Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/nab/target...
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
372 rdev = r10_bio->devs[slot].rdev;
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
396 rdev->raid_disk))
397 uptodate = 1;
398 }
399 if (uptodate) {
400 raid_end_bio_io(r10_bio);
401 rdev_dec_pending(rdev, conf->mddev);
402 } else {
403 /*
404 * oops, read error - keep the refcount on the rdev
405 */
406 char b[BDEVNAME_SIZE];
407 printk_ratelimited(KERN_ERR
408 "md/raid10:%s: %s: rescheduling sector %llu\n",
409 mdname(conf->mddev),
410 bdevname(rdev->bdev, b),
411 (unsigned long long)r10_bio->sector);
412 set_bit(R10BIO_ReadError, &r10_bio->state);
413 reschedule_retry(r10_bio);
414 }
415 }
416
417 static void close_write(struct r10bio *r10_bio)
418 {
419 /* clear the bitmap if all writes complete successfully */
420 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
421 r10_bio->sectors,
422 !test_bit(R10BIO_Degraded, &r10_bio->state),
423 0);
424 md_write_end(r10_bio->mddev);
425 }
426
427 static void one_write_done(struct r10bio *r10_bio)
428 {
429 if (atomic_dec_and_test(&r10_bio->remaining)) {
430 if (test_bit(R10BIO_WriteError, &r10_bio->state))
431 reschedule_retry(r10_bio);
432 else {
433 close_write(r10_bio);
434 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
435 reschedule_retry(r10_bio);
436 else
437 raid_end_bio_io(r10_bio);
438 }
439 }
440 }
441
442 static void raid10_end_write_request(struct bio *bio, int error)
443 {
444 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
445 struct r10bio *r10_bio = bio->bi_private;
446 int dev;
447 int dec_rdev = 1;
448 struct r10conf *conf = r10_bio->mddev->private;
449 int slot, repl;
450 struct md_rdev *rdev = NULL;
451
452 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
453
454 if (repl)
455 rdev = conf->mirrors[dev].replacement;
456 if (!rdev) {
457 smp_rmb();
458 repl = 0;
459 rdev = conf->mirrors[dev].rdev;
460 }
461 /*
462 * this branch is our 'one mirror IO has finished' event handler:
463 */
464 if (!uptodate) {
465 if (repl)
466 /* Never record new bad blocks to replacement,
467 * just fail it.
468 */
469 md_error(rdev->mddev, rdev);
470 else {
471 set_bit(WriteErrorSeen, &rdev->flags);
472 if (!test_and_set_bit(WantReplacement, &rdev->flags))
473 set_bit(MD_RECOVERY_NEEDED,
474 &rdev->mddev->recovery);
475 set_bit(R10BIO_WriteError, &r10_bio->state);
476 dec_rdev = 0;
477 }
478 } else {
479 /*
480 * Set R10BIO_Uptodate in our master bio, so that
481 * we will return a good error code for to the higher
482 * levels even if IO on some other mirrored buffer fails.
483 *
484 * The 'master' represents the composite IO operation to
485 * user-side. So if something waits for IO, then it will
486 * wait for the 'master' bio.
487 */
488 sector_t first_bad;
489 int bad_sectors;
490
491 /*
492 * Do not set R10BIO_Uptodate if the current device is
493 * rebuilding or Faulty. This is because we cannot use
494 * such device for properly reading the data back (we could
495 * potentially use it, if the current write would have felt
496 * before rdev->recovery_offset, but for simplicity we don't
497 * check this here.
498 */
499 if (test_bit(In_sync, &rdev->flags) &&
500 !test_bit(Faulty, &rdev->flags))
501 set_bit(R10BIO_Uptodate, &r10_bio->state);
502
503 /* Maybe we can clear some bad blocks. */
504 if (is_badblock(rdev,
505 r10_bio->devs[slot].addr,
506 r10_bio->sectors,
507 &first_bad, &bad_sectors)) {
508 bio_put(bio);
509 if (repl)
510 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
511 else
512 r10_bio->devs[slot].bio = IO_MADE_GOOD;
513 dec_rdev = 0;
514 set_bit(R10BIO_MadeGood, &r10_bio->state);
515 }
516 }
517
518 /*
519 *
520 * Let's see if all mirrored write operations have finished
521 * already.
522 */
523 one_write_done(r10_bio);
524 if (dec_rdev)
525 rdev_dec_pending(rdev, conf->mddev);
526 }
527
528 /*
529 * RAID10 layout manager
530 * As well as the chunksize and raid_disks count, there are two
531 * parameters: near_copies and far_copies.
532 * near_copies * far_copies must be <= raid_disks.
533 * Normally one of these will be 1.
534 * If both are 1, we get raid0.
535 * If near_copies == raid_disks, we get raid1.
536 *
537 * Chunks are laid out in raid0 style with near_copies copies of the
538 * first chunk, followed by near_copies copies of the next chunk and
539 * so on.
540 * If far_copies > 1, then after 1/far_copies of the array has been assigned
541 * as described above, we start again with a device offset of near_copies.
542 * So we effectively have another copy of the whole array further down all
543 * the drives, but with blocks on different drives.
544 * With this layout, and block is never stored twice on the one device.
545 *
546 * raid10_find_phys finds the sector offset of a given virtual sector
547 * on each device that it is on.
548 *
549 * raid10_find_virt does the reverse mapping, from a device and a
550 * sector offset to a virtual address
551 */
552
553 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
554 {
555 int n,f;
556 sector_t sector;
557 sector_t chunk;
558 sector_t stripe;
559 int dev;
560 int slot = 0;
561 int last_far_set_start, last_far_set_size;
562
563 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
564 last_far_set_start *= geo->far_set_size;
565
566 last_far_set_size = geo->far_set_size;
567 last_far_set_size += (geo->raid_disks % geo->far_set_size);
568
569 /* now calculate first sector/dev */
570 chunk = r10bio->sector >> geo->chunk_shift;
571 sector = r10bio->sector & geo->chunk_mask;
572
573 chunk *= geo->near_copies;
574 stripe = chunk;
575 dev = sector_div(stripe, geo->raid_disks);
576 if (geo->far_offset)
577 stripe *= geo->far_copies;
578
579 sector += stripe << geo->chunk_shift;
580
581 /* and calculate all the others */
582 for (n = 0; n < geo->near_copies; n++) {
583 int d = dev;
584 int set;
585 sector_t s = sector;
586 r10bio->devs[slot].devnum = d;
587 r10bio->devs[slot].addr = s;
588 slot++;
589
590 for (f = 1; f < geo->far_copies; f++) {
591 set = d / geo->far_set_size;
592 d += geo->near_copies;
593
594 if ((geo->raid_disks % geo->far_set_size) &&
595 (d > last_far_set_start)) {
596 d -= last_far_set_start;
597 d %= last_far_set_size;
598 d += last_far_set_start;
599 } else {
600 d %= geo->far_set_size;
601 d += geo->far_set_size * set;
602 }
603 s += geo->stride;
604 r10bio->devs[slot].devnum = d;
605 r10bio->devs[slot].addr = s;
606 slot++;
607 }
608 dev++;
609 if (dev >= geo->raid_disks) {
610 dev = 0;
611 sector += (geo->chunk_mask + 1);
612 }
613 }
614 }
615
616 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
617 {
618 struct geom *geo = &conf->geo;
619
620 if (conf->reshape_progress != MaxSector &&
621 ((r10bio->sector >= conf->reshape_progress) !=
622 conf->mddev->reshape_backwards)) {
623 set_bit(R10BIO_Previous, &r10bio->state);
624 geo = &conf->prev;
625 } else
626 clear_bit(R10BIO_Previous, &r10bio->state);
627
628 __raid10_find_phys(geo, r10bio);
629 }
630
631 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
632 {
633 sector_t offset, chunk, vchunk;
634 /* Never use conf->prev as this is only called during resync
635 * or recovery, so reshape isn't happening
636 */
637 struct geom *geo = &conf->geo;
638 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
639 int far_set_size = geo->far_set_size;
640 int last_far_set_start;
641
642 if (geo->raid_disks % geo->far_set_size) {
643 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
644 last_far_set_start *= geo->far_set_size;
645
646 if (dev >= last_far_set_start) {
647 far_set_size = geo->far_set_size;
648 far_set_size += (geo->raid_disks % geo->far_set_size);
649 far_set_start = last_far_set_start;
650 }
651 }
652
653 offset = sector & geo->chunk_mask;
654 if (geo->far_offset) {
655 int fc;
656 chunk = sector >> geo->chunk_shift;
657 fc = sector_div(chunk, geo->far_copies);
658 dev -= fc * geo->near_copies;
659 if (dev < far_set_start)
660 dev += far_set_size;
661 } else {
662 while (sector >= geo->stride) {
663 sector -= geo->stride;
664 if (dev < (geo->near_copies + far_set_start))
665 dev += far_set_size - geo->near_copies;
666 else
667 dev -= geo->near_copies;
668 }
669 chunk = sector >> geo->chunk_shift;
670 }
671 vchunk = chunk * geo->raid_disks + dev;
672 sector_div(vchunk, geo->near_copies);
673 return (vchunk << geo->chunk_shift) + offset;
674 }
675
676 /**
677 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
678 * @q: request queue
679 * @bvm: properties of new bio
680 * @biovec: the request that could be merged to it.
681 *
682 * Return amount of bytes we can accept at this offset
683 * This requires checking for end-of-chunk if near_copies != raid_disks,
684 * and for subordinate merge_bvec_fns if merge_check_needed.
685 */
686 static int raid10_mergeable_bvec(struct request_queue *q,
687 struct bvec_merge_data *bvm,
688 struct bio_vec *biovec)
689 {
690 struct mddev *mddev = q->queuedata;
691 struct r10conf *conf = mddev->private;
692 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
693 int max;
694 unsigned int chunk_sectors;
695 unsigned int bio_sectors = bvm->bi_size >> 9;
696 struct geom *geo = &conf->geo;
697
698 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
699 if (conf->reshape_progress != MaxSector &&
700 ((sector >= conf->reshape_progress) !=
701 conf->mddev->reshape_backwards))
702 geo = &conf->prev;
703
704 if (geo->near_copies < geo->raid_disks) {
705 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
706 + bio_sectors)) << 9;
707 if (max < 0)
708 /* bio_add cannot handle a negative return */
709 max = 0;
710 if (max <= biovec->bv_len && bio_sectors == 0)
711 return biovec->bv_len;
712 } else
713 max = biovec->bv_len;
714
715 if (mddev->merge_check_needed) {
716 struct {
717 struct r10bio r10_bio;
718 struct r10dev devs[conf->copies];
719 } on_stack;
720 struct r10bio *r10_bio = &on_stack.r10_bio;
721 int s;
722 if (conf->reshape_progress != MaxSector) {
723 /* Cannot give any guidance during reshape */
724 if (max <= biovec->bv_len && bio_sectors == 0)
725 return biovec->bv_len;
726 return 0;
727 }
728 r10_bio->sector = sector;
729 raid10_find_phys(conf, r10_bio);
730 rcu_read_lock();
731 for (s = 0; s < conf->copies; s++) {
732 int disk = r10_bio->devs[s].devnum;
733 struct md_rdev *rdev = rcu_dereference(
734 conf->mirrors[disk].rdev);
735 if (rdev && !test_bit(Faulty, &rdev->flags)) {
736 struct request_queue *q =
737 bdev_get_queue(rdev->bdev);
738 if (q->merge_bvec_fn) {
739 bvm->bi_sector = r10_bio->devs[s].addr
740 + rdev->data_offset;
741 bvm->bi_bdev = rdev->bdev;
742 max = min(max, q->merge_bvec_fn(
743 q, bvm, biovec));
744 }
745 }
746 rdev = rcu_dereference(conf->mirrors[disk].replacement);
747 if (rdev && !test_bit(Faulty, &rdev->flags)) {
748 struct request_queue *q =
749 bdev_get_queue(rdev->bdev);
750 if (q->merge_bvec_fn) {
751 bvm->bi_sector = r10_bio->devs[s].addr
752 + rdev->data_offset;
753 bvm->bi_bdev = rdev->bdev;
754 max = min(max, q->merge_bvec_fn(
755 q, bvm, biovec));
756 }
757 }
758 }
759 rcu_read_unlock();
760 }
761 return max;
762 }
763
764 /*
765 * This routine returns the disk from which the requested read should
766 * be done. There is a per-array 'next expected sequential IO' sector
767 * number - if this matches on the next IO then we use the last disk.
768 * There is also a per-disk 'last know head position' sector that is
769 * maintained from IRQ contexts, both the normal and the resync IO
770 * completion handlers update this position correctly. If there is no
771 * perfect sequential match then we pick the disk whose head is closest.
772 *
773 * If there are 2 mirrors in the same 2 devices, performance degrades
774 * because position is mirror, not device based.
775 *
776 * The rdev for the device selected will have nr_pending incremented.
777 */
778
779 /*
780 * FIXME: possibly should rethink readbalancing and do it differently
781 * depending on near_copies / far_copies geometry.
782 */
783 static struct md_rdev *read_balance(struct r10conf *conf,
784 struct r10bio *r10_bio,
785 int *max_sectors)
786 {
787 const sector_t this_sector = r10_bio->sector;
788 int disk, slot;
789 int sectors = r10_bio->sectors;
790 int best_good_sectors;
791 sector_t new_distance, best_dist;
792 struct md_rdev *best_rdev, *rdev = NULL;
793 int do_balance;
794 int best_slot;
795 struct geom *geo = &conf->geo;
796
797 raid10_find_phys(conf, r10_bio);
798 rcu_read_lock();
799 retry:
800 sectors = r10_bio->sectors;
801 best_slot = -1;
802 best_rdev = NULL;
803 best_dist = MaxSector;
804 best_good_sectors = 0;
805 do_balance = 1;
806 /*
807 * Check if we can balance. We can balance on the whole
808 * device if no resync is going on (recovery is ok), or below
809 * the resync window. We take the first readable disk when
810 * above the resync window.
811 */
812 if (conf->mddev->recovery_cp < MaxSector
813 && (this_sector + sectors >= conf->next_resync))
814 do_balance = 0;
815
816 for (slot = 0; slot < conf->copies ; slot++) {
817 sector_t first_bad;
818 int bad_sectors;
819 sector_t dev_sector;
820
821 if (r10_bio->devs[slot].bio == IO_BLOCKED)
822 continue;
823 disk = r10_bio->devs[slot].devnum;
824 rdev = rcu_dereference(conf->mirrors[disk].replacement);
825 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
826 test_bit(Unmerged, &rdev->flags) ||
827 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
828 rdev = rcu_dereference(conf->mirrors[disk].rdev);
829 if (rdev == NULL ||
830 test_bit(Faulty, &rdev->flags) ||
831 test_bit(Unmerged, &rdev->flags))
832 continue;
833 if (!test_bit(In_sync, &rdev->flags) &&
834 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
835 continue;
836
837 dev_sector = r10_bio->devs[slot].addr;
838 if (is_badblock(rdev, dev_sector, sectors,
839 &first_bad, &bad_sectors)) {
840 if (best_dist < MaxSector)
841 /* Already have a better slot */
842 continue;
843 if (first_bad <= dev_sector) {
844 /* Cannot read here. If this is the
845 * 'primary' device, then we must not read
846 * beyond 'bad_sectors' from another device.
847 */
848 bad_sectors -= (dev_sector - first_bad);
849 if (!do_balance && sectors > bad_sectors)
850 sectors = bad_sectors;
851 if (best_good_sectors > sectors)
852 best_good_sectors = sectors;
853 } else {
854 sector_t good_sectors =
855 first_bad - dev_sector;
856 if (good_sectors > best_good_sectors) {
857 best_good_sectors = good_sectors;
858 best_slot = slot;
859 best_rdev = rdev;
860 }
861 if (!do_balance)
862 /* Must read from here */
863 break;
864 }
865 continue;
866 } else
867 best_good_sectors = sectors;
868
869 if (!do_balance)
870 break;
871
872 /* This optimisation is debatable, and completely destroys
873 * sequential read speed for 'far copies' arrays. So only
874 * keep it for 'near' arrays, and review those later.
875 */
876 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
877 break;
878
879 /* for far > 1 always use the lowest address */
880 if (geo->far_copies > 1)
881 new_distance = r10_bio->devs[slot].addr;
882 else
883 new_distance = abs(r10_bio->devs[slot].addr -
884 conf->mirrors[disk].head_position);
885 if (new_distance < best_dist) {
886 best_dist = new_distance;
887 best_slot = slot;
888 best_rdev = rdev;
889 }
890 }
891 if (slot >= conf->copies) {
892 slot = best_slot;
893 rdev = best_rdev;
894 }
895
896 if (slot >= 0) {
897 atomic_inc(&rdev->nr_pending);
898 if (test_bit(Faulty, &rdev->flags)) {
899 /* Cannot risk returning a device that failed
900 * before we inc'ed nr_pending
901 */
902 rdev_dec_pending(rdev, conf->mddev);
903 goto retry;
904 }
905 r10_bio->read_slot = slot;
906 } else
907 rdev = NULL;
908 rcu_read_unlock();
909 *max_sectors = best_good_sectors;
910
911 return rdev;
912 }
913
914 int md_raid10_congested(struct mddev *mddev, int bits)
915 {
916 struct r10conf *conf = mddev->private;
917 int i, ret = 0;
918
919 if ((bits & (1 << BDI_async_congested)) &&
920 conf->pending_count >= max_queued_requests)
921 return 1;
922
923 rcu_read_lock();
924 for (i = 0;
925 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
926 && ret == 0;
927 i++) {
928 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
929 if (rdev && !test_bit(Faulty, &rdev->flags)) {
930 struct request_queue *q = bdev_get_queue(rdev->bdev);
931
932 ret |= bdi_congested(&q->backing_dev_info, bits);
933 }
934 }
935 rcu_read_unlock();
936 return ret;
937 }
938 EXPORT_SYMBOL_GPL(md_raid10_congested);
939
940 static int raid10_congested(void *data, int bits)
941 {
942 struct mddev *mddev = data;
943
944 return mddev_congested(mddev, bits) ||
945 md_raid10_congested(mddev, bits);
946 }
947
948 static void flush_pending_writes(struct r10conf *conf)
949 {
950 /* Any writes that have been queued but are awaiting
951 * bitmap updates get flushed here.
