo.far_copies);
3317 conf->geo.stride = size << conf->geo.chunk_shift;
3318 }
3319 }
3320
3321 enum geo_type {geo_new, geo_old, geo_start};
3322 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3323 {
3324 int nc, fc, fo;
3325 int layout, chunk, disks;
3326 switch (new) {
3327 case geo_old:
3328 layout = mddev->layout;
3329 chunk = mddev->chunk_sectors;
3330 disks = mddev->raid_disks - mddev->delta_disks;
3331 break;
3332 case geo_new:
3333 layout = mddev->new_layout;
3334 chunk = mddev->new_chunk_sectors;
3335 disks = mddev->raid_disks;
3336 break;
3337 default: /* avoid 'may be unused' warnings */
3338 case geo_start: /* new when starting reshape - raid_disks not
3339 * updated yet. */
3340 layout = mddev->new_layout;
3341 chunk = mddev->new_chunk_sectors;
3342 disks = mddev->raid_disks + mddev->delta_disks;
3343 break;
3344 }
3345 if (layout >> 17)
3346 return -1;
3347 if (chunk < (PAGE_SIZE >> 9) ||
3348 !is_power_of_2(chunk))
3349 return -2;
3350 nc = layout & 255;
3351 fc = (layout >> 8) & 255;
3352 fo = layout & (1<<16);
3353 geo->raid_disks = disks;
3354 geo->near_copies = nc;
3355 geo->far_copies = fc;
3356 geo->far_offset = fo;
3357 geo->chunk_mask = chunk - 1;
3358 geo->chunk_shift = ffz(~chunk);
3359 return nc*fc;
3360 }
3361
3362 static struct r10conf *setup_conf(struct mddev *mddev)
3363 {
3364 struct r10conf *conf = NULL;
3365 int err = -EINVAL;
3366 struct geom geo;
3367 int copies;
3368
3369 copies = setup_geo(&geo, mddev, geo_new);
3370
3371 if (copies == -2) {
3372 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3373 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3374 mdname(mddev), PAGE_SIZE);
3375 goto out;
3376 }
3377
3378 if (copies < 2 || copies > mddev->raid_disks) {
3379 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3380 mdname(mddev), mddev->new_layout);
3381 goto out;
3382 }
3383
3384 err = -ENOMEM;
3385 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3386 if (!conf)
3387 goto out;
3388
3389 /* FIXME calc properly */
3390 conf->mirrors = kzalloc(sizeof(struct mirror_info)*(mddev->raid_disks +
3391 max(0,mddev->delta_disks)),
3392 GFP_KERNEL);
3393 if (!conf->mirrors)
3394 goto out;
3395
3396 conf->tmppage = alloc_page(GFP_KERNEL);
3397 if (!conf->tmppage)
3398 goto out;
3399
3400 conf->geo = geo;
3401 conf->copies = copies;
3402 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3403 r10bio_pool_free, conf);
3404 if (!conf->r10bio_pool)
3405 goto out;
3406
3407 calc_sectors(conf, mddev->dev_sectors);
3408 if (mddev->reshape_position == MaxSector) {
3409 conf->prev = conf->geo;
3410 conf->reshape_progress = MaxSector;
3411 } else {
3412 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3413 err = -EINVAL;
3414 goto out;
3415 }
3416 conf->reshape_progress = mddev->reshape_position;
3417 if (conf->prev.far_offset)
3418 conf->prev.stride = 1 << conf->prev.chunk_shift;
3419 else
3420 /* far_copies must be 1 */
3421 conf->prev.stride = conf->dev_sectors;
3422 }
3423 spin_lock_init(&conf->device_lock);
3424 INIT_LIST_HEAD(&conf->retry_list);
3425
3426 spin_lock_init(&conf->resync_lock);
3427 init_waitqueue_head(&conf->wait_barrier);
3428
3429 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3430 if (!conf->thread)
3431 goto out;
3432
3433 conf->mddev = mddev;
3434 return conf;
3435
3436 out:
3437 if (err == -ENOMEM)
3438 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3439 mdname(mddev));
3440 if (conf) {
3441 if (conf->r10bio_pool)
3442 mempool_destroy(conf->r10bio_pool);
3443 kfree(conf->mirrors);
3444 safe_put_page(conf->tmppage);
3445 kfree(conf);
3446 }
3447 return ERR_PTR(err);
3448 }
3449
3450 static int run(struct mddev *mddev)
3451 {
3452 struct r10conf *conf;
3453 int i, disk_idx, chunk_size;
3454 struct mirror_info *disk;
3455 struct md_rdev *rdev;
3456 sector_t size;
3457 sector_t min_offset_diff = 0;
3458 int first = 1;
3459
3460 if (mddev->private == NULL) {
3461 conf = setup_conf(mddev);
3462 if (IS_ERR(conf))
3463 return PTR_ERR(conf);
3464 mddev->private = conf;
3465 }
3466 conf = mddev->private;
3467 if (!conf)
3468 goto out;
3469
3470 mddev->thread = conf->thread;
3471 conf->thread = NULL;
3472
3473 chunk_size = mddev->chunk_sectors << 9;
3474 blk_queue_io_min(mddev->queue, chunk_size);
3475 if (conf->geo.raid_disks % conf->geo.near_copies)
3476 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3477 else
3478 blk_queue_io_opt(mddev->queue, chunk_size *
3479 (conf->geo.raid_disks / conf->geo.near_copies));
3480
3481 rdev_for_each(rdev, mddev) {
3482 long long diff;
3483 struct request_queue *q;
3484
3485 disk_idx = rdev->raid_disk;
3486 if (disk_idx < 0)
3487 continue;
3488 if (disk_idx >= conf->geo.raid_disks &&
3489 disk_idx >= conf->prev.raid_disks)
3490 continue;
3491 disk = conf->mirrors + disk_idx;
3492
3493 if (test_bit(Replacement, &rdev->flags)) {
3494 if (disk->replacement)
3495 goto out_free_conf;
3496 disk->replacement = rdev;
