Revert "drm/i915: Use crtc_state->active in primary check_plane func"
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 unsigned long do_wakeup = 0;
348 int i = 0;
349 unsigned long flags;
350
351 if (hash == NR_STRIPE_HASH_LOCKS) {
352 size = NR_STRIPE_HASH_LOCKS;
353 hash = NR_STRIPE_HASH_LOCKS - 1;
354 } else
355 size = 1;
356 while (size) {
357 struct list_head *list = &temp_inactive_list[size - 1];
358
359 /*
360 * We don't hold any lock here yet, get_active_stripe() might
361 * remove stripes from the list
362 */
363 if (!list_empty_careful(list)) {
364 spin_lock_irqsave(conf->hash_locks + hash, flags);
365 if (list_empty(conf->inactive_list + hash) &&
366 !list_empty(list))
367 atomic_dec(&conf->empty_inactive_list_nr);
368 list_splice_tail_init(list, conf->inactive_list + hash);
369 do_wakeup |= 1 << hash;
370 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
371 }
372 size--;
373 hash--;
374 }
375
376 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
377 if (do_wakeup & (1 << i))
378 wake_up(&conf->wait_for_stripe[i]);
379 }
380
381 if (do_wakeup) {
382 if (atomic_read(&conf->active_stripes) == 0)
383 wake_up(&conf->wait_for_quiescent);
384 if (conf->retry_read_aligned)
385 md_wakeup_thread(conf->mddev->thread);
386 }
387 }
388
389 /* should hold conf->device_lock already */
390 static int release_stripe_list(struct r5conf *conf,
391 struct list_head *temp_inactive_list)
392 {
393 struct stripe_head *sh;
394 int count = 0;
395 struct llist_node *head;
396
397 head = llist_del_all(&conf->released_stripes);
398 head = llist_reverse_order(head);
399 while (head) {
400 int hash;
401
402 sh = llist_entry(head, struct stripe_head, release_list);
403 head = llist_next(head);
404 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
405 smp_mb();
406 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
407 /*
408 * Don't worry the bit is set here, because if the bit is set
409 * again, the count is always > 1. This is true for
410 * STRIPE_ON_UNPLUG_LIST bit too.
411 */
412 hash = sh->hash_lock_index;
413 __release_stripe(conf, sh, &temp_inactive_list[hash]);
414 count++;
415 }
416
417 return count;
418 }
419
420 static void release_stripe(struct stripe_head *sh)
421 {
422 struct r5conf *conf = sh->raid_conf;
423 unsigned long flags;
424 struct list_head list;
425 int hash;
426 bool wakeup;
427
428 /* Avoid release_list until the last reference.
429 */
430 if (atomic_add_unless(&sh->count, -1, 1))
431 return;
432
433 if (unlikely(!conf->mddev->thread) ||
434 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
435 goto slow_path;
436 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
437 if (wakeup)
438 md_wakeup_thread(conf->mddev->thread);
439 return;
440 slow_path:
441 local_irq_save(flags);
442 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
443 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
444 INIT_LIST_HEAD(&list);
445 hash = sh->hash_lock_index;
446 do_release_stripe(conf, sh, &list);
447 spin_unlock(&conf->device_lock);
448 release_inactive_stripe_list(conf, &list, hash);
449 }
450 local_irq_restore(flags);
451 }
452
453 static inline void remove_hash(struct stripe_head *sh)
454 {
455 pr_debug("remove_hash(), stripe %llu\n",
456 (unsigned long long)sh->sector);
457
458 hlist_del_init(&sh->hash);
459 }
460
461 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
462 {
463 struct hlist_head *hp = stripe_hash(conf, sh->sector);
464
465 pr_debug("insert_hash(), stripe %llu\n",
466 (unsigned long long)sh->sector);
467
468 hlist_add_head(&sh->hash, hp);
469 }
470
471 /* find an idle stripe, make sure it is unhashed, and return it. */
472 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
473 {
474 struct stripe_head *sh = NULL;
475 struct list_head *first;
476
477 if (list_empty(conf->inactive_list + hash))
478 goto out;
479 first = (conf->inactive_list + hash)->next;
480 sh = list_entry(first, struct stripe_head, lru);
481 list_del_init(first);
482 remove_hash(sh);
483 atomic_inc(&conf->active_stripes);
484 BUG_ON(hash != sh->hash_lock_index);
485 if (list_empty(conf->inactive_list + hash))
486 atomic_inc(&conf->empty_inactive_list_nr);
487 out:
488 return sh;
489 }
490
491 static void shrink_buffers(struct stripe_head *sh)
492 {
493 struct page *p;
494 int i;
495 int num = sh->raid_conf->pool_size;
496
497 for (i = 0; i < num ; i++) {
498 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
499 p = sh->dev[i].page;
500 if (!p)
501 continue;
502 sh->dev[i].page = NULL;
503 put_page(p);
504 }
505 }
506
507 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
508 {
509 int i;
510 int num = sh->raid_conf->pool_size;
511
512 for (i = 0; i < num; i++) {
513 struct page *page;
514
515 if (!(page = alloc_page(gfp))) {
516 return 1;
517 }
518 sh->dev[i].page = page;
519 sh->dev[i].orig_page = page;
520 }
521 return 0;
522 }
523
524 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
525 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
526 struct stripe_head *sh);
527
528 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
529 {
530 struct r5conf *conf = sh->raid_conf;
531 int i, seq;
532
533 BUG_ON(atomic_read(&sh->count) != 0);
534 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
535 BUG_ON(stripe_operations_active(sh));
536 BUG_ON(sh->batch_head);
537
538 pr_debug("init_stripe called, stripe %llu\n",
539 (unsigned long long)sector);
540 retry:
541 seq = read_seqcount_begin(&conf->gen_lock);
542 sh->generation = conf->generation - previous;
543 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
544 sh->sector = sector;
545 stripe_set_idx(sector, conf, previous, sh);
546 sh->state = 0;
547
548 for (i = sh->disks; i--; ) {
549 struct r5dev *dev = &sh->dev[i];
550
551 if (dev->toread || dev->read || dev->towrite || dev->written ||
552 test_bit(R5_LOCKED, &dev->flags)) {
553 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
554 (unsigned long long)sh->sector, i, dev->toread,
555 dev->read, dev->towrite, dev->written,
556 test_bit(R5_LOCKED, &dev->flags));
557 WARN_ON(1);
558 }
559 dev->flags = 0;
560 raid5_build_block(sh, i, previous);
561 }
562 if (read_seqcount_retry(&conf->gen_lock, seq))
563 goto retry;
564 sh->overwrite_disks = 0;
565 insert_hash(conf, sh);
566 sh->cpu = smp_processor_id();
567 set_bit(STRIPE_BATCH_READY, &sh->state);
568 }
569
570 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
571 short generation)
572 {
573 struct stripe_head *sh;
574
575 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
576 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
577 if (sh->sector == sector && sh->generation == generation)
578 return sh;
579 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
580 return NULL;
581 }
582
583 /*
584 * Need to check if array has failed when deciding whether to:
585 * - start an array
586 * - remove non-faulty devices
587 * - add a spare
588 * - allow a reshape
589 * This determination is simple when no reshape is happening.
590 * However if there is a reshape, we need to carefully check
591 * both the before and after sections.
592 * This is because some failed devices may only affect one
593 * of the two sections, and some non-in_sync devices may
594 * be insync in the section most affected by failed devices.
595 */
596 static int calc_degraded(struct r5conf *conf)
597 {
598 int degraded, degraded2;
599 int i;
600
601 rcu_read_lock();
602 degraded = 0;
603 for (i = 0; i < conf->previous_raid_disks; i++) {
604 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
605 if (rdev && test_bit(Faulty, &rdev->flags))
606 rdev = rcu_dereference(conf->disks[i].replacement);
607 if (!rdev || test_bit(Faulty, &rdev->flags))
608 degraded++;
609 else if (test_bit(In_sync, &rdev->flags))
610 ;
611 else
612 /* not in-sync or faulty.
613 * If the reshape increases the number of devices,
614 * this is being recovered by the reshape, so
615 * this 'previous' section is not in_sync.
616 * If the number of devices is being reduced however,
617 * the device can only be part of the array if
618 * we are reverting a reshape, so this section will
619 * be in-sync.
620 */
621 if (conf->raid_disks >= conf->previous_raid_disks)
622 degraded++;
623 }
624 rcu_read_unlock();
625 if (conf->raid_disks == conf->previous_raid_disks)
626 return degraded;
627 rcu_read_lock();
628 degraded2 = 0;
629 for (i = 0; i < conf->raid_disks; i++) {
630 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
631 if (rdev && test_bit(Faulty, &rdev->flags))
632 rdev = rcu_dereference(conf->disks[i].replacement);
633 if (!rdev || test_bit(Faulty, &rdev->flags))
634 degraded2++;
635 else if (test_bit(In_sync, &rdev->flags))
636 ;
637 else
638 /* not in-sync or faulty.
