block/fs/drivers: remove rw argument from submit_bio
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 * use_far_sets_bugfixed (stored in bit 18 of layout )
43 *
44 * The data to be stored is divided into chunks using chunksize. Each device
45 * is divided into far_copies sections. In each section, chunks are laid out
46 * in a style similar to raid0, but near_copies copies of each chunk is stored
47 * (each on a different drive). The starting device for each section is offset
48 * near_copies from the starting device of the previous section. Thus there
49 * are (near_copies * far_copies) of each chunk, and each is on a different
50 * drive. near_copies and far_copies must be at least one, and their product
51 * is at most raid_disks.
52 *
53 * If far_offset is true, then the far_copies are handled a bit differently.
54 * The copies are still in different stripes, but instead of being very far
55 * apart on disk, there are adjacent stripes.
56 *
57 * The far and offset algorithms are handled slightly differently if
58 * 'use_far_sets' is true. In this case, the array's devices are grouped into
59 * sets that are (near_copies * far_copies) in size. The far copied stripes
60 * are still shifted by 'near_copies' devices, but this shifting stays confined
61 * to the set rather than the entire array. This is done to improve the number
62 * of device combinations that can fail without causing the array to fail.
63 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
64 * on a device):
65 * A B C D A B C D E
66 * ... ...
67 * D A B C E A B C D
68 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
69 * [A B] [C D] [A B] [C D E]
70 * |...| |...| |...| | ... |
71 * [B A] [D C] [B A] [E C D]
72 */
73
74 /*
75 * Number of guaranteed r10bios in case of extreme VM load:
76 */
77 #define NR_RAID10_BIOS 256
78
79 /* when we get a read error on a read-only array, we redirect to another
80 * device without failing the first device, or trying to over-write to
81 * correct the read error. To keep track of bad blocks on a per-bio
82 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
83 */
84 #define IO_BLOCKED ((struct bio *)1)
85 /* When we successfully write to a known bad-block, we need to remove the
86 * bad-block marking which must be done from process context. So we record
87 * the success by setting devs[n].bio to IO_MADE_GOOD
88 */
89 #define IO_MADE_GOOD ((struct bio *)2)
90
91 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
92
93 /* When there are this many requests queued to be written by
94 * the raid10 thread, we become 'congested' to provide back-pressure
95 * for writeback.
96 */
97 static int max_queued_requests = 1024;
98
99 static void allow_barrier(struct r10conf *conf);
100 static void lower_barrier(struct r10conf *conf);
101 static int _enough(struct r10conf *conf, int previous, int ignore);
102 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
103 int *skipped);
104 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
105 static void end_reshape_write(struct bio *bio);
106 static void end_reshape(struct r10conf *conf);
107
108 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
109 {
110 struct r10conf *conf = data;
111 int size = offsetof(struct r10bio, devs[conf->copies]);
112
113 /* allocate a r10bio with room for raid_disks entries in the
114 * bios array */
115 return kzalloc(size, gfp_flags);
116 }
117
118 static void r10bio_pool_free(void *r10_bio, void *data)
119 {
120 kfree(r10_bio);
121 }
122
123 /* Maximum size of each resync request */
124 #define RESYNC_BLOCK_SIZE (64*1024)
125 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
126 /* amount of memory to reserve for resync requests */
127 #define RESYNC_WINDOW (1024*1024)
128 /* maximum number of concurrent requests, memory permitting */
129 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
130
131 /*
132 * When performing a resync, we need to read and compare, so
133 * we need as many pages are there are copies.
134 * When performing a recovery, we need 2 bios, one for read,
135 * one for write (we recover only one drive per r10buf)
136 *
137 */
138 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
139 {
140 struct r10conf *conf = data;
141 struct page *page;
142 struct r10bio *r10_bio;
143 struct bio *bio;
144 int i, j;
145 int nalloc;
146
147 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
148 if (!r10_bio)
149 return NULL;
150
151 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
152 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
153 nalloc = conf->copies; /* resync */
154 else
155 nalloc = 2; /* recovery */
156
157 /*
158 * Allocate bios.
159 */
160 for (j = nalloc ; j-- ; ) {
161 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
162 if (!bio)
163 goto out_free_bio;
164 r10_bio->devs[j].bio = bio;
165 if (!conf->have_replacement)
166 continue;
167 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
168 if (!bio)
169 goto out_free_bio;
170 r10_bio->devs[j].repl_bio = bio;
171 }
172 /*
173 * Allocate RESYNC_PAGES data pages and attach them
174 * where needed.
175 */
176 for (j = 0 ; j < nalloc; j++) {
177 struct bio *rbio = r10_bio->devs[j].repl_bio;
178 bio = r10_bio->devs[j].bio;
179 for (i = 0; i < RESYNC_PAGES; i++) {
180 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
181 &conf->mddev->recovery)) {
182 /* we can share bv_page's during recovery
183 * and reshape */
184 struct bio *rbio = r10_bio->devs[0].bio;
185 page = rbio->bi_io_vec[i].bv_page;
186 get_page(page);
187 } else
188 page = alloc_page(gfp_flags);
189 if (unlikely(!page))
190 goto out_free_pages;
191
192 bio->bi_io_vec[i].bv_page = page;
193 if (rbio)
194 rbio->bi_io_vec[i].bv_page = page;
195 }
196 }
197
198 return r10_bio;
199
200 out_free_pages:
201 for ( ; i > 0 ; i--)
202 safe_put_page(bio->bi_io_vec[i-1].bv_page);
203 while (j--)
204 for (i = 0; i < RESYNC_PAGES ; i++)
205 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
206 j = 0;
207 out_free_bio:
208 for ( ; j < nalloc; j++) {
209 if (r10_bio->devs[j].bio)
210 bio_put(r10_bio->devs[j].bio);
211 if (r10_bio->devs[j].repl_bio)
212 bio_put(r10_bio->devs[j].repl_bio);
213 }
214 r10bio_pool_free(r10_bio, conf);
215 return NULL;
216 }
217
218 static void r10buf_pool_free(void *__r10_bio, void *data)
219 {
220 int i;
221 struct r10conf *conf = data;
222 struct r10bio *r10bio = __r10_bio;
223 int j;
224
225 for (j=0; j < conf->copies; j++) {
226 struct bio *bio = r10bio->devs[j].bio;
227 if (bio) {
228 for (i = 0; i < RESYNC_PAGES; i++) {
229 safe_put_page(bio->bi_io_vec[i].bv_page);
230 bio->bi_io_vec[i].bv_page = NULL;
231 }
232 bio_put(bio);
233 }
234 bio = r10bio->devs[j].repl_bio;
235 if (bio)
236 bio_put(bio);
237 }
238 r10bio_pool_free(r10bio, conf);
239 }
240
241 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
242 {
243 int i;
244
245 for (i = 0; i < conf->copies; i++) {
246 struct bio **bio = & r10_bio->devs[i].bio;
247 if (!BIO_SPECIAL(*bio))
248 bio_put(*bio);
249 *bio = NULL;
250 bio = &r10_bio->devs[i].repl_bio;
251 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
252 bio_put(*bio);
253 *bio = NULL;
254 }
255 }
256
257 static void free_r10bio(struct r10bio *r10_bio)
258 {
259 struct r10conf *conf = r10_bio->mddev->private;
260
261 put_all_bios(conf, r10_bio);
262 mempool_free(r10_bio, conf->r10bio_pool);
263 }
264
265 static void put_buf(struct r10bio *r10_bio)
266 {
267 struct r10conf *conf = r10_bio->mddev->private;
268
269 mempool_free(r10_bio, conf->r10buf_pool);
270
271 lower_barrier(conf);
272 }
273
274 static void reschedule_retry(struct r10bio *r10_bio)
275 {
276 unsigned long flags;
277 struct mddev *mddev = r10_bio->mddev;
278 struct r10conf *conf = mddev->private;
279
280 spin_lock_irqsave(&conf->device_lock, flags);
281 list_add(&r10_bio->retry_list, &conf->retry_list);
282 conf->nr_queued ++;
283 spin_unlock_irqrestore(&conf->device_lock, flags);
284
285 /* wake up frozen array... */
286 wake_up(&conf->wait_barrier);
287
288 md_wakeup_thread(mddev->thread);
289 }
290
291 /*
292 * raid_end_bio_io() is called when we have finished servicing a mirrored
293 * operation and are ready to return a success/failure code to the buffer
294 * cache layer.
295 */
296 static void raid_end_bio_io(struct r10bio *r10_bio)
297 {
298 struct bio *bio = r10_bio->master_bio;
299 int done;
300 struct r10conf *conf = r10_bio->mddev->private;
301
302 if (bio->bi_phys_segments) {
303 unsigned long flags;
304 spin_lock_irqsave(&conf->device_lock, flags);
305 bio->bi_phys_segments--;
306 done = (bio->bi_phys_segments == 0);
307 spin_unlock_irqrestore(&conf->device_lock, flags);
308 } else
309 done = 1;
310 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
311 bio->bi_error = -EIO;
312 if (done) {
313 bio_endio(bio);
314 /*
315 * Wake up any possible resync thread that waits for the device
316 * to go idle.
317 */
318 allow_barrier(conf);
319 }
320 free_r10bio(r10_bio);
321 }
322
323 /*
324 * Update disk head position estimator based on IRQ completion info.
325 */
326 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
327 {
328 struct r10conf *conf = r10_bio->mddev->private;
329
330 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
331 r10_bio->devs[slot].addr + (r10_bio->sectors);
332 }
333
334 /*
335 * Find the disk number which triggered given bio
336 */
337 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
338 struct bio *bio, int *slotp, int *replp)
339 {
340 int slot;
341 int repl = 0;
342
343 for (slot = 0; slot < conf->copies; slot++) {
344 if (r10_bio->devs[slot].bio == bio)
345 break;
346 if (r10_bio->devs[slot].repl_bio == bio) {
347 repl = 1;
348 break;
349 }
350 }
351
352 BUG_ON(slot == conf->copies);
353 update_head_pos(slot, r10_bio);
354
355 if (slotp)
356 *slotp = slot;
357 if (replp)
358 *replp = repl;
359 return r10_bio->devs[slot].devnum;
360 }
361
362 static void raid10_end_read_request(struct bio *bio)
363 {
364 int uptodate = !bio->bi_error;
365 struct r10bio *r10_bio = bio->bi_private;
366 int slot, dev;
367 struct md_rdev *rdev;
368 struct r10conf *conf = r10_bio->mddev->private;
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
442 static void raid10_end_write_request(struct bio *bio)
443 {
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (bio->bi_error) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /*
676 * This routine returns the disk from which the requested read should
677 * be done. There is a per-array 'next expected sequential IO' sector
678 * number - if this matches on the next IO then we use the last disk.
679 * There is also a per-disk 'last know head position' sector that is
680 * maintained from IRQ contexts, both the normal and the resync IO
681 * completion handlers update this position correctly. If there is no
682 * perfect sequential match then we pick the disk whose head is closest.
683 *
684 * If there are 2 mirrors in the same 2 devices, performance degrades
685 * because position is mirror, not device based.
686 *
687 * The rdev for the device selected will have nr_pending incremented.
688 */
689
690 /*
691 * FIXME: possibly should rethink readbalancing and do it differently
692 * depending on near_copies / far_copies geometry.
693 */
694 static struct md_rdev *read_balance(struct r10conf *conf,
695 struct r10bio *r10_bio,
696 int *max_sectors)
697 {
698 const sector_t this_sector = r10_bio->sector;
699 int disk, slot;
700 int sectors = r10_bio->sectors;
701 int best_good_sectors;
702 sector_t new_distance, best_dist;
703 struct md_rdev *best_rdev, *rdev = NULL;
704 int do_balance;
705 int best_slot;
706 struct geom *geo = &conf->geo;
707
708 raid10_find_phys(conf, r10_bio);
709 rcu_read_lock();
710 retry:
711 sectors = r10_bio->sectors;
712 best_slot = -1;
713 best_rdev = NULL;
714 best_dist = MaxSector;
715 best_good_sectors = 0;
716 do_balance = 1;
717 /*
718 * Check if we can balance. We can balance on the whole
719 * device if no resync is going on (recovery is ok), or below
720 * the resync window. We take the first readable disk when
721 * above the resync window.
722 */
723 if (conf->mddev->recovery_cp < MaxSector
724 && (this_sector + sectors >= conf->next_resync))
725 do_balance = 0;
726
727 for (slot = 0; slot < conf->copies ; slot++) {
728 sector_t first_bad;
729 int bad_sectors;
730 sector_t dev_sector;
731
732 if (r10_bio->devs[slot].bio == IO_BLOCKED)
733 continue;
734 disk = r10_bio->devs[slot].devnum;
735 rdev = rcu_dereference(conf->mirrors[disk].replacement);
736 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
737 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
738 rdev = rcu_dereference(conf->mirrors[disk].rdev);
739 if (rdev == NULL ||
740 test_bit(Faulty, &rdev->flags))
741 continue;
742 if (!test_bit(In_sync, &rdev->flags) &&
743 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
744 continue;
745
746 dev_sector = r10_bio->devs[slot].addr;
747 if (is_badblock(rdev, dev_sector, sectors,
748 &first_bad, &bad_sectors)) {
749 if (best_dist < MaxSector)
750 /* Already have a better slot */
751 continue;
752 if (first_bad <= dev_sector) {
753 /* Cannot read here. If this is the
754 * 'primary' device, then we must not read
755 * beyond 'bad_sectors' from another device.
756 */
757 bad_sectors -= (dev_sector - first_bad);
758 if (!do_balance && sectors > bad_sectors)
759 sectors = bad_sectors;
760 if (best_good_sectors > sectors)
761 best_good_sectors = sectors;
762 } else {
763 sector_t good_sectors =
764 first_bad - dev_sector;
765 if (good_sectors > best_good_sectors) {
766 best_good_sectors = good_sectors;
767 best_slot = slot;
768 best_rdev = rdev;
769 }
770 if (!do_balance)
771 /* Must read from here */
772 break;
773 }
774 continue;
775 } else
776 best_good_sectors = sectors;
777
778 if (!do_balance)
779 break;
780
781 /* This optimisation is debatable, and completely destroys
782 * sequential read speed for 'far copies' arrays. So only
783 * keep it for 'near' arrays, and review those later.
784 */
785 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
786 break;
787
788 /* for far > 1 always use the lowest address */
789 if (geo->far_copies > 1)
790 new_distance = r10_bio->devs[slot].addr;
791 else
792 new_distance = abs(r10_bio->devs[slot].addr -
793 conf->mirrors[disk].head_position);
794 if (new_distance < best_dist) {
795 best_dist = new_distance;
796 best_slot = slot;
797 best_rdev = rdev;
798 }
799 }
800 if (slot >= conf->copies) {
801 slot = best_slot;
802 rdev = best_rdev;
803 }
804
805 if (slot >= 0) {
806 atomic_inc(&rdev->nr_pending);
807 if (test_bit(Faulty, &rdev->flags)) {
808 /* Cannot risk returning a device that failed
809 * before we inc'ed nr_pending
810 */
811 rdev_dec_pending(rdev, conf->mddev);
812 goto retry;
813 }
814 r10_bio->read_slot = slot;
815 } else
816 rdev = NULL;
817 rcu_read_unlock();
818 *max_sectors = best_good_sectors;
819
820 return rdev;
821 }
822
823 static int raid10_congested(struct mddev *mddev, int bits)
824 {
825 struct r10conf *conf = mddev->private;
826 int i, ret = 0;
827
828 if ((bits & (1 << WB_async_congested)) &&
829 conf->pending_count >= max_queued_requests)
830 return 1;
831
832 rcu_read_lock();
833 for (i = 0;
834 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
835 && ret == 0;
836 i++) {
837 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
838 if (rdev && !test_bit(Faulty, &rdev->flags)) {
839 struct request_queue *q = bdev_get_queue(rdev->bdev);
840
841 ret |= bdi_congested(&q->backing_dev_info, bits);
842 }
843 }
844 rcu_read_unlock();
845 return ret;
846 }
847
848 static void flush_pending_writes(struct r10conf *conf)
849 {
850 /* Any writes that have been queued but are awaiting
851 * bitmap updates get flushed here.
852 */
853 spin_lock_irq(&conf->device_lock);
854
855 if (conf->pending_bio_list.head) {
856 struct bio *bio;
857 bio = bio_list_get(&conf->pending_bio_list);
858 conf->pending_count = 0;
859 spin_unlock_irq(&conf->device_lock);
860 /* flush any pending bitmap writes to disk
861 * before proceeding w/ I/O */
862 bitmap_unplug(conf->mddev->bitmap);
863 wake_up(&conf->wait_barrier);
864
865 while (bio) { /* submit pending writes */
866 struct bio *next = bio->bi_next;
867 bio->bi_next = NULL;
868 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
869 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
870 /* Just ignore it */
871 bio_endio(bio);
872 else
873 generic_make_request(bio);
874 bio = next;
875 }
876 } else
877 spin_unlock_irq(&conf->device_lock);
878 }
879
880 /* Barriers....
881 * Sometimes we need to suspend IO while we do something else,
882 * either some resync/recovery, or reconfigure the array.
883 * To do this we raise a 'barrier'.
884 * The 'barrier' is a counter that can be raised multiple times
885 * to count how many activities are happening which preclude
886 * normal IO.
887 * We can only raise the barrier if there is no pending IO.
888 * i.e. if nr_pending == 0.
889 * We choose only to raise the barrier if no-one is waiting for the
890 * barrier to go down. This means that as soon as an IO request
891 * is ready, no other operations which require a barrier will start
892 * until the IO request has had a chance.
893 *
894 * So: regular IO calls 'wait_barrier'. When that returns there
895 * is no backgroup IO happening, It must arrange to call
896 * allow_barrier when it has finished its IO.
897 * backgroup IO calls must call raise_barrier. Once that returns
898 * there is no normal IO happeing. It must arrange to call
899 * lower_barrier when the particular background IO completes.