3497 } else {
3498 if (disk->rdev)
3499 goto out_free_conf;
3500 disk->rdev = rdev;
3501 }
3502 q = bdev_get_queue(rdev->bdev);
3503 if (q->merge_bvec_fn)
3504 mddev->merge_check_needed = 1;
3505 diff = (rdev->new_data_offset - rdev->data_offset);
3506 if (!mddev->reshape_backwards)
3507 diff = -diff;
3508 if (diff < 0)
3509 diff = 0;
3510 if (first || diff < min_offset_diff)
3511 min_offset_diff = diff;
3512
3513 disk_stack_limits(mddev->gendisk, rdev->bdev,
3514 rdev->data_offset << 9);
3515
3516 disk->head_position = 0;
3517 }
3518
3519 /* need to check that every block has at least one working mirror */
3520 if (!enough(conf, -1)) {
3521 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3522 mdname(mddev));
3523 goto out_free_conf;
3524 }
3525
3526 if (conf->reshape_progress != MaxSector) {
3527 /* must ensure that shape change is supported */
3528 if (conf->geo.far_copies != 1 &&
3529 conf->geo.far_offset == 0)
3530 goto out_free_conf;
3531 if (conf->prev.far_copies != 1 &&
3532 conf->geo.far_offset == 0)
3533 goto out_free_conf;
3534 }
3535
3536 mddev->degraded = 0;
3537 for (i = 0;
3538 i < conf->geo.raid_disks
3539 || i < conf->prev.raid_disks;
3540 i++) {
3541
3542 disk = conf->mirrors + i;
3543
3544 if (!disk->rdev && disk->replacement) {
3545 /* The replacement is all we have - use it */
3546 disk->rdev = disk->replacement;
3547 disk->replacement = NULL;
3548 clear_bit(Replacement, &disk->rdev->flags);
3549 }
3550
3551 if (!disk->rdev ||
3552 !test_bit(In_sync, &disk->rdev->flags)) {
3553 disk->head_position = 0;
3554 mddev->degraded++;
3555 if (disk->rdev)
3556 conf->fullsync = 1;
3557 }
3558 disk->recovery_disabled = mddev->recovery_disabled - 1;
3559 }
3560
3561 if (mddev->recovery_cp != MaxSector)
3562 printk(KERN_NOTICE "md/raid10:%s: not clean"
3563 " -- starting background reconstruction\n",
3564 mdname(mddev));
3565 printk(KERN_INFO
3566 "md/raid10:%s: active with %d out of %d devices\n",
3567 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3568 conf->geo.raid_disks);
3569 /*
3570 * Ok, everything is just fine now
3571 */
3572 mddev->dev_sectors = conf->dev_sectors;
3573 size = raid10_size(mddev, 0, 0);
3574 md_set_array_sectors(mddev, size);
3575 mddev->resync_max_sectors = size;
3576
3577 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3578 mddev->queue->backing_dev_info.congested_data = mddev;
3579
3580 /* Calculate max read-ahead size.
3581 * We need to readahead at least twice a whole stripe....
3582 * maybe...
3583 */
3584 {
3585 int stripe = conf->geo.raid_disks *
3586 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3587 stripe /= conf->geo.near_copies;
3588 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3589 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3590 }
3591
3592 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3593
3594 if (md_integrity_register(mddev))
3595 goto out_free_conf;
3596
3597 if (conf->reshape_progress != MaxSector) {
3598 unsigned long before_length, after_length;
3599
3600 before_length = ((1 << conf->prev.chunk_shift) *
3601 conf->prev.far_copies);
3602 after_length = ((1 << conf->geo.chunk_shift) *
3603 conf->geo.far_copies);
3604
3605 if (max(before_length, after_length) > min_offset_diff) {
3606 /* This cannot work */
3607 printk("md/raid10: offset difference not enough to continue reshape\n");
3608 goto out_free_conf;
3609 }
3610 conf->offset_diff = min_offset_diff;
3611
3612 conf->reshape_safe = conf->reshape_progress;
3613 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3614 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3615 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3616 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3617 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3618 "reshape");
3619 }
3620
3621 return 0;
3622
3623 out_free_conf:
3624 md_unregister_thread(&mddev->thread);
3625 if (conf->r10bio_pool)
3626 mempool_destroy(conf->r10bio_pool);
3627 safe_put_page(conf->tmppage);
3628 kfree(conf->mirrors);
3629 kfree(conf);
3630 mddev->private = NULL;
3631 out:
3632 return -EIO;
3633 }
3634
3635 static int stop(struct mddev *mddev)
3636 {
3637 struct r10conf *conf = mddev->private;
3638
3639 raise_barrier(conf, 0);
3640 lower_barrier(conf);
3641
3642 md_unregister_thread(&mddev->thread);
3643 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3644 if (conf->r10bio_pool)
3645 mempool_destroy(conf->r10bio_pool);
3646 kfree(conf->mirrors);
3647 kfree(conf);
3648 mddev->private = NULL;
3649 return 0;
3650 }
3651
3652 static void raid10_quiesce(struct mddev *mddev, int state)
3653 {
3654 struct r10conf *conf = mddev->private;
3655
3656 switch(state) {
3657 case 1:
3658 raise_barrier(conf, 0);
3659 break;
3660 case 0:
3661 lower_barrier(conf);
3662 break;
3663 }
3664 }
3665
3666 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3667 {
3668 /* Resize of 'far' arrays is not supported.
