md/raid5: separate out the easy conditions in need_this_block.
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <trace/events/block.h>
58
59 #include "md.h"
60 #include "raid5.h"
61 #include "raid0.h"
62 #include "bitmap.h"
63
64 #define cpu_to_group(cpu) cpu_to_node(cpu)
65 #define ANY_GROUP NUMA_NO_NODE
66
67 static bool devices_handle_discard_safely = false;
68 module_param(devices_handle_discard_safely, bool, 0644);
69 MODULE_PARM_DESC(devices_handle_discard_safely,
70 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
71 static struct workqueue_struct *raid5_wq;
72 /*
73 * Stripe cache
74 */
75
76 #define NR_STRIPES 256
77 #define STRIPE_SIZE PAGE_SIZE
78 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
79 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
80 #define IO_THRESHOLD 1
81 #define BYPASS_THRESHOLD 1
82 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
83 #define HASH_MASK (NR_HASH - 1)
84 #define MAX_STRIPE_BATCH 8
85
86 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
87 {
88 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
89 return &conf->stripe_hashtbl[hash];
90 }
91
92 static inline int stripe_hash_locks_hash(sector_t sect)
93 {
94 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
95 }
96
97 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
98 {
99 spin_lock_irq(conf->hash_locks + hash);
100 spin_lock(&conf->device_lock);
101 }
102
103 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
104 {
105 spin_unlock(&conf->device_lock);
106 spin_unlock_irq(conf->hash_locks + hash);
107 }
108
109 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
110 {
111 int i;
112 local_irq_disable();
113 spin_lock(conf->hash_locks);
114 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
115 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
116 spin_lock(&conf->device_lock);
117 }
118
119 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
120 {
121 int i;
122 spin_unlock(&conf->device_lock);
123 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
124 spin_unlock(conf->hash_locks + i - 1);
125 local_irq_enable();
126 }
127
128 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
129 * order without overlap. There may be several bio's per stripe+device, and
130 * a bio could span several devices.
131 * When walking this list for a particular stripe+device, we must never proceed
132 * beyond a bio that extends past this device, as the next bio might no longer
133 * be valid.
134 * This function is used to determine the 'next' bio in the list, given the sector
135 * of the current stripe+device
136 */
137 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
138 {
139 int sectors = bio_sectors(bio);
140 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
141 return bio->bi_next;
142 else
143 return NULL;
144 }
145
146 /*
147 * We maintain a biased count of active stripes in the bottom 16 bits of
148 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
149 */
150 static inline int raid5_bi_processed_stripes(struct bio *bio)
151 {
152 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
153 return (atomic_read(segments) >> 16) & 0xffff;
154 }
155
156 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
157 {
158 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
159 return atomic_sub_return(1, segments) & 0xffff;
160 }
161
162 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
163 {
164 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
165 atomic_inc(segments);
166 }
167
168 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
169 unsigned int cnt)
170 {
171 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
172 int old, new;
173
174 do {
175 old = atomic_read(segments);
176 new = (old & 0xffff) | (cnt << 16);
177 } while (atomic_cmpxchg(segments, old, new) != old);
178 }
179
180 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
181 {
182 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
183 atomic_set(segments, cnt);
184 }
185
186 /* Find first data disk in a raid6 stripe */
187 static inline int raid6_d0(struct stripe_head *sh)
188 {
189 if (sh->ddf_layout)
190 /* ddf always start from first device */
191 return 0;
192 /* md starts just after Q block */
193 if (sh->qd_idx == sh->disks - 1)
194 return 0;
195 else
196 return sh->qd_idx + 1;
197 }
198 static inline int raid6_next_disk(int disk, int raid_disks)
199 {
200 disk++;
201 return (disk < raid_disks) ? disk : 0;
202 }
203
204 /* When walking through the disks in a raid5, starting at raid6_d0,
205 * We need to map each disk to a 'slot', where the data disks are slot
206 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
207 * is raid_disks-1. This help does that mapping.
208 */
209 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
210 int *count, int syndrome_disks)
211 {
212 int slot = *count;
213
214 if (sh->ddf_layout)
215 (*count)++;
216 if (idx == sh->pd_idx)
217 return syndrome_disks;
218 if (idx == sh->qd_idx)
219 return syndrome_disks + 1;
220 if (!sh->ddf_layout)
221 (*count)++;
222 return slot;
223 }
224
225 static void return_io(struct bio *return_bi)
226 {
227 struct bio *bi = return_bi;
228 while (bi) {
229
230 return_bi = bi->bi_next;
231 bi->bi_next = NULL;
232 bi->bi_iter.bi_size = 0;
233 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
234 bi, 0);
235 bio_endio(bi, 0);
236 bi = return_bi;
237 }
238 }
239
240 static void print_raid5_conf (struct r5conf *conf);
241
242 static int stripe_operations_active(struct stripe_head *sh)
243 {
244 return sh->check_state || sh->reconstruct_state ||
245 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
246 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
247 }
248
249 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
250 {
251 struct r5conf *conf = sh->raid_conf;
252 struct r5worker_group *group;
253 int thread_cnt;
254 int i, cpu = sh->cpu;
255
256 if (!cpu_online(cpu)) {
257 cpu = cpumask_any(cpu_online_mask);
258 sh->cpu = cpu;
259 }
260
261 if (list_empty(&sh->lru)) {
262 struct r5worker_group *group;
263 group = conf->worker_groups + cpu_to_group(cpu);
264 list_add_tail(&sh->lru, &group->handle_list);
265 group->stripes_cnt++;
266 sh->group = group;
267 }
268
269 if (conf->worker_cnt_per_group == 0) {
270 md_wakeup_thread(conf->mddev->thread);
271 return;
272 }
273
274 group = conf->worker_groups + cpu_to_group(sh->cpu);
275
276 group->workers[0].working = true;
277 /* at least one worker should run to avoid race */
278 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
279
280 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
281 /* wakeup more workers */
282 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
283 if (group->workers[i].working == false) {
284 group->workers[i].working = true;
285 queue_work_on(sh->cpu, raid5_wq,
286 &group->workers[i].work);
287 thread_cnt--;
288 }
289 }
290 }
291
292 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
293 struct list_head *temp_inactive_list)
294 {
295 BUG_ON(!list_empty(&sh->lru));
296 BUG_ON(atomic_read(&conf->active_stripes)==0);
297 if (test_bit(STRIPE_HANDLE, &sh->state)) {
298 if (test_bit(STRIPE_DELAYED, &sh->state) &&
299 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
300 list_add_tail(&sh->lru, &conf->delayed_list);
301 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
302 sh->bm_seq - conf->seq_write > 0)
303 list_add_tail(&sh->lru, &conf->bitmap_list);
304 else {
305 clear_bit(STRIPE_DELAYED, &sh->state);
306 clear_bit(STRIPE_BIT_DELAY, &sh->state);
307 if (conf->worker_cnt_per_group == 0) {
308 list_add_tail(&sh->lru, &conf->handle_list);
309 } else {
310 raid5_wakeup_stripe_thread(sh);
311 return;
312 }
313 }
314 md_wakeup_thread(conf->mddev->thread);
315 } else {
316 BUG_ON(stripe_operations_active(sh));
317 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
318 if (atomic_dec_return(&conf->preread_active_stripes)
319 < IO_THRESHOLD)
320 md_wakeup_thread(conf->mddev->thread);
321 atomic_dec(&conf->active_stripes);
322 if (!test_bit(STRIPE_EXPANDING, &sh->state))
323 list_add_tail(&sh->lru, temp_inactive_list);
324 }
325 }
326
327 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
328 struct list_head *temp_inactive_list)
329 {
330 if (atomic_dec_and_test(&sh->count))
331 do_release_stripe(conf, sh, temp_inactive_list);
332 }
333
334 /*
335 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
336 *
337 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
338 * given time. Adding stripes only takes device lock, while deleting stripes
339 * only takes hash lock.
340 */
341 static void release_inactive_stripe_list(struct r5conf *conf,
342 struct list_head *temp_inactive_list,
343 int hash)
344 {
345 int size;
346 bool do_wakeup = false;
347 unsigned long flags;
348
349 if (hash == NR_STRIPE_HASH_LOCKS) {
350 size = NR_STRIPE_HASH_LOCKS;
351 hash = NR_STRIPE_HASH_LOCKS - 1;
352 } else
353 size = 1;
354 while (size) {
355 struct list_head *list = &temp_inactive_list[size - 1];
356
357 /*
358 * We don't hold any lock here yet, get_active_stripe() might
359 * remove stripes from the list
360 */
361 if (!list_empty_careful(list)) {
362 spin_lock_irqsave(conf->hash_locks + hash, flags);
363 if (list_empty(conf->inactive_list + hash) &&
364 !list_empty(list))
365 atomic_dec(&conf->empty_inactive_list_nr);
366 list_splice_tail_init(list, conf->inactive_list + hash);
367 do_wakeup = true;
368 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
369 }
370 size--;
371 hash--;
372 }
373
374 if (do_wakeup) {
375 wake_up(&conf->wait_for_stripe);
376 if (conf->retry_read_aligned)
377 md_wakeup_thread(conf->mddev->thread);
378 }
379 }
380
381 /* should hold conf->device_lock already */
382 static int release_stripe_list(struct r5conf *conf,
383 struct list_head *temp_inactive_list)
384 {
385 struct stripe_head *sh;
386 int count = 0;
387 struct llist_node *head;
388
389 head = llist_del_all(&conf->released_stripes);
390 head = llist_reverse_order(head);
391 while (head) {
392 int hash;
393
394 sh = llist_entry(head, struct stripe_head, release_list);
395 head = llist_next(head);
396 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
397 smp_mb();
398 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
399 /*
400 * Don't worry the bit is set here, because if the bit is set
401 * again, the count is always > 1. This is true for
402 * STRIPE_ON_UNPLUG_LIST bit too.
403 */
404 hash = sh->hash_lock_index;
405 __release_stripe(conf, sh, &temp_inactive_list[hash]);
406 count++;
407 }
408
409 return count;
410 }
411
412 static void release_stripe(struct stripe_head *sh)
413 {
414 struct r5conf *conf = sh->raid_conf;
415 unsigned long flags;
416 struct list_head list;
417 int hash;
418 bool wakeup;
419
420 /* Avoid release_list until the last reference.
421 */
422 if (atomic_add_unless(&sh->count, -1, 1))
423 return;
424
425 if (unlikely(!conf->mddev->thread) ||
426 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
427 goto slow_path;
428 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
429 if (wakeup)
430 md_wakeup_thread(conf->mddev->thread);
431 return;
432 slow_path:
433 local_irq_save(flags);
434 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
435 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
436 INIT_LIST_HEAD(&list);
437 hash = sh->hash_lock_index;
438 do_release_stripe(conf, sh, &list);
439 spin_unlock(&conf->device_lock);
440 release_inactive_stripe_list(conf, &list, hash);
441 }
442 local_irq_restore(flags);
443 }
444
445 static inline void remove_hash(struct stripe_head *sh)
446 {
447 pr_debug("remove_hash(), stripe %llu\n",
448 (unsigned long long)sh->sector);
449
450 hlist_del_init(&sh->hash);
451 }
452
453 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
454 {
455 struct hlist_head *hp = stripe_hash(conf, sh->sector);
456
457 pr_debug("insert_hash(), stripe %llu\n",
458 (unsigned long long)sh->sector);
459
460 hlist_add_head(&sh->hash, hp);
461 }
462
463 /* find an idle stripe, make sure it is unhashed, and return it. */
464 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
465 {
466 struct stripe_head *sh = NULL;
467 struct list_head *first;
468
469 if (list_empty(conf->inactive_list + hash))
470 goto out;
471 first = (conf->inactive_list + hash)->next;
472 sh = list_entry(first, struct stripe_head, lru);
473 list_del_init(first);
474 remove_hash(sh);
475 atomic_inc(&conf->active_stripes);
476 BUG_ON(hash != sh->hash_lock_index);
477 if (list_empty(conf->inactive_list + hash))
478 atomic_inc(&conf->empty_inactive_list_nr);
479 out:
480 return sh;
481 }
482
483 static void shrink_buffers(struct stripe_head *sh)
484 {
485 struct page *p;
486 int i;
487 int num = sh->raid_conf->pool_size;
488
489 for (i = 0; i < num ; i++) {
490 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
491 p = sh->dev[i].page;
492 if (!p)
493 continue;
494 sh->dev[i].page = NULL;
495 put_page(p);
496 }
497 }
498
499 static int grow_buffers(struct stripe_head *sh)
500 {
501 int i;
502 int num = sh->raid_conf->pool_size;
503
504 for (i = 0; i < num; i++) {
505 struct page *page;
506
507 if (!(page = alloc_page(GFP_KERNEL))) {
508 return 1;
509 }
510 sh->dev[i].page = page;
511 sh->dev[i].orig_page = page;
512 }
513 return 0;
514 }
515
516 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
517 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
518 struct stripe_head *sh);
519
520 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
521 {
522 struct r5conf *conf = sh->raid_conf;
523 int i, seq;
524
525 BUG_ON(atomic_read(&sh->count) != 0);
526 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
527 BUG_ON(stripe_operations_active(sh));
528
529 pr_debug("init_stripe called, stripe %llu\n",
530 (unsigned long long)sector);
531 retry:
532 seq = read_seqcount_begin(&conf->gen_lock);
533 sh->generation = conf->generation - previous;
534 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
535 sh->sector = sector;
536 stripe_set_idx(sector, conf, previous, sh);
537 sh->state = 0;
538
539 for (i = sh->disks; i--; ) {
540 struct r5dev *dev = &sh->dev[i];
541
542 if (dev->toread || dev->read || dev->towrite || dev->written ||
543 test_bit(R5_LOCKED, &dev->flags)) {
544 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
545 (unsigned long long)sh->sector, i, dev->toread,
546 dev->read, dev->towrite, dev->written,
547 test_bit(R5_LOCKED, &dev->flags));
548 WARN_ON(1);
549 }
550 dev->flags = 0;
551 raid5_build_block(sh, i, previous);
552 }
553 if (read_seqcount_retry(&conf->gen_lock, seq))
554 goto retry;
555 insert_hash(conf, sh);
556 sh->cpu = smp_processor_id();
557 }
558
559 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
560 short generation)
561 {
562 struct stripe_head *sh;
563
564 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
565 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
566 if (sh->sector == sector && sh->generation == generation)
567 return sh;
568 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
569 return NULL;
570 }
571
572 /*
573 * Need to check if array has failed when deciding whether to:
574 * - start an array
575 * - remove non-faulty devices
576 * - add a spare
577 * - allow a reshape
578 * This determination is simple when no reshape is happening.
579 * However if there is a reshape, we need to carefully check
580 * both the before and after sections.
581 * This is because some failed devices may only affect one
582 * of the two sections, and some non-in_sync devices may
583 * be insync in the section most affected by failed devices.
584 */
585 static int calc_degraded(struct r5conf *conf)
586 {
587 int degraded, degraded2;
588 int i;
589
590 rcu_read_lock();
591 degraded = 0;
592 for (i = 0; i < conf->previous_raid_disks; i++) {
593 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
594 if (rdev && test_bit(Faulty, &rdev->flags))
595 rdev = rcu_dereference(conf->disks[i].replacement);
596 if (!rdev || test_bit(Faulty, &rdev->flags))
597 degraded++;
598 else if (test_bit(In_sync, &rdev->flags))
599 ;
600 else
601 /* not in-sync or faulty.
602 * If the reshape increases the number of devices,
603 * this is being recovered by the reshape, so
604 * this 'previous' section is not in_sync.
605 * If the number of devices is being reduced however,
606 * the device can only be part of the array if
607 * we are reverting a reshape, so this section will
608 * be in-sync.
609 */
610 if (conf->raid_disks >= conf->previous_raid_disks)
611 degraded++;
612 }
613 rcu_read_unlock();
614 if (conf->raid_disks == conf->previous_raid_disks)
615 return degraded;
616 rcu_read_lock();
617 degraded2 = 0;
618 for (i = 0; i < conf->raid_disks; i++) {
619 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
620 if (rdev && test_bit(Faulty, &rdev->flags))
621 rdev = rcu_dereference(conf->disks[i].replacement);
622 if (!rdev || test_bit(Faulty, &rdev->flags))
623 degraded2++;
624 else if (test_bit(In_sync, &rdev->flags))
625 ;
626 else
627 /* not in-sync or faulty.
628 * If reshape increases the number of devices, this
629 * section has already been recovered, else it
630 * almost certainly hasn't.
631 */
632 if (conf->raid_disks <= conf->previous_raid_disks)
633 degraded2++;
634 }
635 rcu_read_unlock();
636 if (degraded2 > degraded)
637 return degraded2;
638 return degraded;
639 }
640
641 static int has_failed(struct r5conf *conf)
642 {
643 int degraded;
644
645 if (conf->mddev->reshape_position == MaxSector)
646 return conf->mddev->degraded > conf->max_degraded;
647
648 degraded = calc_degraded(conf);
649 if (degraded > conf->max_degraded)
650 return 1;
651 return 0;
652 }
653
654 static struct stripe_head *
655 get_active_stripe(struct r5conf *conf, sector_t sector,
656 int previous, int noblock, int noquiesce)
657 {
658 struct stripe_head *sh;
659 int hash = stripe_hash_locks_hash(sector);
660
661 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
662
663 spin_lock_irq(conf->hash_locks + hash);
664
665 do {
666 wait_event_lock_irq(conf->wait_for_stripe,
667 conf->quiesce == 0 || noquiesce,
668 *(conf->hash_locks + hash));
669 sh = __find_stripe(conf, sector, conf->generation - previous);
670 if (!sh) {
671 if (!conf->inactive_blocked)
672 sh = get_free_stripe(conf, hash);
673 if (noblock && sh == NULL)
674 break;
675 if (!sh) {
676 conf->inactive_blocked = 1;
677 wait_event_lock_irq(
678 conf->wait_for_stripe,
679 !list_empty(conf->inactive_list + hash) &&
680 (atomic_read(&conf->active_stripes)
681 < (conf->max_nr_stripes * 3 / 4)
682 || !conf->inactive_blocked),
683 *(conf->hash_locks + hash));
684 conf->inactive_blocked = 0;
685 } else {
686 init_stripe(sh, sector, previous);
687 atomic_inc(&sh->count);
688 }
689 } else if (!atomic_inc_not_zero(&sh->count)) {
690 spin_lock(&conf->device_lock);
691 if (!atomic_read(&sh->count)) {
692 if (!test_bit(STRIPE_HANDLE, &sh->state))
693 atomic_inc(&conf->active_stripes);
694 BUG_ON(list_empty(&sh->lru) &&
695 !test_bit(STRIPE_EXPANDING, &sh->state));
696 list_del_init(&sh->lru);
697 if (sh->group) {
698 sh->group->stripes_cnt--;
699 sh->group = NULL;
700 }
701 }
702 atomic_inc(&sh->count);
703 spin_unlock(&conf->device_lock);
704 }
705 } while (sh == NULL);
706
707 spin_unlock_irq(conf->hash_locks + hash);
708 return sh;
709 }
710
711 /* Determine if 'data_offset' or 'new_data_offset' should be used
712 * in this stripe_head.
713 */
714 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
715 {
716 sector_t progress = conf->reshape_progress;
717 /* Need a memory barrier to make sure we see the value
718 * of conf->generation, or ->data_offset that was set before
719 * reshape_progress was updated.
720 */
721 smp_rmb();
722 if (progress == MaxSector)
723 return 0;
724 if (sh->generation == conf->generation - 1)
725 return 0;
726 /* We are in a reshape, and this is a new-generation stripe,
727 * so use new_data_offset.
728 */
729 return 1;
730 }
731
732 static void
733 raid5_end_read_request(struct bio *bi, int error);
734 static void
735 raid5_end_write_request(struct bio *bi, int error);
736
737 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
738 {
739 struct r5conf *conf = sh->raid_conf;
740 int i, disks = sh->disks;
741
742 might_sleep();
743
744 for (i = disks; i--; ) {
745 int rw;
746 int replace_only = 0;
747 struct bio *bi, *rbi;
748 struct md_rdev *rdev, *rrdev = NULL;
749 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
750 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
751 rw = WRITE_FUA;
752 else
753 rw = WRITE;
754 if (test_bit(R5_Discard, &sh->dev[i].flags))
755 rw |= REQ_DISCARD;
756 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
757 rw = READ;
758 else if (test_and_clear_bit(R5_WantReplace,
759 &sh->dev[i].flags)) {
760 rw = WRITE;
761 replace_only = 1;
762 } else
763 continue;
764 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
765 rw |= REQ_SYNC;
766
767 bi = &sh->dev[i].req;
768 rbi = &sh->dev[i].rreq; /* For writing to replacement */
769
770 rcu_read_lock();
771 rrdev = rcu_dereference(conf->disks[i].replacement);
772 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
773 rdev = rcu_dereference(conf->disks[i].rdev);
774 if (!rdev) {
775 rdev = rrdev;
776 rrdev = NULL;
777 }
778 if (rw & WRITE) {
779 if (replace_only)
780 rdev = NULL;
781 if (rdev == rrdev)
782 /* We raced and saw duplicates */
783 rrdev = NULL;
784 } else {
785 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
786 rdev = rrdev;
787 rrdev = NULL;
788 }
789
790 if (rdev && test_bit(Faulty, &rdev->flags))
791 rdev = NULL;
792 if (rdev)
793 atomic_inc(&rdev->nr_pending);
794 if (rrdev && test_bit(Faulty, &rrdev->flags))
795 rrdev = NULL;
796 if (rrdev)
797 atomic_inc(&rrdev->nr_pending);
798 rcu_read_unlock();
799
800 /* We have already checked bad blocks for reads. Now
801 * need to check for writes. We never accept write errors
802 * on the replacement, so we don't to check rrdev.
803 */
804 while ((rw & WRITE) && rdev &&
805 test_bit(WriteErrorSeen, &rdev->flags)) {
806 sector_t first_bad;
807 int bad_sectors;
808 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
809 &first_bad, &bad_sectors);
810 if (!bad)
811 break;
812
813 if (bad < 0) {
814 set_bit(BlockedBadBlocks, &rdev->flags);
815 if (!conf->mddev->external &&
816 conf->mddev->flags) {
817 /* It is very unlikely, but we might
818 * still need to write out the
819 * bad block log - better give it
820 * a chance*/
821 md_check_recovery(conf->mddev);
822 }
823 /*
824 * Because md_wait_for_blocked_rdev
825 * will dec nr_pending, we must
826 * increment it first.
827 */
828 atomic_inc(&rdev->nr_pending);
829 md_wait_for_blocked_rdev(rdev, conf->mddev);
830 } else {
831 /* Acknowledged bad block - skip the write */
832 rdev_dec_pending(rdev, conf->mddev);
833 rdev = NULL;
834 }
835 }
836
837 if (rdev) {
838 if (s->syncing || s->expanding || s->expanded
839 || s->replacing)
840 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
841
842 set_bit(STRIPE_IO_STARTED, &sh->state);
843
844 bio_reset(bi);
845 bi->bi_bdev = rdev->bdev;
846 bi->bi_rw = rw;
847 bi->bi_end_io = (rw & WRITE)
848 ? raid5_end_write_request
849 : raid5_end_read_request;
850 bi->bi_private = sh;
851
852 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
853 __func__, (unsigned long long)sh->sector,
854 bi->bi_rw, i);
855 atomic_inc(&sh->count);
856 if (use_new_offset(conf, sh))
857 bi->bi_iter.bi_sector = (sh->sector
858 + rdev->new_data_offset);
859 else
860 bi->bi_iter.bi_sector = (sh->sector
861 + rdev->data_offset);
862 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
863 bi->bi_rw |= REQ_NOMERGE;
864
865 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
866 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
867 sh->dev[i].vec.bv_page = sh->dev[i].page;
868 bi->bi_vcnt = 1;
869 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
870 bi->bi_io_vec[0].bv_offset = 0;
871 bi->bi_iter.bi_size = STRIPE_SIZE;
872 /*
873 * If this is discard request, set bi_vcnt 0. We don't
874 * want to confuse SCSI because SCSI will replace payload
875 */
876 if (rw & REQ_DISCARD)
877 bi->bi_vcnt = 0;
878 if (rrdev)
879 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
880
881 if (conf->mddev->gendisk)
882 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
883 bi, disk_devt(conf->mddev->gendisk),
884 sh->dev[i].sector);
885 generic_make_request(bi);
886 }
887 if (rrdev) {
888 if (s->syncing || s->expanding || s->expanded
889 || s->replacing)
890 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
891
892 set_bit(STRIPE_IO_STARTED, &sh->state);
893
894 bio_reset(rbi);
895 rbi->bi_bdev = rrdev->bdev;
896 rbi->bi_rw = rw;
897 BUG_ON(!(rw & WRITE));
898 rbi->bi_end_io = raid5_end_write_request;
899 rbi->bi_private = sh;
900
901 pr_debug("%s: for %llu schedule op %ld on "
902 "replacement disc %d\n",
903 __func__, (unsigned long long)sh->sector,
904 rbi->bi_rw, i);
905 atomic_inc(&sh->count);
906 if (use_new_offset(conf, sh))
907 rbi->bi_iter.bi_sector = (sh->sector
908 + rrdev->new_data_offset);
909 else
910 rbi->bi_iter.bi_sector = (sh->sector
911 + rrdev->data_offset);
912 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
913 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
914 sh->dev[i].rvec.bv_page = sh->dev[i].page;
915 rbi->bi_vcnt = 1;
916 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
917 rbi->bi_io_vec[0].bv_offset = 0;
918 rbi->bi_iter.bi_size = STRIPE_SIZE;
919 /*
920 * If this is discard request, set bi_vcnt 0. We don't
921 * want to confuse SCSI because SCSI will replace payload
922 */
923 if (rw & REQ_DISCARD)
924 rbi->bi_vcnt = 0;
925 if (conf->mddev->gendisk)
926 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
927 rbi, disk_devt(conf->mddev->gendisk),
928 sh->dev[i].sector);
929 generic_make_request(rbi);
930 }
931 if (!rdev && !rrdev) {
932 if (rw & WRITE)
933 set_bit(STRIPE_DEGRADED, &sh->state);
934 pr_debug("skip op %ld on disc %d for sector %llu\n",
935 bi->bi_rw, i, (unsigned long long)sh->sector);
936 clear_bit(R5_LOCKED, &sh->dev[i].flags);
937 set_bit(STRIPE_HANDLE, &sh->state);
938 }
939 }
940 }
941
942 static struct dma_async_tx_descriptor *
943 async_copy_data(int frombio, struct bio *bio, struct page **page,
944 sector_t sector, struct dma_async_tx_descriptor *tx,
945 struct stripe_head *sh)
946 {
947 struct bio_vec bvl;
948 struct bvec_iter iter;
949 struct page *bio_page;
950 int page_offset;
951 struct async_submit_ctl submit;
952 enum async_tx_flags flags = 0;
953
954 if (bio->bi_iter.bi_sector >= sector)
955 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
956 else
957 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
958
959 if (frombio)
960 flags |= ASYNC_TX_FENCE;
961 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
962
963 bio_for_each_segment(bvl, bio, iter) {
964 int len = bvl.bv_len;
965 int clen;
966 int b_offset = 0;
967
968 if (page_offset < 0) {
969 b_offset = -page_offset;
970 page_offset += b_offset;
971 len -= b_offset;
972 }
973
974 if (len > 0 && page_offset + len > STRIPE_SIZE)
975 clen = STRIPE_SIZE - page_offset;
976 else
977 clen = len;
978
979 if (clen > 0) {
980 b_offset += bvl.bv_offset;
981 bio_page = bvl.bv_page;
982 if (frombio) {
983 if (sh->raid_conf->skip_copy &&
984 b_offset == 0 && page_offset == 0 &&
985 clen == STRIPE_SIZE)
986 *page = bio_page;
987 else
988 tx = async_memcpy(*page, bio_page, page_offset,
989 b_offset, clen, &submit);
990 } else
991 tx = async_memcpy(bio_page, *page, b_offset,
992 page_offset, clen, &submit);
993 }
994 /* chain the operations */
995 submit.depend_tx = tx;
996
997 if (clen < len) /* hit end of page */
998 break;
999 page_offset += len;
1000 }
1001
1002 return tx;
1003 }
1004
1005 static void ops_complete_biofill(void *stripe_head_ref)
1006 {
1007 struct stripe_head *sh = stripe_head_ref;
1008 struct bio *return_bi = NULL;
1009 int i;
1010
1011 pr_debug("%s: stripe %llu\n", __func__,
1012 (unsigned long long)sh->sector);
1013
1014 /* clear completed biofills */
1015 for (i = sh->disks; i--; ) {
1016 struct r5dev *dev = &sh->dev[i];
1017
1018 /* acknowledge completion of a biofill operation */
1019 /* and check if we need to reply to a read request,
1020 * new R5_Wantfill requests are held off until
1021 * !STRIPE_BIOFILL_RUN
1022 */
1023 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1024 struct bio *rbi, *rbi2;
1025
1026 BUG_ON(!dev->read);
1027 rbi = dev->read;
1028 dev->read = NULL;
1029 while (rbi && rbi->bi_iter.bi_sector <
1030 dev->sector + STRIPE_SECTORS) {
1031 rbi2 = r5_next_bio(rbi, dev->sector);
1032 if (!raid5_dec_bi_active_stripes(rbi)) {
1033 rbi->bi_next = return_bi;
1034 return_bi = rbi;
1035 }
1036 rbi = rbi2;
1037 }
1038 }
1039 }
1040 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1041
1042 return_io(return_bi);
1043
1044 set_bit(STRIPE_HANDLE, &sh->state);
1045 release_stripe(sh);
1046 }
1047
1048 static void ops_run_biofill(struct stripe_head *sh)
1049 {
1050 struct dma_async_tx_descriptor *tx = NULL;
1051 struct async_submit_ctl submit;
1052 int i;
1053
1054 pr_debug("%s: stripe %llu\n", __func__,
1055 (unsigned long long)sh->sector);
1056
1057 for (i = sh->disks; i--; ) {
1058 struct r5dev *dev = &sh->dev[i];
1059 if (test_bit(R5_Wantfill, &dev->flags)) {
1060 struct bio *rbi;
1061 spin_lock_irq(&sh->stripe_lock);
1062 dev->read = rbi = dev->toread;
1063 dev->toread = NULL;
1064 spin_unlock_irq(&sh->stripe_lock);
1065 while (rbi && rbi->bi_iter.bi_sector <
1066 dev->sector + STRIPE_SECTORS) {
1067 tx = async_copy_data(0, rbi, &dev->page,
1068 dev->sector, tx, sh);
1069 rbi = r5_next_bio(rbi, dev->sector);
1070 }
1071 }
1072 }
1073
1074 atomic_inc(&sh->count);
1075 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1076 async_trigger_callback(&submit);
1077 }
1078
1079 static void mark_target_uptodate(struct stripe_head *sh, int target)
1080 {
1081 struct r5dev *tgt;
1082
1083 if (target < 0)
1084 return;
1085
1086 tgt = &sh->dev[target];
1087 set_bit(R5_UPTODATE, &tgt->flags);
1088 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1089 clear_bit(R5_Wantcompute, &tgt->flags);
1090 }
1091
1092 static void ops_complete_compute(void *stripe_head_ref)
1093 {
1094 struct stripe_head *sh = stripe_head_ref;
1095
1096 pr_debug("%s: stripe %llu\n", __func__,
1097 (unsigned long long)sh->sector);
1098
1099 /* mark the computed target(s) as uptodate */
1100 mark_target_uptodate(sh, sh->ops.target);
1101 mark_target_uptodate(sh, sh->ops.target2);
1102
1103 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1104 if (sh->check_state == check_state_compute_run)
1105 sh->check_state = check_state_compute_result;
1106 set_bit(STRIPE_HANDLE, &sh->state);
1107 release_stripe(sh);
1108 }
1109
1110 /* return a pointer to the address conversion region of the scribble buffer */
1111 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1112 struct raid5_percpu *percpu)
1113 {
1114 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1119 {
1120 int disks = sh->disks;
1121 struct page **xor_srcs = percpu->scribble;
1122 int target = sh->ops.target;
1123 struct r5dev *tgt = &sh->dev[target];
1124 struct page *xor_dest = tgt->page;
1125 int count = 0;
1126 struct dma_async_tx_descriptor *tx;
1127 struct async_submit_ctl submit;
1128 int i;
1129
1130 pr_debug("%s: stripe %llu block: %d\n",
1131 __func__, (unsigned long long)sh->sector, target);
1132 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1133
1134 for (i = disks; i--; )
1135 if (i != target)
1136 xor_srcs[count++] = sh->dev[i].page;
1137
1138 atomic_inc(&sh->count);
1139
1140 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1141 ops_complete_compute, sh, to_addr_conv(sh, percpu));
1142 if (unlikely(count == 1))
1143 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1144 else
1145 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1146
1147 return tx;
1148 }
1149
1150 /* set_syndrome_sources - populate source buffers for gen_syndrome
1151 * @srcs - (struct page *) array of size sh->disks
1152 * @sh - stripe_head to parse
1153 *
1154 * Populates srcs in proper layout order for the stripe and returns the
1155 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1156 * destination buffer is recorded in srcs[count] and the Q destination
1157 * is recorded in srcs[count+1]].
