224de022e7c5d6574cf46747947b3c9e326c8632
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83 * The following can be used to debug the driver
84 */
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112 struct bio *bi = return_bi;
113 while (bi) {
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
118 bio_endio(bi, 0);
119 bi = return_bi;
120 }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static int stripe_operations_active(struct stripe_head *sh)
126 {
127 return sh->check_state || sh->reconstruct_state ||
128 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
129 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
130 }
131
132 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
133 {
134 if (atomic_dec_and_test(&sh->count)) {
135 BUG_ON(!list_empty(&sh->lru));
136 BUG_ON(atomic_read(&conf->active_stripes)==0);
137 if (test_bit(STRIPE_HANDLE, &sh->state)) {
138 if (test_bit(STRIPE_DELAYED, &sh->state)) {
139 list_add_tail(&sh->lru, &conf->delayed_list);
140 blk_plug_device(conf->mddev->queue);
141 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
142 sh->bm_seq - conf->seq_write > 0) {
143 list_add_tail(&sh->lru, &conf->bitmap_list);
144 blk_plug_device(conf->mddev->queue);
145 } else {
146 clear_bit(STRIPE_BIT_DELAY, &sh->state);
147 list_add_tail(&sh->lru, &conf->handle_list);
148 }
149 md_wakeup_thread(conf->mddev->thread);
150 } else {
151 BUG_ON(stripe_operations_active(sh));
152 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
153 atomic_dec(&conf->preread_active_stripes);
154 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
155 md_wakeup_thread(conf->mddev->thread);
156 }
157 atomic_dec(&conf->active_stripes);
158 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
159 list_add_tail(&sh->lru, &conf->inactive_list);
160 wake_up(&conf->wait_for_stripe);
161 if (conf->retry_read_aligned)
162 md_wakeup_thread(conf->mddev->thread);
163 }
164 }
165 }
166 }
167 static void release_stripe(struct stripe_head *sh)
168 {
169 raid5_conf_t *conf = sh->raid_conf;
170 unsigned long flags;
171
172 spin_lock_irqsave(&conf->device_lock, flags);
173 __release_stripe(conf, sh);
174 spin_unlock_irqrestore(&conf->device_lock, flags);
175 }
176
177 static inline void remove_hash(struct stripe_head *sh)
178 {
179 pr_debug("remove_hash(), stripe %llu\n",
180 (unsigned long long)sh->sector);
181
182 hlist_del_init(&sh->hash);
183 }
184
185 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
186 {
187 struct hlist_head *hp = stripe_hash(conf, sh->sector);
188
189 pr_debug("insert_hash(), stripe %llu\n",
190 (unsigned long long)sh->sector);
191
192 CHECK_DEVLOCK();
193 hlist_add_head(&sh->hash, hp);
194 }
195
196
197 /* find an idle stripe, make sure it is unhashed, and return it. */
198 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
199 {
200 struct stripe_head *sh = NULL;
201 struct list_head *first;
202
203 CHECK_DEVLOCK();
204 if (list_empty(&conf->inactive_list))
205 goto out;
206 first = conf->inactive_list.next;
207 sh = list_entry(first, struct stripe_head, lru);
208 list_del_init(first);
209 remove_hash(sh);
210 atomic_inc(&conf->active_stripes);
211 out:
212 return sh;
213 }
214
215 static void shrink_buffers(struct stripe_head *sh, int num)
216 {
217 struct page *p;
218 int i;
219
220 for (i=0; i<num ; i++) {
221 p = sh->dev[i].page;
222 if (!p)
223 continue;
224 sh->dev[i].page = NULL;
225 put_page(p);
226 }
227 }
228
229 static int grow_buffers(struct stripe_head *sh, int num)
230 {
231 int i;
232
233 for (i=0; i<num; i++) {
234 struct page *page;
235
236 if (!(page = alloc_page(GFP_KERNEL))) {
237 return 1;
238 }
239 sh->dev[i].page = page;
240 }
241 return 0;
242 }
243
244 static void raid5_build_block (struct stripe_head *sh, int i);
245
246 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
247 {
248 raid5_conf_t *conf = sh->raid_conf;
249 int i;
250
251 BUG_ON(atomic_read(&sh->count) != 0);
252 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
253 BUG_ON(stripe_operations_active(sh));
254
255 CHECK_DEVLOCK();
256 pr_debug("init_stripe called, stripe %llu\n",
257 (unsigned long long)sh->sector);
258
259 remove_hash(sh);
260
261 sh->sector = sector;
262 sh->pd_idx = pd_idx;
263 sh->state = 0;
264
265 sh->disks = disks;
266
267 for (i = sh->disks; i--; ) {
268 struct r5dev *dev = &sh->dev[i];
269
270 if (dev->toread || dev->read || dev->towrite || dev->written ||
271 test_bit(R5_LOCKED, &dev->flags)) {
272 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
273 (unsigned long long)sh->sector, i, dev->toread,
274 dev->read, dev->towrite, dev->written,
275 test_bit(R5_LOCKED, &dev->flags));
276 BUG();
277 }
278 dev->flags = 0;
279 raid5_build_block(sh, i);
280 }
281 insert_hash(conf, sh);
282 }
283
284 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
285 {
286 struct stripe_head *sh;
287 struct hlist_node *hn;
288
289 CHECK_DEVLOCK();
290 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
291 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
292 if (sh->sector == sector && sh->disks == disks)
293 return sh;
294 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
295 return NULL;
296 }
297
298 static void unplug_slaves(mddev_t *mddev);
299 static void raid5_unplug_device(struct request_queue *q);
300
301 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
302 int pd_idx, int noblock)
303 {
304 struct stripe_head *sh;
305
306 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
307
308 spin_lock_irq(&conf->device_lock);
309
310 do {
311 wait_event_lock_irq(conf->wait_for_stripe,
312 conf->quiesce == 0,
313 conf->device_lock, /* nothing */);
314 sh = __find_stripe(conf, sector, disks);
315 if (!sh) {
316 if (!conf->inactive_blocked)
317 sh = get_free_stripe(conf);
318 if (noblock && sh == NULL)
319 break;
320 if (!sh) {
321 conf->inactive_blocked = 1;
322 wait_event_lock_irq(conf->wait_for_stripe,
323 !list_empty(&conf->inactive_list) &&
324 (atomic_read(&conf->active_stripes)
325 < (conf->max_nr_stripes *3/4)
326 || !conf->inactive_blocked),
327 conf->device_lock,
328 raid5_unplug_device(conf->mddev->queue)
329 );
330 conf->inactive_blocked = 0;
331 } else
332 init_stripe(sh, sector, pd_idx, disks);
333 } else {
334 if (atomic_read(&sh->count)) {
335 BUG_ON(!list_empty(&sh->lru));
336 } else {
337 if (!test_bit(STRIPE_HANDLE, &sh->state))
338 atomic_inc(&conf->active_stripes);
339 if (list_empty(&sh->lru) &&
340 !test_bit(STRIPE_EXPANDING, &sh->state))
341 BUG();
342 list_del_init(&sh->lru);
343 }
344 }
345 } while (sh == NULL);
346
347 if (sh)
348 atomic_inc(&sh->count);
349
350 spin_unlock_irq(&conf->device_lock);
351 return sh;
352 }
353
354 static void
355 raid5_end_read_request(struct bio *bi, int error);
356 static void
357 raid5_end_write_request(struct bio *bi, int error);
358
359 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
360 {
361 raid5_conf_t *conf = sh->raid_conf;
362 int i, disks = sh->disks;
363
364 might_sleep();
365
366 for (i = disks; i--; ) {
367 int rw;
368 struct bio *bi;
369 mdk_rdev_t *rdev;
370 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
371 rw = WRITE;
372 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
373 rw = READ;
374 else
375 continue;
376
377 bi = &sh->dev[i].req;
378
379 bi->bi_rw = rw;
380 if (rw == WRITE)
381 bi->bi_end_io = raid5_end_write_request;
382 else
383 bi->bi_end_io = raid5_end_read_request;
384
385 rcu_read_lock();
386 rdev = rcu_dereference(conf->disks[i].rdev);
387 if (rdev && test_bit(Faulty, &rdev->flags))
388 rdev = NULL;
389 if (rdev)
390 atomic_inc(&rdev->nr_pending);
391 rcu_read_unlock();
392
393 if (rdev) {
394 if (s->syncing || s->expanding || s->expanded)
395 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
396
397 set_bit(STRIPE_IO_STARTED, &sh->state);
398
399 bi->bi_bdev = rdev->bdev;
400 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
401 __func__, (unsigned long long)sh->sector,
402 bi->bi_rw, i);
403 atomic_inc(&sh->count);
404 bi->bi_sector = sh->sector + rdev->data_offset;
405 bi->bi_flags = 1 << BIO_UPTODATE;
406 bi->bi_vcnt = 1;
407 bi->bi_max_vecs = 1;
408 bi->bi_idx = 0;
409 bi->bi_io_vec = &sh->dev[i].vec;
410 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
411 bi->bi_io_vec[0].bv_offset = 0;
412 bi->bi_size = STRIPE_SIZE;
413 bi->bi_next = NULL;
414 if (rw == WRITE &&
415 test_bit(R5_ReWrite, &sh->dev[i].flags))
416 atomic_add(STRIPE_SECTORS,
417 &rdev->corrected_errors);
418 generic_make_request(bi);
419 } else {
420 if (rw == WRITE)
421 set_bit(STRIPE_DEGRADED, &sh->state);
422 pr_debug("skip op %ld on disc %d for sector %llu\n",
423 bi->bi_rw, i, (unsigned long long)sh->sector);
424 clear_bit(R5_LOCKED, &sh->dev[i].flags);
425 set_bit(STRIPE_HANDLE, &sh->state);
426 }
427 }
428 }
429
430 static struct dma_async_tx_descriptor *
431 async_copy_data(int frombio, struct bio *bio, struct page *page,
432 sector_t sector, struct dma_async_tx_descriptor *tx)
433 {
434 struct bio_vec *bvl;
435 struct page *bio_page;
436 int i;
437 int page_offset;
438
439 if (bio->bi_sector >= sector)
440 page_offset = (signed)(bio->bi_sector - sector) * 512;
441 else
442 page_offset = (signed)(sector - bio->bi_sector) * -512;
443 bio_for_each_segment(bvl, bio, i) {
444 int len = bio_iovec_idx(bio, i)->bv_len;
445 int clen;
446 int b_offset = 0;
447
448 if (page_offset < 0) {
449 b_offset = -page_offset;
450 page_offset += b_offset;
451 len -= b_offset;
452 }
453
454 if (len > 0 && page_offset + len > STRIPE_SIZE)
455 clen = STRIPE_SIZE - page_offset;
456 else
457 clen = len;
458
459 if (clen > 0) {
460 b_offset += bio_iovec_idx(bio, i)->bv_offset;
461 bio_page = bio_iovec_idx(bio, i)->bv_page;
462 if (frombio)
463 tx = async_memcpy(page, bio_page, page_offset,
464 b_offset, clen,
465 ASYNC_TX_DEP_ACK,
466 tx, NULL, NULL);
467 else
468 tx = async_memcpy(bio_page, page, b_offset,
469 page_offset, clen,
470 ASYNC_TX_DEP_ACK,
471 tx, NULL, NULL);
472 }
473 if (clen < len) /* hit end of page */
474 break;
475 page_offset += len;
476 }
477
478 return tx;
479 }
480
481 static void ops_complete_biofill(void *stripe_head_ref)
482 {
483 struct stripe_head *sh = stripe_head_ref;
484 struct bio *return_bi = NULL;
485 raid5_conf_t *conf = sh->raid_conf;
486 int i;
487
488 pr_debug("%s: stripe %llu\n", __func__,
489 (unsigned long long)sh->sector);
490
491 /* clear completed biofills */
492 spin_lock_irq(&conf->device_lock);
493 for (i = sh->disks; i--; ) {
494 struct r5dev *dev = &sh->dev[i];
495
496 /* acknowledge completion of a biofill operation */
497 /* and check if we need to reply to a read request,
498 * new R5_Wantfill requests are held off until
499 * !STRIPE_BIOFILL_RUN
500 */
501 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
502 struct bio *rbi, *rbi2;
503
504 BUG_ON(!dev->read);
505 rbi = dev->read;
506 dev->read = NULL;
507 while (rbi && rbi->bi_sector <
508 dev->sector + STRIPE_SECTORS) {
509 rbi2 = r5_next_bio(rbi, dev->sector);
510 if (--rbi->bi_phys_segments == 0) {
511 rbi->bi_next = return_bi;
512 return_bi = rbi;
513 }
514 rbi = rbi2;
515 }
516 }
517 }
518 spin_unlock_irq(&conf->device_lock);
519 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
520
521 return_io(return_bi);
522
523 set_bit(STRIPE_HANDLE, &sh->state);
524 release_stripe(sh);
525 }
526
527 static void ops_run_biofill(struct stripe_head *sh)
528 {
529 struct dma_async_tx_descriptor *tx = NULL;
530 raid5_conf_t *conf = sh->raid_conf;
531 int i;
532
533 pr_debug("%s: stripe %llu\n", __func__,
534 (unsigned long long)sh->sector);
535
536 for (i = sh->disks; i--; ) {
537 struct r5dev *dev = &sh->dev[i];
538 if (test_bit(R5_Wantfill, &dev->flags)) {
539 struct bio *rbi;
540 spin_lock_irq(&conf->device_lock);
541 dev->read = rbi = dev->toread;
542 dev->toread = NULL;
543 spin_unlock_irq(&conf->device_lock);
544 while (rbi && rbi->bi_sector <
545 dev->sector + STRIPE_SECTORS) {
546 tx = async_copy_data(0, rbi, dev->page,
547 dev->sector, tx);
548 rbi = r5_next_bio(rbi, dev->sector);
549 }
550 }
551 }
552
553 atomic_inc(&sh->count);
554 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
555 ops_complete_biofill, sh);
556 }
557
558 static void ops_complete_compute5(void *stripe_head_ref)
559 {
560 struct stripe_head *sh = stripe_head_ref;
561 int target = sh->ops.target;
562 struct r5dev *tgt = &sh->dev[target];
563
564 pr_debug("%s: stripe %llu\n", __func__,
565 (unsigned long long)sh->sector);
566
567 set_bit(R5_UPTODATE, &tgt->flags);
568 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
569 clear_bit(R5_Wantcompute, &tgt->flags);
570 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
571 if (sh->check_state == check_state_compute_run)
572 sh->check_state = check_state_compute_result;
573 set_bit(STRIPE_HANDLE, &sh->state);
574 release_stripe(sh);
575 }
576
577 static struct dma_async_tx_descriptor *ops_run_compute5(struct stripe_head *sh)
578 {
579 /* kernel stack size limits the total number of disks */
580 int disks = sh->disks;
581 struct page *xor_srcs[disks];
582 int target = sh->ops.target;
583 struct r5dev *tgt = &sh->dev[target];
584 struct page *xor_dest = tgt->page;
585 int count = 0;
586 struct dma_async_tx_descriptor *tx;
587 int i;
588
589 pr_debug("%s: stripe %llu block: %d\n",
590 __func__, (unsigned long long)sh->sector, target);
591 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
592
593 for (i = disks; i--; )
594 if (i != target)
595 xor_srcs[count++] = sh->dev[i].page;
596
597 atomic_inc(&sh->count);
598
599 if (unlikely(count == 1))
600 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
601 0, NULL, ops_complete_compute5, sh);
602 else
603 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
604 ASYNC_TX_XOR_ZERO_DST, NULL,
605 ops_complete_compute5, sh);
606
607 return tx;
608 }
609
610 static void ops_complete_prexor(void *stripe_head_ref)
611 {
612 struct stripe_head *sh = stripe_head_ref;
613
614 pr_debug("%s: stripe %llu\n", __func__,
615 (unsigned long long)sh->sector);
616 }
617
618 static struct dma_async_tx_descriptor *
619 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
620 {
621 /* kernel stack size limits the total number of disks */
622 int disks = sh->disks;
623 struct page *xor_srcs[disks];
624 int count = 0, pd_idx = sh->pd_idx, i;
625
626 /* existing parity data subtracted */
627 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
628
629 pr_debug("%s: stripe %llu\n", __func__,
630 (unsigned long long)sh->sector);
631
632 for (i = disks; i--; ) {
633 struct r5dev *dev = &sh->dev[i];
634 /* Only process blocks that are known to be uptodate */
635 if (test_bit(R5_Wantdrain, &dev->flags))
636 xor_srcs[count++] = dev->page;
637 }
638
639 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
640 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
641 ops_complete_prexor, sh);
642
643 return tx;
644 }
645
646 static struct dma_async_tx_descriptor *
647 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
648 {
649 int disks = sh->disks;
650 int i;
651
652 pr_debug("%s: stripe %llu\n", __func__,
653 (unsigned long long)sh->sector);
654
655 for (i = disks; i--; ) {
656 struct r5dev *dev = &sh->dev[i];
657 struct bio *chosen;
658
659 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
660 struct bio *wbi;
661
662 spin_lock(&sh->lock);
663 chosen = dev->towrite;
664 dev->towrite = NULL;
665 BUG_ON(dev->written);
666 wbi = dev->written = chosen;
667 spin_unlock(&sh->lock);
668
669 while (wbi && wbi->bi_sector <
670 dev->sector + STRIPE_SECTORS) {
671 tx = async_copy_data(1, wbi, dev->page,
672 dev->sector, tx);
673 wbi = r5_next_bio(wbi, dev->sector);
674 }
675 }
676 }
677
678 return tx;
679 }
680
681 static void ops_complete_postxor(void *stripe_head_ref)
682 {
683 struct stripe_head *sh = stripe_head_ref;
684 int disks = sh->disks, i, pd_idx = sh->pd_idx;
685
686 pr_debug("%s: stripe %llu\n", __func__,
687 (unsigned long long)sh->sector);
688
689 for (i = disks; i--; ) {
690 struct r5dev *dev = &sh->dev[i];
691 if (dev->written || i == pd_idx)
692 set_bit(R5_UPTODATE, &dev->flags);
693 }
694
695 if (sh->reconstruct_state == reconstruct_state_drain_run)
696 sh->reconstruct_state = reconstruct_state_drain_result;
697 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
698 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
699 else {
700 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
701 sh->reconstruct_state = reconstruct_state_result;
702 }
703
704 set_bit(STRIPE_HANDLE, &sh->state);
705 release_stripe(sh);
706 }
707
708 static void
709 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
710 {
711 /* kernel stack size limits the total number of disks */
712 int disks = sh->disks;
713 struct page *xor_srcs[disks];
714
715 int count = 0, pd_idx = sh->pd_idx, i;
716 struct page *xor_dest;
717 int prexor = 0;
718 unsigned long flags;
719
720 pr_debug("%s: stripe %llu\n", __func__,
721 (unsigned long long)sh->sector);
722
723 /* check if prexor is active which means only process blocks
724 * that are part of a read-modify-write (written)
725 */
726 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
727 prexor = 1;
728 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
729 for (i = disks; i--; ) {
730 struct r5dev *dev = &sh->dev[i];
731 if (dev->written)
732 xor_srcs[count++] = dev->page;
733 }
734 } else {
735 xor_dest = sh->dev[pd_idx].page;
736 for (i = disks; i--; ) {
737 struct r5dev *dev = &sh->dev[i];
738 if (i != pd_idx)
739 xor_srcs[count++] = dev->page;
740 }
741 }
742
743 /* 1/ if we prexor'd then the dest is reused as a source
744 * 2/ if we did not prexor then we are redoing the parity
745 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
746 * for the synchronous xor case
747 */
748 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
749 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
750
751 atomic_inc(&sh->count);
752
753 if (unlikely(count == 1)) {
754 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
755 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
756 flags, tx, ops_complete_postxor, sh);
757 } else
758 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
759 flags, tx, ops_complete_postxor, sh);
760 }
761
762 static void ops_complete_check(void *stripe_head_ref)
763 {
764 struct stripe_head *sh = stripe_head_ref;
765
766 pr_debug("%s: stripe %llu\n", __func__,
767 (unsigned long long)sh->sector);
768
769 sh->check_state = check_state_check_result;
770 set_bit(STRIPE_HANDLE, &sh->state);
771 release_stripe(sh);
772 }
773
774 static void ops_run_check(struct stripe_head *sh)
775 {
776 /* kernel stack size limits the total number of disks */
777 int disks = sh->disks;
778 struct page *xor_srcs[disks];
779 struct dma_async_tx_descriptor *tx;
780
781 int count = 0, pd_idx = sh->pd_idx, i;
782 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
783
784 pr_debug("%s: stripe %llu\n", __func__,
785 (unsigned long long)sh->sector);
786
787 for (i = disks; i--; ) {
788 struct r5dev *dev = &sh->dev[i];
789 if (i != pd_idx)
790 xor_srcs[count++] = dev->page;
791 }
792
793 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
794 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
795
796 atomic_inc(&sh->count);
797 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
798 ops_complete_check, sh);
799 }
800
801 static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
802 {
803 int overlap_clear = 0, i, disks = sh->disks;
804 struct dma_async_tx_descriptor *tx = NULL;
805
806 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
807 ops_run_biofill(sh);
808 overlap_clear++;
809 }
810
811 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
812 tx = ops_run_compute5(sh);
813 /* terminate the chain if postxor is not set to be run */
814 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
815 async_tx_ack(tx);
816 }
817
818 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
819 tx = ops_run_prexor(sh, tx);
820
821 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
822 tx = ops_run_biodrain(sh, tx);
823 overlap_clear++;
824 }
825
826 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
827 ops_run_postxor(sh, tx);
828
829 if (test_bit(STRIPE_OP_CHECK, &ops_request))
830 ops_run_check(sh);
831
832 if (overlap_clear)
833 for (i = disks; i--; ) {
834 struct r5dev *dev = &sh->dev[i];
835 if (test_and_clear_bit(R5_Overlap, &dev->flags))
836 wake_up(&sh->raid_conf->wait_for_overlap);
837 }
838 }
839
840 static int grow_one_stripe(raid5_conf_t *conf)
841 {
842 struct stripe_head *sh;
843 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
844 if (!sh)
845 return 0;
846 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
847 sh->raid_conf = conf;
848 spin_lock_init(&sh->lock);
849
850 if (grow_buffers(sh, conf->raid_disks)) {
851 shrink_buffers(sh, conf->raid_disks);
852 kmem_cache_free(conf->slab_cache, sh);
853 return 0;
854 }
855 sh->disks = conf->raid_disks;
856 /* we just created an active stripe so... */
857 atomic_set(&sh->count, 1);
858 atomic_inc(&conf->active_stripes);
859 INIT_LIST_HEAD(&sh->lru);
860 release_stripe(sh);
861 return 1;
862 }
863
864 static int grow_stripes(raid5_conf_t *conf, int num)
865 {
866 struct kmem_cache *sc;
867 int devs = conf->raid_disks;
868
869 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
870 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
871 conf->active_name = 0;
872 sc = kmem_cache_create(conf->cache_name[conf->active_name],
873 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
874 0, 0, NULL);
875 if (!sc)
876 return 1;
877 conf->slab_cache = sc;
878 conf->pool_size = devs;
879 while (num--)
880 if (!grow_one_stripe(conf))
881 return 1;
882 return 0;
883 }
884
885 #ifdef CONFIG_MD_RAID5_RESHAPE
886 static int resize_stripes(raid5_conf_t *conf, int newsize)
887 {
888 /* Make all the stripes able to hold 'newsize' devices.