3669 * For 'near' and 'offset' arrays we can set the
3670 * number of sectors used to be an appropriate multiple
3671 * of the chunk size.
3672 * For 'offset', this is far_copies*chunksize.
3673 * For 'near' the multiplier is the LCM of
3674 * near_copies and raid_disks.
3675 * So if far_copies > 1 && !far_offset, fail.
3676 * Else find LCM(raid_disks, near_copy)*far_copies and
3677 * multiply by chunk_size. Then round to this number.
3678 * This is mostly done by raid10_size()
3679 */
3680 struct r10conf *conf = mddev->private;
3681 sector_t oldsize, size;
3682
3683 if (mddev->reshape_position != MaxSector)
3684 return -EBUSY;
3685
3686 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3687 return -EINVAL;
3688
3689 oldsize = raid10_size(mddev, 0, 0);
3690 size = raid10_size(mddev, sectors, 0);
3691 if (mddev->external_size &&
3692 mddev->array_sectors > size)
3693 return -EINVAL;
3694 if (mddev->bitmap) {
3695 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3696 if (ret)
3697 return ret;
3698 }
3699 md_set_array_sectors(mddev, size);
3700 set_capacity(mddev->gendisk, mddev->array_sectors);
3701 revalidate_disk(mddev->gendisk);
3702 if (sectors > mddev->dev_sectors &&
3703 mddev->recovery_cp > oldsize) {
3704 mddev->recovery_cp = oldsize;
3705 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3706 }
3707 calc_sectors(conf, sectors);
3708 mddev->dev_sectors = conf->dev_sectors;
3709 mddev->resync_max_sectors = size;
3710 return 0;
3711 }
3712
3713 static void *raid10_takeover_raid0(struct mddev *mddev)
3714 {
3715 struct md_rdev *rdev;
3716 struct r10conf *conf;
3717
3718 if (mddev->degraded > 0) {
3719 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3720 mdname(mddev));
3721 return ERR_PTR(-EINVAL);
3722 }
3723
3724 /* Set new parameters */
3725 mddev->new_level = 10;
3726 /* new layout: far_copies = 1, near_copies = 2 */
3727 mddev->new_layout = (1<<8) + 2;
3728 mddev->new_chunk_sectors = mddev->chunk_sectors;
3729 mddev->delta_disks = mddev->raid_disks;
3730 mddev->raid_disks *= 2;
3731 /* make sure it will be not marked as dirty */
3732 mddev->recovery_cp = MaxSector;
3733
3734 conf = setup_conf(mddev);
3735 if (!IS_ERR(conf)) {
3736 rdev_for_each(rdev, mddev)
3737 if (rdev->raid_disk >= 0)
3738 rdev->new_raid_disk = rdev->raid_disk * 2;
3739 conf->barrier = 1;
3740 }
3741
3742 return conf;
3743 }
3744
3745 static void *raid10_takeover(struct mddev *mddev)
3746 {
3747 struct r0conf *raid0_conf;
3748
3749 /* raid10 can take over:
3750 * raid0 - providing it has only two drives
3751 */
3752 if (mddev->level == 0) {
3753 /* for raid0 takeover only one zone is supported */
3754 raid0_conf = mddev->private;
3755 if (raid0_conf->nr_strip_zones > 1) {
3756 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3757 " with more than one zone.\n",
3758 mdname(mddev));
3759 return ERR_PTR(-EINVAL);
3760 }
3761 return raid10_takeover_raid0(mddev);
3762 }
3763 return ERR_PTR(-EINVAL);
3764 }
3765
3766 static int raid10_check_reshape(struct mddev *mddev)
3767 {
3768 /* Called when there is a request to change
3769 * - layout (to ->new_layout)
3770 * - chunk size (to ->new_chunk_sectors)
3771 * - raid_disks (by delta_disks)
3772 * or when trying to restart a reshape that was ongoing.
3773 *
3774 * We need to validate the request and possibly allocate
3775 * space if that might be an issue later.
3776 *
3777 * Currently we reject any reshape of a 'far' mode array,
3778 * allow chunk size to change if new is generally acceptable,
3779 * allow raid_disks to increase, and allow
3780 * a switch between 'near' mode and 'offset' mode.