1158 */
1159 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
1160 {
1161 int disks = sh->disks;
1162 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1163 int d0_idx = raid6_d0(sh);
1164 int count;
1165 int i;
1166
1167 for (i = 0; i < disks; i++)
1168 srcs[i] = NULL;
1169
1170 count = 0;
1171 i = d0_idx;
1172 do {
1173 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1174
1175 srcs[slot] = sh->dev[i].page;
1176 i = raid6_next_disk(i, disks);
1177 } while (i != d0_idx);
1178
1179 return syndrome_disks;
1180 }
1181
1182 static struct dma_async_tx_descriptor *
1183 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1184 {
1185 int disks = sh->disks;
1186 struct page **blocks = percpu->scribble;
1187 int target;
1188 int qd_idx = sh->qd_idx;
1189 struct dma_async_tx_descriptor *tx;
1190 struct async_submit_ctl submit;
1191 struct r5dev *tgt;
1192 struct page *dest;
1193 int i;
1194 int count;
1195
1196 if (sh->ops.target < 0)
1197 target = sh->ops.target2;
1198 else if (sh->ops.target2 < 0)
1199 target = sh->ops.target;
1200 else
1201 /* we should only have one valid target */
1202 BUG();
1203 BUG_ON(target < 0);
1204 pr_debug("%s: stripe %llu block: %d\n",
1205 __func__, (unsigned long long)sh->sector, target);
1206
1207 tgt = &sh->dev[target];
1208 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1209 dest = tgt->page;
1210
1211 atomic_inc(&sh->count);
1212
1213 if (target == qd_idx) {
1214 count = set_syndrome_sources(blocks, sh);
1215 blocks[count] = NULL; /* regenerating p is not necessary */
1216 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1217 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1218 ops_complete_compute, sh,
1219 to_addr_conv(sh, percpu));
1220 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1221 } else {
1222 /* Compute any data- or p-drive using XOR */
1223 count = 0;
1224 for (i = disks; i-- ; ) {
1225 if (i == target || i == qd_idx)
1226 continue;
1227 blocks[count++] = sh->dev[i].page;
1228 }
1229
1230 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1231 NULL, ops_complete_compute, sh,
1232 to_addr_conv(sh, percpu));
1233 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1234 }
1235
1236 return tx;
1237 }
1238
1239 static struct dma_async_tx_descriptor *
1240 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1241 {
1242 int i, count, disks = sh->disks;
1243 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1244 int d0_idx = raid6_d0(sh);
1245 int faila = -1, failb = -1;
1246 int target = sh->ops.target;
1247 int target2 = sh->ops.target2;
1248 struct r5dev *tgt = &sh->dev[target];
1249 struct r5dev *tgt2 = &sh->dev[target2];
1250 struct dma_async_tx_descriptor *tx;
1251 struct page **blocks = percpu->scribble;
1252 struct async_submit_ctl submit;
1253
1254 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1255 __func__, (unsigned long long)sh->sector, target, target2);
1256 BUG_ON(target < 0 || target2 < 0);
1257 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1258 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1259
1260 /* we need to open-code set_syndrome_sources to handle the
1261 * slot number conversion for 'faila' and 'failb'
1262 */
1263 for (i = 0; i < disks ; i++)
1264 blocks[i] = NULL;
1265 count = 0;
1266 i = d0_idx;
1267 do {
1268 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1269
1270 blocks[slot] = sh->dev[i].page;
1271
1272 if (i == target)
1273 faila = slot;
1274 if (i == target2)
1275 failb = slot;
1276 i = raid6_next_disk(i, disks);
1277 } while (i != d0_idx);
1278
1279 BUG_ON(faila == failb);
1280 if (failb < faila)
1281 swap(faila, failb);
1282 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1283 __func__, (unsigned long long)sh->sector, faila, failb);
1284
1285 atomic_inc(&sh->count);
1286
1287 if (failb == syndrome_disks+1) {
1288 /* Q disk is one of the missing disks */
1289 if (faila == syndrome_disks) {
1290 /* Missing P+Q, just recompute */
1291 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1292 ops_complete_compute, sh,
1293 to_addr_conv(sh, percpu));
1294 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1295 STRIPE_SIZE, &submit);
1296 } else {
1297 struct page *dest;
1298 int data_target;
1299 int qd_idx = sh->qd_idx;
1300
1301 /* Missing D+Q: recompute D from P, then recompute Q */
1302 if (target == qd_idx)
1303 data_target = target2;
1304 else
1305 data_target = target;
1306
1307 count = 0;
1308 for (i = disks; i-- ; ) {
1309 if (i == data_target || i == qd_idx)
1310 continue;
1311 blocks[count++] = sh->dev[i].page;
1312 }
1313 dest = sh->dev[data_target].page;
1314 init_async_submit(&submit,
1315 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1316 NULL, NULL, NULL,
1317 to_addr_conv(sh, percpu));
1318 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1319 &submit);
1320
1321 count = set_syndrome_sources(blocks, sh);
1322 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1323 ops_complete_compute, sh,
1324 to_addr_conv(sh, percpu));
1325 return async_gen_syndrome(blocks, 0, count+2,
1326 STRIPE_SIZE, &submit);
1327 }
1328 } else {
1329 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1330 ops_complete_compute, sh,
1331 to_addr_conv(sh, percpu));
1332 if (failb == syndrome_disks) {
1333 /* We're missing D+P. */
1334 return async_raid6_datap_recov(syndrome_disks+2,
1335 STRIPE_SIZE, faila,
1336 blocks, &submit);
1337 } else {
1338 /* We're missing D+D. */
1339 return async_raid6_2data_recov(syndrome_disks+2,
1340 STRIPE_SIZE, faila, failb,
1341 blocks, &submit);
1342 }
1343 }
1344 }
1345
1346 static void ops_complete_prexor(void *stripe_head_ref)
1347 {
1348 struct stripe_head *sh = stripe_head_ref;
1349
1350 pr_debug("%s: stripe %llu\n", __func__,
1351 (unsigned long long)sh->sector);
1352 }
1353
1354 static struct dma_async_tx_descriptor *
1355 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1356 struct dma_async_tx_descriptor *tx)
1357 {
1358 int disks = sh->disks;
1359 struct page **xor_srcs = percpu->scribble;
1360 int count = 0, pd_idx = sh->pd_idx, i;
1361 struct async_submit_ctl submit;
1362
1363 /* existing parity data subtracted */
1364 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1365
1366 pr_debug("%s: stripe %llu\n", __func__,
1367 (unsigned long long)sh->sector);
1368
1369 for (i = disks; i--; ) {
1370 struct r5dev *dev = &sh->dev[i];
1371 /* Only process blocks that are known to be uptodate */
1372 if (test_bit(R5_Wantdrain, &dev->flags))
1373 xor_srcs[count++] = dev->page;
1374 }
1375
1376 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1377 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1378 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1379
1380 return tx;
1381 }
1382
1383 static struct dma_async_tx_descriptor *
1384 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1385 {
1386 int disks = sh->disks;
1387 int i;
1388
1389 pr_debug("%s: stripe %llu\n", __func__,
1390 (unsigned long long)sh->sector);
1391
1392 for (i = disks; i--; ) {
1393 struct r5dev *dev = &sh->dev[i];
1394 struct bio *chosen;
1395
1396 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1397 struct bio *wbi;
1398
1399 spin_lock_irq(&sh->stripe_lock);
1400 chosen = dev->towrite;
1401 dev->towrite = NULL;
1402 BUG_ON(dev->written);
1403 wbi = dev->written = chosen;
1404 spin_unlock_irq(&sh->stripe_lock);
1405 WARN_ON(dev->page != dev->orig_page);
1406
1407 while (wbi && wbi->bi_iter.bi_sector <
1408 dev->sector + STRIPE_SECTORS) {
1409 if (wbi->bi_rw & REQ_FUA)
1410 set_bit(R5_WantFUA, &dev->flags);
1411 if (wbi->bi_rw & REQ_SYNC)
1412 set_bit(R5_SyncIO, &dev->flags);
1413 if (wbi->bi_rw & REQ_DISCARD)
1414 set_bit(R5_Discard, &dev->flags);
1415 else {
1416 tx = async_copy_data(1, wbi, &dev->page,
1417 dev->sector, tx, sh);
1418 if (dev->page != dev->orig_page) {
1419 set_bit(R5_SkipCopy, &dev->flags);
1420 clear_bit(R5_UPTODATE, &dev->flags);
1421 clear_bit(R5_OVERWRITE, &dev->flags);
1422 }
1423 }
1424 wbi = r5_next_bio(wbi, dev->sector);
1425 }
1426 }
1427 }
1428
1429 return tx;
1430 }
1431
1432 static void ops_complete_reconstruct(void *stripe_head_ref)
1433 {
1434 struct stripe_head *sh = stripe_head_ref;
1435 int disks = sh->disks;
1436 int pd_idx = sh->pd_idx;
1437 int qd_idx = sh->qd_idx;
1438 int i;
1439 bool fua = false, sync = false, discard = false;
1440
1441 pr_debug("%s: stripe %llu\n", __func__,
1442 (unsigned long long)sh->sector);
1443
1444 for (i = disks; i--; ) {
1445 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1446 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1447 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1448 }
1449
1450 for (i = disks; i--; ) {
1451 struct r5dev *dev = &sh->dev[i];
1452
1453 if (dev->written || i == pd_idx || i == qd_idx) {
1454 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1455 set_bit(R5_UPTODATE, &dev->flags);
1456 if (fua)
1457 set_bit(R5_WantFUA, &dev->flags);
1458 if (sync)
1459 set_bit(R5_SyncIO, &dev->flags);
1460 }
1461 }
1462
1463 if (sh->reconstruct_state == reconstruct_state_drain_run)
1464 sh->reconstruct_state = reconstruct_state_drain_result;
1465 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1466 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1467 else {
1468 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1469 sh->reconstruct_state = reconstruct_state_result;
1470 }
1471
1472 set_bit(STRIPE_HANDLE, &sh->state);
1473 release_stripe(sh);
1474 }
1475
1476 static void
1477 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1478 struct dma_async_tx_descriptor *tx)
1479 {
1480 int disks = sh->disks;
1481 struct page **xor_srcs = percpu->scribble;
1482 struct async_submit_ctl submit;
1483 int count = 0, pd_idx = sh->pd_idx, i;
1484 struct page *xor_dest;
1485 int prexor = 0;
1486 unsigned long flags;
1487
1488 pr_debug("%s: stripe %llu\n", __func__,
1489 (unsigned long long)sh->sector);
1490
1491 for (i = 0; i < sh->disks; i++) {
1492 if (pd_idx == i)
1493 continue;
1494 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1495 break;
1496 }
1497 if (i >= sh->disks) {
1498 atomic_inc(&sh->count);
1499 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1500 ops_complete_reconstruct(sh);
1501 return;
1502 }
1503 /* check if prexor is active which means only process blocks
1504 * that are part of a read-modify-write (written)
1505 */
1506 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1507 prexor = 1;
1508 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1509 for (i = disks; i--; ) {
1510 struct r5dev *dev = &sh->dev[i];
1511 if (dev->written)
1512 xor_srcs[count++] = dev->page;
1513 }
1514 } else {
1515 xor_dest = sh->dev[pd_idx].page;
1516 for (i = disks; i--; ) {
1517 struct r5dev *dev = &sh->dev[i];
1518 if (i != pd_idx)
1519 xor_srcs[count++] = dev->page;
1520 }
1521 }
1522
1523 /* 1/ if we prexor'd then the dest is reused as a source
1524 * 2/ if we did not prexor then we are redoing the parity
1525 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1526 * for the synchronous xor case
1527 */
1528 flags = ASYNC_TX_ACK |
1529 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1530
1531 atomic_inc(&sh->count);
1532
1533 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1534 to_addr_conv(sh, percpu));
1535 if (unlikely(count == 1))
1536 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1537 else
1538 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1539 }
1540
1541 static void
1542 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1544 {
1545 struct async_submit_ctl submit;
1546 struct page **blocks = percpu->scribble;
1547 int count, i;
1548
1549 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1550
1551 for (i = 0; i < sh->disks; i++) {
1552 if (sh->pd_idx == i || sh->qd_idx == i)
1553 continue;
1554 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1555 break;
1556 }
1557 if (i >= sh->disks) {
1558 atomic_inc(&sh->count);
1559 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1560 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1561 ops_complete_reconstruct(sh);
1562 return;
1563 }
1564
1565 count = set_syndrome_sources(blocks, sh);
1566
1567 atomic_inc(&sh->count);
1568
1569 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1570 sh, to_addr_conv(sh, percpu));
1571 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1572 }
1573
1574 static void ops_complete_check(void *stripe_head_ref)
1575 {
1576 struct stripe_head *sh = stripe_head_ref;
1577
1578 pr_debug("%s: stripe %llu\n", __func__,
1579 (unsigned long long)sh->sector);
1580
1581 sh->check_state = check_state_check_result;
1582 set_bit(STRIPE_HANDLE, &sh->state);
1583 release_stripe(sh);
1584 }
1585
1586 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1587 {
1588 int disks = sh->disks;
1589 int pd_idx = sh->pd_idx;
1590 int qd_idx = sh->qd_idx;
1591 struct page *xor_dest;
1592 struct page **xor_srcs = percpu->scribble;
1593 struct dma_async_tx_descriptor *tx;
1594 struct async_submit_ctl submit;
1595 int count;
1596 int i;
1597
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1600
1601 count = 0;
1602 xor_dest = sh->dev[pd_idx].page;
1603 xor_srcs[count++] = xor_dest;
1604 for (i = disks; i--; ) {
1605 if (i == pd_idx || i == qd_idx)
1606 continue;
1607 xor_srcs[count++] = sh->dev[i].page;
1608 }
1609
1610 init_async_submit(&submit, 0, NULL, NULL, NULL,
1611 to_addr_conv(sh, percpu));
1612 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1613 &sh->ops.zero_sum_result, &submit);
1614
1615 atomic_inc(&sh->count);
1616 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1617 tx = async_trigger_callback(&submit);
1618 }
1619
1620 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1621 {
1622 struct page **srcs = percpu->scribble;
1623 struct async_submit_ctl submit;
1624 int count;
1625
1626 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1627 (unsigned long long)sh->sector, checkp);
1628
1629 count = set_syndrome_sources(srcs, sh);
1630 if (!checkp)
1631 srcs[count] = NULL;
1632
1633 atomic_inc(&sh->count);
1634 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1635 sh, to_addr_conv(sh, percpu));
1636 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1637 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1638 }
1639
1640 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1641 {
1642 int overlap_clear = 0, i, disks = sh->disks;
1643 struct dma_async_tx_descriptor *tx = NULL;
1644 struct r5conf *conf = sh->raid_conf;
1645 int level = conf->level;
1646 struct raid5_percpu *percpu;
1647 unsigned long cpu;
1648
1649 cpu = get_cpu();
1650 percpu = per_cpu_ptr(conf->percpu, cpu);
1651 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1652 ops_run_biofill(sh);
1653 overlap_clear++;
1654 }
1655
1656 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1657 if (level < 6)
1658 tx = ops_run_compute5(sh, percpu);
1659 else {
1660 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1661 tx = ops_run_compute6_1(sh, percpu);
1662 else
1663 tx = ops_run_compute6_2(sh, percpu);
1664 }
1665 /* terminate the chain if reconstruct is not set to be run */
1666 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1667 async_tx_ack(tx);
1668 }
1669
1670 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1671 tx = ops_run_prexor(sh, percpu, tx);
1672
1673 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1674 tx = ops_run_biodrain(sh, tx);
1675 overlap_clear++;
1676 }
1677
1678 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1679 if (level < 6)
1680 ops_run_reconstruct5(sh, percpu, tx);
1681 else
1682 ops_run_reconstruct6(sh, percpu, tx);
1683 }
1684
1685 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1686 if (sh->check_state == check_state_run)
1687 ops_run_check_p(sh, percpu);
1688 else if (sh->check_state == check_state_run_q)
1689 ops_run_check_pq(sh, percpu, 0);
1690 else if (sh->check_state == check_state_run_pq)
1691 ops_run_check_pq(sh, percpu, 1);
1692 else
1693 BUG();
1694 }
1695
1696 if (overlap_clear)
1697 for (i = disks; i--; ) {
1698 struct r5dev *dev = &sh->dev[i];
1699 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1700 wake_up(&sh->raid_conf->wait_for_overlap);
1701 }
1702 put_cpu();
1703 }
1704
1705 static int grow_one_stripe(struct r5conf *conf, int hash)
1706 {
1707 struct stripe_head *sh;
1708 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1709 if (!sh)
1710 return 0;
1711
1712 sh->raid_conf = conf;
1713
1714 spin_lock_init(&sh->stripe_lock);
1715
1716 if (grow_buffers(sh)) {
1717 shrink_buffers(sh);
1718 kmem_cache_free(conf->slab_cache, sh);
1719 return 0;
1720 }
1721 sh->hash_lock_index = hash;
1722 /* we just created an active stripe so... */
1723 atomic_set(&sh->count, 1);
1724 atomic_inc(&conf->active_stripes);
1725 INIT_LIST_HEAD(&sh->lru);
1726 release_stripe(sh);
1727 return 1;
1728 }
1729
1730 static int grow_stripes(struct r5conf *conf, int num)
1731 {
1732 struct kmem_cache *sc;
1733 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1734 int hash;
1735
1736 if (conf->mddev->gendisk)
1737 sprintf(conf->cache_name[0],
1738 "raid%d-%s", conf->level, mdname(conf->mddev));
1739 else
1740 sprintf(conf->cache_name[0],
1741 "raid%d-%p", conf->level, conf->mddev);
1742 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1743
1744 conf->active_name = 0;
1745 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1746 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1747 0, 0, NULL);
1748 if (!sc)
1749 return 1;
1750 conf->slab_cache = sc;
1751 conf->pool_size = devs;
1752 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1753 while (num--) {
1754 if (!grow_one_stripe(conf, hash))
1755 return 1;
1756 conf->max_nr_stripes++;
1757 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
1758 }
1759 return 0;
1760 }
1761
1762 /**
1763 * scribble_len - return the required size of the scribble region
1764 * @num - total number of disks in the array
1765 *
1766 * The size must be enough to contain:
1767 * 1/ a struct page pointer for each device in the array +2
1768 * 2/ room to convert each entry in (1) to its corresponding dma
1769 * (dma_map_page()) or page (page_address()) address.
1770 *
1771 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1772 * calculate over all devices (not just the data blocks), using zeros in place
1773 * of the P and Q blocks.
1774 */
1775 static size_t scribble_len(int num)
1776 {
1777 size_t len;
1778
1779 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1780
1781 return len;
1782 }
1783
1784 static int resize_stripes(struct r5conf *conf, int newsize)
1785 {
1786 /* Make all the stripes able to hold 'newsize' devices.
1787 * New slots in each stripe get 'page' set to a new page.
1788 *
1789 * This happens in stages:
1790 * 1/ create a new kmem_cache and allocate the required number of
1791 * stripe_heads.
1792 * 2/ gather all the old stripe_heads and transfer the pages across
1793 * to the new stripe_heads. This will have the side effect of
1794 * freezing the array as once all stripe_heads have been collected,
1795 * no IO will be possible. Old stripe heads are freed once their
1796 * pages have been transferred over, and the old kmem_cache is
1797 * freed when all stripes are done.
1798 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1799 * we simple return a failre status - no need to clean anything up.
1800 * 4/ allocate new pages for the new slots in the new stripe_heads.
1801 * If this fails, we don't bother trying the shrink the
1802 * stripe_heads down again, we just leave them as they are.
1803 * As each stripe_head is processed the new one is released into
1804 * active service.
1805 *
1806 * Once step2 is started, we cannot afford to wait for a write,
1807 * so we use GFP_NOIO allocations.
1808 */
1809 struct stripe_head *osh, *nsh;
1810 LIST_HEAD(newstripes);
1811 struct disk_info *ndisks;
1812 unsigned long cpu;
1813 int err;
1814 struct kmem_cache *sc;
1815 int i;
1816 int hash, cnt;
1817
1818 if (newsize <= conf->pool_size)
1819 return 0; /* never bother to shrink */
1820
1821 err = md_allow_write(conf->mddev);
1822 if (err)
1823 return err;
1824
1825 /* Step 1 */
1826 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1827 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1828 0, 0, NULL);
1829 if (!sc)
1830 return -ENOMEM;
1831
1832 for (i = conf->max_nr_stripes; i; i--) {
1833 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1834 if (!nsh)
1835 break;
1836
1837 nsh->raid_conf = conf;
1838 spin_lock_init(&nsh->stripe_lock);
1839
1840 list_add(&nsh->lru, &newstripes);
1841 }
1842 if (i) {
1843 /* didn't get enough, give up */
1844 while (!list_empty(&newstripes)) {
1845 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1846 list_del(&nsh->lru);
1847 kmem_cache_free(sc, nsh);
1848 }
1849 kmem_cache_destroy(sc);
1850 return -ENOMEM;
1851 }
1852 /* Step 2 - Must use GFP_NOIO now.
1853 * OK, we have enough stripes, start collecting inactive
1854 * stripes and copying them over
1855 */
1856 hash = 0;
1857 cnt = 0;
1858 list_for_each_entry(nsh, &newstripes, lru) {
1859 lock_device_hash_lock(conf, hash);
1860 wait_event_cmd(conf->wait_for_stripe,
1861 !list_empty(conf->inactive_list + hash),
1862 unlock_device_hash_lock(conf, hash),
1863 lock_device_hash_lock(conf, hash));
1864 osh = get_free_stripe(conf, hash);
1865 unlock_device_hash_lock(conf, hash);
1866 atomic_set(&nsh->count, 1);
1867 for(i=0; i<conf->pool_size; i++) {
1868 nsh->dev[i].page = osh->dev[i].page;
1869 nsh->dev[i].orig_page = osh->dev[i].page;
1870 }
1871 for( ; i<newsize; i++)
1872 nsh->dev[i].page = NULL;
1873 nsh->hash_lock_index = hash;
1874 kmem_cache_free(conf->slab_cache, osh);
1875 cnt++;
1876 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
1877 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
1878 hash++;
1879 cnt = 0;
1880 }
1881 }
1882 kmem_cache_destroy(conf->slab_cache);
1883
1884 /* Step 3.
1885 * At this point, we are holding all the stripes so the array
1886 * is completely stalled, so now is a good time to resize
1887 * conf->disks and the scribble region
1888 */
1889 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1890 if (ndisks) {
1891 for (i=0; i<conf->raid_disks; i++)
1892 ndisks[i] = conf->disks[i];
1893 kfree(conf->disks);
1894 conf->disks = ndisks;
1895 } else
1896 err = -ENOMEM;
1897
1898 get_online_cpus();
1899 conf->scribble_len = scribble_len(newsize);
1900 for_each_present_cpu(cpu) {
1901 struct raid5_percpu *percpu;
1902 void *scribble;
1903
1904 percpu = per_cpu_ptr(conf->percpu, cpu);
1905 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1906
1907 if (scribble) {
1908 kfree(percpu->scribble);
1909 percpu->scribble = scribble;
1910 } else {
1911 err = -ENOMEM;
1912 break;
1913 }
1914 }
1915 put_online_cpus();
1916
1917 /* Step 4, return new stripes to service */
1918 while(!list_empty(&newstripes)) {
1919 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1920 list_del_init(&nsh->lru);
1921
1922 for (i=conf->raid_disks; i < newsize; i++)
1923 if (nsh->dev[i].page == NULL) {
1924 struct page *p = alloc_page(GFP_NOIO);
1925 nsh->dev[i].page = p;
1926 nsh->dev[i].orig_page = p;
1927 if (!p)
1928 err = -ENOMEM;
1929 }
1930 release_stripe(nsh);
1931 }
1932 /* critical section pass, GFP_NOIO no longer needed */
1933
1934 conf->slab_cache = sc;
1935 conf->active_name = 1-conf->active_name;
1936 conf->pool_size = newsize;
1937 return err;
1938 }
1939
1940 static int drop_one_stripe(struct r5conf *conf, int hash)
1941 {
1942 struct stripe_head *sh;
1943
1944 spin_lock_irq(conf->hash_locks + hash);
1945 sh = get_free_stripe(conf, hash);
1946 spin_unlock_irq(conf->hash_locks + hash);
1947 if (!sh)
1948 return 0;
1949 BUG_ON(atomic_read(&sh->count));
1950 shrink_buffers(sh);
1951 kmem_cache_free(conf->slab_cache, sh);
1952 atomic_dec(&conf->active_stripes);
1953 return 1;
1954 }
1955
1956 static void shrink_stripes(struct r5conf *conf)
1957 {
1958 int hash;
1959 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
1960 while (drop_one_stripe(conf, hash))
1961 ;
1962
1963 if (conf->slab_cache)
1964 kmem_cache_destroy(conf->slab_cache);
1965 conf->slab_cache = NULL;
1966 }
1967
1968 static void raid5_end_read_request(struct bio * bi, int error)
1969 {
1970 struct stripe_head *sh = bi->bi_private;
1971 struct r5conf *conf = sh->raid_conf;
1972 int disks = sh->disks, i;
1973 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1974 char b[BDEVNAME_SIZE];
1975 struct md_rdev *rdev = NULL;
1976 sector_t s;
1977
1978 for (i=0 ; i<disks; i++)
1979 if (bi == &sh->dev[i].req)
1980 break;
1981
1982 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1983 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1984 uptodate);
1985 if (i == disks) {
1986 BUG();
1987 return;
1988 }
1989 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1990 /* If replacement finished while this request was outstanding,
1991 * 'replacement' might be NULL already.