889 * New slots in each stripe get 'page' set to a new page.
890 *
891 * This happens in stages:
892 * 1/ create a new kmem_cache and allocate the required number of
893 * stripe_heads.
894 * 2/ gather all the old stripe_heads and tranfer the pages across
895 * to the new stripe_heads. This will have the side effect of
896 * freezing the array as once all stripe_heads have been collected,
897 * no IO will be possible. Old stripe heads are freed once their
898 * pages have been transferred over, and the old kmem_cache is
899 * freed when all stripes are done.
900 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
901 * we simple return a failre status - no need to clean anything up.
902 * 4/ allocate new pages for the new slots in the new stripe_heads.
903 * If this fails, we don't bother trying the shrink the
904 * stripe_heads down again, we just leave them as they are.
905 * As each stripe_head is processed the new one is released into
906 * active service.
907 *
908 * Once step2 is started, we cannot afford to wait for a write,
909 * so we use GFP_NOIO allocations.
910 */
911 struct stripe_head *osh, *nsh;
912 LIST_HEAD(newstripes);
913 struct disk_info *ndisks;
914 int err;
915 struct kmem_cache *sc;
916 int i;
917
918 if (newsize <= conf->pool_size)
919 return 0; /* never bother to shrink */
920
921 err = md_allow_write(conf->mddev);
922 if (err)
923 return err;
924
925 /* Step 1 */
926 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
927 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
928 0, 0, NULL);
929 if (!sc)
930 return -ENOMEM;
931
932 for (i = conf->max_nr_stripes; i; i--) {
933 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
934 if (!nsh)
935 break;
936
937 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
938
939 nsh->raid_conf = conf;
940 spin_lock_init(&nsh->lock);
941
942 list_add(&nsh->lru, &newstripes);
943 }
944 if (i) {
945 /* didn't get enough, give up */
946 while (!list_empty(&newstripes)) {
947 nsh = list_entry(newstripes.next, struct stripe_head, lru);
948 list_del(&nsh->lru);
949 kmem_cache_free(sc, nsh);
950 }
951 kmem_cache_destroy(sc);
952 return -ENOMEM;
953 }
954 /* Step 2 - Must use GFP_NOIO now.
955 * OK, we have enough stripes, start collecting inactive
956 * stripes and copying them over
957 */
958 list_for_each_entry(nsh, &newstripes, lru) {
959 spin_lock_irq(&conf->device_lock);
960 wait_event_lock_irq(conf->wait_for_stripe,
961 !list_empty(&conf->inactive_list),
962 conf->device_lock,
963 unplug_slaves(conf->mddev)
964 );
965 osh = get_free_stripe(conf);
966 spin_unlock_irq(&conf->device_lock);
967 atomic_set(&nsh->count, 1);
968 for(i=0; i<conf->pool_size; i++)
969 nsh->dev[i].page = osh->dev[i].page;
970 for( ; i<newsize; i++)
971 nsh->dev[i].page = NULL;
972 kmem_cache_free(conf->slab_cache, osh);
973 }
974 kmem_cache_destroy(conf->slab_cache);
975
976 /* Step 3.
977 * At this point, we are holding all the stripes so the array
978 * is completely stalled, so now is a good time to resize
979 * conf->disks.
980 */
981 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
982 if (ndisks) {
983 for (i=0; i<conf->raid_disks; i++)
984 ndisks[i] = conf->disks[i];
985 kfree(conf->disks);
986 conf->disks = ndisks;
987 } else
988 err = -ENOMEM;
989
990 /* Step 4, return new stripes to service */
991 while(!list_empty(&newstripes)) {
992 nsh = list_entry(newstripes.next, struct stripe_head, lru);
993 list_del_init(&nsh->lru);
994 for (i=conf->raid_disks; i < newsize; i++)
995 if (nsh->dev[i].page == NULL) {
996 struct page *p = alloc_page(GFP_NOIO);
997 nsh->dev[i].page = p;
998 if (!p)
999 err = -ENOMEM;
1000 }
1001 release_stripe(nsh);
1002 }
1003 /* critical section pass, GFP_NOIO no longer needed */
1004
1005 conf->slab_cache = sc;
1006 conf->active_name = 1-conf->active_name;
1007 conf->pool_size = newsize;
1008 return err;
1009 }
1010 #endif
1011
1012 static int drop_one_stripe(raid5_conf_t *conf)
1013 {
1014 struct stripe_head *sh;
1015
1016 spin_lock_irq(&conf->device_lock);
1017 sh = get_free_stripe(conf);
1018 spin_unlock_irq(&conf->device_lock);
1019 if (!sh)
1020 return 0;
1021 BUG_ON(atomic_read(&sh->count));
1022 shrink_buffers(sh, conf->pool_size);
1023 kmem_cache_free(conf->slab_cache, sh);
1024 atomic_dec(&conf->active_stripes);
1025 return 1;
1026 }
1027
1028 static void shrink_stripes(raid5_conf_t *conf)
1029 {
1030 while (drop_one_stripe(conf))
1031 ;
1032
1033 if (conf->slab_cache)
1034 kmem_cache_destroy(conf->slab_cache);
1035 conf->slab_cache = NULL;
1036 }
1037
1038 static void raid5_end_read_request(struct bio * bi, int error)
1039 {
1040 struct stripe_head *sh = bi->bi_private;
1041 raid5_conf_t *conf = sh->raid_conf;
1042 int disks = sh->disks, i;
1043 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1044 char b[BDEVNAME_SIZE];
1045 mdk_rdev_t *rdev;
1046
1047
1048 for (i=0 ; i<disks; i++)
1049 if (bi == &sh->dev[i].req)
1050 break;
1051
1052 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1053 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1054 uptodate);
1055 if (i == disks) {
1056 BUG();
1057 return;
1058 }
1059
1060 if (uptodate) {
1061 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1062 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1063 rdev = conf->disks[i].rdev;
1064 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1065 " (%lu sectors at %llu on %s)\n",
1066 mdname(conf->mddev), STRIPE_SECTORS,
1067 (unsigned long long)(sh->sector
1068 + rdev->data_offset),
1069 bdevname(rdev->bdev, b));
1070 clear_bit(R5_ReadError, &sh->dev[i].flags);
1071 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1072 }
1073 if (atomic_read(&conf->disks[i].rdev->read_errors))
1074 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1075 } else {
1076 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1077 int retry = 0;
1078 rdev = conf->disks[i].rdev;
1079
1080 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1081 atomic_inc(&rdev->read_errors);
1082 if (conf->mddev->degraded)
1083 printk_rl(KERN_WARNING
1084 "raid5:%s: read error not correctable "
1085 "(sector %llu on %s).\n",
1086 mdname(conf->mddev),
1087 (unsigned long long)(sh->sector
1088 + rdev->data_offset),
1089 bdn);
1090 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1091 /* Oh, no!!! */
1092 printk_rl(KERN_WARNING
1093 "raid5:%s: read error NOT corrected!! "
1094 "(sector %llu on %s).\n",
1095 mdname(conf->mddev),
1096 (unsigned long long)(sh->sector
1097 + rdev->data_offset),
1098 bdn);
1099 else if (atomic_read(&rdev->read_errors)
1100 > conf->max_nr_stripes)
1101 printk(KERN_WARNING
1102 "raid5:%s: Too many read errors, failing device %s.\n",
1103 mdname(conf->mddev), bdn);
1104 else
1105 retry = 1;
1106 if (retry)
1107 set_bit(R5_ReadError, &sh->dev[i].flags);
1108 else {
1109 clear_bit(R5_ReadError, &sh->dev[i].flags);
1110 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1111 md_error(conf->mddev, rdev);
1112 }
1113 }
1114 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1115 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1116 set_bit(STRIPE_HANDLE, &sh->state);
1117 release_stripe(sh);
1118 }
1119
1120 static void raid5_end_write_request (struct bio *bi, int error)
1121 {
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126
1127 for (i=0 ; i<disks; i++)
1128 if (bi == &sh->dev[i].req)
1129 break;
1130
1131 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1132 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1133 uptodate);
1134 if (i == disks) {
1135 BUG();
1136 return;
1137 }
1138
1139 if (!uptodate)
1140 md_error(conf->mddev, conf->disks[i].rdev);
1141
1142 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1143
1144 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1145 set_bit(STRIPE_HANDLE, &sh->state);
1146 release_stripe(sh);
1147 }
1148
1149
1150 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1151
1152 static void raid5_build_block (struct stripe_head *sh, int i)
1153 {
1154 struct r5dev *dev = &sh->dev[i];
1155
1156 bio_init(&dev->req);
1157 dev->req.bi_io_vec = &dev->vec;
1158 dev->req.bi_vcnt++;
1159 dev->req.bi_max_vecs++;
1160 dev->vec.bv_page = dev->page;
1161 dev->vec.bv_len = STRIPE_SIZE;
1162 dev->vec.bv_offset = 0;
1163
1164 dev->req.bi_sector = sh->sector;
1165 dev->req.bi_private = sh;
1166
1167 dev->flags = 0;
1168 dev->sector = compute_blocknr(sh, i);
1169 }
1170
1171 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1172 {
1173 char b[BDEVNAME_SIZE];
1174 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1175 pr_debug("raid5: error called\n");
1176
1177 if (!test_bit(Faulty, &rdev->flags)) {
1178 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1179 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1180 unsigned long flags;
1181 spin_lock_irqsave(&conf->device_lock, flags);
1182 mddev->degraded++;
1183 spin_unlock_irqrestore(&conf->device_lock, flags);
1184 /*
1185 * if recovery was running, make sure it aborts.
1186 */
1187 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1188 }
1189 set_bit(Faulty, &rdev->flags);
1190 printk (KERN_ALERT
1191 "raid5: Disk failure on %s, disabling device.\n"
1192 "raid5: Operation continuing on %d devices.\n",
1193 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1194 }
1195 }
1196
1197 /*
1198 * Input: a 'big' sector number,
1199 * Output: index of the data and parity disk, and the sector # in them.
1200 */
1201 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1202 unsigned int data_disks, unsigned int * dd_idx,
1203 unsigned int * pd_idx, raid5_conf_t *conf)
1204 {
1205 long stripe;
1206 unsigned long chunk_number;
1207 unsigned int chunk_offset;
1208 sector_t new_sector;
1209 int sectors_per_chunk = conf->chunk_size >> 9;
1210
1211 /* First compute the information on this sector */
1212
1213 /*
1214 * Compute the chunk number and the sector offset inside the chunk
1215 */
1216 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1217 chunk_number = r_sector;
1218 BUG_ON(r_sector != chunk_number);
1219
1220 /*
1221 * Compute the stripe number
1222 */
1223 stripe = chunk_number / data_disks;
1224
1225 /*
1226 * Compute the data disk and parity disk indexes inside the stripe
1227 */
1228 *dd_idx = chunk_number % data_disks;
1229
1230 /*
1231 * Select the parity disk based on the user selected algorithm.
1232 */
1233 switch(conf->level) {
1234 case 4:
1235 *pd_idx = data_disks;
1236 break;
1237 case 5:
1238 switch (conf->algorithm) {
1239 case ALGORITHM_LEFT_ASYMMETRIC:
1240 *pd_idx = data_disks - stripe % raid_disks;
1241 if (*dd_idx >= *pd_idx)
1242 (*dd_idx)++;
1243 break;
1244 case ALGORITHM_RIGHT_ASYMMETRIC:
1245 *pd_idx = stripe % raid_disks;
1246 if (*dd_idx >= *pd_idx)
1247 (*dd_idx)++;
1248 break;
1249 case ALGORITHM_LEFT_SYMMETRIC:
1250 *pd_idx = data_disks - stripe % raid_disks;
1251 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1252 break;
1253 case ALGORITHM_RIGHT_SYMMETRIC:
1254 *pd_idx = stripe % raid_disks;
1255 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1256 break;
1257 default:
1258 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1259 conf->algorithm);
1260 }
1261 break;
1262 case 6:
1263
1264 /**** FIX THIS ****/
1265 switch (conf->algorithm) {
1266 case ALGORITHM_LEFT_ASYMMETRIC:
1267 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1268 if (*pd_idx == raid_disks-1)
1269 (*dd_idx)++; /* Q D D D P */
1270 else if (*dd_idx >= *pd_idx)
1271 (*dd_idx) += 2; /* D D P Q D */
1272 break;
1273 case ALGORITHM_RIGHT_ASYMMETRIC:
1274 *pd_idx = stripe % raid_disks;
1275 if (*pd_idx == raid_disks-1)
1276 (*dd_idx)++; /* Q D D D P */
1277 else if (*dd_idx >= *pd_idx)
1278 (*dd_idx) += 2; /* D D P Q D */
1279 break;
1280 case ALGORITHM_LEFT_SYMMETRIC:
1281 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1282 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1283 break;
1284 case ALGORITHM_RIGHT_SYMMETRIC:
1285 *pd_idx = stripe % raid_disks;
1286 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1287 break;
1288 default:
1289 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1290 conf->algorithm);
1291 }
1292 break;
1293 }
1294
1295 /*
1296 * Finally, compute the new sector number
1297 */
1298 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1299 return new_sector;
1300 }
1301
1302
1303 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1304 {
1305 raid5_conf_t *conf = sh->raid_conf;
1306 int raid_disks = sh->disks;
1307 int data_disks = raid_disks - conf->max_degraded;
1308 sector_t new_sector = sh->sector, check;
1309 int sectors_per_chunk = conf->chunk_size >> 9;
1310 sector_t stripe;
1311 int chunk_offset;
1312 int chunk_number, dummy1, dummy2, dd_idx = i;
1313 sector_t r_sector;
1314
1315
1316 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1317 stripe = new_sector;
1318 BUG_ON(new_sector != stripe);
1319
1320 if (i == sh->pd_idx)
1321 return 0;
1322 switch(conf->level) {
1323 case 4: break;
1324 case 5:
1325 switch (conf->algorithm) {
1326 case ALGORITHM_LEFT_ASYMMETRIC:
1327 case ALGORITHM_RIGHT_ASYMMETRIC:
1328 if (i > sh->pd_idx)
1329 i--;
1330 break;
1331 case ALGORITHM_LEFT_SYMMETRIC:
1332 case ALGORITHM_RIGHT_SYMMETRIC:
1333 if (i < sh->pd_idx)
1334 i += raid_disks;
1335 i -= (sh->pd_idx + 1);
1336 break;
1337 default:
1338 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1339 conf->algorithm);
1340 }
1341 break;
1342 case 6:
1343 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1344 return 0; /* It is the Q disk */
1345 switch (conf->algorithm) {
1346 case ALGORITHM_LEFT_ASYMMETRIC:
1347 case ALGORITHM_RIGHT_ASYMMETRIC:
1348 if (sh->pd_idx == raid_disks-1)
1349 i--; /* Q D D D P */
1350 else if (i > sh->pd_idx)
1351 i -= 2; /* D D P Q D */
1352 break;
1353 case ALGORITHM_LEFT_SYMMETRIC:
1354 case ALGORITHM_RIGHT_SYMMETRIC:
1355 if (sh->pd_idx == raid_disks-1)
1356 i--; /* Q D D D P */
1357 else {
1358 /* D D P Q D */
1359 if (i < sh->pd_idx)
1360 i += raid_disks;
1361 i -= (sh->pd_idx + 2);
1362 }
1363 break;
1364 default:
1365 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1366 conf->algorithm);
1367 }
1368 break;
1369 }
1370
1371 chunk_number = stripe * data_disks + i;
1372 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1373
1374 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1375 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1376 printk(KERN_ERR "compute_blocknr: map not correct\n");
1377 return 0;
1378 }
1379 return r_sector;
1380 }
1381
1382
1383
1384 /*
1385 * Copy data between a page in the stripe cache, and one or more bion
1386 * The page could align with the middle of the bio, or there could be
1387 * several bion, each with several bio_vecs, which cover part of the page
1388 * Multiple bion are linked together on bi_next. There may be extras
1389 * at the end of this list. We ignore them.