952 */
953 spin_lock_irq(&conf->device_lock);
954
955 if (conf->pending_bio_list.head) {
956 struct bio *bio;
957 bio = bio_list_get(&conf->pending_bio_list);
958 conf->pending_count = 0;
959 spin_unlock_irq(&conf->device_lock);
960 /* flush any pending bitmap writes to disk
961 * before proceeding w/ I/O */
962 bitmap_unplug(conf->mddev->bitmap);
963 wake_up(&conf->wait_barrier);
964
965 while (bio) { /* submit pending writes */
966 struct bio *next = bio->bi_next;
967 bio->bi_next = NULL;
968 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
969 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
970 /* Just ignore it */
971 bio_endio(bio, 0);
972 else
973 generic_make_request(bio);
974 bio = next;
975 }
976 } else
977 spin_unlock_irq(&conf->device_lock);
978 }
979
980 /* Barriers....
981 * Sometimes we need to suspend IO while we do something else,
982 * either some resync/recovery, or reconfigure the array.
983 * To do this we raise a 'barrier'.
984 * The 'barrier' is a counter that can be raised multiple times
985 * to count how many activities are happening which preclude
986 * normal IO.
987 * We can only raise the barrier if there is no pending IO.
988 * i.e. if nr_pending == 0.
989 * We choose only to raise the barrier if no-one is waiting for the
990 * barrier to go down. This means that as soon as an IO request
991 * is ready, no other operations which require a barrier will start
992 * until the IO request has had a chance.
993 *
994 * So: regular IO calls 'wait_barrier'. When that returns there
995 * is no backgroup IO happening, It must arrange to call
996 * allow_barrier when it has finished its IO.
997 * backgroup IO calls must call raise_barrier. Once that returns
998 * there is no normal IO happeing. It must arrange to call
999 * lower_barrier when the particular background IO completes.
1000 */
1001
1002 static void raise_barrier(struct r10conf *conf, int force)
1003 {
1004 BUG_ON(force && !conf->barrier);
1005 spin_lock_irq(&conf->resync_lock);
1006
1007 /* Wait until no block IO is waiting (unless 'force') */
1008 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
1009 conf->resync_lock);
1010
1011 /* block any new IO from starting */
1012 conf->barrier++;
1013
1014 /* Now wait for all pending IO to complete */
1015 wait_event_lock_irq(conf->wait_barrier,
1016 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1017 conf->resync_lock);
1018
1019 spin_unlock_irq(&conf->resync_lock);
1020 }
1021
1022 static void lower_barrier(struct r10conf *conf)
1023 {
1024 unsigned long flags;
1025 spin_lock_irqsave(&conf->resync_lock, flags);
1026 conf->barrier--;
1027 spin_unlock_irqrestore(&conf->resync_lock, flags);
1028 wake_up(&conf->wait_barrier);
1029 }
1030
1031 static void wait_barrier(struct r10conf *conf)
1032 {
1033 spin_lock_irq(&conf->resync_lock);
1034 if (conf->barrier) {
1035 conf->nr_waiting++;
1036 /* Wait for the barrier to drop.
1037 * However if there are already pending
1038 * requests (preventing the barrier from
1039 * rising completely), and the
1040 * pre-process bio queue isn't empty,
1041 * then don't wait, as we need to empty
1042 * that queue to get the nr_pending
1043 * count down.
1044 */
1045 wait_event_lock_irq(conf->wait_barrier,
1046 !conf->barrier ||
1047 (conf->nr_pending &&
1048 current->bio_list &&
1049 !bio_list_empty(current->bio_list)),
1050 conf->resync_lock);
1051 conf->nr_waiting--;
1052 }
1053 conf->nr_pending++;
1054 spin_unlock_irq(&conf->resync_lock);
1055 }
1056
1057 static void allow_barrier(struct r10conf *conf)
1058 {
1059 unsigned long flags;
1060 spin_lock_irqsave(&conf->resync_lock, flags);
1061 conf->nr_pending--;
1062 spin_unlock_irqrestore(&conf->resync_lock, flags);
1063 wake_up(&conf->wait_barrier);
1064 }
1065
1066 static void freeze_array(struct r10conf *conf, int extra)
1067 {
1068 /* stop syncio and normal IO and wait for everything to
1069 * go quiet.
1070 * We increment barrier and nr_waiting, and then
1071 * wait until nr_pending match nr_queued+extra
1072 * This is called in the context of one normal IO request
1073 * that has failed. Thus any sync request that might be pending
1074 * will be blocked by nr_pending, and we need to wait for
1075 * pending IO requests to complete or be queued for re-try.
1076 * Thus the number queued (nr_queued) plus this request (extra)
1077 * must match the number of pending IOs (nr_pending) before
1078 * we continue.
1079 */
1080 spin_lock_irq(&conf->resync_lock);
1081 conf->barrier++;
1082 conf->nr_waiting++;
1083 wait_event_lock_irq_cmd(conf->wait_barrier,
1084 conf->nr_pending == conf->nr_queued+extra,
1085 conf->resync_lock,
1086 flush_pending_writes(conf));
1087
1088 spin_unlock_irq(&conf->resync_lock);
1089 }
1090
1091 static void unfreeze_array(struct r10conf *conf)
1092 {
1093 /* reverse the effect of the freeze */
1094 spin_lock_irq(&conf->resync_lock);
1095 conf->barrier--;
1096 conf->nr_waiting--;
1097 wake_up(&conf->wait_barrier);
1098 spin_unlock_irq(&conf->resync_lock);
1099 }
1100
1101 static sector_t choose_data_offset(struct r10bio *r10_bio,
1102 struct md_rdev *rdev)
1103 {
1104 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1105 test_bit(R10BIO_Previous, &r10_bio->state))
1106 return rdev->data_offset;
1107 else
1108 return rdev->new_data_offset;
1109 }
1110
1111 struct raid10_plug_cb {
1112 struct blk_plug_cb cb;
1113 struct bio_list pending;
1114 int pending_cnt;
1115 };
1116
1117 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1118 {
1119 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1120 cb);
1121 struct mddev *mddev = plug->cb.data;
1122 struct r10conf *conf = mddev->private;
1123 struct bio *bio;
1124
1125 if (from_schedule || current->bio_list) {
1126 spin_lock_irq(&conf->device_lock);
1127 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1128 conf->pending_count += plug->pending_cnt;
1129 spin_unlock_irq(&conf->device_lock);
1130 wake_up(&conf->wait_barrier);
1131 md_wakeup_thread(mddev->thread);
1132 kfree(plug);
1133 return;
1134 }
1135
1136 /* we aren't scheduling, so we can do the write-out directly. */
1137 bio = bio_list_get(&plug->pending);
1138 bitmap_unplug(mddev->bitmap);
1139 wake_up(&conf->wait_barrier);
1140
1141 while (bio) { /* submit pending writes */
1142 struct bio *next = bio->bi_next;
1143 bio->bi_next = NULL;
1144 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1145 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1146 /* Just ignore it */
1147 bio_endio(bio, 0);
1148 else
1149 generic_make_request(bio);
1150 bio = next;
1151 }
1152 kfree(plug);
1153 }
1154
1155 static void make_request(struct mddev *mddev, struct bio * bio)
1156 {
1157 struct r10conf *conf = mddev->private;
1158 struct r10bio *r10_bio;
1159 struct bio *read_bio;
1160 int i;
1161 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1162 int chunk_sects = chunk_mask + 1;
1163 const int rw = bio_data_dir(bio);
1164 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1165 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1166 const unsigned long do_discard = (bio->bi_rw
1167 & (REQ_DISCARD | REQ_SECURE));
1168 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1169 unsigned long flags;
1170 struct md_rdev *blocked_rdev;
1171 struct blk_plug_cb *cb;
1172 struct raid10_plug_cb *plug = NULL;
1173 int sectors_handled;
1174 int max_sectors;
1175 int sectors;
1176
1177 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1178 md_flush_request(mddev, bio);
1179 return;
1180 }
1181
1182 /* If this request crosses a chunk boundary, we need to
1183 * split it. This will only happen for 1 PAGE (or less) requests.
1184 */
1185 if (unlikely((bio->bi_sector & chunk_mask) + bio_sectors(bio)
1186 > chunk_sects
1187 && (conf->geo.near_copies < conf->geo.raid_disks
1188 || conf->prev.near_copies < conf->prev.raid_disks))) {
1189 struct bio_pair *bp;
1190 /* Sanity check -- queue functions should prevent this happening */
1191 if (bio_segments(bio) > 1)
1192 goto bad_map;
1193 /* This is a one page bio that upper layers
1194 * refuse to split for us, so we need to split it.
1195 */
1196 bp = bio_split(bio,
1197 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
1198
1199 /* Each of these 'make_request' calls will call 'wait_barrier'.
1200 * If the first succeeds but the second blocks due to the resync
1201 * thread raising the barrier, we will deadlock because the
1202 * IO to the underlying device will be queued in generic_make_request
1203 * and will never complete, so will never reduce nr_pending.
1204 * So increment nr_waiting here so no new raise_barriers will
1205 * succeed, and so the second wait_barrier cannot block.
1206 */
1207 spin_lock_irq(&conf->resync_lock);
1208 conf->nr_waiting++;
1209 spin_unlock_irq(&conf->resync_lock);
1210
1211 make_request(mddev, &bp->bio1);
1212 make_request(mddev, &bp->bio2);
1213
1214 spin_lock_irq(&conf->resync_lock);
1215 conf->nr_waiting--;
1216 wake_up(&conf->wait_barrier);
1217 spin_unlock_irq(&conf->resync_lock);
1218
1219 bio_pair_release(bp);
1220 return;
1221 bad_map:
1222 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1223 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1224 (unsigned long long)bio->bi_sector, bio_sectors(bio) / 2);
1225
1226 bio_io_error(bio);
1227 return;
1228 }
1229
1230 md_write_start(mddev, bio);
1231
1232 /*
1233 * Register the new request and wait if the reconstruction
1234 * thread has put up a bar for new requests.
1235 * Continue immediately if no resync is active currently.
1236 */
1237 wait_barrier(conf);
1238
1239 sectors = bio_sectors(bio);
1240 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1241 bio->bi_sector < conf->reshape_progress &&
1242 bio->bi_sector + sectors > conf->reshape_progress) {
1243 /* IO spans the reshape position. Need to wait for
1244 * reshape to pass
1245 */
1246 allow_barrier(conf);
1247 wait_event(conf->wait_barrier,
1248 conf->reshape_progress <= bio->bi_sector ||
1249 conf->reshape_progress >= bio->bi_sector + sectors);
1250 wait_barrier(conf);
1251 }
1252 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1253 bio_data_dir(bio) == WRITE &&
1254 (mddev->reshape_backwards
1255 ? (bio->bi_sector < conf->reshape_safe &&
1256 bio->bi_sector + sectors > conf->reshape_progress)
1257 : (bio->bi_sector + sectors > conf->reshape_safe &&
1258 bio->bi_sector < conf->reshape_progress))) {
1259 /* Need to update reshape_position in metadata */
1260 mddev->reshape_position = conf->reshape_progress;
1261 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1262 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1263 md_wakeup_thread(mddev->thread);
1264 wait_event(mddev->sb_wait,
1265 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1266
1267 conf->reshape_safe = mddev->reshape_position;
1268 }
1269
1270 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1271
1272 r10_bio->master_bio = bio;
1273 r10_bio->sectors = sectors;
1274
1275 r10_bio->mddev = mddev;
1276 r10_bio->sector = bio->bi_sector;
1277 r10_bio->state = 0;
1278
1279 /* We might need to issue multiple reads to different
1280 * devices if there are bad blocks around, so we keep
1281 * track of the number of reads in bio->bi_phys_segments.
1282 * If this is 0, there is only one r10_bio and no locking
1283 * will be needed when the request completes. If it is
1284 * non-zero, then it is the number of not-completed requests.
1285 */
1286 bio->bi_phys_segments = 0;
1287 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1288
1289 if (rw == READ) {
1290 /*
1291 * read balancing logic:
1292 */
1293 struct md_rdev *rdev;
1294 int slot;
1295
1296 read_again:
1297 rdev = read_balance(conf, r10_bio, &max_sectors);
1298 if (!rdev) {
1299 raid_end_bio_io(r10_bio);
1300 return;
1301 }
1302 slot = r10_bio->read_slot;
1303
1304 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1305 bio_trim(read_bio, r10_bio->sector - bio->bi_sector,
1306 max_sectors);
1307
1308 r10_bio->devs[slot].bio = read_bio;
1309 r10_bio->devs[slot].rdev = rdev;
1310
1311 read_bio->bi_sector = r10_bio->devs[slot].addr +
1312 choose_data_offset(r10_bio, rdev);
1313 read_bio->bi_bdev = rdev->bdev;
1314 read_bio->bi_end_io = raid10_end_read_request;
1315 read_bio->bi_rw = READ | do_sync;
1316 read_bio->bi_private = r10_bio;
1317
1318 if (max_sectors < r10_bio->sectors) {
1319 /* Could not read all from this device, so we will
1320 * need another r10_bio.
1321 */
1322 sectors_handled = (r10_bio->sectors + max_sectors
1323 - bio->bi_sector);
1324 r10_bio->sectors = max_sectors;
1325 spin_lock_irq(&conf->device_lock);
1326 if (bio->bi_phys_segments == 0)
1327 bio->bi_phys_segments = 2;
1328 else
1329 bio->bi_phys_segments++;
1330 spin_unlock(&conf->device_lock);
1331 /* Cannot call generic_make_request directly
1332 * as that will be queued in __generic_make_request
1333 * and subsequent mempool_alloc might block
1334 * waiting for it. so hand bio over to raid10d.
1335 */
1336 reschedule_retry(r10_bio);
1337
1338 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1339
1340 r10_bio->master_bio = bio;
1341 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1342 r10_bio->state = 0;
1343 r10_bio->mddev = mddev;
1344 r10_bio->sector = bio->bi_sector + sectors_handled;
1345 goto read_again;
1346 } else
1347 generic_make_request(read_bio);
1348 return;
1349 }
1350
1351 /*
1352 * WRITE:
1353 */
1354 if (conf->pending_count >= max_queued_requests) {
1355 md_wakeup_thread(mddev->thread);
1356 wait_event(conf->wait_barrier,
1357 conf->pending_count < max_queued_requests);
1358 }
1359 /* first select target devices under rcu_lock and
1360 * inc refcount on their rdev. Record them by setting
1361 * bios[x] to bio
1362 * If there are known/acknowledged bad blocks on any device
1363 * on which we have seen a write error, we want to avoid
1364 * writing to those blocks. This potentially requires several
1365 * writes to write around the bad blocks. Each set of writes
1366 * gets its own r10_bio with a set of bios attached. The number
1367 * of r10_bios is recored in bio->bi_phys_segments just as with
1368 * the read case.
1369 */
1370
1371 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1372 raid10_find_phys(conf, r10_bio);
1373 retry_write:
1374 blocked_rdev = NULL;
1375 rcu_read_lock();
1376 max_sectors = r10_bio->sectors;
1377
1378 for (i = 0; i < conf->copies; i++) {
1379 int d = r10_bio->devs[i].devnum;
1380 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1381 struct md_rdev *rrdev = rcu_dereference(
1382 conf->mirrors[d].replacement);
1383 if (rdev == rrdev)
1384 rrdev = NULL;
1385 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1386 atomic_inc(&rdev->nr_pending);
1387 blocked_rdev = rdev;
1388 break;
1389 }
1390 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1391 atomic_inc(&rrdev->nr_pending);
1392 blocked_rdev = rrdev;
1393 break;
1394 }
1395 if (rdev && (test_bit(Faulty, &rdev->flags)
1396 || test_bit(Unmerged, &rdev->flags)))
1397 rdev = NULL;
1398 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1399 || test_bit(Unmerged, &rrdev->flags)))
1400 rrdev = NULL;
1401
1402 r10_bio->devs[i].bio = NULL;
1403 r10_bio->devs[i].repl_bio = NULL;
1404
1405 if (!rdev && !rrdev) {
1406 set_bit(R10BIO_Degraded, &r10_bio->state);
1407 continue;
1408 }
1409 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1410 sector_t first_bad;
1411 sector_t dev_sector = r10_bio->devs[i].addr;
1412 int bad_sectors;
1413 int is_bad;
1414
1415 is_bad = is_badblock(rdev, dev_sector,
1416 max_sectors,
1417 &first_bad, &bad_sectors);
1418 if (is_bad < 0) {
1419 /* Mustn't write here until the bad block
1420 * is acknowledged
1421 */
1422 atomic_inc(&rdev->nr_pending);
1423 set_bit(BlockedBadBlocks, &rdev->flags);
1424 blocked_rdev = rdev;
1425 break;
1426 }
1427 if (is_bad && first_bad <= dev_sector) {
1428 /* Cannot write here at all */
1429 bad_sectors -= (dev_sector - first_bad);
1430 if (bad_sectors < max_sectors)
1431 /* Mustn't write more than bad_sectors
1432 * to other devices yet
1433 */
1434 max_sectors = bad_sectors;
1435 /* We don't set R10BIO_Degraded as that
1436 * only applies if the disk is missing,
1437 * so it might be re-added, and we want to
1438 * know to recover this chunk.
1439 * In this case the device is here, and the
1440 * fact that this chunk is not in-sync is
1441 * recorded in the bad block log.
1442 */
1443 continue;
1444 }
1445 if (is_bad) {
1446 int good_sectors = first_bad - dev_sector;
1447 if (good_sectors < max_sectors)
1448 max_sectors = good_sectors;
1449 }
1450 }
1451 if (rdev) {
1452 r10_bio->devs[i].bio = bio;
1453 atomic_inc(&rdev->nr_pending);
1454 }
1455 if (rrdev) {
1456 r10_bio->devs[i].repl_bio = bio;
1457 atomic_inc(&rrdev->nr_pending);
1458 }
1459 }
1460 rcu_read_unlock();
1461
1462 if (unlikely(blocked_rdev)) {
1463 /* Have to wait for this device to get unblocked, then retry */
1464 int j;
1465 int d;
1466
1467 for (j = 0; j < i; j++) {
1468 if (r10_bio->devs[j].bio) {
1469 d = r10_bio->devs[j].devnum;
1470 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1471 }
1472 if (r10_bio->devs[j].repl_bio) {
1473 struct md_rdev *rdev;
1474 d = r10_bio->devs[j].devnum;
1475 rdev = conf->mirrors[d].replacement;
1476 if (!rdev) {
1477 /* Race with remove_disk */
1478 smp_mb();
1479 rdev = conf->mirrors[d].rdev;
1480 }
1481 rdev_dec_pending(rdev, mddev);
1482 }
1483 }
1484 allow_barrier(conf);
1485 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1486 wait_barrier(conf);
1487 goto retry_write;
1488 }
1489
1490 if (max_sectors < r10_bio->sectors) {
1491 /* We are splitting this into multiple parts, so
1492 * we need to prepare for allocating another r10_bio.