1992 * In that case it moved down to 'rdev'.
1993 * rdev is not removed until all requests are finished.
1994 */
1995 rdev = conf->disks[i].replacement;
1996 if (!rdev)
1997 rdev = conf->disks[i].rdev;
1998
1999 if (use_new_offset(conf, sh))
2000 s = sh->sector + rdev->new_data_offset;
2001 else
2002 s = sh->sector + rdev->data_offset;
2003 if (uptodate) {
2004 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2005 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2006 /* Note that this cannot happen on a
2007 * replacement device. We just fail those on
2008 * any error
2009 */
2010 printk_ratelimited(
2011 KERN_INFO
2012 "md/raid:%s: read error corrected"
2013 " (%lu sectors at %llu on %s)\n",
2014 mdname(conf->mddev), STRIPE_SECTORS,
2015 (unsigned long long)s,
2016 bdevname(rdev->bdev, b));
2017 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2018 clear_bit(R5_ReadError, &sh->dev[i].flags);
2019 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2020 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2021 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2022
2023 if (atomic_read(&rdev->read_errors))
2024 atomic_set(&rdev->read_errors, 0);
2025 } else {
2026 const char *bdn = bdevname(rdev->bdev, b);
2027 int retry = 0;
2028 int set_bad = 0;
2029
2030 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2031 atomic_inc(&rdev->read_errors);
2032 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2033 printk_ratelimited(
2034 KERN_WARNING
2035 "md/raid:%s: read error on replacement device "
2036 "(sector %llu on %s).\n",
2037 mdname(conf->mddev),
2038 (unsigned long long)s,
2039 bdn);
2040 else if (conf->mddev->degraded >= conf->max_degraded) {
2041 set_bad = 1;
2042 printk_ratelimited(
2043 KERN_WARNING
2044 "md/raid:%s: read error not correctable "
2045 "(sector %llu on %s).\n",
2046 mdname(conf->mddev),
2047 (unsigned long long)s,
2048 bdn);
2049 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2050 /* Oh, no!!! */
2051 set_bad = 1;
2052 printk_ratelimited(
2053 KERN_WARNING
2054 "md/raid:%s: read error NOT corrected!! "
2055 "(sector %llu on %s).\n",
2056 mdname(conf->mddev),
2057 (unsigned long long)s,
2058 bdn);
2059 } else if (atomic_read(&rdev->read_errors)
2060 > conf->max_nr_stripes)
2061 printk(KERN_WARNING
2062 "md/raid:%s: Too many read errors, failing device %s.\n",
2063 mdname(conf->mddev), bdn);
2064 else
2065 retry = 1;
2066 if (set_bad && test_bit(In_sync, &rdev->flags)
2067 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2068 retry = 1;
2069 if (retry)
2070 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2071 set_bit(R5_ReadError, &sh->dev[i].flags);
2072 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2073 } else
2074 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2075 else {
2076 clear_bit(R5_ReadError, &sh->dev[i].flags);
2077 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2078 if (!(set_bad
2079 && test_bit(In_sync, &rdev->flags)
2080 && rdev_set_badblocks(
2081 rdev, sh->sector, STRIPE_SECTORS, 0)))
2082 md_error(conf->mddev, rdev);
2083 }
2084 }
2085 rdev_dec_pending(rdev, conf->mddev);
2086 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2087 set_bit(STRIPE_HANDLE, &sh->state);
2088 release_stripe(sh);
2089 }
2090
2091 static void raid5_end_write_request(struct bio *bi, int error)
2092 {
2093 struct stripe_head *sh = bi->bi_private;
2094 struct r5conf *conf = sh->raid_conf;
2095 int disks = sh->disks, i;
2096 struct md_rdev *uninitialized_var(rdev);
2097 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2098 sector_t first_bad;
2099 int bad_sectors;
2100 int replacement = 0;
2101
2102 for (i = 0 ; i < disks; i++) {
2103 if (bi == &sh->dev[i].req) {
2104 rdev = conf->disks[i].rdev;
2105 break;
2106 }
2107 if (bi == &sh->dev[i].rreq) {
2108 rdev = conf->disks[i].replacement;
2109 if (rdev)
2110 replacement = 1;
2111 else
2112 /* rdev was removed and 'replacement'
2113 * replaced it. rdev is not removed
2114 * until all requests are finished.
2115 */
2116 rdev = conf->disks[i].rdev;
2117 break;
2118 }
2119 }
2120 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2121 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2122 uptodate);
2123 if (i == disks) {
2124 BUG();
2125 return;
2126 }
2127
2128 if (replacement) {
2129 if (!uptodate)
2130 md_error(conf->mddev, rdev);
2131 else if (is_badblock(rdev, sh->sector,
2132 STRIPE_SECTORS,
2133 &first_bad, &bad_sectors))
2134 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2135 } else {
2136 if (!uptodate) {
2137 set_bit(STRIPE_DEGRADED, &sh->state);
2138 set_bit(WriteErrorSeen, &rdev->flags);
2139 set_bit(R5_WriteError, &sh->dev[i].flags);
2140 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2141 set_bit(MD_RECOVERY_NEEDED,
2142 &rdev->mddev->recovery);
2143 } else if (is_badblock(rdev, sh->sector,
2144 STRIPE_SECTORS,
2145 &first_bad, &bad_sectors)) {
2146 set_bit(R5_MadeGood, &sh->dev[i].flags);
2147 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2148 /* That was a successful write so make
2149 * sure it looks like we already did
2150 * a re-write.
2151 */
2152 set_bit(R5_ReWrite, &sh->dev[i].flags);
2153 }
2154 }
2155 rdev_dec_pending(rdev, conf->mddev);
2156
2157 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2158 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2159 set_bit(STRIPE_HANDLE, &sh->state);
2160 release_stripe(sh);
2161 }
2162
2163 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2164
2165 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2166 {
2167 struct r5dev *dev = &sh->dev[i];
2168
2169 bio_init(&dev->req);
2170 dev->req.bi_io_vec = &dev->vec;
2171 dev->req.bi_max_vecs = 1;
2172 dev->req.bi_private = sh;
2173
2174 bio_init(&dev->rreq);
2175 dev->rreq.bi_io_vec = &dev->rvec;
2176 dev->rreq.bi_max_vecs = 1;
2177 dev->rreq.bi_private = sh;
2178
2179 dev->flags = 0;
2180 dev->sector = compute_blocknr(sh, i, previous);
2181 }
2182
2183 static void error(struct mddev *mddev, struct md_rdev *rdev)
2184 {
2185 char b[BDEVNAME_SIZE];
2186 struct r5conf *conf = mddev->private;
2187 unsigned long flags;
2188 pr_debug("raid456: error called\n");
2189
2190 spin_lock_irqsave(&conf->device_lock, flags);
2191 clear_bit(In_sync, &rdev->flags);
2192 mddev->degraded = calc_degraded(conf);
2193 spin_unlock_irqrestore(&conf->device_lock, flags);
2194 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2195
2196 set_bit(Blocked, &rdev->flags);
2197 set_bit(Faulty, &rdev->flags);
2198 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2199 printk(KERN_ALERT
2200 "md/raid:%s: Disk failure on %s, disabling device.\n"
2201 "md/raid:%s: Operation continuing on %d devices.\n",
2202 mdname(mddev),
2203 bdevname(rdev->bdev, b),
2204 mdname(mddev),
2205 conf->raid_disks - mddev->degraded);
2206 }
2207
2208 /*
2209 * Input: a 'big' sector number,
2210 * Output: index of the data and parity disk, and the sector # in them.
2211 */
2212 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2213 int previous, int *dd_idx,
2214 struct stripe_head *sh)
2215 {
2216 sector_t stripe, stripe2;
2217 sector_t chunk_number;
2218 unsigned int chunk_offset;
2219 int pd_idx, qd_idx;
2220 int ddf_layout = 0;
2221 sector_t new_sector;
2222 int algorithm = previous ? conf->prev_algo
2223 : conf->algorithm;
2224 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2225 : conf->chunk_sectors;
2226 int raid_disks = previous ? conf->previous_raid_disks
2227 : conf->raid_disks;
2228 int data_disks = raid_disks - conf->max_degraded;
2229
2230 /* First compute the information on this sector */
2231
2232 /*
2233 * Compute the chunk number and the sector offset inside the chunk
2234 */
2235 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2236 chunk_number = r_sector;
2237
2238 /*
2239 * Compute the stripe number
2240 */
2241 stripe = chunk_number;
2242 *dd_idx = sector_div(stripe, data_disks);
2243 stripe2 = stripe;
2244 /*
2245 * Select the parity disk based on the user selected algorithm.
2246 */
2247 pd_idx = qd_idx = -1;
2248 switch(conf->level) {
2249 case 4:
2250 pd_idx = data_disks;
2251 break;
2252 case 5:
2253 switch (algorithm) {
2254 case ALGORITHM_LEFT_ASYMMETRIC:
2255 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2256 if (*dd_idx >= pd_idx)
2257 (*dd_idx)++;
2258 break;
2259 case ALGORITHM_RIGHT_ASYMMETRIC:
2260 pd_idx = sector_div(stripe2, raid_disks);
2261 if (*dd_idx >= pd_idx)
2262 (*dd_idx)++;
2263 break;
2264 case ALGORITHM_LEFT_SYMMETRIC:
2265 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2266 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2267 break;
2268 case ALGORITHM_RIGHT_SYMMETRIC:
2269 pd_idx = sector_div(stripe2, raid_disks);
2270 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2271 break;
2272 case ALGORITHM_PARITY_0:
2273 pd_idx = 0;
2274 (*dd_idx)++;
2275 break;
2276 case ALGORITHM_PARITY_N:
2277 pd_idx = data_disks;
2278 break;
2279 default:
2280 BUG();
2281 }
2282 break;
2283 case 6:
2284
2285 switch (algorithm) {
2286 case ALGORITHM_LEFT_ASYMMETRIC:
2287 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2288 qd_idx = pd_idx + 1;
2289 if (pd_idx == raid_disks-1) {
2290 (*dd_idx)++; /* Q D D D P */
2291 qd_idx = 0;
2292 } else if (*dd_idx >= pd_idx)
2293 (*dd_idx) += 2; /* D D P Q D */
2294 break;
2295 case ALGORITHM_RIGHT_ASYMMETRIC:
2296 pd_idx = sector_div(stripe2, raid_disks);
2297 qd_idx = pd_idx + 1;
2298 if (pd_idx == raid_disks-1) {
2299 (*dd_idx)++; /* Q D D D P */
2300 qd_idx = 0;
2301 } else if (*dd_idx >= pd_idx)
2302 (*dd_idx) += 2; /* D D P Q D */
2303 break;
2304 case ALGORITHM_LEFT_SYMMETRIC:
2305 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2306 qd_idx = (pd_idx + 1) % raid_disks;
2307 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2308 break;
2309 case ALGORITHM_RIGHT_SYMMETRIC:
2310 pd_idx = sector_div(stripe2, raid_disks);
2311 qd_idx = (pd_idx + 1) % raid_disks;
2312 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2313 break;
2314
2315 case ALGORITHM_PARITY_0:
2316 pd_idx = 0;
2317 qd_idx = 1;
2318 (*dd_idx) += 2;
2319 break;
2320 case ALGORITHM_PARITY_N:
2321 pd_idx = data_disks;
2322 qd_idx = data_disks + 1;
2323 break;
2324
2325 case ALGORITHM_ROTATING_ZERO_RESTART:
2326 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2327 * of blocks for computing Q is different.
2328 */
2329 pd_idx = sector_div(stripe2, raid_disks);
2330 qd_idx = pd_idx + 1;
2331 if (pd_idx == raid_disks-1) {
2332 (*dd_idx)++; /* Q D D D P */
2333 qd_idx = 0;
2334 } else if (*dd_idx >= pd_idx)
2335 (*dd_idx) += 2; /* D D P Q D */
2336 ddf_layout = 1;
2337 break;
2338
2339 case ALGORITHM_ROTATING_N_RESTART:
2340 /* Same a left_asymmetric, by first stripe is
2341 * D D D P Q rather than
2342 * Q D D D P
2343 */
2344 stripe2 += 1;
2345 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2346 qd_idx = pd_idx + 1;
2347 if (pd_idx == raid_disks-1) {
2348 (*dd_idx)++; /* Q D D D P */
2349 qd_idx = 0;
2350 } else if (*dd_idx >= pd_idx)
2351 (*dd_idx) += 2; /* D D P Q D */
2352 ddf_layout = 1;
2353 break;
2354
2355 case ALGORITHM_ROTATING_N_CONTINUE:
2356 /* Same as left_symmetric but Q is before P */
2357 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2358 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2359 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2360 ddf_layout = 1;
2361 break;
2362
2363 case ALGORITHM_LEFT_ASYMMETRIC_6:
2364 /* RAID5 left_asymmetric, with Q on last device */
2365 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2366 if (*dd_idx >= pd_idx)
2367 (*dd_idx)++;
2368 qd_idx = raid_disks - 1;
2369 break;
2370
2371 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2372 pd_idx = sector_div(stripe2, raid_disks-1);
2373 if (*dd_idx >= pd_idx)
2374 (*dd_idx)++;
2375 qd_idx = raid_disks - 1;
2376 break;
2377
2378 case ALGORITHM_LEFT_SYMMETRIC_6:
2379 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2380 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2381 qd_idx = raid_disks - 1;
2382 break;
2383
2384 case ALGORITHM_RIGHT_SYMMETRIC_6:
2385 pd_idx = sector_div(stripe2, raid_disks-1);
2386 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2387 qd_idx = raid_disks - 1;
2388 break;
2389
2390 case ALGORITHM_PARITY_0_6:
2391 pd_idx = 0;
2392 (*dd_idx)++;
2393 qd_idx = raid_disks - 1;
2394 break;
2395
2396 default:
2397 BUG();
2398 }
2399 break;
2400 }
2401
2402 if (sh) {
2403 sh->pd_idx = pd_idx;
2404 sh->qd_idx = qd_idx;
2405 sh->ddf_layout = ddf_layout;
2406 }
2407 /*
2408 * Finally, compute the new sector number
2409 */
2410 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2411 return new_sector;
2412 }
2413
2414 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2415 {
2416 struct r5conf *conf = sh->raid_conf;
2417 int raid_disks = sh->disks;
2418 int data_disks = raid_disks - conf->max_degraded;
2419 sector_t new_sector = sh->sector, check;
2420 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2421 : conf->chunk_sectors;
2422 int algorithm = previous ? conf->prev_algo
2423 : conf->algorithm;
2424 sector_t stripe;
2425 int chunk_offset;
2426 sector_t chunk_number;
2427 int dummy1, dd_idx = i;
2428 sector_t r_sector;
2429 struct stripe_head sh2;
2430
2431 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2432 stripe = new_sector;
2433
2434 if (i == sh->pd_idx)
2435 return 0;
2436 switch(conf->level) {
2437 case 4: break;
2438 case 5:
2439 switch (algorithm) {
2440 case ALGORITHM_LEFT_ASYMMETRIC:
2441 case ALGORITHM_RIGHT_ASYMMETRIC:
2442 if (i > sh->pd_idx)
2443 i--;
2444 break;
2445 case ALGORITHM_LEFT_SYMMETRIC:
2446 case ALGORITHM_RIGHT_SYMMETRIC:
2447 if (i < sh->pd_idx)
2448 i += raid_disks;
2449 i -= (sh->pd_idx + 1);
2450 break;
2451 case ALGORITHM_PARITY_0:
2452 i -= 1;
2453 break;
2454 case ALGORITHM_PARITY_N:
2455 break;
2456 default:
2457 BUG();
2458 }
2459 break;
2460 case 6:
2461 if (i == sh->qd_idx)
2462 return 0; /* It is the Q disk */
2463 switch (algorithm) {
2464 case ALGORITHM_LEFT_ASYMMETRIC:
2465 case ALGORITHM_RIGHT_ASYMMETRIC:
2466 case ALGORITHM_ROTATING_ZERO_RESTART:
2467 case ALGORITHM_ROTATING_N_RESTART:
2468 if (sh->pd_idx == raid_disks-1)
2469 i--; /* Q D D D P */
2470 else if (i > sh->pd_idx)
2471 i -= 2; /* D D P Q D */
2472 break;
2473 case ALGORITHM_LEFT_SYMMETRIC:
2474 case ALGORITHM_RIGHT_SYMMETRIC:
2475 if (sh->pd_idx == raid_disks-1)
2476 i--; /* Q D D D P */
2477 else {
2478 /* D D P Q D */
2479 if (i < sh->pd_idx)
2480 i += raid_disks;
2481 i -= (sh->pd_idx + 2);
2482 }
2483 break;
2484 case ALGORITHM_PARITY_0:
2485 i -= 2;
2486 break;
2487 case ALGORITHM_PARITY_N:
2488 break;
2489 case ALGORITHM_ROTATING_N_CONTINUE:
2490 /* Like left_symmetric, but P is before Q */
2491 if (sh->pd_idx == 0)
2492 i--; /* P D D D Q */
2493 else {
2494 /* D D Q P D */
2495 if (i < sh->pd_idx)
2496 i += raid_disks;
2497 i -= (sh->pd_idx + 1);
2498 }
2499 break;
2500 case ALGORITHM_LEFT_ASYMMETRIC_6:
2501 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2502 if (i > sh->pd_idx)
2503 i--;
2504 break;
2505 case ALGORITHM_LEFT_SYMMETRIC_6:
2506 case ALGORITHM_RIGHT_SYMMETRIC_6:
2507 if (i < sh->pd_idx)
2508 i += data_disks + 1;
2509 i -= (sh->pd_idx + 1);
2510 break;
2511 case ALGORITHM_PARITY_0_6:
2512 i -= 1;
2513 break;
2514 default:
2515 BUG();
2516 }
2517 break;
2518 }
2519
2520 chunk_number = stripe * data_disks + i;
2521 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2522
2523 check = raid5_compute_sector(conf, r_sector,
2524 previous, &dummy1, &sh2);
2525 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2526 || sh2.qd_idx != sh->qd_idx) {
2527 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2528 mdname(conf->mddev));
2529 return 0;
2530 }
2531 return r_sector;
2532 }
2533
2534 static void
2535 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2536 int rcw, int expand)
2537 {
2538 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2539 struct r5conf *conf = sh->raid_conf;
2540 int level = conf->level;
2541
2542 if (rcw) {
2543
2544 for (i = disks; i--; ) {
2545 struct r5dev *dev = &sh->dev[i];
2546
2547 if (dev->towrite) {
2548 set_bit(R5_LOCKED, &dev->flags);
2549 set_bit(R5_Wantdrain, &dev->flags);
2550 if (!expand)
2551 clear_bit(R5_UPTODATE, &dev->flags);
2552 s->locked++;
2553 }
2554 }
2555 /* if we are not expanding this is a proper write request, and
2556 * there will be bios with new data to be drained into the
2557 * stripe cache
2558 */
2559 if (!expand) {
2560 if (!s->locked)
2561 /* False alarm, nothing to do */
2562 return;
2563 sh->reconstruct_state = reconstruct_state_drain_run;
2564 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2565 } else
2566 sh->reconstruct_state = reconstruct_state_run;
2567
2568 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2569
2570 if (s->locked + conf->max_degraded == disks)
2571 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2572 atomic_inc(&conf->pending_full_writes);
2573 } else {
2574 BUG_ON(level == 6);
2575 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2576 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2577
2578 for (i = disks; i--; ) {
2579 struct r5dev *dev = &sh->dev[i];
2580 if (i == pd_idx)
2581 continue;
2582
2583 if (dev->towrite &&
2584 (test_bit(R5_UPTODATE, &dev->flags) ||
2585 test_bit(R5_Wantcompute, &dev->flags))) {
2586 set_bit(R5_Wantdrain, &dev->flags);
2587 set_bit(R5_LOCKED, &dev->flags);
2588 clear_bit(R5_UPTODATE, &dev->flags);
2589 s->locked++;
2590 }
2591 }
2592 if (!s->locked)
2593 /* False alarm - nothing to do */
2594 return;
2595 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2596 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2597 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2598 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2599 }
2600
2601 /* keep the parity disk(s) locked while asynchronous operations
2602 * are in flight
2603 */
2604 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2605 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2606 s->locked++;
2607
2608 if (level == 6) {
2609 int qd_idx = sh->qd_idx;
2610 struct r5dev *dev = &sh->dev[qd_idx];
2611
2612 set_bit(R5_LOCKED, &dev->flags);
2613 clear_bit(R5_UPTODATE, &dev->flags);
2614 s->locked++;
2615 }
2616
2617 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2618 __func__, (unsigned long long)sh->sector,
2619 s->locked, s->ops_request);
2620 }
2621
2622 /*
2623 * Each stripe/dev can have one or more bion attached.
2624 * toread/towrite point to the first in a chain.
2625 * The bi_next chain must be in order.
2626 */
2627 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2628 {
2629 struct bio **bip;
2630 struct r5conf *conf = sh->raid_conf;
2631 int firstwrite=0;
2632
2633 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2634 (unsigned long long)bi->bi_iter.bi_sector,
2635 (unsigned long long)sh->sector);
2636
2637 /*
2638 * If several bio share a stripe. The bio bi_phys_segments acts as a
2639 * reference count to avoid race. The reference count should already be
2640 * increased before this function is called (for example, in
2641 * make_request()), so other bio sharing this stripe will not free the
2642 * stripe. If a stripe is owned by one stripe, the stripe lock will
2643 * protect it.
2644 */
2645 spin_lock_irq(&sh->stripe_lock);
2646 if (forwrite) {
2647 bip = &sh->dev[dd_idx].towrite;
2648 if (*bip == NULL)
2649 firstwrite = 1;
2650 } else
2651 bip = &sh->dev[dd_idx].toread;
2652 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2653 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2654 goto overlap;
2655 bip = & (*bip)->bi_next;
2656 }
2657 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2658 goto overlap;
2659
2660 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2661 if (*bip)
2662 bi->bi_next = *bip;
2663 *bip = bi;
2664 raid5_inc_bi_active_stripes(bi);
2665
2666 if (forwrite) {
2667 /* check if page is covered */
2668 sector_t sector = sh->dev[dd_idx].sector;
2669 for (bi=sh->dev[dd_idx].towrite;
2670 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2671 bi && bi->bi_iter.bi_sector <= sector;
2672 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2673 if (bio_end_sector(bi) >= sector)
2674 sector = bio_end_sector(bi);
2675 }
2676 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2677 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2678 }
2679
2680 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2681 (unsigned long long)(*bip)->bi_iter.bi_sector,
2682 (unsigned long long)sh->sector, dd_idx);
2683 spin_unlock_irq(&sh->stripe_lock);
2684
2685 if (conf->mddev->bitmap && firstwrite) {
2686 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2687 STRIPE_SECTORS, 0);
2688 sh->bm_seq = conf->seq_flush+1;
2689 set_bit(STRIPE_BIT_DELAY, &sh->state);
2690 }
2691 return 1;
2692
2693 overlap:
2694 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2695 spin_unlock_irq(&sh->stripe_lock);
2696 return 0;
2697 }
2698
2699 static void end_reshape(struct r5conf *conf);
2700
2701 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2702 struct stripe_head *sh)
2703 {
2704 int sectors_per_chunk =
2705 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2706 int dd_idx;
2707 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2708 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2709
2710 raid5_compute_sector(conf,
2711 stripe * (disks - conf->max_degraded)
2712 *sectors_per_chunk + chunk_offset,
2713 previous,
2714 &dd_idx, sh);
2715 }
2716
2717 static void
2718 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2719 struct stripe_head_state *s, int disks,
2720 struct bio **return_bi)
2721 {
2722 int i;
2723 for (i = disks; i--; ) {
2724 struct bio *bi;
2725 int bitmap_end = 0;
2726
2727 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2728 struct md_rdev *rdev;
2729 rcu_read_lock();
2730 rdev = rcu_dereference(conf->disks[i].rdev);
2731 if (rdev && test_bit(In_sync, &rdev->flags))
2732 atomic_inc(&rdev->nr_pending);
2733 else
2734 rdev = NULL;
2735 rcu_read_unlock();
2736 if (rdev) {
2737 if (!rdev_set_badblocks(
2738 rdev,
2739 sh->sector,
2740 STRIPE_SECTORS, 0))
2741 md_error(conf->mddev, rdev);
2742 rdev_dec_pending(rdev, conf->mddev);
2743 }
2744 }
2745 spin_lock_irq(&sh->stripe_lock);
2746 /* fail all writes first */
2747 bi = sh->dev[i].towrite;
2748 sh->dev[i].towrite = NULL;
2749 spin_unlock_irq(&sh->stripe_lock);
2750 if (bi)
2751 bitmap_end = 1;
2752
2753 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2754 wake_up(&conf->wait_for_overlap);
2755
2756 while (bi && bi->bi_iter.bi_sector <
2757 sh->dev[i].sector + STRIPE_SECTORS) {
2758 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2759 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2760 if (!raid5_dec_bi_active_stripes(bi)) {
2761 md_write_end(conf->mddev);
2762 bi->bi_next = *return_bi;
2763 *return_bi = bi;
2764 }
2765 bi = nextbi;
2766 }
2767 if (bitmap_end)
2768 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2769 STRIPE_SECTORS, 0, 0);
2770 bitmap_end = 0;
2771 /* and fail all 'written' */
2772 bi = sh->dev[i].written;
2773 sh->dev[i].written = NULL;
2774 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
2775 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
2776 sh->dev[i].page = sh->dev[i].orig_page;
2777 }
2778
2779 if (bi) bitmap_end = 1;
2780 while (bi && bi->bi_iter.bi_sector <
2781 sh->dev[i].sector + STRIPE_SECTORS) {
2782 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2783 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2784 if (!raid5_dec_bi_active_stripes(bi)) {
2785 md_write_end(conf->mddev);
2786 bi->bi_next = *return_bi;
2787 *return_bi = bi;
2788 }
2789 bi = bi2;
2790 }
2791
2792 /* fail any reads if this device is non-operational and
2793 * the data has not reached the cache yet.
2794 */
2795 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2796 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2797 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2798 spin_lock_irq(&sh->stripe_lock);
2799 bi = sh->dev[i].toread;
2800 sh->dev[i].toread = NULL;
2801 spin_unlock_irq(&sh->stripe_lock);
2802 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2803 wake_up(&conf->wait_for_overlap);
2804 while (bi && bi->bi_iter.bi_sector <
2805 sh->dev[i].sector + STRIPE_SECTORS) {
2806 struct bio *nextbi =
2807 r5_next_bio(bi, sh->dev[i].sector);
2808 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2809 if (!raid5_dec_bi_active_stripes(bi)) {
2810 bi->bi_next = *return_bi;
2811 *return_bi = bi;
2812 }
2813 bi = nextbi;
2814 }
2815 }
2816 if (bitmap_end)
2817 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2818 STRIPE_SECTORS, 0, 0);
2819 /* If we were in the middle of a write the parity block might
2820 * still be locked - so just clear all R5_LOCKED flags
2821 */
2822 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2823 }
2824
2825 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2826 if (atomic_dec_and_test(&conf->pending_full_writes))
2827 md_wakeup_thread(conf->mddev->thread);
2828 }
2829
2830 static void
2831 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2832 struct stripe_head_state *s)
2833 {
2834 int abort = 0;
2835 int i;
2836
2837 clear_bit(STRIPE_SYNCING, &sh->state);
2838 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
2839 wake_up(&conf->wait_for_overlap);
2840 s->syncing = 0;
2841 s->replacing = 0;
2842 /* There is nothing more to do for sync/check/repair.
2843 * Don't even need to abort as that is handled elsewhere
2844 * if needed, and not always wanted e.g. if there is a known
2845 * bad block here.