1390 */
1391 static void copy_data(int frombio, struct bio *bio,
1392 struct page *page,
1393 sector_t sector)
1394 {
1395 char *pa = page_address(page);
1396 struct bio_vec *bvl;
1397 int i;
1398 int page_offset;
1399
1400 if (bio->bi_sector >= sector)
1401 page_offset = (signed)(bio->bi_sector - sector) * 512;
1402 else
1403 page_offset = (signed)(sector - bio->bi_sector) * -512;
1404 bio_for_each_segment(bvl, bio, i) {
1405 int len = bio_iovec_idx(bio,i)->bv_len;
1406 int clen;
1407 int b_offset = 0;
1408
1409 if (page_offset < 0) {
1410 b_offset = -page_offset;
1411 page_offset += b_offset;
1412 len -= b_offset;
1413 }
1414
1415 if (len > 0 && page_offset + len > STRIPE_SIZE)
1416 clen = STRIPE_SIZE - page_offset;
1417 else clen = len;
1418
1419 if (clen > 0) {
1420 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1421 if (frombio)
1422 memcpy(pa+page_offset, ba+b_offset, clen);
1423 else
1424 memcpy(ba+b_offset, pa+page_offset, clen);
1425 __bio_kunmap_atomic(ba, KM_USER0);
1426 }
1427 if (clen < len) /* hit end of page */
1428 break;
1429 page_offset += len;
1430 }
1431 }
1432
1433 #define check_xor() do { \
1434 if (count == MAX_XOR_BLOCKS) { \
1435 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1436 count = 0; \
1437 } \
1438 } while(0)
1439
1440 static void compute_parity6(struct stripe_head *sh, int method)
1441 {
1442 raid6_conf_t *conf = sh->raid_conf;
1443 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1444 struct bio *chosen;
1445 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1446 void *ptrs[disks];
1447
1448 qd_idx = raid6_next_disk(pd_idx, disks);
1449 d0_idx = raid6_next_disk(qd_idx, disks);
1450
1451 pr_debug("compute_parity, stripe %llu, method %d\n",
1452 (unsigned long long)sh->sector, method);
1453
1454 switch(method) {
1455 case READ_MODIFY_WRITE:
1456 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1457 case RECONSTRUCT_WRITE:
1458 for (i= disks; i-- ;)
1459 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1460 chosen = sh->dev[i].towrite;
1461 sh->dev[i].towrite = NULL;
1462
1463 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1464 wake_up(&conf->wait_for_overlap);
1465
1466 BUG_ON(sh->dev[i].written);
1467 sh->dev[i].written = chosen;
1468 }
1469 break;
1470 case CHECK_PARITY:
1471 BUG(); /* Not implemented yet */
1472 }
1473
1474 for (i = disks; i--;)
1475 if (sh->dev[i].written) {
1476 sector_t sector = sh->dev[i].sector;
1477 struct bio *wbi = sh->dev[i].written;
1478 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1479 copy_data(1, wbi, sh->dev[i].page, sector);
1480 wbi = r5_next_bio(wbi, sector);
1481 }
1482
1483 set_bit(R5_LOCKED, &sh->dev[i].flags);
1484 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1485 }
1486
1487 // switch(method) {
1488 // case RECONSTRUCT_WRITE:
1489 // case CHECK_PARITY:
1490 // case UPDATE_PARITY:
1491 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1492 /* FIX: Is this ordering of drives even remotely optimal? */
1493 count = 0;
1494 i = d0_idx;
1495 do {
1496 ptrs[count++] = page_address(sh->dev[i].page);
1497 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1498 printk("block %d/%d not uptodate on parity calc\n", i,count);
1499 i = raid6_next_disk(i, disks);
1500 } while ( i != d0_idx );
1501 // break;
1502 // }
1503
1504 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1505
1506 switch(method) {
1507 case RECONSTRUCT_WRITE:
1508 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1509 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1510 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1511 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1512 break;
1513 case UPDATE_PARITY:
1514 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1515 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1516 break;
1517 }
1518 }
1519
1520
1521 /* Compute one missing block */
1522 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1523 {
1524 int i, count, disks = sh->disks;
1525 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1526 int pd_idx = sh->pd_idx;
1527 int qd_idx = raid6_next_disk(pd_idx, disks);
1528
1529 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1530 (unsigned long long)sh->sector, dd_idx);
1531
1532 if ( dd_idx == qd_idx ) {
1533 /* We're actually computing the Q drive */
1534 compute_parity6(sh, UPDATE_PARITY);
1535 } else {
1536 dest = page_address(sh->dev[dd_idx].page);
1537 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1538 count = 0;
1539 for (i = disks ; i--; ) {
1540 if (i == dd_idx || i == qd_idx)
1541 continue;
1542 p = page_address(sh->dev[i].page);
1543 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1544 ptr[count++] = p;
1545 else
1546 printk("compute_block() %d, stripe %llu, %d"
1547 " not present\n", dd_idx,
1548 (unsigned long long)sh->sector, i);
1549
1550 check_xor();
1551 }
1552 if (count)
1553 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1554 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1555 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1556 }
1557 }
1558
1559 /* Compute two missing blocks */
1560 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1561 {
1562 int i, count, disks = sh->disks;
1563 int pd_idx = sh->pd_idx;
1564 int qd_idx = raid6_next_disk(pd_idx, disks);
1565 int d0_idx = raid6_next_disk(qd_idx, disks);
1566 int faila, failb;
1567
1568 /* faila and failb are disk numbers relative to d0_idx */
1569 /* pd_idx become disks-2 and qd_idx become disks-1 */
1570 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1571 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1572
1573 BUG_ON(faila == failb);
1574 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1575
1576 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1577 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1578
1579 if ( failb == disks-1 ) {
1580 /* Q disk is one of the missing disks */
1581 if ( faila == disks-2 ) {
1582 /* Missing P+Q, just recompute */
1583 compute_parity6(sh, UPDATE_PARITY);
1584 return;
1585 } else {
1586 /* We're missing D+Q; recompute D from P */
1587 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1588 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1589 return;
1590 }
1591 }
1592
1593 /* We're missing D+P or D+D; build pointer table */
1594 {
1595 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1596 void *ptrs[disks];
1597
1598 count = 0;
1599 i = d0_idx;
1600 do {
1601 ptrs[count++] = page_address(sh->dev[i].page);
1602 i = raid6_next_disk(i, disks);
1603 if (i != dd_idx1 && i != dd_idx2 &&
1604 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1605 printk("compute_2 with missing block %d/%d\n", count, i);
1606 } while ( i != d0_idx );
1607
1608 if ( failb == disks-2 ) {
1609 /* We're missing D+P. */
1610 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1611 } else {
1612 /* We're missing D+D. */
1613 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1614 }
1615
1616 /* Both the above update both missing blocks */
1617 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1618 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1619 }
1620 }
1621
1622 static void
1623 schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
1624 int rcw, int expand)
1625 {
1626 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1627
1628 if (rcw) {
1629 /* if we are not expanding this is a proper write request, and
1630 * there will be bios with new data to be drained into the
1631 * stripe cache
1632 */
1633 if (!expand) {
1634 sh->reconstruct_state = reconstruct_state_drain_run;
1635 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1636 } else
1637 sh->reconstruct_state = reconstruct_state_run;
1638
1639 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1640
1641 for (i = disks; i--; ) {
1642 struct r5dev *dev = &sh->dev[i];
1643
1644 if (dev->towrite) {
1645 set_bit(R5_LOCKED, &dev->flags);
1646 set_bit(R5_Wantdrain, &dev->flags);
1647 if (!expand)
1648 clear_bit(R5_UPTODATE, &dev->flags);
1649 s->locked++;
1650 }
1651 }
1652 if (s->locked + 1 == disks)
1653 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1654 atomic_inc(&sh->raid_conf->pending_full_writes);
1655 } else {
1656 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1657 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1658
1659 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1660 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1661 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1662 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
1663
1664 for (i = disks; i--; ) {
1665 struct r5dev *dev = &sh->dev[i];
1666 if (i == pd_idx)
1667 continue;
1668
1669 if (dev->towrite &&
1670 (test_bit(R5_UPTODATE, &dev->flags) ||
1671 test_bit(R5_Wantcompute, &dev->flags))) {
1672 set_bit(R5_Wantdrain, &dev->flags);
1673 set_bit(R5_LOCKED, &dev->flags);
1674 clear_bit(R5_UPTODATE, &dev->flags);
1675 s->locked++;
1676 }
1677 }
1678 }
1679
1680 /* keep the parity disk locked while asynchronous operations
1681 * are in flight
1682 */
1683 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1684 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1685 s->locked++;
1686
1687 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
1688 __func__, (unsigned long long)sh->sector,
1689 s->locked, s->ops_request);
1690 }
1691
1692 /*
1693 * Each stripe/dev can have one or more bion attached.
1694 * toread/towrite point to the first in a chain.
1695 * The bi_next chain must be in order.
1696 */
1697 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1698 {
1699 struct bio **bip;
1700 raid5_conf_t *conf = sh->raid_conf;
1701 int firstwrite=0;
1702
1703 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1704 (unsigned long long)bi->bi_sector,
1705 (unsigned long long)sh->sector);
1706
1707
1708 spin_lock(&sh->lock);
1709 spin_lock_irq(&conf->device_lock);
1710 if (forwrite) {
1711 bip = &sh->dev[dd_idx].towrite;
1712 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1713 firstwrite = 1;
1714 } else
1715 bip = &sh->dev[dd_idx].toread;
1716 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1717 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1718 goto overlap;
1719 bip = & (*bip)->bi_next;
1720 }
1721 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1722 goto overlap;
1723
1724 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1725 if (*bip)
1726 bi->bi_next = *bip;
1727 *bip = bi;
1728 bi->bi_phys_segments ++;
1729 spin_unlock_irq(&conf->device_lock);
1730 spin_unlock(&sh->lock);
1731
1732 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1733 (unsigned long long)bi->bi_sector,
1734 (unsigned long long)sh->sector, dd_idx);
1735
1736 if (conf->mddev->bitmap && firstwrite) {
1737 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1738 STRIPE_SECTORS, 0);
1739 sh->bm_seq = conf->seq_flush+1;
1740 set_bit(STRIPE_BIT_DELAY, &sh->state);
1741 }
1742
1743 if (forwrite) {
1744 /* check if page is covered */
1745 sector_t sector = sh->dev[dd_idx].sector;
1746 for (bi=sh->dev[dd_idx].towrite;
1747 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1748 bi && bi->bi_sector <= sector;
1749 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1750 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1751 sector = bi->bi_sector + (bi->bi_size>>9);
1752 }
1753 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1754 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1755 }
1756 return 1;
1757
1758 overlap:
1759 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1760 spin_unlock_irq(&conf->device_lock);
1761 spin_unlock(&sh->lock);
1762 return 0;
1763 }
1764
1765 static void end_reshape(raid5_conf_t *conf);
1766
1767 static int page_is_zero(struct page *p)
1768 {
1769 char *a = page_address(p);
1770 return ((*(u32*)a) == 0 &&
1771 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1772 }
1773
1774 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1775 {
1776 int sectors_per_chunk = conf->chunk_size >> 9;
1777 int pd_idx, dd_idx;
1778 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1779
1780 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1781 *sectors_per_chunk + chunk_offset,
1782 disks, disks - conf->max_degraded,
1783 &dd_idx, &pd_idx, conf);
1784 return pd_idx;
1785 }
1786
1787 static void
1788 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
1789 struct stripe_head_state *s, int disks,
1790 struct bio **return_bi)
1791 {
1792 int i;
1793 for (i = disks; i--; ) {
1794 struct bio *bi;
1795 int bitmap_end = 0;
1796
1797 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1798 mdk_rdev_t *rdev;
1799 rcu_read_lock();
1800 rdev = rcu_dereference(conf->disks[i].rdev);
1801 if (rdev && test_bit(In_sync, &rdev->flags))
1802 /* multiple read failures in one stripe */
1803 md_error(conf->mddev, rdev);
1804 rcu_read_unlock();
1805 }
1806 spin_lock_irq(&conf->device_lock);
1807 /* fail all writes first */
1808 bi = sh->dev[i].towrite;
1809 sh->dev[i].towrite = NULL;
1810 if (bi) {
1811 s->to_write--;
1812 bitmap_end = 1;
1813 }
1814
1815 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1816 wake_up(&conf->wait_for_overlap);
1817
1818 while (bi && bi->bi_sector <
1819 sh->dev[i].sector + STRIPE_SECTORS) {
1820 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1821 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1822 if (--bi->bi_phys_segments == 0) {
1823 md_write_end(conf->mddev);
1824 bi->bi_next = *return_bi;
1825 *return_bi = bi;
1826 }
1827 bi = nextbi;
1828 }
1829 /* and fail all 'written' */
1830 bi = sh->dev[i].written;
1831 sh->dev[i].written = NULL;
1832 if (bi) bitmap_end = 1;
1833 while (bi && bi->bi_sector <
1834 sh->dev[i].sector + STRIPE_SECTORS) {
1835 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1836 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1837 if (--bi->bi_phys_segments == 0) {
1838 md_write_end(conf->mddev);
1839 bi->bi_next = *return_bi;
1840 *return_bi = bi;
1841 }
1842 bi = bi2;
1843 }
1844
1845 /* fail any reads if this device is non-operational and
1846 * the data has not reached the cache yet.
1847 */
1848 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1849 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1850 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1851 bi = sh->dev[i].toread;
1852 sh->dev[i].toread = NULL;
1853 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1854 wake_up(&conf->wait_for_overlap);
1855 if (bi) s->to_read--;
1856 while (bi && bi->bi_sector <
1857 sh->dev[i].sector + STRIPE_SECTORS) {
1858 struct bio *nextbi =
1859 r5_next_bio(bi, sh->dev[i].sector);
1860 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1861 if (--bi->bi_phys_segments == 0) {
1862 bi->bi_next = *return_bi;
1863 *return_bi = bi;
1864 }
1865 bi = nextbi;
1866 }
1867 }
1868 spin_unlock_irq(&conf->device_lock);
1869 if (bitmap_end)
1870 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1871 STRIPE_SECTORS, 0, 0);
1872 }
1873
1874 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1875 if (atomic_dec_and_test(&conf->pending_full_writes))
1876 md_wakeup_thread(conf->mddev->thread);
1877 }
1878
1879 /* fetch_block5 - checks the given member device to see if its data needs
1880 * to be read or computed to satisfy a request.
1881 *
1882 * Returns 1 when no more member devices need to be checked, otherwise returns
1883 * 0 to tell the loop in handle_stripe_fill5 to continue
1884 */
1885 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
1886 int disk_idx, int disks)
1887 {
1888 struct r5dev *dev = &sh->dev[disk_idx];
1889 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1890
1891 /* is the data in this block needed, and can we get it? */
1892 if (!test_bit(R5_LOCKED, &dev->flags) &&
1893 !test_bit(R5_UPTODATE, &dev->flags) &&
1894 (dev->toread ||
1895 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1896 s->syncing || s->expanding ||
1897 (s->failed &&
1898 (failed_dev->toread ||
1899 (failed_dev->towrite &&
1900 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
1901 /* We would like to get this block, possibly by computing it,
1902 * otherwise read it if the backing disk is insync
1903 */
1904 if ((s->uptodate == disks - 1) &&
1905 (s->failed && disk_idx == s->failed_num)) {
1906 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
1907 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
1908 set_bit(R5_Wantcompute, &dev->flags);
1909 sh->ops.target = disk_idx;
1910 s->req_compute = 1;
1911 /* Careful: from this point on 'uptodate' is in the eye
1912 * of raid5_run_ops which services 'compute' operations
1913 * before writes. R5_Wantcompute flags a block that will
1914 * be R5_UPTODATE by the time it is needed for a
1915 * subsequent operation.