1493 */
1494 r10_bio->sectors = max_sectors;
1495 spin_lock_irq(&conf->device_lock);
1496 if (bio->bi_phys_segments == 0)
1497 bio->bi_phys_segments = 2;
1498 else
1499 bio->bi_phys_segments++;
1500 spin_unlock_irq(&conf->device_lock);
1501 }
1502 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1503
1504 atomic_set(&r10_bio->remaining, 1);
1505 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1506
1507 for (i = 0; i < conf->copies; i++) {
1508 struct bio *mbio;
1509 int d = r10_bio->devs[i].devnum;
1510 if (r10_bio->devs[i].bio) {
1511 struct md_rdev *rdev = conf->mirrors[d].rdev;
1512 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1513 bio_trim(mbio, r10_bio->sector - bio->bi_sector,
1514 max_sectors);
1515 r10_bio->devs[i].bio = mbio;
1516
1517 mbio->bi_sector = (r10_bio->devs[i].addr+
1518 choose_data_offset(r10_bio,
1519 rdev));
1520 mbio->bi_bdev = rdev->bdev;
1521 mbio->bi_end_io = raid10_end_write_request;
1522 mbio->bi_rw =
1523 WRITE | do_sync | do_fua | do_discard | do_same;
1524 mbio->bi_private = r10_bio;
1525
1526 atomic_inc(&r10_bio->remaining);
1527
1528 cb = blk_check_plugged(raid10_unplug, mddev,
1529 sizeof(*plug));
1530 if (cb)
1531 plug = container_of(cb, struct raid10_plug_cb,
1532 cb);
1533 else
1534 plug = NULL;
1535 spin_lock_irqsave(&conf->device_lock, flags);
1536 if (plug) {
1537 bio_list_add(&plug->pending, mbio);
1538 plug->pending_cnt++;
1539 } else {
1540 bio_list_add(&conf->pending_bio_list, mbio);
1541 conf->pending_count++;
1542 }
1543 spin_unlock_irqrestore(&conf->device_lock, flags);
1544 if (!plug)
1545 md_wakeup_thread(mddev->thread);
1546 }
1547
1548 if (r10_bio->devs[i].repl_bio) {
1549 struct md_rdev *rdev = conf->mirrors[d].replacement;
1550 if (rdev == NULL) {
1551 /* Replacement just got moved to main 'rdev' */
1552 smp_mb();
1553 rdev = conf->mirrors[d].rdev;
1554 }
1555 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1556 bio_trim(mbio, r10_bio->sector - bio->bi_sector,
1557 max_sectors);
1558 r10_bio->devs[i].repl_bio = mbio;
1559
1560 mbio->bi_sector = (r10_bio->devs[i].addr +
1561 choose_data_offset(
1562 r10_bio, rdev));
1563 mbio->bi_bdev = rdev->bdev;
1564 mbio->bi_end_io = raid10_end_write_request;
1565 mbio->bi_rw =
1566 WRITE | do_sync | do_fua | do_discard | do_same;
1567 mbio->bi_private = r10_bio;
1568
1569 atomic_inc(&r10_bio->remaining);
1570 spin_lock_irqsave(&conf->device_lock, flags);
1571 bio_list_add(&conf->pending_bio_list, mbio);
1572 conf->pending_count++;
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574 if (!mddev_check_plugged(mddev))
1575 md_wakeup_thread(mddev->thread);
1576 }
1577 }
1578
1579 /* Don't remove the bias on 'remaining' (one_write_done) until
1580 * after checking if we need to go around again.
1581 */
1582
1583 if (sectors_handled < bio_sectors(bio)) {
1584 one_write_done(r10_bio);
1585 /* We need another r10_bio. It has already been counted
1586 * in bio->bi_phys_segments.
1587 */
1588 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1589
1590 r10_bio->master_bio = bio;
1591 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1592
1593 r10_bio->mddev = mddev;
1594 r10_bio->sector = bio->bi_sector + sectors_handled;
1595 r10_bio->state = 0;
1596 goto retry_write;
1597 }
1598 one_write_done(r10_bio);
1599
1600 /* In case raid10d snuck in to freeze_array */
1601 wake_up(&conf->wait_barrier);
1602 }
1603
1604 static void status(struct seq_file *seq, struct mddev *mddev)
1605 {
1606 struct r10conf *conf = mddev->private;
1607 int i;
1608
1609 if (conf->geo.near_copies < conf->geo.raid_disks)
1610 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1611 if (conf->geo.near_copies > 1)
1612 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1613 if (conf->geo.far_copies > 1) {
1614 if (conf->geo.far_offset)
1615 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1616 else
1617 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1618 }
1619 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1620 conf->geo.raid_disks - mddev->degraded);
1621 for (i = 0; i < conf->geo.raid_disks; i++)
1622 seq_printf(seq, "%s",
1623 conf->mirrors[i].rdev &&
1624 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1625 seq_printf(seq, "]");
1626 }
1627
1628 /* check if there are enough drives for
1629 * every block to appear on atleast one.
1630 * Don't consider the device numbered 'ignore'
1631 * as we might be about to remove it.
1632 */
1633 static int _enough(struct r10conf *conf, int previous, int ignore)
1634 {
1635 int first = 0;
1636 int has_enough = 0;
1637 int disks, ncopies;
1638 if (previous) {
1639 disks = conf->prev.raid_disks;
1640 ncopies = conf->prev.near_copies;
1641 } else {
1642 disks = conf->geo.raid_disks;
1643 ncopies = conf->geo.near_copies;
1644 }
1645
1646 rcu_read_lock();
1647 do {
1648 int n = conf->copies;
1649 int cnt = 0;
1650 int this = first;
1651 while (n--) {
1652 struct md_rdev *rdev;
1653 if (this != ignore &&
1654 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1655 test_bit(In_sync, &rdev->flags))
1656 cnt++;
1657 this = (this+1) % disks;
1658 }
1659 if (cnt == 0)
1660 goto out;
1661 first = (first + ncopies) % disks;
1662 } while (first != 0);
1663 has_enough = 1;
1664 out:
1665 rcu_read_unlock();
1666 return has_enough;
1667 }
1668
1669 static int enough(struct r10conf *conf, int ignore)
1670 {
1671 /* when calling 'enough', both 'prev' and 'geo' must
1672 * be stable.
1673 * This is ensured if ->reconfig_mutex or ->device_lock
1674 * is held.
1675 */
1676 return _enough(conf, 0, ignore) &&
1677 _enough(conf, 1, ignore);
1678 }
1679
1680 static void error(struct mddev *mddev, struct md_rdev *rdev)
1681 {
1682 char b[BDEVNAME_SIZE];
1683 struct r10conf *conf = mddev->private;
1684 unsigned long flags;
1685
1686 /*
1687 * If it is not operational, then we have already marked it as dead
1688 * else if it is the last working disks, ignore the error, let the
1689 * next level up know.
1690 * else mark the drive as failed
1691 */
1692 spin_lock_irqsave(&conf->device_lock, flags);
1693 if (test_bit(In_sync, &rdev->flags)
1694 && !enough(conf, rdev->raid_disk)) {
1695 /*
1696 * Don't fail the drive, just return an IO error.
1697 */
1698 spin_unlock_irqrestore(&conf->device_lock, flags);
1699 return;
1700 }
1701 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1702 mddev->degraded++;
1703 /*
1704 * if recovery is running, make sure it aborts.
1705 */
1706 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1707 }
1708 set_bit(Blocked, &rdev->flags);
1709 set_bit(Faulty, &rdev->flags);
1710 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1711 spin_unlock_irqrestore(&conf->device_lock, flags);
1712 printk(KERN_ALERT
1713 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1714 "md/raid10:%s: Operation continuing on %d devices.\n",
1715 mdname(mddev), bdevname(rdev->bdev, b),
1716 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1717 }
1718
1719 static void print_conf(struct r10conf *conf)
1720 {
1721 int i;
1722 struct raid10_info *tmp;
1723
1724 printk(KERN_DEBUG "RAID10 conf printout:\n");
1725 if (!conf) {
1726 printk(KERN_DEBUG "(!conf)\n");
1727 return;
1728 }
1729 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1730 conf->geo.raid_disks);
1731
1732 for (i = 0; i < conf->geo.raid_disks; i++) {
1733 char b[BDEVNAME_SIZE];
1734 tmp = conf->mirrors + i;
1735 if (tmp->rdev)
1736 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1737 i, !test_bit(In_sync, &tmp->rdev->flags),
1738 !test_bit(Faulty, &tmp->rdev->flags),
1739 bdevname(tmp->rdev->bdev,b));
1740 }
1741 }
1742
1743 static void close_sync(struct r10conf *conf)
1744 {
1745 wait_barrier(conf);
1746 allow_barrier(conf);
1747
1748 mempool_destroy(conf->r10buf_pool);
1749 conf->r10buf_pool = NULL;
1750 }
1751
1752 static int raid10_spare_active(struct mddev *mddev)
1753 {
1754 int i;
1755 struct r10conf *conf = mddev->private;
1756 struct raid10_info *tmp;
1757 int count = 0;
1758 unsigned long flags;
1759
1760 /*
1761 * Find all non-in_sync disks within the RAID10 configuration
1762 * and mark them in_sync
1763 */
1764 for (i = 0; i < conf->geo.raid_disks; i++) {
1765 tmp = conf->mirrors + i;
1766 if (tmp->replacement
1767 && tmp->replacement->recovery_offset == MaxSector
1768 && !test_bit(Faulty, &tmp->replacement->flags)
1769 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1770 /* Replacement has just become active */
1771 if (!tmp->rdev
1772 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1773 count++;
1774 if (tmp->rdev) {
1775 /* Replaced device not technically faulty,
1776 * but we need to be sure it gets removed
1777 * and never re-added.
1778 */
1779 set_bit(Faulty, &tmp->rdev->flags);
1780 sysfs_notify_dirent_safe(
1781 tmp->rdev->sysfs_state);
1782 }
1783 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1784 } else if (tmp->rdev
1785 && tmp->rdev->recovery_offset == MaxSector
1786 && !test_bit(Faulty, &tmp->rdev->flags)
1787 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1788 count++;
1789 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1790 }
1791 }
1792 spin_lock_irqsave(&conf->device_lock, flags);
1793 mddev->degraded -= count;
1794 spin_unlock_irqrestore(&conf->device_lock, flags);
1795
1796 print_conf(conf);
1797 return count;
1798 }
1799
1800
1801 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1802 {
1803 struct r10conf *conf = mddev->private;
1804 int err = -EEXIST;
1805 int mirror;
1806 int first = 0;
1807 int last = conf->geo.raid_disks - 1;
1808 struct request_queue *q = bdev_get_queue(rdev->bdev);
1809
1810 if (mddev->recovery_cp < MaxSector)
1811 /* only hot-add to in-sync arrays, as recovery is
1812 * very different from resync
1813 */
1814 return -EBUSY;
1815 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1816 return -EINVAL;
1817
1818 if (rdev->raid_disk >= 0)
1819 first = last = rdev->raid_disk;
1820
1821 if (q->merge_bvec_fn) {
1822 set_bit(Unmerged, &rdev->flags);
1823 mddev->merge_check_needed = 1;
1824 }
1825
1826 if (rdev->saved_raid_disk >= first &&
1827 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1828 mirror = rdev->saved_raid_disk;
1829 else
1830 mirror = first;
1831 for ( ; mirror <= last ; mirror++) {
1832 struct raid10_info *p = &conf->mirrors[mirror];
1833 if (p->recovery_disabled == mddev->recovery_disabled)
1834 continue;
1835 if (p->rdev) {
1836 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1837 p->replacement != NULL)
1838 continue;
1839 clear_bit(In_sync, &rdev->flags);
1840 set_bit(Replacement, &rdev->flags);
1841 rdev->raid_disk = mirror;
1842 err = 0;
1843 if (mddev->gendisk)
1844 disk_stack_limits(mddev->gendisk, rdev->bdev,
1845 rdev->data_offset << 9);
1846 conf->fullsync = 1;
1847 rcu_assign_pointer(p->replacement, rdev);
1848 break;
1849 }
1850
1851 if (mddev->gendisk)
1852 disk_stack_limits(mddev->gendisk, rdev->bdev,
1853 rdev->data_offset << 9);
1854
1855 p->head_position = 0;
1856 p->recovery_disabled = mddev->recovery_disabled - 1;
1857 rdev->raid_disk = mirror;
1858 err = 0;
1859 if (rdev->saved_raid_disk != mirror)
1860 conf->fullsync = 1;
1861 rcu_assign_pointer(p->rdev, rdev);
1862 break;
1863 }
1864 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1865 /* Some requests might not have seen this new
1866 * merge_bvec_fn. We must wait for them to complete
1867 * before merging the device fully.
1868 * First we make sure any code which has tested
1869 * our function has submitted the request, then
1870 * we wait for all outstanding requests to complete.
1871 */
1872 synchronize_sched();
1873 freeze_array(conf, 0);
1874 unfreeze_array(conf);
1875 clear_bit(Unmerged, &rdev->flags);
1876 }
1877 md_integrity_add_rdev(rdev, mddev);
1878 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1879 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1880
1881 print_conf(conf);
1882 return err;
1883 }
1884
1885 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1886 {
1887 struct r10conf *conf = mddev->private;
1888 int err = 0;
1889 int number = rdev->raid_disk;
1890 struct md_rdev **rdevp;
1891 struct raid10_info *p = conf->mirrors + number;
1892
1893 print_conf(conf);
1894 if (rdev == p->rdev)
1895 rdevp = &p->rdev;
1896 else if (rdev == p->replacement)
1897 rdevp = &p->replacement;
1898 else
1899 return 0;
1900
1901 if (test_bit(In_sync, &rdev->flags) ||
1902 atomic_read(&rdev->nr_pending)) {
1903 err = -EBUSY;
1904 goto abort;
1905 }
1906 /* Only remove faulty devices if recovery
1907 * is not possible.
1908 */
1909 if (!test_bit(Faulty, &rdev->flags) &&
1910 mddev->recovery_disabled != p->recovery_disabled &&
1911 (!p->replacement || p->replacement == rdev) &&
1912 number < conf->geo.raid_disks &&
1913 enough(conf, -1)) {
1914 err = -EBUSY;
1915 goto abort;
1916 }
1917 *rdevp = NULL;
1918 synchronize_rcu();
1919 if (atomic_read(&rdev->nr_pending)) {
1920 /* lost the race, try later */
1921 err = -EBUSY;
1922 *rdevp = rdev;
1923 goto abort;
1924 } else if (p->replacement) {
1925 /* We must have just cleared 'rdev' */
1926 p->rdev = p->replacement;
1927 clear_bit(Replacement, &p->replacement->flags);
1928 smp_mb(); /* Make sure other CPUs may see both as identical
1929 * but will never see neither -- if they are careful.
1930 */
1931 p->replacement = NULL;
1932 clear_bit(WantReplacement, &rdev->flags);
1933 } else
1934 /* We might have just remove the Replacement as faulty
1935 * Clear the flag just in case
1936 */
1937 clear_bit(WantReplacement, &rdev->flags);
1938
1939 err = md_integrity_register(mddev);
1940
1941 abort:
1942
1943 print_conf(conf);
1944 return err;
1945 }
1946
1947
1948 static void end_sync_read(struct bio *bio, int error)
1949 {
1950 struct r10bio *r10_bio = bio->bi_private;
1951 struct r10conf *conf = r10_bio->mddev->private;
1952 int d;
1953
1954 if (bio == r10_bio->master_bio) {
1955 /* this is a reshape read */
1956 d = r10_bio->read_slot; /* really the read dev */
1957 } else
1958 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1959
1960 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1961 set_bit(R10BIO_Uptodate, &r10_bio->state);
1962 else
1963 /* The write handler will notice the lack of
1964 * R10BIO_Uptodate and record any errors etc
1965 */
1966 atomic_add(r10_bio->sectors,
1967 &conf->mirrors[d].rdev->corrected_errors);
1968
1969 /* for reconstruct, we always reschedule after a read.
1970 * for resync, only after all reads
1971 */
1972 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1973 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1974 atomic_dec_and_test(&r10_bio->remaining)) {
1975 /* we have read all the blocks,
1976 * do the comparison in process context in raid10d
1977 */
1978 reschedule_retry(r10_bio);
1979 }
1980 }
1981
1982 static void end_sync_request(struct r10bio *r10_bio)
1983 {
1984 struct mddev *mddev = r10_bio->mddev;
1985
1986 while (atomic_dec_and_test(&r10_bio->remaining)) {
1987 if (r10_bio->master_bio == NULL) {
1988 /* the primary of several recovery bios */
1989 sector_t s = r10_bio->sectors;
1990 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1991 test_bit(R10BIO_WriteError, &r10_bio->state))
1992 reschedule_retry(r10_bio);
1993 else
1994 put_buf(r10_bio);
1995 md_done_sync(mddev, s, 1);
1996 break;
1997 } else {
1998 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1999 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2000 test_bit(R10BIO_WriteError, &r10_bio->state))
2001 reschedule_retry(r10_bio);
2002 else
2003 put_buf(r10_bio);
2004 r10_bio = r10_bio2;
2005 }
2006 }
2007 }
2008
2009 static void end_sync_write(struct bio *bio, int error)
2010 {
2011 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2012 struct r10bio *r10_bio = bio->bi_private;
2013 struct mddev *mddev = r10_bio->mddev;
2014 struct r10conf *conf = mddev->private;
2015 int d;
2016 sector_t first_bad;
2017 int bad_sectors;
2018 int slot;
2019 int repl;
2020 struct md_rdev *rdev = NULL;
2021
2022 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2023 if (repl)
2024 rdev = conf->mirrors[d].replacement;
2025 else
2026 rdev = conf->mirrors[d].rdev;
2027
2028 if (!uptodate) {
2029 if (repl)
2030 md_error(mddev, rdev);
2031 else {
2032 set_bit(WriteErrorSeen, &rdev->flags);
2033 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2034 set_bit(MD_RECOVERY_NEEDED,
2035 &rdev->mddev->recovery);
2036 set_bit(R10BIO_WriteError, &r10_bio->state);
2037 }
2038 } else if (is_badblock(rdev,
2039 r10_bio->devs[slot].addr,
2040 r10_bio->sectors,
2041 &first_bad, &bad_sectors))
2042 set_bit(R10BIO_MadeGood, &r10_bio->state);
2043
2044 rdev_dec_pending(rdev, mddev);
2045
2046 end_sync_request(r10_bio);
2047 }
2048
2049 /*
2050 * Note: sync and recover and handled very differently for raid10
2051 * This code is for resync.