3781 */
3782 struct r10conf *conf = mddev->private;
3783 struct geom geo;
3784
3785 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3786 return -EINVAL;
3787
3788 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3789 /* mustn't change number of copies */
3790 return -EINVAL;
3791 if (geo.far_copies > 1 && !geo.far_offset)
3792 /* Cannot switch to 'far' mode */
3793 return -EINVAL;
3794
3795 if (mddev->array_sectors & geo.chunk_mask)
3796 /* not factor of array size */
3797 return -EINVAL;
3798
3799 if (!enough(conf, -1))
3800 return -EINVAL;
3801
3802 kfree(conf->mirrors_new);
3803 conf->mirrors_new = NULL;
3804 if (mddev->delta_disks > 0) {
3805 /* allocate new 'mirrors' list */
3806 conf->mirrors_new = kzalloc(
3807 sizeof(struct mirror_info)
3808 *(mddev->raid_disks +
3809 mddev->delta_disks),
3810 GFP_KERNEL);
3811 if (!conf->mirrors_new)
3812 return -ENOMEM;
3813 }
3814 return 0;
3815 }
3816
3817 /*
3818 * Need to check if array has failed when deciding whether to:
3819 * - start an array
3820 * - remove non-faulty devices
3821 * - add a spare
3822 * - allow a reshape
3823 * This determination is simple when no reshape is happening.
3824 * However if there is a reshape, we need to carefully check
3825 * both the before and after sections.
3826 * This is because some failed devices may only affect one
3827 * of the two sections, and some non-in_sync devices may
3828 * be insync in the section most affected by failed devices.
3829 */
3830 static int calc_degraded(struct r10conf *conf)
3831 {
3832 int degraded, degraded2;
3833 int i;
3834
3835 rcu_read_lock();
3836 degraded = 0;
3837 /* 'prev' section first */
3838 for (i = 0; i < conf->prev.raid_disks; i++) {
3839 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3840 if (!rdev || test_bit(Faulty, &rdev->flags))
3841 degraded++;
3842 else if (!test_bit(In_sync, &rdev->flags))
3843 /* When we can reduce the number of devices in
3844 * an array, this might not contribute to
3845 * 'degraded'. It does now.
3846 */
3847 degraded++;
3848 }
3849 rcu_read_unlock();
3850 if (conf->geo.raid_disks == conf->prev.raid_disks)
3851 return degraded;
3852 rcu_read_lock();
3853 degraded2 = 0;
3854 for (i = 0; i < conf->geo.raid_disks; i++) {
3855 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3856 if (!rdev || test_bit(Faulty, &rdev->flags))
3857 degraded2++;
3858 else if (!test_bit(In_sync, &rdev->flags)) {
3859 /* If reshape is increasing the number of devices,
3860 * this section has already been recovered, so
3861 * it doesn't contribute to degraded.
3862 * else it does.
3863 */
3864 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3865 degraded2++;
3866 }
3867 }
3868 rcu_read_unlock();
3869 if (degraded2 > degraded)
3870 return degraded2;
3871 return degraded;
3872 }
3873
3874 static int raid10_start_reshape(struct mddev *mddev)
3875 {
3876 /* A 'reshape' has been requested. This commits
3877 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3878 * This also checks if there are enough spares and adds them
3879 * to the array.
3880 * We currently require enough spares to make the final
3881 * array non-degraded. We also require that the difference
3882 * between old and new data_offset - on each device - is
3883 * enough that we never risk over-writing.
3884 */
3885
3886 unsigned long before_length, after_length;
3887 sector_t min_offset_diff = 0;
3888 int first = 1;
3889 struct geom new;
3890 struct r10conf *conf = mddev->private;
3891 struct md_rdev *rdev;
3892 int spares = 0;
3893 int ret;
3894
3895 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3896 return -EBUSY;
3897
3898 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3899 return -EINVAL;
3900
3901 before_length = ((1 << conf->prev.chunk_shift) *
3902 conf->prev.far_copies);
3903 after_length = ((1 << conf->geo.chunk_shift) *
3904 conf->geo.far_copies);
3905
3906 rdev_for_each(rdev, mddev) {
3907 if (!test_bit(In_sync, &rdev->flags)
3908 && !test_bit(Faulty, &rdev->flags))
3909 spares++;
3910 if (rdev->raid_disk >= 0) {
3911 long long diff = (rdev->new_data_offset
3912 - rdev->data_offset);
3913 if (!mddev->reshape_backwards)
3914 diff = -diff;
3915 if (diff < 0)
3916 diff = 0;
3917 if (first || diff < min_offset_diff)
3918 min_offset_diff = diff;
3919 }
3920 }
3921
3922 if (max(before_length, after_length) > min_offset_diff)
3923 return -EINVAL;
3924
3925 if (spares < mddev->delta_disks)
3926 return -EINVAL;
3927
3928 conf->offset_diff = min_offset_diff;
3929 spin_lock_irq(&conf->device_lock);
3930 if (conf->mirrors_new) {
3931 memcpy(conf->mirrors_new, conf->mirrors,
3932 sizeof(struct mirror_info)*conf->prev.raid_disks);
3933 smp_mb();
3934 kfree(conf->mirrors_old); /* FIXME and elsewhere */
3935 conf->mirrors_old = conf->mirrors;
3936 conf->mirrors = conf->mirrors_new;
3937 conf->mirrors_new = NULL;
3938 }
3939 setup_geo(&conf->geo, mddev, geo_start);
3940 smp_mb();
3941 if (mddev->reshape_backwards) {
3942 sector_t size = raid10_size(mddev, 0, 0);