1916 */
1917 s->uptodate++;
1918 return 1; /* uptodate + compute == disks */
1919 } else if (test_bit(R5_Insync, &dev->flags)) {
1920 set_bit(R5_LOCKED, &dev->flags);
1921 set_bit(R5_Wantread, &dev->flags);
1922 s->locked++;
1923 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
1924 s->syncing);
1925 }
1926 }
1927
1928 return 0;
1929 }
1930
1931 /**
1932 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
1933 */
1934 static void handle_stripe_fill5(struct stripe_head *sh,
1935 struct stripe_head_state *s, int disks)
1936 {
1937 int i;
1938
1939 /* look for blocks to read/compute, skip this if a compute
1940 * is already in flight, or if the stripe contents are in the
1941 * midst of changing due to a write
1942 */
1943 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1944 !sh->reconstruct_state)
1945 for (i = disks; i--; )
1946 if (fetch_block5(sh, s, i, disks))
1947 break;
1948 set_bit(STRIPE_HANDLE, &sh->state);
1949 }
1950
1951 static void handle_stripe_fill6(struct stripe_head *sh,
1952 struct stripe_head_state *s, struct r6_state *r6s,
1953 int disks)
1954 {
1955 int i;
1956 for (i = disks; i--; ) {
1957 struct r5dev *dev = &sh->dev[i];
1958 if (!test_bit(R5_LOCKED, &dev->flags) &&
1959 !test_bit(R5_UPTODATE, &dev->flags) &&
1960 (dev->toread || (dev->towrite &&
1961 !test_bit(R5_OVERWRITE, &dev->flags)) ||
1962 s->syncing || s->expanding ||
1963 (s->failed >= 1 &&
1964 (sh->dev[r6s->failed_num[0]].toread ||
1965 s->to_write)) ||
1966 (s->failed >= 2 &&
1967 (sh->dev[r6s->failed_num[1]].toread ||
1968 s->to_write)))) {
1969 /* we would like to get this block, possibly
1970 * by computing it, but we might not be able to
1971 */
1972 if ((s->uptodate == disks - 1) &&
1973 (s->failed && (i == r6s->failed_num[0] ||
1974 i == r6s->failed_num[1]))) {
1975 pr_debug("Computing stripe %llu block %d\n",
1976 (unsigned long long)sh->sector, i);
1977 compute_block_1(sh, i, 0);
1978 s->uptodate++;
1979 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
1980 /* Computing 2-failure is *very* expensive; only
1981 * do it if failed >= 2
1982 */
1983 int other;
1984 for (other = disks; other--; ) {
1985 if (other == i)
1986 continue;
1987 if (!test_bit(R5_UPTODATE,
1988 &sh->dev[other].flags))
1989 break;
1990 }
1991 BUG_ON(other < 0);
1992 pr_debug("Computing stripe %llu blocks %d,%d\n",
1993 (unsigned long long)sh->sector,
1994 i, other);
1995 compute_block_2(sh, i, other);
1996 s->uptodate += 2;
1997 } else if (test_bit(R5_Insync, &dev->flags)) {
1998 set_bit(R5_LOCKED, &dev->flags);
1999 set_bit(R5_Wantread, &dev->flags);
2000 s->locked++;
2001 pr_debug("Reading block %d (sync=%d)\n",
2002 i, s->syncing);
2003 }
2004 }
2005 }
2006 set_bit(STRIPE_HANDLE, &sh->state);
2007 }
2008
2009
2010 /* handle_stripe_clean_event
2011 * any written block on an uptodate or failed drive can be returned.
2012 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2013 * never LOCKED, so we don't need to test 'failed' directly.
2014 */
2015 static void handle_stripe_clean_event(raid5_conf_t *conf,
2016 struct stripe_head *sh, int disks, struct bio **return_bi)
2017 {
2018 int i;
2019 struct r5dev *dev;
2020
2021 for (i = disks; i--; )
2022 if (sh->dev[i].written) {
2023 dev = &sh->dev[i];
2024 if (!test_bit(R5_LOCKED, &dev->flags) &&
2025 test_bit(R5_UPTODATE, &dev->flags)) {
2026 /* We can return any write requests */
2027 struct bio *wbi, *wbi2;
2028 int bitmap_end = 0;
2029 pr_debug("Return write for disc %d\n", i);
2030 spin_lock_irq(&conf->device_lock);
2031 wbi = dev->written;
2032 dev->written = NULL;
2033 while (wbi && wbi->bi_sector <
2034 dev->sector + STRIPE_SECTORS) {
2035 wbi2 = r5_next_bio(wbi, dev->sector);
2036 if (--wbi->bi_phys_segments == 0) {
2037 md_write_end(conf->mddev);
2038 wbi->bi_next = *return_bi;
2039 *return_bi = wbi;
2040 }
2041 wbi = wbi2;
2042 }
2043 if (dev->towrite == NULL)
2044 bitmap_end = 1;
2045 spin_unlock_irq(&conf->device_lock);
2046 if (bitmap_end)
2047 bitmap_endwrite(conf->mddev->bitmap,
2048 sh->sector,
2049 STRIPE_SECTORS,
2050 !test_bit(STRIPE_DEGRADED, &sh->state),
2051 0);
2052 }
2053 }
2054
2055 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2056 if (atomic_dec_and_test(&conf->pending_full_writes))
2057 md_wakeup_thread(conf->mddev->thread);
2058 }
2059
2060 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2061 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2062 {
2063 int rmw = 0, rcw = 0, i;
2064 for (i = disks; i--; ) {
2065 /* would I have to read this buffer for read_modify_write */
2066 struct r5dev *dev = &sh->dev[i];
2067 if ((dev->towrite || i == sh->pd_idx) &&
2068 !test_bit(R5_LOCKED, &dev->flags) &&
2069 !(test_bit(R5_UPTODATE, &dev->flags) ||
2070 test_bit(R5_Wantcompute, &dev->flags))) {
2071 if (test_bit(R5_Insync, &dev->flags))
2072 rmw++;
2073 else
2074 rmw += 2*disks; /* cannot read it */
2075 }
2076 /* Would I have to read this buffer for reconstruct_write */
2077 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2078 !test_bit(R5_LOCKED, &dev->flags) &&
2079 !(test_bit(R5_UPTODATE, &dev->flags) ||
2080 test_bit(R5_Wantcompute, &dev->flags))) {
2081 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2082 else
2083 rcw += 2*disks;
2084 }
2085 }
2086 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2087 (unsigned long long)sh->sector, rmw, rcw);
2088 set_bit(STRIPE_HANDLE, &sh->state);
2089 if (rmw < rcw && rmw > 0)
2090 /* prefer read-modify-write, but need to get some data */
2091 for (i = disks; i--; ) {
2092 struct r5dev *dev = &sh->dev[i];
2093 if ((dev->towrite || i == sh->pd_idx) &&
2094 !test_bit(R5_LOCKED, &dev->flags) &&
2095 !(test_bit(R5_UPTODATE, &dev->flags) ||
2096 test_bit(R5_Wantcompute, &dev->flags)) &&
2097 test_bit(R5_Insync, &dev->flags)) {
2098 if (
2099 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2100 pr_debug("Read_old block "
2101 "%d for r-m-w\n", i);
2102 set_bit(R5_LOCKED, &dev->flags);
2103 set_bit(R5_Wantread, &dev->flags);
2104 s->locked++;
2105 } else {
2106 set_bit(STRIPE_DELAYED, &sh->state);
2107 set_bit(STRIPE_HANDLE, &sh->state);
2108 }
2109 }
2110 }
2111 if (rcw <= rmw && rcw > 0)
2112 /* want reconstruct write, but need to get some data */
2113 for (i = disks; i--; ) {
2114 struct r5dev *dev = &sh->dev[i];
2115 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2116 i != sh->pd_idx &&
2117 !test_bit(R5_LOCKED, &dev->flags) &&
2118 !(test_bit(R5_UPTODATE, &dev->flags) ||
2119 test_bit(R5_Wantcompute, &dev->flags)) &&
2120 test_bit(R5_Insync, &dev->flags)) {
2121 if (
2122 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2123 pr_debug("Read_old block "
2124 "%d for Reconstruct\n", i);
2125 set_bit(R5_LOCKED, &dev->flags);
2126 set_bit(R5_Wantread, &dev->flags);
2127 s->locked++;
2128 } else {
2129 set_bit(STRIPE_DELAYED, &sh->state);
2130 set_bit(STRIPE_HANDLE, &sh->state);
2131 }
2132 }
2133 }
2134 /* now if nothing is locked, and if we have enough data,
2135 * we can start a write request
2136 */
2137 /* since handle_stripe can be called at any time we need to handle the
2138 * case where a compute block operation has been submitted and then a
2139 * subsequent call wants to start a write request. raid5_run_ops only
2140 * handles the case where compute block and postxor are requested
2141 * simultaneously. If this is not the case then new writes need to be
2142 * held off until the compute completes.
2143 */
2144 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2145 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2146 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2147 schedule_reconstruction5(sh, s, rcw == 0, 0);
2148 }
2149
2150 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2151 struct stripe_head *sh, struct stripe_head_state *s,
2152 struct r6_state *r6s, int disks)
2153 {
2154 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2155 int qd_idx = r6s->qd_idx;
2156 for (i = disks; i--; ) {
2157 struct r5dev *dev = &sh->dev[i];
2158 /* Would I have to read this buffer for reconstruct_write */
2159 if (!test_bit(R5_OVERWRITE, &dev->flags)
2160 && i != pd_idx && i != qd_idx
2161 && (!test_bit(R5_LOCKED, &dev->flags)
2162 ) &&
2163 !test_bit(R5_UPTODATE, &dev->flags)) {
2164 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2165 else {
2166 pr_debug("raid6: must_compute: "
2167 "disk %d flags=%#lx\n", i, dev->flags);
2168 must_compute++;
2169 }
2170 }
2171 }
2172 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2173 (unsigned long long)sh->sector, rcw, must_compute);
2174 set_bit(STRIPE_HANDLE, &sh->state);
2175
2176 if (rcw > 0)
2177 /* want reconstruct write, but need to get some data */
2178 for (i = disks; i--; ) {
2179 struct r5dev *dev = &sh->dev[i];
2180 if (!test_bit(R5_OVERWRITE, &dev->flags)
2181 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2182 && !test_bit(R5_LOCKED, &dev->flags) &&
2183 !test_bit(R5_UPTODATE, &dev->flags) &&
2184 test_bit(R5_Insync, &dev->flags)) {
2185 if (
2186 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2187 pr_debug("Read_old stripe %llu "
2188 "block %d for Reconstruct\n",
2189 (unsigned long long)sh->sector, i);
2190 set_bit(R5_LOCKED, &dev->flags);
2191 set_bit(R5_Wantread, &dev->flags);
2192 s->locked++;
2193 } else {
2194 pr_debug("Request delayed stripe %llu "
2195 "block %d for Reconstruct\n",
2196 (unsigned long long)sh->sector, i);
2197 set_bit(STRIPE_DELAYED, &sh->state);
2198 set_bit(STRIPE_HANDLE, &sh->state);
2199 }
2200 }
2201 }
2202 /* now if nothing is locked, and if we have enough data, we can start a
2203 * write request
2204 */
2205 if (s->locked == 0 && rcw == 0 &&
2206 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2207 if (must_compute > 0) {
2208 /* We have failed blocks and need to compute them */
2209 switch (s->failed) {
2210 case 0:
2211 BUG();
2212 case 1:
2213 compute_block_1(sh, r6s->failed_num[0], 0);
2214 break;
2215 case 2:
2216 compute_block_2(sh, r6s->failed_num[0],
2217 r6s->failed_num[1]);
2218 break;
2219 default: /* This request should have been failed? */
2220 BUG();
2221 }
2222 }
2223
2224 pr_debug("Computing parity for stripe %llu\n",
2225 (unsigned long long)sh->sector);
2226 compute_parity6(sh, RECONSTRUCT_WRITE);
2227 /* now every locked buffer is ready to be written */
2228 for (i = disks; i--; )
2229 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2230 pr_debug("Writing stripe %llu block %d\n",
2231 (unsigned long long)sh->sector, i);
2232 s->locked++;
2233 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2234 }
2235 if (s->locked == disks)
2236 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2237 atomic_inc(&conf->pending_full_writes);
2238 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2239 set_bit(STRIPE_INSYNC, &sh->state);
2240
2241 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2242 atomic_dec(&conf->preread_active_stripes);
2243 if (atomic_read(&conf->preread_active_stripes) <
2244 IO_THRESHOLD)
2245 md_wakeup_thread(conf->mddev->thread);
2246 }
2247 }
2248 }
2249
2250 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2251 struct stripe_head_state *s, int disks)
2252 {
2253 struct r5dev *dev = NULL;
2254
2255 set_bit(STRIPE_HANDLE, &sh->state);
2256
2257 switch (sh->check_state) {
2258 case check_state_idle:
2259 /* start a new check operation if there are no failures */
2260 if (s->failed == 0) {
2261 BUG_ON(s->uptodate != disks);
2262 sh->check_state = check_state_run;
2263 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2264 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2265 s->uptodate--;
2266 break;
2267 }
2268 dev = &sh->dev[s->failed_num];
2269 /* fall through */
2270 case check_state_compute_result:
2271 sh->check_state = check_state_idle;
2272 if (!dev)
2273 dev = &sh->dev[sh->pd_idx];
2274
2275 /* check that a write has not made the stripe insync */
2276 if (test_bit(STRIPE_INSYNC, &sh->state))
2277 break;
2278
2279 /* either failed parity check, or recovery is happening */
2280 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2281 BUG_ON(s->uptodate != disks);
2282
2283 set_bit(R5_LOCKED, &dev->flags);
2284 s->locked++;
2285 set_bit(R5_Wantwrite, &dev->flags);
2286
2287 clear_bit(STRIPE_DEGRADED, &sh->state);
2288 set_bit(STRIPE_INSYNC, &sh->state);
2289 break;
2290 case check_state_run:
2291 break; /* we will be called again upon completion */
2292 case check_state_check_result:
2293 sh->check_state = check_state_idle;
2294
2295 /* if a failure occurred during the check operation, leave
2296 * STRIPE_INSYNC not set and let the stripe be handled again
2297 */
2298 if (s->failed)
2299 break;
2300
2301 /* handle a successful check operation, if parity is correct
2302 * we are done. Otherwise update the mismatch count and repair
2303 * parity if !MD_RECOVERY_CHECK
2304 */
2305 if (sh->ops.zero_sum_result == 0)
2306 /* parity is correct (on disc,
2307 * not in buffer any more)
2308 */
2309 set_bit(STRIPE_INSYNC, &sh->state);
2310 else {
2311 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2312 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2313 /* don't try to repair!! */
2314 set_bit(STRIPE_INSYNC, &sh->state);
2315 else {
2316 sh->check_state = check_state_compute_run;
2317 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2318 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2319 set_bit(R5_Wantcompute,
2320 &sh->dev[sh->pd_idx].flags);
2321 sh->ops.target = sh->pd_idx;
2322 s->uptodate++;
2323 }
2324 }
2325 break;
2326 case check_state_compute_run:
2327 break;
2328 default:
2329 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2330 __func__, sh->check_state,
2331 (unsigned long long) sh->sector);
2332 BUG();
2333 }
2334 }
2335
2336
2337 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2338 struct stripe_head_state *s,
2339 struct r6_state *r6s, struct page *tmp_page,
2340 int disks)
2341 {
2342 int update_p = 0, update_q = 0;
2343 struct r5dev *dev;
2344 int pd_idx = sh->pd_idx;
2345 int qd_idx = r6s->qd_idx;
2346
2347 set_bit(STRIPE_HANDLE, &sh->state);
2348
2349 BUG_ON(s->failed > 2);
2350 BUG_ON(s->uptodate < disks);
2351 /* Want to check and possibly repair P and Q.
2352 * However there could be one 'failed' device, in which
2353 * case we can only check one of them, possibly using the
2354 * other to generate missing data
2355 */
2356
2357 /* If !tmp_page, we cannot do the calculations,
2358 * but as we have set STRIPE_HANDLE, we will soon be called
2359 * by stripe_handle with a tmp_page - just wait until then.
2360 */
2361 if (tmp_page) {
2362 if (s->failed == r6s->q_failed) {
2363 /* The only possible failed device holds 'Q', so it
2364 * makes sense to check P (If anything else were failed,
2365 * we would have used P to recreate it).
2366 */
2367 compute_block_1(sh, pd_idx, 1);
2368 if (!page_is_zero(sh->dev[pd_idx].page)) {
2369 compute_block_1(sh, pd_idx, 0);
2370 update_p = 1;
2371 }
2372 }
2373 if (!r6s->q_failed && s->failed < 2) {
2374 /* q is not failed, and we didn't use it to generate
2375 * anything, so it makes sense to check it
2376 */
2377 memcpy(page_address(tmp_page),
2378 page_address(sh->dev[qd_idx].page),
2379 STRIPE_SIZE);
2380 compute_parity6(sh, UPDATE_PARITY);
2381 if (memcmp(page_address(tmp_page),
2382 page_address(sh->dev[qd_idx].page),
2383 STRIPE_SIZE) != 0) {
2384 clear_bit(STRIPE_INSYNC, &sh->state);
2385 update_q = 1;
2386 }
2387 }
2388 if (update_p || update_q) {
2389 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2390 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2391 /* don't try to repair!! */
2392 update_p = update_q = 0;
2393 }
2394
2395 /* now write out any block on a failed drive,
2396 * or P or Q if they need it
2397 */
2398
2399 if (s->failed == 2) {
2400 dev = &sh->dev[r6s->failed_num[1]];
2401 s->locked++;
2402 set_bit(R5_LOCKED, &dev->flags);
2403 set_bit(R5_Wantwrite, &dev->flags);
2404 }
2405 if (s->failed >= 1) {
2406 dev = &sh->dev[r6s->failed_num[0]];
2407 s->locked++;
2408 set_bit(R5_LOCKED, &dev->flags);
2409 set_bit(R5_Wantwrite, &dev->flags);
2410 }
2411
2412 if (update_p) {
2413 dev = &sh->dev[pd_idx];
2414 s->locked++;
2415 set_bit(R5_LOCKED, &dev->flags);
2416 set_bit(R5_Wantwrite, &dev->flags);
2417 }
2418 if (update_q) {
2419 dev = &sh->dev[qd_idx];
2420 s->locked++;
2421 set_bit(R5_LOCKED, &dev->flags);
2422 set_bit(R5_Wantwrite, &dev->flags);
2423 }
2424 clear_bit(STRIPE_DEGRADED, &sh->state);
2425
2426 set_bit(STRIPE_INSYNC, &sh->state);
2427 }
2428 }
2429
2430 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2431 struct r6_state *r6s)
2432 {
2433 int i;
2434
2435 /* We have read all the blocks in this stripe and now we need to
2436 * copy some of them into a target stripe for expand.