2052 * For resync, we read through virtual addresses and read all blocks.
2053 * If there is any error, we schedule a write. The lowest numbered
2054 * drive is authoritative.
2055 * However requests come for physical address, so we need to map.
2056 * For every physical address there are raid_disks/copies virtual addresses,
2057 * which is always are least one, but is not necessarly an integer.
2058 * This means that a physical address can span multiple chunks, so we may
2059 * have to submit multiple io requests for a single sync request.
2060 */
2061 /*
2062 * We check if all blocks are in-sync and only write to blocks that
2063 * aren't in sync
2064 */
2065 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2066 {
2067 struct r10conf *conf = mddev->private;
2068 int i, first;
2069 struct bio *tbio, *fbio;
2070 int vcnt;
2071
2072 atomic_set(&r10_bio->remaining, 1);
2073
2074 /* find the first device with a block */
2075 for (i=0; i<conf->copies; i++)
2076 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2077 break;
2078
2079 if (i == conf->copies)
2080 goto done;
2081
2082 first = i;
2083 fbio = r10_bio->devs[i].bio;
2084
2085 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2086 /* now find blocks with errors */
2087 for (i=0 ; i < conf->copies ; i++) {
2088 int j, d;
2089
2090 tbio = r10_bio->devs[i].bio;
2091
2092 if (tbio->bi_end_io != end_sync_read)
2093 continue;
2094 if (i == first)
2095 continue;
2096 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2097 /* We know that the bi_io_vec layout is the same for
2098 * both 'first' and 'i', so we just compare them.
2099 * All vec entries are PAGE_SIZE;
2100 */
2101 int sectors = r10_bio->sectors;
2102 for (j = 0; j < vcnt; j++) {
2103 int len = PAGE_SIZE;
2104 if (sectors < (len / 512))
2105 len = sectors * 512;
2106 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2107 page_address(tbio->bi_io_vec[j].bv_page),
2108 len))
2109 break;
2110 sectors -= len/512;
2111 }
2112 if (j == vcnt)
2113 continue;
2114 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2115 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2116 /* Don't fix anything. */
2117 continue;
2118 }
2119 /* Ok, we need to write this bio, either to correct an
2120 * inconsistency or to correct an unreadable block.
2121 * First we need to fixup bv_offset, bv_len and
2122 * bi_vecs, as the read request might have corrupted these
2123 */
2124 bio_reset(tbio);
2125
2126 tbio->bi_vcnt = vcnt;
2127 tbio->bi_size = r10_bio->sectors << 9;
2128 tbio->bi_rw = WRITE;
2129 tbio->bi_private = r10_bio;
2130 tbio->bi_sector = r10_bio->devs[i].addr;
2131
2132 for (j=0; j < vcnt ; j++) {
2133 tbio->bi_io_vec[j].bv_offset = 0;
2134 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2135
2136 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2137 page_address(fbio->bi_io_vec[j].bv_page),
2138 PAGE_SIZE);
2139 }
2140 tbio->bi_end_io = end_sync_write;
2141
2142 d = r10_bio->devs[i].devnum;
2143 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2144 atomic_inc(&r10_bio->remaining);
2145 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2146
2147 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2148 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2149 generic_make_request(tbio);
2150 }
2151
2152 /* Now write out to any replacement devices
2153 * that are active
2154 */
2155 for (i = 0; i < conf->copies; i++) {
2156 int j, d;
2157
2158 tbio = r10_bio->devs[i].repl_bio;
2159 if (!tbio || !tbio->bi_end_io)
2160 continue;
2161 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2162 && r10_bio->devs[i].bio != fbio)
2163 for (j = 0; j < vcnt; j++)
2164 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2165 page_address(fbio->bi_io_vec[j].bv_page),
2166 PAGE_SIZE);
2167 d = r10_bio->devs[i].devnum;
2168 atomic_inc(&r10_bio->remaining);
2169 md_sync_acct(conf->mirrors[d].replacement->bdev,
2170 bio_sectors(tbio));
2171 generic_make_request(tbio);
2172 }
2173
2174 done:
2175 if (atomic_dec_and_test(&r10_bio->remaining)) {
2176 md_done_sync(mddev, r10_bio->sectors, 1);
2177 put_buf(r10_bio);
2178 }
2179 }
2180
2181 /*
2182 * Now for the recovery code.
2183 * Recovery happens across physical sectors.
2184 * We recover all non-is_sync drives by finding the virtual address of
2185 * each, and then choose a working drive that also has that virt address.
2186 * There is a separate r10_bio for each non-in_sync drive.
2187 * Only the first two slots are in use. The first for reading,
2188 * The second for writing.
2189 *
2190 */
2191 static void fix_recovery_read_error(struct r10bio *r10_bio)
2192 {
2193 /* We got a read error during recovery.
2194 * We repeat the read in smaller page-sized sections.
2195 * If a read succeeds, write it to the new device or record
2196 * a bad block if we cannot.
2197 * If a read fails, record a bad block on both old and
2198 * new devices.
2199 */
2200 struct mddev *mddev = r10_bio->mddev;
2201 struct r10conf *conf = mddev->private;
2202 struct bio *bio = r10_bio->devs[0].bio;
2203 sector_t sect = 0;
2204 int sectors = r10_bio->sectors;
2205 int idx = 0;
2206 int dr = r10_bio->devs[0].devnum;
2207 int dw = r10_bio->devs[1].devnum;
2208
2209 while (sectors) {
2210 int s = sectors;
2211 struct md_rdev *rdev;
2212 sector_t addr;
2213 int ok;
2214
2215 if (s > (PAGE_SIZE>>9))
2216 s = PAGE_SIZE >> 9;
2217
2218 rdev = conf->mirrors[dr].rdev;
2219 addr = r10_bio->devs[0].addr + sect,
2220 ok = sync_page_io(rdev,
2221 addr,
2222 s << 9,
2223 bio->bi_io_vec[idx].bv_page,
2224 READ, false);
2225 if (ok) {
2226 rdev = conf->mirrors[dw].rdev;
2227 addr = r10_bio->devs[1].addr + sect;
2228 ok = sync_page_io(rdev,
2229 addr,
2230 s << 9,
2231 bio->bi_io_vec[idx].bv_page,
2232 WRITE, false);
2233 if (!ok) {
2234 set_bit(WriteErrorSeen, &rdev->flags);
2235 if (!test_and_set_bit(WantReplacement,
2236 &rdev->flags))
2237 set_bit(MD_RECOVERY_NEEDED,
2238 &rdev->mddev->recovery);
2239 }
2240 }
2241 if (!ok) {
2242 /* We don't worry if we cannot set a bad block -
2243 * it really is bad so there is no loss in not
2244 * recording it yet
2245 */
2246 rdev_set_badblocks(rdev, addr, s, 0);
2247
2248 if (rdev != conf->mirrors[dw].rdev) {
2249 /* need bad block on destination too */
2250 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2251 addr = r10_bio->devs[1].addr + sect;
2252 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2253 if (!ok) {
2254 /* just abort the recovery */
2255 printk(KERN_NOTICE
2256 "md/raid10:%s: recovery aborted"
2257 " due to read error\n",
2258 mdname(mddev));
2259
2260 conf->mirrors[dw].recovery_disabled
2261 = mddev->recovery_disabled;
2262 set_bit(MD_RECOVERY_INTR,
2263 &mddev->recovery);
2264 break;
2265 }
2266 }
2267 }
2268
2269 sectors -= s;
2270 sect += s;
2271 idx++;
2272 }
2273 }
2274
2275 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2276 {
2277 struct r10conf *conf = mddev->private;
2278 int d;
2279 struct bio *wbio, *wbio2;
2280
2281 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2282 fix_recovery_read_error(r10_bio);
2283 end_sync_request(r10_bio);
2284 return;
2285 }
2286
2287 /*
2288 * share the pages with the first bio
2289 * and submit the write request
2290 */
2291 d = r10_bio->devs[1].devnum;
2292 wbio = r10_bio->devs[1].bio;
2293 wbio2 = r10_bio->devs[1].repl_bio;
2294 /* Need to test wbio2->bi_end_io before we call
2295 * generic_make_request as if the former is NULL,
2296 * the latter is free to free wbio2.
2297 */
2298 if (wbio2 && !wbio2->bi_end_io)
2299 wbio2 = NULL;
2300 if (wbio->bi_end_io) {
2301 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2302 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2303 generic_make_request(wbio);
2304 }
2305 if (wbio2) {
2306 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2307 md_sync_acct(conf->mirrors[d].replacement->bdev,
2308 bio_sectors(wbio2));
2309 generic_make_request(wbio2);
2310 }
2311 }
2312
2313
2314 /*
2315 * Used by fix_read_error() to decay the per rdev read_errors.
2316 * We halve the read error count for every hour that has elapsed
2317 * since the last recorded read error.
2318 *
2319 */
2320 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2321 {
2322 struct timespec cur_time_mon;
2323 unsigned long hours_since_last;
2324 unsigned int read_errors = atomic_read(&rdev->read_errors);
2325
2326 ktime_get_ts(&cur_time_mon);
2327
2328 if (rdev->last_read_error.tv_sec == 0 &&
2329 rdev->last_read_error.tv_nsec == 0) {
2330 /* first time we've seen a read error */
2331 rdev->last_read_error = cur_time_mon;
2332 return;
2333 }
2334
2335 hours_since_last = (cur_time_mon.tv_sec -
2336 rdev->last_read_error.tv_sec) / 3600;
2337
2338 rdev->last_read_error = cur_time_mon;
2339
2340 /*
2341 * if hours_since_last is > the number of bits in read_errors
2342 * just set read errors to 0. We do this to avoid
2343 * overflowing the shift of read_errors by hours_since_last.
2344 */
2345 if (hours_since_last >= 8 * sizeof(read_errors))
2346 atomic_set(&rdev->read_errors, 0);
2347 else
2348 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2349 }
2350
2351 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2352 int sectors, struct page *page, int rw)
2353 {
2354 sector_t first_bad;
2355 int bad_sectors;
2356
2357 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2358 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2359 return -1;
2360 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2361 /* success */
2362 return 1;
2363 if (rw == WRITE) {
2364 set_bit(WriteErrorSeen, &rdev->flags);
2365 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2366 set_bit(MD_RECOVERY_NEEDED,
2367 &rdev->mddev->recovery);
2368 }
2369 /* need to record an error - either for the block or the device */
2370 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2371 md_error(rdev->mddev, rdev);
2372 return 0;
2373 }
2374
2375 /*
2376 * This is a kernel thread which:
2377 *
2378 * 1. Retries failed read operations on working mirrors.
2379 * 2. Updates the raid superblock when problems encounter.
2380 * 3. Performs writes following reads for array synchronising.
2381 */
2382
2383 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2384 {
2385 int sect = 0; /* Offset from r10_bio->sector */
2386 int sectors = r10_bio->sectors;
2387 struct md_rdev*rdev;
2388 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2389 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2390
2391 /* still own a reference to this rdev, so it cannot
2392 * have been cleared recently.
2393 */
2394 rdev = conf->mirrors[d].rdev;
2395
2396 if (test_bit(Faulty, &rdev->flags))
2397 /* drive has already been failed, just ignore any
2398 more fix_read_error() attempts */
2399 return;
2400
2401 check_decay_read_errors(mddev, rdev);
2402 atomic_inc(&rdev->read_errors);
2403 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2404 char b[BDEVNAME_SIZE];
2405 bdevname(rdev->bdev, b);
2406
2407 printk(KERN_NOTICE
2408 "md/raid10:%s: %s: Raid device exceeded "
2409 "read_error threshold [cur %d:max %d]\n",
2410 mdname(mddev), b,
2411 atomic_read(&rdev->read_errors), max_read_errors);
2412 printk(KERN_NOTICE
2413 "md/raid10:%s: %s: Failing raid device\n",
2414 mdname(mddev), b);
2415 md_error(mddev, conf->mirrors[d].rdev);
2416 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2417 return;
2418 }
2419
2420 while(sectors) {
2421 int s = sectors;
2422 int sl = r10_bio->read_slot;
2423 int success = 0;
2424 int start;
2425
2426 if (s > (PAGE_SIZE>>9))
2427 s = PAGE_SIZE >> 9;
2428
2429 rcu_read_lock();
2430 do {
2431 sector_t first_bad;
2432 int bad_sectors;
2433
2434 d = r10_bio->devs[sl].devnum;
2435 rdev = rcu_dereference(conf->mirrors[d].rdev);
2436 if (rdev &&
2437 !test_bit(Unmerged, &rdev->flags) &&
2438 test_bit(In_sync, &rdev->flags) &&
2439 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2440 &first_bad, &bad_sectors) == 0) {
2441 atomic_inc(&rdev->nr_pending);
2442 rcu_read_unlock();
2443 success = sync_page_io(rdev,
2444 r10_bio->devs[sl].addr +
2445 sect,
2446 s<<9,
2447 conf->tmppage, READ, false);
2448 rdev_dec_pending(rdev, mddev);
2449 rcu_read_lock();
2450 if (success)
2451 break;
2452 }
2453 sl++;
2454 if (sl == conf->copies)
2455 sl = 0;
2456 } while (!success && sl != r10_bio->read_slot);
2457 rcu_read_unlock();
2458
2459 if (!success) {
2460 /* Cannot read from anywhere, just mark the block
2461 * as bad on the first device to discourage future
2462 * reads.
2463 */
2464 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2465 rdev = conf->mirrors[dn].rdev;
2466
2467 if (!rdev_set_badblocks(
2468 rdev,
2469 r10_bio->devs[r10_bio->read_slot].addr
2470 + sect,
2471 s, 0)) {
2472 md_error(mddev, rdev);
2473 r10_bio->devs[r10_bio->read_slot].bio
2474 = IO_BLOCKED;
2475 }
2476 break;
2477 }
2478
2479 start = sl;
2480 /* write it back and re-read */
2481 rcu_read_lock();
2482 while (sl != r10_bio->read_slot) {
2483 char b[BDEVNAME_SIZE];
2484
2485 if (sl==0)
2486 sl = conf->copies;
2487 sl--;
2488 d = r10_bio->devs[sl].devnum;
2489 rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 if (!rdev ||
2491 test_bit(Unmerged, &rdev->flags) ||
2492 !test_bit(In_sync, &rdev->flags))
2493 continue;
2494
2495 atomic_inc(&rdev->nr_pending);
2496 rcu_read_unlock();
2497 if (r10_sync_page_io(rdev,
2498 r10_bio->devs[sl].addr +
2499 sect,
2500 s, conf->tmppage, WRITE)
2501 == 0) {
2502 /* Well, this device is dead */
2503 printk(KERN_NOTICE
2504 "md/raid10:%s: read correction "
2505 "write failed"
2506 " (%d sectors at %llu on %s)\n",
2507 mdname(mddev), s,
2508 (unsigned long long)(
2509 sect +
2510 choose_data_offset(r10_bio,
2511 rdev)),
2512 bdevname(rdev->bdev, b));
2513 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2514 "drive\n",
2515 mdname(mddev),
2516 bdevname(rdev->bdev, b));
2517 }
2518 rdev_dec_pending(rdev, mddev);
2519 rcu_read_lock();
2520 }
2521 sl = start;
2522 while (sl != r10_bio->read_slot) {
2523 char b[BDEVNAME_SIZE];
2524
2525 if (sl==0)
2526 sl = conf->copies;
2527 sl--;
2528 d = r10_bio->devs[sl].devnum;
2529 rdev = rcu_dereference(conf->mirrors[d].rdev);
2530 if (!rdev ||
2531 !test_bit(In_sync, &rdev->flags))
2532 continue;
2533
2534 atomic_inc(&rdev->nr_pending);
2535 rcu_read_unlock();
2536 switch (r10_sync_page_io(rdev,
2537 r10_bio->devs[sl].addr +
2538 sect,
2539 s, conf->tmppage,
2540 READ)) {
2541 case 0:
2542 /* Well, this device is dead */
2543 printk(KERN_NOTICE
2544 "md/raid10:%s: unable to read back "
2545 "corrected sectors"
2546 " (%d sectors at %llu on %s)\n",
2547 mdname(mddev), s,
2548 (unsigned long long)(
2549 sect +
2550 choose_data_offset(r10_bio, rdev)),
2551 bdevname(rdev->bdev, b));
2552 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2553 "drive\n",
2554 mdname(mddev),
2555 bdevname(rdev->bdev, b));
2556 break;
2557 case 1:
2558 printk(KERN_INFO
2559 "md/raid10:%s: read error corrected"
2560 " (%d sectors at %llu on %s)\n",
2561 mdname(mddev), s,
2562 (unsigned long long)(
2563 sect +
2564 choose_data_offset(r10_bio, rdev)),
2565 bdevname(rdev->bdev, b));
2566 atomic_add(s, &rdev->corrected_errors);
2567 }
2568
2569 rdev_dec_pending(rdev, mddev);
2570 rcu_read_lock();
2571 }
2572 rcu_read_unlock();
2573
2574 sectors -= s;
2575 sect += s;
2576 }
2577 }
2578
2579 static int narrow_write_error(struct r10bio *r10_bio, int i)
2580 {
2581 struct bio *bio = r10_bio->master_bio;
2582 struct mddev *mddev = r10_bio->mddev;
2583 struct r10conf *conf = mddev->private;
2584 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2585 /* bio has the data to be written to slot 'i' where
2586 * we just recently had a write error.