3943 if (size < mddev->array_sectors) {
3944 spin_unlock_irq(&conf->device_lock);
3945 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
3946 mdname(mddev));
3947 return -EINVAL;
3948 }
3949 mddev->resync_max_sectors = size;
3950 conf->reshape_progress = size;
3951 } else
3952 conf->reshape_progress = 0;
3953 spin_unlock_irq(&conf->device_lock);
3954
3955 if (mddev->delta_disks && mddev->bitmap) {
3956 ret = bitmap_resize(mddev->bitmap,
3957 raid10_size(mddev, 0,
3958 conf->geo.raid_disks),
3959 0, 0);
3960 if (ret)
3961 goto abort;
3962 }
3963 if (mddev->delta_disks > 0) {
3964 rdev_for_each(rdev, mddev)
3965 if (rdev->raid_disk < 0 &&
3966 !test_bit(Faulty, &rdev->flags)) {
3967 if (raid10_add_disk(mddev, rdev) == 0) {
3968 if (rdev->raid_disk >=
3969 conf->prev.raid_disks)
3970 set_bit(In_sync, &rdev->flags);
3971 else
3972 rdev->recovery_offset = 0;
3973
3974 if (sysfs_link_rdev(mddev, rdev))
3975 /* Failure here is OK */;
3976 }
3977 } else if (rdev->raid_disk >= conf->prev.raid_disks
3978 && !test_bit(Faulty, &rdev->flags)) {
3979 /* This is a spare that was manually added */
3980 set_bit(In_sync, &rdev->flags);
3981 }
3982 }
3983 /* When a reshape changes the number of devices,
3984 * ->degraded is measured against the larger of the
3985 * pre and post numbers.
3986 */
3987 spin_lock_irq(&conf->device_lock);
3988 mddev->degraded = calc_degraded(conf);
3989 spin_unlock_irq(&conf->device_lock);
3990 mddev->raid_disks = conf->geo.raid_disks;
3991 mddev->reshape_position = conf->reshape_progress;
3992 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3993
3994 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3995 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3996 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3997 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3998
3999 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4000 "reshape");
4001 if (!mddev->sync_thread) {
4002 ret = -EAGAIN;
4003 goto abort;
4004 }
4005 conf->reshape_checkpoint = jiffies;
4006 md_wakeup_thread(mddev->sync_thread);
4007 md_new_event(mddev);
4008 return 0;
4009
4010 abort:
4011 mddev->recovery = 0;
4012 spin_lock_irq(&conf->device_lock);
4013 conf->geo = conf->prev;
4014 mddev->raid_disks = conf->geo.raid_disks;
4015 rdev_for_each(rdev, mddev)
4016 rdev->new_data_offset = rdev->data_offset;
4017 smp_wmb();
4018 conf->reshape_progress = MaxSector;
4019 mddev->reshape_position = MaxSector;
4020 spin_unlock_irq(&conf->device_lock);
4021 return ret;
4022 }
4023
4024 /* Calculate the last device-address that could contain
4025 * any block from the chunk that includes the array-address 's'
4026 * and report the next address.
4027 * i.e. the address returned will be chunk-aligned and after
4028 * any data that is in the chunk containing 's'.
4029 */
4030 static sector_t last_dev_address(sector_t s, struct geom *geo)
4031 {
4032 s = (s | geo->chunk_mask) + 1;
4033 s >>= geo->chunk_shift;
4034 s *= geo->near_copies;
4035 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4036 s *= geo->far_copies;
4037 s <<= geo->chunk_shift;
4038 return s;
4039 }
4040
4041 /* Calculate the first device-address that could contain
4042 * any block from the chunk that includes the array-address 's'.
4043 * This too will be the start of a chunk
4044 */
4045 static sector_t first_dev_address(sector_t s, struct geom *geo)
4046 {
4047 s >>= geo->chunk_shift;
4048 s *= geo->near_copies;
4049 sector_div(s, geo->raid_disks);
4050 s *= geo->far_copies;
4051 s <<= geo->chunk_shift;
4052 return s;
4053 }
4054
4055 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4056 int *skipped)
4057 {
4058 /* We simply copy at most one chunk (smallest of old and new)
4059 * at a time, possibly less if that exceeds RESYNC_PAGES,
4060 * or we hit a bad block or something.
4061 * This might mean we pause for normal IO in the middle of
4062 * a chunk, but that is not a problem was mddev->reshape_position
4063 * can record any location.
4064 *
4065 * If we will want to write to a location that isn't
4066 * yet recorded as 'safe' (i.e. in metadata on disk) then
4067 * we need to flush all reshape requests and update the metadata.
4068 *
4069 * When reshaping forwards (e.g. to more devices), we interpret
4070 * 'safe' as the earliest block which might not have been copied
4071 * down yet. We divide this by previous stripe size and multiply
4072 * by previous stripe length to get lowest device offset that we
4073 * cannot write to yet.
4074 * We interpret 'sector_nr' as an address that we want to write to.
4075 * From this we use last_device_address() to find where we might
4076 * write to, and first_device_address on the 'safe' position.
4077 * If this 'next' write position is after the 'safe' position,
4078 * we must update the metadata to increase the 'safe' position.
4079 *
4080 * When reshaping backwards, we round in the opposite direction
4081 * and perform the reverse test: next write position must not be
4082 * less than current safe position.