639 * If reshape increases the number of devices, this
640 * section has already been recovered, else it
641 * almost certainly hasn't.
642 */
643 if (conf->raid_disks <= conf->previous_raid_disks)
644 degraded2++;
645 }
646 rcu_read_unlock();
647 if (degraded2 > degraded)
648 return degraded2;
649 return degraded;
650 }
651
652 static int has_failed(struct r5conf *conf)
653 {
654 int degraded;
655
656 if (conf->mddev->reshape_position == MaxSector)
657 return conf->mddev->degraded > conf->max_degraded;
658
659 degraded = calc_degraded(conf);
660 if (degraded > conf->max_degraded)
661 return 1;
662 return 0;
663 }
664
665 static struct stripe_head *
666 get_active_stripe(struct r5conf *conf, sector_t sector,
667 int previous, int noblock, int noquiesce)
668 {
669 struct stripe_head *sh;
670 int hash = stripe_hash_locks_hash(sector);
671
672 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
673
674 spin_lock_irq(conf->hash_locks + hash);
675
676 do {
677 wait_event_lock_irq(conf->wait_for_quiescent,
678 conf->quiesce == 0 || noquiesce,
679 *(conf->hash_locks + hash));
680 sh = __find_stripe(conf, sector, conf->generation - previous);
681 if (!sh) {
682 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
683 sh = get_free_stripe(conf, hash);
684 if (!sh && !test_bit(R5_DID_ALLOC,
685 &conf->cache_state))
686 set_bit(R5_ALLOC_MORE,
687 &conf->cache_state);
688 }
689 if (noblock && sh == NULL)
690 break;
691 if (!sh) {
692 set_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state);
694 wait_event_exclusive_cmd(
695 conf->wait_for_stripe[hash],
696 !list_empty(conf->inactive_list + hash) &&
697 (atomic_read(&conf->active_stripes)
698 < (conf->max_nr_stripes * 3 / 4)
699 || !test_bit(R5_INACTIVE_BLOCKED,
700 &conf->cache_state)),
701 spin_unlock_irq(conf->hash_locks + hash),
702 spin_lock_irq(conf->hash_locks + hash));
703 clear_bit(R5_INACTIVE_BLOCKED,
704 &conf->cache_state);
705 } else {
706 init_stripe(sh, sector, previous);
707 atomic_inc(&sh->count);
708 }
709 } else if (!atomic_inc_not_zero(&sh->count)) {
710 spin_lock(&conf->device_lock);
711 if (!atomic_read(&sh->count)) {
712 if (!test_bit(STRIPE_HANDLE, &sh->state))
713 atomic_inc(&conf->active_stripes);
714 BUG_ON(list_empty(&sh->lru) &&
715 !test_bit(STRIPE_EXPANDING, &sh->state));
716 list_del_init(&sh->lru);
717 if (sh->group) {
718 sh->group->stripes_cnt--;
719 sh->group = NULL;
720 }
721 }
722 atomic_inc(&sh->count);
723 spin_unlock(&conf->device_lock);
724 }
725 } while (sh == NULL);
726
727 if (!list_empty(conf->inactive_list + hash))
728 wake_up(&conf->wait_for_stripe[hash]);
729
730 spin_unlock_irq(conf->hash_locks + hash);
731 return sh;
732 }
733
734 static bool is_full_stripe_write(struct stripe_head *sh)
735 {
736 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
737 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
738 }
739
740 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
741 {
742 local_irq_disable();
743 if (sh1 > sh2) {
744 spin_lock(&sh2->stripe_lock);
745 spin_lock_nested(&sh1->stripe_lock, 1);
746 } else {
747 spin_lock(&sh1->stripe_lock);
748 spin_lock_nested(&sh2->stripe_lock, 1);
749 }
750 }
751
752 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
753 {
754 spin_unlock(&sh1->stripe_lock);
755 spin_unlock(&sh2->stripe_lock);
756 local_irq_enable();
757 }
758
759 /* Only freshly new full stripe normal write stripe can be added to a batch list */
760 static bool stripe_can_batch(struct stripe_head *sh)
761 {
762 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
763 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
764 is_full_stripe_write(sh);
765 }
766
767 /* we only do back search */
768 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
769 {
770 struct stripe_head *head;
771 sector_t head_sector, tmp_sec;
772 int hash;
773 int dd_idx;
774
775 if (!stripe_can_batch(sh))
776 return;
777 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
778 tmp_sec = sh->sector;
779 if (!sector_div(tmp_sec, conf->chunk_sectors))
780 return;
781 head_sector = sh->sector - STRIPE_SECTORS;
782
783 hash = stripe_hash_locks_hash(head_sector);
784 spin_lock_irq(conf->hash_locks + hash);
785 head = __find_stripe(conf, head_sector, conf->generation);
786 if (head && !atomic_inc_not_zero(&head->count)) {
787 spin_lock(&conf->device_lock);
788 if (!atomic_read(&head->count)) {
789 if (!test_bit(STRIPE_HANDLE, &head->state))
790 atomic_inc(&conf->active_stripes);
791 BUG_ON(list_empty(&head->lru) &&
792 !test_bit(STRIPE_EXPANDING, &head->state));
793 list_del_init(&head->lru);
794 if (head->group) {
795 head->group->stripes_cnt--;
796 head->group = NULL;
797 }
798 }
799 atomic_inc(&head->count);
800 spin_unlock(&conf->device_lock);
801 }
802 spin_unlock_irq(conf->hash_locks + hash);
803
804 if (!head)
805 return;
806 if (!stripe_can_batch(head))
807 goto out;
808
809 lock_two_stripes(head, sh);
810 /* clear_batch_ready clear the flag */
811 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
812 goto unlock_out;
813
814 if (sh->batch_head)
815 goto unlock_out;
816
817 dd_idx = 0;
818 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
819 dd_idx++;
820 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
821 goto unlock_out;
822
823 if (head->batch_head) {
824 spin_lock(&head->batch_head->batch_lock);
825 /* This batch list is already running */
826 if (!stripe_can_batch(head)) {
827 spin_unlock(&head->batch_head->batch_lock);
828 goto unlock_out;
829 }
830
831 /*
832 * at this point, head's BATCH_READY could be cleared, but we
833 * can still add the stripe to batch list
834 */
835 list_add(&sh->batch_list, &head->batch_list);
836 spin_unlock(&head->batch_head->batch_lock);
837
838 sh->batch_head = head->batch_head;
839 } else {
840 head->batch_head = head;
841 sh->batch_head = head->batch_head;
842 spin_lock(&head->batch_lock);
843 list_add_tail(&sh->batch_list, &head->batch_list);
844 spin_unlock(&head->batch_lock);
845 }
846
847 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
848 if (atomic_dec_return(&conf->preread_active_stripes)
849 < IO_THRESHOLD)
850 md_wakeup_thread(conf->mddev->thread);
851
852 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
853 int seq = sh->bm_seq;
854 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
855 sh->batch_head->bm_seq > seq)
856 seq = sh->batch_head->bm_seq;
857 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
858 sh->batch_head->bm_seq = seq;
859 }
860
861 atomic_inc(&sh->count);
862 unlock_out:
863 unlock_two_stripes(head, sh);
864 out:
865 release_stripe(head);
866 }
867
868 /* Determine if 'data_offset' or 'new_data_offset' should be used
869 * in this stripe_head.
870 */
871 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
872 {
873 sector_t progress = conf->reshape_progress;
874 /* Need a memory barrier to make sure we see the value
875 * of conf->generation, or ->data_offset that was set before
876 * reshape_progress was updated.
877 */
878 smp_rmb();
879 if (progress == MaxSector)
880 return 0;
881 if (sh->generation == conf->generation - 1)
882 return 0;
883 /* We are in a reshape, and this is a new-generation stripe,
884 * so use new_data_offset.