2587 * We repeatedly clone the bio and trim down to one block,
2588 * then try the write. Where the write fails we record
2589 * a bad block.
2590 * It is conceivable that the bio doesn't exactly align with
2591 * blocks. We must handle this.
2592 *
2593 * We currently own a reference to the rdev.
2594 */
2595
2596 int block_sectors;
2597 sector_t sector;
2598 int sectors;
2599 int sect_to_write = r10_bio->sectors;
2600 int ok = 1;
2601
2602 if (rdev->badblocks.shift < 0)
2603 return 0;
2604
2605 block_sectors = 1 << rdev->badblocks.shift;
2606 sector = r10_bio->sector;
2607 sectors = ((r10_bio->sector + block_sectors)
2608 & ~(sector_t)(block_sectors - 1))
2609 - sector;
2610
2611 while (sect_to_write) {
2612 struct bio *wbio;
2613 if (sectors > sect_to_write)
2614 sectors = sect_to_write;
2615 /* Write at 'sector' for 'sectors' */
2616 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2617 bio_trim(wbio, sector - bio->bi_sector, sectors);
2618 wbio->bi_sector = (r10_bio->devs[i].addr+
2619 choose_data_offset(r10_bio, rdev) +
2620 (sector - r10_bio->sector));
2621 wbio->bi_bdev = rdev->bdev;
2622 if (submit_bio_wait(WRITE, wbio) == 0)
2623 /* Failure! */
2624 ok = rdev_set_badblocks(rdev, sector,
2625 sectors, 0)
2626 && ok;
2627
2628 bio_put(wbio);
2629 sect_to_write -= sectors;
2630 sector += sectors;
2631 sectors = block_sectors;
2632 }
2633 return ok;
2634 }
2635
2636 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2637 {
2638 int slot = r10_bio->read_slot;
2639 struct bio *bio;
2640 struct r10conf *conf = mddev->private;
2641 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2642 char b[BDEVNAME_SIZE];
2643 unsigned long do_sync;
2644 int max_sectors;
2645
2646 /* we got a read error. Maybe the drive is bad. Maybe just
2647 * the block and we can fix it.
2648 * We freeze all other IO, and try reading the block from
2649 * other devices. When we find one, we re-write
2650 * and check it that fixes the read error.
2651 * This is all done synchronously while the array is
2652 * frozen.
2653 */
2654 bio = r10_bio->devs[slot].bio;
2655 bdevname(bio->bi_bdev, b);
2656 bio_put(bio);
2657 r10_bio->devs[slot].bio = NULL;
2658
2659 if (mddev->ro == 0) {
2660 freeze_array(conf, 1);
2661 fix_read_error(conf, mddev, r10_bio);
2662 unfreeze_array(conf);
2663 } else
2664 r10_bio->devs[slot].bio = IO_BLOCKED;
2665
2666 rdev_dec_pending(rdev, mddev);
2667
2668 read_more:
2669 rdev = read_balance(conf, r10_bio, &max_sectors);
2670 if (rdev == NULL) {
2671 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2672 " read error for block %llu\n",
2673 mdname(mddev), b,
2674 (unsigned long long)r10_bio->sector);
2675 raid_end_bio_io(r10_bio);
2676 return;
2677 }
2678
2679 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2680 slot = r10_bio->read_slot;
2681 printk_ratelimited(
2682 KERN_ERR
2683 "md/raid10:%s: %s: redirecting "
2684 "sector %llu to another mirror\n",
2685 mdname(mddev),
2686 bdevname(rdev->bdev, b),
2687 (unsigned long long)r10_bio->sector);
2688 bio = bio_clone_mddev(r10_bio->master_bio,
2689 GFP_NOIO, mddev);
2690 bio_trim(bio, r10_bio->sector - bio->bi_sector, max_sectors);
2691 r10_bio->devs[slot].bio = bio;
2692 r10_bio->devs[slot].rdev = rdev;
2693 bio->bi_sector = r10_bio->devs[slot].addr
2694 + choose_data_offset(r10_bio, rdev);
2695 bio->bi_bdev = rdev->bdev;
2696 bio->bi_rw = READ | do_sync;
2697 bio->bi_private = r10_bio;
2698 bio->bi_end_io = raid10_end_read_request;
2699 if (max_sectors < r10_bio->sectors) {
2700 /* Drat - have to split this up more */
2701 struct bio *mbio = r10_bio->master_bio;
2702 int sectors_handled =
2703 r10_bio->sector + max_sectors
2704 - mbio->bi_sector;
2705 r10_bio->sectors = max_sectors;
2706 spin_lock_irq(&conf->device_lock);
2707 if (mbio->bi_phys_segments == 0)
2708 mbio->bi_phys_segments = 2;
2709 else
2710 mbio->bi_phys_segments++;
2711 spin_unlock_irq(&conf->device_lock);
2712 generic_make_request(bio);
2713
2714 r10_bio = mempool_alloc(conf->r10bio_pool,
2715 GFP_NOIO);
2716 r10_bio->master_bio = mbio;
2717 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2718 r10_bio->state = 0;
2719 set_bit(R10BIO_ReadError,
2720 &r10_bio->state);
2721 r10_bio->mddev = mddev;
2722 r10_bio->sector = mbio->bi_sector
2723 + sectors_handled;
2724
2725 goto read_more;
2726 } else
2727 generic_make_request(bio);
2728 }
2729
2730 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2731 {
2732 /* Some sort of write request has finished and it
2733 * succeeded in writing where we thought there was a
2734 * bad block. So forget the bad block.
2735 * Or possibly if failed and we need to record
2736 * a bad block.
2737 */
2738 int m;
2739 struct md_rdev *rdev;
2740
2741 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2742 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2743 for (m = 0; m < conf->copies; m++) {
2744 int dev = r10_bio->devs[m].devnum;
2745 rdev = conf->mirrors[dev].rdev;
2746 if (r10_bio->devs[m].bio == NULL)
2747 continue;
2748 if (test_bit(BIO_UPTODATE,
2749 &r10_bio->devs[m].bio->bi_flags)) {
2750 rdev_clear_badblocks(
2751 rdev,
2752 r10_bio->devs[m].addr,
2753 r10_bio->sectors, 0);
2754 } else {
2755 if (!rdev_set_badblocks(
2756 rdev,
2757 r10_bio->devs[m].addr,
2758 r10_bio->sectors, 0))
2759 md_error(conf->mddev, rdev);
2760 }
2761 rdev = conf->mirrors[dev].replacement;
2762 if (r10_bio->devs[m].repl_bio == NULL)
2763 continue;
2764 if (test_bit(BIO_UPTODATE,
2765 &r10_bio->devs[m].repl_bio->bi_flags)) {
2766 rdev_clear_badblocks(
2767 rdev,
2768 r10_bio->devs[m].addr,
2769 r10_bio->sectors, 0);
2770 } else {
2771 if (!rdev_set_badblocks(
2772 rdev,
2773 r10_bio->devs[m].addr,
2774 r10_bio->sectors, 0))
2775 md_error(conf->mddev, rdev);
2776 }
2777 }
2778 put_buf(r10_bio);
2779 } else {
2780 for (m = 0; m < conf->copies; m++) {
2781 int dev = r10_bio->devs[m].devnum;
2782 struct bio *bio = r10_bio->devs[m].bio;
2783 rdev = conf->mirrors[dev].rdev;
2784 if (bio == IO_MADE_GOOD) {
2785 rdev_clear_badblocks(
2786 rdev,
2787 r10_bio->devs[m].addr,
2788 r10_bio->sectors, 0);
2789 rdev_dec_pending(rdev, conf->mddev);
2790 } else if (bio != NULL &&
2791 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2792 if (!narrow_write_error(r10_bio, m)) {
2793 md_error(conf->mddev, rdev);
2794 set_bit(R10BIO_Degraded,
2795 &r10_bio->state);
2796 }
2797 rdev_dec_pending(rdev, conf->mddev);
2798 }
2799 bio = r10_bio->devs[m].repl_bio;
2800 rdev = conf->mirrors[dev].replacement;
2801 if (rdev && bio == IO_MADE_GOOD) {
2802 rdev_clear_badblocks(
2803 rdev,
2804 r10_bio->devs[m].addr,
2805 r10_bio->sectors, 0);
2806 rdev_dec_pending(rdev, conf->mddev);
2807 }
2808 }
2809 if (test_bit(R10BIO_WriteError,
2810 &r10_bio->state))
2811 close_write(r10_bio);
2812 raid_end_bio_io(r10_bio);
2813 }
2814 }
2815
2816 static void raid10d(struct md_thread *thread)
2817 {
2818 struct mddev *mddev = thread->mddev;
2819 struct r10bio *r10_bio;
2820 unsigned long flags;
2821 struct r10conf *conf = mddev->private;
2822 struct list_head *head = &conf->retry_list;
2823 struct blk_plug plug;
2824
2825 md_check_recovery(mddev);
2826
2827 blk_start_plug(&plug);
2828 for (;;) {
2829
2830 flush_pending_writes(conf);
2831
2832 spin_lock_irqsave(&conf->device_lock, flags);
2833 if (list_empty(head)) {
2834 spin_unlock_irqrestore(&conf->device_lock, flags);
2835 break;
2836 }
2837 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2838 list_del(head->prev);
2839 conf->nr_queued--;
2840 spin_unlock_irqrestore(&conf->device_lock, flags);
2841
2842 mddev = r10_bio->mddev;
2843 conf = mddev->private;
2844 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2845 test_bit(R10BIO_WriteError, &r10_bio->state))
2846 handle_write_completed(conf, r10_bio);
2847 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2848 reshape_request_write(mddev, r10_bio);
2849 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2850 sync_request_write(mddev, r10_bio);
2851 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2852 recovery_request_write(mddev, r10_bio);
2853 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2854 handle_read_error(mddev, r10_bio);
2855 else {
2856 /* just a partial read to be scheduled from a
2857 * separate context
2858 */
2859 int slot = r10_bio->read_slot;
2860 generic_make_request(r10_bio->devs[slot].bio);
2861 }
2862
2863 cond_resched();
2864 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2865 md_check_recovery(mddev);
2866 }
2867 blk_finish_plug(&plug);
2868 }
2869
2870
2871 static int init_resync(struct r10conf *conf)
2872 {
2873 int buffs;
2874 int i;
2875
2876 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2877 BUG_ON(conf->r10buf_pool);
2878 conf->have_replacement = 0;
2879 for (i = 0; i < conf->geo.raid_disks; i++)
2880 if (conf->mirrors[i].replacement)
2881 conf->have_replacement = 1;
2882 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2883 if (!conf->r10buf_pool)
2884 return -ENOMEM;
2885 conf->next_resync = 0;
2886 return 0;
2887 }
2888
2889 /*
2890 * perform a "sync" on one "block"
2891 *
2892 * We need to make sure that no normal I/O request - particularly write
2893 * requests - conflict with active sync requests.
2894 *
2895 * This is achieved by tracking pending requests and a 'barrier' concept
2896 * that can be installed to exclude normal IO requests.
2897 *
2898 * Resync and recovery are handled very differently.
2899 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2900 *
2901 * For resync, we iterate over virtual addresses, read all copies,
2902 * and update if there are differences. If only one copy is live,
2903 * skip it.
2904 * For recovery, we iterate over physical addresses, read a good
2905 * value for each non-in_sync drive, and over-write.
2906 *
2907 * So, for recovery we may have several outstanding complex requests for a
2908 * given address, one for each out-of-sync device. We model this by allocating
2909 * a number of r10_bio structures, one for each out-of-sync device.
2910 * As we setup these structures, we collect all bio's together into a list
2911 * which we then process collectively to add pages, and then process again
2912 * to pass to generic_make_request.
2913 *
2914 * The r10_bio structures are linked using a borrowed master_bio pointer.
2915 * This link is counted in ->remaining. When the r10_bio that points to NULL
2916 * has its remaining count decremented to 0, the whole complex operation
2917 * is complete.
2918 *
2919 */
2920
2921 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2922 int *skipped, int go_faster)
2923 {
2924 struct r10conf *conf = mddev->private;
2925 struct r10bio *r10_bio;
2926 struct bio *biolist = NULL, *bio;
2927 sector_t max_sector, nr_sectors;
2928 int i;
2929 int max_sync;
2930 sector_t sync_blocks;
2931 sector_t sectors_skipped = 0;
2932 int chunks_skipped = 0;
2933 sector_t chunk_mask = conf->geo.chunk_mask;
2934
2935 if (!conf->r10buf_pool)
2936 if (init_resync(conf))
2937 return 0;
2938
2939 /*
2940 * Allow skipping a full rebuild for incremental assembly
2941 * of a clean array, like RAID1 does.
2942 */
2943 if (mddev->bitmap == NULL &&
2944 mddev->recovery_cp == MaxSector &&
2945 mddev->reshape_position == MaxSector &&
2946 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2947 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2948 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2949 conf->fullsync == 0) {
2950 *skipped = 1;
2951 return mddev->dev_sectors - sector_nr;
2952 }
2953
2954 skipped:
2955 max_sector = mddev->dev_sectors;
2956 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2957 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2958 max_sector = mddev->resync_max_sectors;
2959 if (sector_nr >= max_sector) {
2960 /* If we aborted, we need to abort the
2961 * sync on the 'current' bitmap chucks (there can
2962 * be several when recovering multiple devices).
2963 * as we may have started syncing it but not finished.
2964 * We can find the current address in
2965 * mddev->curr_resync, but for recovery,
2966 * we need to convert that to several
2967 * virtual addresses.
2968 */
2969 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2970 end_reshape(conf);
2971 return 0;
2972 }
2973
2974 if (mddev->curr_resync < max_sector) { /* aborted */
2975 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2976 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2977 &sync_blocks, 1);
2978 else for (i = 0; i < conf->geo.raid_disks; i++) {
2979 sector_t sect =
2980 raid10_find_virt(conf, mddev->curr_resync, i);
2981 bitmap_end_sync(mddev->bitmap, sect,
2982 &sync_blocks, 1);
2983 }
2984 } else {
2985 /* completed sync */
2986 if ((!mddev->bitmap || conf->fullsync)
2987 && conf->have_replacement
2988 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2989 /* Completed a full sync so the replacements
2990 * are now fully recovered.
2991 */
2992 for (i = 0; i < conf->geo.raid_disks; i++)
2993 if (conf->mirrors[i].replacement)
2994 conf->mirrors[i].replacement
2995 ->recovery_offset
2996 = MaxSector;
2997 }
2998 conf->fullsync = 0;
2999 }
3000 bitmap_close_sync(mddev->bitmap);
3001 close_sync(conf);
3002 *skipped = 1;
3003 return sectors_skipped;
3004 }
3005
3006 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3007 return reshape_request(mddev, sector_nr, skipped);
3008
3009 if (chunks_skipped >= conf->geo.raid_disks) {
3010 /* if there has been nothing to do on any drive,
3011 * then there is nothing to do at all..
3012 */
3013 *skipped = 1;
3014 return (max_sector - sector_nr) + sectors_skipped;
3015 }
3016
3017 if (max_sector > mddev->resync_max)
3018 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3019
3020 /* make sure whole request will fit in a chunk - if chunks
3021 * are meaningful
3022 */
3023 if (conf->geo.near_copies < conf->geo.raid_disks &&
3024 max_sector > (sector_nr | chunk_mask))
3025 max_sector = (sector_nr | chunk_mask) + 1;
3026 /*
3027 * If there is non-resync activity waiting for us then
3028 * put in a delay to throttle resync.
3029 */
3030 if (!go_faster && conf->nr_waiting)
3031 msleep_interruptible(1000);
3032
3033 /* Again, very different code for resync and recovery.
3034 * Both must result in an r10bio with a list of bios that
3035 * have bi_end_io, bi_sector, bi_bdev set,
3036 * and bi_private set to the r10bio.
3037 * For recovery, we may actually create several r10bios
3038 * with 2 bios in each, that correspond to the bios in the main one.
3039 * In this case, the subordinate r10bios link back through a
3040 * borrowed master_bio pointer, and the counter in the master
3041 * includes a ref from each subordinate.
3042 */
3043 /* First, we decide what to do and set ->bi_end_io
3044 * To end_sync_read if we want to read, and
3045 * end_sync_write if we will want to write.
3046 */
3047
3048 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3049 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3050 /* recovery... the complicated one */
3051 int j;
3052 r10_bio = NULL;
3053
3054 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3055 int still_degraded;
3056 struct r10bio *rb2;
3057 sector_t sect;
3058 int must_sync;
3059 int any_working;
3060 struct raid10_info *mirror = &conf->mirrors[i];
3061
3062 if ((mirror->rdev == NULL ||
3063 test_bit(In_sync, &mirror->rdev->flags))
3064 &&
3065 (mirror->replacement == NULL ||
3066 test_bit(Faulty,
3067 &mirror->replacement->flags)))
3068 continue;
3069
3070 still_degraded = 0;
3071 /* want to reconstruct this device */
3072 rb2 = r10_bio;
3073 sect = raid10_find_virt(conf, sector_nr, i);
3074 if (sect >= mddev->resync_max_sectors) {
3075 /* last stripe is not complete - don't
3076 * try to recover this sector.