900 */
901
902 static void raise_barrier(struct r10conf *conf, int force)
903 {
904 BUG_ON(force && !conf->barrier);
905 spin_lock_irq(&conf->resync_lock);
906
907 /* Wait until no block IO is waiting (unless 'force') */
908 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
909 conf->resync_lock);
910
911 /* block any new IO from starting */
912 conf->barrier++;
913
914 /* Now wait for all pending IO to complete */
915 wait_event_lock_irq(conf->wait_barrier,
916 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
917 conf->resync_lock);
918
919 spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void lower_barrier(struct r10conf *conf)
923 {
924 unsigned long flags;
925 spin_lock_irqsave(&conf->resync_lock, flags);
926 conf->barrier--;
927 spin_unlock_irqrestore(&conf->resync_lock, flags);
928 wake_up(&conf->wait_barrier);
929 }
930
931 static void wait_barrier(struct r10conf *conf)
932 {
933 spin_lock_irq(&conf->resync_lock);
934 if (conf->barrier) {
935 conf->nr_waiting++;
936 /* Wait for the barrier to drop.
937 * However if there are already pending
938 * requests (preventing the barrier from
939 * rising completely), and the
940 * pre-process bio queue isn't empty,
941 * then don't wait, as we need to empty
942 * that queue to get the nr_pending
943 * count down.
944 */
945 wait_event_lock_irq(conf->wait_barrier,
946 !conf->barrier ||
947 (conf->nr_pending &&
948 current->bio_list &&
949 !bio_list_empty(current->bio_list)),
950 conf->resync_lock);
951 conf->nr_waiting--;
952 }
953 conf->nr_pending++;
954 spin_unlock_irq(&conf->resync_lock);
955 }
956
957 static void allow_barrier(struct r10conf *conf)
958 {
959 unsigned long flags;
960 spin_lock_irqsave(&conf->resync_lock, flags);
961 conf->nr_pending--;
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r10conf *conf, int extra)
967 {
968 /* stop syncio and normal IO and wait for everything to
969 * go quiet.
970 * We increment barrier and nr_waiting, and then
971 * wait until nr_pending match nr_queued+extra
972 * This is called in the context of one normal IO request
973 * that has failed. Thus any sync request that might be pending
974 * will be blocked by nr_pending, and we need to wait for
975 * pending IO requests to complete or be queued for re-try.
976 * Thus the number queued (nr_queued) plus this request (extra)
977 * must match the number of pending IOs (nr_pending) before
978 * we continue.
979 */
980 spin_lock_irq(&conf->resync_lock);
981 conf->barrier++;
982 conf->nr_waiting++;
983 wait_event_lock_irq_cmd(conf->wait_barrier,
984 conf->nr_pending == conf->nr_queued+extra,
985 conf->resync_lock,
986 flush_pending_writes(conf));
987
988 spin_unlock_irq(&conf->resync_lock);
989 }
990
991 static void unfreeze_array(struct r10conf *conf)
992 {
993 /* reverse the effect of the freeze */
994 spin_lock_irq(&conf->resync_lock);
995 conf->barrier--;
996 conf->nr_waiting--;
997 wake_up(&conf->wait_barrier);
998 spin_unlock_irq(&conf->resync_lock);
999 }
1000
1001 static sector_t choose_data_offset(struct r10bio *r10_bio,
1002 struct md_rdev *rdev)
1003 {
1004 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1005 test_bit(R10BIO_Previous, &r10_bio->state))
1006 return rdev->data_offset;
1007 else
1008 return rdev->new_data_offset;
1009 }
1010
1011 struct raid10_plug_cb {
1012 struct blk_plug_cb cb;
1013 struct bio_list pending;
1014 int pending_cnt;
1015 };
1016
1017 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1018 {
1019 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1020 cb);
1021 struct mddev *mddev = plug->cb.data;
1022 struct r10conf *conf = mddev->private;
1023 struct bio *bio;
1024
1025 if (from_schedule || current->bio_list) {
1026 spin_lock_irq(&conf->device_lock);
1027 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1028 conf->pending_count += plug->pending_cnt;
1029 spin_unlock_irq(&conf->device_lock);
1030 wake_up(&conf->wait_barrier);
1031 md_wakeup_thread(mddev->thread);
1032 kfree(plug);
1033 return;
1034 }
1035
1036 /* we aren't scheduling, so we can do the write-out directly. */
1037 bio = bio_list_get(&plug->pending);
1038 bitmap_unplug(mddev->bitmap);
1039 wake_up(&conf->wait_barrier);
1040
1041 while (bio) { /* submit pending writes */
1042 struct bio *next = bio->bi_next;
1043 bio->bi_next = NULL;
1044 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1045 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1046 /* Just ignore it */
1047 bio_endio(bio);
1048 else
1049 generic_make_request(bio);
1050 bio = next;
1051 }
1052 kfree(plug);
1053 }
1054
1055 static void __make_request(struct mddev *mddev, struct bio *bio)
1056 {
1057 struct r10conf *conf = mddev->private;
1058 struct r10bio *r10_bio;
1059 struct bio *read_bio;
1060 int i;
1061 const int rw = bio_data_dir(bio);
1062 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1063 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1064 const unsigned long do_discard = (bio->bi_rw
1065 & (REQ_DISCARD | REQ_SECURE));
1066 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1067 unsigned long flags;
1068 struct md_rdev *blocked_rdev;
1069 struct blk_plug_cb *cb;
1070 struct raid10_plug_cb *plug = NULL;
1071 int sectors_handled;
1072 int max_sectors;
1073 int sectors;
1074
1075 /*
1076 * Register the new request and wait if the reconstruction
1077 * thread has put up a bar for new requests.
1078 * Continue immediately if no resync is active currently.
1079 */
1080 wait_barrier(conf);
1081
1082 sectors = bio_sectors(bio);
1083 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1084 bio->bi_iter.bi_sector < conf->reshape_progress &&
1085 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1086 /* IO spans the reshape position. Need to wait for
1087 * reshape to pass
1088 */
1089 allow_barrier(conf);
1090 wait_event(conf->wait_barrier,
1091 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1092 conf->reshape_progress >= bio->bi_iter.bi_sector +
1093 sectors);
1094 wait_barrier(conf);
1095 }
1096 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1097 bio_data_dir(bio) == WRITE &&
1098 (mddev->reshape_backwards
1099 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1100 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1101 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1102 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1103 /* Need to update reshape_position in metadata */
1104 mddev->reshape_position = conf->reshape_progress;
1105 set_mask_bits(&mddev->flags, 0,
1106 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1107 md_wakeup_thread(mddev->thread);
1108 wait_event(mddev->sb_wait,
1109 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1110
1111 conf->reshape_safe = mddev->reshape_position;
1112 }
1113
1114 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1115
1116 r10_bio->master_bio = bio;
1117 r10_bio->sectors = sectors;
1118
1119 r10_bio->mddev = mddev;
1120 r10_bio->sector = bio->bi_iter.bi_sector;
1121 r10_bio->state = 0;
1122
1123 /* We might need to issue multiple reads to different
1124 * devices if there are bad blocks around, so we keep
1125 * track of the number of reads in bio->bi_phys_segments.
1126 * If this is 0, there is only one r10_bio and no locking
1127 * will be needed when the request completes. If it is
1128 * non-zero, then it is the number of not-completed requests.
1129 */
1130 bio->bi_phys_segments = 0;
1131 bio_clear_flag(bio, BIO_SEG_VALID);
1132
1133 if (rw == READ) {
1134 /*
1135 * read balancing logic:
1136 */
1137 struct md_rdev *rdev;
1138 int slot;
1139
1140 read_again:
1141 rdev = read_balance(conf, r10_bio, &max_sectors);
1142 if (!rdev) {
1143 raid_end_bio_io(r10_bio);
1144 return;
1145 }
1146 slot = r10_bio->read_slot;
1147
1148 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1149 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1150 max_sectors);
1151
1152 r10_bio->devs[slot].bio = read_bio;
1153 r10_bio->devs[slot].rdev = rdev;
1154
1155 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1156 choose_data_offset(r10_bio, rdev);
1157 read_bio->bi_bdev = rdev->bdev;
1158 read_bio->bi_end_io = raid10_end_read_request;
1159 read_bio->bi_rw = READ | do_sync;
1160 read_bio->bi_private = r10_bio;
1161
1162 if (max_sectors < r10_bio->sectors) {
1163 /* Could not read all from this device, so we will
1164 * need another r10_bio.
1165 */
1166 sectors_handled = (r10_bio->sector + max_sectors
1167 - bio->bi_iter.bi_sector);
1168 r10_bio->sectors = max_sectors;
1169 spin_lock_irq(&conf->device_lock);
1170 if (bio->bi_phys_segments == 0)
1171 bio->bi_phys_segments = 2;
1172 else
1173 bio->bi_phys_segments++;
1174 spin_unlock_irq(&conf->device_lock);
1175 /* Cannot call generic_make_request directly
1176 * as that will be queued in __generic_make_request
1177 * and subsequent mempool_alloc might block
1178 * waiting for it. so hand bio over to raid10d.
1179 */
1180 reschedule_retry(r10_bio);
1181
1182 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1183
1184 r10_bio->master_bio = bio;
1185 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1186 r10_bio->state = 0;
1187 r10_bio->mddev = mddev;
1188 r10_bio->sector = bio->bi_iter.bi_sector +
1189 sectors_handled;
1190 goto read_again;
1191 } else
1192 generic_make_request(read_bio);
1193 return;
1194 }
1195
1196 /*
1197 * WRITE:
1198 */
1199 if (conf->pending_count >= max_queued_requests) {
1200 md_wakeup_thread(mddev->thread);
1201 wait_event(conf->wait_barrier,
1202 conf->pending_count < max_queued_requests);
1203 }
1204 /* first select target devices under rcu_lock and
1205 * inc refcount on their rdev. Record them by setting
1206 * bios[x] to bio
1207 * If there are known/acknowledged bad blocks on any device
1208 * on which we have seen a write error, we want to avoid
1209 * writing to those blocks. This potentially requires several
1210 * writes to write around the bad blocks. Each set of writes
1211 * gets its own r10_bio with a set of bios attached. The number
1212 * of r10_bios is recored in bio->bi_phys_segments just as with
1213 * the read case.
1214 */
1215
1216 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1217 raid10_find_phys(conf, r10_bio);
1218 retry_write:
1219 blocked_rdev = NULL;
1220 rcu_read_lock();
1221 max_sectors = r10_bio->sectors;
1222
1223 for (i = 0; i < conf->copies; i++) {
1224 int d = r10_bio->devs[i].devnum;
1225 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1226 struct md_rdev *rrdev = rcu_dereference(
1227 conf->mirrors[d].replacement);
1228 if (rdev == rrdev)
1229 rrdev = NULL;
1230 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1231 atomic_inc(&rdev->nr_pending);
1232 blocked_rdev = rdev;
1233 break;
1234 }
1235 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1236 atomic_inc(&rrdev->nr_pending);
1237 blocked_rdev = rrdev;
1238 break;
1239 }
1240 if (rdev && (test_bit(Faulty, &rdev->flags)))
1241 rdev = NULL;
1242 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1243 rrdev = NULL;
1244
1245 r10_bio->devs[i].bio = NULL;
1246 r10_bio->devs[i].repl_bio = NULL;
1247
1248 if (!rdev && !rrdev) {
1249 set_bit(R10BIO_Degraded, &r10_bio->state);
1250 continue;
1251 }
1252 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1253 sector_t first_bad;
1254 sector_t dev_sector = r10_bio->devs[i].addr;
1255 int bad_sectors;
1256 int is_bad;
1257
1258 is_bad = is_badblock(rdev, dev_sector,
1259 max_sectors,
1260 &first_bad, &bad_sectors);
1261 if (is_bad < 0) {
1262 /* Mustn't write here until the bad block
1263 * is acknowledged
1264 */
1265 atomic_inc(&rdev->nr_pending);
1266 set_bit(BlockedBadBlocks, &rdev->flags);
1267 blocked_rdev = rdev;
1268 break;
1269 }
1270 if (is_bad && first_bad <= dev_sector) {
1271 /* Cannot write here at all */
1272 bad_sectors -= (dev_sector - first_bad);
1273 if (bad_sectors < max_sectors)
1274 /* Mustn't write more than bad_sectors
1275 * to other devices yet
1276 */
1277 max_sectors = bad_sectors;
1278 /* We don't set R10BIO_Degraded as that
1279 * only applies if the disk is missing,
1280 * so it might be re-added, and we want to
1281 * know to recover this chunk.
1282 * In this case the device is here, and the
1283 * fact that this chunk is not in-sync is
1284 * recorded in the bad block log.
1285 */
1286 continue;
1287 }
1288 if (is_bad) {
1289 int good_sectors = first_bad - dev_sector;
1290 if (good_sectors < max_sectors)
1291 max_sectors = good_sectors;
1292 }
1293 }
1294 if (rdev) {
1295 r10_bio->devs[i].bio = bio;
1296 atomic_inc(&rdev->nr_pending);
1297 }
1298 if (rrdev) {
1299 r10_bio->devs[i].repl_bio = bio;
1300 atomic_inc(&rrdev->nr_pending);
1301 }
1302 }
1303 rcu_read_unlock();
1304
1305 if (unlikely(blocked_rdev)) {
1306 /* Have to wait for this device to get unblocked, then retry */
1307 int j;
1308 int d;
1309
1310 for (j = 0; j < i; j++) {
1311 if (r10_bio->devs[j].bio) {
1312 d = r10_bio->devs[j].devnum;
1313 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1314 }
1315 if (r10_bio->devs[j].repl_bio) {
1316 struct md_rdev *rdev;
1317 d = r10_bio->devs[j].devnum;
1318 rdev = conf->mirrors[d].replacement;
1319 if (!rdev) {
1320 /* Race with remove_disk */
1321 smp_mb();
1322 rdev = conf->mirrors[d].rdev;
1323 }
1324 rdev_dec_pending(rdev, mddev);
1325 }
1326 }
1327 allow_barrier(conf);
1328 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1329 wait_barrier(conf);
1330 goto retry_write;
1331 }
1332
1333 if (max_sectors < r10_bio->sectors) {
1334 /* We are splitting this into multiple parts, so
1335 * we need to prepare for allocating another r10_bio.
1336 */
1337 r10_bio->sectors = max_sectors;
1338 spin_lock_irq(&conf->device_lock);
1339 if (bio->bi_phys_segments == 0)
1340 bio->bi_phys_segments = 2;
1341 else
1342 bio->bi_phys_segments++;
1343 spin_unlock_irq(&conf->device_lock);
1344 }
1345 sectors_handled = r10_bio->sector + max_sectors -
1346 bio->bi_iter.bi_sector;
1347
1348 atomic_set(&r10_bio->remaining, 1);
1349 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1350
1351 for (i = 0; i < conf->copies; i++) {
1352 struct bio *mbio;
1353 int d = r10_bio->devs[i].devnum;
1354 if (r10_bio->devs[i].bio) {
1355 struct md_rdev *rdev = conf->mirrors[d].rdev;
1356 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1357 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1358 max_sectors);
1359 r10_bio->devs[i].bio = mbio;
1360
1361 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1362 choose_data_offset(r10_bio,
1363 rdev));
1364 mbio->bi_bdev = rdev->bdev;
1365 mbio->bi_end_io = raid10_end_write_request;
1366 mbio->bi_rw =
1367 WRITE | do_sync | do_fua | do_discard | do_same;
1368 mbio->bi_private = r10_bio;
1369
1370 atomic_inc(&r10_bio->remaining);
1371
1372 cb = blk_check_plugged(raid10_unplug, mddev,
1373 sizeof(*plug));
1374 if (cb)
1375 plug = container_of(cb, struct raid10_plug_cb,
1376 cb);
1377 else
1378 plug = NULL;
1379 spin_lock_irqsave(&conf->device_lock, flags);
1380 if (plug) {
1381 bio_list_add(&plug->pending, mbio);
1382 plug->pending_cnt++;
1383 } else {
1384 bio_list_add(&conf->pending_bio_list, mbio);
1385 conf->pending_count++;
1386 }
1387 spin_unlock_irqrestore(&conf->device_lock, flags);
1388 if (!plug)
1389 md_wakeup_thread(mddev->thread);
1390 }
1391
1392 if (r10_bio->devs[i].repl_bio) {
1393 struct md_rdev *rdev = conf->mirrors[d].replacement;
1394 if (rdev == NULL) {
1395 /* Replacement just got moved to main 'rdev' */
1396 smp_mb();
1397 rdev = conf->mirrors[d].rdev;
1398 }
1399 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1400 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1401 max_sectors);
1402 r10_bio->devs[i].repl_bio = mbio;
1403
1404 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1405 choose_data_offset(
1406 r10_bio, rdev));
1407 mbio->bi_bdev = rdev->bdev;
1408 mbio->bi_end_io = raid10_end_write_request;
1409 mbio->bi_rw =
1410 WRITE | do_sync | do_fua | do_discard | do_same;
1411 mbio->bi_private = r10_bio;
1412
1413 atomic_inc(&r10_bio->remaining);
1414 spin_lock_irqsave(&conf->device_lock, flags);
1415 bio_list_add(&conf->pending_bio_list, mbio);
1416 conf->pending_count++;
1417 spin_unlock_irqrestore(&conf->device_lock, flags);
1418 if (!mddev_check_plugged(mddev))
1419 md_wakeup_thread(mddev->thread);
1420 }
1421 }
1422
1423 /* Don't remove the bias on 'remaining' (one_write_done) until
1424 * after checking if we need to go around again.
1425 */
1426
1427 if (sectors_handled < bio_sectors(bio)) {
1428 one_write_done(r10_bio);
1429 /* We need another r10_bio. It has already been counted
1430 * in bio->bi_phys_segments.