885 */
886 return 1;
887 }
888
889 static void
890 raid5_end_read_request(struct bio *bi, int error);
891 static void
892 raid5_end_write_request(struct bio *bi, int error);
893
894 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
895 {
896 struct r5conf *conf = sh->raid_conf;
897 int i, disks = sh->disks;
898 struct stripe_head *head_sh = sh;
899
900 might_sleep();
901
902 for (i = disks; i--; ) {
903 int rw;
904 int replace_only = 0;
905 struct bio *bi, *rbi;
906 struct md_rdev *rdev, *rrdev = NULL;
907
908 sh = head_sh;
909 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
910 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
911 rw = WRITE_FUA;
912 else
913 rw = WRITE;
914 if (test_bit(R5_Discard, &sh->dev[i].flags))
915 rw |= REQ_DISCARD;
916 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
917 rw = READ;
918 else if (test_and_clear_bit(R5_WantReplace,
919 &sh->dev[i].flags)) {
920 rw = WRITE;
921 replace_only = 1;
922 } else
923 continue;
924 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
925 rw |= REQ_SYNC;
926
927 again:
928 bi = &sh->dev[i].req;
929 rbi = &sh->dev[i].rreq; /* For writing to replacement */
930
931 rcu_read_lock();
932 rrdev = rcu_dereference(conf->disks[i].replacement);
933 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
934 rdev = rcu_dereference(conf->disks[i].rdev);
935 if (!rdev) {
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939 if (rw & WRITE) {
940 if (replace_only)
941 rdev = NULL;
942 if (rdev == rrdev)
943 /* We raced and saw duplicates */
944 rrdev = NULL;
945 } else {
946 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
947 rdev = rrdev;
948 rrdev = NULL;
949 }
950
951 if (rdev && test_bit(Faulty, &rdev->flags))
952 rdev = NULL;
953 if (rdev)
954 atomic_inc(&rdev->nr_pending);
955 if (rrdev && test_bit(Faulty, &rrdev->flags))
956 rrdev = NULL;
957 if (rrdev)
958 atomic_inc(&rrdev->nr_pending);
959 rcu_read_unlock();
960
961 /* We have already checked bad blocks for reads. Now
962 * need to check for writes. We never accept write errors
963 * on the replacement, so we don't to check rrdev.
964 */
965 while ((rw & WRITE) && rdev &&
966 test_bit(WriteErrorSeen, &rdev->flags)) {
967 sector_t first_bad;
968 int bad_sectors;
969 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
970 &first_bad, &bad_sectors);
971 if (!bad)
972 break;
973
974 if (bad < 0) {
975 set_bit(BlockedBadBlocks, &rdev->flags);
976 if (!conf->mddev->external &&
977 conf->mddev->flags) {
978 /* It is very unlikely, but we might
979 * still need to write out the
980 * bad block log - better give it
981 * a chance*/
982 md_check_recovery(conf->mddev);
983 }
984 /*
985 * Because md_wait_for_blocked_rdev
986 * will dec nr_pending, we must
987 * increment it first.
988 */
989 atomic_inc(&rdev->nr_pending);
990 md_wait_for_blocked_rdev(rdev, conf->mddev);
991 } else {
992 /* Acknowledged bad block - skip the write */
993 rdev_dec_pending(rdev, conf->mddev);
994 rdev = NULL;
995 }
996 }
997
998 if (rdev) {
999 if (s->syncing || s->expanding || s->expanded
1000 || s->replacing)
1001 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1002
1003 set_bit(STRIPE_IO_STARTED, &sh->state);
1004
1005 bio_reset(bi);
1006 bi->bi_bdev = rdev->bdev;
1007 bi->bi_rw = rw;
1008 bi->bi_end_io = (rw & WRITE)
1009 ? raid5_end_write_request
1010 : raid5_end_read_request;
1011 bi->bi_private = sh;
1012
1013 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1014 __func__, (unsigned long long)sh->sector,
1015 bi->bi_rw, i);
1016 atomic_inc(&sh->count);
1017 if (sh != head_sh)
1018 atomic_inc(&head_sh->count);
1019 if (use_new_offset(conf, sh))
1020 bi->bi_iter.bi_sector = (sh->sector
1021 + rdev->new_data_offset);
1022 else
1023 bi->bi_iter.bi_sector = (sh->sector
1024 + rdev->data_offset);
1025 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1026 bi->bi_rw |= REQ_NOMERGE;
1027
1028 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1029 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1030 sh->dev[i].vec.bv_page = sh->dev[i].page;
1031 bi->bi_vcnt = 1;
1032 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1033 bi->bi_io_vec[0].bv_offset = 0;
1034 bi->bi_iter.bi_size = STRIPE_SIZE;
1035 /*
1036 * If this is discard request, set bi_vcnt 0. We don't
1037 * want to confuse SCSI because SCSI will replace payload
1038 */
1039 if (rw & REQ_DISCARD)
1040 bi->bi_vcnt = 0;
1041 if (rrdev)
1042 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1043
1044 if (conf->mddev->gendisk)
1045 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1046 bi, disk_devt(conf->mddev->gendisk),
1047 sh->dev[i].sector);
1048 generic_make_request(bi);
1049 }
1050 if (rrdev) {
1051 if (s->syncing || s->expanding || s->expanded
1052 || s->replacing)
1053 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1054
1055 set_bit(STRIPE_IO_STARTED, &sh->state);
1056
1057 bio_reset(rbi);
1058 rbi->bi_bdev = rrdev->bdev;
1059 rbi->bi_rw = rw;
1060 BUG_ON(!(rw & WRITE));
1061 rbi->bi_end_io = raid5_end_write_request;
1062 rbi->bi_private = sh;
1063
1064 pr_debug("%s: for %llu schedule op %ld on "
1065 "replacement disc %d\n",
1066 __func__, (unsigned long long)sh->sector,
1067 rbi->bi_rw, i);
1068 atomic_inc(&sh->count);
1069 if (sh != head_sh)
1070 atomic_inc(&head_sh->count);
1071 if (use_new_offset(conf, sh))
1072 rbi->bi_iter.bi_sector = (sh->sector
1073 + rrdev->new_data_offset);
1074 else
1075 rbi->bi_iter.bi_sector = (sh->sector
1076 + rrdev->data_offset);
1077 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1078 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1079 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1080 rbi->bi_vcnt = 1;
1081 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1082 rbi->bi_io_vec[0].bv_offset = 0;
1083 rbi->bi_iter.bi_size = STRIPE_SIZE;
1084 /*
1085 * If this is discard request, set bi_vcnt 0. We don't
1086 * want to confuse SCSI because SCSI will replace payload
1087 */
1088 if (rw & REQ_DISCARD)
1089 rbi->bi_vcnt = 0;
1090 if (conf->mddev->gendisk)
1091 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1092 rbi, disk_devt(conf->mddev->gendisk),
1093 sh->dev[i].sector);
1094 generic_make_request(rbi);
1095 }
1096 if (!rdev && !rrdev) {
1097 if (rw & WRITE)
1098 set_bit(STRIPE_DEGRADED, &sh->state);
1099 pr_debug("skip op %ld on disc %d for sector %llu\n",
1100 bi->bi_rw, i, (unsigned long long)sh->sector);
1101 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1102 set_bit(STRIPE_HANDLE, &sh->state);
1103 }
1104
1105 if (!head_sh->batch_head)
1106 continue;
1107 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1108 batch_list);
1109 if (sh != head_sh)
1110 goto again;
1111 }
1112 }
1113
1114 static struct dma_async_tx_descriptor *
1115 async_copy_data(int frombio, struct bio *bio, struct page **page,
1116 sector_t sector, struct dma_async_tx_descriptor *tx,
1117 struct stripe_head *sh)
1118 {
1119 struct bio_vec bvl;
1120 struct bvec_iter iter;
1121 struct page *bio_page;
1122 int page_offset;
1123 struct async_submit_ctl submit;
1124 enum async_tx_flags flags = 0;
1125
1126 if (bio->bi_iter.bi_sector >= sector)
1127 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1128 else
1129 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1130
1131 if (frombio)
1132 flags |= ASYNC_TX_FENCE;
1133 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1134
1135 bio_for_each_segment(bvl, bio, iter) {
1136 int len = bvl.bv_len;
1137 int clen;
1138 int b_offset = 0;
1139
1140 if (page_offset < 0) {
1141 b_offset = -page_offset;
1142 page_offset += b_offset;
1143 len -= b_offset;
1144 }
1145
1146 if (len > 0 && page_offset + len > STRIPE_SIZE)
1147 clen = STRIPE_SIZE - page_offset;
1148 else
1149 clen = len;
1150
1151 if (clen > 0) {
1152 b_offset += bvl.bv_offset;
1153 bio_page = bvl.bv_page;
1154 if (frombio) {
1155 if (sh->raid_conf->skip_copy &&
1156 b_offset == 0 && page_offset == 0 &&
1157 clen == STRIPE_SIZE)
1158 *page = bio_page;
1159 else
1160 tx = async_memcpy(*page, bio_page, page_offset,
1161 b_offset, clen, &submit);
1162 } else
1163 tx = async_memcpy(bio_page, *page, b_offset,
1164 page_offset, clen, &submit);
1165 }
1166 /* chain the operations */
1167 submit.depend_tx = tx;
1168
1169 if (clen < len) /* hit end of page */
1170 break;
1171 page_offset += len;
1172 }
1173
1174 return tx;
1175 }
1176
1177 static void ops_complete_biofill(void *stripe_head_ref)
1178 {
1179 struct stripe_head *sh = stripe_head_ref;
1180 struct bio *return_bi = NULL;
1181 int i;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 /* clear completed biofills */
1187 for (i = sh->disks; i--; ) {
1188 struct r5dev *dev = &sh->dev[i];
1189