3077 */
3078 continue;
3079 }
3080 /* Unless we are doing a full sync, or a replacement
3081 * we only need to recover the block if it is set in
3082 * the bitmap
3083 */
3084 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3085 &sync_blocks, 1);
3086 if (sync_blocks < max_sync)
3087 max_sync = sync_blocks;
3088 if (!must_sync &&
3089 mirror->replacement == NULL &&
3090 !conf->fullsync) {
3091 /* yep, skip the sync_blocks here, but don't assume
3092 * that there will never be anything to do here
3093 */
3094 chunks_skipped = -1;
3095 continue;
3096 }
3097
3098 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3099 raise_barrier(conf, rb2 != NULL);
3100 atomic_set(&r10_bio->remaining, 0);
3101
3102 r10_bio->master_bio = (struct bio*)rb2;
3103 if (rb2)
3104 atomic_inc(&rb2->remaining);
3105 r10_bio->mddev = mddev;
3106 set_bit(R10BIO_IsRecover, &r10_bio->state);
3107 r10_bio->sector = sect;
3108
3109 raid10_find_phys(conf, r10_bio);
3110
3111 /* Need to check if the array will still be
3112 * degraded
3113 */
3114 for (j = 0; j < conf->geo.raid_disks; j++)
3115 if (conf->mirrors[j].rdev == NULL ||
3116 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3117 still_degraded = 1;
3118 break;
3119 }
3120
3121 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3122 &sync_blocks, still_degraded);
3123
3124 any_working = 0;
3125 for (j=0; j<conf->copies;j++) {
3126 int k;
3127 int d = r10_bio->devs[j].devnum;
3128 sector_t from_addr, to_addr;
3129 struct md_rdev *rdev;
3130 sector_t sector, first_bad;
3131 int bad_sectors;
3132 if (!conf->mirrors[d].rdev ||
3133 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3134 continue;
3135 /* This is where we read from */
3136 any_working = 1;
3137 rdev = conf->mirrors[d].rdev;
3138 sector = r10_bio->devs[j].addr;
3139
3140 if (is_badblock(rdev, sector, max_sync,
3141 &first_bad, &bad_sectors)) {
3142 if (first_bad > sector)
3143 max_sync = first_bad - sector;
3144 else {
3145 bad_sectors -= (sector
3146 - first_bad);
3147 if (max_sync > bad_sectors)
3148 max_sync = bad_sectors;
3149 continue;
3150 }
3151 }
3152 bio = r10_bio->devs[0].bio;
3153 bio_reset(bio);
3154 bio->bi_next = biolist;
3155 biolist = bio;
3156 bio->bi_private = r10_bio;
3157 bio->bi_end_io = end_sync_read;
3158 bio->bi_rw = READ;
3159 from_addr = r10_bio->devs[j].addr;
3160 bio->bi_sector = from_addr + rdev->data_offset;
3161 bio->bi_bdev = rdev->bdev;
3162 atomic_inc(&rdev->nr_pending);
3163 /* and we write to 'i' (if not in_sync) */
3164
3165 for (k=0; k<conf->copies; k++)
3166 if (r10_bio->devs[k].devnum == i)
3167 break;
3168 BUG_ON(k == conf->copies);
3169 to_addr = r10_bio->devs[k].addr;
3170 r10_bio->devs[0].devnum = d;
3171 r10_bio->devs[0].addr = from_addr;
3172 r10_bio->devs[1].devnum = i;
3173 r10_bio->devs[1].addr = to_addr;
3174
3175 rdev = mirror->rdev;
3176 if (!test_bit(In_sync, &rdev->flags)) {
3177 bio = r10_bio->devs[1].bio;
3178 bio_reset(bio);
3179 bio->bi_next = biolist;
3180 biolist = bio;
3181 bio->bi_private = r10_bio;
3182 bio->bi_end_io = end_sync_write;
3183 bio->bi_rw = WRITE;
3184 bio->bi_sector = to_addr
3185 + rdev->data_offset;
3186 bio->bi_bdev = rdev->bdev;
3187 atomic_inc(&r10_bio->remaining);
3188 } else
3189 r10_bio->devs[1].bio->bi_end_io = NULL;
3190
3191 /* and maybe write to replacement */
3192 bio = r10_bio->devs[1].repl_bio;
3193 if (bio)
3194 bio->bi_end_io = NULL;
3195 rdev = mirror->replacement;
3196 /* Note: if rdev != NULL, then bio
3197 * cannot be NULL as r10buf_pool_alloc will
3198 * have allocated it.
3199 * So the second test here is pointless.
3200 * But it keeps semantic-checkers happy, and
3201 * this comment keeps human reviewers
3202 * happy.
3203 */
3204 if (rdev == NULL || bio == NULL ||
3205 test_bit(Faulty, &rdev->flags))
3206 break;
3207 bio_reset(bio);
3208 bio->bi_next = biolist;
3209 biolist = bio;
3210 bio->bi_private = r10_bio;
3211 bio->bi_end_io = end_sync_write;
3212 bio->bi_rw = WRITE;
3213 bio->bi_sector = to_addr + rdev->data_offset;
3214 bio->bi_bdev = rdev->bdev;
3215 atomic_inc(&r10_bio->remaining);
3216 break;
3217 }
3218 if (j == conf->copies) {
3219 /* Cannot recover, so abort the recovery or
3220 * record a bad block */
3221 put_buf(r10_bio);
3222 if (rb2)
3223 atomic_dec(&rb2->remaining);
3224 r10_bio = rb2;
3225 if (any_working) {
3226 /* problem is that there are bad blocks
3227 * on other device(s)
3228 */
3229 int k;
3230 for (k = 0; k < conf->copies; k++)
3231 if (r10_bio->devs[k].devnum == i)
3232 break;
3233 if (!test_bit(In_sync,
3234 &mirror->rdev->flags)
3235 && !rdev_set_badblocks(
3236 mirror->rdev,
3237 r10_bio->devs[k].addr,
3238 max_sync, 0))
3239 any_working = 0;
3240 if (mirror->replacement &&
3241 !rdev_set_badblocks(
3242 mirror->replacement,
3243 r10_bio->devs[k].addr,
3244 max_sync, 0))
3245 any_working = 0;
3246 }
3247 if (!any_working) {
3248 if (!test_and_set_bit(MD_RECOVERY_INTR,
3249 &mddev->recovery))
3250 printk(KERN_INFO "md/raid10:%s: insufficient "
3251 "working devices for recovery.\n",
3252 mdname(mddev));
3253 mirror->recovery_disabled
3254 = mddev->recovery_disabled;
3255 }
3256 break;
3257 }
3258 }
3259 if (biolist == NULL) {
3260 while (r10_bio) {
3261 struct r10bio *rb2 = r10_bio;
3262 r10_bio = (struct r10bio*) rb2->master_bio;
3263 rb2->master_bio = NULL;
3264 put_buf(rb2);
3265 }
3266 goto giveup;
3267 }
3268 } else {
3269 /* resync. Schedule a read for every block at this virt offset */
3270 int count = 0;
3271
3272 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3273
3274 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3275 &sync_blocks, mddev->degraded) &&
3276 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3277 &mddev->recovery)) {
3278 /* We can skip this block */
3279 *skipped = 1;
3280 return sync_blocks + sectors_skipped;
3281 }
3282 if (sync_blocks < max_sync)
3283 max_sync = sync_blocks;
3284 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3285
3286 r10_bio->mddev = mddev;
3287 atomic_set(&r10_bio->remaining, 0);
3288 raise_barrier(conf, 0);
3289 conf->next_resync = sector_nr;
3290
3291 r10_bio->master_bio = NULL;
3292 r10_bio->sector = sector_nr;
3293 set_bit(R10BIO_IsSync, &r10_bio->state);
3294 raid10_find_phys(conf, r10_bio);
3295 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3296
3297 for (i = 0; i < conf->copies; i++) {
3298 int d = r10_bio->devs[i].devnum;
3299 sector_t first_bad, sector;
3300 int bad_sectors;
3301
3302 if (r10_bio->devs[i].repl_bio)
3303 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3304
3305 bio = r10_bio->devs[i].bio;
3306 bio_reset(bio);
3307 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3308 if (conf->mirrors[d].rdev == NULL ||
3309 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3310 continue;
3311 sector = r10_bio->devs[i].addr;
3312 if (is_badblock(conf->mirrors[d].rdev,
3313 sector, max_sync,
3314 &first_bad, &bad_sectors)) {
3315 if (first_bad > sector)
3316 max_sync = first_bad - sector;
3317 else {
3318 bad_sectors -= (sector - first_bad);
3319 if (max_sync > bad_sectors)
3320 max_sync = bad_sectors;
3321 continue;
3322 }
3323 }
3324 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3325 atomic_inc(&r10_bio->remaining);
3326 bio->bi_next = biolist;
3327 biolist = bio;
3328 bio->bi_private = r10_bio;
3329 bio->bi_end_io = end_sync_read;
3330 bio->bi_rw = READ;
3331 bio->bi_sector = sector +
3332 conf->mirrors[d].rdev->data_offset;
3333 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3334 count++;
3335
3336 if (conf->mirrors[d].replacement == NULL ||
3337 test_bit(Faulty,
3338 &conf->mirrors[d].replacement->flags))
3339 continue;
3340
3341 /* Need to set up for writing to the replacement */
3342 bio = r10_bio->devs[i].repl_bio;
3343 bio_reset(bio);
3344 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3345
3346 sector = r10_bio->devs[i].addr;
3347 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3348 bio->bi_next = biolist;
3349 biolist = bio;
3350 bio->bi_private = r10_bio;
3351 bio->bi_end_io = end_sync_write;
3352 bio->bi_rw = WRITE;
3353 bio->bi_sector = sector +
3354 conf->mirrors[d].replacement->data_offset;
3355 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3356 count++;
3357 }
3358
3359 if (count < 2) {
3360 for (i=0; i<conf->copies; i++) {
3361 int d = r10_bio->devs[i].devnum;
3362 if (r10_bio->devs[i].bio->bi_end_io)
3363 rdev_dec_pending(conf->mirrors[d].rdev,
3364 mddev);
3365 if (r10_bio->devs[i].repl_bio &&
3366 r10_bio->devs[i].repl_bio->bi_end_io)
3367 rdev_dec_pending(
3368 conf->mirrors[d].replacement,
3369 mddev);
3370 }
3371 put_buf(r10_bio);
3372 biolist = NULL;
3373 goto giveup;
3374 }
3375 }
3376
3377 nr_sectors = 0;
3378 if (sector_nr + max_sync < max_sector)
3379 max_sector = sector_nr + max_sync;
3380 do {
3381 struct page *page;
3382 int len = PAGE_SIZE;
3383 if (sector_nr + (len>>9) > max_sector)
3384 len = (max_sector - sector_nr) << 9;
3385 if (len == 0)
3386 break;
3387 for (bio= biolist ; bio ; bio=bio->bi_next) {
3388 struct bio *bio2;
3389 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3390 if (bio_add_page(bio, page, len, 0))
3391 continue;
3392
3393 /* stop here */
3394 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3395 for (bio2 = biolist;
3396 bio2 && bio2 != bio;
3397 bio2 = bio2->bi_next) {
3398 /* remove last page from this bio */
3399 bio2->bi_vcnt--;
3400 bio2->bi_size -= len;
3401 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3402 }
3403 goto bio_full;
3404 }
3405 nr_sectors += len>>9;
3406 sector_nr += len>>9;
3407 } while (biolist->bi_vcnt < RESYNC_PAGES);
3408 bio_full:
3409 r10_bio->sectors = nr_sectors;
3410
3411 while (biolist) {
3412 bio = biolist;
3413 biolist = biolist->bi_next;
3414
3415 bio->bi_next = NULL;
3416 r10_bio = bio->bi_private;
3417 r10_bio->sectors = nr_sectors;
3418
3419 if (bio->bi_end_io == end_sync_read) {
3420 md_sync_acct(bio->bi_bdev, nr_sectors);
3421 set_bit(BIO_UPTODATE, &bio->bi_flags);
3422 generic_make_request(bio);
3423 }
3424 }
3425
3426 if (sectors_skipped)
3427 /* pretend they weren't skipped, it makes
3428 * no important difference in this case
3429 */
3430 md_done_sync(mddev, sectors_skipped, 1);
3431
3432 return sectors_skipped + nr_sectors;
3433 giveup:
3434 /* There is nowhere to write, so all non-sync
3435 * drives must be failed or in resync, all drives
3436 * have a bad block, so try the next chunk...
3437 */
3438 if (sector_nr + max_sync < max_sector)
3439 max_sector = sector_nr + max_sync;
3440
3441 sectors_skipped += (max_sector - sector_nr);
3442 chunks_skipped ++;
3443 sector_nr = max_sector;
3444 goto skipped;
3445 }
3446
3447 static sector_t
3448 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3449 {
3450 sector_t size;
3451 struct r10conf *conf = mddev->private;
3452
3453 if (!raid_disks)
3454 raid_disks = min(conf->geo.raid_disks,
3455 conf->prev.raid_disks);
3456 if (!sectors)
3457 sectors = conf->dev_sectors;
3458
3459 size = sectors >> conf->geo.chunk_shift;
3460 sector_div(size, conf->geo.far_copies);
3461 size = size * raid_disks;
3462 sector_div(size, conf->geo.near_copies);
3463
3464 return size << conf->geo.chunk_shift;
3465 }
3466
3467 static void calc_sectors(struct r10conf *conf, sector_t size)
3468 {
3469 /* Calculate the number of sectors-per-device that will
3470 * actually be used, and set conf->dev_sectors and
3471 * conf->stride
3472 */
3473
3474 size = size >> conf->geo.chunk_shift;
3475 sector_div(size, conf->geo.far_copies);
3476 size = size * conf->geo.raid_disks;
3477 sector_div(size, conf->geo.near_copies);
3478 /* 'size' is now the number of chunks in the array */
3479 /* calculate "used chunks per device" */
3480 size = size * conf->copies;
3481
3482 /* We need to round up when dividing by raid_disks to
3483 * get the stride size.
3484 */
3485 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3486
3487 conf->dev_sectors = size << conf->geo.chunk_shift;
3488
3489 if (conf->geo.far_offset)
3490 conf->geo.stride = 1 << conf->geo.chunk_shift;
3491 else {
3492 sector_div(size, conf->geo.far_copies);
3493 conf->geo.stride = size << conf->geo.chunk_shift;
3494 }
3495 }
3496
3497 enum geo_type {geo_new, geo_old, geo_start};
3498 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3499 {
3500 int nc, fc, fo;
3501 int layout, chunk, disks;
3502 switch (new) {
3503 case geo_old:
3504 layout = mddev->layout;
3505 chunk = mddev->chunk_sectors;
3506 disks = mddev->raid_disks - mddev->delta_disks;
3507 break;
3508 case geo_new:
3509 layout = mddev->new_layout;
3510 chunk = mddev->new_chunk_sectors;
3511 disks = mddev->raid_disks;
3512 break;
3513 default: /* avoid 'may be unused' warnings */
3514 case geo_start: /* new when starting reshape - raid_disks not
3515 * updated yet. */
3516 layout = mddev->new_layout;
3517 chunk = mddev->new_chunk_sectors;
3518 disks = mddev->raid_disks + mddev->delta_disks;
3519 break;
3520 }
3521 if (layout >> 18)
3522 return -1;
3523 if (chunk < (PAGE_SIZE >> 9) ||
3524 !is_power_of_2(chunk))
3525 return -2;
3526 nc = layout & 255;
3527 fc = (layout >> 8) & 255;
3528 fo = layout & (1<<16);
3529 geo->raid_disks = disks;
3530 geo->near_copies = nc;
3531 geo->far_copies = fc;
3532 geo->far_offset = fo;
3533 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3534 geo->chunk_mask = chunk - 1;
3535 geo->chunk_shift = ffz(~chunk);
3536 return nc*fc;
3537 }
3538
3539 static struct r10conf *setup_conf(struct mddev *mddev)
3540 {
3541 struct r10conf *conf = NULL;
3542 int err = -EINVAL;
3543 struct geom geo;
3544 int copies;
3545
3546 copies = setup_geo(&geo, mddev, geo_new);
3547
3548 if (copies == -2) {
3549 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3550 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3551 mdname(mddev), PAGE_SIZE);
3552 goto out;
3553 }
3554
3555 if (copies < 2 || copies > mddev->raid_disks) {
3556 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3557 mdname(mddev), mddev->new_layout);
3558 goto out;
3559 }
3560
3561 err = -ENOMEM;
3562 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3563 if (!conf)
3564 goto out;
3565
3566 /* FIXME calc properly */
3567 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3568 max(0,-mddev->delta_disks)),
3569 GFP_KERNEL);
3570 if (!conf->mirrors)
3571 goto out;
3572
3573 conf->tmppage = alloc_page(GFP_KERNEL);
3574 if (!conf->tmppage)
3575 goto out;
3576
3577 conf->geo = geo;
3578 conf->copies = copies;
3579 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3580 r10bio_pool_free, conf);
3581 if (!conf->r10bio_pool)
3582 goto out;
3583
3584 calc_sectors(conf, mddev->dev_sectors);
3585 if (mddev->reshape_position == MaxSector) {
3586 conf->prev = conf->geo;
3587 conf->reshape_progress = MaxSector;
3588 } else {
3589 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3590 err = -EINVAL;
3591 goto out;
3592 }
3593 conf->reshape_progress = mddev->reshape_position;
3594 if (conf->prev.far_offset)
3595 conf->prev.stride = 1 << conf->prev.chunk_shift;
3596 else
3597 /* far_copies must be 1 */
3598 conf->prev.stride = conf->dev_sectors;
3599 }
3600 spin_lock_init(&conf->device_lock);
3601 INIT_LIST_HEAD(&conf->retry_list);
3602
3603 spin_lock_init(&conf->resync_lock);
3604 init_waitqueue_head(&conf->wait_barrier);
3605
3606 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3607 if (!conf->thread)
3608 goto out;
3609
3610 conf->mddev = mddev;
3611 return conf;
3612
3613 out:
3614 if (err == -ENOMEM)
3615 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3616 mdname(mddev));
3617 if (conf) {
3618 if (conf->r10bio_pool)
3619 mempool_destroy(conf->r10bio_pool);
3620 kfree(conf->mirrors);
3621 safe_put_page(conf->tmppage);
3622 kfree(conf);
3623 }
3624 return ERR_PTR(err);
3625 }
3626
3627 static int run(struct mddev *mddev)
3628 {
3629 struct r10conf *conf;
3630 int i, disk_idx, chunk_size;
3631 struct raid10_info *disk;
3632 struct md_rdev *rdev;
3633 sector_t size;
3634 sector_t min_offset_diff = 0;
3635 int first = 1;
3636 bool discard_supported = false;
3637
3638 if (mddev->private == NULL) {
3639 conf = setup_conf(mddev);
3640 if (IS_ERR(conf))
3641 return PTR_ERR(conf);
3642 mddev->private = conf;
3643 }
3644 conf = mddev->private;
3645 if (!conf)
3646 goto out;
3647
3648 mddev->thread = conf->thread;
3649 conf->thread = NULL;
3650
3651 chunk_size = mddev->chunk_sectors << 9;
3652 if (mddev->queue) {
3653 blk_queue_max_discard_sectors(mddev->queue,
3654 mddev->chunk_sectors);
3655 blk_queue_max_write_same_sectors(mddev->queue, 0);
3656 blk_queue_io_min(mddev->queue, chunk_size);
3657 if (conf->geo.raid_disks % conf->geo.near_copies)
3658 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3659 else
3660 blk_queue_io_opt(mddev->queue, chunk_size *
3661 (conf->geo.raid_disks / conf->geo.near_copies));
3662 }
3663
3664 rdev_for_each(rdev, mddev) {
3665 long long diff;
3666 struct request_queue *q;
3667
3668 disk_idx = rdev->raid_disk;
3669 if (disk_idx < 0)
3670 continue;
3671 if (disk_idx >= conf->geo.raid_disks &&
3672 disk_idx >= conf->prev.raid_disks)
3673 continue;
3674 disk = conf->mirrors + disk_idx;
3675
3676 if (test_bit(Replacement, &rdev->flags)) {
3677 if (disk->replacement)
3678 goto out_free_conf;
3679 disk->replacement = rdev;
3680 } else {
3681 if (disk->rdev)
3682 goto out_free_conf;
3683 disk->rdev = rdev;
3684 }
3685 q = bdev_get_queue(rdev->bdev);
3686 if (q->merge_bvec_fn)
3687 mddev->merge_check_needed = 1;
3688 diff = (rdev->new_data_offset - rdev->data_offset);
3689 if (!mddev->reshape_backwards)
3690 diff = -diff;
3691 if (diff < 0)
3692 diff = 0;
3693 if (first || diff < min_offset_diff)
3694 min_offset_diff = diff;
3695
3696 if (mddev->gendisk)
3697 disk_stack_limits(mddev->gendisk, rdev->bdev,
3698 rdev->data_offset << 9);
3699
3700 disk->head_position = 0;
3701
3702 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3703 discard_supported = true;
3704 }
3705
3706 if (mddev->queue) {
3707 if (discard_supported)
3708 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3709 mddev->queue);
3710 else
3711 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3712 mddev->queue);
3713 }
3714 /* need to check that every block has at least one working mirror */
3715 if (!enough(conf, -1)) {
3716 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3717 mdname(mddev));
3718 goto out_free_conf;
3719 }
3720
3721 if (conf->reshape_progress != MaxSector) {
3722 /* must ensure that shape change is supported */
3723 if (conf->geo.far_copies != 1 &&
3724 conf->geo.far_offset == 0)
3725 goto out_free_conf;
3726 if (conf->prev.far_copies != 1 &&
3727 conf->prev.far_offset == 0)
3728 goto out_free_conf;
3729 }
3730
3731 mddev->degraded = 0;
3732 for (i = 0;
3733 i < conf->geo.raid_disks
3734 || i < conf->prev.raid_disks;
3735 i++) {
3736
3737 disk = conf->mirrors + i;
3738
3739 if (!disk->rdev && disk->replacement) {
3740 /* The replacement is all we have - use it */
3741 disk->rdev = disk->replacement;
3742 disk->replacement = NULL;
3743 clear_bit(Replacement, &disk->rdev->flags);
3744 }
3745
3746 if (!disk->rdev ||
3747 !test_bit(In_sync, &disk->rdev->flags)) {
3748 disk->head_position = 0;
3749 mddev->degraded++;
3750 if (disk->rdev)
3751 conf->fullsync = 1;
3752 }
3753 disk->recovery_disabled = mddev->recovery_disabled - 1;
3754 }
3755
3756 if (mddev->recovery_cp != MaxSector)
3757 printk(KERN_NOTICE "md/raid10:%s: not clean"
3758 " -- starting background reconstruction\n",
3759 mdname(mddev));
3760 printk(KERN_INFO
3761 "md/raid10:%s: active with %d out of %d devices\n",
3762 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3763 conf->geo.raid_disks);
3764 /*
3765 * Ok, everything is just fine now
3766 */
3767 mddev->dev_sectors = conf->dev_sectors;
3768 size = raid10_size(mddev, 0, 0);
3769 md_set_array_sectors(mddev, size);
3770 mddev->resync_max_sectors = size;
3771
3772 if (mddev->queue) {
3773 int stripe = conf->geo.raid_disks *
3774 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3775 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3776 mddev->queue->backing_dev_info.congested_data = mddev;
3777
3778 /* Calculate max read-ahead size.