4083 *
4084 * In all this the minimum difference in data offsets
4085 * (conf->offset_diff - always positive) allows a bit of slack,
4086 * so next can be after 'safe', but not by more than offset_disk
4087 *
4088 * We need to prepare all the bios here before we start any IO
4089 * to ensure the size we choose is acceptable to all devices.
4090 * The means one for each copy for write-out and an extra one for
4091 * read-in.
4092 * We store the read-in bio in ->master_bio and the others in
4093 * ->devs[x].bio and ->devs[x].repl_bio.
4094 */
4095 struct r10conf *conf = mddev->private;
4096 struct r10bio *r10_bio;
4097 sector_t next, safe, last;
4098 int max_sectors;
4099 int nr_sectors;
4100 int s;
4101 struct md_rdev *rdev;
4102 int need_flush = 0;
4103 struct bio *blist;
4104 struct bio *bio, *read_bio;
4105 int sectors_done = 0;
4106
4107 if (sector_nr == 0) {
4108 /* If restarting in the middle, skip the initial sectors */
4109 if (mddev->reshape_backwards &&
4110 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4111 sector_nr = (raid10_size(mddev, 0, 0)
4112 - conf->reshape_progress);
4113 } else if (!mddev->reshape_backwards &&
4114 conf->reshape_progress > 0)
4115 sector_nr = conf->reshape_progress;
4116 if (sector_nr) {
4117 mddev->curr_resync_completed = sector_nr;
4118 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4119 *skipped = 1;
4120 return sector_nr;
4121 }
4122 }
4123
4124 /* We don't use sector_nr to track where we are up to
4125 * as that doesn't work well for ->reshape_backwards.
4126 * So just use ->reshape_progress.
4127 */
4128 if (mddev->reshape_backwards) {
4129 /* 'next' is the earliest device address that we might
4130 * write to for this chunk in the new layout
4131 */
4132 next = first_dev_address(conf->reshape_progress - 1,
4133 &conf->geo);
4134
4135 /* 'safe' is the last device address that we might read from
4136 * in the old layout after a restart
4137 */
4138 safe = last_dev_address(conf->reshape_safe - 1,
4139 &conf->prev);
4140
4141 if (next + conf->offset_diff < safe)
4142 need_flush = 1;
4143
4144 last = conf->reshape_progress - 1;
4145 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4146 & conf->prev.chunk_mask);
4147 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4148 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4149 } else {
4150 /* 'next' is after the last device address that we
4151 * might write to for this chunk in the new layout
4152 */
4153 next = last_dev_address(conf->reshape_progress, &conf->geo);
4154
4155 /* 'safe' is the earliest device address that we might
4156 * read from in the old layout after a restart
4157 */
4158 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4159
4160 /* Need to update metadata if 'next' might be beyond 'safe'
4161 * as that would possibly corrupt data
4162 */
4163 if (next > safe + conf->offset_diff)
4164 need_flush = 1;
4165
4166 sector_nr = conf->reshape_progress;
4167 last = sector_nr | (conf->geo.chunk_mask
4168 & conf->prev.chunk_mask);
4169
4170 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4171 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4172 }
4173
4174 if (need_flush ||
4175 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4176 /* Need to update reshape_position in metadata */
4177 wait_barrier(conf);
4178 mddev->reshape_position = conf->reshape_progress;
4179 if (mddev->reshape_backwards)
4180 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4181 - conf->reshape_progress;
4182 else
4183 mddev->curr_resync_completed = conf->reshape_progress;
4184 conf->reshape_checkpoint = jiffies;
4185 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4186 md_wakeup_thread(mddev->thread);
4187 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4188 kthread_should_stop());
4189 conf->reshape_safe = mddev->reshape_position;
4190 allow_barrier(conf);
4191 }
4192
4193 read_more:
4194 /* Now schedule reads for blocks from sector_nr to last */
4195 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4196 raise_barrier(conf, sectors_done != 0);
4197 atomic_set(&r10_bio->remaining, 0);
4198 r10_bio->mddev = mddev;
4199 r10_bio->sector = sector_nr;
4200 set_bit(R10BIO_IsReshape, &r10_bio->state);
4201 r10_bio->sectors = last - sector_nr + 1;
4202 rdev = read_balance(conf, r10_bio, &max_sectors);
4203 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4204
4205 if (!rdev) {
4206 /* Cannot read from here, so need to record bad blocks
4207 * on all the target devices.