2437 */
2438 struct dma_async_tx_descriptor *tx = NULL;
2439 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2440 for (i = 0; i < sh->disks; i++)
2441 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2442 int dd_idx, pd_idx, j;
2443 struct stripe_head *sh2;
2444
2445 sector_t bn = compute_blocknr(sh, i);
2446 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2447 conf->raid_disks -
2448 conf->max_degraded, &dd_idx,
2449 &pd_idx, conf);
2450 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2451 pd_idx, 1);
2452 if (sh2 == NULL)
2453 /* so far only the early blocks of this stripe
2454 * have been requested. When later blocks
2455 * get requested, we will try again
2456 */
2457 continue;
2458 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2459 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2460 /* must have already done this block */
2461 release_stripe(sh2);
2462 continue;
2463 }
2464
2465 /* place all the copies on one channel */
2466 tx = async_memcpy(sh2->dev[dd_idx].page,
2467 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2468 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2469
2470 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2471 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2472 for (j = 0; j < conf->raid_disks; j++)
2473 if (j != sh2->pd_idx &&
2474 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2475 sh2->disks)) &&
2476 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2477 break;
2478 if (j == conf->raid_disks) {
2479 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2480 set_bit(STRIPE_HANDLE, &sh2->state);
2481 }
2482 release_stripe(sh2);
2483
2484 }
2485 /* done submitting copies, wait for them to complete */
2486 if (tx) {
2487 async_tx_ack(tx);
2488 dma_wait_for_async_tx(tx);
2489 }
2490 }
2491
2492
2493 /*
2494 * handle_stripe - do things to a stripe.
2495 *
2496 * We lock the stripe and then examine the state of various bits
2497 * to see what needs to be done.
2498 * Possible results:
2499 * return some read request which now have data
2500 * return some write requests which are safely on disc
2501 * schedule a read on some buffers
2502 * schedule a write of some buffers
2503 * return confirmation of parity correctness
2504 *
2505 * buffers are taken off read_list or write_list, and bh_cache buffers
2506 * get BH_Lock set before the stripe lock is released.
2507 *
2508 */
2509
2510 static bool handle_stripe5(struct stripe_head *sh)
2511 {
2512 raid5_conf_t *conf = sh->raid_conf;
2513 int disks = sh->disks, i;
2514 struct bio *return_bi = NULL;
2515 struct stripe_head_state s;
2516 struct r5dev *dev;
2517 mdk_rdev_t *blocked_rdev = NULL;
2518 int prexor;
2519
2520 memset(&s, 0, sizeof(s));
2521 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2522 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2523 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2524 sh->reconstruct_state);
2525
2526 spin_lock(&sh->lock);
2527 clear_bit(STRIPE_HANDLE, &sh->state);
2528 clear_bit(STRIPE_DELAYED, &sh->state);
2529
2530 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2531 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2532 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2533
2534 /* Now to look around and see what can be done */
2535 rcu_read_lock();
2536 for (i=disks; i--; ) {
2537 mdk_rdev_t *rdev;
2538 struct r5dev *dev = &sh->dev[i];
2539 clear_bit(R5_Insync, &dev->flags);
2540
2541 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2542 "written %p\n", i, dev->flags, dev->toread, dev->read,
2543 dev->towrite, dev->written);
2544
2545 /* maybe we can request a biofill operation
2546 *
2547 * new wantfill requests are only permitted while
2548 * ops_complete_biofill is guaranteed to be inactive
2549 */
2550 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2551 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2552 set_bit(R5_Wantfill, &dev->flags);
2553
2554 /* now count some things */
2555 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2556 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2557 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2558
2559 if (test_bit(R5_Wantfill, &dev->flags))
2560 s.to_fill++;
2561 else if (dev->toread)
2562 s.to_read++;
2563 if (dev->towrite) {
2564 s.to_write++;
2565 if (!test_bit(R5_OVERWRITE, &dev->flags))
2566 s.non_overwrite++;
2567 }
2568 if (dev->written)
2569 s.written++;
2570 rdev = rcu_dereference(conf->disks[i].rdev);
2571 if (blocked_rdev == NULL &&
2572 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2573 blocked_rdev = rdev;
2574 atomic_inc(&rdev->nr_pending);
2575 }
2576 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2577 /* The ReadError flag will just be confusing now */
2578 clear_bit(R5_ReadError, &dev->flags);
2579 clear_bit(R5_ReWrite, &dev->flags);
2580 }
2581 if (!rdev || !test_bit(In_sync, &rdev->flags)
2582 || test_bit(R5_ReadError, &dev->flags)) {
2583 s.failed++;
2584 s.failed_num = i;
2585 } else
2586 set_bit(R5_Insync, &dev->flags);
2587 }
2588 rcu_read_unlock();
2589
2590 if (unlikely(blocked_rdev)) {
2591 if (s.syncing || s.expanding || s.expanded ||
2592 s.to_write || s.written) {
2593 set_bit(STRIPE_HANDLE, &sh->state);
2594 goto unlock;
2595 }
2596 /* There is nothing for the blocked_rdev to block */
2597 rdev_dec_pending(blocked_rdev, conf->mddev);
2598 blocked_rdev = NULL;
2599 }
2600
2601 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2602 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2603 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2604 }
2605
2606 pr_debug("locked=%d uptodate=%d to_read=%d"
2607 " to_write=%d failed=%d failed_num=%d\n",
2608 s.locked, s.uptodate, s.to_read, s.to_write,
2609 s.failed, s.failed_num);
2610 /* check if the array has lost two devices and, if so, some requests might
2611 * need to be failed
2612 */
2613 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2614 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2615 if (s.failed > 1 && s.syncing) {
2616 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2617 clear_bit(STRIPE_SYNCING, &sh->state);
2618 s.syncing = 0;
2619 }
2620
2621 /* might be able to return some write requests if the parity block
2622 * is safe, or on a failed drive
2623 */
2624 dev = &sh->dev[sh->pd_idx];
2625 if ( s.written &&
2626 ((test_bit(R5_Insync, &dev->flags) &&
2627 !test_bit(R5_LOCKED, &dev->flags) &&
2628 test_bit(R5_UPTODATE, &dev->flags)) ||
2629 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2630 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2631
2632 /* Now we might consider reading some blocks, either to check/generate
2633 * parity, or to satisfy requests
2634 * or to load a block that is being partially written.
2635 */
2636 if (s.to_read || s.non_overwrite ||
2637 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
2638 handle_stripe_fill5(sh, &s, disks);
2639
2640 /* Now we check to see if any write operations have recently
2641 * completed
2642 */
2643 prexor = 0;
2644 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
2645 prexor = 1;
2646 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2647 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
2648 sh->reconstruct_state = reconstruct_state_idle;
2649
2650 /* All the 'written' buffers and the parity block are ready to
2651 * be written back to disk
2652 */
2653 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2654 for (i = disks; i--; ) {
2655 dev = &sh->dev[i];
2656 if (test_bit(R5_LOCKED, &dev->flags) &&
2657 (i == sh->pd_idx || dev->written)) {
2658 pr_debug("Writing block %d\n", i);
2659 set_bit(R5_Wantwrite, &dev->flags);
2660 if (prexor)
2661 continue;
2662 if (!test_bit(R5_Insync, &dev->flags) ||
2663 (i == sh->pd_idx && s.failed == 0))
2664 set_bit(STRIPE_INSYNC, &sh->state);
2665 }
2666 }
2667 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2668 atomic_dec(&conf->preread_active_stripes);
2669 if (atomic_read(&conf->preread_active_stripes) <
2670 IO_THRESHOLD)
2671 md_wakeup_thread(conf->mddev->thread);
2672 }
2673 }
2674
2675 /* Now to consider new write requests and what else, if anything
2676 * should be read. We do not handle new writes when:
2677 * 1/ A 'write' operation (copy+xor) is already in flight.
2678 * 2/ A 'check' operation is in flight, as it may clobber the parity
2679 * block.
2680 */
2681 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
2682 handle_stripe_dirtying5(conf, sh, &s, disks);
2683
2684 /* maybe we need to check and possibly fix the parity for this stripe
2685 * Any reads will already have been scheduled, so we just see if enough
2686 * data is available. The parity check is held off while parity
2687 * dependent operations are in flight.
2688 */
2689 if (sh->check_state ||
2690 (s.syncing && s.locked == 0 &&
2691 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
2692 !test_bit(STRIPE_INSYNC, &sh->state)))
2693 handle_parity_checks5(conf, sh, &s, disks);
2694
2695 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2696 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2697 clear_bit(STRIPE_SYNCING, &sh->state);
2698 }
2699
2700 /* If the failed drive is just a ReadError, then we might need to progress
2701 * the repair/check process
2702 */
2703 if (s.failed == 1 && !conf->mddev->ro &&
2704 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2705 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2706 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2707 ) {
2708 dev = &sh->dev[s.failed_num];
2709 if (!test_bit(R5_ReWrite, &dev->flags)) {
2710 set_bit(R5_Wantwrite, &dev->flags);
2711 set_bit(R5_ReWrite, &dev->flags);
2712 set_bit(R5_LOCKED, &dev->flags);
2713 s.locked++;
2714 } else {
2715 /* let's read it back */
2716 set_bit(R5_Wantread, &dev->flags);
2717 set_bit(R5_LOCKED, &dev->flags);
2718 s.locked++;
2719 }
2720 }
2721
2722 /* Finish reconstruct operations initiated by the expansion process */
2723 if (sh->reconstruct_state == reconstruct_state_result) {
2724 sh->reconstruct_state = reconstruct_state_idle;
2725 clear_bit(STRIPE_EXPANDING, &sh->state);
2726 for (i = conf->raid_disks; i--; ) {
2727 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2728 set_bit(R5_LOCKED, &sh->dev[i].flags);
2729 s.locked++;
2730 }
2731 }
2732
2733 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2734 !sh->reconstruct_state) {
2735 /* Need to write out all blocks after computing parity */
2736 sh->disks = conf->raid_disks;
2737 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2738 conf->raid_disks);
2739 schedule_reconstruction5(sh, &s, 1, 1);
2740 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
2741 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2742 atomic_dec(&conf->reshape_stripes);
2743 wake_up(&conf->wait_for_overlap);
2744 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2745 }
2746
2747 if (s.expanding && s.locked == 0 &&
2748 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2749 handle_stripe_expansion(conf, sh, NULL);
2750
2751 unlock:
2752 spin_unlock(&sh->lock);
2753
2754 /* wait for this device to become unblocked */
2755 if (unlikely(blocked_rdev))
2756 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2757
2758 if (s.ops_request)
2759 raid5_run_ops(sh, s.ops_request);
2760
2761 ops_run_io(sh, &s);
2762
2763 return_io(return_bi);
2764
2765 return blocked_rdev == NULL;
2766 }
2767
2768 static bool handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2769 {
2770 raid6_conf_t *conf = sh->raid_conf;
2771 int disks = sh->disks;
2772 struct bio *return_bi = NULL;
2773 int i, pd_idx = sh->pd_idx;
2774 struct stripe_head_state s;
2775 struct r6_state r6s;
2776 struct r5dev *dev, *pdev, *qdev;
2777 mdk_rdev_t *blocked_rdev = NULL;
2778
2779 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2780 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2781 "pd_idx=%d, qd_idx=%d\n",
2782 (unsigned long long)sh->sector, sh->state,
2783 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2784 memset(&s, 0, sizeof(s));
2785
2786 spin_lock(&sh->lock);
2787 clear_bit(STRIPE_HANDLE, &sh->state);
2788 clear_bit(STRIPE_DELAYED, &sh->state);
2789
2790 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2791 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2792 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2793 /* Now to look around and see what can be done */
2794
2795 rcu_read_lock();
2796 for (i=disks; i--; ) {
2797 mdk_rdev_t *rdev;
2798 dev = &sh->dev[i];
2799 clear_bit(R5_Insync, &dev->flags);
2800
2801 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2802 i, dev->flags, dev->toread, dev->towrite, dev->written);
2803 /* maybe we can reply to a read */
2804 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2805 struct bio *rbi, *rbi2;
2806 pr_debug("Return read for disc %d\n", i);
2807 spin_lock_irq(&conf->device_lock);
2808 rbi = dev->toread;
2809 dev->toread = NULL;
2810 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2811 wake_up(&conf->wait_for_overlap);
2812 spin_unlock_irq(&conf->device_lock);
2813 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2814 copy_data(0, rbi, dev->page, dev->sector);
2815 rbi2 = r5_next_bio(rbi, dev->sector);
2816 spin_lock_irq(&conf->device_lock);
2817 if (--rbi->bi_phys_segments == 0) {
2818 rbi->bi_next = return_bi;
2819 return_bi = rbi;
2820 }
2821 spin_unlock_irq(&conf->device_lock);
2822 rbi = rbi2;
2823 }
2824 }
2825
2826 /* now count some things */
2827 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2828 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2829
2830
2831 if (dev->toread)
2832 s.to_read++;
2833 if (dev->towrite) {
2834 s.to_write++;
2835 if (!test_bit(R5_OVERWRITE, &dev->flags))
2836 s.non_overwrite++;
2837 }
2838 if (dev->written)
2839 s.written++;
2840 rdev = rcu_dereference(conf->disks[i].rdev);
2841 if (blocked_rdev == NULL &&
2842 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2843 blocked_rdev = rdev;
2844 atomic_inc(&rdev->nr_pending);
2845 }
2846 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2847 /* The ReadError flag will just be confusing now */
2848 clear_bit(R5_ReadError, &dev->flags);
2849 clear_bit(R5_ReWrite, &dev->flags);
2850 }
2851 if (!rdev || !test_bit(In_sync, &rdev->flags)
2852 || test_bit(R5_ReadError, &dev->flags)) {
2853 if (s.failed < 2)
2854 r6s.failed_num[s.failed] = i;
2855 s.failed++;
2856 } else
2857 set_bit(R5_Insync, &dev->flags);
2858 }
2859 rcu_read_unlock();
2860
2861 if (unlikely(blocked_rdev)) {
2862 if (s.syncing || s.expanding || s.expanded ||
2863 s.to_write || s.written) {
2864 set_bit(STRIPE_HANDLE, &sh->state);
2865 goto unlock;
2866 }
2867 /* There is nothing for the blocked_rdev to block */
2868 rdev_dec_pending(blocked_rdev, conf->mddev);
2869 blocked_rdev = NULL;
2870 }
2871
2872 pr_debug("locked=%d uptodate=%d to_read=%d"
2873 " to_write=%d failed=%d failed_num=%d,%d\n",
2874 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2875 r6s.failed_num[0], r6s.failed_num[1]);
2876 /* check if the array has lost >2 devices and, if so, some requests
2877 * might need to be failed
2878 */
2879 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2880 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
2881 if (s.failed > 2 && s.syncing) {
2882 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2883 clear_bit(STRIPE_SYNCING, &sh->state);
2884 s.syncing = 0;
2885 }
2886
2887 /*
2888 * might be able to return some write requests if the parity blocks
2889 * are safe, or on a failed drive
2890 */
2891 pdev = &sh->dev[pd_idx];
2892 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2893 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2894 qdev = &sh->dev[r6s.qd_idx];
2895 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2896 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2897
2898 if ( s.written &&
2899 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2900 && !test_bit(R5_LOCKED, &pdev->flags)
2901 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2902 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2903 && !test_bit(R5_LOCKED, &qdev->flags)
2904 && test_bit(R5_UPTODATE, &qdev->flags)))))
2905 handle_stripe_clean_event(conf, sh, disks, &return_bi);
2906
2907 /* Now we might consider reading some blocks, either to check/generate
2908 * parity, or to satisfy requests
2909 * or to load a block that is being partially written.
2910 */
2911 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
2912 (s.syncing && (s.uptodate < disks)) || s.expanding)
2913 handle_stripe_fill6(sh, &s, &r6s, disks);
2914
2915 /* now to consider writing and what else, if anything should be read */
2916 if (s.to_write)
2917 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
2918
2919 /* maybe we need to check and possibly fix the parity for this stripe
2920 * Any reads will already have been scheduled, so we just see if enough
2921 * data is available
2922 */
2923 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
2924 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
2925
2926 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2927 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2928 clear_bit(STRIPE_SYNCING, &sh->state);
2929 }
2930
2931 /* If the failed drives are just a ReadError, then we might need
2932 * to progress the repair/check process
2933 */
2934 if (s.failed <= 2 && !conf->mddev->ro)
2935 for (i = 0; i < s.failed; i++) {
2936 dev = &sh->dev[r6s.failed_num[i]];
2937 if (test_bit(R5_ReadError, &dev->flags)
2938 && !test_bit(R5_LOCKED, &dev->flags)
2939 && test_bit(R5_UPTODATE, &dev->flags)
2940 ) {
2941 if (!test_bit(R5_ReWrite, &dev->flags)) {
2942 set_bit(R5_Wantwrite, &dev->flags);
2943 set_bit(R5_ReWrite, &dev->flags);
2944 set_bit(R5_LOCKED, &dev->flags);
2945 } else {
2946 /* let's read it back */
2947 set_bit(R5_Wantread, &dev->flags);
2948 set_bit(R5_LOCKED, &dev->flags);
2949 }
2950 }
2951 }
2952
2953 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
2954 /* Need to write out all blocks after computing P&Q */
2955 sh->disks = conf->raid_disks;
2956 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2957 conf->raid_disks);
2958 compute_parity6(sh, RECONSTRUCT_WRITE);
2959 for (i = conf->raid_disks ; i-- ; ) {
2960 set_bit(R5_LOCKED, &sh->dev[i].flags);
2961 s.locked++;
2962 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2963 }
2964 clear_bit(STRIPE_EXPANDING, &sh->state);
2965 } else if (s.expanded) {
2966 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2967 atomic_dec(&conf->reshape_stripes);
2968 wake_up(&conf->wait_for_overlap);
2969 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2970 }
2971
2972 if (s.expanding && s.locked == 0 &&
2973 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
2974 handle_stripe_expansion(conf, sh, &r6s);
2975
2976 unlock:
2977 spin_unlock(&sh->lock);
2978
2979 /* wait for this device to become unblocked */
2980 if (unlikely(blocked_rdev))
2981 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2982
2983 ops_run_io(sh, &s);
2984
2985 return_io(return_bi);
2986
2987 return blocked_rdev == NULL;
2988 }
2989
2990 /* returns true if the stripe was handled */
2991 static bool handle_stripe(struct stripe_head *sh, struct page *tmp_page)
2992 {
2993 if (sh->raid_conf->level == 6)
2994 return handle_stripe6(sh, tmp_page);
2995 else
2996 return handle_stripe5(sh);
2997 }
2998
2999
3000
3001 static void raid5_activate_delayed(raid5_conf_t *conf)
3002 {
3003 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3004 while (!list_empty(&conf->delayed_list)) {
3005 struct list_head *l = conf->delayed_list.next;
3006 struct stripe_head *sh;
3007 sh = list_entry(l, struct stripe_head, lru);
3008 list_del_init(l);
3009 clear_bit(STRIPE_DELAYED, &sh->state);
3010 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3011 atomic_inc(&conf->preread_active_stripes);
3012 list_add_tail(&sh->lru, &conf->hold_list);
3013 }
3014 } else
3015 blk_plug_device(conf->mddev->queue);
3016 }
3017
3018 static void activate_bit_delay(raid5_conf_t *conf)
3019 {
3020 /* device_lock is held */
3021 struct list_head head;
3022 list_add(&head, &conf->bitmap_list);
3023 list_del_init(&conf->bitmap_list);
3024 while (!list_empty(&head)) {
3025 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3026 list_del_init(&sh->lru);
3027 atomic_inc(&sh->count);
3028 __release_stripe(conf, sh);
3029 }
3030 }
3031
3032 static void unplug_slaves(mddev_t *mddev)
3033 {
3034 raid5_conf_t *conf = mddev_to_conf(mddev);
3035 int i;
3036
3037 rcu_read_lock();
3038 for (i=0; i<mddev->raid_disks; i++) {
3039 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3040 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3041 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3042
3043 atomic_inc(&rdev->nr_pending);
3044 rcu_read_unlock();
3045
3046 blk_unplug(r_queue);
3047
3048 rdev_dec_pending(rdev, mddev);
3049 rcu_read_lock();
3050 }
3051 }
3052 rcu_read_unlock();
3053 }
3054
3055 static void raid5_unplug_device(struct request_queue *q)
3056 {
3057 mddev_t *mddev = q->queuedata;
3058 raid5_conf_t *conf = mddev_to_conf(mddev);
3059 unsigned long flags;
3060
3061 spin_lock_irqsave(&conf->device_lock, flags);
3062
3063 if (blk_remove_plug(q)) {
3064 conf->seq_flush++;
3065 raid5_activate_delayed(conf);
3066 }
3067 md_wakeup_thread(mddev->thread);
3068
3069 spin_unlock_irqrestore(&conf->device_lock, flags);
3070
3071 unplug_slaves(mddev);
3072 }
3073
3074 static int raid5_congested(void *data, int bits)
3075 {
3076 mddev_t *mddev = data;
3077 raid5_conf_t *conf = mddev_to_conf(mddev);
3078
3079 /* No difference between reads and writes. Just check
3080 * how busy the stripe_cache is
3081 */
3082 if (conf->inactive_blocked)
3083 return 1;
3084 if (conf->quiesce)
3085 return 1;
3086 if (list_empty_careful(&conf->inactive_list))
3087 return 1;
3088
3089 return 0;
3090 }
3091
3092 /* We want read requests to align with chunks where possible,
3093 * but write requests don't need to.