3779 * We need to readahead at least twice a whole stripe....
3780 * maybe...
3781 */
3782 stripe /= conf->geo.near_copies;
3783 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3784 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3785 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3786 }
3787
3788
3789 if (md_integrity_register(mddev))
3790 goto out_free_conf;
3791
3792 if (conf->reshape_progress != MaxSector) {
3793 unsigned long before_length, after_length;
3794
3795 before_length = ((1 << conf->prev.chunk_shift) *
3796 conf->prev.far_copies);
3797 after_length = ((1 << conf->geo.chunk_shift) *
3798 conf->geo.far_copies);
3799
3800 if (max(before_length, after_length) > min_offset_diff) {
3801 /* This cannot work */
3802 printk("md/raid10: offset difference not enough to continue reshape\n");
3803 goto out_free_conf;
3804 }
3805 conf->offset_diff = min_offset_diff;
3806
3807 conf->reshape_safe = conf->reshape_progress;
3808 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3809 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3810 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3811 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3812 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3813 "reshape");
3814 }
3815
3816 return 0;
3817
3818 out_free_conf:
3819 md_unregister_thread(&mddev->thread);
3820 if (conf->r10bio_pool)
3821 mempool_destroy(conf->r10bio_pool);
3822 safe_put_page(conf->tmppage);
3823 kfree(conf->mirrors);
3824 kfree(conf);
3825 mddev->private = NULL;
3826 out:
3827 return -EIO;
3828 }
3829
3830 static int stop(struct mddev *mddev)
3831 {
3832 struct r10conf *conf = mddev->private;
3833
3834 raise_barrier(conf, 0);
3835 lower_barrier(conf);
3836
3837 md_unregister_thread(&mddev->thread);
3838 if (mddev->queue)
3839 /* the unplug fn references 'conf'*/
3840 blk_sync_queue(mddev->queue);
3841
3842 if (conf->r10bio_pool)
3843 mempool_destroy(conf->r10bio_pool);
3844 safe_put_page(conf->tmppage);
3845 kfree(conf->mirrors);
3846 kfree(conf);
3847 mddev->private = NULL;
3848 return 0;
3849 }
3850
3851 static void raid10_quiesce(struct mddev *mddev, int state)
3852 {
3853 struct r10conf *conf = mddev->private;
3854
3855 switch(state) {
3856 case 1:
3857 raise_barrier(conf, 0);
3858 break;
3859 case 0:
3860 lower_barrier(conf);
3861 break;
3862 }
3863 }
3864
3865 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3866 {
3867 /* Resize of 'far' arrays is not supported.
3868 * For 'near' and 'offset' arrays we can set the
3869 * number of sectors used to be an appropriate multiple
3870 * of the chunk size.
3871 * For 'offset', this is far_copies*chunksize.
3872 * For 'near' the multiplier is the LCM of
3873 * near_copies and raid_disks.
3874 * So if far_copies > 1 && !far_offset, fail.
3875 * Else find LCM(raid_disks, near_copy)*far_copies and
3876 * multiply by chunk_size. Then round to this number.
3877 * This is mostly done by raid10_size()
3878 */
3879 struct r10conf *conf = mddev->private;
3880 sector_t oldsize, size;
3881
3882 if (mddev->reshape_position != MaxSector)
3883 return -EBUSY;
3884
3885 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3886 return -EINVAL;
3887
3888 oldsize = raid10_size(mddev, 0, 0);
3889 size = raid10_size(mddev, sectors, 0);
3890 if (mddev->external_size &&
3891 mddev->array_sectors > size)
3892 return -EINVAL;
3893 if (mddev->bitmap) {
3894 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3895 if (ret)
3896 return ret;
3897 }
3898 md_set_array_sectors(mddev, size);
3899 set_capacity(mddev->gendisk, mddev->array_sectors);
3900 revalidate_disk(mddev->gendisk);
3901 if (sectors > mddev->dev_sectors &&
3902 mddev->recovery_cp > oldsize) {
3903 mddev->recovery_cp = oldsize;
3904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3905 }
3906 calc_sectors(conf, sectors);
3907 mddev->dev_sectors = conf->dev_sectors;
3908 mddev->resync_max_sectors = size;
3909 return 0;
3910 }
3911
3912 static void *raid10_takeover_raid0(struct mddev *mddev)
3913 {
3914 struct md_rdev *rdev;
3915 struct r10conf *conf;
3916
3917 if (mddev->degraded > 0) {
3918 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3919 mdname(mddev));
3920 return ERR_PTR(-EINVAL);
3921 }
3922
3923 /* Set new parameters */
3924 mddev->new_level = 10;
3925 /* new layout: far_copies = 1, near_copies = 2 */
3926 mddev->new_layout = (1<<8) + 2;
3927 mddev->new_chunk_sectors = mddev->chunk_sectors;
3928 mddev->delta_disks = mddev->raid_disks;
3929 mddev->raid_disks *= 2;
3930 /* make sure it will be not marked as dirty */
3931 mddev->recovery_cp = MaxSector;
3932
3933 conf = setup_conf(mddev);
3934 if (!IS_ERR(conf)) {
3935 rdev_for_each(rdev, mddev)
3936 if (rdev->raid_disk >= 0)
3937 rdev->new_raid_disk = rdev->raid_disk * 2;
3938 conf->barrier = 1;
3939 }
3940
3941 return conf;
3942 }
3943
3944 static void *raid10_takeover(struct mddev *mddev)
3945 {
3946 struct r0conf *raid0_conf;
3947
3948 /* raid10 can take over:
3949 * raid0 - providing it has only two drives
3950 */
3951 if (mddev->level == 0) {
3952 /* for raid0 takeover only one zone is supported */
3953 raid0_conf = mddev->private;
3954 if (raid0_conf->nr_strip_zones > 1) {
3955 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3956 " with more than one zone.\n",
3957 mdname(mddev));
3958 return ERR_PTR(-EINVAL);
3959 }
3960 return raid10_takeover_raid0(mddev);
3961 }
3962 return ERR_PTR(-EINVAL);
3963 }
3964
3965 static int raid10_check_reshape(struct mddev *mddev)
3966 {
3967 /* Called when there is a request to change
3968 * - layout (to ->new_layout)
3969 * - chunk size (to ->new_chunk_sectors)
3970 * - raid_disks (by delta_disks)
3971 * or when trying to restart a reshape that was ongoing.
3972 *
3973 * We need to validate the request and possibly allocate
3974 * space if that might be an issue later.
3975 *
3976 * Currently we reject any reshape of a 'far' mode array,
3977 * allow chunk size to change if new is generally acceptable,
3978 * allow raid_disks to increase, and allow
3979 * a switch between 'near' mode and 'offset' mode.
3980 */
3981 struct r10conf *conf = mddev->private;
3982 struct geom geo;
3983
3984 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3985 return -EINVAL;
3986
3987 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3988 /* mustn't change number of copies */
3989 return -EINVAL;
3990 if (geo.far_copies > 1 && !geo.far_offset)
3991 /* Cannot switch to 'far' mode */
3992 return -EINVAL;
3993
3994 if (mddev->array_sectors & geo.chunk_mask)
3995 /* not factor of array size */
3996 return -EINVAL;
3997
3998 if (!enough(conf, -1))
3999 return -EINVAL;
4000
4001 kfree(conf->mirrors_new);
4002 conf->mirrors_new = NULL;
4003 if (mddev->delta_disks > 0) {
4004 /* allocate new 'mirrors' list */
4005 conf->mirrors_new = kzalloc(
4006 sizeof(struct raid10_info)
4007 *(mddev->raid_disks +
4008 mddev->delta_disks),
4009 GFP_KERNEL);
4010 if (!conf->mirrors_new)
4011 return -ENOMEM;
4012 }
4013 return 0;
4014 }
4015
4016 /*
4017 * Need to check if array has failed when deciding whether to:
4018 * - start an array
4019 * - remove non-faulty devices
4020 * - add a spare
4021 * - allow a reshape
4022 * This determination is simple when no reshape is happening.
4023 * However if there is a reshape, we need to carefully check
4024 * both the before and after sections.
4025 * This is because some failed devices may only affect one
4026 * of the two sections, and some non-in_sync devices may
4027 * be insync in the section most affected by failed devices.
4028 */
4029 static int calc_degraded(struct r10conf *conf)
4030 {
4031 int degraded, degraded2;
4032 int i;
4033
4034 rcu_read_lock();
4035 degraded = 0;
4036 /* 'prev' section first */
4037 for (i = 0; i < conf->prev.raid_disks; i++) {
4038 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4039 if (!rdev || test_bit(Faulty, &rdev->flags))
4040 degraded++;
4041 else if (!test_bit(In_sync, &rdev->flags))
4042 /* When we can reduce the number of devices in
4043 * an array, this might not contribute to
4044 * 'degraded'. It does now.
4045 */
4046 degraded++;
4047 }
4048 rcu_read_unlock();
4049 if (conf->geo.raid_disks == conf->prev.raid_disks)
4050 return degraded;
4051 rcu_read_lock();
4052 degraded2 = 0;
4053 for (i = 0; i < conf->geo.raid_disks; i++) {
4054 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4055 if (!rdev || test_bit(Faulty, &rdev->flags))
4056 degraded2++;
4057 else if (!test_bit(In_sync, &rdev->flags)) {
4058 /* If reshape is increasing the number of devices,
4059 * this section has already been recovered, so
4060 * it doesn't contribute to degraded.
4061 * else it does.
4062 */
4063 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4064 degraded2++;
4065 }
4066 }
4067 rcu_read_unlock();
4068 if (degraded2 > degraded)
4069 return degraded2;
4070 return degraded;
4071 }
4072
4073 static int raid10_start_reshape(struct mddev *mddev)
4074 {
4075 /* A 'reshape' has been requested. This commits
4076 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4077 * This also checks if there are enough spares and adds them
4078 * to the array.
4079 * We currently require enough spares to make the final
4080 * array non-degraded. We also require that the difference
4081 * between old and new data_offset - on each device - is
4082 * enough that we never risk over-writing.
4083 */
4084
4085 unsigned long before_length, after_length;
4086 sector_t min_offset_diff = 0;
4087 int first = 1;
4088 struct geom new;
4089 struct r10conf *conf = mddev->private;
4090 struct md_rdev *rdev;
4091 int spares = 0;
4092 int ret;
4093
4094 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4095 return -EBUSY;
4096
4097 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4098 return -EINVAL;
4099
4100 before_length = ((1 << conf->prev.chunk_shift) *
4101 conf->prev.far_copies);
4102 after_length = ((1 << conf->geo.chunk_shift) *
4103 conf->geo.far_copies);
4104
4105 rdev_for_each(rdev, mddev) {
4106 if (!test_bit(In_sync, &rdev->flags)
4107 && !test_bit(Faulty, &rdev->flags))
4108 spares++;
4109 if (rdev->raid_disk >= 0) {
4110 long long diff = (rdev->new_data_offset
4111 - rdev->data_offset);
4112 if (!mddev->reshape_backwards)
4113 diff = -diff;
4114 if (diff < 0)
4115 diff = 0;
4116 if (first || diff < min_offset_diff)
4117 min_offset_diff = diff;
4118 }
4119 }
4120
4121 if (max(before_length, after_length) > min_offset_diff)
4122 return -EINVAL;
4123
4124 if (spares < mddev->delta_disks)
4125 return -EINVAL;
4126
4127 conf->offset_diff = min_offset_diff;
4128 spin_lock_irq(&conf->device_lock);
4129 if (conf->mirrors_new) {
4130 memcpy(conf->mirrors_new, conf->mirrors,
4131 sizeof(struct raid10_info)*conf->prev.raid_disks);
4132 smp_mb();
4133 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4134 conf->mirrors_old = conf->mirrors;
4135 conf->mirrors = conf->mirrors_new;
4136 conf->mirrors_new = NULL;
4137 }
4138 setup_geo(&conf->geo, mddev, geo_start);
4139 smp_mb();
4140 if (mddev->reshape_backwards) {
4141 sector_t size = raid10_size(mddev, 0, 0);
4142 if (size < mddev->array_sectors) {
4143 spin_unlock_irq(&conf->device_lock);
4144 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4145 mdname(mddev));
4146 return -EINVAL;
4147 }
4148 mddev->resync_max_sectors = size;
4149 conf->reshape_progress = size;
4150 } else
4151 conf->reshape_progress = 0;
4152 spin_unlock_irq(&conf->device_lock);
4153
4154 if (mddev->delta_disks && mddev->bitmap) {
4155 ret = bitmap_resize(mddev->bitmap,
4156 raid10_size(mddev, 0,
4157 conf->geo.raid_disks),
4158 0, 0);
4159 if (ret)
4160 goto abort;
4161 }
4162 if (mddev->delta_disks > 0) {
4163 rdev_for_each(rdev, mddev)
4164 if (rdev->raid_disk < 0 &&
4165 !test_bit(Faulty, &rdev->flags)) {
4166 if (raid10_add_disk(mddev, rdev) == 0) {
4167 if (rdev->raid_disk >=
4168 conf->prev.raid_disks)
4169 set_bit(In_sync, &rdev->flags);
4170 else
4171 rdev->recovery_offset = 0;
4172
4173 if (sysfs_link_rdev(mddev, rdev))
4174 /* Failure here is OK */;
4175 }
4176 } else if (rdev->raid_disk >= conf->prev.raid_disks
4177 && !test_bit(Faulty, &rdev->flags)) {
4178 /* This is a spare that was manually added */
4179 set_bit(In_sync, &rdev->flags);
4180 }
4181 }
4182 /* When a reshape changes the number of devices,
4183 * ->degraded is measured against the larger of the
4184 * pre and post numbers.