1431 */
1432 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1433
1434 r10_bio->master_bio = bio;
1435 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1436
1437 r10_bio->mddev = mddev;
1438 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 r10_bio->state = 0;
1440 goto retry_write;
1441 }
1442 one_write_done(r10_bio);
1443 }
1444
1445 static void raid10_make_request(struct mddev *mddev, struct bio *bio)
1446 {
1447 struct r10conf *conf = mddev->private;
1448 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1449 int chunk_sects = chunk_mask + 1;
1450
1451 struct bio *split;
1452
1453 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1454 md_flush_request(mddev, bio);
1455 return;
1456 }
1457
1458 md_write_start(mddev, bio);
1459
1460 do {
1461
1462 /*
1463 * If this request crosses a chunk boundary, we need to split
1464 * it.
1465 */
1466 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1467 bio_sectors(bio) > chunk_sects
1468 && (conf->geo.near_copies < conf->geo.raid_disks
1469 || conf->prev.near_copies <
1470 conf->prev.raid_disks))) {
1471 split = bio_split(bio, chunk_sects -
1472 (bio->bi_iter.bi_sector &
1473 (chunk_sects - 1)),
1474 GFP_NOIO, fs_bio_set);
1475 bio_chain(split, bio);
1476 } else {
1477 split = bio;
1478 }
1479
1480 __make_request(mddev, split);
1481 } while (split != bio);
1482
1483 /* In case raid10d snuck in to freeze_array */
1484 wake_up(&conf->wait_barrier);
1485 }
1486
1487 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1488 {
1489 struct r10conf *conf = mddev->private;
1490 int i;
1491
1492 if (conf->geo.near_copies < conf->geo.raid_disks)
1493 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1494 if (conf->geo.near_copies > 1)
1495 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1496 if (conf->geo.far_copies > 1) {
1497 if (conf->geo.far_offset)
1498 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1499 else
1500 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1501 if (conf->geo.far_set_size != conf->geo.raid_disks)
1502 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1503 }
1504 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1505 conf->geo.raid_disks - mddev->degraded);
1506 for (i = 0; i < conf->geo.raid_disks; i++)
1507 seq_printf(seq, "%s",
1508 conf->mirrors[i].rdev &&
1509 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1510 seq_printf(seq, "]");
1511 }
1512
1513 /* check if there are enough drives for
1514 * every block to appear on atleast one.
1515 * Don't consider the device numbered 'ignore'
1516 * as we might be about to remove it.
1517 */
1518 static int _enough(struct r10conf *conf, int previous, int ignore)
1519 {
1520 int first = 0;
1521 int has_enough = 0;
1522 int disks, ncopies;
1523 if (previous) {
1524 disks = conf->prev.raid_disks;
1525 ncopies = conf->prev.near_copies;
1526 } else {
1527 disks = conf->geo.raid_disks;
1528 ncopies = conf->geo.near_copies;
1529 }
1530
1531 rcu_read_lock();
1532 do {
1533 int n = conf->copies;
1534 int cnt = 0;
1535 int this = first;
1536 while (n--) {
1537 struct md_rdev *rdev;
1538 if (this != ignore &&
1539 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1540 test_bit(In_sync, &rdev->flags))
1541 cnt++;
1542 this = (this+1) % disks;
1543 }
1544 if (cnt == 0)
1545 goto out;
1546 first = (first + ncopies) % disks;
1547 } while (first != 0);
1548 has_enough = 1;
1549 out:
1550 rcu_read_unlock();
1551 return has_enough;
1552 }
1553
1554 static int enough(struct r10conf *conf, int ignore)
1555 {
1556 /* when calling 'enough', both 'prev' and 'geo' must
1557 * be stable.
1558 * This is ensured if ->reconfig_mutex or ->device_lock
1559 * is held.
1560 */
1561 return _enough(conf, 0, ignore) &&
1562 _enough(conf, 1, ignore);
1563 }
1564
1565 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 char b[BDEVNAME_SIZE];
1568 struct r10conf *conf = mddev->private;
1569 unsigned long flags;
1570
1571 /*
1572 * If it is not operational, then we have already marked it as dead
1573 * else if it is the last working disks, ignore the error, let the
1574 * next level up know.
1575 * else mark the drive as failed
1576 */
1577 spin_lock_irqsave(&conf->device_lock, flags);
1578 if (test_bit(In_sync, &rdev->flags)
1579 && !enough(conf, rdev->raid_disk)) {
1580 /*
1581 * Don't fail the drive, just return an IO error.
1582 */
1583 spin_unlock_irqrestore(&conf->device_lock, flags);
1584 return;
1585 }
1586 if (test_and_clear_bit(In_sync, &rdev->flags))
1587 mddev->degraded++;
1588 /*
1589 * If recovery is running, make sure it aborts.
1590 */
1591 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1592 set_bit(Blocked, &rdev->flags);
1593 set_bit(Faulty, &rdev->flags);
1594 set_mask_bits(&mddev->flags, 0,
1595 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_PENDING));
1596 spin_unlock_irqrestore(&conf->device_lock, flags);
1597 printk(KERN_ALERT
1598 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1599 "md/raid10:%s: Operation continuing on %d devices.\n",
1600 mdname(mddev), bdevname(rdev->bdev, b),
1601 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1602 }
1603
1604 static void print_conf(struct r10conf *conf)
1605 {
1606 int i;
1607 struct raid10_info *tmp;
1608
1609 printk(KERN_DEBUG "RAID10 conf printout:\n");
1610 if (!conf) {
1611 printk(KERN_DEBUG "(!conf)\n");
1612 return;
1613 }
1614 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1615 conf->geo.raid_disks);
1616
1617 for (i = 0; i < conf->geo.raid_disks; i++) {
1618 char b[BDEVNAME_SIZE];
1619 tmp = conf->mirrors + i;
1620 if (tmp->rdev)
1621 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1622 i, !test_bit(In_sync, &tmp->rdev->flags),
1623 !test_bit(Faulty, &tmp->rdev->flags),
1624 bdevname(tmp->rdev->bdev,b));
1625 }
1626 }
1627
1628 static void close_sync(struct r10conf *conf)
1629 {
1630 wait_barrier(conf);
1631 allow_barrier(conf);
1632
1633 mempool_destroy(conf->r10buf_pool);
1634 conf->r10buf_pool = NULL;
1635 }
1636
1637 static int raid10_spare_active(struct mddev *mddev)
1638 {
1639 int i;
1640 struct r10conf *conf = mddev->private;
1641 struct raid10_info *tmp;
1642 int count = 0;
1643 unsigned long flags;
1644
1645 /*
1646 * Find all non-in_sync disks within the RAID10 configuration
1647 * and mark them in_sync
1648 */
1649 for (i = 0; i < conf->geo.raid_disks; i++) {
1650 tmp = conf->mirrors + i;
1651 if (tmp->replacement
1652 && tmp->replacement->recovery_offset == MaxSector
1653 && !test_bit(Faulty, &tmp->replacement->flags)
1654 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1655 /* Replacement has just become active */
1656 if (!tmp->rdev
1657 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1658 count++;
1659 if (tmp->rdev) {
1660 /* Replaced device not technically faulty,
1661 * but we need to be sure it gets removed
1662 * and never re-added.
1663 */
1664 set_bit(Faulty, &tmp->rdev->flags);
1665 sysfs_notify_dirent_safe(
1666 tmp->rdev->sysfs_state);
1667 }
1668 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1669 } else if (tmp->rdev
1670 && tmp->rdev->recovery_offset == MaxSector
1671 && !test_bit(Faulty, &tmp->rdev->flags)
1672 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1673 count++;
1674 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1675 }
1676 }
1677 spin_lock_irqsave(&conf->device_lock, flags);
1678 mddev->degraded -= count;
1679 spin_unlock_irqrestore(&conf->device_lock, flags);
1680
1681 print_conf(conf);
1682 return count;
1683 }
1684
1685 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687 struct r10conf *conf = mddev->private;
1688 int err = -EEXIST;
1689 int mirror;
1690 int first = 0;
1691 int last = conf->geo.raid_disks - 1;
1692
1693 if (mddev->recovery_cp < MaxSector)
1694 /* only hot-add to in-sync arrays, as recovery is
1695 * very different from resync
1696 */
1697 return -EBUSY;
1698 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1699 return -EINVAL;
1700
1701 if (md_integrity_add_rdev(rdev, mddev))
1702 return -ENXIO;
1703
1704 if (rdev->raid_disk >= 0)
1705 first = last = rdev->raid_disk;
1706
1707 if (rdev->saved_raid_disk >= first &&
1708 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1709 mirror = rdev->saved_raid_disk;
1710 else
1711 mirror = first;
1712 for ( ; mirror <= last ; mirror++) {
1713 struct raid10_info *p = &conf->mirrors[mirror];
1714 if (p->recovery_disabled == mddev->recovery_disabled)
1715 continue;
1716 if (p->rdev) {
1717 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1718 p->replacement != NULL)
1719 continue;
1720 clear_bit(In_sync, &rdev->flags);
1721 set_bit(Replacement, &rdev->flags);
1722 rdev->raid_disk = mirror;
1723 err = 0;
1724 if (mddev->gendisk)
1725 disk_stack_limits(mddev->gendisk, rdev->bdev,
1726 rdev->data_offset << 9);
1727 conf->fullsync = 1;
1728 rcu_assign_pointer(p->replacement, rdev);
1729 break;
1730 }
1731
1732 if (mddev->gendisk)
1733 disk_stack_limits(mddev->gendisk, rdev->bdev,
1734 rdev->data_offset << 9);
1735
1736 p->head_position = 0;
1737 p->recovery_disabled = mddev->recovery_disabled - 1;
1738 rdev->raid_disk = mirror;
1739 err = 0;
1740 if (rdev->saved_raid_disk != mirror)
1741 conf->fullsync = 1;
1742 rcu_assign_pointer(p->rdev, rdev);
1743 break;
1744 }
1745 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1746 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1747
1748 print_conf(conf);
1749 return err;
1750 }
1751
1752 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1753 {
1754 struct r10conf *conf = mddev->private;
1755 int err = 0;
1756 int number = rdev->raid_disk;
1757 struct md_rdev **rdevp;
1758 struct raid10_info *p = conf->mirrors + number;
1759
1760 print_conf(conf);
1761 if (rdev == p->rdev)
1762 rdevp = &p->rdev;
1763 else if (rdev == p->replacement)
1764 rdevp = &p->replacement;
1765 else
1766 return 0;
1767
1768 if (test_bit(In_sync, &rdev->flags) ||
1769 atomic_read(&rdev->nr_pending)) {
1770 err = -EBUSY;
1771 goto abort;
1772 }
1773 /* Only remove faulty devices if recovery
1774 * is not possible.
1775 */
1776 if (!test_bit(Faulty, &rdev->flags) &&
1777 mddev->recovery_disabled != p->recovery_disabled &&
1778 (!p->replacement || p->replacement == rdev) &&
1779 number < conf->geo.raid_disks &&
1780 enough(conf, -1)) {
1781 err = -EBUSY;
1782 goto abort;
1783 }
1784 *rdevp = NULL;
1785 synchronize_rcu();
1786 if (atomic_read(&rdev->nr_pending)) {
1787 /* lost the race, try later */
1788 err = -EBUSY;
1789 *rdevp = rdev;
1790 goto abort;
1791 } else if (p->replacement) {
1792 /* We must have just cleared 'rdev' */
1793 p->rdev = p->replacement;
1794 clear_bit(Replacement, &p->replacement->flags);
1795 smp_mb(); /* Make sure other CPUs may see both as identical
1796 * but will never see neither -- if they are careful.
1797 */
1798 p->replacement = NULL;
1799 clear_bit(WantReplacement, &rdev->flags);
1800 } else
1801 /* We might have just remove the Replacement as faulty
1802 * Clear the flag just in case
1803 */
1804 clear_bit(WantReplacement, &rdev->flags);
1805
1806 err = md_integrity_register(mddev);
1807
1808 abort:
1809
1810 print_conf(conf);
1811 return err;
1812 }
1813
1814 static void end_sync_read(struct bio *bio)
1815 {
1816 struct r10bio *r10_bio = bio->bi_private;
1817 struct r10conf *conf = r10_bio->mddev->private;
1818 int d;
1819
1820 if (bio == r10_bio->master_bio) {
1821 /* this is a reshape read */
1822 d = r10_bio->read_slot; /* really the read dev */
1823 } else
1824 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1825
1826 if (!bio->bi_error)
1827 set_bit(R10BIO_Uptodate, &r10_bio->state);
1828 else
1829 /* The write handler will notice the lack of
1830 * R10BIO_Uptodate and record any errors etc
1831 */
1832 atomic_add(r10_bio->sectors,
1833 &conf->mirrors[d].rdev->corrected_errors);
1834
1835 /* for reconstruct, we always reschedule after a read.
1836 * for resync, only after all reads
1837 */
1838 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1839 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1840 atomic_dec_and_test(&r10_bio->remaining)) {
1841 /* we have read all the blocks,
1842 * do the comparison in process context in raid10d
1843 */
1844 reschedule_retry(r10_bio);
1845 }
1846 }
1847
1848 static void end_sync_request(struct r10bio *r10_bio)
1849 {
1850 struct mddev *mddev = r10_bio->mddev;
1851
1852 while (atomic_dec_and_test(&r10_bio->remaining)) {
1853 if (r10_bio->master_bio == NULL) {
1854 /* the primary of several recovery bios */
1855 sector_t s = r10_bio->sectors;
1856 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1857 test_bit(R10BIO_WriteError, &r10_bio->state))
1858 reschedule_retry(r10_bio);
1859 else
1860 put_buf(r10_bio);
1861 md_done_sync(mddev, s, 1);
1862 break;
1863 } else {
1864 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1865 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1866 test_bit(R10BIO_WriteError, &r10_bio->state))
1867 reschedule_retry(r10_bio);
1868 else
1869 put_buf(r10_bio);
1870 r10_bio = r10_bio2;
1871 }
1872 }
1873 }
1874
1875 static void end_sync_write(struct bio *bio)
1876 {
1877 struct r10bio *r10_bio = bio->bi_private;
1878 struct mddev *mddev = r10_bio->mddev;
1879 struct r10conf *conf = mddev->private;
1880 int d;
1881 sector_t first_bad;
1882 int bad_sectors;
1883 int slot;
1884 int repl;
1885 struct md_rdev *rdev = NULL;
1886
1887 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1888 if (repl)
1889 rdev = conf->mirrors[d].replacement;
1890 else
1891 rdev = conf->mirrors[d].rdev;
1892
1893 if (bio->bi_error) {
1894 if (repl)
1895 md_error(mddev, rdev);
1896 else {
1897 set_bit(WriteErrorSeen, &rdev->flags);
1898 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1899 set_bit(MD_RECOVERY_NEEDED,
1900 &rdev->mddev->recovery);
1901 set_bit(R10BIO_WriteError, &r10_bio->state);
1902 }
1903 } else if (is_badblock(rdev,
1904 r10_bio->devs[slot].addr,
1905 r10_bio->sectors,
1906 &first_bad, &bad_sectors))
1907 set_bit(R10BIO_MadeGood, &r10_bio->state);
1908
1909 rdev_dec_pending(rdev, mddev);
1910
1911 end_sync_request(r10_bio);
1912 }
1913
1914 /*
1915 * Note: sync and recover and handled very differently for raid10
1916 * This code is for resync.
1917 * For resync, we read through virtual addresses and read all blocks.
1918 * If there is any error, we schedule a write. The lowest numbered
1919 * drive is authoritative.
1920 * However requests come for physical address, so we need to map.
1921 * For every physical address there are raid_disks/copies virtual addresses,
1922 * which is always are least one, but is not necessarly an integer.
1923 * This means that a physical address can span multiple chunks, so we may
1924 * have to submit multiple io requests for a single sync request.
1925 */
1926 /*
1927 * We check if all blocks are in-sync and only write to blocks that
1928 * aren't in sync
1929 */
1930 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1931 {
1932 struct r10conf *conf = mddev->private;
1933 int i, first;
1934 struct bio *tbio, *fbio;
1935 int vcnt;
1936
1937 atomic_set(&r10_bio->remaining, 1);
1938
1939 /* find the first device with a block */
1940 for (i=0; i<conf->copies; i++)
1941 if (!r10_bio->devs[i].bio->bi_error)
1942 break;
1943
1944 if (i == conf->copies)
1945 goto done;
1946
1947 first = i;
1948 fbio = r10_bio->devs[i].bio;
1949 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
1950 fbio->bi_iter.bi_idx = 0;
1951
1952 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1953 /* now find blocks with errors */
1954 for (i=0 ; i < conf->copies ; i++) {
1955 int j, d;
1956
1957 tbio = r10_bio->devs[i].bio;
1958
1959 if (tbio->bi_end_io != end_sync_read)
1960 continue;
1961 if (i == first)
1962 continue;
1963 if (!r10_bio->devs[i].bio->bi_error) {
1964 /* We know that the bi_io_vec layout is the same for
1965 * both 'first' and 'i', so we just compare them.
1966 * All vec entries are PAGE_SIZE;
1967 */
1968 int sectors = r10_bio->sectors;
1969 for (j = 0; j < vcnt; j++) {
1970 int len = PAGE_SIZE;
1971 if (sectors < (len / 512))
1972 len = sectors * 512;
1973 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1974 page_address(tbio->bi_io_vec[j].bv_page),
1975 len))
1976 break;
1977 sectors -= len/512;
1978 }
1979 if (j == vcnt)
1980 continue;
1981 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
1982 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1983 /* Don't fix anything. */
1984 continue;
1985 }
1986 /* Ok, we need to write this bio, either to correct an
1987 * inconsistency or to correct an unreadable block.