3094 */
3095 static int raid5_mergeable_bvec(struct request_queue *q,
3096 struct bvec_merge_data *bvm,
3097 struct bio_vec *biovec)
3098 {
3099 mddev_t *mddev = q->queuedata;
3100 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3101 int max;
3102 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3103 unsigned int bio_sectors = bvm->bi_size >> 9;
3104
3105 if ((bvm->bi_rw & 1) == WRITE)
3106 return biovec->bv_len; /* always allow writes to be mergeable */
3107
3108 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3109 if (max < 0) max = 0;
3110 if (max <= biovec->bv_len && bio_sectors == 0)
3111 return biovec->bv_len;
3112 else
3113 return max;
3114 }
3115
3116
3117 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3118 {
3119 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3120 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3121 unsigned int bio_sectors = bio->bi_size >> 9;
3122
3123 return chunk_sectors >=
3124 ((sector & (chunk_sectors - 1)) + bio_sectors);
3125 }
3126
3127 /*
3128 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3129 * later sampled by raid5d.
3130 */
3131 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3132 {
3133 unsigned long flags;
3134
3135 spin_lock_irqsave(&conf->device_lock, flags);
3136
3137 bi->bi_next = conf->retry_read_aligned_list;
3138 conf->retry_read_aligned_list = bi;
3139
3140 spin_unlock_irqrestore(&conf->device_lock, flags);
3141 md_wakeup_thread(conf->mddev->thread);
3142 }
3143
3144
3145 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3146 {
3147 struct bio *bi;
3148
3149 bi = conf->retry_read_aligned;
3150 if (bi) {
3151 conf->retry_read_aligned = NULL;
3152 return bi;
3153 }
3154 bi = conf->retry_read_aligned_list;
3155 if(bi) {
3156 conf->retry_read_aligned_list = bi->bi_next;
3157 bi->bi_next = NULL;
3158 bi->bi_phys_segments = 1; /* biased count of active stripes */
3159 bi->bi_hw_segments = 0; /* count of processed stripes */
3160 }
3161
3162 return bi;
3163 }
3164
3165
3166 /*
3167 * The "raid5_align_endio" should check if the read succeeded and if it
3168 * did, call bio_endio on the original bio (having bio_put the new bio
3169 * first).
3170 * If the read failed..
3171 */
3172 static void raid5_align_endio(struct bio *bi, int error)
3173 {
3174 struct bio* raid_bi = bi->bi_private;
3175 mddev_t *mddev;
3176 raid5_conf_t *conf;
3177 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3178 mdk_rdev_t *rdev;
3179
3180 bio_put(bi);
3181
3182 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3183 conf = mddev_to_conf(mddev);
3184 rdev = (void*)raid_bi->bi_next;
3185 raid_bi->bi_next = NULL;
3186
3187 rdev_dec_pending(rdev, conf->mddev);
3188
3189 if (!error && uptodate) {
3190 bio_endio(raid_bi, 0);
3191 if (atomic_dec_and_test(&conf->active_aligned_reads))
3192 wake_up(&conf->wait_for_stripe);
3193 return;
3194 }
3195
3196
3197 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3198
3199 add_bio_to_retry(raid_bi, conf);
3200 }
3201
3202 static int bio_fits_rdev(struct bio *bi)
3203 {
3204 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3205
3206 if ((bi->bi_size>>9) > q->max_sectors)
3207 return 0;
3208 blk_recount_segments(q, bi);
3209 if (bi->bi_phys_segments > q->max_phys_segments ||
3210 bi->bi_hw_segments > q->max_hw_segments)
3211 return 0;
3212
3213 if (q->merge_bvec_fn)
3214 /* it's too hard to apply the merge_bvec_fn at this stage,
3215 * just just give up
3216 */
3217 return 0;
3218
3219 return 1;
3220 }
3221
3222
3223 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3224 {
3225 mddev_t *mddev = q->queuedata;
3226 raid5_conf_t *conf = mddev_to_conf(mddev);
3227 const unsigned int raid_disks = conf->raid_disks;
3228 const unsigned int data_disks = raid_disks - conf->max_degraded;
3229 unsigned int dd_idx, pd_idx;
3230 struct bio* align_bi;
3231 mdk_rdev_t *rdev;
3232
3233 if (!in_chunk_boundary(mddev, raid_bio)) {
3234 pr_debug("chunk_aligned_read : non aligned\n");
3235 return 0;
3236 }
3237 /*
3238 * use bio_clone to make a copy of the bio
3239 */
3240 align_bi = bio_clone(raid_bio, GFP_NOIO);
3241 if (!align_bi)
3242 return 0;
3243 /*
3244 * set bi_end_io to a new function, and set bi_private to the
3245 * original bio.
3246 */
3247 align_bi->bi_end_io = raid5_align_endio;
3248 align_bi->bi_private = raid_bio;
3249 /*
3250 * compute position
3251 */
3252 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3253 raid_disks,
3254 data_disks,
3255 &dd_idx,
3256 &pd_idx,
3257 conf);
3258
3259 rcu_read_lock();
3260 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3261 if (rdev && test_bit(In_sync, &rdev->flags)) {
3262 atomic_inc(&rdev->nr_pending);
3263 rcu_read_unlock();
3264 raid_bio->bi_next = (void*)rdev;
3265 align_bi->bi_bdev = rdev->bdev;
3266 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3267 align_bi->bi_sector += rdev->data_offset;
3268
3269 if (!bio_fits_rdev(align_bi)) {
3270 /* too big in some way */
3271 bio_put(align_bi);
3272 rdev_dec_pending(rdev, mddev);
3273 return 0;
3274 }
3275
3276 spin_lock_irq(&conf->device_lock);
3277 wait_event_lock_irq(conf->wait_for_stripe,
3278 conf->quiesce == 0,
3279 conf->device_lock, /* nothing */);
3280 atomic_inc(&conf->active_aligned_reads);
3281 spin_unlock_irq(&conf->device_lock);
3282
3283 generic_make_request(align_bi);
3284 return 1;
3285 } else {
3286 rcu_read_unlock();
3287 bio_put(align_bi);
3288 return 0;
3289 }
3290 }
3291
3292 /* __get_priority_stripe - get the next stripe to process
3293 *
3294 * Full stripe writes are allowed to pass preread active stripes up until
3295 * the bypass_threshold is exceeded. In general the bypass_count
3296 * increments when the handle_list is handled before the hold_list; however, it
3297 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3298 * stripe with in flight i/o. The bypass_count will be reset when the
3299 * head of the hold_list has changed, i.e. the head was promoted to the
3300 * handle_list.
3301 */
3302 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3303 {
3304 struct stripe_head *sh;
3305
3306 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3307 __func__,
3308 list_empty(&conf->handle_list) ? "empty" : "busy",
3309 list_empty(&conf->hold_list) ? "empty" : "busy",
3310 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3311
3312 if (!list_empty(&conf->handle_list)) {
3313 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3314
3315 if (list_empty(&conf->hold_list))
3316 conf->bypass_count = 0;
3317 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3318 if (conf->hold_list.next == conf->last_hold)
3319 conf->bypass_count++;
3320 else {
3321 conf->last_hold = conf->hold_list.next;
3322 conf->bypass_count -= conf->bypass_threshold;
3323 if (conf->bypass_count < 0)
3324 conf->bypass_count = 0;
3325 }
3326 }
3327 } else if (!list_empty(&conf->hold_list) &&
3328 ((conf->bypass_threshold &&
3329 conf->bypass_count > conf->bypass_threshold) ||
3330 atomic_read(&conf->pending_full_writes) == 0)) {
3331 sh = list_entry(conf->hold_list.next,
3332 typeof(*sh), lru);
3333 conf->bypass_count -= conf->bypass_threshold;
3334 if (conf->bypass_count < 0)
3335 conf->bypass_count = 0;
3336 } else
3337 return NULL;
3338
3339 list_del_init(&sh->lru);
3340 atomic_inc(&sh->count);
3341 BUG_ON(atomic_read(&sh->count) != 1);
3342 return sh;
3343 }
3344
3345 static int make_request(struct request_queue *q, struct bio * bi)
3346 {
3347 mddev_t *mddev = q->queuedata;
3348 raid5_conf_t *conf = mddev_to_conf(mddev);
3349 unsigned int dd_idx, pd_idx;
3350 sector_t new_sector;
3351 sector_t logical_sector, last_sector;
3352 struct stripe_head *sh;
3353 const int rw = bio_data_dir(bi);
3354 int remaining;
3355
3356 if (unlikely(bio_barrier(bi))) {
3357 bio_endio(bi, -EOPNOTSUPP);
3358 return 0;
3359 }
3360
3361 md_write_start(mddev, bi);
3362
3363 disk_stat_inc(mddev->gendisk, ios[rw]);
3364 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3365
3366 if (rw == READ &&
3367 mddev->reshape_position == MaxSector &&
3368 chunk_aligned_read(q,bi))
3369 return 0;
3370
3371 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3372 last_sector = bi->bi_sector + (bi->bi_size>>9);
3373 bi->bi_next = NULL;
3374 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3375
3376 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3377 DEFINE_WAIT(w);
3378 int disks, data_disks;
3379
3380 retry:
3381 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3382 if (likely(conf->expand_progress == MaxSector))
3383 disks = conf->raid_disks;
3384 else {
3385 /* spinlock is needed as expand_progress may be
3386 * 64bit on a 32bit platform, and so it might be
3387 * possible to see a half-updated value
3388 * Ofcourse expand_progress could change after
3389 * the lock is dropped, so once we get a reference
3390 * to the stripe that we think it is, we will have
3391 * to check again.
3392 */
3393 spin_lock_irq(&conf->device_lock);
3394 disks = conf->raid_disks;
3395 if (logical_sector >= conf->expand_progress)
3396 disks = conf->previous_raid_disks;
3397 else {
3398 if (logical_sector >= conf->expand_lo) {
3399 spin_unlock_irq(&conf->device_lock);
3400 schedule();
3401 goto retry;
3402 }
3403 }
3404 spin_unlock_irq(&conf->device_lock);
3405 }
3406 data_disks = disks - conf->max_degraded;
3407
3408 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3409 &dd_idx, &pd_idx, conf);
3410 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3411 (unsigned long long)new_sector,
3412 (unsigned long long)logical_sector);
3413
3414 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3415 if (sh) {
3416 if (unlikely(conf->expand_progress != MaxSector)) {
3417 /* expansion might have moved on while waiting for a
3418 * stripe, so we must do the range check again.
3419 * Expansion could still move past after this
3420 * test, but as we are holding a reference to
3421 * 'sh', we know that if that happens,
3422 * STRIPE_EXPANDING will get set and the expansion
3423 * won't proceed until we finish with the stripe.
3424 */
3425 int must_retry = 0;
3426 spin_lock_irq(&conf->device_lock);
3427 if (logical_sector < conf->expand_progress &&
3428 disks == conf->previous_raid_disks)
3429 /* mismatch, need to try again */
3430 must_retry = 1;
3431 spin_unlock_irq(&conf->device_lock);
3432 if (must_retry) {
3433 release_stripe(sh);
3434 goto retry;
3435 }
3436 }
3437 /* FIXME what if we get a false positive because these
3438 * are being updated.
3439 */
3440 if (logical_sector >= mddev->suspend_lo &&
3441 logical_sector < mddev->suspend_hi) {
3442 release_stripe(sh);
3443 schedule();
3444 goto retry;
3445 }
3446
3447 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3448 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3449 /* Stripe is busy expanding or
3450 * add failed due to overlap. Flush everything
3451 * and wait a while
3452 */
3453 raid5_unplug_device(mddev->queue);
3454 release_stripe(sh);
3455 schedule();
3456 goto retry;
3457 }
3458 finish_wait(&conf->wait_for_overlap, &w);
3459 set_bit(STRIPE_HANDLE, &sh->state);
3460 clear_bit(STRIPE_DELAYED, &sh->state);
3461 release_stripe(sh);
3462 } else {
3463 /* cannot get stripe for read-ahead, just give-up */
3464 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3465 finish_wait(&conf->wait_for_overlap, &w);
3466 break;
3467 }
3468
3469 }
3470 spin_lock_irq(&conf->device_lock);
3471 remaining = --bi->bi_phys_segments;
3472 spin_unlock_irq(&conf->device_lock);
3473 if (remaining == 0) {
3474
3475 if ( rw == WRITE )
3476 md_write_end(mddev);
3477
3478 bio_endio(bi, 0);
3479 }
3480 return 0;
3481 }
3482
3483 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3484 {
3485 /* reshaping is quite different to recovery/resync so it is
3486 * handled quite separately ... here.
3487 *
3488 * On each call to sync_request, we gather one chunk worth of
3489 * destination stripes and flag them as expanding.
3490 * Then we find all the source stripes and request reads.
3491 * As the reads complete, handle_stripe will copy the data
3492 * into the destination stripe and release that stripe.
3493 */
3494 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3495 struct stripe_head *sh;
3496 int pd_idx;
3497 sector_t first_sector, last_sector;
3498 int raid_disks = conf->previous_raid_disks;
3499 int data_disks = raid_disks - conf->max_degraded;
3500 int new_data_disks = conf->raid_disks - conf->max_degraded;
3501 int i;
3502 int dd_idx;
3503 sector_t writepos, safepos, gap;
3504
3505 if (sector_nr == 0 &&
3506 conf->expand_progress != 0) {
3507 /* restarting in the middle, skip the initial sectors */
3508 sector_nr = conf->expand_progress;
3509 sector_div(sector_nr, new_data_disks);
3510 *skipped = 1;
3511 return sector_nr;
3512 }
3513
3514 /* we update the metadata when there is more than 3Meg
3515 * in the block range (that is rather arbitrary, should
3516 * probably be time based) or when the data about to be
3517 * copied would over-write the source of the data at
3518 * the front of the range.
3519 * i.e. one new_stripe forward from expand_progress new_maps
3520 * to after where expand_lo old_maps to
3521 */
3522 writepos = conf->expand_progress +
3523 conf->chunk_size/512*(new_data_disks);
3524 sector_div(writepos, new_data_disks);
3525 safepos = conf->expand_lo;
3526 sector_div(safepos, data_disks);
3527 gap = conf->expand_progress - conf->expand_lo;
3528
3529 if (writepos >= safepos ||
3530 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3531 /* Cannot proceed until we've updated the superblock... */
3532 wait_event(conf->wait_for_overlap,
3533 atomic_read(&conf->reshape_stripes)==0);
3534 mddev->reshape_position = conf->expand_progress;
3535 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3536 md_wakeup_thread(mddev->thread);
3537 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3538 kthread_should_stop());
3539 spin_lock_irq(&conf->device_lock);
3540 conf->expand_lo = mddev->reshape_position;
3541 spin_unlock_irq(&conf->device_lock);
3542 wake_up(&conf->wait_for_overlap);
3543 }
3544
3545 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3546 int j;
3547 int skipped = 0;
3548 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3549 sh = get_active_stripe(conf, sector_nr+i,
3550 conf->raid_disks, pd_idx, 0);
3551 set_bit(STRIPE_EXPANDING, &sh->state);
3552 atomic_inc(&conf->reshape_stripes);
3553 /* If any of this stripe is beyond the end of the old
3554 * array, then we need to zero those blocks
3555 */
3556 for (j=sh->disks; j--;) {
3557 sector_t s;
3558 if (j == sh->pd_idx)
3559 continue;
3560 if (conf->level == 6 &&
3561 j == raid6_next_disk(sh->pd_idx, sh->disks))
3562 continue;
3563 s = compute_blocknr(sh, j);
3564 if (s < mddev->array_sectors) {
3565 skipped = 1;
3566 continue;
3567 }
3568 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3569 set_bit(R5_Expanded, &sh->dev[j].flags);
3570 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3571 }
3572 if (!skipped) {
3573 set_bit(STRIPE_EXPAND_READY, &sh->state);
3574 set_bit(STRIPE_HANDLE, &sh->state);
3575 }
3576 release_stripe(sh);
3577 }
3578 spin_lock_irq(&conf->device_lock);
3579 conf->expand_progress = (sector_nr + i) * new_data_disks;
3580 spin_unlock_irq(&conf->device_lock);
3581 /* Ok, those stripe are ready. We can start scheduling
3582 * reads on the source stripes.
3583 * The source stripes are determined by mapping the first and last
3584 * block on the destination stripes.