4185 */
4186 spin_lock_irq(&conf->device_lock);
4187 mddev->degraded = calc_degraded(conf);
4188 spin_unlock_irq(&conf->device_lock);
4189 mddev->raid_disks = conf->geo.raid_disks;
4190 mddev->reshape_position = conf->reshape_progress;
4191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4192
4193 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4194 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4195 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4196 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4197
4198 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4199 "reshape");
4200 if (!mddev->sync_thread) {
4201 ret = -EAGAIN;
4202 goto abort;
4203 }
4204 conf->reshape_checkpoint = jiffies;
4205 md_wakeup_thread(mddev->sync_thread);
4206 md_new_event(mddev);
4207 return 0;
4208
4209 abort:
4210 mddev->recovery = 0;
4211 spin_lock_irq(&conf->device_lock);
4212 conf->geo = conf->prev;
4213 mddev->raid_disks = conf->geo.raid_disks;
4214 rdev_for_each(rdev, mddev)
4215 rdev->new_data_offset = rdev->data_offset;
4216 smp_wmb();
4217 conf->reshape_progress = MaxSector;
4218 mddev->reshape_position = MaxSector;
4219 spin_unlock_irq(&conf->device_lock);
4220 return ret;
4221 }
4222
4223 /* Calculate the last device-address that could contain
4224 * any block from the chunk that includes the array-address 's'
4225 * and report the next address.
4226 * i.e. the address returned will be chunk-aligned and after
4227 * any data that is in the chunk containing 's'.
4228 */
4229 static sector_t last_dev_address(sector_t s, struct geom *geo)
4230 {
4231 s = (s | geo->chunk_mask) + 1;
4232 s >>= geo->chunk_shift;
4233 s *= geo->near_copies;
4234 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4235 s *= geo->far_copies;
4236 s <<= geo->chunk_shift;
4237 return s;
4238 }
4239
4240 /* Calculate the first device-address that could contain
4241 * any block from the chunk that includes the array-address 's'.
4242 * This too will be the start of a chunk
4243 */
4244 static sector_t first_dev_address(sector_t s, struct geom *geo)
4245 {
4246 s >>= geo->chunk_shift;
4247 s *= geo->near_copies;
4248 sector_div(s, geo->raid_disks);
4249 s *= geo->far_copies;
4250 s <<= geo->chunk_shift;
4251 return s;
4252 }
4253
4254 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4255 int *skipped)
4256 {
4257 /* We simply copy at most one chunk (smallest of old and new)
4258 * at a time, possibly less if that exceeds RESYNC_PAGES,
4259 * or we hit a bad block or something.
4260 * This might mean we pause for normal IO in the middle of
4261 * a chunk, but that is not a problem was mddev->reshape_position
4262 * can record any location.
4263 *
4264 * If we will want to write to a location that isn't
4265 * yet recorded as 'safe' (i.e. in metadata on disk) then
4266 * we need to flush all reshape requests and update the metadata.
4267 *
4268 * When reshaping forwards (e.g. to more devices), we interpret
4269 * 'safe' as the earliest block which might not have been copied
4270 * down yet. We divide this by previous stripe size and multiply
4271 * by previous stripe length to get lowest device offset that we
4272 * cannot write to yet.
4273 * We interpret 'sector_nr' as an address that we want to write to.
4274 * From this we use last_device_address() to find where we might
4275 * write to, and first_device_address on the 'safe' position.
4276 * If this 'next' write position is after the 'safe' position,
4277 * we must update the metadata to increase the 'safe' position.
4278 *
4279 * When reshaping backwards, we round in the opposite direction
4280 * and perform the reverse test: next write position must not be
4281 * less than current safe position.
4282 *
4283 * In all this the minimum difference in data offsets
4284 * (conf->offset_diff - always positive) allows a bit of slack,
4285 * so next can be after 'safe', but not by more than offset_disk
4286 *
4287 * We need to prepare all the bios here before we start any IO
4288 * to ensure the size we choose is acceptable to all devices.
4289 * The means one for each copy for write-out and an extra one for
4290 * read-in.
4291 * We store the read-in bio in ->master_bio and the others in
4292 * ->devs[x].bio and ->devs[x].repl_bio.
4293 */
4294 struct r10conf *conf = mddev->private;
4295 struct r10bio *r10_bio;
4296 sector_t next, safe, last;
4297 int max_sectors;
4298 int nr_sectors;
4299 int s;
4300 struct md_rdev *rdev;
4301 int need_flush = 0;
4302 struct bio *blist;
4303 struct bio *bio, *read_bio;
4304 int sectors_done = 0;
4305
4306 if (sector_nr == 0) {
4307 /* If restarting in the middle, skip the initial sectors */
4308 if (mddev->reshape_backwards &&
4309 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4310 sector_nr = (raid10_size(mddev, 0, 0)
4311 - conf->reshape_progress);
4312 } else if (!mddev->reshape_backwards &&
4313 conf->reshape_progress > 0)
4314 sector_nr = conf->reshape_progress;
4315 if (sector_nr) {
4316 mddev->curr_resync_completed = sector_nr;
4317 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4318 *skipped = 1;
4319 return sector_nr;
4320 }
4321 }
4322
4323 /* We don't use sector_nr to track where we are up to
4324 * as that doesn't work well for ->reshape_backwards.
4325 * So just use ->reshape_progress.
4326 */
4327 if (mddev->reshape_backwards) {
4328 /* 'next' is the earliest device address that we might
4329 * write to for this chunk in the new layout
4330 */
4331 next = first_dev_address(conf->reshape_progress - 1,
4332 &conf->geo);
4333
4334 /* 'safe' is the last device address that we might read from
4335 * in the old layout after a restart
4336 */
4337 safe = last_dev_address(conf->reshape_safe - 1,
4338 &conf->prev);
4339
4340 if (next + conf->offset_diff < safe)
4341 need_flush = 1;
4342
4343 last = conf->reshape_progress - 1;
4344 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4345 & conf->prev.chunk_mask);
4346 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4347 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4348 } else {
4349 /* 'next' is after the last device address that we
4350 * might write to for this chunk in the new layout
4351 */
4352 next = last_dev_address(conf->reshape_progress, &conf->geo);
4353
4354 /* 'safe' is the earliest device address that we might
4355 * read from in the old layout after a restart
4356 */
4357 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4358
4359 /* Need to update metadata if 'next' might be beyond 'safe'
4360 * as that would possibly corrupt data
4361 */
4362 if (next > safe + conf->offset_diff)
4363 need_flush = 1;
4364
4365 sector_nr = conf->reshape_progress;
4366 last = sector_nr | (conf->geo.chunk_mask
4367 & conf->prev.chunk_mask);
4368
4369 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4370 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4371 }
4372
4373 if (need_flush ||
4374 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4375 /* Need to update reshape_position in metadata */
4376 wait_barrier(conf);
4377 mddev->reshape_position = conf->reshape_progress;
4378 if (mddev->reshape_backwards)
4379 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4380 - conf->reshape_progress;
4381 else
4382 mddev->curr_resync_completed = conf->reshape_progress;
4383 conf->reshape_checkpoint = jiffies;
4384 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4385 md_wakeup_thread(mddev->thread);
4386 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4387 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4388 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4389 allow_barrier(conf);
4390 return sectors_done;
4391 }
4392 conf->reshape_safe = mddev->reshape_position;
4393 allow_barrier(conf);
4394 }
4395
4396 read_more:
4397 /* Now schedule reads for blocks from sector_nr to last */
4398 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4399 raise_barrier(conf, sectors_done != 0);
4400 atomic_set(&r10_bio->remaining, 0);
4401 r10_bio->mddev = mddev;
4402 r10_bio->sector = sector_nr;
4403 set_bit(R10BIO_IsReshape, &r10_bio->state);
4404 r10_bio->sectors = last - sector_nr + 1;
4405 rdev = read_balance(conf, r10_bio, &max_sectors);
4406 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4407
4408 if (!rdev) {
4409 /* Cannot read from here, so need to record bad blocks
4410 * on all the target devices.
4411 */
4412 // FIXME
4413 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4414 return sectors_done;
4415 }
4416
4417 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4418
4419 read_bio->bi_bdev = rdev->bdev;
4420 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4421 + rdev->data_offset);
4422 read_bio->bi_private = r10_bio;
4423 read_bio->bi_end_io = end_sync_read;
4424 read_bio->bi_rw = READ;
4425 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4426 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4427 read_bio->bi_vcnt = 0;
4428 read_bio->bi_size = 0;
4429 r10_bio->master_bio = read_bio;
4430 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4431
4432 /* Now find the locations in the new layout */
4433 __raid10_find_phys(&conf->geo, r10_bio);
4434
4435 blist = read_bio;
4436 read_bio->bi_next = NULL;
4437
4438 for (s = 0; s < conf->copies*2; s++) {
4439 struct bio *b;
4440 int d = r10_bio->devs[s/2].devnum;
4441 struct md_rdev *rdev2;
4442 if (s&1) {
4443 rdev2 = conf->mirrors[d].replacement;
4444 b = r10_bio->devs[s/2].repl_bio;
4445 } else {
4446 rdev2 = conf->mirrors[d].rdev;
4447 b = r10_bio->devs[s/2].bio;
4448 }
4449 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4450 continue;
4451
4452 bio_reset(b);
4453 b->bi_bdev = rdev2->bdev;
4454 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4455 b->bi_private = r10_bio;
4456 b->bi_end_io = end_reshape_write;
4457 b->bi_rw = WRITE;
4458 b->bi_next = blist;
4459 blist = b;
4460 }
4461
4462 /* Now add as many pages as possible to all of these bios. */
4463
4464 nr_sectors = 0;
4465 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4466 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4467 int len = (max_sectors - s) << 9;
4468 if (len > PAGE_SIZE)
4469 len = PAGE_SIZE;
4470 for (bio = blist; bio ; bio = bio->bi_next) {
4471 struct bio *bio2;
4472 if (bio_add_page(bio, page, len, 0))
4473 continue;
4474
4475 /* Didn't fit, must stop */
4476 for (bio2 = blist;
4477 bio2 && bio2 != bio;
4478 bio2 = bio2->bi_next) {
4479 /* Remove last page from this bio */
4480 bio2->bi_vcnt--;
4481 bio2->bi_size -= len;
4482 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4483 }
4484 goto bio_full;
4485 }
4486 sector_nr += len >> 9;
4487 nr_sectors += len >> 9;
4488 }
4489 bio_full:
4490 r10_bio->sectors = nr_sectors;
4491
4492 /* Now submit the read */
4493 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4494 atomic_inc(&r10_bio->remaining);
4495 read_bio->bi_next = NULL;
4496 generic_make_request(read_bio);
4497 sector_nr += nr_sectors;
4498 sectors_done += nr_sectors;
4499 if (sector_nr <= last)
4500 goto read_more;
4501
4502 /* Now that we have done the whole section we can
4503 * update reshape_progress
4504 */
4505 if (mddev->reshape_backwards)
4506 conf->reshape_progress -= sectors_done;
4507 else
4508 conf->reshape_progress += sectors_done;
4509
4510 return sectors_done;
4511 }
4512
4513 static void end_reshape_request(struct r10bio *r10_bio);
4514 static int handle_reshape_read_error(struct mddev *mddev,
4515 struct r10bio *r10_bio);
4516 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4517 {
4518 /* Reshape read completed. Hopefully we have a block
4519 * to write out.
4520 * If we got a read error then we do sync 1-page reads from
4521 * elsewhere until we find the data - or give up.
4522 */
4523 struct r10conf *conf = mddev->private;
4524 int s;
4525
4526 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4527 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4528 /* Reshape has been aborted */
4529 md_done_sync(mddev, r10_bio->sectors, 0);
4530 return;
4531 }
4532
4533 /* We definitely have the data in the pages, schedule the
4534 * writes.
4535 */
4536 atomic_set(&r10_bio->remaining, 1);
4537 for (s = 0; s < conf->copies*2; s++) {
4538 struct bio *b;
4539 int d = r10_bio->devs[s/2].devnum;
4540 struct md_rdev *rdev;
4541 if (s&1) {
4542 rdev = conf->mirrors[d].replacement;
4543 b = r10_bio->devs[s/2].repl_bio;
4544 } else {
4545 rdev = conf->mirrors[d].rdev;
4546 b = r10_bio->devs[s/2].bio;
4547 }
4548 if (!rdev || test_bit(Faulty, &rdev->flags))
4549 continue;
4550 atomic_inc(&rdev->nr_pending);
4551 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4552 atomic_inc(&r10_bio->remaining);
4553 b->bi_next = NULL;
4554 generic_make_request(b);
4555 }
4556 end_reshape_request(r10_bio);
4557 }
4558
4559 static void end_reshape(struct r10conf *conf)
4560 {
4561 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4562 return;
4563
4564 spin_lock_irq(&conf->device_lock);
4565 conf->prev = conf->geo;
4566 md_finish_reshape(conf->mddev);
4567 smp_wmb();
4568 conf->reshape_progress = MaxSector;
4569 spin_unlock_irq(&conf->device_lock);
4570
4571 /* read-ahead size must cover two whole stripes, which is
4572 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4573 */
4574 if (conf->mddev->queue) {
4575 int stripe = conf->geo.raid_disks *
4576 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4577 stripe /= conf->geo.near_copies;
4578 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4579 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4580 }
4581 conf->fullsync = 0;
4582 }
4583
4584
4585 static int handle_reshape_read_error(struct mddev *mddev,
4586 struct r10bio *r10_bio)
4587 {
4588 /* Use sync reads to get the blocks from somewhere else */
4589 int sectors = r10_bio->sectors;
4590 struct r10conf *conf = mddev->private;
4591 struct {
4592 struct r10bio r10_bio;
4593 struct r10dev devs[conf->copies];
4594 } on_stack;
4595 struct r10bio *r10b = &on_stack.r10_bio;
4596 int slot = 0;
4597 int idx = 0;
4598 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4599
4600 r10b->sector = r10_bio->sector;
4601 __raid10_find_phys(&conf->prev, r10b);
4602
4603 while (sectors) {
4604 int s = sectors;
4605 int success = 0;
4606 int first_slot = slot;
4607
4608 if (s > (PAGE_SIZE >> 9))
4609 s = PAGE_SIZE >> 9;
4610
4611 while (!success) {
4612 int d = r10b->devs[slot].devnum;
4613 struct md_rdev *rdev = conf->mirrors[d].rdev;
4614 sector_t addr;
4615 if (rdev == NULL ||
4616 test_bit(Faulty, &rdev->flags) ||
4617 !test_bit(In_sync, &rdev->flags))
4618 goto failed;
4619
4620 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4621 success = sync_page_io(rdev,
4622 addr,
4623 s << 9,
4624 bvec[idx].bv_page,
4625 READ, false);
4626 if (success)
4627 break;
4628 failed:
4629 slot++;
4630 if (slot >= conf->copies)
4631 slot = 0;
4632 if (slot == first_slot)
4633 break;
4634 }
4635 if (!success) {
4636 /* couldn't read this block, must give up */
4637 set_bit(MD_RECOVERY_INTR,
4638 &mddev->recovery);
4639 return -EIO;
4640 }
4641 sectors -= s;
4642 idx++;
4643 }
4644 return 0;
4645 }
4646
4647 static void end_reshape_write(struct bio *bio, int error)
4648 {
4649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4650 struct r10bio *r10_bio = bio->bi_private;
4651 struct mddev *mddev = r10_bio->mddev;
4652 struct r10conf *conf = mddev->private;
4653 int d;
4654 int slot;
4655 int repl;
4656 struct md_rdev *rdev = NULL;
4657
4658 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4659 if (repl)
4660 rdev = conf->mirrors[d].replacement;
4661 if (!rdev) {
4662 smp_mb();
4663 rdev = conf->mirrors[d].rdev;
4664 }
4665
4666 if (!uptodate) {
4667 /* FIXME should record badblock */
4668 md_error(mddev, rdev);
4669 }
4670
4671 rdev_dec_pending(rdev, mddev);
4672 end_reshape_request(r10_bio);
4673 }
4674
4675 static void end_reshape_request(struct r10bio *r10_bio)
4676 {
4677 if (!atomic_dec_and_test(&r10_bio->remaining))
4678 return;
4679 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4680 bio_put(r10_bio->master_bio);
4681 put_buf(r10_bio);
4682 }
4683
4684 static void raid10_finish_reshape(struct mddev *mddev)
4685 {
4686 struct r10conf *conf = mddev->private;
4687
4688 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4689 return;
4690
4691 if (mddev->delta_disks > 0) {
4692 sector_t size = raid10_size(mddev, 0, 0);
4693 md_set_array_sectors(mddev, size);
4694 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4695 mddev->recovery_cp = mddev->resync_max_sectors;
4696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4697 }
4698 mddev->resync_max_sectors = size;
4699 set_capacity(mddev->gendisk, mddev->array_sectors);
4700 revalidate_disk(mddev->gendisk);
4701 } else {
4702 int d;
4703 for (d = conf->geo.raid_disks ;
4704 d < conf->geo.raid_disks - mddev->delta_disks;
4705 d++) {
4706 struct md_rdev *rdev = conf->mirrors[d].rdev;
4707 if (rdev)
4708 clear_bit(In_sync, &rdev->flags);
4709 rdev = conf->mirrors[d].replacement;
4710 if (rdev)
4711 clear_bit(In_sync, &rdev->flags);
4712 }
4713 }
4714 mddev->layout = mddev->new_layout;
4715 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4716 mddev->reshape_position = MaxSector;
4717 mddev->delta_disks = 0;
4718 mddev->reshape_backwards = 0;
4719 }
4720
4721 static struct md_personality raid10_personality =
4722 {
4723 .name = "raid10",
4724 .level = 10,
4725 .owner = THIS_MODULE,
4726 .make_request = make_request,
4727 .run = run,
4728 .stop = stop,
4729 .status = status,
4730 .error_handler = error,
4731 .hot_add_disk = raid10_add_disk,
4732 .hot_remove_disk= raid10_remove_disk,
4733 .spare_active = raid10_spare_active,
4734 .sync_request = sync_request,
4735 .quiesce = raid10_quiesce,
4736 .size = raid10_size,
4737 .resize = raid10_resize,
4738 .takeover = raid10_takeover,
4739 .check_reshape = raid10_check_reshape,
4740 .start_reshape = raid10_start_reshape,
4741 .finish_reshape = raid10_finish_reshape,
4742 };
4743
4744 static int __init raid_init(void)
4745 {
4746 return register_md_personality(&raid10_personality);
4747 }
4748
4749 static void raid_exit(void)
4750 {
4751 unregister_md_personality(&raid10_personality);
4752 }
4753
4754 module_init(raid_init);
4755 module_exit(raid_exit);
4756 MODULE_LICENSE("GPL");
4757 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4758 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4759 MODULE_ALIAS("md-raid10");
4760 MODULE_ALIAS("md-level-10");
4761
4762 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.131944 seconds and 6 git commands to generate.