4208 */
4209 // FIXME
4210 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4211 return sectors_done;
4212 }
4213
4214 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4215
4216 read_bio->bi_bdev = rdev->bdev;
4217 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4218 + rdev->data_offset);
4219 read_bio->bi_private = r10_bio;
4220 read_bio->bi_end_io = end_sync_read;
4221 read_bio->bi_rw = READ;
4222 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4223 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4224 read_bio->bi_vcnt = 0;
4225 read_bio->bi_idx = 0;
4226 read_bio->bi_size = 0;
4227 r10_bio->master_bio = read_bio;
4228 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4229
4230 /* Now find the locations in the new layout */
4231 __raid10_find_phys(&conf->geo, r10_bio);
4232
4233 blist = read_bio;
4234 read_bio->bi_next = NULL;
4235
4236 for (s = 0; s < conf->copies*2; s++) {
4237 struct bio *b;
4238 int d = r10_bio->devs[s/2].devnum;
4239 struct md_rdev *rdev2;
4240 if (s&1) {
4241 rdev2 = conf->mirrors[d].replacement;
4242 b = r10_bio->devs[s/2].repl_bio;
4243 } else {
4244 rdev2 = conf->mirrors[d].rdev;
4245 b = r10_bio->devs[s/2].bio;
4246 }
4247 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4248 continue;
4249 b->bi_bdev = rdev2->bdev;
4250 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4251 b->bi_private = r10_bio;
4252 b->bi_end_io = end_reshape_write;
4253 b->bi_rw = WRITE;
4254 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4255 b->bi_flags |= 1 << BIO_UPTODATE;
4256 b->bi_next = blist;
4257 b->bi_vcnt = 0;
4258 b->bi_idx = 0;
4259 b->bi_size = 0;
4260 blist = b;
4261 }
4262
4263 /* Now add as many pages as possible to all of these bios. */
4264
4265 nr_sectors = 0;
4266 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4267 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4268 int len = (max_sectors - s) << 9;
4269 if (len > PAGE_SIZE)
4270 len = PAGE_SIZE;
4271 for (bio = blist; bio ; bio = bio->bi_next) {
4272 struct bio *bio2;
4273 if (bio_add_page(bio, page, len, 0))
4274 continue;
4275
4276 /* Didn't fit, must stop */
4277 for (bio2 = blist;
4278 bio2 && bio2 != bio;
4279 bio2 = bio2->bi_next) {
4280 /* Remove last page from this bio */
4281 bio2->bi_vcnt--;
4282 bio2->bi_size -= len;
4283 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4284 }
4285 goto bio_full;
4286 }
4287 sector_nr += len >> 9;
4288 nr_sectors += len >> 9;
4289 }
4290 bio_full:
4291 r10_bio->sectors = nr_sectors;
4292
4293 /* Now submit the read */
4294 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4295 atomic_inc(&r10_bio->remaining);
4296 read_bio->bi_next = NULL;
4297 generic_make_request(read_bio);
4298 sector_nr += nr_sectors;
4299 sectors_done += nr_sectors;
4300 if (sector_nr <= last)
4301 goto read_more;
4302
4303 /* Now that we have done the whole section we can
4304 * update reshape_progress
4305 */
4306 if (mddev->reshape_backwards)
4307 conf->reshape_progress -= sectors_done;
4308 else
4309 conf->reshape_progress += sectors_done;
4310
4311 return sectors_done;
4312 }
4313
4314 static void end_reshape_request(struct r10bio *r10_bio);
4315 static int handle_reshape_read_error(struct mddev *mddev,
4316 struct r10bio *r10_bio);
4317 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4318 {
4319 /* Reshape read completed. Hopefully we have a block
4320 * to write out.
4321 * If we got a read error then we do sync 1-page reads from
4322 * elsewhere until we find the data - or give up.
4323 */
4324 struct r10conf *conf = mddev->private;
4325 int s;
4326
4327 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4328 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4329 /* Reshape has been aborted */
4330 md_done_sync(mddev, r10_bio->sectors, 0);
4331 return;
4332 }
4333
4334 /* We definitely have the data in the pages, schedule the
4335 * writes.
4336 */
4337 atomic_set(&r10_bio->remaining, 1);
4338 for (s = 0; s < conf->copies*2; s++) {
4339 struct bio *b;
4340 int d = r10_bio->devs[s/2].devnum;
4341 struct md_rdev *rdev;
4342 if (s&1) {
4343 rdev = conf->mirrors[d].replacement;
4344 b = r10_bio->devs[s/2].repl_bio;
4345 } else {
4346 rdev = conf->mirrors[d].rdev;
4347 b = r10_bio->devs[s/2].bio;
4348 }
4349 if (!rdev || test_bit(Faulty, &rdev->flags))
4350 continue;
4351 atomic_inc(&rdev->nr_pending);
4352 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4353 atomic_inc(&r10_bio->remaining);
4354 b->bi_next = NULL;
4355 generic_make_request(b);
4356 }
4357 end_reshape_request(r10_bio);
4358 }
4359
4360 static void end_reshape(struct r10conf *conf)
4361 {
4362 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4363 return;
4364
4365 spin_lock_irq(&conf->device_lock);
4366 conf->prev = conf->geo;
4367 md_finish_reshape(conf->mddev);
4368 smp_wmb();
4369 conf->reshape_progress = MaxSector;
4370 spin_unlock_irq(&conf->device_lock);
4371
4372 /* read-ahead size must cover two whole stripes, which is
4373 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4374 */
4375 if (conf->mddev->queue) {
4376 int stripe = conf->geo.raid_disks *