2846 * For recover/replace we need to record a bad block on all
2847 * non-sync devices, or abort the recovery
2848 */
2849 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2850 /* During recovery devices cannot be removed, so
2851 * locking and refcounting of rdevs is not needed
2852 */
2853 for (i = 0; i < conf->raid_disks; i++) {
2854 struct md_rdev *rdev = conf->disks[i].rdev;
2855 if (rdev
2856 && !test_bit(Faulty, &rdev->flags)
2857 && !test_bit(In_sync, &rdev->flags)
2858 && !rdev_set_badblocks(rdev, sh->sector,
2859 STRIPE_SECTORS, 0))
2860 abort = 1;
2861 rdev = conf->disks[i].replacement;
2862 if (rdev
2863 && !test_bit(Faulty, &rdev->flags)
2864 && !test_bit(In_sync, &rdev->flags)
2865 && !rdev_set_badblocks(rdev, sh->sector,
2866 STRIPE_SECTORS, 0))
2867 abort = 1;
2868 }
2869 if (abort)
2870 conf->recovery_disabled =
2871 conf->mddev->recovery_disabled;
2872 }
2873 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2874 }
2875
2876 static int want_replace(struct stripe_head *sh, int disk_idx)
2877 {
2878 struct md_rdev *rdev;
2879 int rv = 0;
2880 /* Doing recovery so rcu locking not required */
2881 rdev = sh->raid_conf->disks[disk_idx].replacement;
2882 if (rdev
2883 && !test_bit(Faulty, &rdev->flags)
2884 && !test_bit(In_sync, &rdev->flags)
2885 && (rdev->recovery_offset <= sh->sector
2886 || rdev->mddev->recovery_cp <= sh->sector))
2887 rv = 1;
2888
2889 return rv;
2890 }
2891
2892 /* fetch_block - checks the given member device to see if its data needs
2893 * to be read or computed to satisfy a request.
2894 *
2895 * Returns 1 when no more member devices need to be checked, otherwise returns
2896 * 0 to tell the loop in handle_stripe_fill to continue
2897 */
2898
2899 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
2900 int disk_idx, int disks)
2901 {
2902 struct r5dev *dev = &sh->dev[disk_idx];
2903 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2904 &sh->dev[s->failed_num[1]] };
2905
2906
2907 if (test_bit(R5_LOCKED, &dev->flags) ||
2908 test_bit(R5_UPTODATE, &dev->flags))
2909 /* No point reading this as we already have it or have
2910 * decided to get it.
2911 */
2912 return 0;
2913
2914 if (dev->toread ||
2915 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
2916 /* We need this block to directly satisfy a request */
2917 return 1;
2918
2919 if (s->syncing || s->expanding ||
2920 (s->replacing && want_replace(sh, disk_idx)))
2921 /* When syncing, or expanding we read everything.
2922 * When replacing, we need the replaced block.
2923 */
2924 return 1;
2925
2926 if ((s->failed >= 1 && fdev[0]->toread) ||
2927 (s->failed >= 2 && fdev[1]->toread))
2928 /* If we want to read from a failed device, then
2929 * we need to actually read every other device.
2930 */
2931 return 1;
2932
2933 if (
2934 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2935 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) &&
2936 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2937 ((sh->raid_conf->level == 6 ||
2938 sh->sector >= sh->raid_conf->mddev->recovery_cp)
2939 && s->failed && s->to_write &&
2940 (s->to_write - s->non_overwrite <
2941 sh->raid_conf->raid_disks - sh->raid_conf->max_degraded) &&
2942 (!test_bit(R5_Insync, &dev->flags) || test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))))
2943 return 1;
2944 return 0;
2945 }
2946
2947 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2948 int disk_idx, int disks)
2949 {
2950 struct r5dev *dev = &sh->dev[disk_idx];
2951
2952 /* is the data in this block needed, and can we get it? */
2953 if (need_this_block(sh, s, disk_idx, disks)) {
2954 /* we would like to get this block, possibly by computing it,
2955 * otherwise read it if the backing disk is insync
2956 */
2957 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2958 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2959 if ((s->uptodate == disks - 1) &&
2960 (s->failed && (disk_idx == s->failed_num[0] ||
2961 disk_idx == s->failed_num[1]))) {
2962 /* have disk failed, and we're requested to fetch it;
2963 * do compute it
2964 */
2965 pr_debug("Computing stripe %llu block %d\n",
2966 (unsigned long long)sh->sector, disk_idx);
2967 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2968 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2969 set_bit(R5_Wantcompute, &dev->flags);
2970 sh->ops.target = disk_idx;
2971 sh->ops.target2 = -1; /* no 2nd target */
2972 s->req_compute = 1;
2973 /* Careful: from this point on 'uptodate' is in the eye
2974 * of raid_run_ops which services 'compute' operations
2975 * before writes. R5_Wantcompute flags a block that will
2976 * be R5_UPTODATE by the time it is needed for a
2977 * subsequent operation.
2978 */
2979 s->uptodate++;
2980 return 1;
2981 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2982 /* Computing 2-failure is *very* expensive; only
2983 * do it if failed >= 2
2984 */
2985 int other;
2986 for (other = disks; other--; ) {
2987 if (other == disk_idx)
2988 continue;
2989 if (!test_bit(R5_UPTODATE,
2990 &sh->dev[other].flags))
2991 break;
2992 }
2993 BUG_ON(other < 0);
2994 pr_debug("Computing stripe %llu blocks %d,%d\n",
2995 (unsigned long long)sh->sector,
2996 disk_idx, other);
2997 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2998 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2999 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3000 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3001 sh->ops.target = disk_idx;
3002 sh->ops.target2 = other;
3003 s->uptodate += 2;
3004 s->req_compute = 1;
3005 return 1;
3006 } else if (test_bit(R5_Insync, &dev->flags)) {
3007 set_bit(R5_LOCKED, &dev->flags);
3008 set_bit(R5_Wantread, &dev->flags);
3009 s->locked++;
3010 pr_debug("Reading block %d (sync=%d)\n",
3011 disk_idx, s->syncing);
3012 }
3013 }
3014
3015 return 0;
3016 }
3017
3018 /**
3019 * handle_stripe_fill - read or compute data to satisfy pending requests.
3020 */
3021 static void handle_stripe_fill(struct stripe_head *sh,
3022 struct stripe_head_state *s,
3023 int disks)
3024 {
3025 int i;
3026
3027 /* look for blocks to read/compute, skip this if a compute
3028 * is already in flight, or if the stripe contents are in the
3029 * midst of changing due to a write
3030 */
3031 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3032 !sh->reconstruct_state)
3033 for (i = disks; i--; )
3034 if (fetch_block(sh, s, i, disks))
3035 break;
3036 set_bit(STRIPE_HANDLE, &sh->state);
3037 }
3038
3039 /* handle_stripe_clean_event
3040 * any written block on an uptodate or failed drive can be returned.
3041 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3042 * never LOCKED, so we don't need to test 'failed' directly.
3043 */
3044 static void handle_stripe_clean_event(struct r5conf *conf,
3045 struct stripe_head *sh, int disks, struct bio **return_bi)
3046 {
3047 int i;
3048 struct r5dev *dev;
3049 int discard_pending = 0;
3050
3051 for (i = disks; i--; )
3052 if (sh->dev[i].written) {
3053 dev = &sh->dev[i];
3054 if (!test_bit(R5_LOCKED, &dev->flags) &&
3055 (test_bit(R5_UPTODATE, &dev->flags) ||
3056 test_bit(R5_Discard, &dev->flags) ||
3057 test_bit(R5_SkipCopy, &dev->flags))) {
3058 /* We can return any write requests */
3059 struct bio *wbi, *wbi2;
3060 pr_debug("Return write for disc %d\n", i);
3061 if (test_and_clear_bit(R5_Discard, &dev->flags))
3062 clear_bit(R5_UPTODATE, &dev->flags);
3063 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3064 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3065 dev->page = dev->orig_page;
3066 }
3067 wbi = dev->written;
3068 dev->written = NULL;
3069 while (wbi && wbi->bi_iter.bi_sector <
3070 dev->sector + STRIPE_SECTORS) {
3071 wbi2 = r5_next_bio(wbi, dev->sector);
3072 if (!raid5_dec_bi_active_stripes(wbi)) {
3073 md_write_end(conf->mddev);
3074 wbi->bi_next = *return_bi;
3075 *return_bi = wbi;
3076 }
3077 wbi = wbi2;
3078 }
3079 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3080 STRIPE_SECTORS,
3081 !test_bit(STRIPE_DEGRADED, &sh->state),
3082 0);
3083 } else if (test_bit(R5_Discard, &dev->flags))
3084 discard_pending = 1;
3085 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3086 WARN_ON(dev->page != dev->orig_page);
3087 }
3088 if (!discard_pending &&
3089 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3090 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3091 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3092 if (sh->qd_idx >= 0) {
3093 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3094 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3095 }
3096 /* now that discard is done we can proceed with any sync */
3097 clear_bit(STRIPE_DISCARD, &sh->state);
3098 /*
3099 * SCSI discard will change some bio fields and the stripe has
3100 * no updated data, so remove it from hash list and the stripe
3101 * will be reinitialized
3102 */
3103 spin_lock_irq(&conf->device_lock);
3104 remove_hash(sh);
3105 spin_unlock_irq(&conf->device_lock);
3106 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3107 set_bit(STRIPE_HANDLE, &sh->state);
3108
3109 }
3110
3111 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3112 if (atomic_dec_and_test(&conf->pending_full_writes))
3113 md_wakeup_thread(conf->mddev->thread);
3114 }
3115
3116 static void handle_stripe_dirtying(struct r5conf *conf,
3117 struct stripe_head *sh,
3118 struct stripe_head_state *s,
3119 int disks)
3120 {
3121 int rmw = 0, rcw = 0, i;
3122 sector_t recovery_cp = conf->mddev->recovery_cp;
3123
3124 /* RAID6 requires 'rcw' in current implementation.
3125 * Otherwise, check whether resync is now happening or should start.
3126 * If yes, then the array is dirty (after unclean shutdown or
3127 * initial creation), so parity in some stripes might be inconsistent.
3128 * In this case, we need to always do reconstruct-write, to ensure
3129 * that in case of drive failure or read-error correction, we
3130 * generate correct data from the parity.
3131 */
3132 if (conf->max_degraded == 2 ||
3133 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
3134 /* Calculate the real rcw later - for now make it
3135 * look like rcw is cheaper
3136 */
3137 rcw = 1; rmw = 2;
3138 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
3139 conf->max_degraded, (unsigned long long)recovery_cp,
3140 (unsigned long long)sh->sector);
3141 } else for (i = disks; i--; ) {
3142 /* would I have to read this buffer for read_modify_write */
3143 struct r5dev *dev = &sh->dev[i];
3144 if ((dev->towrite || i == sh->pd_idx) &&
3145 !test_bit(R5_LOCKED, &dev->flags) &&
3146 !(test_bit(R5_UPTODATE, &dev->flags) ||
3147 test_bit(R5_Wantcompute, &dev->flags))) {
3148 if (test_bit(R5_Insync, &dev->flags))
3149 rmw++;
3150 else
3151 rmw += 2*disks; /* cannot read it */
3152 }
3153 /* Would I have to read this buffer for reconstruct_write */
3154 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
3155 !test_bit(R5_LOCKED, &dev->flags) &&
3156 !(test_bit(R5_UPTODATE, &dev->flags) ||
3157 test_bit(R5_Wantcompute, &dev->flags))) {
3158 if (test_bit(R5_Insync, &dev->flags))
3159 rcw++;
3160 else
3161 rcw += 2*disks;
3162 }
3163 }
3164 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3165 (unsigned long long)sh->sector, rmw, rcw);
3166 set_bit(STRIPE_HANDLE, &sh->state);
3167 if (rmw < rcw && rmw > 0) {
3168 /* prefer read-modify-write, but need to get some data */
3169 if (conf->mddev->queue)
3170 blk_add_trace_msg(conf->mddev->queue,
3171 "raid5 rmw %llu %d",
3172 (unsigned long long)sh->sector, rmw);
3173 for (i = disks; i--; ) {
3174 struct r5dev *dev = &sh->dev[i];
3175 if ((dev->towrite || i == sh->pd_idx) &&
3176 !test_bit(R5_LOCKED, &dev->flags) &&
3177 !(test_bit(R5_UPTODATE, &dev->flags) ||
3178 test_bit(R5_Wantcompute, &dev->flags)) &&
3179 test_bit(R5_Insync, &dev->flags)) {
3180 if (test_bit(STRIPE_PREREAD_ACTIVE,
3181 &sh->state)) {
3182 pr_debug("Read_old block %d for r-m-w\n",
3183 i);
3184 set_bit(R5_LOCKED, &dev->flags);
3185 set_bit(R5_Wantread, &dev->flags);
3186 s->locked++;
3187 } else {
3188 set_bit(STRIPE_DELAYED, &sh->state);
3189 set_bit(STRIPE_HANDLE, &sh->state);
3190 }
3191 }
3192 }
3193 }
3194 if (rcw <= rmw && rcw > 0) {
3195 /* want reconstruct write, but need to get some data */
3196 int qread =0;
3197 rcw = 0;
3198 for (i = disks; i--; ) {
3199 struct r5dev *dev = &sh->dev[i];
3200 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3201 i != sh->pd_idx && i != sh->qd_idx &&
3202 !test_bit(R5_LOCKED, &dev->flags) &&
3203 !(test_bit(R5_UPTODATE, &dev->flags) ||
3204 test_bit(R5_Wantcompute, &dev->flags))) {
3205 rcw++;
3206 if (test_bit(R5_Insync, &dev->flags) &&
3207 test_bit(STRIPE_PREREAD_ACTIVE,
3208 &sh->state)) {
3209 pr_debug("Read_old block "
3210 "%d for Reconstruct\n", i);
3211 set_bit(R5_LOCKED, &dev->flags);
3212 set_bit(R5_Wantread, &dev->flags);
3213 s->locked++;
3214 qread++;
3215 } else {
3216 set_bit(STRIPE_DELAYED, &sh->state);
3217 set_bit(STRIPE_HANDLE, &sh->state);
3218 }
3219 }
3220 }
3221 if (rcw && conf->mddev->queue)
3222 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3223 (unsigned long long)sh->sector,
3224 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3225 }
3226
3227 if (rcw > disks && rmw > disks &&
3228 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3229 set_bit(STRIPE_DELAYED, &sh->state);
3230
3231 /* now if nothing is locked, and if we have enough data,
3232 * we can start a write request
3233 */
3234 /* since handle_stripe can be called at any time we need to handle the
3235 * case where a compute block operation has been submitted and then a
3236 * subsequent call wants to start a write request. raid_run_ops only
3237 * handles the case where compute block and reconstruct are requested
3238 * simultaneously. If this is not the case then new writes need to be
3239 * held off until the compute completes.
3240 */
3241 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3242 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3243 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3244 schedule_reconstruction(sh, s, rcw == 0, 0);
3245 }
3246
3247 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3248 struct stripe_head_state *s, int disks)
3249 {
3250 struct r5dev *dev = NULL;
3251
3252 set_bit(STRIPE_HANDLE, &sh->state);
3253
3254 switch (sh->check_state) {
3255 case check_state_idle:
3256 /* start a new check operation if there are no failures */
3257 if (s->failed == 0) {
3258 BUG_ON(s->uptodate != disks);
3259 sh->check_state = check_state_run;
3260 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3261 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3262 s->uptodate--;
3263 break;
3264 }
3265 dev = &sh->dev[s->failed_num[0]];
3266 /* fall through */
3267 case check_state_compute_result:
3268 sh->check_state = check_state_idle;
3269 if (!dev)
3270 dev = &sh->dev[sh->pd_idx];
3271
3272 /* check that a write has not made the stripe insync */
3273 if (test_bit(STRIPE_INSYNC, &sh->state))
3274 break;
3275
3276 /* either failed parity check, or recovery is happening */
3277 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3278 BUG_ON(s->uptodate != disks);
3279
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s->locked++;
3282 set_bit(R5_Wantwrite, &dev->flags);
3283
3284 clear_bit(STRIPE_DEGRADED, &sh->state);
3285 set_bit(STRIPE_INSYNC, &sh->state);
3286 break;
3287 case check_state_run:
3288 break; /* we will be called again upon completion */
3289 case check_state_check_result:
3290 sh->check_state = check_state_idle;
3291
3292 /* if a failure occurred during the check operation, leave
3293 * STRIPE_INSYNC not set and let the stripe be handled again
3294 */
3295 if (s->failed)
3296 break;
3297
3298 /* handle a successful check operation, if parity is correct
3299 * we are done. Otherwise update the mismatch count and repair
3300 * parity if !MD_RECOVERY_CHECK
3301 */
3302 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3303 /* parity is correct (on disc,
3304 * not in buffer any more)
3305 */
3306 set_bit(STRIPE_INSYNC, &sh->state);
3307 else {
3308 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3309 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3310 /* don't try to repair!! */
3311 set_bit(STRIPE_INSYNC, &sh->state);
3312 else {
3313 sh->check_state = check_state_compute_run;
3314 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3315 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3316 set_bit(R5_Wantcompute,
3317 &sh->dev[sh->pd_idx].flags);
3318 sh->ops.target = sh->pd_idx;
3319 sh->ops.target2 = -1;
3320 s->uptodate++;
3321 }
3322 }
3323 break;
3324 case check_state_compute_run:
3325 break;
3326 default:
3327 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3328 __func__, sh->check_state,
3329 (unsigned long long) sh->sector);
3330 BUG();
3331 }
3332 }
3333
3334 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3335 struct stripe_head_state *s,
3336 int disks)
3337 {
3338 int pd_idx = sh->pd_idx;
3339 int qd_idx = sh->qd_idx;
3340 struct r5dev *dev;
3341
3342 set_bit(STRIPE_HANDLE, &sh->state);
3343
3344 BUG_ON(s->failed > 2);
3345
3346 /* Want to check and possibly repair P and Q.
3347 * However there could be one 'failed' device, in which
3348 * case we can only check one of them, possibly using the
3349 * other to generate missing data
3350 */
3351
3352 switch (sh->check_state) {
3353 case check_state_idle:
3354 /* start a new check operation if there are < 2 failures */
3355 if (s->failed == s->q_failed) {
3356 /* The only possible failed device holds Q, so it
3357 * makes sense to check P (If anything else were failed,
3358 * we would have used P to recreate it).
3359 */
3360 sh->check_state = check_state_run;
3361 }
3362 if (!s->q_failed && s->failed < 2) {
3363 /* Q is not failed, and we didn't use it to generate
3364 * anything, so it makes sense to check it
3365 */
3366 if (sh->check_state == check_state_run)
3367 sh->check_state = check_state_run_pq;
3368 else
3369 sh->check_state = check_state_run_q;
3370 }
3371
3372 /* discard potentially stale zero_sum_result */
3373 sh->ops.zero_sum_result = 0;
3374
3375 if (sh->check_state == check_state_run) {
3376 /* async_xor_zero_sum destroys the contents of P */
3377 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3378 s->uptodate--;
3379 }
3380 if (sh->check_state >= check_state_run &&
3381 sh->check_state <= check_state_run_pq) {
3382 /* async_syndrome_zero_sum preserves P and Q, so
3383 * no need to mark them !uptodate here
3384 */
3385 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3386 break;
3387 }
3388
3389 /* we have 2-disk failure */
3390 BUG_ON(s->failed != 2);
3391 /* fall through */
3392 case check_state_compute_result:
3393 sh->check_state = check_state_idle;
3394
3395 /* check that a write has not made the stripe insync */
3396 if (test_bit(STRIPE_INSYNC, &sh->state))
3397 break;
3398
3399 /* now write out any block on a failed drive,
3400 * or P or Q if they were recomputed
3401 */
3402 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3403 if (s->failed == 2) {
3404 dev = &sh->dev[s->failed_num[1]];
3405 s->locked++;
3406 set_bit(R5_LOCKED, &dev->flags);
3407 set_bit(R5_Wantwrite, &dev->flags);
3408 }
3409 if (s->failed >= 1) {
3410 dev = &sh->dev[s->failed_num[0]];
3411 s->locked++;
3412 set_bit(R5_LOCKED, &dev->flags);
3413 set_bit(R5_Wantwrite, &dev->flags);
3414 }
3415 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3416 dev = &sh->dev[pd_idx];
3417 s->locked++;
3418 set_bit(R5_LOCKED, &dev->flags);
3419 set_bit(R5_Wantwrite, &dev->flags);
3420 }
3421 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3422 dev = &sh->dev[qd_idx];
3423 s->locked++;
3424 set_bit(R5_LOCKED, &dev->flags);
3425 set_bit(R5_Wantwrite, &dev->flags);
3426 }
3427 clear_bit(STRIPE_DEGRADED, &sh->state);
3428
3429 set_bit(STRIPE_INSYNC, &sh->state);
3430 break;
3431 case check_state_run:
3432 case check_state_run_q:
3433 case check_state_run_pq:
3434 break; /* we will be called again upon completion */
3435 case check_state_check_result:
3436 sh->check_state = check_state_idle;
3437
3438 /* handle a successful check operation, if parity is correct
3439 * we are done. Otherwise update the mismatch count and repair
3440 * parity if !MD_RECOVERY_CHECK
3441 */
3442 if (sh->ops.zero_sum_result == 0) {
3443 /* both parities are correct */
3444 if (!s->failed)
3445 set_bit(STRIPE_INSYNC, &sh->state);
3446 else {
3447 /* in contrast to the raid5 case we can validate
3448 * parity, but still have a failure to write
3449 * back
3450 */
3451 sh->check_state = check_state_compute_result;
3452 /* Returning at this point means that we may go
3453 * off and bring p and/or q uptodate again so
3454 * we make sure to check zero_sum_result again
3455 * to verify if p or q need writeback
3456 */
3457 }
3458 } else {
3459 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3460 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3461 /* don't try to repair!! */
3462 set_bit(STRIPE_INSYNC, &sh->state);
3463 else {
3464 int *target = &sh->ops.target;
3465
3466 sh->ops.target = -1;
3467 sh->ops.target2 = -1;
3468 sh->check_state = check_state_compute_run;
3469 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3470 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3471 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3472 set_bit(R5_Wantcompute,
3473 &sh->dev[pd_idx].flags);
3474 *target = pd_idx;
3475 target = &sh->ops.target2;
3476 s->uptodate++;
3477 }
3478 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3479 set_bit(R5_Wantcompute,
3480 &sh->dev[qd_idx].flags);
3481 *target = qd_idx;
3482 s->uptodate++;
3483 }
3484 }
3485 }
3486 break;
3487 case check_state_compute_run:
3488 break;
3489 default:
3490 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3491 __func__, sh->check_state,
3492 (unsigned long long) sh->sector);
3493 BUG();
3494 }
3495 }
3496
3497 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3498 {
3499 int i;
3500
3501 /* We have read all the blocks in this stripe and now we need to
3502 * copy some of them into a target stripe for expand.
3503 */
3504 struct dma_async_tx_descriptor *tx = NULL;
3505 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3506 for (i = 0; i < sh->disks; i++)
3507 if (i != sh->pd_idx && i != sh->qd_idx) {
3508 int dd_idx, j;
3509 struct stripe_head *sh2;
3510 struct async_submit_ctl submit;
3511
3512 sector_t bn = compute_blocknr(sh, i, 1);
3513 sector_t s = raid5_compute_sector(conf, bn, 0,
3514 &dd_idx, NULL);
3515 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3516 if (sh2 == NULL)
3517 /* so far only the early blocks of this stripe
3518 * have been requested. When later blocks
3519 * get requested, we will try again
3520 */
3521 continue;
3522 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3523 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3524 /* must have already done this block */
3525 release_stripe(sh2);
3526 continue;
3527 }
3528
3529 /* place all the copies on one channel */
3530 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3531 tx = async_memcpy(sh2->dev[dd_idx].page,
3532 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3533 &submit);
3534
3535 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3536 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3537 for (j = 0; j < conf->raid_disks; j++)
3538 if (j != sh2->pd_idx &&
3539 j != sh2->qd_idx &&
3540 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3541 break;
3542 if (j == conf->raid_disks) {
3543 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3544 set_bit(STRIPE_HANDLE, &sh2->state);
3545 }
3546 release_stripe(sh2);
3547
3548 }
3549 /* done submitting copies, wait for them to complete */
3550 async_tx_quiesce(&tx);
3551 }
3552
3553 /*
3554 * handle_stripe - do things to a stripe.
3555 *
3556 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3557 * state of various bits to see what needs to be done.
3558 * Possible results:
3559 * return some read requests which now have data
3560 * return some write requests which are safely on storage
3561 * schedule a read on some buffers
3562 * schedule a write of some buffers
3563 * return confirmation of parity correctness
3564 *
3565 */
3566
3567 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3568 {
3569 struct r5conf *conf = sh->raid_conf;
3570 int disks = sh->disks;
3571 struct r5dev *dev;
3572 int i;
3573 int do_recovery = 0;
3574
3575 memset(s, 0, sizeof(*s));
3576
3577 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3578 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3579 s->failed_num[0] = -1;
3580 s->failed_num[1] = -1;
3581
3582 /* Now to look around and see what can be done */
3583 rcu_read_lock();
3584 for (i=disks; i--; ) {
3585 struct md_rdev *rdev;
3586 sector_t first_bad;
3587 int bad_sectors;
3588 int is_bad = 0;
3589
3590 dev = &sh->dev[i];
3591
3592 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3593 i, dev->flags,
3594 dev->toread, dev->towrite, dev->written);
3595 /* maybe we can reply to a read
3596 *
3597 * new wantfill requests are only permitted while
3598 * ops_complete_biofill is guaranteed to be inactive
3599 */
3600 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3601 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3602 set_bit(R5_Wantfill, &dev->flags);
3603
3604 /* now count some things */
3605 if (test_bit(R5_LOCKED, &dev->flags))
3606 s->locked++;
3607 if (test_bit(R5_UPTODATE, &dev->flags))
3608 s->uptodate++;
3609 if (test_bit(R5_Wantcompute, &dev->flags)) {
3610 s->compute++;
3611 BUG_ON(s->compute > 2);
3612 }
3613
3614 if (test_bit(R5_Wantfill, &dev->flags))
3615 s->to_fill++;
3616 else if (dev->toread)
3617 s->to_read++;
3618 if (dev->towrite) {
3619 s->to_write++;
3620 if (!test_bit(R5_OVERWRITE, &dev->flags))
3621 s->non_overwrite++;
3622 }
3623 if (dev->written)
3624 s->written++;
3625 /* Prefer to use the replacement for reads, but only
3626 * if it is recovered enough and has no bad blocks.
3627 */
3628 rdev = rcu_dereference(conf->disks[i].replacement);
3629 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3630 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3631 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3632 &first_bad, &bad_sectors))
3633 set_bit(R5_ReadRepl, &dev->flags);
3634 else {
3635 if (rdev)
3636 set_bit(R5_NeedReplace, &dev->flags);
3637 rdev = rcu_dereference(conf->disks[i].rdev);
3638 clear_bit(R5_ReadRepl, &dev->flags);
3639 }
3640 if (rdev && test_bit(Faulty, &rdev->flags))
3641 rdev = NULL;
3642 if (rdev) {
3643 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3644 &first_bad, &bad_sectors);
3645 if (s->blocked_rdev == NULL
3646 && (test_bit(Blocked, &rdev->flags)
3647 || is_bad < 0)) {
3648 if (is_bad < 0)
3649 set_bit(BlockedBadBlocks,
3650 &rdev->flags);
3651 s->blocked_rdev = rdev;
3652 atomic_inc(&rdev->nr_pending);
3653 }
3654 }
3655 clear_bit(R5_Insync, &dev->flags);
3656 if (!rdev)
3657 /* Not in-sync */;
3658 else if (is_bad) {
3659 /* also not in-sync */
3660 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3661 test_bit(R5_UPTODATE, &dev->flags)) {
3662 /* treat as in-sync, but with a read error
3663 * which we can now try to correct
3664 */
3665 set_bit(R5_Insync, &dev->flags);
3666 set_bit(R5_ReadError, &dev->flags);
3667 }
3668 } else if (test_bit(In_sync, &rdev->flags))
3669 set_bit(R5_Insync, &dev->flags);
3670 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3671 /* in sync if before recovery_offset */
3672 set_bit(R5_Insync, &dev->flags);
3673 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3674 test_bit(R5_Expanded, &dev->flags))
3675 /* If we've reshaped into here, we assume it is Insync.
3676 * We will shortly update recovery_offset to make
3677 * it official.