3585 */
3586 first_sector =
3587 raid5_compute_sector(sector_nr*(new_data_disks),
3588 raid_disks, data_disks,
3589 &dd_idx, &pd_idx, conf);
3590 last_sector =
3591 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3592 *(new_data_disks) -1,
3593 raid_disks, data_disks,
3594 &dd_idx, &pd_idx, conf);
3595 if (last_sector >= (mddev->size<<1))
3596 last_sector = (mddev->size<<1)-1;
3597 while (first_sector <= last_sector) {
3598 pd_idx = stripe_to_pdidx(first_sector, conf,
3599 conf->previous_raid_disks);
3600 sh = get_active_stripe(conf, first_sector,
3601 conf->previous_raid_disks, pd_idx, 0);
3602 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3603 set_bit(STRIPE_HANDLE, &sh->state);
3604 release_stripe(sh);
3605 first_sector += STRIPE_SECTORS;
3606 }
3607 /* If this takes us to the resync_max point where we have to pause,
3608 * then we need to write out the superblock.
3609 */
3610 sector_nr += conf->chunk_size>>9;
3611 if (sector_nr >= mddev->resync_max) {
3612 /* Cannot proceed until we've updated the superblock... */
3613 wait_event(conf->wait_for_overlap,
3614 atomic_read(&conf->reshape_stripes) == 0);
3615 mddev->reshape_position = conf->expand_progress;
3616 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3617 md_wakeup_thread(mddev->thread);
3618 wait_event(mddev->sb_wait,
3619 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3620 || kthread_should_stop());
3621 spin_lock_irq(&conf->device_lock);
3622 conf->expand_lo = mddev->reshape_position;
3623 spin_unlock_irq(&conf->device_lock);
3624 wake_up(&conf->wait_for_overlap);
3625 }
3626 return conf->chunk_size>>9;
3627 }
3628
3629 /* FIXME go_faster isn't used */
3630 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3631 {
3632 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3633 struct stripe_head *sh;
3634 int pd_idx;
3635 int raid_disks = conf->raid_disks;
3636 sector_t max_sector = mddev->size << 1;
3637 int sync_blocks;
3638 int still_degraded = 0;
3639 int i;
3640
3641 if (sector_nr >= max_sector) {
3642 /* just being told to finish up .. nothing much to do */
3643 unplug_slaves(mddev);
3644 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3645 end_reshape(conf);
3646 return 0;
3647 }
3648
3649 if (mddev->curr_resync < max_sector) /* aborted */
3650 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3651 &sync_blocks, 1);
3652 else /* completed sync */
3653 conf->fullsync = 0;
3654 bitmap_close_sync(mddev->bitmap);
3655
3656 return 0;
3657 }
3658
3659 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3660 return reshape_request(mddev, sector_nr, skipped);
3661
3662 /* No need to check resync_max as we never do more than one
3663 * stripe, and as resync_max will always be on a chunk boundary,
3664 * if the check in md_do_sync didn't fire, there is no chance
3665 * of overstepping resync_max here
3666 */
3667
3668 /* if there is too many failed drives and we are trying
3669 * to resync, then assert that we are finished, because there is
3670 * nothing we can do.
3671 */
3672 if (mddev->degraded >= conf->max_degraded &&
3673 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3674 sector_t rv = (mddev->size << 1) - sector_nr;
3675 *skipped = 1;
3676 return rv;
3677 }
3678 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3679 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3680 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3681 /* we can skip this block, and probably more */
3682 sync_blocks /= STRIPE_SECTORS;
3683 *skipped = 1;
3684 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3685 }
3686
3687
3688 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3689
3690 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3691 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3692 if (sh == NULL) {
3693 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3694 /* make sure we don't swamp the stripe cache if someone else
3695 * is trying to get access
3696 */
3697 schedule_timeout_uninterruptible(1);
3698 }
3699 /* Need to check if array will still be degraded after recovery/resync
3700 * We don't need to check the 'failed' flag as when that gets set,
3701 * recovery aborts.
3702 */
3703 for (i=0; i<mddev->raid_disks; i++)
3704 if (conf->disks[i].rdev == NULL)
3705 still_degraded = 1;
3706
3707 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3708
3709 spin_lock(&sh->lock);
3710 set_bit(STRIPE_SYNCING, &sh->state);
3711 clear_bit(STRIPE_INSYNC, &sh->state);
3712 spin_unlock(&sh->lock);
3713
3714 /* wait for any blocked device to be handled */
3715 while(unlikely(!handle_stripe(sh, NULL)))
3716 ;
3717 release_stripe(sh);
3718
3719 return STRIPE_SECTORS;
3720 }
3721
3722 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3723 {
3724 /* We may not be able to submit a whole bio at once as there
3725 * may not be enough stripe_heads available.
3726 * We cannot pre-allocate enough stripe_heads as we may need
3727 * more than exist in the cache (if we allow ever large chunks).
3728 * So we do one stripe head at a time and record in
3729 * ->bi_hw_segments how many have been done.
3730 *
3731 * We *know* that this entire raid_bio is in one chunk, so
3732 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3733 */
3734 struct stripe_head *sh;
3735 int dd_idx, pd_idx;
3736 sector_t sector, logical_sector, last_sector;
3737 int scnt = 0;
3738 int remaining;
3739 int handled = 0;
3740
3741 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3742 sector = raid5_compute_sector( logical_sector,
3743 conf->raid_disks,
3744 conf->raid_disks - conf->max_degraded,
3745 &dd_idx,
3746 &pd_idx,
3747 conf);
3748 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3749
3750 for (; logical_sector < last_sector;
3751 logical_sector += STRIPE_SECTORS,
3752 sector += STRIPE_SECTORS,
3753 scnt++) {
3754
3755 if (scnt < raid_bio->bi_hw_segments)
3756 /* already done this stripe */
3757 continue;
3758
3759 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3760
3761 if (!sh) {
3762 /* failed to get a stripe - must wait */
3763 raid_bio->bi_hw_segments = scnt;
3764 conf->retry_read_aligned = raid_bio;
3765 return handled;
3766 }
3767
3768 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3769 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3770 release_stripe(sh);
3771 raid_bio->bi_hw_segments = scnt;
3772 conf->retry_read_aligned = raid_bio;
3773 return handled;
3774 }
3775
3776 handle_stripe(sh, NULL);
3777 release_stripe(sh);
3778 handled++;
3779 }
3780 spin_lock_irq(&conf->device_lock);
3781 remaining = --raid_bio->bi_phys_segments;
3782 spin_unlock_irq(&conf->device_lock);
3783 if (remaining == 0)
3784 bio_endio(raid_bio, 0);
3785 if (atomic_dec_and_test(&conf->active_aligned_reads))
3786 wake_up(&conf->wait_for_stripe);
3787 return handled;
3788 }
3789
3790
3791
3792 /*
3793 * This is our raid5 kernel thread.
3794 *
3795 * We scan the hash table for stripes which can be handled now.
3796 * During the scan, completed stripes are saved for us by the interrupt
3797 * handler, so that they will not have to wait for our next wakeup.
3798 */
3799 static void raid5d(mddev_t *mddev)
3800 {
3801 struct stripe_head *sh;
3802 raid5_conf_t *conf = mddev_to_conf(mddev);
3803 int handled;
3804
3805 pr_debug("+++ raid5d active\n");
3806
3807 md_check_recovery(mddev);
3808
3809 handled = 0;
3810 spin_lock_irq(&conf->device_lock);
3811 while (1) {
3812 struct bio *bio;
3813
3814 if (conf->seq_flush != conf->seq_write) {
3815 int seq = conf->seq_flush;
3816 spin_unlock_irq(&conf->device_lock);
3817 bitmap_unplug(mddev->bitmap);
3818 spin_lock_irq(&conf->device_lock);
3819 conf->seq_write = seq;
3820 activate_bit_delay(conf);
3821 }
3822
3823 while ((bio = remove_bio_from_retry(conf))) {
3824 int ok;
3825 spin_unlock_irq(&conf->device_lock);
3826 ok = retry_aligned_read(conf, bio);
3827 spin_lock_irq(&conf->device_lock);
3828 if (!ok)
3829 break;
3830 handled++;
3831 }
3832
3833 sh = __get_priority_stripe(conf);
3834
3835 if (!sh)
3836 break;
3837 spin_unlock_irq(&conf->device_lock);
3838
3839 handled++;
3840 handle_stripe(sh, conf->spare_page);
3841 release_stripe(sh);
3842
3843 spin_lock_irq(&conf->device_lock);
3844 }
3845 pr_debug("%d stripes handled\n", handled);
3846
3847 spin_unlock_irq(&conf->device_lock);
3848
3849 async_tx_issue_pending_all();
3850 unplug_slaves(mddev);
3851
3852 pr_debug("--- raid5d inactive\n");
3853 }
3854
3855 static ssize_t
3856 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3857 {
3858 raid5_conf_t *conf = mddev_to_conf(mddev);
3859 if (conf)
3860 return sprintf(page, "%d\n", conf->max_nr_stripes);
3861 else
3862 return 0;
3863 }
3864
3865 static ssize_t
3866 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3867 {
3868 raid5_conf_t *conf = mddev_to_conf(mddev);
3869 unsigned long new;
3870 int err;
3871
3872 if (len >= PAGE_SIZE)
3873 return -EINVAL;
3874 if (!conf)
3875 return -ENODEV;
3876
3877 if (strict_strtoul(page, 10, &new))
3878 return -EINVAL;
3879 if (new <= 16 || new > 32768)
3880 return -EINVAL;
3881 while (new < conf->max_nr_stripes) {
3882 if (drop_one_stripe(conf))
3883 conf->max_nr_stripes--;
3884 else
3885 break;
3886 }
3887 err = md_allow_write(mddev);
3888 if (err)
3889 return err;
3890 while (new > conf->max_nr_stripes) {
3891 if (grow_one_stripe(conf))
3892 conf->max_nr_stripes++;
3893 else break;
3894 }
3895 return len;
3896 }
3897
3898 static struct md_sysfs_entry
3899 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3900 raid5_show_stripe_cache_size,
3901 raid5_store_stripe_cache_size);
3902
3903 static ssize_t
3904 raid5_show_preread_threshold(mddev_t *mddev, char *page)
3905 {
3906 raid5_conf_t *conf = mddev_to_conf(mddev);
3907 if (conf)
3908 return sprintf(page, "%d\n", conf->bypass_threshold);
3909 else
3910 return 0;
3911 }
3912
3913 static ssize_t
3914 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
3915 {
3916 raid5_conf_t *conf = mddev_to_conf(mddev);
3917 unsigned long new;
3918 if (len >= PAGE_SIZE)
3919 return -EINVAL;
3920 if (!conf)
3921 return -ENODEV;
3922
3923 if (strict_strtoul(page, 10, &new))
3924 return -EINVAL;
3925 if (new > conf->max_nr_stripes)
3926 return -EINVAL;
3927 conf->bypass_threshold = new;
3928 return len;
3929 }
3930
3931 static struct md_sysfs_entry
3932 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
3933 S_IRUGO | S_IWUSR,
3934 raid5_show_preread_threshold,
3935 raid5_store_preread_threshold);
3936
3937 static ssize_t
3938 stripe_cache_active_show(mddev_t *mddev, char *page)
3939 {
3940 raid5_conf_t *conf = mddev_to_conf(mddev);
3941 if (conf)
3942 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3943 else
3944 return 0;
3945 }
3946
3947 static struct md_sysfs_entry
3948 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3949
3950 static struct attribute *raid5_attrs[] = {
3951 &raid5_stripecache_size.attr,
3952 &raid5_stripecache_active.attr,
3953 &raid5_preread_bypass_threshold.attr,
3954 NULL,
3955 };
3956 static struct attribute_group raid5_attrs_group = {
3957 .name = NULL,
3958 .attrs = raid5_attrs,
3959 };
3960
3961 static int run(mddev_t *mddev)
3962 {
3963 raid5_conf_t *conf;
3964 int raid_disk, memory;
3965 mdk_rdev_t *rdev;
3966 struct disk_info *disk;
3967 struct list_head *tmp;
3968 int working_disks = 0;
3969
3970 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
3971 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
3972 mdname(mddev), mddev->level);
3973 return -EIO;
3974 }
3975
3976 if (mddev->reshape_position != MaxSector) {
3977 /* Check that we can continue the reshape.
3978 * Currently only disks can change, it must
3979 * increase, and we must be past the point where
3980 * a stripe over-writes itself
3981 */
3982 sector_t here_new, here_old;
3983 int old_disks;
3984 int max_degraded = (mddev->level == 5 ? 1 : 2);
3985
3986 if (mddev->new_level != mddev->level ||
3987 mddev->new_layout != mddev->layout ||
3988 mddev->new_chunk != mddev->chunk_size) {
3989 printk(KERN_ERR "raid5: %s: unsupported reshape "
3990 "required - aborting.\n",
3991 mdname(mddev));
3992 return -EINVAL;
3993 }
3994 if (mddev->delta_disks <= 0) {
3995 printk(KERN_ERR "raid5: %s: unsupported reshape "
3996 "(reduce disks) required - aborting.\n",
3997 mdname(mddev));
3998 return -EINVAL;
3999 }
4000 old_disks = mddev->raid_disks - mddev->delta_disks;
4001 /* reshape_position must be on a new-stripe boundary, and one
4002 * further up in new geometry must map after here in old
4003 * geometry.
4004 */
4005 here_new = mddev->reshape_position;
4006 if (sector_div(here_new, (mddev->chunk_size>>9)*
4007 (mddev->raid_disks - max_degraded))) {
4008 printk(KERN_ERR "raid5: reshape_position not "
4009 "on a stripe boundary\n");
4010 return -EINVAL;
4011 }
4012 /* here_new is the stripe we will write to */
4013 here_old = mddev->reshape_position;
4014 sector_div(here_old, (mddev->chunk_size>>9)*
4015 (old_disks-max_degraded));
4016 /* here_old is the first stripe that we might need to read
4017 * from */
4018 if (here_new >= here_old) {
4019 /* Reading from the same stripe as writing to - bad */
4020 printk(KERN_ERR "raid5: reshape_position too early for "
4021 "auto-recovery - aborting.\n");
4022 return -EINVAL;
4023 }
4024 printk(KERN_INFO "raid5: reshape will continue\n");
4025 /* OK, we should be able to continue; */
4026 }
4027
4028
4029 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4030 if ((conf = mddev->private) == NULL)
4031 goto abort;
4032 if (mddev->reshape_position == MaxSector) {
4033 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4034 } else {
4035 conf->raid_disks = mddev->raid_disks;
4036 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4037 }
4038
4039 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4040 GFP_KERNEL);
4041 if (!conf->disks)
4042 goto abort;
4043
4044 conf->mddev = mddev;
4045
4046 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4047 goto abort;
4048
4049 if (mddev->level == 6) {
4050 conf->spare_page = alloc_page(GFP_KERNEL);
4051 if (!conf->spare_page)
4052 goto abort;
4053 }
4054 spin_lock_init(&conf->device_lock);
4055 mddev->queue->queue_lock = &conf->device_lock;
4056 init_waitqueue_head(&conf->wait_for_stripe);
4057 init_waitqueue_head(&conf->wait_for_overlap);
4058 INIT_LIST_HEAD(&conf->handle_list);
4059 INIT_LIST_HEAD(&conf->hold_list);
4060 INIT_LIST_HEAD(&conf->delayed_list);
4061 INIT_LIST_HEAD(&conf->bitmap_list);
4062 INIT_LIST_HEAD(&conf->inactive_list);
4063 atomic_set(&conf->active_stripes, 0);
4064 atomic_set(&conf->preread_active_stripes, 0);
4065 atomic_set(&conf->active_aligned_reads, 0);
4066 conf->bypass_threshold = BYPASS_THRESHOLD;
4067
4068 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4069
4070 rdev_for_each(rdev, tmp, mddev) {
4071 raid_disk = rdev->raid_disk;
4072 if (raid_disk >= conf->raid_disks
4073 || raid_disk < 0)
4074 continue;
4075 disk = conf->disks + raid_disk;
4076
4077 disk->rdev = rdev;
4078
4079 if (test_bit(In_sync, &rdev->flags)) {
4080 char b[BDEVNAME_SIZE];
4081 printk(KERN_INFO "raid5: device %s operational as raid"
4082 " disk %d\n", bdevname(rdev->bdev,b),
4083 raid_disk);
4084 working_disks++;
4085 } else
4086 /* Cannot rely on bitmap to complete recovery */
4087 conf->fullsync = 1;
4088 }
4089
4090 /*
4091 * 0 for a fully functional array, 1 or 2 for a degraded array.