4377 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4378 stripe /= conf->geo.near_copies;
4379 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4380 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4381 }
4382 conf->fullsync = 0;
4383 }
4384
4385
4386 static int handle_reshape_read_error(struct mddev *mddev,
4387 struct r10bio *r10_bio)
4388 {
4389 /* Use sync reads to get the blocks from somewhere else */
4390 int sectors = r10_bio->sectors;
4391 struct r10bio r10b;
4392 struct r10conf *conf = mddev->private;
4393 int slot = 0;
4394 int idx = 0;
4395 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4396
4397 r10b.sector = r10_bio->sector;
4398 __raid10_find_phys(&conf->prev, &r10b);
4399
4400 while (sectors) {
4401 int s = sectors;
4402 int success = 0;
4403 int first_slot = slot;
4404
4405 if (s > (PAGE_SIZE >> 9))
4406 s = PAGE_SIZE >> 9;
4407
4408 while (!success) {
4409 int d = r10b.devs[slot].devnum;
4410 struct md_rdev *rdev = conf->mirrors[d].rdev;
4411 sector_t addr;
4412 if (rdev == NULL ||
4413 test_bit(Faulty, &rdev->flags) ||
4414 !test_bit(In_sync, &rdev->flags))
4415 goto failed;
4416
4417 addr = r10b.devs[slot].addr + idx * PAGE_SIZE;
4418 success = sync_page_io(rdev,
4419 addr,
4420 s << 9,
4421 bvec[idx].bv_page,
4422 READ, false);
4423 if (success)
4424 break;
4425 failed:
4426 slot++;
4427 if (slot >= conf->copies)
4428 slot = 0;
4429 if (slot == first_slot)
4430 break;
4431 }
4432 if (!success) {
4433 /* couldn't read this block, must give up */
4434 set_bit(MD_RECOVERY_INTR,
4435 &mddev->recovery);
4436 return -EIO;
4437 }
4438 sectors -= s;
4439 idx++;
4440 }
4441 return 0;
4442 }
4443
4444 static void end_reshape_write(struct bio *bio, int error)
4445 {
4446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4447 struct r10bio *r10_bio = bio->bi_private;
4448 struct mddev *mddev = r10_bio->mddev;
4449 struct r10conf *conf = mddev->private;
4450 int d;
4451 int slot;
4452 int repl;
4453 struct md_rdev *rdev = NULL;
4454
4455 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4456 if (repl)
4457 rdev = conf->mirrors[d].replacement;
4458 if (!rdev) {
4459 smp_mb();
4460 rdev = conf->mirrors[d].rdev;
4461 }
4462
4463 if (!uptodate) {
4464 /* FIXME should record badblock */
4465 md_error(mddev, rdev);
4466 }
4467
4468 rdev_dec_pending(rdev, mddev);
4469 end_reshape_request(r10_bio);
4470 }
4471
4472 static void end_reshape_request(struct r10bio *r10_bio)
4473 {
4474 if (!atomic_dec_and_test(&r10_bio->remaining))
4475 return;
4476 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4477 bio_put(r10_bio->master_bio);
4478 put_buf(r10_bio);
4479 }
4480
4481 static void raid10_finish_reshape(struct mddev *mddev)
4482 {
4483 struct r10conf *conf = mddev->private;
4484
4485 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4486 return;
4487
4488 if (mddev->delta_disks > 0) {
4489 sector_t size = raid10_size(mddev, 0, 0);
4490 md_set_array_sectors(mddev, size);
4491 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4492 mddev->recovery_cp = mddev->resync_max_sectors;
4493 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4494 }
4495 mddev->resync_max_sectors = size;
4496 set_capacity(mddev->gendisk, mddev->array_sectors);
4497 revalidate_disk(mddev->gendisk);
4498 } else {
4499 int d;
4500 for (d = conf->geo.raid_disks ;
4501 d < conf->geo.raid_disks - mddev->delta_disks;
4502 d++) {
4503 struct md_rdev *rdev = conf->mirrors[d].rdev;
4504 if (rdev)
4505 clear_bit(In_sync, &rdev->flags);
4506 rdev = conf->mirrors[d].replacement;
4507 if (rdev)
4508 clear_bit(In_sync, &rdev->flags);
4509 }
4510 }
4511 mddev->layout = mddev->new_layout;
4512 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4513 mddev->reshape_position = MaxSector;
4514 mddev->delta_disks = 0;
4515 mddev->reshape_backwards = 0;
4516 }
4517
4518 static struct md_personality raid10_personality =
4519 {
4520 .name = "raid10",
4521 .level = 10,
4522 .owner = THIS_MODULE,
4523 .make_request = make_request,
4524 .run = run,
4525 .stop = stop,
4526 .status = status,
4527 .error_handler = error,
4528 .hot_add_disk = raid10_add_disk,
4529 .hot_remove_disk= raid10_remove_disk,
4530 .spare_active = raid10_spare_active,
4531 .sync_request = sync_request,
4532 .quiesce = raid10_quiesce,
4533 .size = raid10_size,
4534 .resize = raid10_resize,
4535 .takeover = raid10_takeover,
4536 .check_reshape = raid10_check_reshape,
4537 .start_reshape = raid10_start_reshape,
4538 .finish_reshape = raid10_finish_reshape,
4539 };
4540
4541 static int __init raid_init(void)
4542 {
4543 return register_md_personality(&raid10_personality);
4544 }
4545
4546 static void raid_exit(void)
4547 {
4548 unregister_md_personality(&raid10_personality);
4549 }
4550
4551 module_init(raid_init);
4552 module_exit(raid_exit);
4553 MODULE_LICENSE("GPL");
4554 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4555 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4556 MODULE_ALIAS("md-raid10");
4557 MODULE_ALIAS("md-level-10");
4558
4559 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.152593 seconds and 6 git commands to generate.