1988 * First we need to fixup bv_offset, bv_len and
1989 * bi_vecs, as the read request might have corrupted these
1990 */
1991 bio_reset(tbio);
1992
1993 tbio->bi_vcnt = vcnt;
1994 tbio->bi_iter.bi_size = fbio->bi_iter.bi_size;
1995 tbio->bi_rw = WRITE;
1996 tbio->bi_private = r10_bio;
1997 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
1998 tbio->bi_end_io = end_sync_write;
1999
2000 bio_copy_data(tbio, fbio);
2001
2002 d = r10_bio->devs[i].devnum;
2003 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2004 atomic_inc(&r10_bio->remaining);
2005 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2006
2007 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2008 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2009 generic_make_request(tbio);
2010 }
2011
2012 /* Now write out to any replacement devices
2013 * that are active
2014 */
2015 for (i = 0; i < conf->copies; i++) {
2016 int d;
2017
2018 tbio = r10_bio->devs[i].repl_bio;
2019 if (!tbio || !tbio->bi_end_io)
2020 continue;
2021 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2022 && r10_bio->devs[i].bio != fbio)
2023 bio_copy_data(tbio, fbio);
2024 d = r10_bio->devs[i].devnum;
2025 atomic_inc(&r10_bio->remaining);
2026 md_sync_acct(conf->mirrors[d].replacement->bdev,
2027 bio_sectors(tbio));
2028 generic_make_request(tbio);
2029 }
2030
2031 done:
2032 if (atomic_dec_and_test(&r10_bio->remaining)) {
2033 md_done_sync(mddev, r10_bio->sectors, 1);
2034 put_buf(r10_bio);
2035 }
2036 }
2037
2038 /*
2039 * Now for the recovery code.
2040 * Recovery happens across physical sectors.
2041 * We recover all non-is_sync drives by finding the virtual address of
2042 * each, and then choose a working drive that also has that virt address.
2043 * There is a separate r10_bio for each non-in_sync drive.
2044 * Only the first two slots are in use. The first for reading,
2045 * The second for writing.
2046 *
2047 */
2048 static void fix_recovery_read_error(struct r10bio *r10_bio)
2049 {
2050 /* We got a read error during recovery.
2051 * We repeat the read in smaller page-sized sections.
2052 * If a read succeeds, write it to the new device or record
2053 * a bad block if we cannot.
2054 * If a read fails, record a bad block on both old and
2055 * new devices.
2056 */
2057 struct mddev *mddev = r10_bio->mddev;
2058 struct r10conf *conf = mddev->private;
2059 struct bio *bio = r10_bio->devs[0].bio;
2060 sector_t sect = 0;
2061 int sectors = r10_bio->sectors;
2062 int idx = 0;
2063 int dr = r10_bio->devs[0].devnum;
2064 int dw = r10_bio->devs[1].devnum;
2065
2066 while (sectors) {
2067 int s = sectors;
2068 struct md_rdev *rdev;
2069 sector_t addr;
2070 int ok;
2071
2072 if (s > (PAGE_SIZE>>9))
2073 s = PAGE_SIZE >> 9;
2074
2075 rdev = conf->mirrors[dr].rdev;
2076 addr = r10_bio->devs[0].addr + sect,
2077 ok = sync_page_io(rdev,
2078 addr,
2079 s << 9,
2080 bio->bi_io_vec[idx].bv_page,
2081 READ, false);
2082 if (ok) {
2083 rdev = conf->mirrors[dw].rdev;
2084 addr = r10_bio->devs[1].addr + sect;
2085 ok = sync_page_io(rdev,
2086 addr,
2087 s << 9,
2088 bio->bi_io_vec[idx].bv_page,
2089 WRITE, false);
2090 if (!ok) {
2091 set_bit(WriteErrorSeen, &rdev->flags);
2092 if (!test_and_set_bit(WantReplacement,
2093 &rdev->flags))
2094 set_bit(MD_RECOVERY_NEEDED,
2095 &rdev->mddev->recovery);
2096 }
2097 }
2098 if (!ok) {
2099 /* We don't worry if we cannot set a bad block -
2100 * it really is bad so there is no loss in not
2101 * recording it yet
2102 */
2103 rdev_set_badblocks(rdev, addr, s, 0);
2104
2105 if (rdev != conf->mirrors[dw].rdev) {
2106 /* need bad block on destination too */
2107 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2108 addr = r10_bio->devs[1].addr + sect;
2109 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2110 if (!ok) {
2111 /* just abort the recovery */
2112 printk(KERN_NOTICE
2113 "md/raid10:%s: recovery aborted"
2114 " due to read error\n",
2115 mdname(mddev));
2116
2117 conf->mirrors[dw].recovery_disabled
2118 = mddev->recovery_disabled;
2119 set_bit(MD_RECOVERY_INTR,
2120 &mddev->recovery);
2121 break;
2122 }
2123 }
2124 }
2125
2126 sectors -= s;
2127 sect += s;
2128 idx++;
2129 }
2130 }
2131
2132 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2133 {
2134 struct r10conf *conf = mddev->private;
2135 int d;
2136 struct bio *wbio, *wbio2;
2137
2138 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2139 fix_recovery_read_error(r10_bio);
2140 end_sync_request(r10_bio);
2141 return;
2142 }
2143
2144 /*
2145 * share the pages with the first bio
2146 * and submit the write request
2147 */
2148 d = r10_bio->devs[1].devnum;
2149 wbio = r10_bio->devs[1].bio;
2150 wbio2 = r10_bio->devs[1].repl_bio;
2151 /* Need to test wbio2->bi_end_io before we call
2152 * generic_make_request as if the former is NULL,
2153 * the latter is free to free wbio2.
2154 */
2155 if (wbio2 && !wbio2->bi_end_io)
2156 wbio2 = NULL;
2157 if (wbio->bi_end_io) {
2158 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2159 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2160 generic_make_request(wbio);
2161 }
2162 if (wbio2) {
2163 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2164 md_sync_acct(conf->mirrors[d].replacement->bdev,
2165 bio_sectors(wbio2));
2166 generic_make_request(wbio2);
2167 }
2168 }
2169
2170 /*
2171 * Used by fix_read_error() to decay the per rdev read_errors.
2172 * We halve the read error count for every hour that has elapsed
2173 * since the last recorded read error.
2174 *
2175 */
2176 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2177 {
2178 struct timespec cur_time_mon;
2179 unsigned long hours_since_last;
2180 unsigned int read_errors = atomic_read(&rdev->read_errors);
2181
2182 ktime_get_ts(&cur_time_mon);
2183
2184 if (rdev->last_read_error.tv_sec == 0 &&
2185 rdev->last_read_error.tv_nsec == 0) {
2186 /* first time we've seen a read error */
2187 rdev->last_read_error = cur_time_mon;
2188 return;
2189 }
2190
2191 hours_since_last = (cur_time_mon.tv_sec -
2192 rdev->last_read_error.tv_sec) / 3600;
2193
2194 rdev->last_read_error = cur_time_mon;
2195
2196 /*
2197 * if hours_since_last is > the number of bits in read_errors
2198 * just set read errors to 0. We do this to avoid
2199 * overflowing the shift of read_errors by hours_since_last.
2200 */
2201 if (hours_since_last >= 8 * sizeof(read_errors))
2202 atomic_set(&rdev->read_errors, 0);
2203 else
2204 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2205 }
2206
2207 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2208 int sectors, struct page *page, int rw)
2209 {
2210 sector_t first_bad;
2211 int bad_sectors;
2212
2213 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2214 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2215 return -1;
2216 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2217 /* success */
2218 return 1;
2219 if (rw == WRITE) {
2220 set_bit(WriteErrorSeen, &rdev->flags);
2221 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2222 set_bit(MD_RECOVERY_NEEDED,
2223 &rdev->mddev->recovery);
2224 }
2225 /* need to record an error - either for the block or the device */
2226 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2227 md_error(rdev->mddev, rdev);
2228 return 0;
2229 }
2230
2231 /*
2232 * This is a kernel thread which:
2233 *
2234 * 1. Retries failed read operations on working mirrors.
2235 * 2. Updates the raid superblock when problems encounter.
2236 * 3. Performs writes following reads for array synchronising.
2237 */
2238
2239 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2240 {
2241 int sect = 0; /* Offset from r10_bio->sector */
2242 int sectors = r10_bio->sectors;
2243 struct md_rdev*rdev;
2244 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2245 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2246
2247 /* still own a reference to this rdev, so it cannot
2248 * have been cleared recently.
2249 */
2250 rdev = conf->mirrors[d].rdev;
2251
2252 if (test_bit(Faulty, &rdev->flags))
2253 /* drive has already been failed, just ignore any
2254 more fix_read_error() attempts */
2255 return;
2256
2257 check_decay_read_errors(mddev, rdev);
2258 atomic_inc(&rdev->read_errors);
2259 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2260 char b[BDEVNAME_SIZE];
2261 bdevname(rdev->bdev, b);
2262
2263 printk(KERN_NOTICE
2264 "md/raid10:%s: %s: Raid device exceeded "
2265 "read_error threshold [cur %d:max %d]\n",
2266 mdname(mddev), b,
2267 atomic_read(&rdev->read_errors), max_read_errors);
2268 printk(KERN_NOTICE
2269 "md/raid10:%s: %s: Failing raid device\n",
2270 mdname(mddev), b);
2271 md_error(mddev, conf->mirrors[d].rdev);
2272 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2273 return;
2274 }
2275
2276 while(sectors) {
2277 int s = sectors;
2278 int sl = r10_bio->read_slot;
2279 int success = 0;
2280 int start;
2281
2282 if (s > (PAGE_SIZE>>9))
2283 s = PAGE_SIZE >> 9;
2284
2285 rcu_read_lock();
2286 do {
2287 sector_t first_bad;
2288 int bad_sectors;
2289
2290 d = r10_bio->devs[sl].devnum;
2291 rdev = rcu_dereference(conf->mirrors[d].rdev);
2292 if (rdev &&
2293 test_bit(In_sync, &rdev->flags) &&
2294 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2295 &first_bad, &bad_sectors) == 0) {
2296 atomic_inc(&rdev->nr_pending);
2297 rcu_read_unlock();
2298 success = sync_page_io(rdev,
2299 r10_bio->devs[sl].addr +
2300 sect,
2301 s<<9,
2302 conf->tmppage, READ, false);
2303 rdev_dec_pending(rdev, mddev);
2304 rcu_read_lock();
2305 if (success)
2306 break;
2307 }
2308 sl++;
2309 if (sl == conf->copies)
2310 sl = 0;
2311 } while (!success && sl != r10_bio->read_slot);
2312 rcu_read_unlock();
2313
2314 if (!success) {
2315 /* Cannot read from anywhere, just mark the block
2316 * as bad on the first device to discourage future
2317 * reads.
2318 */
2319 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2320 rdev = conf->mirrors[dn].rdev;
2321
2322 if (!rdev_set_badblocks(
2323 rdev,
2324 r10_bio->devs[r10_bio->read_slot].addr
2325 + sect,
2326 s, 0)) {
2327 md_error(mddev, rdev);
2328 r10_bio->devs[r10_bio->read_slot].bio
2329 = IO_BLOCKED;
2330 }
2331 break;
2332 }
2333
2334 start = sl;
2335 /* write it back and re-read */
2336 rcu_read_lock();
2337 while (sl != r10_bio->read_slot) {
2338 char b[BDEVNAME_SIZE];
2339
2340 if (sl==0)
2341 sl = conf->copies;
2342 sl--;
2343 d = r10_bio->devs[sl].devnum;
2344 rdev = rcu_dereference(conf->mirrors[d].rdev);
2345 if (!rdev ||
2346 !test_bit(In_sync, &rdev->flags))
2347 continue;
2348
2349 atomic_inc(&rdev->nr_pending);
2350 rcu_read_unlock();
2351 if (r10_sync_page_io(rdev,
2352 r10_bio->devs[sl].addr +
2353 sect,
2354 s, conf->tmppage, WRITE)
2355 == 0) {
2356 /* Well, this device is dead */
2357 printk(KERN_NOTICE
2358 "md/raid10:%s: read correction "
2359 "write failed"
2360 " (%d sectors at %llu on %s)\n",
2361 mdname(mddev), s,
2362 (unsigned long long)(
2363 sect +
2364 choose_data_offset(r10_bio,
2365 rdev)),
2366 bdevname(rdev->bdev, b));
2367 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2368 "drive\n",
2369 mdname(mddev),
2370 bdevname(rdev->bdev, b));
2371 }
2372 rdev_dec_pending(rdev, mddev);
2373 rcu_read_lock();
2374 }
2375 sl = start;
2376 while (sl != r10_bio->read_slot) {
2377 char b[BDEVNAME_SIZE];
2378
2379 if (sl==0)
2380 sl = conf->copies;
2381 sl--;
2382 d = r10_bio->devs[sl].devnum;
2383 rdev = rcu_dereference(conf->mirrors[d].rdev);
2384 if (!rdev ||
2385 !test_bit(In_sync, &rdev->flags))
2386 continue;
2387
2388 atomic_inc(&rdev->nr_pending);
2389 rcu_read_unlock();
2390 switch (r10_sync_page_io(rdev,
2391 r10_bio->devs[sl].addr +
2392 sect,
2393 s, conf->tmppage,
2394 READ)) {
2395 case 0:
2396 /* Well, this device is dead */
2397 printk(KERN_NOTICE
2398 "md/raid10:%s: unable to read back "
2399 "corrected sectors"
2400 " (%d sectors at %llu on %s)\n",
2401 mdname(mddev), s,
2402 (unsigned long long)(
2403 sect +
2404 choose_data_offset(r10_bio, rdev)),
2405 bdevname(rdev->bdev, b));
2406 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2407 "drive\n",
2408 mdname(mddev),
2409 bdevname(rdev->bdev, b));
2410 break;
2411 case 1:
2412 printk(KERN_INFO
2413 "md/raid10:%s: read error corrected"
2414 " (%d sectors at %llu on %s)\n",
2415 mdname(mddev), s,
2416 (unsigned long long)(
2417 sect +
2418 choose_data_offset(r10_bio, rdev)),
2419 bdevname(rdev->bdev, b));
2420 atomic_add(s, &rdev->corrected_errors);
2421 }
2422
2423 rdev_dec_pending(rdev, mddev);
2424 rcu_read_lock();
2425 }
2426 rcu_read_unlock();
2427
2428 sectors -= s;
2429 sect += s;
2430 }
2431 }
2432
2433 static int narrow_write_error(struct r10bio *r10_bio, int i)
2434 {
2435 struct bio *bio = r10_bio->master_bio;
2436 struct mddev *mddev = r10_bio->mddev;
2437 struct r10conf *conf = mddev->private;
2438 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2439 /* bio has the data to be written to slot 'i' where
2440 * we just recently had a write error.
2441 * We repeatedly clone the bio and trim down to one block,
2442 * then try the write. Where the write fails we record
2443 * a bad block.
2444 * It is conceivable that the bio doesn't exactly align with
2445 * blocks. We must handle this.
2446 *
2447 * We currently own a reference to the rdev.
2448 */
2449
2450 int block_sectors;
2451 sector_t sector;
2452 int sectors;
2453 int sect_to_write = r10_bio->sectors;
2454 int ok = 1;
2455
2456 if (rdev->badblocks.shift < 0)
2457 return 0;
2458
2459 block_sectors = roundup(1 << rdev->badblocks.shift,
2460 bdev_logical_block_size(rdev->bdev) >> 9);
2461 sector = r10_bio->sector;
2462 sectors = ((r10_bio->sector + block_sectors)
2463 & ~(sector_t)(block_sectors - 1))
2464 - sector;
2465
2466 while (sect_to_write) {
2467 struct bio *wbio;
2468 if (sectors > sect_to_write)
2469 sectors = sect_to_write;
2470 /* Write at 'sector' for 'sectors' */
2471 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2472 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2473 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2474 choose_data_offset(r10_bio, rdev) +
2475 (sector - r10_bio->sector));
2476 wbio->bi_bdev = rdev->bdev;
2477 wbio->bi_rw = WRITE;
2478
2479 if (submit_bio_wait(wbio) < 0)
2480 /* Failure! */
2481 ok = rdev_set_badblocks(rdev, sector,
2482 sectors, 0)
2483 && ok;
2484
2485 bio_put(wbio);
2486 sect_to_write -= sectors;
2487 sector += sectors;
2488 sectors = block_sectors;
2489 }
2490 return ok;
2491 }
2492
2493 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2494 {
2495 int slot = r10_bio->read_slot;
2496 struct bio *bio;
2497 struct r10conf *conf = mddev->private;
2498 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2499 char b[BDEVNAME_SIZE];
2500 unsigned long do_sync;
2501 int max_sectors;
2502
2503 /* we got a read error. Maybe the drive is bad. Maybe just
2504 * the block and we can fix it.
2505 * We freeze all other IO, and try reading the block from
2506 * other devices. When we find one, we re-write
2507 * and check it that fixes the read error.
2508 * This is all done synchronously while the array is
2509 * frozen.