1190 /* acknowledge completion of a biofill operation */
1191 /* and check if we need to reply to a read request,
1192 * new R5_Wantfill requests are held off until
1193 * !STRIPE_BIOFILL_RUN
1194 */
1195 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1196 struct bio *rbi, *rbi2;
1197
1198 BUG_ON(!dev->read);
1199 rbi = dev->read;
1200 dev->read = NULL;
1201 while (rbi && rbi->bi_iter.bi_sector <
1202 dev->sector + STRIPE_SECTORS) {
1203 rbi2 = r5_next_bio(rbi, dev->sector);
1204 if (!raid5_dec_bi_active_stripes(rbi)) {
1205 rbi->bi_next = return_bi;
1206 return_bi = rbi;
1207 }
1208 rbi = rbi2;
1209 }
1210 }
1211 }
1212 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1213
1214 return_io(return_bi);
1215
1216 set_bit(STRIPE_HANDLE, &sh->state);
1217 release_stripe(sh);
1218 }
1219
1220 static void ops_run_biofill(struct stripe_head *sh)
1221 {
1222 struct dma_async_tx_descriptor *tx = NULL;
1223 struct async_submit_ctl submit;
1224 int i;
1225
1226 BUG_ON(sh->batch_head);
1227 pr_debug("%s: stripe %llu\n", __func__,
1228 (unsigned long long)sh->sector);
1229
1230 for (i = sh->disks; i--; ) {
1231 struct r5dev *dev = &sh->dev[i];
1232 if (test_bit(R5_Wantfill, &dev->flags)) {
1233 struct bio *rbi;
1234 spin_lock_irq(&sh->stripe_lock);
1235 dev->read = rbi = dev->toread;
1236 dev->toread = NULL;
1237 spin_unlock_irq(&sh->stripe_lock);
1238 while (rbi && rbi->bi_iter.bi_sector <
1239 dev->sector + STRIPE_SECTORS) {
1240 tx = async_copy_data(0, rbi, &dev->page,
1241 dev->sector, tx, sh);
1242 rbi = r5_next_bio(rbi, dev->sector);
1243 }
1244 }
1245 }
1246
1247 atomic_inc(&sh->count);
1248 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1249 async_trigger_callback(&submit);
1250 }
1251
1252 static void mark_target_uptodate(struct stripe_head *sh, int target)
1253 {
1254 struct r5dev *tgt;
1255
1256 if (target < 0)
1257 return;
1258
1259 tgt = &sh->dev[target];
1260 set_bit(R5_UPTODATE, &tgt->flags);
1261 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1262 clear_bit(R5_Wantcompute, &tgt->flags);
1263 }
1264
1265 static void ops_complete_compute(void *stripe_head_ref)
1266 {
1267 struct stripe_head *sh = stripe_head_ref;
1268
1269 pr_debug("%s: stripe %llu\n", __func__,
1270 (unsigned long long)sh->sector);
1271
1272 /* mark the computed target(s) as uptodate */
1273 mark_target_uptodate(sh, sh->ops.target);
1274 mark_target_uptodate(sh, sh->ops.target2);
1275
1276 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1277 if (sh->check_state == check_state_compute_run)
1278 sh->check_state = check_state_compute_result;
1279 set_bit(STRIPE_HANDLE, &sh->state);
1280 release_stripe(sh);
1281 }
1282
1283 /* return a pointer to the address conversion region of the scribble buffer */
1284 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1285 struct raid5_percpu *percpu, int i)
1286 {
1287 void *addr;
1288
1289 addr = flex_array_get(percpu->scribble, i);
1290 return addr + sizeof(struct page *) * (sh->disks + 2);
1291 }
1292
1293 /* return a pointer to the address conversion region of the scribble buffer */
1294 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1295 {
1296 void *addr;
1297
1298 addr = flex_array_get(percpu->scribble, i);
1299 return addr;
1300 }
1301
1302 static struct dma_async_tx_descriptor *
1303 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1304 {
1305 int disks = sh->disks;
1306 struct page **xor_srcs = to_addr_page(percpu, 0);
1307 int target = sh->ops.target;
1308 struct r5dev *tgt = &sh->dev[target];
1309 struct page *xor_dest = tgt->page;
1310 int count = 0;
1311 struct dma_async_tx_descriptor *tx;
1312 struct async_submit_ctl submit;
1313 int i;
1314
1315 BUG_ON(sh->batch_head);
1316
1317 pr_debug("%s: stripe %llu block: %d\n",
1318 __func__, (unsigned long long)sh->sector, target);
1319 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1320
1321 for (i = disks; i--; )
1322 if (i != target)
1323 xor_srcs[count++] = sh->dev[i].page;
1324
1325 atomic_inc(&sh->count);
1326
1327 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1328 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1329 if (unlikely(count == 1))
1330 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1331 else
1332 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1333
1334 return tx;
1335 }
1336
1337 /* set_syndrome_sources - populate source buffers for gen_syndrome
1338 * @srcs - (struct page *) array of size sh->disks
1339 * @sh - stripe_head to parse
1340 *
1341 * Populates srcs in proper layout order for the stripe and returns the
1342 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1343 * destination buffer is recorded in srcs[count] and the Q destination
1344 * is recorded in srcs[count+1]].
1345 */
1346 static int set_syndrome_sources(struct page **srcs,
1347 struct stripe_head *sh,
1348 int srctype)
1349 {
1350 int disks = sh->disks;
1351 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1352 int d0_idx = raid6_d0(sh);
1353 int count;
1354 int i;
1355
1356 for (i = 0; i < disks; i++)
1357 srcs[i] = NULL;
1358
1359 count = 0;
1360 i = d0_idx;
1361 do {
1362 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1363 struct r5dev *dev = &sh->dev[i];
1364
1365 if (i == sh->qd_idx || i == sh->pd_idx ||
1366 (srctype == SYNDROME_SRC_ALL) ||
1367 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1368 test_bit(R5_Wantdrain, &dev->flags)) ||
1369 (srctype == SYNDROME_SRC_WRITTEN &&
1370 dev->written))
1371 srcs[slot] = sh->dev[i].page;
1372 i = raid6_next_disk(i, disks);
1373 } while (i != d0_idx);
1374
1375 return syndrome_disks;
1376 }
1377
1378 static struct dma_async_tx_descriptor *
1379 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1380 {
1381 int disks = sh->disks;
1382 struct page **blocks = to_addr_page(percpu, 0);
1383 int target;
1384 int qd_idx = sh->qd_idx;
1385 struct dma_async_tx_descriptor *tx;
1386 struct async_submit_ctl submit;
1387 struct r5dev *tgt;
1388 struct page *dest;
1389 int i;
1390 int count;
1391
1392 BUG_ON(sh->batch_head);
1393 if (sh->ops.target < 0)
1394 target = sh->ops.target2;
1395 else if (sh->ops.target2 < 0)
1396 target = sh->ops.target;
1397 else
1398 /* we should only have one valid target */
1399 BUG();
1400 BUG_ON(target < 0);
1401 pr_debug("%s: stripe %llu block: %d\n",
1402 __func__, (unsigned long long)sh->sector, target);
1403
1404 tgt = &sh->dev[target];
1405 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1406 dest = tgt->page;
1407
1408 atomic_inc(&sh->count);
1409
1410 if (target == qd_idx) {
1411 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1412 blocks[count] = NULL; /* regenerating p is not necessary */
1413 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1414 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1415 ops_complete_compute, sh,
1416 to_addr_conv(sh, percpu, 0));
1417 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1418 } else {
1419 /* Compute any data- or p-drive using XOR */
1420 count = 0;
1421 for (i = disks; i-- ; ) {
1422 if (i == target || i == qd_idx)
1423 continue;
1424 blocks[count++] = sh->dev[i].page;
1425 }
1426
1427 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1428 NULL, ops_complete_compute, sh,
1429 to_addr_conv(sh, percpu, 0));
1430 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1431 }
1432
1433 return tx;
1434 }
1435
1436 static struct dma_async_tx_descriptor *
1437 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1438 {
1439 int i, count, disks = sh->disks;
1440 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1441 int d0_idx = raid6_d0(sh);
1442 int faila = -1, failb = -1;
1443 int target = sh->ops.target;
1444 int target2 = sh->ops.target2;
1445 struct r5dev *tgt = &sh->dev[target];
1446 struct r5dev *tgt2 = &sh->dev[target2];
1447 struct dma_async_tx_descriptor *tx;
1448 struct page **blocks = to_addr_page(percpu, 0);
1449 struct async_submit_ctl submit;
1450
1451 BUG_ON(sh->batch_head);
1452 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1453 __func__, (unsigned long long)sh->sector, target, target2);
1454 BUG_ON(target < 0 || target2 < 0);
1455 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1456 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1457
1458 /* we need to open-code set_syndrome_sources to handle the
1459 * slot number conversion for 'faila' and 'failb'
1460 */
1461 for (i = 0; i < disks ; i++)
1462 blocks[i] = NULL;
1463 count = 0;
1464 i = d0_idx;
1465 do {
1466 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1467
1468 blocks[slot] = sh->dev[i].page;
1469
1470 if (i == target)
1471 faila = slot;
1472 if (i == target2)
1473 failb = slot;
1474 i = raid6_next_disk(i, disks);