3678 */
3679 set_bit(R5_Insync, &dev->flags);
3680
3681 if (test_bit(R5_WriteError, &dev->flags)) {
3682 /* This flag does not apply to '.replacement'
3683 * only to .rdev, so make sure to check that*/
3684 struct md_rdev *rdev2 = rcu_dereference(
3685 conf->disks[i].rdev);
3686 if (rdev2 == rdev)
3687 clear_bit(R5_Insync, &dev->flags);
3688 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3689 s->handle_bad_blocks = 1;
3690 atomic_inc(&rdev2->nr_pending);
3691 } else
3692 clear_bit(R5_WriteError, &dev->flags);
3693 }
3694 if (test_bit(R5_MadeGood, &dev->flags)) {
3695 /* This flag does not apply to '.replacement'
3696 * only to .rdev, so make sure to check that*/
3697 struct md_rdev *rdev2 = rcu_dereference(
3698 conf->disks[i].rdev);
3699 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3700 s->handle_bad_blocks = 1;
3701 atomic_inc(&rdev2->nr_pending);
3702 } else
3703 clear_bit(R5_MadeGood, &dev->flags);
3704 }
3705 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3706 struct md_rdev *rdev2 = rcu_dereference(
3707 conf->disks[i].replacement);
3708 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3709 s->handle_bad_blocks = 1;
3710 atomic_inc(&rdev2->nr_pending);
3711 } else
3712 clear_bit(R5_MadeGoodRepl, &dev->flags);
3713 }
3714 if (!test_bit(R5_Insync, &dev->flags)) {
3715 /* The ReadError flag will just be confusing now */
3716 clear_bit(R5_ReadError, &dev->flags);
3717 clear_bit(R5_ReWrite, &dev->flags);
3718 }
3719 if (test_bit(R5_ReadError, &dev->flags))
3720 clear_bit(R5_Insync, &dev->flags);
3721 if (!test_bit(R5_Insync, &dev->flags)) {
3722 if (s->failed < 2)
3723 s->failed_num[s->failed] = i;
3724 s->failed++;
3725 if (rdev && !test_bit(Faulty, &rdev->flags))
3726 do_recovery = 1;
3727 }
3728 }
3729 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3730 /* If there is a failed device being replaced,
3731 * we must be recovering.
3732 * else if we are after recovery_cp, we must be syncing
3733 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3734 * else we can only be replacing
3735 * sync and recovery both need to read all devices, and so
3736 * use the same flag.
3737 */
3738 if (do_recovery ||
3739 sh->sector >= conf->mddev->recovery_cp ||
3740 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3741 s->syncing = 1;
3742 else
3743 s->replacing = 1;
3744 }
3745 rcu_read_unlock();
3746 }
3747
3748 static void handle_stripe(struct stripe_head *sh)
3749 {
3750 struct stripe_head_state s;
3751 struct r5conf *conf = sh->raid_conf;
3752 int i;
3753 int prexor;
3754 int disks = sh->disks;
3755 struct r5dev *pdev, *qdev;
3756
3757 clear_bit(STRIPE_HANDLE, &sh->state);
3758 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3759 /* already being handled, ensure it gets handled
3760 * again when current action finishes */
3761 set_bit(STRIPE_HANDLE, &sh->state);
3762 return;
3763 }
3764
3765 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3766 spin_lock(&sh->stripe_lock);
3767 /* Cannot process 'sync' concurrently with 'discard' */
3768 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
3769 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3770 set_bit(STRIPE_SYNCING, &sh->state);
3771 clear_bit(STRIPE_INSYNC, &sh->state);
3772 clear_bit(STRIPE_REPLACED, &sh->state);
3773 }
3774 spin_unlock(&sh->stripe_lock);
3775 }
3776 clear_bit(STRIPE_DELAYED, &sh->state);
3777
3778 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3779 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3780 (unsigned long long)sh->sector, sh->state,
3781 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3782 sh->check_state, sh->reconstruct_state);
3783
3784 analyse_stripe(sh, &s);
3785
3786 if (s.handle_bad_blocks) {
3787 set_bit(STRIPE_HANDLE, &sh->state);
3788 goto finish;
3789 }
3790
3791 if (unlikely(s.blocked_rdev)) {
3792 if (s.syncing || s.expanding || s.expanded ||
3793 s.replacing || s.to_write || s.written) {
3794 set_bit(STRIPE_HANDLE, &sh->state);
3795 goto finish;
3796 }
3797 /* There is nothing for the blocked_rdev to block */
3798 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3799 s.blocked_rdev = NULL;
3800 }
3801
3802 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3803 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3804 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3805 }
3806
3807 pr_debug("locked=%d uptodate=%d to_read=%d"
3808 " to_write=%d failed=%d failed_num=%d,%d\n",
3809 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3810 s.failed_num[0], s.failed_num[1]);
3811 /* check if the array has lost more than max_degraded devices and,
3812 * if so, some requests might need to be failed.
3813 */
3814 if (s.failed > conf->max_degraded) {
3815 sh->check_state = 0;
3816 sh->reconstruct_state = 0;
3817 if (s.to_read+s.to_write+s.written)
3818 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3819 if (s.syncing + s.replacing)
3820 handle_failed_sync(conf, sh, &s);
3821 }
3822
3823 /* Now we check to see if any write operations have recently
3824 * completed
3825 */
3826 prexor = 0;
3827 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3828 prexor = 1;
3829 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3830 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3831 sh->reconstruct_state = reconstruct_state_idle;
3832
3833 /* All the 'written' buffers and the parity block are ready to
3834 * be written back to disk
3835 */
3836 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3837 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
3838 BUG_ON(sh->qd_idx >= 0 &&
3839 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3840 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
3841 for (i = disks; i--; ) {
3842 struct r5dev *dev = &sh->dev[i];
3843 if (test_bit(R5_LOCKED, &dev->flags) &&
3844 (i == sh->pd_idx || i == sh->qd_idx ||
3845 dev->written)) {
3846 pr_debug("Writing block %d\n", i);
3847 set_bit(R5_Wantwrite, &dev->flags);
3848 if (prexor)
3849 continue;
3850 if (s.failed > 1)
3851 continue;
3852 if (!test_bit(R5_Insync, &dev->flags) ||
3853 ((i == sh->pd_idx || i == sh->qd_idx) &&
3854 s.failed == 0))
3855 set_bit(STRIPE_INSYNC, &sh->state);
3856 }
3857 }
3858 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3859 s.dec_preread_active = 1;
3860 }
3861
3862 /*
3863 * might be able to return some write requests if the parity blocks
3864 * are safe, or on a failed drive
3865 */
3866 pdev = &sh->dev[sh->pd_idx];
3867 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3868 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3869 qdev = &sh->dev[sh->qd_idx];
3870 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3871 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3872 || conf->level < 6;
3873
3874 if (s.written &&
3875 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3876 && !test_bit(R5_LOCKED, &pdev->flags)
3877 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3878 test_bit(R5_Discard, &pdev->flags))))) &&
3879 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3880 && !test_bit(R5_LOCKED, &qdev->flags)
3881 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3882 test_bit(R5_Discard, &qdev->flags))))))
3883 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3884
3885 /* Now we might consider reading some blocks, either to check/generate
3886 * parity, or to satisfy requests
3887 * or to load a block that is being partially written.
3888 */
3889 if (s.to_read || s.non_overwrite
3890 || (conf->level == 6 && s.to_write && s.failed)
3891 || (s.syncing && (s.uptodate + s.compute < disks))
3892 || s.replacing
3893 || s.expanding)
3894 handle_stripe_fill(sh, &s, disks);
3895
3896 /* Now to consider new write requests and what else, if anything
3897 * should be read. We do not handle new writes when:
3898 * 1/ A 'write' operation (copy+xor) is already in flight.
3899 * 2/ A 'check' operation is in flight, as it may clobber the parity
3900 * block.
3901 */
3902 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3903 handle_stripe_dirtying(conf, sh, &s, disks);
3904
3905 /* maybe we need to check and possibly fix the parity for this stripe
3906 * Any reads will already have been scheduled, so we just see if enough
3907 * data is available. The parity check is held off while parity
3908 * dependent operations are in flight.
3909 */
3910 if (sh->check_state ||
3911 (s.syncing && s.locked == 0 &&
3912 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3913 !test_bit(STRIPE_INSYNC, &sh->state))) {
3914 if (conf->level == 6)
3915 handle_parity_checks6(conf, sh, &s, disks);
3916 else
3917 handle_parity_checks5(conf, sh, &s, disks);
3918 }
3919
3920 if ((s.replacing || s.syncing) && s.locked == 0
3921 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
3922 && !test_bit(STRIPE_REPLACED, &sh->state)) {
3923 /* Write out to replacement devices where possible */
3924 for (i = 0; i < conf->raid_disks; i++)
3925 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3926 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
3927 set_bit(R5_WantReplace, &sh->dev[i].flags);
3928 set_bit(R5_LOCKED, &sh->dev[i].flags);
3929 s.locked++;
3930 }
3931 if (s.replacing)
3932 set_bit(STRIPE_INSYNC, &sh->state);
3933 set_bit(STRIPE_REPLACED, &sh->state);
3934 }
3935 if ((s.syncing || s.replacing) && s.locked == 0 &&
3936 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3937 test_bit(STRIPE_INSYNC, &sh->state)) {
3938 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3939 clear_bit(STRIPE_SYNCING, &sh->state);
3940 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3941 wake_up(&conf->wait_for_overlap);
3942 }
3943
3944 /* If the failed drives are just a ReadError, then we might need
3945 * to progress the repair/check process
3946 */
3947 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3948 for (i = 0; i < s.failed; i++) {
3949 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3950 if (test_bit(R5_ReadError, &dev->flags)
3951 && !test_bit(R5_LOCKED, &dev->flags)
3952 && test_bit(R5_UPTODATE, &dev->flags)
3953 ) {
3954 if (!test_bit(R5_ReWrite, &dev->flags)) {
3955 set_bit(R5_Wantwrite, &dev->flags);
3956 set_bit(R5_ReWrite, &dev->flags);
3957 set_bit(R5_LOCKED, &dev->flags);
3958 s.locked++;
3959 } else {
3960 /* let's read it back */
3961 set_bit(R5_Wantread, &dev->flags);
3962 set_bit(R5_LOCKED, &dev->flags);
3963 s.locked++;
3964 }
3965 }
3966 }
3967
3968 /* Finish reconstruct operations initiated by the expansion process */
3969 if (sh->reconstruct_state == reconstruct_state_result) {
3970 struct stripe_head *sh_src
3971 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3972 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3973 /* sh cannot be written until sh_src has been read.
3974 * so arrange for sh to be delayed a little
3975 */
3976 set_bit(STRIPE_DELAYED, &sh->state);
3977 set_bit(STRIPE_HANDLE, &sh->state);
3978 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3979 &sh_src->state))
3980 atomic_inc(&conf->preread_active_stripes);
3981 release_stripe(sh_src);
3982 goto finish;
3983 }
3984 if (sh_src)
3985 release_stripe(sh_src);
3986
3987 sh->reconstruct_state = reconstruct_state_idle;
3988 clear_bit(STRIPE_EXPANDING, &sh->state);
3989 for (i = conf->raid_disks; i--; ) {
3990 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3991 set_bit(R5_LOCKED, &sh->dev[i].flags);
3992 s.locked++;
3993 }
3994 }
3995
3996 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3997 !sh->reconstruct_state) {
3998 /* Need to write out all blocks after computing parity */
3999 sh->disks = conf->raid_disks;
4000 stripe_set_idx(sh->sector, conf, 0, sh);
4001 schedule_reconstruction(sh, &s, 1, 1);
4002 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4003 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4004 atomic_dec(&conf->reshape_stripes);
4005 wake_up(&conf->wait_for_overlap);
4006 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4007 }
4008
4009 if (s.expanding && s.locked == 0 &&
4010 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4011 handle_stripe_expansion(conf, sh);
4012
4013 finish:
4014 /* wait for this device to become unblocked */
4015 if (unlikely(s.blocked_rdev)) {
4016 if (conf->mddev->external)
4017 md_wait_for_blocked_rdev(s.blocked_rdev,
4018 conf->mddev);
4019 else
4020 /* Internal metadata will immediately
4021 * be written by raid5d, so we don't
4022 * need to wait here.
4023 */
4024 rdev_dec_pending(s.blocked_rdev,
4025 conf->mddev);
4026 }
4027
4028 if (s.handle_bad_blocks)
4029 for (i = disks; i--; ) {
4030 struct md_rdev *rdev;
4031 struct r5dev *dev = &sh->dev[i];
4032 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4033 /* We own a safe reference to the rdev */
4034 rdev = conf->disks[i].rdev;
4035 if (!rdev_set_badblocks(rdev, sh->sector,
4036 STRIPE_SECTORS, 0))
4037 md_error(conf->mddev, rdev);
4038 rdev_dec_pending(rdev, conf->mddev);
4039 }
4040 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4041 rdev = conf->disks[i].rdev;
4042 rdev_clear_badblocks(rdev, sh->sector,
4043 STRIPE_SECTORS, 0);
4044 rdev_dec_pending(rdev, conf->mddev);
4045 }
4046 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4047 rdev = conf->disks[i].replacement;
4048 if (!rdev)
4049 /* rdev have been moved down */
4050 rdev = conf->disks[i].rdev;
4051 rdev_clear_badblocks(rdev, sh->sector,
4052 STRIPE_SECTORS, 0);
4053 rdev_dec_pending(rdev, conf->mddev);
4054 }
4055 }
4056
4057 if (s.ops_request)
4058 raid_run_ops(sh, s.ops_request);
4059
4060 ops_run_io(sh, &s);
4061
4062 if (s.dec_preread_active) {
4063 /* We delay this until after ops_run_io so that if make_request
4064 * is waiting on a flush, it won't continue until the writes
4065 * have actually been submitted.
4066 */
4067 atomic_dec(&conf->preread_active_stripes);
4068 if (atomic_read(&conf->preread_active_stripes) <
4069 IO_THRESHOLD)
4070 md_wakeup_thread(conf->mddev->thread);
4071 }
4072
4073 return_io(s.return_bi);
4074
4075 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4076 }
4077
4078 static void raid5_activate_delayed(struct r5conf *conf)
4079 {
4080 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4081 while (!list_empty(&conf->delayed_list)) {
4082 struct list_head *l = conf->delayed_list.next;
4083 struct stripe_head *sh;
4084 sh = list_entry(l, struct stripe_head, lru);
4085 list_del_init(l);
4086 clear_bit(STRIPE_DELAYED, &sh->state);
4087 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4088 atomic_inc(&conf->preread_active_stripes);
4089 list_add_tail(&sh->lru, &conf->hold_list);
4090 raid5_wakeup_stripe_thread(sh);
4091 }
4092 }
4093 }
4094
4095 static void activate_bit_delay(struct r5conf *conf,
4096 struct list_head *temp_inactive_list)
4097 {
4098 /* device_lock is held */
4099 struct list_head head;
4100 list_add(&head, &conf->bitmap_list);
4101 list_del_init(&conf->bitmap_list);
4102 while (!list_empty(&head)) {
4103 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4104 int hash;
4105 list_del_init(&sh->lru);
4106 atomic_inc(&sh->count);
4107 hash = sh->hash_lock_index;
4108 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4109 }
4110 }
4111
4112 int md_raid5_congested(struct mddev *mddev, int bits)
4113 {
4114 struct r5conf *conf = mddev->private;
4115
4116 /* No difference between reads and writes. Just check
4117 * how busy the stripe_cache is
4118 */
4119
4120 if (conf->inactive_blocked)
4121 return 1;
4122 if (conf->quiesce)
4123 return 1;
4124 if (atomic_read(&conf->empty_inactive_list_nr))
4125 return 1;
4126
4127 return 0;
4128 }
4129 EXPORT_SYMBOL_GPL(md_raid5_congested);
4130
4131 static int raid5_congested(void *data, int bits)
4132 {
4133 struct mddev *mddev = data;
4134
4135 return mddev_congested(mddev, bits) ||
4136 md_raid5_congested(mddev, bits);
4137 }
4138
4139 /* We want read requests to align with chunks where possible,
4140 * but write requests don't need to.
4141 */
4142 static int raid5_mergeable_bvec(struct request_queue *q,
4143 struct bvec_merge_data *bvm,
4144 struct bio_vec *biovec)
4145 {
4146 struct mddev *mddev = q->queuedata;
4147 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4148 int max;
4149 unsigned int chunk_sectors = mddev->chunk_sectors;
4150 unsigned int bio_sectors = bvm->bi_size >> 9;
4151
4152 if ((bvm->bi_rw & 1) == WRITE)
4153 return biovec->bv_len; /* always allow writes to be mergeable */
4154
4155 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4156 chunk_sectors = mddev->new_chunk_sectors;
4157 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4158 if (max < 0) max = 0;
4159 if (max <= biovec->bv_len && bio_sectors == 0)
4160 return biovec->bv_len;
4161 else
4162 return max;
4163 }
4164
4165 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4166 {
4167 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4168 unsigned int chunk_sectors = mddev->chunk_sectors;
4169 unsigned int bio_sectors = bio_sectors(bio);
4170
4171 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4172 chunk_sectors = mddev->new_chunk_sectors;
4173 return chunk_sectors >=
4174 ((sector & (chunk_sectors - 1)) + bio_sectors);
4175 }
4176
4177 /*
4178 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4179 * later sampled by raid5d.
4180 */
4181 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4182 {
4183 unsigned long flags;
4184
4185 spin_lock_irqsave(&conf->device_lock, flags);
4186
4187 bi->bi_next = conf->retry_read_aligned_list;
4188 conf->retry_read_aligned_list = bi;
4189
4190 spin_unlock_irqrestore(&conf->device_lock, flags);
4191 md_wakeup_thread(conf->mddev->thread);
4192 }
4193
4194 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4195 {
4196 struct bio *bi;
4197
4198 bi = conf->retry_read_aligned;
4199 if (bi) {
4200 conf->retry_read_aligned = NULL;
4201 return bi;
4202 }
4203 bi = conf->retry_read_aligned_list;
4204 if(bi) {
4205 conf->retry_read_aligned_list = bi->bi_next;
4206 bi->bi_next = NULL;
4207 /*
4208 * this sets the active strip count to 1 and the processed
4209 * strip count to zero (upper 8 bits)
4210 */
4211 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4212 }
4213
4214 return bi;
4215 }
4216
4217 /*
4218 * The "raid5_align_endio" should check if the read succeeded and if it
4219 * did, call bio_endio on the original bio (having bio_put the new bio
4220 * first).
4221 * If the read failed..
4222 */
4223 static void raid5_align_endio(struct bio *bi, int error)
4224 {
4225 struct bio* raid_bi = bi->bi_private;
4226 struct mddev *mddev;
4227 struct r5conf *conf;
4228 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4229 struct md_rdev *rdev;
4230
4231 bio_put(bi);
4232
4233 rdev = (void*)raid_bi->bi_next;
4234 raid_bi->bi_next = NULL;
4235 mddev = rdev->mddev;
4236 conf = mddev->private;
4237
4238 rdev_dec_pending(rdev, conf->mddev);
4239
4240 if (!error && uptodate) {
4241 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4242 raid_bi, 0);
4243 bio_endio(raid_bi, 0);
4244 if (atomic_dec_and_test(&conf->active_aligned_reads))
4245 wake_up(&conf->wait_for_stripe);
4246 return;
4247 }
4248
4249 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4250
4251 add_bio_to_retry(raid_bi, conf);
4252 }
4253
4254 static int bio_fits_rdev(struct bio *bi)
4255 {
4256 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4257
4258 if (bio_sectors(bi) > queue_max_sectors(q))
4259 return 0;
4260 blk_recount_segments(q, bi);
4261 if (bi->bi_phys_segments > queue_max_segments(q))
4262 return 0;
4263
4264 if (q->merge_bvec_fn)
4265 /* it's too hard to apply the merge_bvec_fn at this stage,
4266 * just just give up
4267 */
4268 return 0;
4269
4270 return 1;
4271 }
4272
4273 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4274 {
4275 struct r5conf *conf = mddev->private;
4276 int dd_idx;
4277 struct bio* align_bi;
4278 struct md_rdev *rdev;
4279 sector_t end_sector;
4280
4281 if (!in_chunk_boundary(mddev, raid_bio)) {
4282 pr_debug("chunk_aligned_read : non aligned\n");
4283 return 0;
4284 }
4285 /*
4286 * use bio_clone_mddev to make a copy of the bio
4287 */
4288 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4289 if (!align_bi)
4290 return 0;
4291 /*
4292 * set bi_end_io to a new function, and set bi_private to the
4293 * original bio.
4294 */
4295 align_bi->bi_end_io = raid5_align_endio;
4296 align_bi->bi_private = raid_bio;
4297 /*
4298 * compute position
4299 */
4300 align_bi->bi_iter.bi_sector =
4301 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4302 0, &dd_idx, NULL);
4303
4304 end_sector = bio_end_sector(align_bi);
4305 rcu_read_lock();
4306 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4307 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4308 rdev->recovery_offset < end_sector) {
4309 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4310 if (rdev &&
4311 (test_bit(Faulty, &rdev->flags) ||
4312 !(test_bit(In_sync, &rdev->flags) ||
4313 rdev->recovery_offset >= end_sector)))
4314 rdev = NULL;
4315 }
4316 if (rdev) {
4317 sector_t first_bad;
4318 int bad_sectors;
4319
4320 atomic_inc(&rdev->nr_pending);
4321 rcu_read_unlock();
4322 raid_bio->bi_next = (void*)rdev;
4323 align_bi->bi_bdev = rdev->bdev;
4324 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4325
4326 if (!bio_fits_rdev(align_bi) ||
4327 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4328 bio_sectors(align_bi),
4329 &first_bad, &bad_sectors)) {
4330 /* too big in some way, or has a known bad block */
4331 bio_put(align_bi);
4332 rdev_dec_pending(rdev, mddev);
4333 return 0;
4334 }
4335
4336 /* No reshape active, so we can trust rdev->data_offset */
4337 align_bi->bi_iter.bi_sector += rdev->data_offset;
4338
4339 spin_lock_irq(&conf->device_lock);
4340 wait_event_lock_irq(conf->wait_for_stripe,
4341 conf->quiesce == 0,
4342 conf->device_lock);
4343 atomic_inc(&conf->active_aligned_reads);
4344 spin_unlock_irq(&conf->device_lock);
4345
4346 if (mddev->gendisk)
4347 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4348 align_bi, disk_devt(mddev->gendisk),
4349 raid_bio->bi_iter.bi_sector);
4350 generic_make_request(align_bi);
4351 return 1;
4352 } else {
4353 rcu_read_unlock();
4354 bio_put(align_bi);
4355 return 0;
4356 }
4357 }
4358
4359 /* __get_priority_stripe - get the next stripe to process
4360 *
4361 * Full stripe writes are allowed to pass preread active stripes up until
4362 * the bypass_threshold is exceeded. In general the bypass_count
4363 * increments when the handle_list is handled before the hold_list; however, it
4364 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4365 * stripe with in flight i/o. The bypass_count will be reset when the
4366 * head of the hold_list has changed, i.e. the head was promoted to the
4367 * handle_list.
4368 */
4369 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4370 {
4371 struct stripe_head *sh = NULL, *tmp;
4372 struct list_head *handle_list = NULL;
4373 struct r5worker_group *wg = NULL;
4374
4375 if (conf->worker_cnt_per_group == 0) {
4376 handle_list = &conf->handle_list;
4377 } else if (group != ANY_GROUP) {
4378 handle_list = &conf->worker_groups[group].handle_list;
4379 wg = &conf->worker_groups[group];
4380 } else {
4381 int i;
4382 for (i = 0; i < conf->group_cnt; i++) {
4383 handle_list = &conf->worker_groups[i].handle_list;
4384 wg = &conf->worker_groups[i];
4385 if (!list_empty(handle_list))
4386 break;
4387 }
4388 }
4389
4390 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4391 __func__,
4392 list_empty(handle_list) ? "empty" : "busy",
4393 list_empty(&conf->hold_list) ? "empty" : "busy",
4394 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4395
4396 if (!list_empty(handle_list)) {
4397 sh = list_entry(handle_list->next, typeof(*sh), lru);
4398
4399 if (list_empty(&conf->hold_list))
4400 conf->bypass_count = 0;
4401 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4402 if (conf->hold_list.next == conf->last_hold)
4403 conf->bypass_count++;
4404 else {
4405 conf->last_hold = conf->hold_list.next;
4406 conf->bypass_count -= conf->bypass_threshold;
4407 if (conf->bypass_count < 0)
4408 conf->bypass_count = 0;
4409 }
4410 }
4411 } else if (!list_empty(&conf->hold_list) &&
4412 ((conf->bypass_threshold &&
4413 conf->bypass_count > conf->bypass_threshold) ||
4414 atomic_read(&conf->pending_full_writes) == 0)) {
4415
4416 list_for_each_entry(tmp, &conf->hold_list, lru) {
4417 if (conf->worker_cnt_per_group == 0 ||
4418 group == ANY_GROUP ||
4419 !cpu_online(tmp->cpu) ||
4420 cpu_to_group(tmp->cpu) == group) {
4421 sh = tmp;
4422 break;
4423 }
4424 }
4425
4426 if (sh) {
4427 conf->bypass_count -= conf->bypass_threshold;
4428 if (conf->bypass_count < 0)
4429 conf->bypass_count = 0;
4430 }
4431 wg = NULL;
4432 }
4433
4434 if (!sh)
4435 return NULL;
4436
4437 if (wg) {
4438 wg->stripes_cnt--;
4439 sh->group = NULL;
4440 }
4441 list_del_init(&sh->lru);
4442 BUG_ON(atomic_inc_return(&sh->count) != 1);
4443 return sh;
4444 }
4445
4446 struct raid5_plug_cb {
4447 struct blk_plug_cb cb;
4448 struct list_head list;
4449 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4450 };
4451
4452 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4453 {
4454 struct raid5_plug_cb *cb = container_of(
4455 blk_cb, struct raid5_plug_cb, cb);
4456 struct stripe_head *sh;
4457 struct mddev *mddev = cb->cb.data;
4458 struct r5conf *conf = mddev->private;
4459 int cnt = 0;
4460 int hash;
4461
4462 if (cb->list.next && !list_empty(&cb->list)) {
4463 spin_lock_irq(&conf->device_lock);
4464 while (!list_empty(&cb->list)) {
4465 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4466 list_del_init(&sh->lru);
4467 /*
4468 * avoid race release_stripe_plug() sees
4469 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4470 * is still in our list
4471 */
4472 smp_mb__before_atomic();
4473 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4474 /*
4475 * STRIPE_ON_RELEASE_LIST could be set here. In that
4476 * case, the count is always > 1 here
4477 */
4478 hash = sh->hash_lock_index;
4479 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4480 cnt++;
4481 }
4482 spin_unlock_irq(&conf->device_lock);
4483 }
4484 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4485 NR_STRIPE_HASH_LOCKS);
4486 if (mddev->queue)
4487 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4488 kfree(cb);
4489 }
4490
4491 static void release_stripe_plug(struct mddev *mddev,
4492 struct stripe_head *sh)
4493 {
4494 struct blk_plug_cb *blk_cb = blk_check_plugged(
4495 raid5_unplug, mddev,
4496 sizeof(struct raid5_plug_cb));
4497 struct raid5_plug_cb *cb;
4498
4499 if (!blk_cb) {
4500 release_stripe(sh);
4501 return;
4502 }
4503
4504 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4505
4506 if (cb->list.next == NULL) {
4507 int i;
4508 INIT_LIST_HEAD(&cb->list);
4509 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4510 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4511 }
4512
4513 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4514 list_add_tail(&sh->lru, &cb->list);
4515 else
4516 release_stripe(sh);
4517 }
4518
4519 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4520 {
4521 struct r5conf *conf = mddev->private;
4522 sector_t logical_sector, last_sector;
4523 struct stripe_head *sh;
4524 int remaining;
4525 int stripe_sectors;
4526
4527 if (mddev->reshape_position != MaxSector)
4528 /* Skip discard while reshape is happening */
4529 return;
4530
4531 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4532 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
4533
4534 bi->bi_next = NULL;
4535 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4536
4537 stripe_sectors = conf->chunk_sectors *
4538 (conf->raid_disks - conf->max_degraded);
4539 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4540 stripe_sectors);
4541 sector_div(last_sector, stripe_sectors);
4542
4543 logical_sector *= conf->chunk_sectors;
4544 last_sector *= conf->chunk_sectors;
4545
4546 for (; logical_sector < last_sector;
4547 logical_sector += STRIPE_SECTORS) {
4548 DEFINE_WAIT(w);
4549 int d;
4550 again:
4551 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4552 prepare_to_wait(&conf->wait_for_overlap, &w,
4553 TASK_UNINTERRUPTIBLE);
4554 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4555 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4556 release_stripe(sh);
4557 schedule();
4558 goto again;
4559 }
4560 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
4561 spin_lock_irq(&sh->stripe_lock);
4562 for (d = 0; d < conf->raid_disks; d++) {
4563 if (d == sh->pd_idx || d == sh->qd_idx)
4564 continue;
4565 if (sh->dev[d].towrite || sh->dev[d].toread) {
4566 set_bit(R5_Overlap, &sh->dev[d].flags);
4567 spin_unlock_irq(&sh->stripe_lock);
4568 release_stripe(sh);
4569 schedule();
4570 goto again;
4571 }
4572 }
4573 set_bit(STRIPE_DISCARD, &sh->state);
4574 finish_wait(&conf->wait_for_overlap, &w);
4575 for (d = 0; d < conf->raid_disks; d++) {
4576 if (d == sh->pd_idx || d == sh->qd_idx)
4577 continue;
4578 sh->dev[d].towrite = bi;
4579 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4580 raid5_inc_bi_active_stripes(bi);
4581 }
4582 spin_unlock_irq(&sh->stripe_lock);
4583 if (conf->mddev->bitmap) {
4584 for (d = 0;
4585 d < conf->raid_disks - conf->max_degraded;
4586 d++)
4587 bitmap_startwrite(mddev->bitmap,
4588 sh->sector,
4589 STRIPE_SECTORS,
4590 0);
4591 sh->bm_seq = conf->seq_flush + 1;
4592 set_bit(STRIPE_BIT_DELAY, &sh->state);
4593 }
4594
4595 set_bit(STRIPE_HANDLE, &sh->state);
4596 clear_bit(STRIPE_DELAYED, &sh->state);
4597 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4598 atomic_inc(&conf->preread_active_stripes);
4599 release_stripe_plug(mddev, sh);
4600 }
4601
4602 remaining = raid5_dec_bi_active_stripes(bi);
4603 if (remaining == 0) {
4604 md_write_end(mddev);
4605 bio_endio(bi, 0);
4606 }
4607 }
4608
4609 static void make_request(struct mddev *mddev, struct bio * bi)
4610 {
4611 struct r5conf *conf = mddev->private;
4612 int dd_idx;
4613 sector_t new_sector;
4614 sector_t logical_sector, last_sector;
4615 struct stripe_head *sh;
4616 const int rw = bio_data_dir(bi);
4617 int remaining;
4618 DEFINE_WAIT(w);
4619 bool do_prepare;
4620
4621 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4622 md_flush_request(mddev, bi);
4623 return;
4624 }
4625
4626 md_write_start(mddev, bi);
4627
4628 if (rw == READ &&
4629 mddev->reshape_position == MaxSector &&
4630 chunk_aligned_read(mddev,bi))
4631 return;
4632
4633 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4634 make_discard_request(mddev, bi);
4635 return;
4636 }
4637
4638 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4639 last_sector = bio_end_sector(bi);
4640 bi->bi_next = NULL;
4641 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4642
4643 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4644 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4645 int previous;
4646 int seq;
4647
4648 do_prepare = false;
4649 retry:
4650 seq = read_seqcount_begin(&conf->gen_lock);
4651 previous = 0;
4652 if (do_prepare)
4653 prepare_to_wait(&conf->wait_for_overlap, &w,
4654 TASK_UNINTERRUPTIBLE);
4655 if (unlikely(conf->reshape_progress != MaxSector)) {
4656 /* spinlock is needed as reshape_progress may be
4657 * 64bit on a 32bit platform, and so it might be
4658 * possible to see a half-updated value
4659 * Of course reshape_progress could change after
4660 * the lock is dropped, so once we get a reference
4661 * to the stripe that we think it is, we will have
4662 * to check again.