2510 */
2511 bio = r10_bio->devs[slot].bio;
2512 bdevname(bio->bi_bdev, b);
2513 bio_put(bio);
2514 r10_bio->devs[slot].bio = NULL;
2515
2516 if (mddev->ro == 0) {
2517 freeze_array(conf, 1);
2518 fix_read_error(conf, mddev, r10_bio);
2519 unfreeze_array(conf);
2520 } else
2521 r10_bio->devs[slot].bio = IO_BLOCKED;
2522
2523 rdev_dec_pending(rdev, mddev);
2524
2525 read_more:
2526 rdev = read_balance(conf, r10_bio, &max_sectors);
2527 if (rdev == NULL) {
2528 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2529 " read error for block %llu\n",
2530 mdname(mddev), b,
2531 (unsigned long long)r10_bio->sector);
2532 raid_end_bio_io(r10_bio);
2533 return;
2534 }
2535
2536 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2537 slot = r10_bio->read_slot;
2538 printk_ratelimited(
2539 KERN_ERR
2540 "md/raid10:%s: %s: redirecting "
2541 "sector %llu to another mirror\n",
2542 mdname(mddev),
2543 bdevname(rdev->bdev, b),
2544 (unsigned long long)r10_bio->sector);
2545 bio = bio_clone_mddev(r10_bio->master_bio,
2546 GFP_NOIO, mddev);
2547 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2548 r10_bio->devs[slot].bio = bio;
2549 r10_bio->devs[slot].rdev = rdev;
2550 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2551 + choose_data_offset(r10_bio, rdev);
2552 bio->bi_bdev = rdev->bdev;
2553 bio->bi_rw = READ | do_sync;
2554 bio->bi_private = r10_bio;
2555 bio->bi_end_io = raid10_end_read_request;
2556 if (max_sectors < r10_bio->sectors) {
2557 /* Drat - have to split this up more */
2558 struct bio *mbio = r10_bio->master_bio;
2559 int sectors_handled =
2560 r10_bio->sector + max_sectors
2561 - mbio->bi_iter.bi_sector;
2562 r10_bio->sectors = max_sectors;
2563 spin_lock_irq(&conf->device_lock);
2564 if (mbio->bi_phys_segments == 0)
2565 mbio->bi_phys_segments = 2;
2566 else
2567 mbio->bi_phys_segments++;
2568 spin_unlock_irq(&conf->device_lock);
2569 generic_make_request(bio);
2570
2571 r10_bio = mempool_alloc(conf->r10bio_pool,
2572 GFP_NOIO);
2573 r10_bio->master_bio = mbio;
2574 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2575 r10_bio->state = 0;
2576 set_bit(R10BIO_ReadError,
2577 &r10_bio->state);
2578 r10_bio->mddev = mddev;
2579 r10_bio->sector = mbio->bi_iter.bi_sector
2580 + sectors_handled;
2581
2582 goto read_more;
2583 } else
2584 generic_make_request(bio);
2585 }
2586
2587 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2588 {
2589 /* Some sort of write request has finished and it
2590 * succeeded in writing where we thought there was a
2591 * bad block. So forget the bad block.
2592 * Or possibly if failed and we need to record
2593 * a bad block.
2594 */
2595 int m;
2596 struct md_rdev *rdev;
2597
2598 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2599 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2600 for (m = 0; m < conf->copies; m++) {
2601 int dev = r10_bio->devs[m].devnum;
2602 rdev = conf->mirrors[dev].rdev;
2603 if (r10_bio->devs[m].bio == NULL)
2604 continue;
2605 if (!r10_bio->devs[m].bio->bi_error) {
2606 rdev_clear_badblocks(
2607 rdev,
2608 r10_bio->devs[m].addr,
2609 r10_bio->sectors, 0);
2610 } else {
2611 if (!rdev_set_badblocks(
2612 rdev,
2613 r10_bio->devs[m].addr,
2614 r10_bio->sectors, 0))
2615 md_error(conf->mddev, rdev);
2616 }
2617 rdev = conf->mirrors[dev].replacement;
2618 if (r10_bio->devs[m].repl_bio == NULL)
2619 continue;
2620
2621 if (!r10_bio->devs[m].repl_bio->bi_error) {
2622 rdev_clear_badblocks(
2623 rdev,
2624 r10_bio->devs[m].addr,
2625 r10_bio->sectors, 0);
2626 } else {
2627 if (!rdev_set_badblocks(
2628 rdev,
2629 r10_bio->devs[m].addr,
2630 r10_bio->sectors, 0))
2631 md_error(conf->mddev, rdev);
2632 }
2633 }
2634 put_buf(r10_bio);
2635 } else {
2636 bool fail = false;
2637 for (m = 0; m < conf->copies; m++) {
2638 int dev = r10_bio->devs[m].devnum;
2639 struct bio *bio = r10_bio->devs[m].bio;
2640 rdev = conf->mirrors[dev].rdev;
2641 if (bio == IO_MADE_GOOD) {
2642 rdev_clear_badblocks(
2643 rdev,
2644 r10_bio->devs[m].addr,
2645 r10_bio->sectors, 0);
2646 rdev_dec_pending(rdev, conf->mddev);
2647 } else if (bio != NULL && bio->bi_error) {
2648 fail = true;
2649 if (!narrow_write_error(r10_bio, m)) {
2650 md_error(conf->mddev, rdev);
2651 set_bit(R10BIO_Degraded,
2652 &r10_bio->state);
2653 }
2654 rdev_dec_pending(rdev, conf->mddev);
2655 }
2656 bio = r10_bio->devs[m].repl_bio;
2657 rdev = conf->mirrors[dev].replacement;
2658 if (rdev && bio == IO_MADE_GOOD) {
2659 rdev_clear_badblocks(
2660 rdev,
2661 r10_bio->devs[m].addr,
2662 r10_bio->sectors, 0);
2663 rdev_dec_pending(rdev, conf->mddev);
2664 }
2665 }
2666 if (fail) {
2667 spin_lock_irq(&conf->device_lock);
2668 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2669 conf->nr_queued++;
2670 spin_unlock_irq(&conf->device_lock);
2671 md_wakeup_thread(conf->mddev->thread);
2672 } else {
2673 if (test_bit(R10BIO_WriteError,
2674 &r10_bio->state))
2675 close_write(r10_bio);
2676 raid_end_bio_io(r10_bio);
2677 }
2678 }
2679 }
2680
2681 static void raid10d(struct md_thread *thread)
2682 {
2683 struct mddev *mddev = thread->mddev;
2684 struct r10bio *r10_bio;
2685 unsigned long flags;
2686 struct r10conf *conf = mddev->private;
2687 struct list_head *head = &conf->retry_list;
2688 struct blk_plug plug;
2689
2690 md_check_recovery(mddev);
2691
2692 if (!list_empty_careful(&conf->bio_end_io_list) &&
2693 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2694 LIST_HEAD(tmp);
2695 spin_lock_irqsave(&conf->device_lock, flags);
2696 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2697 while (!list_empty(&conf->bio_end_io_list)) {
2698 list_move(conf->bio_end_io_list.prev, &tmp);
2699 conf->nr_queued--;
2700 }
2701 }
2702 spin_unlock_irqrestore(&conf->device_lock, flags);
2703 while (!list_empty(&tmp)) {
2704 r10_bio = list_first_entry(&tmp, struct r10bio,
2705 retry_list);
2706 list_del(&r10_bio->retry_list);
2707 if (mddev->degraded)
2708 set_bit(R10BIO_Degraded, &r10_bio->state);
2709
2710 if (test_bit(R10BIO_WriteError,
2711 &r10_bio->state))
2712 close_write(r10_bio);
2713 raid_end_bio_io(r10_bio);
2714 }
2715 }
2716
2717 blk_start_plug(&plug);
2718 for (;;) {
2719
2720 flush_pending_writes(conf);
2721
2722 spin_lock_irqsave(&conf->device_lock, flags);
2723 if (list_empty(head)) {
2724 spin_unlock_irqrestore(&conf->device_lock, flags);
2725 break;
2726 }
2727 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2728 list_del(head->prev);
2729 conf->nr_queued--;
2730 spin_unlock_irqrestore(&conf->device_lock, flags);
2731
2732 mddev = r10_bio->mddev;
2733 conf = mddev->private;
2734 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2735 test_bit(R10BIO_WriteError, &r10_bio->state))
2736 handle_write_completed(conf, r10_bio);
2737 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2738 reshape_request_write(mddev, r10_bio);
2739 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2740 sync_request_write(mddev, r10_bio);
2741 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2742 recovery_request_write(mddev, r10_bio);
2743 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2744 handle_read_error(mddev, r10_bio);
2745 else {
2746 /* just a partial read to be scheduled from a
2747 * separate context
2748 */
2749 int slot = r10_bio->read_slot;
2750 generic_make_request(r10_bio->devs[slot].bio);
2751 }
2752
2753 cond_resched();
2754 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2755 md_check_recovery(mddev);
2756 }
2757 blk_finish_plug(&plug);
2758 }
2759
2760 static int init_resync(struct r10conf *conf)
2761 {
2762 int buffs;
2763 int i;
2764
2765 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2766 BUG_ON(conf->r10buf_pool);
2767 conf->have_replacement = 0;
2768 for (i = 0; i < conf->geo.raid_disks; i++)
2769 if (conf->mirrors[i].replacement)
2770 conf->have_replacement = 1;
2771 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2772 if (!conf->r10buf_pool)
2773 return -ENOMEM;
2774 conf->next_resync = 0;
2775 return 0;
2776 }
2777
2778 /*
2779 * perform a "sync" on one "block"
2780 *
2781 * We need to make sure that no normal I/O request - particularly write
2782 * requests - conflict with active sync requests.
2783 *
2784 * This is achieved by tracking pending requests and a 'barrier' concept
2785 * that can be installed to exclude normal IO requests.
2786 *
2787 * Resync and recovery are handled very differently.
2788 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2789 *
2790 * For resync, we iterate over virtual addresses, read all copies,
2791 * and update if there are differences. If only one copy is live,
2792 * skip it.
2793 * For recovery, we iterate over physical addresses, read a good
2794 * value for each non-in_sync drive, and over-write.
2795 *
2796 * So, for recovery we may have several outstanding complex requests for a
2797 * given address, one for each out-of-sync device. We model this by allocating
2798 * a number of r10_bio structures, one for each out-of-sync device.
2799 * As we setup these structures, we collect all bio's together into a list
2800 * which we then process collectively to add pages, and then process again
2801 * to pass to generic_make_request.
2802 *
2803 * The r10_bio structures are linked using a borrowed master_bio pointer.
2804 * This link is counted in ->remaining. When the r10_bio that points to NULL
2805 * has its remaining count decremented to 0, the whole complex operation
2806 * is complete.
2807 *
2808 */
2809
2810 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2811 int *skipped)
2812 {
2813 struct r10conf *conf = mddev->private;
2814 struct r10bio *r10_bio;
2815 struct bio *biolist = NULL, *bio;
2816 sector_t max_sector, nr_sectors;
2817 int i;
2818 int max_sync;
2819 sector_t sync_blocks;
2820 sector_t sectors_skipped = 0;
2821 int chunks_skipped = 0;
2822 sector_t chunk_mask = conf->geo.chunk_mask;
2823
2824 if (!conf->r10buf_pool)
2825 if (init_resync(conf))
2826 return 0;
2827
2828 /*
2829 * Allow skipping a full rebuild for incremental assembly
2830 * of a clean array, like RAID1 does.
2831 */
2832 if (mddev->bitmap == NULL &&
2833 mddev->recovery_cp == MaxSector &&
2834 mddev->reshape_position == MaxSector &&
2835 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2836 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2837 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2838 conf->fullsync == 0) {
2839 *skipped = 1;
2840 return mddev->dev_sectors - sector_nr;
2841 }
2842
2843 skipped:
2844 max_sector = mddev->dev_sectors;
2845 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2846 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2847 max_sector = mddev->resync_max_sectors;
2848 if (sector_nr >= max_sector) {
2849 /* If we aborted, we need to abort the
2850 * sync on the 'current' bitmap chucks (there can
2851 * be several when recovering multiple devices).
2852 * as we may have started syncing it but not finished.
2853 * We can find the current address in
2854 * mddev->curr_resync, but for recovery,
2855 * we need to convert that to several
2856 * virtual addresses.
2857 */
2858 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2859 end_reshape(conf);
2860 close_sync(conf);
2861 return 0;
2862 }
2863
2864 if (mddev->curr_resync < max_sector) { /* aborted */
2865 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2866 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2867 &sync_blocks, 1);
2868 else for (i = 0; i < conf->geo.raid_disks; i++) {
2869 sector_t sect =
2870 raid10_find_virt(conf, mddev->curr_resync, i);
2871 bitmap_end_sync(mddev->bitmap, sect,
2872 &sync_blocks, 1);
2873 }
2874 } else {
2875 /* completed sync */
2876 if ((!mddev->bitmap || conf->fullsync)
2877 && conf->have_replacement
2878 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2879 /* Completed a full sync so the replacements
2880 * are now fully recovered.
2881 */
2882 for (i = 0; i < conf->geo.raid_disks; i++)
2883 if (conf->mirrors[i].replacement)
2884 conf->mirrors[i].replacement
2885 ->recovery_offset
2886 = MaxSector;
2887 }
2888 conf->fullsync = 0;
2889 }
2890 bitmap_close_sync(mddev->bitmap);
2891 close_sync(conf);
2892 *skipped = 1;
2893 return sectors_skipped;
2894 }
2895
2896 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2897 return reshape_request(mddev, sector_nr, skipped);
2898
2899 if (chunks_skipped >= conf->geo.raid_disks) {
2900 /* if there has been nothing to do on any drive,
2901 * then there is nothing to do at all..
2902 */
2903 *skipped = 1;
2904 return (max_sector - sector_nr) + sectors_skipped;
2905 }
2906
2907 if (max_sector > mddev->resync_max)
2908 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2909
2910 /* make sure whole request will fit in a chunk - if chunks
2911 * are meaningful
2912 */
2913 if (conf->geo.near_copies < conf->geo.raid_disks &&
2914 max_sector > (sector_nr | chunk_mask))
2915 max_sector = (sector_nr | chunk_mask) + 1;
2916
2917 /* Again, very different code for resync and recovery.
2918 * Both must result in an r10bio with a list of bios that
2919 * have bi_end_io, bi_sector, bi_bdev set,
2920 * and bi_private set to the r10bio.
2921 * For recovery, we may actually create several r10bios
2922 * with 2 bios in each, that correspond to the bios in the main one.
2923 * In this case, the subordinate r10bios link back through a
2924 * borrowed master_bio pointer, and the counter in the master
2925 * includes a ref from each subordinate.
2926 */
2927 /* First, we decide what to do and set ->bi_end_io
2928 * To end_sync_read if we want to read, and
2929 * end_sync_write if we will want to write.
2930 */
2931
2932 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2933 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2934 /* recovery... the complicated one */
2935 int j;
2936 r10_bio = NULL;
2937
2938 for (i = 0 ; i < conf->geo.raid_disks; i++) {
2939 int still_degraded;
2940 struct r10bio *rb2;
2941 sector_t sect;
2942 int must_sync;
2943 int any_working;
2944 struct raid10_info *mirror = &conf->mirrors[i];
2945
2946 if ((mirror->rdev == NULL ||
2947 test_bit(In_sync, &mirror->rdev->flags))
2948 &&
2949 (mirror->replacement == NULL ||
2950 test_bit(Faulty,
2951 &mirror->replacement->flags)))
2952 continue;
2953
2954 still_degraded = 0;
2955 /* want to reconstruct this device */
2956 rb2 = r10_bio;
2957 sect = raid10_find_virt(conf, sector_nr, i);
2958 if (sect >= mddev->resync_max_sectors) {
2959 /* last stripe is not complete - don't
2960 * try to recover this sector.
2961 */
2962 continue;
2963 }
2964 /* Unless we are doing a full sync, or a replacement
2965 * we only need to recover the block if it is set in
2966 * the bitmap
2967 */
2968 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2969 &sync_blocks, 1);
2970 if (sync_blocks < max_sync)
2971 max_sync = sync_blocks;
2972 if (!must_sync &&
2973 mirror->replacement == NULL &&
2974 !conf->fullsync) {
2975 /* yep, skip the sync_blocks here, but don't assume
2976 * that there will never be anything to do here
2977 */
2978 chunks_skipped = -1;
2979 continue;
2980 }
2981
2982 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2983 r10_bio->state = 0;
2984 raise_barrier(conf, rb2 != NULL);
2985 atomic_set(&r10_bio->remaining, 0);
2986
2987 r10_bio->master_bio = (struct bio*)rb2;
2988 if (rb2)
2989 atomic_inc(&rb2->remaining);
2990 r10_bio->mddev = mddev;
2991 set_bit(R10BIO_IsRecover, &r10_bio->state);
2992 r10_bio->sector = sect;
2993
2994 raid10_find_phys(conf, r10_bio);
2995
2996 /* Need to check if the array will still be
2997 * degraded
2998 */
2999 for (j = 0; j < conf->geo.raid_disks; j++)
3000 if (conf->mirrors[j].rdev == NULL ||
3001 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3002 still_degraded = 1;
3003 break;
3004 }
3005
3006 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3007 &sync_blocks, still_degraded);
3008
3009 any_working = 0;
3010 for (j=0; j<conf->copies;j++) {
3011 int k;
3012 int d = r10_bio->devs[j].devnum;
3013 sector_t from_addr, to_addr;
3014 struct md_rdev *rdev;
3015 sector_t sector, first_bad;
3016 int bad_sectors;
3017 if (!conf->mirrors[d].rdev ||
3018 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3019 continue;
3020 /* This is where we read from */
3021 any_working = 1;
3022 rdev = conf->mirrors[d].rdev;
3023 sector = r10_bio->devs[j].addr;
3024
3025 if (is_badblock(rdev, sector, max_sync,
3026 &first_bad, &bad_sectors)) {
3027 if (first_bad > sector)
3028 max_sync = first_bad - sector;
3029 else {
3030 bad_sectors -= (sector
3031 - first_bad);
3032 if (max_sync > bad_sectors)
3033 max_sync = bad_sectors;
3034 continue;
3035 }
3036 }
3037 bio = r10_bio->devs[0].bio;
3038 bio_reset(bio);
3039 bio->bi_next = biolist;
3040 biolist = bio;
3041 bio->bi_private = r10_bio;
3042 bio->bi_end_io = end_sync_read;
3043 bio->bi_rw = READ;
3044 from_addr = r10_bio->devs[j].addr;
3045 bio->bi_iter.bi_sector = from_addr +
3046 rdev->data_offset;
3047 bio->bi_bdev = rdev->bdev;
3048 atomic_inc(&rdev->nr_pending);
3049 /* and we write to 'i' (if not in_sync) */
3050
3051 for (k=0; k<conf->copies; k++)
3052 if (r10_bio->devs[k].devnum == i)
3053 break;
3054 BUG_ON(k == conf->copies);
3055 to_addr = r10_bio->devs[k].addr;
3056 r10_bio->devs[0].devnum = d;
3057 r10_bio->devs[0].addr = from_addr;
3058 r10_bio->devs[1].devnum = i;
3059 r10_bio->devs[1].addr = to_addr;
3060
3061 rdev = mirror->rdev;
3062 if (!test_bit(In_sync, &rdev->flags)) {
3063 bio = r10_bio->devs[1].bio;
3064 bio_reset(bio);
3065 bio->bi_next = biolist;
3066 biolist = bio;
3067 bio->bi_private = r10_bio;
3068 bio->bi_end_io = end_sync_write;
3069 bio->bi_rw = WRITE;
3070 bio->bi_iter.bi_sector = to_addr
3071 + rdev->data_offset;
3072 bio->bi_bdev = rdev->bdev;
3073 atomic_inc(&r10_bio->remaining);
3074 } else
3075 r10_bio->devs[1].bio->bi_end_io = NULL;
3076
3077 /* and maybe write to replacement */
3078 bio = r10_bio->devs[1].repl_bio;
3079 if (bio)
3080 bio->bi_end_io = NULL;
3081 rdev = mirror->replacement;
3082 /* Note: if rdev != NULL, then bio
3083 * cannot be NULL as r10buf_pool_alloc will
3084 * have allocated it.