1475 } while (i != d0_idx);
1476
1477 BUG_ON(faila == failb);
1478 if (failb < faila)
1479 swap(faila, failb);
1480 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1481 __func__, (unsigned long long)sh->sector, faila, failb);
1482
1483 atomic_inc(&sh->count);
1484
1485 if (failb == syndrome_disks+1) {
1486 /* Q disk is one of the missing disks */
1487 if (faila == syndrome_disks) {
1488 /* Missing P+Q, just recompute */
1489 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1490 ops_complete_compute, sh,
1491 to_addr_conv(sh, percpu, 0));
1492 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1493 STRIPE_SIZE, &submit);
1494 } else {
1495 struct page *dest;
1496 int data_target;
1497 int qd_idx = sh->qd_idx;
1498
1499 /* Missing D+Q: recompute D from P, then recompute Q */
1500 if (target == qd_idx)
1501 data_target = target2;
1502 else
1503 data_target = target;
1504
1505 count = 0;
1506 for (i = disks; i-- ; ) {
1507 if (i == data_target || i == qd_idx)
1508 continue;
1509 blocks[count++] = sh->dev[i].page;
1510 }
1511 dest = sh->dev[data_target].page;
1512 init_async_submit(&submit,
1513 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1514 NULL, NULL, NULL,
1515 to_addr_conv(sh, percpu, 0));
1516 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1517 &submit);
1518
1519 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1521 ops_complete_compute, sh,
1522 to_addr_conv(sh, percpu, 0));
1523 return async_gen_syndrome(blocks, 0, count+2,
1524 STRIPE_SIZE, &submit);
1525 }
1526 } else {
1527 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1528 ops_complete_compute, sh,
1529 to_addr_conv(sh, percpu, 0));
1530 if (failb == syndrome_disks) {
1531 /* We're missing D+P. */
1532 return async_raid6_datap_recov(syndrome_disks+2,
1533 STRIPE_SIZE, faila,
1534 blocks, &submit);
1535 } else {
1536 /* We're missing D+D. */
1537 return async_raid6_2data_recov(syndrome_disks+2,
1538 STRIPE_SIZE, faila, failb,
1539 blocks, &submit);
1540 }
1541 }
1542 }
1543
1544 static void ops_complete_prexor(void *stripe_head_ref)
1545 {
1546 struct stripe_head *sh = stripe_head_ref;
1547
1548 pr_debug("%s: stripe %llu\n", __func__,
1549 (unsigned long long)sh->sector);
1550 }
1551
1552 static struct dma_async_tx_descriptor *
1553 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1554 struct dma_async_tx_descriptor *tx)
1555 {
1556 int disks = sh->disks;
1557 struct page **xor_srcs = to_addr_page(percpu, 0);
1558 int count = 0, pd_idx = sh->pd_idx, i;
1559 struct async_submit_ctl submit;
1560
1561 /* existing parity data subtracted */
1562 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1563
1564 BUG_ON(sh->batch_head);
1565 pr_debug("%s: stripe %llu\n", __func__,
1566 (unsigned long long)sh->sector);
1567
1568 for (i = disks; i--; ) {
1569 struct r5dev *dev = &sh->dev[i];
1570 /* Only process blocks that are known to be uptodate */
1571 if (test_bit(R5_Wantdrain, &dev->flags))
1572 xor_srcs[count++] = dev->page;
1573 }
1574
1575 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1576 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1577 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1578
1579 return tx;
1580 }
1581
1582 static struct dma_async_tx_descriptor *
1583 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1584 struct dma_async_tx_descriptor *tx)
1585 {
1586 struct page **blocks = to_addr_page(percpu, 0);
1587 int count;
1588 struct async_submit_ctl submit;
1589
1590 pr_debug("%s: stripe %llu\n", __func__,
1591 (unsigned long long)sh->sector);
1592
1593 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1594
1595 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1596 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1597 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1598
1599 return tx;
1600 }
1601
1602 static struct dma_async_tx_descriptor *
1603 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1604 {
1605 int disks = sh->disks;
1606 int i;
1607 struct stripe_head *head_sh = sh;
1608
1609 pr_debug("%s: stripe %llu\n", __func__,
1610 (unsigned long long)sh->sector);
1611
1612 for (i = disks; i--; ) {
1613 struct r5dev *dev;
1614 struct bio *chosen;
1615
1616 sh = head_sh;
1617 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1618 struct bio *wbi;
1619
1620 again:
1621 dev = &sh->dev[i];
1622 spin_lock_irq(&sh->stripe_lock);
1623 chosen = dev->towrite;
1624 dev->towrite = NULL;
1625 sh->overwrite_disks = 0;
1626 BUG_ON(dev->written);
1627 wbi = dev->written = chosen;
1628 spin_unlock_irq(&sh->stripe_lock);
1629 WARN_ON(dev->page != dev->orig_page);
1630
1631 while (wbi && wbi->bi_iter.bi_sector <
1632 dev->sector + STRIPE_SECTORS) {
1633 if (wbi->bi_rw & REQ_FUA)
1634 set_bit(R5_WantFUA, &dev->flags);
1635 if (wbi->bi_rw & REQ_SYNC)
1636 set_bit(R5_SyncIO, &dev->flags);
1637 if (wbi->bi_rw & REQ_DISCARD)
1638 set_bit(R5_Discard, &dev->flags);
1639 else {
1640 tx = async_copy_data(1, wbi, &dev->page,
1641 dev->sector, tx, sh);
1642 if (dev->page != dev->orig_page) {
1643 set_bit(R5_SkipCopy, &dev->flags);
1644 clear_bit(R5_UPTODATE, &dev->flags);
1645 clear_bit(R5_OVERWRITE, &dev->flags);
1646 }
1647 }
1648 wbi = r5_next_bio(wbi, dev->sector);
1649 }
1650
1651 if (head_sh->batch_head) {
1652 sh = list_first_entry(&sh->batch_list,
1653 struct stripe_head,
1654 batch_list);
1655 if (sh == head_sh)
1656 continue;
1657 goto again;
1658 }
1659 }
1660 }
1661
1662 return tx;
1663 }
1664
1665 static void ops_complete_reconstruct(void *stripe_head_ref)
1666 {
1667 struct stripe_head *sh = stripe_head_ref;
1668 int disks = sh->disks;
1669 int pd_idx = sh->pd_idx;
1670 int qd_idx = sh->qd_idx;
1671 int i;
1672 bool fua = false, sync = false, discard = false;
1673
1674 pr_debug("%s: stripe %llu\n", __func__,
1675 (unsigned long long)sh->sector);
1676
1677 for (i = disks; i--; ) {
1678 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1679 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1680 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1681 }
1682
1683 for (i = disks; i--; ) {
1684 struct r5dev *dev = &sh->dev[i];
1685
1686 if (dev->written || i == pd_idx || i == qd_idx) {
1687 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1688 set_bit(R5_UPTODATE, &dev->flags);
1689 if (fua)
1690 set_bit(R5_WantFUA, &dev->flags);
1691 if (sync)
1692 set_bit(R5_SyncIO, &dev->flags);
1693 }
1694 }
1695
1696 if (sh->reconstruct_state == reconstruct_state_drain_run)
1697 sh->reconstruct_state = reconstruct_state_drain_result;
1698 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1699 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1700 else {
1701 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1702 sh->reconstruct_state = reconstruct_state_result;
1703 }
1704
1705 set_bit(STRIPE_HANDLE, &sh->state);
1706 release_stripe(sh);
1707 }
1708
1709 static void
1710 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1711 struct dma_async_tx_descriptor *tx)
1712 {
1713 int disks = sh->disks;
1714 struct page **xor_srcs;
1715 struct async_submit_ctl submit;
1716 int count, pd_idx = sh->pd_idx, i;
1717 struct page *xor_dest;
1718 int prexor = 0;
1719 unsigned long flags;
1720 int j = 0;
1721 struct stripe_head *head_sh = sh;
1722 int last_stripe;
1723
1724 pr_debug("%s: stripe %llu\n", __func__,
1725 (unsigned long long)sh->sector);
1726
1727 for (i = 0; i < sh->disks; i++) {
1728 if (pd_idx == i)
1729 continue;
1730 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1731 break;
1732 }
1733 if (i >= sh->disks) {
1734 atomic_inc(&sh->count);
1735 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1736 ops_complete_reconstruct(sh);
1737 return;
1738 }
1739 again:
1740 count = 0;
1741 xor_srcs = to_addr_page(percpu, j);
1742 /* check if prexor is active which means only process blocks
1743 * that are part of a read-modify-write (written)
1744 */
1745 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1746 prexor = 1;
1747 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1748 for (i = disks; i--; ) {
1749 struct r5dev *dev = &sh->dev[i];
1750 if (head_sh->dev[i].written)
1751 xor_srcs[count++] = dev->page;
1752 }
1753 } else {
1754 xor_dest = sh->dev[pd_idx].page;
1755 for (i = disks; i--; ) {
1756 struct r5dev *dev = &sh->dev[i];
1757 if (i != pd_idx)
1758 xor_srcs[count++] = dev->page;
1759 }
1760 }
1761
1762 /* 1/ if we prexor'd then the dest is reused as a source
1763 * 2/ if we did not prexor then we are redoing the parity
1764 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1765 * for the synchronous xor case
1766 */
1767 last_stripe = !head_sh->batch_head ||
1768 list_first_entry(&sh->batch_list,
1769 struct stripe_head, batch_list) == head_sh;