4663 */
4664 spin_lock_irq(&conf->device_lock);
4665 if (mddev->reshape_backwards
4666 ? logical_sector < conf->reshape_progress
4667 : logical_sector >= conf->reshape_progress) {
4668 previous = 1;
4669 } else {
4670 if (mddev->reshape_backwards
4671 ? logical_sector < conf->reshape_safe
4672 : logical_sector >= conf->reshape_safe) {
4673 spin_unlock_irq(&conf->device_lock);
4674 schedule();
4675 do_prepare = true;
4676 goto retry;
4677 }
4678 }
4679 spin_unlock_irq(&conf->device_lock);
4680 }
4681
4682 new_sector = raid5_compute_sector(conf, logical_sector,
4683 previous,
4684 &dd_idx, NULL);
4685 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4686 (unsigned long long)new_sector,
4687 (unsigned long long)logical_sector);
4688
4689 sh = get_active_stripe(conf, new_sector, previous,
4690 (bi->bi_rw&RWA_MASK), 0);
4691 if (sh) {
4692 if (unlikely(previous)) {
4693 /* expansion might have moved on while waiting for a
4694 * stripe, so we must do the range check again.
4695 * Expansion could still move past after this
4696 * test, but as we are holding a reference to
4697 * 'sh', we know that if that happens,
4698 * STRIPE_EXPANDING will get set and the expansion
4699 * won't proceed until we finish with the stripe.
4700 */
4701 int must_retry = 0;
4702 spin_lock_irq(&conf->device_lock);
4703 if (mddev->reshape_backwards
4704 ? logical_sector >= conf->reshape_progress
4705 : logical_sector < conf->reshape_progress)
4706 /* mismatch, need to try again */
4707 must_retry = 1;
4708 spin_unlock_irq(&conf->device_lock);
4709 if (must_retry) {
4710 release_stripe(sh);
4711 schedule();
4712 do_prepare = true;
4713 goto retry;
4714 }
4715 }
4716 if (read_seqcount_retry(&conf->gen_lock, seq)) {
4717 /* Might have got the wrong stripe_head
4718 * by accident
4719 */
4720 release_stripe(sh);
4721 goto retry;
4722 }
4723
4724 if (rw == WRITE &&
4725 logical_sector >= mddev->suspend_lo &&
4726 logical_sector < mddev->suspend_hi) {
4727 release_stripe(sh);
4728 /* As the suspend_* range is controlled by
4729 * userspace, we want an interruptible
4730 * wait.
4731 */
4732 flush_signals(current);
4733 prepare_to_wait(&conf->wait_for_overlap,
4734 &w, TASK_INTERRUPTIBLE);
4735 if (logical_sector >= mddev->suspend_lo &&
4736 logical_sector < mddev->suspend_hi) {
4737 schedule();
4738 do_prepare = true;
4739 }
4740 goto retry;
4741 }
4742
4743 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4744 !add_stripe_bio(sh, bi, dd_idx, rw)) {
4745 /* Stripe is busy expanding or
4746 * add failed due to overlap. Flush everything
4747 * and wait a while
4748 */
4749 md_wakeup_thread(mddev->thread);
4750 release_stripe(sh);
4751 schedule();
4752 do_prepare = true;
4753 goto retry;
4754 }
4755 set_bit(STRIPE_HANDLE, &sh->state);
4756 clear_bit(STRIPE_DELAYED, &sh->state);
4757 if ((bi->bi_rw & REQ_SYNC) &&
4758 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4759 atomic_inc(&conf->preread_active_stripes);
4760 release_stripe_plug(mddev, sh);
4761 } else {
4762 /* cannot get stripe for read-ahead, just give-up */
4763 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4764 break;
4765 }
4766 }
4767 finish_wait(&conf->wait_for_overlap, &w);
4768
4769 remaining = raid5_dec_bi_active_stripes(bi);
4770 if (remaining == 0) {
4771
4772 if ( rw == WRITE )
4773 md_write_end(mddev);
4774
4775 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4776 bi, 0);
4777 bio_endio(bi, 0);
4778 }
4779 }
4780
4781 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4782
4783 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4784 {
4785 /* reshaping is quite different to recovery/resync so it is
4786 * handled quite separately ... here.
4787 *
4788 * On each call to sync_request, we gather one chunk worth of
4789 * destination stripes and flag them as expanding.
4790 * Then we find all the source stripes and request reads.
4791 * As the reads complete, handle_stripe will copy the data
4792 * into the destination stripe and release that stripe.
4793 */
4794 struct r5conf *conf = mddev->private;
4795 struct stripe_head *sh;
4796 sector_t first_sector, last_sector;
4797 int raid_disks = conf->previous_raid_disks;
4798 int data_disks = raid_disks - conf->max_degraded;
4799 int new_data_disks = conf->raid_disks - conf->max_degraded;
4800 int i;
4801 int dd_idx;
4802 sector_t writepos, readpos, safepos;
4803 sector_t stripe_addr;
4804 int reshape_sectors;
4805 struct list_head stripes;
4806
4807 if (sector_nr == 0) {
4808 /* If restarting in the middle, skip the initial sectors */
4809 if (mddev->reshape_backwards &&
4810 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4811 sector_nr = raid5_size(mddev, 0, 0)
4812 - conf->reshape_progress;
4813 } else if (!mddev->reshape_backwards &&
4814 conf->reshape_progress > 0)
4815 sector_nr = conf->reshape_progress;
4816 sector_div(sector_nr, new_data_disks);
4817 if (sector_nr) {
4818 mddev->curr_resync_completed = sector_nr;
4819 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4820 *skipped = 1;
4821 return sector_nr;
4822 }
4823 }
4824
4825 /* We need to process a full chunk at a time.
4826 * If old and new chunk sizes differ, we need to process the
4827 * largest of these
4828 */
4829 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4830 reshape_sectors = mddev->new_chunk_sectors;
4831 else
4832 reshape_sectors = mddev->chunk_sectors;
4833
4834 /* We update the metadata at least every 10 seconds, or when
4835 * the data about to be copied would over-write the source of
4836 * the data at the front of the range. i.e. one new_stripe
4837 * along from reshape_progress new_maps to after where
4838 * reshape_safe old_maps to
4839 */
4840 writepos = conf->reshape_progress;
4841 sector_div(writepos, new_data_disks);
4842 readpos = conf->reshape_progress;
4843 sector_div(readpos, data_disks);
4844 safepos = conf->reshape_safe;
4845 sector_div(safepos, data_disks);
4846 if (mddev->reshape_backwards) {
4847 writepos -= min_t(sector_t, reshape_sectors, writepos);
4848 readpos += reshape_sectors;
4849 safepos += reshape_sectors;
4850 } else {
4851 writepos += reshape_sectors;
4852 readpos -= min_t(sector_t, reshape_sectors, readpos);
4853 safepos -= min_t(sector_t, reshape_sectors, safepos);
4854 }
4855
4856 /* Having calculated the 'writepos' possibly use it
4857 * to set 'stripe_addr' which is where we will write to.
4858 */
4859 if (mddev->reshape_backwards) {
4860 BUG_ON(conf->reshape_progress == 0);
4861 stripe_addr = writepos;
4862 BUG_ON((mddev->dev_sectors &
4863 ~((sector_t)reshape_sectors - 1))
4864 - reshape_sectors - stripe_addr
4865 != sector_nr);
4866 } else {
4867 BUG_ON(writepos != sector_nr + reshape_sectors);
4868 stripe_addr = sector_nr;
4869 }
4870
4871 /* 'writepos' is the most advanced device address we might write.
4872 * 'readpos' is the least advanced device address we might read.
4873 * 'safepos' is the least address recorded in the metadata as having
4874 * been reshaped.
4875 * If there is a min_offset_diff, these are adjusted either by
4876 * increasing the safepos/readpos if diff is negative, or
4877 * increasing writepos if diff is positive.
4878 * If 'readpos' is then behind 'writepos', there is no way that we can
4879 * ensure safety in the face of a crash - that must be done by userspace
4880 * making a backup of the data. So in that case there is no particular
4881 * rush to update metadata.
4882 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4883 * update the metadata to advance 'safepos' to match 'readpos' so that
4884 * we can be safe in the event of a crash.
4885 * So we insist on updating metadata if safepos is behind writepos and
4886 * readpos is beyond writepos.
4887 * In any case, update the metadata every 10 seconds.
4888 * Maybe that number should be configurable, but I'm not sure it is
4889 * worth it.... maybe it could be a multiple of safemode_delay???
4890 */
4891 if (conf->min_offset_diff < 0) {
4892 safepos += -conf->min_offset_diff;
4893 readpos += -conf->min_offset_diff;
4894 } else
4895 writepos += conf->min_offset_diff;
4896
4897 if ((mddev->reshape_backwards
4898 ? (safepos > writepos && readpos < writepos)
4899 : (safepos < writepos && readpos > writepos)) ||
4900 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4901 /* Cannot proceed until we've updated the superblock... */
4902 wait_event(conf->wait_for_overlap,
4903 atomic_read(&conf->reshape_stripes)==0
4904 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4905 if (atomic_read(&conf->reshape_stripes) != 0)
4906 return 0;
4907 mddev->reshape_position = conf->reshape_progress;
4908 mddev->curr_resync_completed = sector_nr;
4909 conf->reshape_checkpoint = jiffies;
4910 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4911 md_wakeup_thread(mddev->thread);
4912 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4913 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4914 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4915 return 0;
4916 spin_lock_irq(&conf->device_lock);
4917 conf->reshape_safe = mddev->reshape_position;
4918 spin_unlock_irq(&conf->device_lock);
4919 wake_up(&conf->wait_for_overlap);
4920 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4921 }
4922
4923 INIT_LIST_HEAD(&stripes);
4924 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4925 int j;
4926 int skipped_disk = 0;
4927 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4928 set_bit(STRIPE_EXPANDING, &sh->state);
4929 atomic_inc(&conf->reshape_stripes);
4930 /* If any of this stripe is beyond the end of the old
4931 * array, then we need to zero those blocks
4932 */
4933 for (j=sh->disks; j--;) {
4934 sector_t s;
4935 if (j == sh->pd_idx)
4936 continue;
4937 if (conf->level == 6 &&
4938 j == sh->qd_idx)
4939 continue;
4940 s = compute_blocknr(sh, j, 0);
4941 if (s < raid5_size(mddev, 0, 0)) {
4942 skipped_disk = 1;
4943 continue;
4944 }
4945 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4946 set_bit(R5_Expanded, &sh->dev[j].flags);
4947 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4948 }
4949 if (!skipped_disk) {
4950 set_bit(STRIPE_EXPAND_READY, &sh->state);
4951 set_bit(STRIPE_HANDLE, &sh->state);
4952 }
4953 list_add(&sh->lru, &stripes);
4954 }
4955 spin_lock_irq(&conf->device_lock);
4956 if (mddev->reshape_backwards)
4957 conf->reshape_progress -= reshape_sectors * new_data_disks;
4958 else
4959 conf->reshape_progress += reshape_sectors * new_data_disks;
4960 spin_unlock_irq(&conf->device_lock);
4961 /* Ok, those stripe are ready. We can start scheduling
4962 * reads on the source stripes.
4963 * The source stripes are determined by mapping the first and last
4964 * block on the destination stripes.
4965 */
4966 first_sector =
4967 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4968 1, &dd_idx, NULL);
4969 last_sector =
4970 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4971 * new_data_disks - 1),
4972 1, &dd_idx, NULL);
4973 if (last_sector >= mddev->dev_sectors)
4974 last_sector = mddev->dev_sectors - 1;
4975 while (first_sector <= last_sector) {
4976 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4977 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4978 set_bit(STRIPE_HANDLE, &sh->state);
4979 release_stripe(sh);
4980 first_sector += STRIPE_SECTORS;
4981 }
4982 /* Now that the sources are clearly marked, we can release
4983 * the destination stripes
4984 */
4985 while (!list_empty(&stripes)) {
4986 sh = list_entry(stripes.next, struct stripe_head, lru);
4987 list_del_init(&sh->lru);
4988 release_stripe(sh);
4989 }
4990 /* If this takes us to the resync_max point where we have to pause,
4991 * then we need to write out the superblock.
4992 */
4993 sector_nr += reshape_sectors;
4994 if ((sector_nr - mddev->curr_resync_completed) * 2
4995 >= mddev->resync_max - mddev->curr_resync_completed) {
4996 /* Cannot proceed until we've updated the superblock... */
4997 wait_event(conf->wait_for_overlap,
4998 atomic_read(&conf->reshape_stripes) == 0
4999 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5000 if (atomic_read(&conf->reshape_stripes) != 0)
5001 goto ret;
5002 mddev->reshape_position = conf->reshape_progress;
5003 mddev->curr_resync_completed = sector_nr;
5004 conf->reshape_checkpoint = jiffies;
5005 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5006 md_wakeup_thread(mddev->thread);
5007 wait_event(mddev->sb_wait,
5008 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5009 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5010 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5011 goto ret;
5012 spin_lock_irq(&conf->device_lock);
5013 conf->reshape_safe = mddev->reshape_position;
5014 spin_unlock_irq(&conf->device_lock);
5015 wake_up(&conf->wait_for_overlap);
5016 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5017 }
5018 ret:
5019 return reshape_sectors;
5020 }
5021
5022 /* FIXME go_faster isn't used */
5023 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
5024 {
5025 struct r5conf *conf = mddev->private;
5026 struct stripe_head *sh;
5027 sector_t max_sector = mddev->dev_sectors;
5028 sector_t sync_blocks;
5029 int still_degraded = 0;
5030 int i;
5031
5032 if (sector_nr >= max_sector) {
5033 /* just being told to finish up .. nothing much to do */
5034
5035 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5036 end_reshape(conf);
5037 return 0;
5038 }
5039
5040 if (mddev->curr_resync < max_sector) /* aborted */
5041 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5042 &sync_blocks, 1);
5043 else /* completed sync */
5044 conf->fullsync = 0;
5045 bitmap_close_sync(mddev->bitmap);
5046
5047 return 0;
5048 }
5049
5050 /* Allow raid5_quiesce to complete */
5051 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5052
5053 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5054 return reshape_request(mddev, sector_nr, skipped);
5055
5056 /* No need to check resync_max as we never do more than one
5057 * stripe, and as resync_max will always be on a chunk boundary,
5058 * if the check in md_do_sync didn't fire, there is no chance
5059 * of overstepping resync_max here
5060 */
5061
5062 /* if there is too many failed drives and we are trying
5063 * to resync, then assert that we are finished, because there is
5064 * nothing we can do.
5065 */
5066 if (mddev->degraded >= conf->max_degraded &&
5067 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5068 sector_t rv = mddev->dev_sectors - sector_nr;
5069 *skipped = 1;
5070 return rv;
5071 }
5072 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5073 !conf->fullsync &&
5074 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5075 sync_blocks >= STRIPE_SECTORS) {
5076 /* we can skip this block, and probably more */
5077 sync_blocks /= STRIPE_SECTORS;
5078 *skipped = 1;
5079 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5080 }
5081
5082 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5083
5084 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5085 if (sh == NULL) {
5086 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5087 /* make sure we don't swamp the stripe cache if someone else
5088 * is trying to get access
5089 */
5090 schedule_timeout_uninterruptible(1);
5091 }
5092 /* Need to check if array will still be degraded after recovery/resync
5093 * We don't need to check the 'failed' flag as when that gets set,
5094 * recovery aborts.
5095 */
5096 for (i = 0; i < conf->raid_disks; i++)
5097 if (conf->disks[i].rdev == NULL)
5098 still_degraded = 1;
5099
5100 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5101
5102 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5103 set_bit(STRIPE_HANDLE, &sh->state);
5104
5105 release_stripe(sh);
5106
5107 return STRIPE_SECTORS;
5108 }
5109
5110 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5111 {
5112 /* We may not be able to submit a whole bio at once as there
5113 * may not be enough stripe_heads available.
5114 * We cannot pre-allocate enough stripe_heads as we may need
5115 * more than exist in the cache (if we allow ever large chunks).
5116 * So we do one stripe head at a time and record in
5117 * ->bi_hw_segments how many have been done.
5118 *
5119 * We *know* that this entire raid_bio is in one chunk, so
5120 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5121 */
5122 struct stripe_head *sh;
5123 int dd_idx;
5124 sector_t sector, logical_sector, last_sector;
5125 int scnt = 0;
5126 int remaining;
5127 int handled = 0;
5128
5129 logical_sector = raid_bio->bi_iter.bi_sector &
5130 ~((sector_t)STRIPE_SECTORS-1);
5131 sector = raid5_compute_sector(conf, logical_sector,
5132 0, &dd_idx, NULL);
5133 last_sector = bio_end_sector(raid_bio);
5134
5135 for (; logical_sector < last_sector;
5136 logical_sector += STRIPE_SECTORS,
5137 sector += STRIPE_SECTORS,
5138 scnt++) {
5139
5140 if (scnt < raid5_bi_processed_stripes(raid_bio))
5141 /* already done this stripe */
5142 continue;
5143
5144 sh = get_active_stripe(conf, sector, 0, 1, 1);
5145
5146 if (!sh) {
5147 /* failed to get a stripe - must wait */
5148 raid5_set_bi_processed_stripes(raid_bio, scnt);
5149 conf->retry_read_aligned = raid_bio;
5150 return handled;
5151 }
5152
5153 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
5154 release_stripe(sh);
5155 raid5_set_bi_processed_stripes(raid_bio, scnt);
5156 conf->retry_read_aligned = raid_bio;
5157 return handled;
5158 }
5159
5160 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5161 handle_stripe(sh);
5162 release_stripe(sh);
5163 handled++;
5164 }
5165 remaining = raid5_dec_bi_active_stripes(raid_bio);
5166 if (remaining == 0) {
5167 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5168 raid_bio, 0);
5169 bio_endio(raid_bio, 0);
5170 }
5171 if (atomic_dec_and_test(&conf->active_aligned_reads))
5172 wake_up(&conf->wait_for_stripe);
5173 return handled;
5174 }
5175
5176 static int handle_active_stripes(struct r5conf *conf, int group,
5177 struct r5worker *worker,
5178 struct list_head *temp_inactive_list)
5179 {
5180 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5181 int i, batch_size = 0, hash;
5182 bool release_inactive = false;
5183
5184 while (batch_size < MAX_STRIPE_BATCH &&
5185 (sh = __get_priority_stripe(conf, group)) != NULL)
5186 batch[batch_size++] = sh;
5187
5188 if (batch_size == 0) {
5189 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5190 if (!list_empty(temp_inactive_list + i))
5191 break;
5192 if (i == NR_STRIPE_HASH_LOCKS)
5193 return batch_size;
5194 release_inactive = true;
5195 }
5196 spin_unlock_irq(&conf->device_lock);
5197
5198 release_inactive_stripe_list(conf, temp_inactive_list,
5199 NR_STRIPE_HASH_LOCKS);
5200
5201 if (release_inactive) {
5202 spin_lock_irq(&conf->device_lock);
5203 return 0;
5204 }
5205
5206 for (i = 0; i < batch_size; i++)
5207 handle_stripe(batch[i]);
5208
5209 cond_resched();
5210
5211 spin_lock_irq(&conf->device_lock);
5212 for (i = 0; i < batch_size; i++) {
5213 hash = batch[i]->hash_lock_index;
5214 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5215 }
5216 return batch_size;
5217 }
5218
5219 static void raid5_do_work(struct work_struct *work)
5220 {
5221 struct r5worker *worker = container_of(work, struct r5worker, work);
5222 struct r5worker_group *group = worker->group;
5223 struct r5conf *conf = group->conf;
5224 int group_id = group - conf->worker_groups;
5225 int handled;
5226 struct blk_plug plug;
5227
5228 pr_debug("+++ raid5worker active\n");
5229
5230 blk_start_plug(&plug);
5231 handled = 0;
5232 spin_lock_irq(&conf->device_lock);
5233 while (1) {
5234 int batch_size, released;
5235
5236 released = release_stripe_list(conf, worker->temp_inactive_list);
5237
5238 batch_size = handle_active_stripes(conf, group_id, worker,
5239 worker->temp_inactive_list);
5240 worker->working = false;
5241 if (!batch_size && !released)
5242 break;
5243 handled += batch_size;
5244 }
5245 pr_debug("%d stripes handled\n", handled);
5246
5247 spin_unlock_irq(&conf->device_lock);
5248 blk_finish_plug(&plug);
5249
5250 pr_debug("--- raid5worker inactive\n");
5251 }
5252
5253 /*
5254 * This is our raid5 kernel thread.
5255 *
5256 * We scan the hash table for stripes which can be handled now.
5257 * During the scan, completed stripes are saved for us by the interrupt
5258 * handler, so that they will not have to wait for our next wakeup.