3085 * So the second test here is pointless.
3086 * But it keeps semantic-checkers happy, and
3087 * this comment keeps human reviewers
3088 * happy.
3089 */
3090 if (rdev == NULL || bio == NULL ||
3091 test_bit(Faulty, &rdev->flags))
3092 break;
3093 bio_reset(bio);
3094 bio->bi_next = biolist;
3095 biolist = bio;
3096 bio->bi_private = r10_bio;
3097 bio->bi_end_io = end_sync_write;
3098 bio->bi_rw = WRITE;
3099 bio->bi_iter.bi_sector = to_addr +
3100 rdev->data_offset;
3101 bio->bi_bdev = rdev->bdev;
3102 atomic_inc(&r10_bio->remaining);
3103 break;
3104 }
3105 if (j == conf->copies) {
3106 /* Cannot recover, so abort the recovery or
3107 * record a bad block */
3108 if (any_working) {
3109 /* problem is that there are bad blocks
3110 * on other device(s)
3111 */
3112 int k;
3113 for (k = 0; k < conf->copies; k++)
3114 if (r10_bio->devs[k].devnum == i)
3115 break;
3116 if (!test_bit(In_sync,
3117 &mirror->rdev->flags)
3118 && !rdev_set_badblocks(
3119 mirror->rdev,
3120 r10_bio->devs[k].addr,
3121 max_sync, 0))
3122 any_working = 0;
3123 if (mirror->replacement &&
3124 !rdev_set_badblocks(
3125 mirror->replacement,
3126 r10_bio->devs[k].addr,
3127 max_sync, 0))
3128 any_working = 0;
3129 }
3130 if (!any_working) {
3131 if (!test_and_set_bit(MD_RECOVERY_INTR,
3132 &mddev->recovery))
3133 printk(KERN_INFO "md/raid10:%s: insufficient "
3134 "working devices for recovery.\n",
3135 mdname(mddev));
3136 mirror->recovery_disabled
3137 = mddev->recovery_disabled;
3138 }
3139 put_buf(r10_bio);
3140 if (rb2)
3141 atomic_dec(&rb2->remaining);
3142 r10_bio = rb2;
3143 break;
3144 }
3145 }
3146 if (biolist == NULL) {
3147 while (r10_bio) {
3148 struct r10bio *rb2 = r10_bio;
3149 r10_bio = (struct r10bio*) rb2->master_bio;
3150 rb2->master_bio = NULL;
3151 put_buf(rb2);
3152 }
3153 goto giveup;
3154 }
3155 } else {
3156 /* resync. Schedule a read for every block at this virt offset */
3157 int count = 0;
3158
3159 bitmap_cond_end_sync(mddev->bitmap, sector_nr, 0);
3160
3161 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3162 &sync_blocks, mddev->degraded) &&
3163 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3164 &mddev->recovery)) {
3165 /* We can skip this block */
3166 *skipped = 1;
3167 return sync_blocks + sectors_skipped;
3168 }
3169 if (sync_blocks < max_sync)
3170 max_sync = sync_blocks;
3171 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3172 r10_bio->state = 0;
3173
3174 r10_bio->mddev = mddev;
3175 atomic_set(&r10_bio->remaining, 0);
3176 raise_barrier(conf, 0);
3177 conf->next_resync = sector_nr;
3178
3179 r10_bio->master_bio = NULL;
3180 r10_bio->sector = sector_nr;
3181 set_bit(R10BIO_IsSync, &r10_bio->state);
3182 raid10_find_phys(conf, r10_bio);
3183 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3184
3185 for (i = 0; i < conf->copies; i++) {
3186 int d = r10_bio->devs[i].devnum;
3187 sector_t first_bad, sector;
3188 int bad_sectors;
3189
3190 if (r10_bio->devs[i].repl_bio)
3191 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3192
3193 bio = r10_bio->devs[i].bio;
3194 bio_reset(bio);
3195 bio->bi_error = -EIO;
3196 if (conf->mirrors[d].rdev == NULL ||
3197 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3198 continue;
3199 sector = r10_bio->devs[i].addr;
3200 if (is_badblock(conf->mirrors[d].rdev,
3201 sector, max_sync,
3202 &first_bad, &bad_sectors)) {
3203 if (first_bad > sector)
3204 max_sync = first_bad - sector;
3205 else {
3206 bad_sectors -= (sector - first_bad);
3207 if (max_sync > bad_sectors)
3208 max_sync = bad_sectors;
3209 continue;
3210 }
3211 }
3212 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3213 atomic_inc(&r10_bio->remaining);
3214 bio->bi_next = biolist;
3215 biolist = bio;
3216 bio->bi_private = r10_bio;
3217 bio->bi_end_io = end_sync_read;
3218 bio->bi_rw = READ;
3219 bio->bi_iter.bi_sector = sector +
3220 conf->mirrors[d].rdev->data_offset;
3221 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3222 count++;
3223
3224 if (conf->mirrors[d].replacement == NULL ||
3225 test_bit(Faulty,
3226 &conf->mirrors[d].replacement->flags))
3227 continue;
3228
3229 /* Need to set up for writing to the replacement */
3230 bio = r10_bio->devs[i].repl_bio;
3231 bio_reset(bio);
3232 bio->bi_error = -EIO;
3233
3234 sector = r10_bio->devs[i].addr;
3235 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3236 bio->bi_next = biolist;
3237 biolist = bio;
3238 bio->bi_private = r10_bio;
3239 bio->bi_end_io = end_sync_write;
3240 bio->bi_rw = WRITE;
3241 bio->bi_iter.bi_sector = sector +
3242 conf->mirrors[d].replacement->data_offset;
3243 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3244 count++;
3245 }
3246
3247 if (count < 2) {
3248 for (i=0; i<conf->copies; i++) {
3249 int d = r10_bio->devs[i].devnum;
3250 if (r10_bio->devs[i].bio->bi_end_io)
3251 rdev_dec_pending(conf->mirrors[d].rdev,
3252 mddev);
3253 if (r10_bio->devs[i].repl_bio &&
3254 r10_bio->devs[i].repl_bio->bi_end_io)
3255 rdev_dec_pending(
3256 conf->mirrors[d].replacement,
3257 mddev);
3258 }
3259 put_buf(r10_bio);
3260 biolist = NULL;
3261 goto giveup;
3262 }
3263 }
3264
3265 nr_sectors = 0;
3266 if (sector_nr + max_sync < max_sector)
3267 max_sector = sector_nr + max_sync;
3268 do {
3269 struct page *page;
3270 int len = PAGE_SIZE;
3271 if (sector_nr + (len>>9) > max_sector)
3272 len = (max_sector - sector_nr) << 9;
3273 if (len == 0)
3274 break;
3275 for (bio= biolist ; bio ; bio=bio->bi_next) {
3276 struct bio *bio2;
3277 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3278 if (bio_add_page(bio, page, len, 0))
3279 continue;
3280
3281 /* stop here */
3282 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3283 for (bio2 = biolist;
3284 bio2 && bio2 != bio;
3285 bio2 = bio2->bi_next) {
3286 /* remove last page from this bio */
3287 bio2->bi_vcnt--;
3288 bio2->bi_iter.bi_size -= len;
3289 bio_clear_flag(bio2, BIO_SEG_VALID);
3290 }
3291 goto bio_full;
3292 }
3293 nr_sectors += len>>9;
3294 sector_nr += len>>9;
3295 } while (biolist->bi_vcnt < RESYNC_PAGES);
3296 bio_full:
3297 r10_bio->sectors = nr_sectors;
3298
3299 while (biolist) {
3300 bio = biolist;
3301 biolist = biolist->bi_next;
3302
3303 bio->bi_next = NULL;
3304 r10_bio = bio->bi_private;
3305 r10_bio->sectors = nr_sectors;
3306
3307 if (bio->bi_end_io == end_sync_read) {
3308 md_sync_acct(bio->bi_bdev, nr_sectors);
3309 bio->bi_error = 0;
3310 generic_make_request(bio);
3311 }
3312 }
3313
3314 if (sectors_skipped)
3315 /* pretend they weren't skipped, it makes
3316 * no important difference in this case
3317 */
3318 md_done_sync(mddev, sectors_skipped, 1);
3319
3320 return sectors_skipped + nr_sectors;
3321 giveup:
3322 /* There is nowhere to write, so all non-sync
3323 * drives must be failed or in resync, all drives
3324 * have a bad block, so try the next chunk...
3325 */
3326 if (sector_nr + max_sync < max_sector)
3327 max_sector = sector_nr + max_sync;
3328
3329 sectors_skipped += (max_sector - sector_nr);
3330 chunks_skipped ++;
3331 sector_nr = max_sector;
3332 goto skipped;
3333 }
3334
3335 static sector_t
3336 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3337 {
3338 sector_t size;
3339 struct r10conf *conf = mddev->private;
3340
3341 if (!raid_disks)
3342 raid_disks = min(conf->geo.raid_disks,
3343 conf->prev.raid_disks);
3344 if (!sectors)
3345 sectors = conf->dev_sectors;
3346
3347 size = sectors >> conf->geo.chunk_shift;
3348 sector_div(size, conf->geo.far_copies);
3349 size = size * raid_disks;
3350 sector_div(size, conf->geo.near_copies);
3351
3352 return size << conf->geo.chunk_shift;
3353 }
3354
3355 static void calc_sectors(struct r10conf *conf, sector_t size)
3356 {
3357 /* Calculate the number of sectors-per-device that will
3358 * actually be used, and set conf->dev_sectors and
3359 * conf->stride
3360 */
3361
3362 size = size >> conf->geo.chunk_shift;
3363 sector_div(size, conf->geo.far_copies);
3364 size = size * conf->geo.raid_disks;
3365 sector_div(size, conf->geo.near_copies);
3366 /* 'size' is now the number of chunks in the array */
3367 /* calculate "used chunks per device" */
3368 size = size * conf->copies;
3369
3370 /* We need to round up when dividing by raid_disks to
3371 * get the stride size.
3372 */
3373 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3374
3375 conf->dev_sectors = size << conf->geo.chunk_shift;
3376
3377 if (conf->geo.far_offset)
3378 conf->geo.stride = 1 << conf->geo.chunk_shift;
3379 else {
3380 sector_div(size, conf->geo.far_copies);
3381 conf->geo.stride = size << conf->geo.chunk_shift;
3382 }
3383 }
3384
3385 enum geo_type {geo_new, geo_old, geo_start};
3386 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3387 {
3388 int nc, fc, fo;
3389 int layout, chunk, disks;
3390 switch (new) {
3391 case geo_old:
3392 layout = mddev->layout;
3393 chunk = mddev->chunk_sectors;
3394 disks = mddev->raid_disks - mddev->delta_disks;
3395 break;
3396 case geo_new:
3397 layout = mddev->new_layout;
3398 chunk = mddev->new_chunk_sectors;
3399 disks = mddev->raid_disks;
3400 break;
3401 default: /* avoid 'may be unused' warnings */
3402 case geo_start: /* new when starting reshape - raid_disks not
3403 * updated yet. */
3404 layout = mddev->new_layout;
3405 chunk = mddev->new_chunk_sectors;
3406 disks = mddev->raid_disks + mddev->delta_disks;
3407 break;
3408 }
3409 if (layout >> 19)
3410 return -1;
3411 if (chunk < (PAGE_SIZE >> 9) ||
3412 !is_power_of_2(chunk))
3413 return -2;
3414 nc = layout & 255;
3415 fc = (layout >> 8) & 255;
3416 fo = layout & (1<<16);
3417 geo->raid_disks = disks;
3418 geo->near_copies = nc;
3419 geo->far_copies = fc;
3420 geo->far_offset = fo;
3421 switch (layout >> 17) {
3422 case 0: /* original layout. simple but not always optimal */
3423 geo->far_set_size = disks;
3424 break;
3425 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3426 * actually using this, but leave code here just in case.*/
3427 geo->far_set_size = disks/fc;
3428 WARN(geo->far_set_size < fc,
3429 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3430 break;
3431 case 2: /* "improved" layout fixed to match documentation */
3432 geo->far_set_size = fc * nc;
3433 break;
3434 default: /* Not a valid layout */
3435 return -1;
3436 }
3437 geo->chunk_mask = chunk - 1;
3438 geo->chunk_shift = ffz(~chunk);
3439 return nc*fc;
3440 }
3441
3442 static struct r10conf *setup_conf(struct mddev *mddev)
3443 {
3444 struct r10conf *conf = NULL;
3445 int err = -EINVAL;
3446 struct geom geo;
3447 int copies;
3448
3449 copies = setup_geo(&geo, mddev, geo_new);
3450
3451 if (copies == -2) {
3452 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3453 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3454 mdname(mddev), PAGE_SIZE);
3455 goto out;
3456 }
3457
3458 if (copies < 2 || copies > mddev->raid_disks) {
3459 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3460 mdname(mddev), mddev->new_layout);
3461 goto out;
3462 }
3463
3464 err = -ENOMEM;
3465 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3466 if (!conf)
3467 goto out;
3468
3469 /* FIXME calc properly */
3470 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3471 max(0,-mddev->delta_disks)),
3472 GFP_KERNEL);
3473 if (!conf->mirrors)
3474 goto out;
3475
3476 conf->tmppage = alloc_page(GFP_KERNEL);
3477 if (!conf->tmppage)
3478 goto out;
3479
3480 conf->geo = geo;
3481 conf->copies = copies;
3482 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3483 r10bio_pool_free, conf);
3484 if (!conf->r10bio_pool)
3485 goto out;
3486
3487 calc_sectors(conf, mddev->dev_sectors);
3488 if (mddev->reshape_position == MaxSector) {
3489 conf->prev = conf->geo;
3490 conf->reshape_progress = MaxSector;
3491 } else {
3492 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3493 err = -EINVAL;
3494 goto out;
3495 }
3496 conf->reshape_progress = mddev->reshape_position;
3497 if (conf->prev.far_offset)
3498 conf->prev.stride = 1 << conf->prev.chunk_shift;
3499 else
3500 /* far_copies must be 1 */
3501 conf->prev.stride = conf->dev_sectors;
3502 }
3503 conf->reshape_safe = conf->reshape_progress;
3504 spin_lock_init(&conf->device_lock);
3505 INIT_LIST_HEAD(&conf->retry_list);
3506 INIT_LIST_HEAD(&conf->bio_end_io_list);
3507
3508 spin_lock_init(&conf->resync_lock);
3509 init_waitqueue_head(&conf->wait_barrier);
3510
3511 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3512 if (!conf->thread)
3513 goto out;
3514
3515 conf->mddev = mddev;
3516 return conf;
3517
3518 out:
3519 if (err == -ENOMEM)
3520 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3521 mdname(mddev));
3522 if (conf) {
3523 mempool_destroy(conf->r10bio_pool);
3524 kfree(conf->mirrors);
3525 safe_put_page(conf->tmppage);
3526 kfree(conf);
3527 }
3528 return ERR_PTR(err);
3529 }
3530
3531 static int raid10_run(struct mddev *mddev)
3532 {
3533 struct r10conf *conf;
3534 int i, disk_idx, chunk_size;
3535 struct raid10_info *disk;
3536 struct md_rdev *rdev;
3537 sector_t size;
3538 sector_t min_offset_diff = 0;
3539 int first = 1;
3540 bool discard_supported = false;
3541
3542 if (mddev->private == NULL) {
3543 conf = setup_conf(mddev);
3544 if (IS_ERR(conf))
3545 return PTR_ERR(conf);
3546 mddev->private = conf;
3547 }
3548 conf = mddev->private;
3549 if (!conf)
3550 goto out;
3551
3552 mddev->thread = conf->thread;
3553 conf->thread = NULL;
3554
3555 chunk_size = mddev->chunk_sectors << 9;
3556 if (mddev->queue) {
3557 blk_queue_max_discard_sectors(mddev->queue,
3558 mddev->chunk_sectors);
3559 blk_queue_max_write_same_sectors(mddev->queue, 0);
3560 blk_queue_io_min(mddev->queue, chunk_size);
3561 if (conf->geo.raid_disks % conf->geo.near_copies)
3562 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3563 else
3564 blk_queue_io_opt(mddev->queue, chunk_size *
3565 (conf->geo.raid_disks / conf->geo.near_copies));
3566 }
3567
3568 rdev_for_each(rdev, mddev) {
3569 long long diff;
3570 struct request_queue *q;
3571
3572 disk_idx = rdev->raid_disk;
3573 if (disk_idx < 0)
3574 continue;
3575 if (disk_idx >= conf->geo.raid_disks &&
3576 disk_idx >= conf->prev.raid_disks)
3577 continue;
3578 disk = conf->mirrors + disk_idx;
3579
3580 if (test_bit(Replacement, &rdev->flags)) {
3581 if (disk->replacement)
3582 goto out_free_conf;
3583 disk->replacement = rdev;
3584 } else {
3585 if (disk->rdev)
3586 goto out_free_conf;
3587 disk->rdev = rdev;
3588 }
3589 q = bdev_get_queue(rdev->bdev);
3590 diff = (rdev->new_data_offset - rdev->data_offset);
3591 if (!mddev->reshape_backwards)
3592 diff = -diff;
3593 if (diff < 0)
3594 diff = 0;
3595 if (first || diff < min_offset_diff)
3596 min_offset_diff = diff;
3597
3598 if (mddev->gendisk)
3599 disk_stack_limits(mddev->gendisk, rdev->bdev,
3600 rdev->data_offset << 9);
3601
3602 disk->head_position = 0;
3603
3604 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3605 discard_supported = true;
3606 }
3607
3608 if (mddev->queue) {
3609 if (discard_supported)
3610 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3611 mddev->queue);
3612 else
3613 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3614 mddev->queue);
3615 }
3616 /* need to check that every block has at least one working mirror */
3617 if (!enough(conf, -1)) {
3618 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3619 mdname(mddev));
3620 goto out_free_conf;
3621 }
3622
3623 if (conf->reshape_progress != MaxSector) {
3624 /* must ensure that shape change is supported */
3625 if (conf->geo.far_copies != 1 &&
3626 conf->geo.far_offset == 0)
3627 goto out_free_conf;
3628 if (conf->prev.far_copies != 1 &&
3629 conf->prev.far_offset == 0)
3630 goto out_free_conf;
3631 }
3632
3633 mddev->degraded = 0;
3634 for (i = 0;
3635 i < conf->geo.raid_disks
3636 || i < conf->prev.raid_disks;
3637 i++) {
3638
3639 disk = conf->mirrors + i;
3640
3641 if (!disk->rdev && disk->replacement) {
3642 /* The replacement is all we have - use it */
3643 disk->rdev = disk->replacement;
3644 disk->replacement = NULL;
3645 clear_bit(Replacement, &disk->rdev->flags);
3646 }
3647
3648 if (!disk->rdev ||
3649 !test_bit(In_sync, &disk->rdev->flags)) {
3650 disk->head_position = 0;
3651 mddev->degraded++;
3652 if (disk->rdev &&
3653 disk->rdev->saved_raid_disk < 0)
3654 conf->fullsync = 1;
3655 }
3656 disk->recovery_disabled = mddev->recovery_disabled - 1;
3657 }
3658
3659 if (mddev->recovery_cp != MaxSector)
3660 printk(KERN_NOTICE "md/raid10:%s: not clean"
3661 " -- starting background reconstruction\n",
3662 mdname(mddev));
3663 printk(KERN_INFO
3664 "md/raid10:%s: active with %d out of %d devices\n",
3665 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3666 conf->geo.raid_disks);
3667 /*
3668 * Ok, everything is just fine now
3669 */
3670 mddev->dev_sectors = conf->dev_sectors;
3671 size = raid10_size(mddev, 0, 0);
3672 md_set_array_sectors(mddev, size);
3673 mddev->resync_max_sectors = size;
3674
3675 if (mddev->queue) {
3676 int stripe = conf->geo.raid_disks *
3677 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3678
3679 /* Calculate max read-ahead size.