1770 if (last_stripe) {
1771 flags = ASYNC_TX_ACK |
1772 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1773
1774 atomic_inc(&head_sh->count);
1775 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1776 to_addr_conv(sh, percpu, j));
1777 } else {
1778 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1779 init_async_submit(&submit, flags, tx, NULL, NULL,
1780 to_addr_conv(sh, percpu, j));
1781 }
1782
1783 if (unlikely(count == 1))
1784 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1785 else
1786 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1787 if (!last_stripe) {
1788 j++;
1789 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1790 batch_list);
1791 goto again;
1792 }
1793 }
1794
1795 static void
1796 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1797 struct dma_async_tx_descriptor *tx)
1798 {
1799 struct async_submit_ctl submit;
1800 struct page **blocks;
1801 int count, i, j = 0;
1802 struct stripe_head *head_sh = sh;
1803 int last_stripe;
1804 int synflags;
1805 unsigned long txflags;
1806
1807 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1808
1809 for (i = 0; i < sh->disks; i++) {
1810 if (sh->pd_idx == i || sh->qd_idx == i)
1811 continue;
1812 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1813 break;
1814 }
1815 if (i >= sh->disks) {
1816 atomic_inc(&sh->count);
1817 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1818 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1819 ops_complete_reconstruct(sh);
1820 return;
1821 }
1822
1823 again:
1824 blocks = to_addr_page(percpu, j);
1825
1826 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1827 synflags = SYNDROME_SRC_WRITTEN;
1828 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1829 } else {
1830 synflags = SYNDROME_SRC_ALL;
1831 txflags = ASYNC_TX_ACK;
1832 }
1833
1834 count = set_syndrome_sources(blocks, sh, synflags);
1835 last_stripe = !head_sh->batch_head ||
1836 list_first_entry(&sh->batch_list,
1837 struct stripe_head, batch_list) == head_sh;
1838
1839 if (last_stripe) {
1840 atomic_inc(&head_sh->count);
1841 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1842 head_sh, to_addr_conv(sh, percpu, j));
1843 } else
1844 init_async_submit(&submit, 0, tx, NULL, NULL,
1845 to_addr_conv(sh, percpu, j));
1846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1847 if (!last_stripe) {
1848 j++;
1849 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1850 batch_list);
1851 goto again;
1852 }
1853 }
1854
1855 static void ops_complete_check(void *stripe_head_ref)
1856 {
1857 struct stripe_head *sh = stripe_head_ref;
1858
1859 pr_debug("%s: stripe %llu\n", __func__,
1860 (unsigned long long)sh->sector);
1861
1862 sh->check_state = check_state_check_result;
1863 set_bit(STRIPE_HANDLE, &sh->state);
1864 release_stripe(sh);
1865 }
1866
1867 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1868 {
1869 int disks = sh->disks;
1870 int pd_idx = sh->pd_idx;
1871 int qd_idx = sh->qd_idx;
1872 struct page *xor_dest;
1873 struct page **xor_srcs = to_addr_page(percpu, 0);
1874 struct dma_async_tx_descriptor *tx;
1875 struct async_submit_ctl submit;
1876 int count;
1877 int i;
1878
1879 pr_debug("%s: stripe %llu\n", __func__,
1880 (unsigned long long)sh->sector);
1881
1882 BUG_ON(sh->batch_head);
1883 count = 0;
1884 xor_dest = sh->dev[pd_idx].page;
1885 xor_srcs[count++] = xor_dest;
1886 for (i = disks; i--; ) {
1887 if (i == pd_idx || i == qd_idx)
1888 continue;
1889 xor_srcs[count++] = sh->dev[i].page;
1890 }
1891
1892 init_async_submit(&submit, 0, NULL, NULL, NULL,
1893 to_addr_conv(sh, percpu, 0));
1894 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1895 &sh->ops.zero_sum_result, &submit);
1896
1897 atomic_inc(&sh->count);
1898 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1899 tx = async_trigger_callback(&submit);
1900 }
1901
1902 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1903 {
1904 struct page **srcs = to_addr_page(percpu, 0);
1905 struct async_submit_ctl submit;
1906 int count;
1907
1908 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1909 (unsigned long long)sh->sector, checkp);
1910
1911 BUG_ON(sh->batch_head);
1912 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1913 if (!checkp)
1914 srcs[count] = NULL;
1915
1916 atomic_inc(&sh->count);
1917 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1918 sh, to_addr_conv(sh, percpu, 0));
1919 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1920 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1921 }
1922
1923 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1924 {
1925 int overlap_clear = 0, i, disks = sh->disks;
1926 struct dma_async_tx_descriptor *tx = NULL;
1927 struct r5conf *conf = sh->raid_conf;
1928 int level = conf->level;
1929 struct raid5_percpu *percpu;
1930 unsigned long cpu;
1931
1932 cpu = get_cpu();
1933 percpu = per_cpu_ptr(conf->percpu, cpu);
1934 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1935 ops_run_biofill(sh);
1936 overlap_clear++;
1937 }
1938
1939 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1940 if (level < 6)
1941 tx = ops_run_compute5(sh, percpu);
1942 else {
1943 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1944 tx = ops_run_compute6_1(sh, percpu);
1945 else
1946 tx = ops_run_compute6_2(sh, percpu);
1947 }
1948 /* terminate the chain if reconstruct is not set to be run */
1949 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1950 async_tx_ack(tx);
1951 }
1952
1953 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1954 if (level < 6)
1955 tx = ops_run_prexor5(sh, percpu, tx);
1956 else
1957 tx = ops_run_prexor6(sh, percpu, tx);
1958 }
1959
1960 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1961 tx = ops_run_biodrain(sh, tx);
1962 overlap_clear++;
1963 }
1964
1965 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1966 if (level < 6)
1967 ops_run_reconstruct5(sh, percpu, tx);
1968 else
1969 ops_run_reconstruct6(sh, percpu, tx);
1970 }
1971
1972 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1973 if (sh->check_state == check_state_run)
1974 ops_run_check_p(sh, percpu);
1975 else if (sh->check_state == check_state_run_q)
1976 ops_run_check_pq(sh, percpu, 0);
1977 else if (sh->check_state == check_state_run_pq)
1978 ops_run_check_pq(sh, percpu, 1);
1979 else
1980 BUG();
1981 }
1982
1983 if (overlap_clear && !sh->batch_head)
1984 for (i = disks; i--; ) {
1985 struct r5dev *dev = &sh->dev[i];
1986 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1987 wake_up(&sh->raid_conf->wait_for_overlap);
1988 }
1989 put_cpu();
1990 }
1991
1992 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1993 {
1994 struct stripe_head *sh;
1995
1996 sh = kmem_cache_zalloc(sc, gfp);
1997 if (sh) {
1998 spin_lock_init(&sh->stripe_lock);
1999 spin_lock_init(&sh->batch_lock);
2000 INIT_LIST_HEAD(&sh->batch_list);
2001 INIT_LIST_HEAD(&sh->lru);
2002 atomic_set(&sh->count, 1);
2003 }
2004 return sh;
2005 }
2006 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2007 {
2008 struct stripe_head *sh;
2009
2010 sh = alloc_stripe(conf->slab_cache, gfp);
2011 if (!sh)
2012 return 0;
2013
2014 sh->raid_conf = conf;
2015
2016 if (grow_buffers(sh, gfp)) {
2017 shrink_buffers(sh);
2018 kmem_cache_free(conf->slab_cache, sh);
2019 return 0;
2020 }
2021 sh->hash_lock_index =
2022 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2023 /* we just created an active stripe so... */
2024 atomic_inc(&conf->active_stripes);
2025
2026 release_stripe(sh);
2027 conf->max_nr_stripes++;
2028 return 1;
2029 }
2030
2031 static int grow_stripes(struct r5conf *conf, int num)
2032 {
2033 struct kmem_cache *sc;
2034 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2035
2036 if (conf->mddev->gendisk)
2037 sprintf(conf->cache_name[0],
2038 "raid%d-%s", conf->level, mdname(conf->mddev));
2039 else
2040 sprintf(conf->cache_name[0],
2041 "raid%d-%p", conf->level, conf->mddev);
2042 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2043
2044 conf->active_name = 0;
2045 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2046 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2047 0, 0, NULL);
2048 if (!sc)
2049 return 1;
2050 conf->slab_cache = sc;
2051 conf->pool_size = devs;
2052 while (num--)
2053 if (!grow_one_stripe(conf, GFP_KERNEL))
2054 return 1;
2055
2056 return 0;
2057 }
2058
2059 /**
2060 * scribble_len - return the required size of the scribble region
2061 * @num - total number of disks in the array
2062 *
2063 * The size must be enough to contain:
2064 * 1/ a struct page pointer for each device in the array +2
2065 * 2/ room to convert each entry in (1) to its corresponding dma
2066 * (dma_map_page()) or page (page_address()) address.