5259 */
5260 static void raid5d(struct md_thread *thread)
5261 {
5262 struct mddev *mddev = thread->mddev;
5263 struct r5conf *conf = mddev->private;
5264 int handled;
5265 struct blk_plug plug;
5266
5267 pr_debug("+++ raid5d active\n");
5268
5269 md_check_recovery(mddev);
5270
5271 blk_start_plug(&plug);
5272 handled = 0;
5273 spin_lock_irq(&conf->device_lock);
5274 while (1) {
5275 struct bio *bio;
5276 int batch_size, released;
5277
5278 released = release_stripe_list(conf, conf->temp_inactive_list);
5279
5280 if (
5281 !list_empty(&conf->bitmap_list)) {
5282 /* Now is a good time to flush some bitmap updates */
5283 conf->seq_flush++;
5284 spin_unlock_irq(&conf->device_lock);
5285 bitmap_unplug(mddev->bitmap);
5286 spin_lock_irq(&conf->device_lock);
5287 conf->seq_write = conf->seq_flush;
5288 activate_bit_delay(conf, conf->temp_inactive_list);
5289 }
5290 raid5_activate_delayed(conf);
5291
5292 while ((bio = remove_bio_from_retry(conf))) {
5293 int ok;
5294 spin_unlock_irq(&conf->device_lock);
5295 ok = retry_aligned_read(conf, bio);
5296 spin_lock_irq(&conf->device_lock);
5297 if (!ok)
5298 break;
5299 handled++;
5300 }
5301
5302 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5303 conf->temp_inactive_list);
5304 if (!batch_size && !released)
5305 break;
5306 handled += batch_size;
5307
5308 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5309 spin_unlock_irq(&conf->device_lock);
5310 md_check_recovery(mddev);
5311 spin_lock_irq(&conf->device_lock);
5312 }
5313 }
5314 pr_debug("%d stripes handled\n", handled);
5315
5316 spin_unlock_irq(&conf->device_lock);
5317
5318 async_tx_issue_pending_all();
5319 blk_finish_plug(&plug);
5320
5321 pr_debug("--- raid5d inactive\n");
5322 }
5323
5324 static ssize_t
5325 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5326 {
5327 struct r5conf *conf = mddev->private;
5328 if (conf)
5329 return sprintf(page, "%d\n", conf->max_nr_stripes);
5330 else
5331 return 0;
5332 }
5333
5334 int
5335 raid5_set_cache_size(struct mddev *mddev, int size)
5336 {
5337 struct r5conf *conf = mddev->private;
5338 int err;
5339 int hash;
5340
5341 if (size <= 16 || size > 32768)
5342 return -EINVAL;
5343 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5344 while (size < conf->max_nr_stripes) {
5345 if (drop_one_stripe(conf, hash))
5346 conf->max_nr_stripes--;
5347 else
5348 break;
5349 hash--;
5350 if (hash < 0)
5351 hash = NR_STRIPE_HASH_LOCKS - 1;
5352 }
5353 err = md_allow_write(mddev);
5354 if (err)
5355 return err;
5356 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5357 while (size > conf->max_nr_stripes) {
5358 if (grow_one_stripe(conf, hash))
5359 conf->max_nr_stripes++;
5360 else break;
5361 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5362 }
5363 return 0;
5364 }
5365 EXPORT_SYMBOL(raid5_set_cache_size);
5366
5367 static ssize_t
5368 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5369 {
5370 struct r5conf *conf = mddev->private;
5371 unsigned long new;
5372 int err;
5373
5374 if (len >= PAGE_SIZE)
5375 return -EINVAL;
5376 if (!conf)
5377 return -ENODEV;
5378
5379 if (kstrtoul(page, 10, &new))
5380 return -EINVAL;
5381 err = raid5_set_cache_size(mddev, new);
5382 if (err)
5383 return err;
5384 return len;
5385 }
5386
5387 static struct md_sysfs_entry
5388 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5389 raid5_show_stripe_cache_size,
5390 raid5_store_stripe_cache_size);
5391
5392 static ssize_t
5393 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5394 {
5395 struct r5conf *conf = mddev->private;
5396 if (conf)
5397 return sprintf(page, "%d\n", conf->bypass_threshold);
5398 else
5399 return 0;
5400 }
5401
5402 static ssize_t
5403 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5404 {
5405 struct r5conf *conf = mddev->private;
5406 unsigned long new;
5407 if (len >= PAGE_SIZE)
5408 return -EINVAL;
5409 if (!conf)
5410 return -ENODEV;
5411
5412 if (kstrtoul(page, 10, &new))
5413 return -EINVAL;
5414 if (new > conf->max_nr_stripes)
5415 return -EINVAL;
5416 conf->bypass_threshold = new;
5417 return len;
5418 }
5419
5420 static struct md_sysfs_entry
5421 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5422 S_IRUGO | S_IWUSR,
5423 raid5_show_preread_threshold,
5424 raid5_store_preread_threshold);
5425
5426 static ssize_t
5427 raid5_show_skip_copy(struct mddev *mddev, char *page)
5428 {
5429 struct r5conf *conf = mddev->private;
5430 if (conf)
5431 return sprintf(page, "%d\n", conf->skip_copy);
5432 else
5433 return 0;
5434 }
5435
5436 static ssize_t
5437 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5438 {
5439 struct r5conf *conf = mddev->private;
5440 unsigned long new;
5441 if (len >= PAGE_SIZE)
5442 return -EINVAL;
5443 if (!conf)
5444 return -ENODEV;
5445
5446 if (kstrtoul(page, 10, &new))
5447 return -EINVAL;
5448 new = !!new;
5449 if (new == conf->skip_copy)
5450 return len;
5451
5452 mddev_suspend(mddev);
5453 conf->skip_copy = new;
5454 if (new)
5455 mddev->queue->backing_dev_info.capabilities |=
5456 BDI_CAP_STABLE_WRITES;
5457 else
5458 mddev->queue->backing_dev_info.capabilities &=
5459 ~BDI_CAP_STABLE_WRITES;
5460 mddev_resume(mddev);
5461 return len;
5462 }
5463
5464 static struct md_sysfs_entry
5465 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5466 raid5_show_skip_copy,
5467 raid5_store_skip_copy);
5468
5469 static ssize_t
5470 stripe_cache_active_show(struct mddev *mddev, char *page)
5471 {
5472 struct r5conf *conf = mddev->private;
5473 if (conf)
5474 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5475 else
5476 return 0;
5477 }
5478
5479 static struct md_sysfs_entry
5480 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5481
5482 static ssize_t
5483 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5484 {
5485 struct r5conf *conf = mddev->private;
5486 if (conf)
5487 return sprintf(page, "%d\n", conf->worker_cnt_per_group);
5488 else
5489 return 0;
5490 }
5491
5492 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5493 int *group_cnt,
5494 int *worker_cnt_per_group,
5495 struct r5worker_group **worker_groups);
5496 static ssize_t
5497 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
5498 {
5499 struct r5conf *conf = mddev->private;
5500 unsigned long new;
5501 int err;
5502 struct r5worker_group *new_groups, *old_groups;
5503 int group_cnt, worker_cnt_per_group;
5504
5505 if (len >= PAGE_SIZE)
5506 return -EINVAL;
5507 if (!conf)
5508 return -ENODEV;
5509
5510 if (kstrtoul(page, 10, &new))
5511 return -EINVAL;
5512
5513 if (new == conf->worker_cnt_per_group)
5514 return len;
5515
5516 mddev_suspend(mddev);
5517
5518 old_groups = conf->worker_groups;
5519 if (old_groups)
5520 flush_workqueue(raid5_wq);
5521
5522 err = alloc_thread_groups(conf, new,
5523 &group_cnt, &worker_cnt_per_group,
5524 &new_groups);
5525 if (!err) {
5526 spin_lock_irq(&conf->device_lock);
5527 conf->group_cnt = group_cnt;
5528 conf->worker_cnt_per_group = worker_cnt_per_group;
5529 conf->worker_groups = new_groups;
5530 spin_unlock_irq(&conf->device_lock);
5531
5532 if (old_groups)
5533 kfree(old_groups[0].workers);
5534 kfree(old_groups);
5535 }
5536
5537 mddev_resume(mddev);
5538
5539 if (err)
5540 return err;
5541 return len;
5542 }
5543
5544 static struct md_sysfs_entry
5545 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
5546 raid5_show_group_thread_cnt,
5547 raid5_store_group_thread_cnt);
5548
5549 static struct attribute *raid5_attrs[] = {
5550 &raid5_stripecache_size.attr,
5551 &raid5_stripecache_active.attr,
5552 &raid5_preread_bypass_threshold.attr,
5553 &raid5_group_thread_cnt.attr,
5554 &raid5_skip_copy.attr,
5555 NULL,
5556 };
5557 static struct attribute_group raid5_attrs_group = {
5558 .name = NULL,
5559 .attrs = raid5_attrs,
5560 };
5561
5562 static int alloc_thread_groups(struct r5conf *conf, int cnt,
5563 int *group_cnt,
5564 int *worker_cnt_per_group,
5565 struct r5worker_group **worker_groups)
5566 {
5567 int i, j, k;
5568 ssize_t size;
5569 struct r5worker *workers;
5570
5571 *worker_cnt_per_group = cnt;
5572 if (cnt == 0) {
5573 *group_cnt = 0;
5574 *worker_groups = NULL;
5575 return 0;
5576 }
5577 *group_cnt = num_possible_nodes();
5578 size = sizeof(struct r5worker) * cnt;
5579 workers = kzalloc(size * *group_cnt, GFP_NOIO);
5580 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
5581 *group_cnt, GFP_NOIO);
5582 if (!*worker_groups || !workers) {
5583 kfree(workers);
5584 kfree(*worker_groups);
5585 return -ENOMEM;
5586 }
5587
5588 for (i = 0; i < *group_cnt; i++) {
5589 struct r5worker_group *group;
5590
5591 group = &(*worker_groups)[i];
5592 INIT_LIST_HEAD(&group->handle_list);
5593 group->conf = conf;
5594 group->workers = workers + i * cnt;
5595
5596 for (j = 0; j < cnt; j++) {
5597 struct r5worker *worker = group->workers + j;
5598 worker->group = group;
5599 INIT_WORK(&worker->work, raid5_do_work);
5600
5601 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
5602 INIT_LIST_HEAD(worker->temp_inactive_list + k);
5603 }
5604 }
5605
5606 return 0;
5607 }
5608
5609 static void free_thread_groups(struct r5conf *conf)
5610 {
5611 if (conf->worker_groups)
5612 kfree(conf->worker_groups[0].workers);
5613 kfree(conf->worker_groups);
5614 conf->worker_groups = NULL;
5615 }
5616
5617 static sector_t
5618 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
5619 {
5620 struct r5conf *conf = mddev->private;
5621
5622 if (!sectors)
5623 sectors = mddev->dev_sectors;
5624 if (!raid_disks)
5625 /* size is defined by the smallest of previous and new size */
5626 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
5627
5628 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5629 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
5630 return sectors * (raid_disks - conf->max_degraded);
5631 }
5632
5633 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5634 {
5635 safe_put_page(percpu->spare_page);
5636 kfree(percpu->scribble);
5637 percpu->spare_page = NULL;
5638 percpu->scribble = NULL;
5639 }
5640
5641 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
5642 {
5643 if (conf->level == 6 && !percpu->spare_page)
5644 percpu->spare_page = alloc_page(GFP_KERNEL);
5645 if (!percpu->scribble)
5646 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5647
5648 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
5649 free_scratch_buffer(conf, percpu);
5650 return -ENOMEM;
5651 }
5652
5653 return 0;
5654 }
5655
5656 static void raid5_free_percpu(struct r5conf *conf)
5657 {
5658 unsigned long cpu;
5659
5660 if (!conf->percpu)
5661 return;
5662
5663 #ifdef CONFIG_HOTPLUG_CPU
5664 unregister_cpu_notifier(&conf->cpu_notify);
5665 #endif
5666
5667 get_online_cpus();
5668 for_each_possible_cpu(cpu)
5669 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5670 put_online_cpus();
5671
5672 free_percpu(conf->percpu);
5673 }
5674
5675 static void free_conf(struct r5conf *conf)
5676 {
5677 free_thread_groups(conf);
5678 shrink_stripes(conf);
5679 raid5_free_percpu(conf);
5680 kfree(conf->disks);
5681 kfree(conf->stripe_hashtbl);
5682 kfree(conf);
5683 }
5684
5685 #ifdef CONFIG_HOTPLUG_CPU
5686 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5687 void *hcpu)
5688 {
5689 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
5690 long cpu = (long)hcpu;
5691 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5692
5693 switch (action) {
5694 case CPU_UP_PREPARE:
5695 case CPU_UP_PREPARE_FROZEN:
5696 if (alloc_scratch_buffer(conf, percpu)) {
5697 pr_err("%s: failed memory allocation for cpu%ld\n",
5698 __func__, cpu);
5699 return notifier_from_errno(-ENOMEM);
5700 }
5701 break;
5702 case CPU_DEAD:
5703 case CPU_DEAD_FROZEN:
5704 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5705 break;
5706 default:
5707 break;
5708 }
5709 return NOTIFY_OK;
5710 }
5711 #endif
5712
5713 static int raid5_alloc_percpu(struct r5conf *conf)
5714 {
5715 unsigned long cpu;
5716 int err = 0;
5717
5718 conf->percpu = alloc_percpu(struct raid5_percpu);
5719 if (!conf->percpu)
5720 return -ENOMEM;
5721
5722 #ifdef CONFIG_HOTPLUG_CPU
5723 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5724 conf->cpu_notify.priority = 0;
5725 err = register_cpu_notifier(&conf->cpu_notify);
5726 if (err)
5727 return err;
5728 #endif
5729
5730 get_online_cpus();
5731 for_each_present_cpu(cpu) {
5732 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
5733 if (err) {
5734 pr_err("%s: failed memory allocation for cpu%ld\n",
5735 __func__, cpu);
5736 break;
5737 }
5738 }
5739 put_online_cpus();
5740
5741 return err;
5742 }
5743
5744 static struct r5conf *setup_conf(struct mddev *mddev)
5745 {
5746 struct r5conf *conf;
5747 int raid_disk, memory, max_disks;
5748 struct md_rdev *rdev;
5749 struct disk_info *disk;
5750 char pers_name[6];
5751 int i;
5752 int group_cnt, worker_cnt_per_group;
5753 struct r5worker_group *new_group;
5754
5755 if (mddev->new_level != 5
5756 && mddev->new_level != 4
5757 && mddev->new_level != 6) {
5758 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5759 mdname(mddev), mddev->new_level);
5760 return ERR_PTR(-EIO);
5761 }
5762 if ((mddev->new_level == 5
5763 && !algorithm_valid_raid5(mddev->new_layout)) ||
5764 (mddev->new_level == 6
5765 && !algorithm_valid_raid6(mddev->new_layout))) {
5766 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5767 mdname(mddev), mddev->new_layout);
5768 return ERR_PTR(-EIO);
5769 }
5770 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5771 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5772 mdname(mddev), mddev->raid_disks);
5773 return ERR_PTR(-EINVAL);
5774 }
5775
5776 if (!mddev->new_chunk_sectors ||
5777 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5778 !is_power_of_2(mddev->new_chunk_sectors)) {
5779 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5780 mdname(mddev), mddev->new_chunk_sectors << 9);
5781 return ERR_PTR(-EINVAL);
5782 }
5783
5784 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5785 if (conf == NULL)
5786 goto abort;
5787 /* Don't enable multi-threading by default*/
5788 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
5789 &new_group)) {
5790 conf->group_cnt = group_cnt;
5791 conf->worker_cnt_per_group = worker_cnt_per_group;
5792 conf->worker_groups = new_group;
5793 } else
5794 goto abort;
5795 spin_lock_init(&conf->device_lock);
5796 seqcount_init(&conf->gen_lock);
5797 init_waitqueue_head(&conf->wait_for_stripe);
5798 init_waitqueue_head(&conf->wait_for_overlap);
5799 INIT_LIST_HEAD(&conf->handle_list);
5800 INIT_LIST_HEAD(&conf->hold_list);
5801 INIT_LIST_HEAD(&conf->delayed_list);
5802 INIT_LIST_HEAD(&conf->bitmap_list);
5803 init_llist_head(&conf->released_stripes);
5804 atomic_set(&conf->active_stripes, 0);
5805 atomic_set(&conf->preread_active_stripes, 0);
5806 atomic_set(&conf->active_aligned_reads, 0);
5807 conf->bypass_threshold = BYPASS_THRESHOLD;
5808 conf->recovery_disabled = mddev->recovery_disabled - 1;
5809
5810 conf->raid_disks = mddev->raid_disks;
5811 if (mddev->reshape_position == MaxSector)
5812 conf->previous_raid_disks = mddev->raid_disks;
5813 else
5814 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5815 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5816 conf->scribble_len = scribble_len(max_disks);
5817
5818 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5819 GFP_KERNEL);
5820 if (!conf->disks)
5821 goto abort;
5822
5823 conf->mddev = mddev;
5824
5825 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5826 goto abort;
5827
5828 /* We init hash_locks[0] separately to that it can be used
5829 * as the reference lock in the spin_lock_nest_lock() call
5830 * in lock_all_device_hash_locks_irq in order to convince
5831 * lockdep that we know what we are doing.
5832 */
5833 spin_lock_init(conf->hash_locks);
5834 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
5835 spin_lock_init(conf->hash_locks + i);
5836
5837 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5838 INIT_LIST_HEAD(conf->inactive_list + i);
5839
5840 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5841 INIT_LIST_HEAD(conf->temp_inactive_list + i);
5842
5843 conf->level = mddev->new_level;
5844 if (raid5_alloc_percpu(conf) != 0)
5845 goto abort;
5846
5847 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5848
5849 rdev_for_each(rdev, mddev) {
5850 raid_disk = rdev->raid_disk;
5851 if (raid_disk >= max_disks
5852 || raid_disk < 0)
5853 continue;
5854 disk = conf->disks + raid_disk;
5855
5856 if (test_bit(Replacement, &rdev->flags)) {
5857 if (disk->replacement)
5858 goto abort;
5859 disk->replacement = rdev;
5860 } else {
5861 if (disk->rdev)
5862 goto abort;
5863 disk->rdev = rdev;
5864 }
5865
5866 if (test_bit(In_sync, &rdev->flags)) {
5867 char b[BDEVNAME_SIZE];
5868 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5869 " disk %d\n",
5870 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5871 } else if (rdev->saved_raid_disk != raid_disk)
5872 /* Cannot rely on bitmap to complete recovery */
5873 conf->fullsync = 1;
5874 }
5875
5876 conf->chunk_sectors = mddev->new_chunk_sectors;
5877 conf->level = mddev->new_level;
5878 if (conf->level == 6)
5879 conf->max_degraded = 2;
5880 else
5881 conf->max_degraded = 1;
5882 conf->algorithm = mddev->new_layout;
5883 conf->reshape_progress = mddev->reshape_position;
5884 if (conf->reshape_progress != MaxSector) {
5885 conf->prev_chunk_sectors = mddev->chunk_sectors;
5886 conf->prev_algo = mddev->layout;
5887 }
5888
5889 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5890 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5891 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
5892 if (grow_stripes(conf, NR_STRIPES)) {
5893 printk(KERN_ERR
5894 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5895 mdname(mddev), memory);
5896 goto abort;
5897 } else
5898 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5899 mdname(mddev), memory);
5900
5901 sprintf(pers_name, "raid%d", mddev->new_level);
5902 conf->thread = md_register_thread(raid5d, mddev, pers_name);
5903 if (!conf->thread) {
5904 printk(KERN_ERR
5905 "md/raid:%s: couldn't allocate thread.\n",
5906 mdname(mddev));
5907 goto abort;
5908 }
5909
5910 return conf;
5911
5912 abort:
5913 if (conf) {
5914 free_conf(conf);
5915 return ERR_PTR(-EIO);
5916 } else
5917 return ERR_PTR(-ENOMEM);
5918 }
5919
5920 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5921 {
5922 switch (algo) {
5923 case ALGORITHM_PARITY_0:
5924 if (raid_disk < max_degraded)
5925 return 1;
5926 break;
5927 case ALGORITHM_PARITY_N:
5928 if (raid_disk >= raid_disks - max_degraded)
5929 return 1;
5930 break;
5931 case ALGORITHM_PARITY_0_6:
5932 if (raid_disk == 0 ||
5933 raid_disk == raid_disks - 1)
5934 return 1;
5935 break;
5936 case ALGORITHM_LEFT_ASYMMETRIC_6:
5937 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5938 case ALGORITHM_LEFT_SYMMETRIC_6:
5939 case ALGORITHM_RIGHT_SYMMETRIC_6:
5940 if (raid_disk == raid_disks - 1)
5941 return 1;
5942 }
5943 return 0;
5944 }
5945
5946 static int run(struct mddev *mddev)
5947 {
5948 struct r5conf *conf;
5949 int working_disks = 0;
5950 int dirty_parity_disks = 0;
5951 struct md_rdev *rdev;
5952 sector_t reshape_offset = 0;
5953 int i;
5954 long long min_offset_diff = 0;
5955 int first = 1;
5956
5957 if (mddev->recovery_cp != MaxSector)
5958 printk(KERN_NOTICE "md/raid:%s: not clean"
5959 " -- starting background reconstruction\n",
5960 mdname(mddev));
5961
5962 rdev_for_each(rdev, mddev) {
5963 long long diff;
5964 if (rdev->raid_disk < 0)
5965 continue;
5966 diff = (rdev->new_data_offset - rdev->data_offset);
5967 if (first) {
5968 min_offset_diff = diff;
5969 first = 0;
5970 } else if (mddev->reshape_backwards &&
5971 diff < min_offset_diff)
5972 min_offset_diff = diff;
5973 else if (!mddev->reshape_backwards &&
5974 diff > min_offset_diff)
5975 min_offset_diff = diff;
5976 }
5977
5978 if (mddev->reshape_position != MaxSector) {
5979 /* Check that we can continue the reshape.
5980 * Difficulties arise if the stripe we would write to
5981 * next is at or after the stripe we would read from next.
5982 * For a reshape that changes the number of devices, this
5983 * is only possible for a very short time, and mdadm makes
5984 * sure that time appears to have past before assembling
5985 * the array. So we fail if that time hasn't passed.
5986 * For a reshape that keeps the number of devices the same
5987 * mdadm must be monitoring the reshape can keeping the
5988 * critical areas read-only and backed up. It will start
5989 * the array in read-only mode, so we check for that.
5990 */
5991 sector_t here_new, here_old;
5992 int old_disks;
5993 int max_degraded = (mddev->level == 6 ? 2 : 1);
5994
5995 if (mddev->new_level != mddev->level) {
5996 printk(KERN_ERR "md/raid:%s: unsupported reshape "
5997 "required - aborting.\n",
5998 mdname(mddev));
5999 return -EINVAL;
6000 }
6001 old_disks = mddev->raid_disks - mddev->delta_disks;
6002 /* reshape_position must be on a new-stripe boundary, and one
6003 * further up in new geometry must map after here in old
6004 * geometry.
6005 */
6006 here_new = mddev->reshape_position;
6007 if (sector_div(here_new, mddev->new_chunk_sectors *
6008 (mddev->raid_disks - max_degraded))) {
6009 printk(KERN_ERR "md/raid:%s: reshape_position not "
6010 "on a stripe boundary\n", mdname(mddev));
6011 return -EINVAL;
6012 }
6013 reshape_offset = here_new * mddev->new_chunk_sectors;
6014 /* here_new is the stripe we will write to */
6015 here_old = mddev->reshape_position;
6016 sector_div(here_old, mddev->chunk_sectors *
6017 (old_disks-max_degraded));
6018 /* here_old is the first stripe that we might need to read
6019 * from */
6020 if (mddev->delta_disks == 0) {
6021 if ((here_new * mddev->new_chunk_sectors !=
6022 here_old * mddev->chunk_sectors)) {
6023 printk(KERN_ERR "md/raid:%s: reshape position is"
6024 " confused - aborting\n", mdname(mddev));
6025 return -EINVAL;
6026 }
6027 /* We cannot be sure it is safe to start an in-place
6028 * reshape. It is only safe if user-space is monitoring
6029 * and taking constant backups.
6030 * mdadm always starts a situation like this in
6031 * readonly mode so it can take control before
6032 * allowing any writes. So just check for that.
6033 */
6034 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6035 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6036 /* not really in-place - so OK */;
6037 else if (mddev->ro == 0) {
6038 printk(KERN_ERR "md/raid:%s: in-place reshape "
6039 "must be started in read-only mode "
6040 "- aborting\n",
6041 mdname(mddev));
6042 return -EINVAL;
6043 }
6044 } else if (mddev->reshape_backwards
6045 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6046 here_old * mddev->chunk_sectors)
6047 : (here_new * mddev->new_chunk_sectors >=
6048 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6049 /* Reading from the same stripe as writing to - bad */
6050 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6051 "auto-recovery - aborting.\n",
6052 mdname(mddev));
6053 return -EINVAL;
6054 }
6055 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6056 mdname(mddev));
6057 /* OK, we should be able to continue; */
6058 } else {
6059 BUG_ON(mddev->level != mddev->new_level);
6060 BUG_ON(mddev->layout != mddev->new_layout);
6061 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6062 BUG_ON(mddev->delta_disks != 0);
6063 }
6064
6065 if (mddev->private == NULL)
6066 conf = setup_conf(mddev);
6067 else
6068 conf = mddev->private;
6069
6070 if (IS_ERR(conf))
6071 return PTR_ERR(conf);
6072
6073 conf->min_offset_diff = min_offset_diff;
6074 mddev->thread = conf->thread;
6075 conf->thread = NULL;
6076 mddev->private = conf;
6077
6078 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6079 i++) {
6080 rdev = conf->disks[i].rdev;
6081 if (!rdev && conf->disks[i].replacement) {
6082 /* The replacement is all we have yet */
6083 rdev = conf->disks[i].replacement;
6084 conf->disks[i].replacement = NULL;
6085 clear_bit(Replacement, &rdev->flags);
6086 conf->disks[i].rdev = rdev;
6087 }
6088 if (!rdev)
6089 continue;
6090 if (conf->disks[i].replacement &&
6091 conf->reshape_progress != MaxSector) {
6092 /* replacements and reshape simply do not mix. */
6093 printk(KERN_ERR "md: cannot handle concurrent "
6094 "replacement and reshape.\n");
6095 goto abort;
6096 }
6097 if (test_bit(In_sync, &rdev->flags)) {
6098 working_disks++;
6099 continue;
6100 }
6101 /* This disc is not fully in-sync. However if it
6102 * just stored parity (beyond the recovery_offset),
6103 * when we don't need to be concerned about the
6104 * array being dirty.
6105 * When reshape goes 'backwards', we never have
6106 * partially completed devices, so we only need
6107 * to worry about reshape going forwards.
6108 */
6109 /* Hack because v0.91 doesn't store recovery_offset properly. */
6110 if (mddev->major_version == 0 &&
6111 mddev->minor_version > 90)
6112 rdev->recovery_offset = reshape_offset;
6113
6114 if (rdev->recovery_offset < reshape_offset) {
6115 /* We need to check old and new layout */
6116 if (!only_parity(rdev->raid_disk,
6117 conf->algorithm,
6118 conf->raid_disks,
6119 conf->max_degraded))
6120 continue;
6121 }
6122 if (!only_parity(rdev->raid_disk,
6123 conf->prev_algo,
6124 conf->previous_raid_disks,
6125 conf->max_degraded))
6126 continue;
6127 dirty_parity_disks++;
6128 }
6129
6130 /*
6131 * 0 for a fully functional array, 1 or 2 for a degraded array.
6132 */
6133 mddev->degraded = calc_degraded(conf);
6134
6135 if (has_failed(conf)) {
6136 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6137 " (%d/%d failed)\n",
6138 mdname(mddev), mddev->degraded, conf->raid_disks);
6139 goto abort;
6140 }
6141
6142 /* device size must be a multiple of chunk size */
6143 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6144 mddev->resync_max_sectors = mddev->dev_sectors;
6145
6146 if (mddev->degraded > dirty_parity_disks &&
6147 mddev->recovery_cp != MaxSector) {
6148 if (mddev->ok_start_degraded)
6149 printk(KERN_WARNING
6150 "md/raid:%s: starting dirty degraded array"
6151 " - data corruption possible.\n",
6152 mdname(mddev));
6153 else {
6154 printk(KERN_ERR
6155 "md/raid:%s: cannot start dirty degraded array.\n",
6156 mdname(mddev));
6157 goto abort;
6158 }
6159 }
6160
6161 if (mddev->degraded == 0)
6162 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6163 " devices, algorithm %d\n", mdname(mddev), conf->level,
6164 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6165 mddev->new_layout);
6166 else
6167 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6168 " out of %d devices, algorithm %d\n",
6169 mdname(mddev), conf->level,
6170 mddev->raid_disks - mddev->degraded,
6171 mddev->raid_disks, mddev->new_layout);
6172
6173 print_raid5_conf(conf);
6174
6175 if (conf->reshape_progress != MaxSector) {
6176 conf->reshape_safe = conf->reshape_progress;
6177 atomic_set(&conf->reshape_stripes, 0);
6178 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6179 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6180 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6181 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6182 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6183 "reshape");
6184 }
6185
6186 /* Ok, everything is just fine now */
6187 if (mddev->to_remove == &raid5_attrs_group)
6188 mddev->to_remove = NULL;
6189 else if (mddev->kobj.sd &&
6190 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6191 printk(KERN_WARNING
6192 "raid5: failed to create sysfs attributes for %s\n",
6193 mdname(mddev));
6194 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6195
6196 if (mddev->queue) {
6197 int chunk_size;
6198 bool discard_supported = true;
6199 /* read-ahead size must cover two whole stripes, which
6200 * is 2 * (datadisks) * chunksize where 'n' is the
6201 * number of raid devices
6202 */
6203 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6204 int stripe = data_disks *
6205 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6206 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6207 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6208
6209 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
6210
6211 mddev->queue->backing_dev_info.congested_data = mddev;
6212 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
6213
6214 chunk_size = mddev->chunk_sectors << 9;
6215 blk_queue_io_min(mddev->queue, chunk_size);
6216 blk_queue_io_opt(mddev->queue, chunk_size *
6217 (conf->raid_disks - conf->max_degraded));
6218 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6219 /*
6220 * We can only discard a whole stripe. It doesn't make sense to
6221 * discard data disk but write parity disk
6222 */
6223 stripe = stripe * PAGE_SIZE;
6224 /* Round up to power of 2, as discard handling
6225 * currently assumes that */
6226 while ((stripe-1) & stripe)
6227 stripe = (stripe | (stripe-1)) + 1;
6228 mddev->queue->limits.discard_alignment = stripe;
6229 mddev->queue->limits.discard_granularity = stripe;
6230 /*
6231 * unaligned part of discard request will be ignored, so can't
6232 * guarantee discard_zeroes_data
6233 */
6234 mddev->queue->limits.discard_zeroes_data = 0;
6235
6236 blk_queue_max_write_same_sectors(mddev->queue, 0);
6237
6238 rdev_for_each(rdev, mddev) {
6239 disk_stack_limits(mddev->gendisk, rdev->bdev,
6240 rdev->data_offset << 9);
6241 disk_stack_limits(mddev->gendisk, rdev->bdev,
6242 rdev->new_data_offset << 9);
6243 /*
6244 * discard_zeroes_data is required, otherwise data
6245 * could be lost. Consider a scenario: discard a stripe
6246 * (the stripe could be inconsistent if
6247 * discard_zeroes_data is 0); write one disk of the
6248 * stripe (the stripe could be inconsistent again
6249 * depending on which disks are used to calculate
6250 * parity); the disk is broken; The stripe data of this
6251 * disk is lost.
6252 */
6253 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6254 !bdev_get_queue(rdev->bdev)->
6255 limits.discard_zeroes_data)
6256 discard_supported = false;
6257 /* Unfortunately, discard_zeroes_data is not currently
6258 * a guarantee - just a hint. So we only allow DISCARD
6259 * if the sysadmin has confirmed that only safe devices
6260 * are in use by setting a module parameter.
6261 */
6262 if (!devices_handle_discard_safely) {
6263 if (discard_supported) {
6264 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6265 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6266 }
6267 discard_supported = false;
6268 }
6269 }
6270
6271 if (discard_supported &&
6272 mddev->queue->limits.max_discard_sectors >= stripe &&
6273 mddev->queue->limits.discard_granularity >= stripe)
6274 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6275 mddev->queue);
6276 else
6277 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6278 mddev->queue);
6279 }
6280
6281 return 0;
6282 abort:
6283 md_unregister_thread(&mddev->thread);
6284 print_raid5_conf(conf);
6285 free_conf(conf);
6286 mddev->private = NULL;
6287 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6288 return -EIO;
6289 }
6290
6291 static int stop(struct mddev *mddev)
6292 {
6293 struct r5conf *conf = mddev->private;
6294
6295 md_unregister_thread(&mddev->thread);
6296 if (mddev->queue)
6297 mddev->queue->backing_dev_info.congested_fn = NULL;
6298 free_conf(conf);
6299 mddev->private = NULL;
6300 mddev->to_remove = &raid5_attrs_group;
6301 return 0;
6302 }
6303
6304 static void status(struct seq_file *seq, struct mddev *mddev)
6305 {
6306 struct r5conf *conf = mddev->private;
6307 int i;
6308
6309 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6310 mddev->chunk_sectors / 2, mddev->layout);
6311 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6312 for (i = 0; i < conf->raid_disks; i++)
6313 seq_printf (seq, "%s",
6314 conf->disks[i].rdev &&
6315 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6316 seq_printf (seq, "]");
6317 }
6318
6319 static void print_raid5_conf (struct r5conf *conf)
6320 {
6321 int i;
6322 struct disk_info *tmp;
6323
6324 printk(KERN_DEBUG "RAID conf printout:\n");
6325 if (!conf) {
6326 printk("(conf==NULL)\n");
6327 return;
6328 }
6329 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6330 conf->raid_disks,
6331 conf->raid_disks - conf->mddev->degraded);
6332
6333 for (i = 0; i < conf->raid_disks; i++) {
6334 char b[BDEVNAME_SIZE];
6335 tmp = conf->disks + i;
6336 if (tmp->rdev)
6337 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6338 i, !test_bit(Faulty, &tmp->rdev->flags),
6339 bdevname(tmp->rdev->bdev, b));
6340 }
6341 }
6342
6343 static int raid5_spare_active(struct mddev *mddev)
6344 {
6345 int i;
6346 struct r5conf *conf = mddev->private;
6347 struct disk_info *tmp;
6348 int count = 0;
6349 unsigned long flags;
6350
6351 for (i = 0; i < conf->raid_disks; i++) {
6352 tmp = conf->disks + i;
6353 if (tmp->replacement
6354 && tmp->replacement->recovery_offset == MaxSector
6355 && !test_bit(Faulty, &tmp->replacement->flags)
6356 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6357 /* Replacement has just become active. */
6358 if (!tmp->rdev
6359 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6360 count++;
6361 if (tmp->rdev) {
6362 /* Replaced device not technically faulty,
6363 * but we need to be sure it gets removed
6364 * and never re-added.