3680 * We need to readahead at least twice a whole stripe....
3681 * maybe...
3682 */
3683 stripe /= conf->geo.near_copies;
3684 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3685 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3686 }
3687
3688 if (md_integrity_register(mddev))
3689 goto out_free_conf;
3690
3691 if (conf->reshape_progress != MaxSector) {
3692 unsigned long before_length, after_length;
3693
3694 before_length = ((1 << conf->prev.chunk_shift) *
3695 conf->prev.far_copies);
3696 after_length = ((1 << conf->geo.chunk_shift) *
3697 conf->geo.far_copies);
3698
3699 if (max(before_length, after_length) > min_offset_diff) {
3700 /* This cannot work */
3701 printk("md/raid10: offset difference not enough to continue reshape\n");
3702 goto out_free_conf;
3703 }
3704 conf->offset_diff = min_offset_diff;
3705
3706 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3707 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3708 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3709 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3710 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3711 "reshape");
3712 }
3713
3714 return 0;
3715
3716 out_free_conf:
3717 md_unregister_thread(&mddev->thread);
3718 mempool_destroy(conf->r10bio_pool);
3719 safe_put_page(conf->tmppage);
3720 kfree(conf->mirrors);
3721 kfree(conf);
3722 mddev->private = NULL;
3723 out:
3724 return -EIO;
3725 }
3726
3727 static void raid10_free(struct mddev *mddev, void *priv)
3728 {
3729 struct r10conf *conf = priv;
3730
3731 mempool_destroy(conf->r10bio_pool);
3732 safe_put_page(conf->tmppage);
3733 kfree(conf->mirrors);
3734 kfree(conf->mirrors_old);
3735 kfree(conf->mirrors_new);
3736 kfree(conf);
3737 }
3738
3739 static void raid10_quiesce(struct mddev *mddev, int state)
3740 {
3741 struct r10conf *conf = mddev->private;
3742
3743 switch(state) {
3744 case 1:
3745 raise_barrier(conf, 0);
3746 break;
3747 case 0:
3748 lower_barrier(conf);
3749 break;
3750 }
3751 }
3752
3753 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3754 {
3755 /* Resize of 'far' arrays is not supported.
3756 * For 'near' and 'offset' arrays we can set the
3757 * number of sectors used to be an appropriate multiple
3758 * of the chunk size.
3759 * For 'offset', this is far_copies*chunksize.
3760 * For 'near' the multiplier is the LCM of
3761 * near_copies and raid_disks.
3762 * So if far_copies > 1 && !far_offset, fail.
3763 * Else find LCM(raid_disks, near_copy)*far_copies and
3764 * multiply by chunk_size. Then round to this number.
3765 * This is mostly done by raid10_size()
3766 */
3767 struct r10conf *conf = mddev->private;
3768 sector_t oldsize, size;
3769
3770 if (mddev->reshape_position != MaxSector)
3771 return -EBUSY;
3772
3773 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3774 return -EINVAL;
3775
3776 oldsize = raid10_size(mddev, 0, 0);
3777 size = raid10_size(mddev, sectors, 0);
3778 if (mddev->external_size &&
3779 mddev->array_sectors > size)
3780 return -EINVAL;
3781 if (mddev->bitmap) {
3782 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3783 if (ret)
3784 return ret;
3785 }
3786 md_set_array_sectors(mddev, size);
3787 if (mddev->queue) {
3788 set_capacity(mddev->gendisk, mddev->array_sectors);
3789 revalidate_disk(mddev->gendisk);
3790 }
3791 if (sectors > mddev->dev_sectors &&
3792 mddev->recovery_cp > oldsize) {
3793 mddev->recovery_cp = oldsize;
3794 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3795 }
3796 calc_sectors(conf, sectors);
3797 mddev->dev_sectors = conf->dev_sectors;
3798 mddev->resync_max_sectors = size;
3799 return 0;
3800 }
3801
3802 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3803 {
3804 struct md_rdev *rdev;
3805 struct r10conf *conf;
3806
3807 if (mddev->degraded > 0) {
3808 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3809 mdname(mddev));
3810 return ERR_PTR(-EINVAL);
3811 }
3812 sector_div(size, devs);
3813
3814 /* Set new parameters */
3815 mddev->new_level = 10;
3816 /* new layout: far_copies = 1, near_copies = 2 */
3817 mddev->new_layout = (1<<8) + 2;
3818 mddev->new_chunk_sectors = mddev->chunk_sectors;
3819 mddev->delta_disks = mddev->raid_disks;
3820 mddev->raid_disks *= 2;
3821 /* make sure it will be not marked as dirty */
3822 mddev->recovery_cp = MaxSector;
3823 mddev->dev_sectors = size;
3824
3825 conf = setup_conf(mddev);
3826 if (!IS_ERR(conf)) {
3827 rdev_for_each(rdev, mddev)
3828 if (rdev->raid_disk >= 0) {
3829 rdev->new_raid_disk = rdev->raid_disk * 2;
3830 rdev->sectors = size;
3831 }
3832 conf->barrier = 1;
3833 }
3834
3835 return conf;
3836 }
3837
3838 static void *raid10_takeover(struct mddev *mddev)
3839 {
3840 struct r0conf *raid0_conf;
3841
3842 /* raid10 can take over:
3843 * raid0 - providing it has only two drives
3844 */
3845 if (mddev->level == 0) {
3846 /* for raid0 takeover only one zone is supported */
3847 raid0_conf = mddev->private;
3848 if (raid0_conf->nr_strip_zones > 1) {
3849 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3850 " with more than one zone.\n",
3851 mdname(mddev));
3852 return ERR_PTR(-EINVAL);
3853 }
3854 return raid10_takeover_raid0(mddev,
3855 raid0_conf->strip_zone->zone_end,
3856 raid0_conf->strip_zone->nb_dev);
3857 }
3858 return ERR_PTR(-EINVAL);
3859 }
3860
3861 static int raid10_check_reshape(struct mddev *mddev)
3862 {
3863 /* Called when there is a request to change
3864 * - layout (to ->new_layout)
3865 * - chunk size (to ->new_chunk_sectors)
3866 * - raid_disks (by delta_disks)
3867 * or when trying to restart a reshape that was ongoing.
3868 *
3869 * We need to validate the request and possibly allocate
3870 * space if that might be an issue later.
3871 *
3872 * Currently we reject any reshape of a 'far' mode array,
3873 * allow chunk size to change if new is generally acceptable,
3874 * allow raid_disks to increase, and allow
3875 * a switch between 'near' mode and 'offset' mode.
3876 */
3877 struct r10conf *conf = mddev->private;
3878 struct geom geo;
3879
3880 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3881 return -EINVAL;
3882
3883 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3884 /* mustn't change number of copies */
3885 return -EINVAL;
3886 if (geo.far_copies > 1 && !geo.far_offset)
3887 /* Cannot switch to 'far' mode */
3888 return -EINVAL;
3889
3890 if (mddev->array_sectors & geo.chunk_mask)
3891 /* not factor of array size */
3892 return -EINVAL;
3893
3894 if (!enough(conf, -1))
3895 return -EINVAL;
3896
3897 kfree(conf->mirrors_new);
3898 conf->mirrors_new = NULL;
3899 if (mddev->delta_disks > 0) {
3900 /* allocate new 'mirrors' list */
3901 conf->mirrors_new = kzalloc(
3902 sizeof(struct raid10_info)
3903 *(mddev->raid_disks +
3904 mddev->delta_disks),
3905 GFP_KERNEL);
3906 if (!conf->mirrors_new)
3907 return -ENOMEM;
3908 }
3909 return 0;
3910 }
3911
3912 /*
3913 * Need to check if array has failed when deciding whether to:
3914 * - start an array
3915 * - remove non-faulty devices
3916 * - add a spare
3917 * - allow a reshape
3918 * This determination is simple when no reshape is happening.
3919 * However if there is a reshape, we need to carefully check
3920 * both the before and after sections.
3921 * This is because some failed devices may only affect one
3922 * of the two sections, and some non-in_sync devices may
3923 * be insync in the section most affected by failed devices.
3924 */
3925 static int calc_degraded(struct r10conf *conf)
3926 {
3927 int degraded, degraded2;
3928 int i;
3929
3930 rcu_read_lock();
3931 degraded = 0;
3932 /* 'prev' section first */
3933 for (i = 0; i < conf->prev.raid_disks; i++) {
3934 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3935 if (!rdev || test_bit(Faulty, &rdev->flags))
3936 degraded++;
3937 else if (!test_bit(In_sync, &rdev->flags))
3938 /* When we can reduce the number of devices in
3939 * an array, this might not contribute to
3940 * 'degraded'. It does now.
3941 */
3942 degraded++;
3943 }
3944 rcu_read_unlock();
3945 if (conf->geo.raid_disks == conf->prev.raid_disks)
3946 return degraded;
3947 rcu_read_lock();
3948 degraded2 = 0;
3949 for (i = 0; i < conf->geo.raid_disks; i++) {
3950 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3951 if (!rdev || test_bit(Faulty, &rdev->flags))
3952 degraded2++;
3953 else if (!test_bit(In_sync, &rdev->flags)) {
3954 /* If reshape is increasing the number of devices,
3955 * this section has already been recovered, so
3956 * it doesn't contribute to degraded.
3957 * else it does.
3958 */
3959 if (conf->geo.raid_disks <= conf->prev.raid_disks)
3960 degraded2++;
3961 }
3962 }
3963 rcu_read_unlock();
3964 if (degraded2 > degraded)
3965 return degraded2;
3966 return degraded;
3967 }
3968
3969 static int raid10_start_reshape(struct mddev *mddev)
3970 {
3971 /* A 'reshape' has been requested. This commits
3972 * the various 'new' fields and sets MD_RECOVER_RESHAPE
3973 * This also checks if there are enough spares and adds them
3974 * to the array.
3975 * We currently require enough spares to make the final
3976 * array non-degraded. We also require that the difference
3977 * between old and new data_offset - on each device - is
3978 * enough that we never risk over-writing.
3979 */
3980
3981 unsigned long before_length, after_length;
3982 sector_t min_offset_diff = 0;
3983 int first = 1;
3984 struct geom new;
3985 struct r10conf *conf = mddev->private;
3986 struct md_rdev *rdev;
3987 int spares = 0;
3988 int ret;
3989
3990 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3991 return -EBUSY;
3992
3993 if (setup_geo(&new, mddev, geo_start) != conf->copies)
3994 return -EINVAL;
3995
3996 before_length = ((1 << conf->prev.chunk_shift) *
3997 conf->prev.far_copies);
3998 after_length = ((1 << conf->geo.chunk_shift) *
3999 conf->geo.far_copies);
4000
4001 rdev_for_each(rdev, mddev) {
4002 if (!test_bit(In_sync, &rdev->flags)
4003 && !test_bit(Faulty, &rdev->flags))
4004 spares++;
4005 if (rdev->raid_disk >= 0) {
4006 long long diff = (rdev->new_data_offset
4007 - rdev->data_offset);
4008 if (!mddev->reshape_backwards)
4009 diff = -diff;
4010 if (diff < 0)
4011 diff = 0;
4012 if (first || diff < min_offset_diff)
4013 min_offset_diff = diff;
4014 }
4015 }
4016
4017 if (max(before_length, after_length) > min_offset_diff)
4018 return -EINVAL;
4019
4020 if (spares < mddev->delta_disks)
4021 return -EINVAL;
4022
4023 conf->offset_diff = min_offset_diff;
4024 spin_lock_irq(&conf->device_lock);
4025 if (conf->mirrors_new) {
4026 memcpy(conf->mirrors_new, conf->mirrors,
4027 sizeof(struct raid10_info)*conf->prev.raid_disks);
4028 smp_mb();
4029 kfree(conf->mirrors_old);
4030 conf->mirrors_old = conf->mirrors;
4031 conf->mirrors = conf->mirrors_new;
4032 conf->mirrors_new = NULL;
4033 }
4034 setup_geo(&conf->geo, mddev, geo_start);
4035 smp_mb();
4036 if (mddev->reshape_backwards) {
4037 sector_t size = raid10_size(mddev, 0, 0);
4038 if (size < mddev->array_sectors) {
4039 spin_unlock_irq(&conf->device_lock);
4040 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4041 mdname(mddev));
4042 return -EINVAL;
4043 }
4044 mddev->resync_max_sectors = size;
4045 conf->reshape_progress = size;
4046 } else
4047 conf->reshape_progress = 0;
4048 conf->reshape_safe = conf->reshape_progress;
4049 spin_unlock_irq(&conf->device_lock);
4050
4051 if (mddev->delta_disks && mddev->bitmap) {
4052 ret = bitmap_resize(mddev->bitmap,
4053 raid10_size(mddev, 0,
4054 conf->geo.raid_disks),
4055 0, 0);
4056 if (ret)
4057 goto abort;
4058 }
4059 if (mddev->delta_disks > 0) {
4060 rdev_for_each(rdev, mddev)
4061 if (rdev->raid_disk < 0 &&
4062 !test_bit(Faulty, &rdev->flags)) {
4063 if (raid10_add_disk(mddev, rdev) == 0) {
4064 if (rdev->raid_disk >=
4065 conf->prev.raid_disks)
4066 set_bit(In_sync, &rdev->flags);
4067 else
4068 rdev->recovery_offset = 0;
4069
4070 if (sysfs_link_rdev(mddev, rdev))
4071 /* Failure here is OK */;
4072 }
4073 } else if (rdev->raid_disk >= conf->prev.raid_disks
4074 && !test_bit(Faulty, &rdev->flags)) {
4075 /* This is a spare that was manually added */
4076 set_bit(In_sync, &rdev->flags);
4077 }
4078 }
4079 /* When a reshape changes the number of devices,
4080 * ->degraded is measured against the larger of the
4081 * pre and post numbers.
4082 */
4083 spin_lock_irq(&conf->device_lock);
4084 mddev->degraded = calc_degraded(conf);
4085 spin_unlock_irq(&conf->device_lock);
4086 mddev->raid_disks = conf->geo.raid_disks;
4087 mddev->reshape_position = conf->reshape_progress;
4088 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4089
4090 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4091 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4092 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4093 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4094 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4095
4096 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4097 "reshape");
4098 if (!mddev->sync_thread) {
4099 ret = -EAGAIN;
4100 goto abort;
4101 }
4102 conf->reshape_checkpoint = jiffies;
4103 md_wakeup_thread(mddev->sync_thread);
4104 md_new_event(mddev);
4105 return 0;
4106
4107 abort:
4108 mddev->recovery = 0;
4109 spin_lock_irq(&conf->device_lock);
4110 conf->geo = conf->prev;
4111 mddev->raid_disks = conf->geo.raid_disks;
4112 rdev_for_each(rdev, mddev)
4113 rdev->new_data_offset = rdev->data_offset;
4114 smp_wmb();
4115 conf->reshape_progress = MaxSector;
4116 conf->reshape_safe = MaxSector;
4117 mddev->reshape_position = MaxSector;
4118 spin_unlock_irq(&conf->device_lock);
4119 return ret;
4120 }
4121
4122 /* Calculate the last device-address that could contain
4123 * any block from the chunk that includes the array-address 's'
4124 * and report the next address.