2067 *
2068 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2069 * calculate over all devices (not just the data blocks), using zeros in place
2070 * of the P and Q blocks.
2071 */
2072 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2073 {
2074 struct flex_array *ret;
2075 size_t len;
2076
2077 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2078 ret = flex_array_alloc(len, cnt, flags);
2079 if (!ret)
2080 return NULL;
2081 /* always prealloc all elements, so no locking is required */
2082 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2083 flex_array_free(ret);
2084 return NULL;
2085 }
2086 return ret;
2087 }
2088
2089 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2090 {
2091 unsigned long cpu;
2092 int err = 0;
2093
2094 mddev_suspend(conf->mddev);
2095 get_online_cpus();
2096 for_each_present_cpu(cpu) {
2097 struct raid5_percpu *percpu;
2098 struct flex_array *scribble;
2099
2100 percpu = per_cpu_ptr(conf->percpu, cpu);
2101 scribble = scribble_alloc(new_disks,
2102 new_sectors / STRIPE_SECTORS,
2103 GFP_NOIO);
2104
2105 if (scribble) {
2106 flex_array_free(percpu->scribble);
2107 percpu->scribble = scribble;
2108 } else {
2109 err = -ENOMEM;
2110 break;
2111 }
2112 }
2113 put_online_cpus();
2114 mddev_resume(conf->mddev);
2115 return err;
2116 }
2117
2118 static int resize_stripes(struct r5conf *conf, int newsize)
2119 {
2120 /* Make all the stripes able to hold 'newsize' devices.
2121 * New slots in each stripe get 'page' set to a new page.
2122 *
2123 * This happens in stages:
2124 * 1/ create a new kmem_cache and allocate the required number of
2125 * stripe_heads.
2126 * 2/ gather all the old stripe_heads and transfer the pages across
2127 * to the new stripe_heads. This will have the side effect of
2128 * freezing the array as once all stripe_heads have been collected,
2129 * no IO will be possible. Old stripe heads are freed once their
2130 * pages have been transferred over, and the old kmem_cache is
2131 * freed when all stripes are done.
2132 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2133 * we simple return a failre status - no need to clean anything up.
2134 * 4/ allocate new pages for the new slots in the new stripe_heads.
2135 * If this fails, we don't bother trying the shrink the
2136 * stripe_heads down again, we just leave them as they are.
2137 * As each stripe_head is processed the new one is released into
2138 * active service.
2139 *
2140 * Once step2 is started, we cannot afford to wait for a write,
2141 * so we use GFP_NOIO allocations.
2142 */
2143 struct stripe_head *osh, *nsh;
2144 LIST_HEAD(newstripes);
2145 struct disk_info *ndisks;
2146 int err;
2147 struct kmem_cache *sc;
2148 int i;
2149 int hash, cnt;
2150
2151 if (newsize <= conf->pool_size)
2152 return 0; /* never bother to shrink */
2153
2154 err = md_allow_write(conf->mddev);
2155 if (err)
2156 return err;
2157
2158 /* Step 1 */
2159 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2160 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2161 0, 0, NULL);
2162 if (!sc)
2163 return -ENOMEM;
2164
2165 for (i = conf->max_nr_stripes; i; i--) {
2166 nsh = alloc_stripe(sc, GFP_KERNEL);
2167 if (!nsh)
2168 break;
2169
2170 nsh->raid_conf = conf;
2171 list_add(&nsh->lru, &newstripes);
2172 }
2173 if (i) {
2174 /* didn't get enough, give up */
2175 while (!list_empty(&newstripes)) {
2176 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2177 list_del(&nsh->lru);
2178 kmem_cache_free(sc, nsh);
2179 }
2180 kmem_cache_destroy(sc);
2181 return -ENOMEM;
2182 }
2183 /* Step 2 - Must use GFP_NOIO now.
2184 * OK, we have enough stripes, start collecting inactive
2185 * stripes and copying them over
2186 */
2187 hash = 0;
2188 cnt = 0;
2189 list_for_each_entry(nsh, &newstripes, lru) {
2190 lock_device_hash_lock(conf, hash);
2191 wait_event_exclusive_cmd(conf->wait_for_stripe[hash],
2192 !list_empty(conf->inactive_list + hash),
2193 unlock_device_hash_lock(conf, hash),
2194 lock_device_hash_lock(conf, hash));
2195 osh = get_free_stripe(conf, hash);
2196 unlock_device_hash_lock(conf, hash);
2197
2198 for(i=0; i<conf->pool_size; i++) {
2199 nsh->dev[i].page = osh->dev[i].page;
2200 nsh->dev[i].orig_page = osh->dev[i].page;
2201 }
2202 nsh->hash_lock_index = hash;
2203 kmem_cache_free(conf->slab_cache, osh);
2204 cnt++;
2205 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2206 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2207 hash++;
2208 cnt = 0;
2209 }
2210 }
2211 kmem_cache_destroy(conf->slab_cache);
2212
2213 /* Step 3.
2214 * At this point, we are holding all the stripes so the array
2215 * is completely stalled, so now is a good time to resize
2216 * conf->disks and the scribble region
2217 */
2218 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2219 if (ndisks) {
2220 for (i=0; i<conf->raid_disks; i++)
2221 ndisks[i] = conf->disks[i];
2222 kfree(conf->disks);
2223 conf->disks = ndisks;
2224 } else
2225 err = -ENOMEM;
2226
2227 /* Step 4, return new stripes to service */
2228 while(!list_empty(&newstripes)) {
2229 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2230 list_del_init(&nsh->lru);
2231
2232 for (i=conf->raid_disks; i < newsize; i++)
2233 if (nsh->dev[i].page == NULL) {
2234 struct page *p = alloc_page(GFP_NOIO);
2235 nsh->dev[i].page = p;
2236 nsh->dev[i].orig_page = p;
2237 if (!p)
2238 err = -ENOMEM;
2239 }
2240 release_stripe(nsh);
2241 }
2242 /* critical section pass, GFP_NOIO no longer needed */
2243
2244 conf->slab_cache = sc;
2245 conf->active_name = 1-conf->active_name;
2246 if (!err)
2247 conf->pool_size = newsize;
2248 return err;
2249 }
2250
2251 static int drop_one_stripe(struct r5conf *conf)
2252 {
2253 struct stripe_head *sh;
2254 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2255
2256 spin_lock_irq(conf->hash_locks + hash);
2257 sh = get_free_stripe(conf, hash);
2258 spin_unlock_irq(conf->hash_locks + hash);
2259 if (!sh)
2260 return 0;
2261 BUG_ON(atomic_read(&sh->count));
2262 shrink_buffers(sh);
2263 kmem_cache_free(conf->slab_cache, sh);
2264 atomic_dec(&conf->active_stripes);
2265 conf->max_nr_stripes--;
2266 return 1;
2267 }
2268
2269 static void shrink_stripes(struct r5conf *conf)
2270 {
2271 while (conf->max_nr_stripes &&
2272 drop_one_stripe(conf))
2273 ;
2274
2275 if (conf->slab_cache)
2276 kmem_cache_destroy(conf->slab_cache);
2277 conf->slab_cache = NULL;
2278 }
2279
2280 static void raid5_end_read_request(struct bio * bi, int error)
2281 {
2282 struct stripe_head *sh = bi->bi_private;
2283 struct r5conf *conf = sh->raid_conf;
2284 int disks = sh->disks, i;
2285 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2286 char b[BDEVNAME_SIZE];
2287 struct md_rdev *rdev = NULL;
2288 sector_t s;
2289
2290 for (i=0 ; i<disks; i++)
2291 if (bi == &sh->dev[i].req)
2292 break;
2293
2294 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2295 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2296 uptodate);
2297 if (i == disks) {
2298 BUG();
2299 return;
2300 }
2301 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2302 /* If replacement finished while this request was outstanding,
2303 * 'replacement' might be NULL already.
2304 * In that case it moved down to 'rdev'.
2305 * rdev is not removed until all requests are finished.