6365 */
6366 set_bit(Faulty, &tmp->rdev->flags);
6367 sysfs_notify_dirent_safe(
6368 tmp->rdev->sysfs_state);
6369 }
6370 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6371 } else if (tmp->rdev
6372 && tmp->rdev->recovery_offset == MaxSector
6373 && !test_bit(Faulty, &tmp->rdev->flags)
6374 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6375 count++;
6376 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6377 }
6378 }
6379 spin_lock_irqsave(&conf->device_lock, flags);
6380 mddev->degraded = calc_degraded(conf);
6381 spin_unlock_irqrestore(&conf->device_lock, flags);
6382 print_raid5_conf(conf);
6383 return count;
6384 }
6385
6386 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6387 {
6388 struct r5conf *conf = mddev->private;
6389 int err = 0;
6390 int number = rdev->raid_disk;
6391 struct md_rdev **rdevp;
6392 struct disk_info *p = conf->disks + number;
6393
6394 print_raid5_conf(conf);
6395 if (rdev == p->rdev)
6396 rdevp = &p->rdev;
6397 else if (rdev == p->replacement)
6398 rdevp = &p->replacement;
6399 else
6400 return 0;
6401
6402 if (number >= conf->raid_disks &&
6403 conf->reshape_progress == MaxSector)
6404 clear_bit(In_sync, &rdev->flags);
6405
6406 if (test_bit(In_sync, &rdev->flags) ||
6407 atomic_read(&rdev->nr_pending)) {
6408 err = -EBUSY;
6409 goto abort;
6410 }
6411 /* Only remove non-faulty devices if recovery
6412 * isn't possible.
6413 */
6414 if (!test_bit(Faulty, &rdev->flags) &&
6415 mddev->recovery_disabled != conf->recovery_disabled &&
6416 !has_failed(conf) &&
6417 (!p->replacement || p->replacement == rdev) &&
6418 number < conf->raid_disks) {
6419 err = -EBUSY;
6420 goto abort;
6421 }
6422 *rdevp = NULL;
6423 synchronize_rcu();
6424 if (atomic_read(&rdev->nr_pending)) {
6425 /* lost the race, try later */
6426 err = -EBUSY;
6427 *rdevp = rdev;
6428 } else if (p->replacement) {
6429 /* We must have just cleared 'rdev' */
6430 p->rdev = p->replacement;
6431 clear_bit(Replacement, &p->replacement->flags);
6432 smp_mb(); /* Make sure other CPUs may see both as identical
6433 * but will never see neither - if they are careful
6434 */
6435 p->replacement = NULL;
6436 clear_bit(WantReplacement, &rdev->flags);
6437 } else
6438 /* We might have just removed the Replacement as faulty-
6439 * clear the bit just in case
6440 */
6441 clear_bit(WantReplacement, &rdev->flags);
6442 abort:
6443
6444 print_raid5_conf(conf);
6445 return err;
6446 }
6447
6448 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6449 {
6450 struct r5conf *conf = mddev->private;
6451 int err = -EEXIST;
6452 int disk;
6453 struct disk_info *p;
6454 int first = 0;
6455 int last = conf->raid_disks - 1;
6456
6457 if (mddev->recovery_disabled == conf->recovery_disabled)
6458 return -EBUSY;
6459
6460 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6461 /* no point adding a device */
6462 return -EINVAL;
6463
6464 if (rdev->raid_disk >= 0)
6465 first = last = rdev->raid_disk;
6466
6467 /*
6468 * find the disk ... but prefer rdev->saved_raid_disk
6469 * if possible.
6470 */
6471 if (rdev->saved_raid_disk >= 0 &&
6472 rdev->saved_raid_disk >= first &&
6473 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6474 first = rdev->saved_raid_disk;
6475
6476 for (disk = first; disk <= last; disk++) {
6477 p = conf->disks + disk;
6478 if (p->rdev == NULL) {
6479 clear_bit(In_sync, &rdev->flags);
6480 rdev->raid_disk = disk;
6481 err = 0;
6482 if (rdev->saved_raid_disk != disk)
6483 conf->fullsync = 1;
6484 rcu_assign_pointer(p->rdev, rdev);
6485 goto out;
6486 }
6487 }
6488 for (disk = first; disk <= last; disk++) {
6489 p = conf->disks + disk;
6490 if (test_bit(WantReplacement, &p->rdev->flags) &&
6491 p->replacement == NULL) {
6492 clear_bit(In_sync, &rdev->flags);
6493 set_bit(Replacement, &rdev->flags);
6494 rdev->raid_disk = disk;
6495 err = 0;
6496 conf->fullsync = 1;
6497 rcu_assign_pointer(p->replacement, rdev);
6498 break;
6499 }
6500 }
6501 out:
6502 print_raid5_conf(conf);
6503 return err;
6504 }
6505
6506 static int raid5_resize(struct mddev *mddev, sector_t sectors)
6507 {
6508 /* no resync is happening, and there is enough space
6509 * on all devices, so we can resize.
6510 * We need to make sure resync covers any new space.
6511 * If the array is shrinking we should possibly wait until
6512 * any io in the removed space completes, but it hardly seems
6513 * worth it.
6514 */
6515 sector_t newsize;
6516 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6517 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
6518 if (mddev->external_size &&
6519 mddev->array_sectors > newsize)
6520 return -EINVAL;
6521 if (mddev->bitmap) {
6522 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
6523 if (ret)
6524 return ret;
6525 }
6526 md_set_array_sectors(mddev, newsize);
6527 set_capacity(mddev->gendisk, mddev->array_sectors);
6528 revalidate_disk(mddev->gendisk);
6529 if (sectors > mddev->dev_sectors &&
6530 mddev->recovery_cp > mddev->dev_sectors) {
6531 mddev->recovery_cp = mddev->dev_sectors;
6532 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6533 }
6534 mddev->dev_sectors = sectors;
6535 mddev->resync_max_sectors = sectors;
6536 return 0;
6537 }
6538
6539 static int check_stripe_cache(struct mddev *mddev)
6540 {
6541 /* Can only proceed if there are plenty of stripe_heads.
6542 * We need a minimum of one full stripe,, and for sensible progress
6543 * it is best to have about 4 times that.
6544 * If we require 4 times, then the default 256 4K stripe_heads will
6545 * allow for chunk sizes up to 256K, which is probably OK.
6546 * If the chunk size is greater, user-space should request more
6547 * stripe_heads first.
6548 */
6549 struct r5conf *conf = mddev->private;
6550 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
6551 > conf->max_nr_stripes ||
6552 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
6553 > conf->max_nr_stripes) {
6554 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
6555 mdname(mddev),
6556 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
6557 / STRIPE_SIZE)*4);
6558 return 0;
6559 }
6560 return 1;
6561 }
6562
6563 static int check_reshape(struct mddev *mddev)
6564 {
6565 struct r5conf *conf = mddev->private;
6566
6567 if (mddev->delta_disks == 0 &&
6568 mddev->new_layout == mddev->layout &&
6569 mddev->new_chunk_sectors == mddev->chunk_sectors)
6570 return 0; /* nothing to do */
6571 if (has_failed(conf))
6572 return -EINVAL;
6573 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
6574 /* We might be able to shrink, but the devices must
6575 * be made bigger first.
6576 * For raid6, 4 is the minimum size.
6577 * Otherwise 2 is the minimum
6578 */
6579 int min = 2;
6580 if (mddev->level == 6)
6581 min = 4;
6582 if (mddev->raid_disks + mddev->delta_disks < min)
6583 return -EINVAL;
6584 }
6585
6586 if (!check_stripe_cache(mddev))
6587 return -ENOSPC;
6588
6589 return resize_stripes(conf, (conf->previous_raid_disks
6590 + mddev->delta_disks));
6591 }
6592
6593 static int raid5_start_reshape(struct mddev *mddev)
6594 {
6595 struct r5conf *conf = mddev->private;
6596 struct md_rdev *rdev;
6597 int spares = 0;
6598 unsigned long flags;
6599
6600 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
6601 return -EBUSY;
6602
6603 if (!check_stripe_cache(mddev))
6604 return -ENOSPC;
6605
6606 if (has_failed(conf))
6607 return -EINVAL;
6608
6609 rdev_for_each(rdev, mddev) {
6610 if (!test_bit(In_sync, &rdev->flags)
6611 && !test_bit(Faulty, &rdev->flags))
6612 spares++;
6613 }
6614
6615 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
6616 /* Not enough devices even to make a degraded array
6617 * of that size
6618 */
6619 return -EINVAL;
6620
6621 /* Refuse to reduce size of the array. Any reductions in
6622 * array size must be through explicit setting of array_size
6623 * attribute.
6624 */
6625 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
6626 < mddev->array_sectors) {
6627 printk(KERN_ERR "md/raid:%s: array size must be reduced "
6628 "before number of disks\n", mdname(mddev));
6629 return -EINVAL;
6630 }
6631
6632 atomic_set(&conf->reshape_stripes, 0);
6633 spin_lock_irq(&conf->device_lock);
6634 write_seqcount_begin(&conf->gen_lock);
6635 conf->previous_raid_disks = conf->raid_disks;
6636 conf->raid_disks += mddev->delta_disks;
6637 conf->prev_chunk_sectors = conf->chunk_sectors;
6638 conf->chunk_sectors = mddev->new_chunk_sectors;
6639 conf->prev_algo = conf->algorithm;
6640 conf->algorithm = mddev->new_layout;
6641 conf->generation++;
6642 /* Code that selects data_offset needs to see the generation update
6643 * if reshape_progress has been set - so a memory barrier needed.
6644 */
6645 smp_mb();
6646 if (mddev->reshape_backwards)
6647 conf->reshape_progress = raid5_size(mddev, 0, 0);
6648 else
6649 conf->reshape_progress = 0;
6650 conf->reshape_safe = conf->reshape_progress;
6651 write_seqcount_end(&conf->gen_lock);
6652 spin_unlock_irq(&conf->device_lock);
6653
6654 /* Now make sure any requests that proceeded on the assumption
6655 * the reshape wasn't running - like Discard or Read - have
6656 * completed.
6657 */
6658 mddev_suspend(mddev);
6659 mddev_resume(mddev);
6660
6661 /* Add some new drives, as many as will fit.
6662 * We know there are enough to make the newly sized array work.
6663 * Don't add devices if we are reducing the number of
6664 * devices in the array. This is because it is not possible
6665 * to correctly record the "partially reconstructed" state of
6666 * such devices during the reshape and confusion could result.
6667 */
6668 if (mddev->delta_disks >= 0) {
6669 rdev_for_each(rdev, mddev)
6670 if (rdev->raid_disk < 0 &&
6671 !test_bit(Faulty, &rdev->flags)) {
6672 if (raid5_add_disk(mddev, rdev) == 0) {
6673 if (rdev->raid_disk
6674 >= conf->previous_raid_disks)
6675 set_bit(In_sync, &rdev->flags);
6676 else
6677 rdev->recovery_offset = 0;
6678
6679 if (sysfs_link_rdev(mddev, rdev))
6680 /* Failure here is OK */;
6681 }
6682 } else if (rdev->raid_disk >= conf->previous_raid_disks
6683 && !test_bit(Faulty, &rdev->flags)) {
6684 /* This is a spare that was manually added */
6685 set_bit(In_sync, &rdev->flags);
6686 }
6687
6688 /* When a reshape changes the number of devices,
6689 * ->degraded is measured against the larger of the
6690 * pre and post number of devices.
6691 */
6692 spin_lock_irqsave(&conf->device_lock, flags);
6693 mddev->degraded = calc_degraded(conf);
6694 spin_unlock_irqrestore(&conf->device_lock, flags);
6695 }
6696 mddev->raid_disks = conf->raid_disks;
6697 mddev->reshape_position = conf->reshape_progress;
6698 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6699
6700 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6701 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6702 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6703 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6704 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6705 "reshape");
6706 if (!mddev->sync_thread) {
6707 mddev->recovery = 0;
6708 spin_lock_irq(&conf->device_lock);
6709 write_seqcount_begin(&conf->gen_lock);
6710 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
6711 mddev->new_chunk_sectors =
6712 conf->chunk_sectors = conf->prev_chunk_sectors;
6713 mddev->new_layout = conf->algorithm = conf->prev_algo;
6714 rdev_for_each(rdev, mddev)
6715 rdev->new_data_offset = rdev->data_offset;
6716 smp_wmb();
6717 conf->generation --;
6718 conf->reshape_progress = MaxSector;
6719 mddev->reshape_position = MaxSector;
6720 write_seqcount_end(&conf->gen_lock);
6721 spin_unlock_irq(&conf->device_lock);
6722 return -EAGAIN;
6723 }
6724 conf->reshape_checkpoint = jiffies;
6725 md_wakeup_thread(mddev->sync_thread);
6726 md_new_event(mddev);
6727 return 0;
6728 }
6729
6730 /* This is called from the reshape thread and should make any
6731 * changes needed in 'conf'
6732 */
6733 static void end_reshape(struct r5conf *conf)
6734 {
6735
6736 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
6737 struct md_rdev *rdev;
6738
6739 spin_lock_irq(&conf->device_lock);
6740 conf->previous_raid_disks = conf->raid_disks;
6741 rdev_for_each(rdev, conf->mddev)
6742 rdev->data_offset = rdev->new_data_offset;
6743 smp_wmb();
6744 conf->reshape_progress = MaxSector;
6745 spin_unlock_irq(&conf->device_lock);
6746 wake_up(&conf->wait_for_overlap);
6747
6748 /* read-ahead size must cover two whole stripes, which is
6749 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6750 */
6751 if (conf->mddev->queue) {
6752 int data_disks = conf->raid_disks - conf->max_degraded;
6753 int stripe = data_disks * ((conf->chunk_sectors << 9)
6754 / PAGE_SIZE);
6755 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6756 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6757 }
6758 }
6759 }
6760
6761 /* This is called from the raid5d thread with mddev_lock held.
6762 * It makes config changes to the device.
6763 */
6764 static void raid5_finish_reshape(struct mddev *mddev)
6765 {
6766 struct r5conf *conf = mddev->private;
6767
6768 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6769
6770 if (mddev->delta_disks > 0) {
6771 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6772 set_capacity(mddev->gendisk, mddev->array_sectors);
6773 revalidate_disk(mddev->gendisk);
6774 } else {
6775 int d;
6776 spin_lock_irq(&conf->device_lock);
6777 mddev->degraded = calc_degraded(conf);
6778 spin_unlock_irq(&conf->device_lock);
6779 for (d = conf->raid_disks ;
6780 d < conf->raid_disks - mddev->delta_disks;
6781 d++) {
6782 struct md_rdev *rdev = conf->disks[d].rdev;
6783 if (rdev)
6784 clear_bit(In_sync, &rdev->flags);
6785 rdev = conf->disks[d].replacement;
6786 if (rdev)
6787 clear_bit(In_sync, &rdev->flags);
6788 }
6789 }
6790 mddev->layout = conf->algorithm;
6791 mddev->chunk_sectors = conf->chunk_sectors;
6792 mddev->reshape_position = MaxSector;
6793 mddev->delta_disks = 0;
6794 mddev->reshape_backwards = 0;
6795 }
6796 }
6797
6798 static void raid5_quiesce(struct mddev *mddev, int state)
6799 {
6800 struct r5conf *conf = mddev->private;
6801
6802 switch(state) {
6803 case 2: /* resume for a suspend */
6804 wake_up(&conf->wait_for_overlap);
6805 break;
6806
6807 case 1: /* stop all writes */
6808 lock_all_device_hash_locks_irq(conf);
6809 /* '2' tells resync/reshape to pause so that all
6810 * active stripes can drain
6811 */
6812 conf->quiesce = 2;
6813 wait_event_cmd(conf->wait_for_stripe,
6814 atomic_read(&conf->active_stripes) == 0 &&
6815 atomic_read(&conf->active_aligned_reads) == 0,
6816 unlock_all_device_hash_locks_irq(conf),
6817 lock_all_device_hash_locks_irq(conf));
6818 conf->quiesce = 1;
6819 unlock_all_device_hash_locks_irq(conf);
6820 /* allow reshape to continue */
6821 wake_up(&conf->wait_for_overlap);
6822 break;
6823
6824 case 0: /* re-enable writes */
6825 lock_all_device_hash_locks_irq(conf);
6826 conf->quiesce = 0;
6827 wake_up(&conf->wait_for_stripe);
6828 wake_up(&conf->wait_for_overlap);
6829 unlock_all_device_hash_locks_irq(conf);
6830 break;
6831 }
6832 }
6833
6834 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6835 {
6836 struct r0conf *raid0_conf = mddev->private;
6837 sector_t sectors;
6838
6839 /* for raid0 takeover only one zone is supported */
6840 if (raid0_conf->nr_strip_zones > 1) {
6841 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6842 mdname(mddev));
6843 return ERR_PTR(-EINVAL);
6844 }
6845
6846 sectors = raid0_conf->strip_zone[0].zone_end;
6847 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6848 mddev->dev_sectors = sectors;
6849 mddev->new_level = level;
6850 mddev->new_layout = ALGORITHM_PARITY_N;
6851 mddev->new_chunk_sectors = mddev->chunk_sectors;
6852 mddev->raid_disks += 1;
6853 mddev->delta_disks = 1;
6854 /* make sure it will be not marked as dirty */
6855 mddev->recovery_cp = MaxSector;
6856
6857 return setup_conf(mddev);
6858 }
6859
6860 static void *raid5_takeover_raid1(struct mddev *mddev)
6861 {
6862 int chunksect;
6863
6864 if (mddev->raid_disks != 2 ||
6865 mddev->degraded > 1)
6866 return ERR_PTR(-EINVAL);
6867
6868 /* Should check if there are write-behind devices? */
6869
6870 chunksect = 64*2; /* 64K by default */
6871
6872 /* The array must be an exact multiple of chunksize */
6873 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6874 chunksect >>= 1;
6875
6876 if ((chunksect<<9) < STRIPE_SIZE)
6877 /* array size does not allow a suitable chunk size */
6878 return ERR_PTR(-EINVAL);
6879
6880 mddev->new_level = 5;
6881 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6882 mddev->new_chunk_sectors = chunksect;
6883
6884 return setup_conf(mddev);
6885 }
6886
6887 static void *raid5_takeover_raid6(struct mddev *mddev)
6888 {
6889 int new_layout;
6890
6891 switch (mddev->layout) {
6892 case ALGORITHM_LEFT_ASYMMETRIC_6:
6893 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6894 break;
6895 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6896 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6897 break;
6898 case ALGORITHM_LEFT_SYMMETRIC_6:
6899 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6900 break;
6901 case ALGORITHM_RIGHT_SYMMETRIC_6:
6902 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6903 break;
6904 case ALGORITHM_PARITY_0_6:
6905 new_layout = ALGORITHM_PARITY_0;
6906 break;
6907 case ALGORITHM_PARITY_N:
6908 new_layout = ALGORITHM_PARITY_N;
6909 break;
6910 default:
6911 return ERR_PTR(-EINVAL);
6912 }
6913 mddev->new_level = 5;
6914 mddev->new_layout = new_layout;
6915 mddev->delta_disks = -1;
6916 mddev->raid_disks -= 1;
6917 return setup_conf(mddev);
6918 }
6919
6920 static int raid5_check_reshape(struct mddev *mddev)
6921 {
6922 /* For a 2-drive array, the layout and chunk size can be changed
6923 * immediately as not restriping is needed.
6924 * For larger arrays we record the new value - after validation
6925 * to be used by a reshape pass.
6926 */
6927 struct r5conf *conf = mddev->private;
6928 int new_chunk = mddev->new_chunk_sectors;
6929
6930 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6931 return -EINVAL;
6932 if (new_chunk > 0) {
6933 if (!is_power_of_2(new_chunk))
6934 return -EINVAL;
6935 if (new_chunk < (PAGE_SIZE>>9))
6936 return -EINVAL;
6937 if (mddev->array_sectors & (new_chunk-1))
6938 /* not factor of array size */
6939 return -EINVAL;
6940 }
6941
6942 /* They look valid */
6943
6944 if (mddev->raid_disks == 2) {
6945 /* can make the change immediately */
6946 if (mddev->new_layout >= 0) {
6947 conf->algorithm = mddev->new_layout;
6948 mddev->layout = mddev->new_layout;
6949 }
6950 if (new_chunk > 0) {
6951 conf->chunk_sectors = new_chunk ;
6952 mddev->chunk_sectors = new_chunk;
6953 }
6954 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6955 md_wakeup_thread(mddev->thread);
6956 }
6957 return check_reshape(mddev);
6958 }
6959
6960 static int raid6_check_reshape(struct mddev *mddev)
6961 {
6962 int new_chunk = mddev->new_chunk_sectors;
6963
6964 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6965 return -EINVAL;
6966 if (new_chunk > 0) {
6967 if (!is_power_of_2(new_chunk))
6968 return -EINVAL;
6969 if (new_chunk < (PAGE_SIZE >> 9))
6970 return -EINVAL;
6971 if (mddev->array_sectors & (new_chunk-1))
6972 /* not factor of array size */
6973 return -EINVAL;
6974 }
6975
6976 /* They look valid */
6977 return check_reshape(mddev);
6978 }
6979
6980 static void *raid5_takeover(struct mddev *mddev)
6981 {
6982 /* raid5 can take over:
6983 * raid0 - if there is only one strip zone - make it a raid4 layout
6984 * raid1 - if there are two drives. We need to know the chunk size
6985 * raid4 - trivial - just use a raid4 layout.
6986 * raid6 - Providing it is a *_6 layout
6987 */
6988 if (mddev->level == 0)
6989 return raid45_takeover_raid0(mddev, 5);
6990 if (mddev->level == 1)
6991 return raid5_takeover_raid1(mddev);
6992 if (mddev->level == 4) {
6993 mddev->new_layout = ALGORITHM_PARITY_N;
6994 mddev->new_level = 5;
6995 return setup_conf(mddev);
6996 }
6997 if (mddev->level == 6)
6998 return raid5_takeover_raid6(mddev);
6999
7000 return ERR_PTR(-EINVAL);
7001 }
7002
7003 static void *raid4_takeover(struct mddev *mddev)
7004 {
7005 /* raid4 can take over:
7006 * raid0 - if there is only one strip zone
7007 * raid5 - if layout is right
7008 */
7009 if (mddev->level == 0)
7010 return raid45_takeover_raid0(mddev, 4);
7011 if (mddev->level == 5 &&
7012 mddev->layout == ALGORITHM_PARITY_N) {
7013 mddev->new_layout = 0;
7014 mddev->new_level = 4;
7015 return setup_conf(mddev);
7016 }
7017 return ERR_PTR(-EINVAL);
7018 }
7019
7020 static struct md_personality raid5_personality;
7021
7022 static void *raid6_takeover(struct mddev *mddev)
7023 {
7024 /* Currently can only take over a raid5. We map the
7025 * personality to an equivalent raid6 personality
7026 * with the Q block at the end.
7027 */
7028 int new_layout;
7029
7030 if (mddev->pers != &raid5_personality)
7031 return ERR_PTR(-EINVAL);
7032 if (mddev->degraded > 1)
7033 return ERR_PTR(-EINVAL);
7034 if (mddev->raid_disks > 253)
7035 return ERR_PTR(-EINVAL);
7036 if (mddev->raid_disks < 3)
7037 return ERR_PTR(-EINVAL);
7038
7039 switch (mddev->layout) {
7040 case ALGORITHM_LEFT_ASYMMETRIC:
7041 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7042 break;
7043 case ALGORITHM_RIGHT_ASYMMETRIC:
7044 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7045 break;
7046 case ALGORITHM_LEFT_SYMMETRIC:
7047 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7048 break;
7049 case ALGORITHM_RIGHT_SYMMETRIC:
7050 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7051 break;
7052 case ALGORITHM_PARITY_0:
7053 new_layout = ALGORITHM_PARITY_0_6;
7054 break;
7055 case ALGORITHM_PARITY_N:
7056 new_layout = ALGORITHM_PARITY_N;
7057 break;
7058 default:
7059 return ERR_PTR(-EINVAL);
7060 }
7061 mddev->new_level = 6;
7062 mddev->new_layout = new_layout;
7063 mddev->delta_disks = 1;
7064 mddev->raid_disks += 1;
7065 return setup_conf(mddev);
7066 }
7067
7068 static struct md_personality raid6_personality =
7069 {
7070 .name = "raid6",
7071 .level = 6,
7072 .owner = THIS_MODULE,
7073 .make_request = make_request,
7074 .run = run,
7075 .stop = stop,
7076 .status = status,
7077 .error_handler = error,
7078 .hot_add_disk = raid5_add_disk,
7079 .hot_remove_disk= raid5_remove_disk,
7080 .spare_active = raid5_spare_active,
7081 .sync_request = sync_request,
7082 .resize = raid5_resize,
7083 .size = raid5_size,
7084 .check_reshape = raid6_check_reshape,
7085 .start_reshape = raid5_start_reshape,
7086 .finish_reshape = raid5_finish_reshape,
7087 .quiesce = raid5_quiesce,
7088 .takeover = raid6_takeover,
7089 };
7090 static struct md_personality raid5_personality =
7091 {
7092 .name = "raid5",
7093 .level = 5,
7094 .owner = THIS_MODULE,
7095 .make_request = make_request,
7096 .run = run,
7097 .stop = stop,
7098 .status = status,
7099 .error_handler = error,
7100 .hot_add_disk = raid5_add_disk,
7101 .hot_remove_disk= raid5_remove_disk,
7102 .spare_active = raid5_spare_active,
7103 .sync_request = sync_request,
7104 .resize = raid5_resize,
7105 .size = raid5_size,
7106 .check_reshape = raid5_check_reshape,
7107 .start_reshape = raid5_start_reshape,
7108 .finish_reshape = raid5_finish_reshape,
7109 .quiesce = raid5_quiesce,
7110 .takeover = raid5_takeover,
7111 };
7112
7113 static struct md_personality raid4_personality =
7114 {
7115 .name = "raid4",
7116 .level = 4,
7117 .owner = THIS_MODULE,
7118 .make_request = make_request,
7119 .run = run,
7120 .stop = stop,
7121 .status = status,
7122 .error_handler = error,
7123 .hot_add_disk = raid5_add_disk,
7124 .hot_remove_disk= raid5_remove_disk,
7125 .spare_active = raid5_spare_active,
7126 .sync_request = sync_request,
7127 .resize = raid5_resize,
7128 .size = raid5_size,
7129 .check_reshape = raid5_check_reshape,
7130 .start_reshape = raid5_start_reshape,
7131 .finish_reshape = raid5_finish_reshape,
7132 .quiesce = raid5_quiesce,
7133 .takeover = raid4_takeover,
7134 };
7135
7136 static int __init raid5_init(void)
7137 {
7138 raid5_wq = alloc_workqueue("raid5wq",
7139 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7140 if (!raid5_wq)
7141 return -ENOMEM;
7142 register_md_personality(&raid6_personality);
7143 register_md_personality(&raid5_personality);
7144 register_md_personality(&raid4_personality);
7145 return 0;
7146 }
7147
7148 static void raid5_exit(void)
7149 {
7150 unregister_md_personality(&raid6_personality);
7151 unregister_md_personality(&raid5_personality);
7152 unregister_md_personality(&raid4_personality);
7153 destroy_workqueue(raid5_wq);
7154 }
7155
7156 module_init(raid5_init);
7157 module_exit(raid5_exit);
7158 MODULE_LICENSE("GPL");
7159 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7160 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7161 MODULE_ALIAS("md-raid5");
7162 MODULE_ALIAS("md-raid4");
7163 MODULE_ALIAS("md-level-5");
7164 MODULE_ALIAS("md-level-4");
7165 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7166 MODULE_ALIAS("md-raid6");
7167 MODULE_ALIAS("md-level-6");
7168
7169 /* This used to be two separate modules, they were: */
7170 MODULE_ALIAS("raid5");
7171 MODULE_ALIAS("raid6");
This page took 0.419039 seconds and 5 git commands to generate.