4125 * i.e. the address returned will be chunk-aligned and after
4126 * any data that is in the chunk containing 's'.
4127 */
4128 static sector_t last_dev_address(sector_t s, struct geom *geo)
4129 {
4130 s = (s | geo->chunk_mask) + 1;
4131 s >>= geo->chunk_shift;
4132 s *= geo->near_copies;
4133 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4134 s *= geo->far_copies;
4135 s <<= geo->chunk_shift;
4136 return s;
4137 }
4138
4139 /* Calculate the first device-address that could contain
4140 * any block from the chunk that includes the array-address 's'.
4141 * This too will be the start of a chunk
4142 */
4143 static sector_t first_dev_address(sector_t s, struct geom *geo)
4144 {
4145 s >>= geo->chunk_shift;
4146 s *= geo->near_copies;
4147 sector_div(s, geo->raid_disks);
4148 s *= geo->far_copies;
4149 s <<= geo->chunk_shift;
4150 return s;
4151 }
4152
4153 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4154 int *skipped)
4155 {
4156 /* We simply copy at most one chunk (smallest of old and new)
4157 * at a time, possibly less if that exceeds RESYNC_PAGES,
4158 * or we hit a bad block or something.
4159 * This might mean we pause for normal IO in the middle of
4160 * a chunk, but that is not a problem as mddev->reshape_position
4161 * can record any location.
4162 *
4163 * If we will want to write to a location that isn't
4164 * yet recorded as 'safe' (i.e. in metadata on disk) then
4165 * we need to flush all reshape requests and update the metadata.
4166 *
4167 * When reshaping forwards (e.g. to more devices), we interpret
4168 * 'safe' as the earliest block which might not have been copied
4169 * down yet. We divide this by previous stripe size and multiply
4170 * by previous stripe length to get lowest device offset that we
4171 * cannot write to yet.
4172 * We interpret 'sector_nr' as an address that we want to write to.
4173 * From this we use last_device_address() to find where we might
4174 * write to, and first_device_address on the 'safe' position.
4175 * If this 'next' write position is after the 'safe' position,
4176 * we must update the metadata to increase the 'safe' position.
4177 *
4178 * When reshaping backwards, we round in the opposite direction
4179 * and perform the reverse test: next write position must not be
4180 * less than current safe position.
4181 *
4182 * In all this the minimum difference in data offsets
4183 * (conf->offset_diff - always positive) allows a bit of slack,
4184 * so next can be after 'safe', but not by more than offset_diff
4185 *
4186 * We need to prepare all the bios here before we start any IO
4187 * to ensure the size we choose is acceptable to all devices.
4188 * The means one for each copy for write-out and an extra one for
4189 * read-in.
4190 * We store the read-in bio in ->master_bio and the others in
4191 * ->devs[x].bio and ->devs[x].repl_bio.
4192 */
4193 struct r10conf *conf = mddev->private;
4194 struct r10bio *r10_bio;
4195 sector_t next, safe, last;
4196 int max_sectors;
4197 int nr_sectors;
4198 int s;
4199 struct md_rdev *rdev;
4200 int need_flush = 0;
4201 struct bio *blist;
4202 struct bio *bio, *read_bio;
4203 int sectors_done = 0;
4204
4205 if (sector_nr == 0) {
4206 /* If restarting in the middle, skip the initial sectors */
4207 if (mddev->reshape_backwards &&
4208 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4209 sector_nr = (raid10_size(mddev, 0, 0)
4210 - conf->reshape_progress);
4211 } else if (!mddev->reshape_backwards &&
4212 conf->reshape_progress > 0)
4213 sector_nr = conf->reshape_progress;
4214 if (sector_nr) {
4215 mddev->curr_resync_completed = sector_nr;
4216 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4217 *skipped = 1;
4218 return sector_nr;
4219 }
4220 }
4221
4222 /* We don't use sector_nr to track where we are up to
4223 * as that doesn't work well for ->reshape_backwards.
4224 * So just use ->reshape_progress.
4225 */
4226 if (mddev->reshape_backwards) {
4227 /* 'next' is the earliest device address that we might
4228 * write to for this chunk in the new layout
4229 */
4230 next = first_dev_address(conf->reshape_progress - 1,
4231 &conf->geo);
4232
4233 /* 'safe' is the last device address that we might read from
4234 * in the old layout after a restart
4235 */
4236 safe = last_dev_address(conf->reshape_safe - 1,
4237 &conf->prev);
4238
4239 if (next + conf->offset_diff < safe)
4240 need_flush = 1;
4241
4242 last = conf->reshape_progress - 1;
4243 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4244 & conf->prev.chunk_mask);
4245 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4246 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4247 } else {
4248 /* 'next' is after the last device address that we
4249 * might write to for this chunk in the new layout
4250 */
4251 next = last_dev_address(conf->reshape_progress, &conf->geo);
4252
4253 /* 'safe' is the earliest device address that we might
4254 * read from in the old layout after a restart
4255 */
4256 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4257
4258 /* Need to update metadata if 'next' might be beyond 'safe'
4259 * as that would possibly corrupt data
4260 */
4261 if (next > safe + conf->offset_diff)
4262 need_flush = 1;
4263
4264 sector_nr = conf->reshape_progress;
4265 last = sector_nr | (conf->geo.chunk_mask
4266 & conf->prev.chunk_mask);
4267
4268 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4269 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4270 }
4271
4272 if (need_flush ||
4273 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4274 /* Need to update reshape_position in metadata */
4275 wait_barrier(conf);
4276 mddev->reshape_position = conf->reshape_progress;
4277 if (mddev->reshape_backwards)
4278 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4279 - conf->reshape_progress;
4280 else
4281 mddev->curr_resync_completed = conf->reshape_progress;
4282 conf->reshape_checkpoint = jiffies;
4283 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4284 md_wakeup_thread(mddev->thread);
4285 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4286 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4287 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4288 allow_barrier(conf);
4289 return sectors_done;
4290 }
4291 conf->reshape_safe = mddev->reshape_position;
4292 allow_barrier(conf);
4293 }
4294
4295 read_more:
4296 /* Now schedule reads for blocks from sector_nr to last */
4297 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4298 r10_bio->state = 0;
4299 raise_barrier(conf, sectors_done != 0);
4300 atomic_set(&r10_bio->remaining, 0);
4301 r10_bio->mddev = mddev;
4302 r10_bio->sector = sector_nr;
4303 set_bit(R10BIO_IsReshape, &r10_bio->state);
4304 r10_bio->sectors = last - sector_nr + 1;
4305 rdev = read_balance(conf, r10_bio, &max_sectors);
4306 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4307
4308 if (!rdev) {
4309 /* Cannot read from here, so need to record bad blocks
4310 * on all the target devices.
4311 */
4312 // FIXME
4313 mempool_free(r10_bio, conf->r10buf_pool);
4314 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4315 return sectors_done;
4316 }
4317
4318 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4319
4320 read_bio->bi_bdev = rdev->bdev;
4321 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4322 + rdev->data_offset);
4323 read_bio->bi_private = r10_bio;
4324 read_bio->bi_end_io = end_sync_read;
4325 read_bio->bi_rw = READ;
4326 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4327 read_bio->bi_error = 0;
4328 read_bio->bi_vcnt = 0;
4329 read_bio->bi_iter.bi_size = 0;
4330 r10_bio->master_bio = read_bio;
4331 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4332
4333 /* Now find the locations in the new layout */
4334 __raid10_find_phys(&conf->geo, r10_bio);
4335
4336 blist = read_bio;
4337 read_bio->bi_next = NULL;
4338
4339 for (s = 0; s < conf->copies*2; s++) {
4340 struct bio *b;
4341 int d = r10_bio->devs[s/2].devnum;
4342 struct md_rdev *rdev2;
4343 if (s&1) {
4344 rdev2 = conf->mirrors[d].replacement;
4345 b = r10_bio->devs[s/2].repl_bio;
4346 } else {
4347 rdev2 = conf->mirrors[d].rdev;
4348 b = r10_bio->devs[s/2].bio;
4349 }
4350 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4351 continue;
4352
4353 bio_reset(b);
4354 b->bi_bdev = rdev2->bdev;
4355 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4356 rdev2->new_data_offset;
4357 b->bi_private = r10_bio;
4358 b->bi_end_io = end_reshape_write;
4359 b->bi_rw = WRITE;
4360 b->bi_next = blist;
4361 blist = b;
4362 }
4363
4364 /* Now add as many pages as possible to all of these bios. */
4365
4366 nr_sectors = 0;
4367 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4368 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4369 int len = (max_sectors - s) << 9;
4370 if (len > PAGE_SIZE)
4371 len = PAGE_SIZE;
4372 for (bio = blist; bio ; bio = bio->bi_next) {
4373 struct bio *bio2;
4374 if (bio_add_page(bio, page, len, 0))
4375 continue;
4376
4377 /* Didn't fit, must stop */
4378 for (bio2 = blist;
4379 bio2 && bio2 != bio;
4380 bio2 = bio2->bi_next) {
4381 /* Remove last page from this bio */
4382 bio2->bi_vcnt--;
4383 bio2->bi_iter.bi_size -= len;
4384 bio_clear_flag(bio2, BIO_SEG_VALID);
4385 }
4386 goto bio_full;
4387 }
4388 sector_nr += len >> 9;
4389 nr_sectors += len >> 9;
4390 }
4391 bio_full:
4392 r10_bio->sectors = nr_sectors;
4393
4394 /* Now submit the read */
4395 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4396 atomic_inc(&r10_bio->remaining);
4397 read_bio->bi_next = NULL;
4398 generic_make_request(read_bio);
4399 sector_nr += nr_sectors;
4400 sectors_done += nr_sectors;
4401 if (sector_nr <= last)
4402 goto read_more;
4403
4404 /* Now that we have done the whole section we can
4405 * update reshape_progress
4406 */
4407 if (mddev->reshape_backwards)
4408 conf->reshape_progress -= sectors_done;
4409 else
4410 conf->reshape_progress += sectors_done;
4411
4412 return sectors_done;
4413 }
4414
4415 static void end_reshape_request(struct r10bio *r10_bio);
4416 static int handle_reshape_read_error(struct mddev *mddev,
4417 struct r10bio *r10_bio);
4418 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4419 {
4420 /* Reshape read completed. Hopefully we have a block
4421 * to write out.
4422 * If we got a read error then we do sync 1-page reads from
4423 * elsewhere until we find the data - or give up.
4424 */
4425 struct r10conf *conf = mddev->private;
4426 int s;
4427
4428 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4429 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4430 /* Reshape has been aborted */
4431 md_done_sync(mddev, r10_bio->sectors, 0);
4432 return;
4433 }
4434
4435 /* We definitely have the data in the pages, schedule the
4436 * writes.
4437 */
4438 atomic_set(&r10_bio->remaining, 1);
4439 for (s = 0; s < conf->copies*2; s++) {
4440 struct bio *b;
4441 int d = r10_bio->devs[s/2].devnum;
4442 struct md_rdev *rdev;
4443 if (s&1) {
4444 rdev = conf->mirrors[d].replacement;
4445 b = r10_bio->devs[s/2].repl_bio;
4446 } else {
4447 rdev = conf->mirrors[d].rdev;
4448 b = r10_bio->devs[s/2].bio;
4449 }
4450 if (!rdev || test_bit(Faulty, &rdev->flags))
4451 continue;
4452 atomic_inc(&rdev->nr_pending);
4453 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4454 atomic_inc(&r10_bio->remaining);
4455 b->bi_next = NULL;
4456 generic_make_request(b);
4457 }
4458 end_reshape_request(r10_bio);
4459 }
4460
4461 static void end_reshape(struct r10conf *conf)
4462 {
4463 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4464 return;
4465
4466 spin_lock_irq(&conf->device_lock);
4467 conf->prev = conf->geo;
4468 md_finish_reshape(conf->mddev);
4469 smp_wmb();
4470 conf->reshape_progress = MaxSector;
4471 conf->reshape_safe = MaxSector;
4472 spin_unlock_irq(&conf->device_lock);
4473
4474 /* read-ahead size must cover two whole stripes, which is
4475 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4476 */
4477 if (conf->mddev->queue) {
4478 int stripe = conf->geo.raid_disks *
4479 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4480 stripe /= conf->geo.near_copies;
4481 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4482 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4483 }
4484 conf->fullsync = 0;
4485 }
4486
4487 static int handle_reshape_read_error(struct mddev *mddev,
4488 struct r10bio *r10_bio)
4489 {
4490 /* Use sync reads to get the blocks from somewhere else */
4491 int sectors = r10_bio->sectors;
4492 struct r10conf *conf = mddev->private;
4493 struct {
4494 struct r10bio r10_bio;
4495 struct r10dev devs[conf->copies];
4496 } on_stack;
4497 struct r10bio *r10b = &on_stack.r10_bio;
4498 int slot = 0;
4499 int idx = 0;
4500 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4501
4502 r10b->sector = r10_bio->sector;
4503 __raid10_find_phys(&conf->prev, r10b);
4504
4505 while (sectors) {
4506 int s = sectors;
4507 int success = 0;
4508 int first_slot = slot;
4509
4510 if (s > (PAGE_SIZE >> 9))
4511 s = PAGE_SIZE >> 9;
4512
4513 while (!success) {
4514 int d = r10b->devs[slot].devnum;
4515 struct md_rdev *rdev = conf->mirrors[d].rdev;
4516 sector_t addr;
4517 if (rdev == NULL ||
4518 test_bit(Faulty, &rdev->flags) ||
4519 !test_bit(In_sync, &rdev->flags))
4520 goto failed;
4521
4522 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4523 success = sync_page_io(rdev,
4524 addr,
4525 s << 9,
4526 bvec[idx].bv_page,
4527 READ, false);
4528 if (success)
4529 break;
4530 failed:
4531 slot++;
4532 if (slot >= conf->copies)
4533 slot = 0;
4534 if (slot == first_slot)
4535 break;
4536 }
4537 if (!success) {
4538 /* couldn't read this block, must give up */
4539 set_bit(MD_RECOVERY_INTR,
4540 &mddev->recovery);
4541 return -EIO;
4542 }
4543 sectors -= s;
4544 idx++;
4545 }
4546 return 0;
4547 }
4548
4549 static void end_reshape_write(struct bio *bio)
4550 {
4551 struct r10bio *r10_bio = bio->bi_private;
4552 struct mddev *mddev = r10_bio->mddev;
4553 struct r10conf *conf = mddev->private;
4554 int d;
4555 int slot;
4556 int repl;
4557 struct md_rdev *rdev = NULL;
4558
4559 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4560 if (repl)
4561 rdev = conf->mirrors[d].replacement;
4562 if (!rdev) {
4563 smp_mb();
4564 rdev = conf->mirrors[d].rdev;
4565 }
4566
4567 if (bio->bi_error) {
4568 /* FIXME should record badblock */
4569 md_error(mddev, rdev);
4570 }
4571
4572 rdev_dec_pending(rdev, mddev);
4573 end_reshape_request(r10_bio);
4574 }
4575
4576 static void end_reshape_request(struct r10bio *r10_bio)
4577 {
4578 if (!atomic_dec_and_test(&r10_bio->remaining))
4579 return;
4580 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4581 bio_put(r10_bio->master_bio);
4582 put_buf(r10_bio);
4583 }
4584
4585 static void raid10_finish_reshape(struct mddev *mddev)
4586 {
4587 struct r10conf *conf = mddev->private;
4588
4589 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4590 return;
4591
4592 if (mddev->delta_disks > 0) {
4593 sector_t size = raid10_size(mddev, 0, 0);
4594 md_set_array_sectors(mddev, size);
4595 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4596 mddev->recovery_cp = mddev->resync_max_sectors;
4597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4598 }
4599 mddev->resync_max_sectors = size;
4600 if (mddev->queue) {
4601 set_capacity(mddev->gendisk, mddev->array_sectors);
4602 revalidate_disk(mddev->gendisk);
4603 }
4604 } else {
4605 int d;
4606 for (d = conf->geo.raid_disks ;
4607 d < conf->geo.raid_disks - mddev->delta_disks;
4608 d++) {
4609 struct md_rdev *rdev = conf->mirrors[d].rdev;
4610 if (rdev)
4611 clear_bit(In_sync, &rdev->flags);
4612 rdev = conf->mirrors[d].replacement;
4613 if (rdev)
4614 clear_bit(In_sync, &rdev->flags);
4615 }
4616 }
4617 mddev->layout = mddev->new_layout;
4618 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4619 mddev->reshape_position = MaxSector;
4620 mddev->delta_disks = 0;
4621 mddev->reshape_backwards = 0;
4622 }
4623
4624 static struct md_personality raid10_personality =
4625 {
4626 .name = "raid10",
4627 .level = 10,
4628 .owner = THIS_MODULE,
4629 .make_request = raid10_make_request,
4630 .run = raid10_run,
4631 .free = raid10_free,
4632 .status = raid10_status,
4633 .error_handler = raid10_error,
4634 .hot_add_disk = raid10_add_disk,
4635 .hot_remove_disk= raid10_remove_disk,
4636 .spare_active = raid10_spare_active,
4637 .sync_request = raid10_sync_request,
4638 .quiesce = raid10_quiesce,
4639 .size = raid10_size,
4640 .resize = raid10_resize,
4641 .takeover = raid10_takeover,
4642 .check_reshape = raid10_check_reshape,
4643 .start_reshape = raid10_start_reshape,
4644 .finish_reshape = raid10_finish_reshape,
4645 .congested = raid10_congested,
4646 };
4647
4648 static int __init raid_init(void)
4649 {
4650 return register_md_personality(&raid10_personality);
4651 }
4652
4653 static void raid_exit(void)
4654 {
4655 unregister_md_personality(&raid10_personality);
4656 }
4657
4658 module_init(raid_init);
4659 module_exit(raid_exit);
4660 MODULE_LICENSE("GPL");
4661 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4662 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4663 MODULE_ALIAS("md-raid10");
4664 MODULE_ALIAS("md-level-10");
4665
4666 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.529028 seconds and 6 git commands to generate.