4092 */
4093 mddev->degraded = conf->raid_disks - working_disks;
4094 conf->mddev = mddev;
4095 conf->chunk_size = mddev->chunk_size;
4096 conf->level = mddev->level;
4097 if (conf->level == 6)
4098 conf->max_degraded = 2;
4099 else
4100 conf->max_degraded = 1;
4101 conf->algorithm = mddev->layout;
4102 conf->max_nr_stripes = NR_STRIPES;
4103 conf->expand_progress = mddev->reshape_position;
4104
4105 /* device size must be a multiple of chunk size */
4106 mddev->size &= ~(mddev->chunk_size/1024 -1);
4107 mddev->resync_max_sectors = mddev->size << 1;
4108
4109 if (conf->level == 6 && conf->raid_disks < 4) {
4110 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4111 mdname(mddev), conf->raid_disks);
4112 goto abort;
4113 }
4114 if (!conf->chunk_size || conf->chunk_size % 4) {
4115 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4116 conf->chunk_size, mdname(mddev));
4117 goto abort;
4118 }
4119 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4120 printk(KERN_ERR
4121 "raid5: unsupported parity algorithm %d for %s\n",
4122 conf->algorithm, mdname(mddev));
4123 goto abort;
4124 }
4125 if (mddev->degraded > conf->max_degraded) {
4126 printk(KERN_ERR "raid5: not enough operational devices for %s"
4127 " (%d/%d failed)\n",
4128 mdname(mddev), mddev->degraded, conf->raid_disks);
4129 goto abort;
4130 }
4131
4132 if (mddev->degraded > 0 &&
4133 mddev->recovery_cp != MaxSector) {
4134 if (mddev->ok_start_degraded)
4135 printk(KERN_WARNING
4136 "raid5: starting dirty degraded array: %s"
4137 "- data corruption possible.\n",
4138 mdname(mddev));
4139 else {
4140 printk(KERN_ERR
4141 "raid5: cannot start dirty degraded array for %s\n",
4142 mdname(mddev));
4143 goto abort;
4144 }
4145 }
4146
4147 {
4148 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4149 if (!mddev->thread) {
4150 printk(KERN_ERR
4151 "raid5: couldn't allocate thread for %s\n",
4152 mdname(mddev));
4153 goto abort;
4154 }
4155 }
4156 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4157 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4158 if (grow_stripes(conf, conf->max_nr_stripes)) {
4159 printk(KERN_ERR
4160 "raid5: couldn't allocate %dkB for buffers\n", memory);
4161 shrink_stripes(conf);
4162 md_unregister_thread(mddev->thread);
4163 goto abort;
4164 } else
4165 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4166 memory, mdname(mddev));
4167
4168 if (mddev->degraded == 0)
4169 printk("raid5: raid level %d set %s active with %d out of %d"
4170 " devices, algorithm %d\n", conf->level, mdname(mddev),
4171 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4172 conf->algorithm);
4173 else
4174 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4175 " out of %d devices, algorithm %d\n", conf->level,
4176 mdname(mddev), mddev->raid_disks - mddev->degraded,
4177 mddev->raid_disks, conf->algorithm);
4178
4179 print_raid5_conf(conf);
4180
4181 if (conf->expand_progress != MaxSector) {
4182 printk("...ok start reshape thread\n");
4183 conf->expand_lo = conf->expand_progress;
4184 atomic_set(&conf->reshape_stripes, 0);
4185 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4186 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4187 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4188 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4189 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4190 "%s_reshape");
4191 }
4192
4193 /* read-ahead size must cover two whole stripes, which is
4194 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4195 */
4196 {
4197 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4198 int stripe = data_disks *
4199 (mddev->chunk_size / PAGE_SIZE);
4200 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4201 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4202 }
4203
4204 /* Ok, everything is just fine now */
4205 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4206 printk(KERN_WARNING
4207 "raid5: failed to create sysfs attributes for %s\n",
4208 mdname(mddev));
4209
4210 mddev->queue->unplug_fn = raid5_unplug_device;
4211 mddev->queue->backing_dev_info.congested_data = mddev;
4212 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4213
4214 mddev->array_sectors = 2 * mddev->size * (conf->previous_raid_disks -
4215 conf->max_degraded);
4216
4217 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4218
4219 return 0;
4220 abort:
4221 if (conf) {
4222 print_raid5_conf(conf);
4223 safe_put_page(conf->spare_page);
4224 kfree(conf->disks);
4225 kfree(conf->stripe_hashtbl);
4226 kfree(conf);
4227 }
4228 mddev->private = NULL;
4229 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4230 return -EIO;
4231 }
4232
4233
4234
4235 static int stop(mddev_t *mddev)
4236 {
4237 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4238
4239 md_unregister_thread(mddev->thread);
4240 mddev->thread = NULL;
4241 shrink_stripes(conf);
4242 kfree(conf->stripe_hashtbl);
4243 mddev->queue->backing_dev_info.congested_fn = NULL;
4244 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4245 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4246 kfree(conf->disks);
4247 kfree(conf);
4248 mddev->private = NULL;
4249 return 0;
4250 }
4251
4252 #ifdef DEBUG
4253 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4254 {
4255 int i;
4256
4257 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4258 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4259 seq_printf(seq, "sh %llu, count %d.\n",
4260 (unsigned long long)sh->sector, atomic_read(&sh->count));
4261 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4262 for (i = 0; i < sh->disks; i++) {
4263 seq_printf(seq, "(cache%d: %p %ld) ",
4264 i, sh->dev[i].page, sh->dev[i].flags);
4265 }
4266 seq_printf(seq, "\n");
4267 }
4268
4269 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4270 {
4271 struct stripe_head *sh;
4272 struct hlist_node *hn;
4273 int i;
4274
4275 spin_lock_irq(&conf->device_lock);
4276 for (i = 0; i < NR_HASH; i++) {
4277 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4278 if (sh->raid_conf != conf)
4279 continue;
4280 print_sh(seq, sh);
4281 }
4282 }
4283 spin_unlock_irq(&conf->device_lock);
4284 }
4285 #endif
4286
4287 static void status (struct seq_file *seq, mddev_t *mddev)
4288 {
4289 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4290 int i;
4291
4292 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4293 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4294 for (i = 0; i < conf->raid_disks; i++)
4295 seq_printf (seq, "%s",
4296 conf->disks[i].rdev &&
4297 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4298 seq_printf (seq, "]");
4299 #ifdef DEBUG
4300 seq_printf (seq, "\n");
4301 printall(seq, conf);
4302 #endif
4303 }
4304
4305 static void print_raid5_conf (raid5_conf_t *conf)
4306 {
4307 int i;
4308 struct disk_info *tmp;
4309
4310 printk("RAID5 conf printout:\n");
4311 if (!conf) {
4312 printk("(conf==NULL)\n");
4313 return;
4314 }
4315 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4316 conf->raid_disks - conf->mddev->degraded);
4317
4318 for (i = 0; i < conf->raid_disks; i++) {
4319 char b[BDEVNAME_SIZE];
4320 tmp = conf->disks + i;
4321 if (tmp->rdev)
4322 printk(" disk %d, o:%d, dev:%s\n",
4323 i, !test_bit(Faulty, &tmp->rdev->flags),
4324 bdevname(tmp->rdev->bdev,b));
4325 }
4326 }
4327
4328 static int raid5_spare_active(mddev_t *mddev)
4329 {
4330 int i;
4331 raid5_conf_t *conf = mddev->private;
4332 struct disk_info *tmp;
4333
4334 for (i = 0; i < conf->raid_disks; i++) {
4335 tmp = conf->disks + i;
4336 if (tmp->rdev
4337 && !test_bit(Faulty, &tmp->rdev->flags)
4338 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4339 unsigned long flags;
4340 spin_lock_irqsave(&conf->device_lock, flags);
4341 mddev->degraded--;
4342 spin_unlock_irqrestore(&conf->device_lock, flags);
4343 }
4344 }
4345 print_raid5_conf(conf);
4346 return 0;
4347 }
4348
4349 static int raid5_remove_disk(mddev_t *mddev, int number)
4350 {
4351 raid5_conf_t *conf = mddev->private;
4352 int err = 0;
4353 mdk_rdev_t *rdev;
4354 struct disk_info *p = conf->disks + number;
4355
4356 print_raid5_conf(conf);
4357 rdev = p->rdev;
4358 if (rdev) {
4359 if (test_bit(In_sync, &rdev->flags) ||
4360 atomic_read(&rdev->nr_pending)) {
4361 err = -EBUSY;
4362 goto abort;
4363 }
4364 /* Only remove non-faulty devices if recovery
4365 * isn't possible.
4366 */
4367 if (!test_bit(Faulty, &rdev->flags) &&
4368 mddev->degraded <= conf->max_degraded) {
4369 err = -EBUSY;
4370 goto abort;
4371 }
4372 p->rdev = NULL;
4373 synchronize_rcu();
4374 if (atomic_read(&rdev->nr_pending)) {
4375 /* lost the race, try later */
4376 err = -EBUSY;
4377 p->rdev = rdev;
4378 }
4379 }
4380 abort:
4381
4382 print_raid5_conf(conf);
4383 return err;
4384 }
4385
4386 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4387 {
4388 raid5_conf_t *conf = mddev->private;
4389 int err = -EEXIST;
4390 int disk;
4391 struct disk_info *p;
4392 int first = 0;
4393 int last = conf->raid_disks - 1;
4394
4395 if (mddev->degraded > conf->max_degraded)
4396 /* no point adding a device */
4397 return -EINVAL;
4398
4399 if (rdev->raid_disk >= 0)
4400 first = last = rdev->raid_disk;
4401
4402 /*
4403 * find the disk ... but prefer rdev->saved_raid_disk
4404 * if possible.
4405 */
4406 if (rdev->saved_raid_disk >= 0 &&
4407 rdev->saved_raid_disk >= first &&
4408 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4409 disk = rdev->saved_raid_disk;
4410 else
4411 disk = first;
4412 for ( ; disk <= last ; disk++)
4413 if ((p=conf->disks + disk)->rdev == NULL) {
4414 clear_bit(In_sync, &rdev->flags);
4415 rdev->raid_disk = disk;
4416 err = 0;
4417 if (rdev->saved_raid_disk != disk)
4418 conf->fullsync = 1;
4419 rcu_assign_pointer(p->rdev, rdev);
4420 break;
4421 }
4422 print_raid5_conf(conf);
4423 return err;
4424 }
4425
4426 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4427 {
4428 /* no resync is happening, and there is enough space
4429 * on all devices, so we can resize.
4430 * We need to make sure resync covers any new space.
4431 * If the array is shrinking we should possibly wait until
4432 * any io in the removed space completes, but it hardly seems
4433 * worth it.
4434 */
4435 raid5_conf_t *conf = mddev_to_conf(mddev);
4436
4437 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4438 mddev->array_sectors = sectors * (mddev->raid_disks
4439 - conf->max_degraded);
4440 set_capacity(mddev->gendisk, mddev->array_sectors);
4441 mddev->changed = 1;
4442 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4443 mddev->recovery_cp = mddev->size << 1;
4444 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4445 }
4446 mddev->size = sectors /2;
4447 mddev->resync_max_sectors = sectors;
4448 return 0;
4449 }
4450
4451 #ifdef CONFIG_MD_RAID5_RESHAPE
4452 static int raid5_check_reshape(mddev_t *mddev)
4453 {
4454 raid5_conf_t *conf = mddev_to_conf(mddev);
4455 int err;
4456
4457 if (mddev->delta_disks < 0 ||
4458 mddev->new_level != mddev->level)
4459 return -EINVAL; /* Cannot shrink array or change level yet */
4460 if (mddev->delta_disks == 0)
4461 return 0; /* nothing to do */
4462 if (mddev->bitmap)
4463 /* Cannot grow a bitmap yet */
4464 return -EBUSY;
4465
4466 /* Can only proceed if there are plenty of stripe_heads.
4467 * We need a minimum of one full stripe,, and for sensible progress
4468 * it is best to have about 4 times that.
4469 * If we require 4 times, then the default 256 4K stripe_heads will
4470 * allow for chunk sizes up to 256K, which is probably OK.
4471 * If the chunk size is greater, user-space should request more
4472 * stripe_heads first.
4473 */
4474 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4475 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4476 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4477 (mddev->chunk_size / STRIPE_SIZE)*4);
4478 return -ENOSPC;
4479 }
4480
4481 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4482 if (err)
4483 return err;
4484
4485 if (mddev->degraded > conf->max_degraded)
4486 return -EINVAL;
4487 /* looks like we might be able to manage this */
4488 return 0;
4489 }
4490
4491 static int raid5_start_reshape(mddev_t *mddev)
4492 {
4493 raid5_conf_t *conf = mddev_to_conf(mddev);
4494 mdk_rdev_t *rdev;
4495 struct list_head *rtmp;
4496 int spares = 0;
4497 int added_devices = 0;
4498 unsigned long flags;
4499
4500 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4501 return -EBUSY;
4502
4503 rdev_for_each(rdev, rtmp, mddev)
4504 if (rdev->raid_disk < 0 &&
4505 !test_bit(Faulty, &rdev->flags))
4506 spares++;
4507
4508 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4509 /* Not enough devices even to make a degraded array
4510 * of that size
4511 */
4512 return -EINVAL;
4513
4514 atomic_set(&conf->reshape_stripes, 0);
4515 spin_lock_irq(&conf->device_lock);
4516 conf->previous_raid_disks = conf->raid_disks;
4517 conf->raid_disks += mddev->delta_disks;
4518 conf->expand_progress = 0;
4519 conf->expand_lo = 0;
4520 spin_unlock_irq(&conf->device_lock);
4521
4522 /* Add some new drives, as many as will fit.
4523 * We know there are enough to make the newly sized array work.
4524 */
4525 rdev_for_each(rdev, rtmp, mddev)
4526 if (rdev->raid_disk < 0 &&
4527 !test_bit(Faulty, &rdev->flags)) {
4528 if (raid5_add_disk(mddev, rdev) == 0) {
4529 char nm[20];
4530 set_bit(In_sync, &rdev->flags);
4531 added_devices++;
4532 rdev->recovery_offset = 0;
4533 sprintf(nm, "rd%d", rdev->raid_disk);
4534 if (sysfs_create_link(&mddev->kobj,
4535 &rdev->kobj, nm))
4536 printk(KERN_WARNING
4537 "raid5: failed to create "
4538 " link %s for %s\n",
4539 nm, mdname(mddev));
4540 } else
4541 break;
4542 }
4543
4544 spin_lock_irqsave(&conf->device_lock, flags);
4545 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4546 spin_unlock_irqrestore(&conf->device_lock, flags);
4547 mddev->raid_disks = conf->raid_disks;
4548 mddev->reshape_position = 0;
4549 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4550
4551 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4552 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4553 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4554 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4555 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4556 "%s_reshape");
4557 if (!mddev->sync_thread) {
4558 mddev->recovery = 0;
4559 spin_lock_irq(&conf->device_lock);
4560 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4561 conf->expand_progress = MaxSector;
4562 spin_unlock_irq(&conf->device_lock);
4563 return -EAGAIN;
4564 }
4565 md_wakeup_thread(mddev->sync_thread);
4566 md_new_event(mddev);
4567 return 0;
4568 }
4569 #endif
4570
4571 static void end_reshape(raid5_conf_t *conf)
4572 {
4573 struct block_device *bdev;
4574
4575 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4576 conf->mddev->array_sectors = 2 * conf->mddev->size *
4577 (conf->raid_disks - conf->max_degraded);
4578 set_capacity(conf->mddev->gendisk, conf->mddev->array_sectors);
4579 conf->mddev->changed = 1;
4580
4581 bdev = bdget_disk(conf->mddev->gendisk, 0);
4582 if (bdev) {
4583 mutex_lock(&bdev->bd_inode->i_mutex);
4584 i_size_write(bdev->bd_inode,
4585 (loff_t)conf->mddev->array_sectors << 9);
4586 mutex_unlock(&bdev->bd_inode->i_mutex);
4587 bdput(bdev);
4588 }
4589 spin_lock_irq(&conf->device_lock);
4590 conf->expand_progress = MaxSector;
4591 spin_unlock_irq(&conf->device_lock);
4592 conf->mddev->reshape_position = MaxSector;
4593
4594 /* read-ahead size must cover two whole stripes, which is
4595 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4596 */
4597 {
4598 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4599 int stripe = data_disks *
4600 (conf->mddev->chunk_size / PAGE_SIZE);
4601 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4602 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4603 }
4604 }
4605 }
4606
4607 static void raid5_quiesce(mddev_t *mddev, int state)
4608 {
4609 raid5_conf_t *conf = mddev_to_conf(mddev);
4610
4611 switch(state) {
4612 case 2: /* resume for a suspend */
4613 wake_up(&conf->wait_for_overlap);
4614 break;
4615
4616 case 1: /* stop all writes */
4617 spin_lock_irq(&conf->device_lock);
4618 conf->quiesce = 1;
4619 wait_event_lock_irq(conf->wait_for_stripe,
4620 atomic_read(&conf->active_stripes) == 0 &&
4621 atomic_read(&conf->active_aligned_reads) == 0,
4622 conf->device_lock, /* nothing */);
4623 spin_unlock_irq(&conf->device_lock);
4624 break;
4625
4626 case 0: /* re-enable writes */
4627 spin_lock_irq(&conf->device_lock);
4628 conf->quiesce = 0;
4629 wake_up(&conf->wait_for_stripe);
4630 wake_up(&conf->wait_for_overlap);
4631 spin_unlock_irq(&conf->device_lock);
4632 break;
4633 }
4634 }
4635
4636 static struct mdk_personality raid6_personality =
4637 {
4638 .name = "raid6",
4639 .level = 6,
4640 .owner = THIS_MODULE,
4641 .make_request = make_request,
4642 .run = run,
4643 .stop = stop,
4644 .status = status,
4645 .error_handler = error,
4646 .hot_add_disk = raid5_add_disk,
4647 .hot_remove_disk= raid5_remove_disk,
4648 .spare_active = raid5_spare_active,
4649 .sync_request = sync_request,
4650 .resize = raid5_resize,
4651 #ifdef CONFIG_MD_RAID5_RESHAPE
4652 .check_reshape = raid5_check_reshape,
4653 .start_reshape = raid5_start_reshape,
4654 #endif
4655 .quiesce = raid5_quiesce,
4656 };
4657 static struct mdk_personality raid5_personality =
4658 {
4659 .name = "raid5",
4660 .level = 5,
4661 .owner = THIS_MODULE,
4662 .make_request = make_request,
4663 .run = run,
4664 .stop = stop,
4665 .status = status,
4666 .error_handler = error,
4667 .hot_add_disk = raid5_add_disk,
4668 .hot_remove_disk= raid5_remove_disk,
4669 .spare_active = raid5_spare_active,
4670 .sync_request = sync_request,
4671 .resize = raid5_resize,
4672 #ifdef CONFIG_MD_RAID5_RESHAPE
4673 .check_reshape = raid5_check_reshape,
4674 .start_reshape = raid5_start_reshape,
4675 #endif
4676 .quiesce = raid5_quiesce,
4677 };
4678
4679 static struct mdk_personality raid4_personality =
4680 {
4681 .name = "raid4",
4682 .level = 4,
4683 .owner = THIS_MODULE,
4684 .make_request = make_request,
4685 .run = run,
4686 .stop = stop,
4687 .status = status,
4688 .error_handler = error,
4689 .hot_add_disk = raid5_add_disk,
4690 .hot_remove_disk= raid5_remove_disk,
4691 .spare_active = raid5_spare_active,
4692 .sync_request = sync_request,
4693 .resize = raid5_resize,
4694 #ifdef CONFIG_MD_RAID5_RESHAPE
4695 .check_reshape = raid5_check_reshape,
4696 .start_reshape = raid5_start_reshape,
4697 #endif
4698 .quiesce = raid5_quiesce,
4699 };
4700
4701 static int __init raid5_init(void)
4702 {
4703 int e;
4704
4705 e = raid6_select_algo();
4706 if ( e )
4707 return e;
4708 register_md_personality(&raid6_personality);
4709 register_md_personality(&raid5_personality);
4710 register_md_personality(&raid4_personality);
4711 return 0;
4712 }
4713
4714 static void raid5_exit(void)
4715 {
4716 unregister_md_personality(&raid6_personality);
4717 unregister_md_personality(&raid5_personality);
4718 unregister_md_personality(&raid4_personality);
4719 }
4720
4721 module_init(raid5_init);
4722 module_exit(raid5_exit);
4723 MODULE_LICENSE("GPL");
4724 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4725 MODULE_ALIAS("md-raid5");
4726 MODULE_ALIAS("md-raid4");
4727 MODULE_ALIAS("md-level-5");
4728 MODULE_ALIAS("md-level-4");
4729 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4730 MODULE_ALIAS("md-raid6");
4731 MODULE_ALIAS("md-level-6");
4732
4733 /* This used to be two separate modules, they were: */
4734 MODULE_ALIAS("raid5");
4735 MODULE_ALIAS("raid6");
This page took 0.133075 seconds and 5 git commands to generate.