2306 */
2307 rdev = conf->disks[i].replacement;
2308 if (!rdev)
2309 rdev = conf->disks[i].rdev;
2310
2311 if (use_new_offset(conf, sh))
2312 s = sh->sector + rdev->new_data_offset;
2313 else
2314 s = sh->sector + rdev->data_offset;
2315 if (uptodate) {
2316 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2317 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2318 /* Note that this cannot happen on a
2319 * replacement device. We just fail those on
2320 * any error
2321 */
2322 printk_ratelimited(
2323 KERN_INFO
2324 "md/raid:%s: read error corrected"
2325 " (%lu sectors at %llu on %s)\n",
2326 mdname(conf->mddev), STRIPE_SECTORS,
2327 (unsigned long long)s,
2328 bdevname(rdev->bdev, b));
2329 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2330 clear_bit(R5_ReadError, &sh->dev[i].flags);
2331 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2332 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2333 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2334
2335 if (atomic_read(&rdev->read_errors))
2336 atomic_set(&rdev->read_errors, 0);
2337 } else {
2338 const char *bdn = bdevname(rdev->bdev, b);
2339 int retry = 0;
2340 int set_bad = 0;
2341
2342 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2343 atomic_inc(&rdev->read_errors);
2344 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2345 printk_ratelimited(
2346 KERN_WARNING
2347 "md/raid:%s: read error on replacement device "
2348 "(sector %llu on %s).\n",
2349 mdname(conf->mddev),
2350 (unsigned long long)s,
2351 bdn);
2352 else if (conf->mddev->degraded >= conf->max_degraded) {
2353 set_bad = 1;
2354 printk_ratelimited(
2355 KERN_WARNING
2356 "md/raid:%s: read error not correctable "
2357 "(sector %llu on %s).\n",
2358 mdname(conf->mddev),
2359 (unsigned long long)s,
2360 bdn);
2361 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2362 /* Oh, no!!! */
2363 set_bad = 1;
2364 printk_ratelimited(
2365 KERN_WARNING
2366 "md/raid:%s: read error NOT corrected!! "
2367 "(sector %llu on %s).\n",
2368 mdname(conf->mddev),
2369 (unsigned long long)s,
2370 bdn);
2371 } else if (atomic_read(&rdev->read_errors)
2372 > conf->max_nr_stripes)
2373 printk(KERN_WARNING
2374 "md/raid:%s: Too many read errors, failing device %s.\n",
2375 mdname(conf->mddev), bdn);
2376 else
2377 retry = 1;
2378 if (set_bad && test_bit(In_sync, &rdev->flags)
2379 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2380 retry = 1;
2381 if (retry)
2382 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2383 set_bit(R5_ReadError, &sh->dev[i].flags);
2384 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2385 } else
2386 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2387 else {
2388 clear_bit(R5_ReadError, &sh->dev[i].flags);
2389 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2390 if (!(set_bad
2391 && test_bit(In_sync, &rdev->flags)
2392 && rdev_set_badblocks(
2393 rdev, sh->sector, STRIPE_SECTORS, 0)))
2394 md_error(conf->mddev, rdev);
2395 }
2396 }
2397 rdev_dec_pending(rdev, conf->mddev);
2398 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2399 set_bit(STRIPE_HANDLE, &sh->state);
2400 release_stripe(sh);
2401 }
2402
2403 static void raid5_end_write_request(struct bio *bi, int error)
2404 {
2405 struct stripe_head *sh = bi->bi_private;
2406 struct r5conf *conf = sh->raid_conf;
2407 int disks = sh->disks, i;
2408 struct md_rdev *uninitialized_var(rdev);
2409 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2410 sector_t first_bad;
2411 int bad_sectors;
2412 int replacement = 0;
2413
2414 for (i = 0 ; i < disks; i++) {
2415 if (bi == &sh->dev[i].req) {
2416 rdev = conf->disks[i].rdev;
2417 break;
2418 }
2419 if (bi == &sh->dev[i].rreq) {
2420 rdev = conf->disks[i].replacement;
2421 if (rdev)
2422 replacement = 1;
2423 else
2424 /* rdev was removed and 'replacement'
2425 * replaced it. rdev is not removed
2426 * until all requests are finished.
2427 */
2428 rdev = conf->disks[i].rdev;
2429 break;
2430 }
2431 }
2432 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2433 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2434 uptodate);
2435 if (i == disks) {
2436 BUG();
2437 return;
2438 }
2439
2440 if (replacement) {
2441 if (!uptodate)
2442 md_error(conf->mddev, rdev);
2443 else if (is_badblock(rdev, sh->sector,
2444 STRIPE_SECTORS,
2445 &first_bad, &bad_sectors))
2446 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2447 } else {
2448 if (!uptodate) {
2449 set_bit(STRIPE_DEGRADED, &sh->state);
2450 set_bit(WriteErrorSeen, &rdev->flags);
2451 set_bit(R5_WriteError, &sh->dev[i].flags);
2452 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2453 set_bit(MD_RECOVERY_NEEDED,
2454 &rdev->mddev->recovery);
2455 } else if (is_badblock(rdev, sh->sector,
2456 STRIPE_SECTORS,
2457 &first_bad, &bad_sectors)) {
2458 set_bit(R5_MadeGood, &sh->dev[i].flags);
2459 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2460 /* That was a successful write so make
2461 * sure it looks like we already did
2462 * a re-write.
2463 */
2464 set_bit(R5_ReWrite, &sh->dev[i].flags);
2465 }
2466 }
2467 rdev_dec_pending(rdev, conf->mddev);
2468
2469 if (sh->batch_head && !uptodate && !replacement)
2470 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2471
2472 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2473 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2474 set_bit(STRIPE_HANDLE, &sh->state);
2475 release_stripe(sh);
2476
2477 if (sh->batch_head && sh != sh->batch_head)
2478 release_stripe(sh->batch_head);
2479 }
2480
2481 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2482
2483 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2484 {
2485 struct r5dev *dev = &sh->dev[i];
2486
2487 bio_init(&dev->req);
2488 dev->req.bi_io_vec = &dev->vec;
2489 dev->req.bi_max_vecs = 1;
2490 dev->req.bi_private = sh;
2491
2492 bio_init(&dev->rreq);
2493 dev->rreq.bi_io_vec = &dev->rvec;
2494 dev->rreq.bi_max_vecs = 1;
2495 dev->rreq.bi_private = sh;
2496
2497 dev->flags = 0;
2498 dev->sector = compute_blocknr(sh, i, previous);
2499 }
2500
2501 static void error(struct mddev *mddev, struct md_rdev *rdev)
2502 {
2503 char b[BDEVNAME_SIZE];
2504 struct r5conf *conf = mddev->private;
2505 unsigned long flags;
2506 pr_debug("raid456: error called\n");
2507
2508 spin_lock_irqsave(&conf->device_lock, flags);
2509 clear_bit(In_sync, &rdev->flags);
2510 mddev->degraded = calc_degraded(conf);
2511 spin_unlock_irqrestore(&conf->device_lock, flags);
2512 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2513
2514 set_bit(Blocked, &rdev->flags);
2515 set_bit(Faulty, &rdev->flags);
2516 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2517 printk(KERN_ALERT
2518 "md/raid:%s: Disk failure on %s, disabling device.\n"
2519 "md/raid:%s: Operation continuing on %d devices.\n",
2520 mdname(mddev),
2521 bdevname(rdev->bdev, b),
2522 mdname(mddev),
2523 conf->raid_disks - mddev->degraded);
2524 }
2525
2526 /*
2527 * Input: a 'big' sector number,
2528 * Output: index of the data and parity disk, and the sector # in them.
2529 */
2530 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2531 int previous, int *dd_idx,
2532 struct stripe_head *sh)
2533 {
2534 sector_t stripe, stripe2;
2535 sector_t chunk_number;
2536 unsigned int chunk_offset;
2537 int pd_idx, qd_idx;
2538 int ddf_layout = 0;
2539 sector_t new_sector;
2540 int algorithm = previous ? conf->prev_algo
2541 : conf->algorithm;
2542 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2543 : conf->chunk_sectors;
2544 int raid_disks = previous ? conf->previous_raid_disks
2545 : conf->raid_disks;
2546 int data_disks = raid_disks - conf->max_degraded;
2547
2548 /* First compute the information on this sector */
2549
2550 /*
2551 * Compute the chunk number and the sector offset inside the chunk
2552 */
2553 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2554 chunk_number = r_sector;
2555
2556 /*
2557 * Compute the stripe number
2558 */
2559 stripe = chunk_number;
2560 *dd_idx = sector_div(stripe, data_disks);
2561 stripe2 = stripe;
2562 /*
2563 * Select the parity disk based on the user selected algorithm.
2564 */
2565 pd_idx = qd_idx = -1;
2566 switch(conf->level) {
2567 case 4:
2568 pd_idx = data_disks;
2569 break;
2570 case 5:
2571 switch (algorithm) {
2572 case ALGORITHM_LEFT_ASYMMETRIC:
2573 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2574 if (*dd_idx >= pd_idx)
2575 (*dd_idx)++;
2576 break;
2577 case ALGORITHM_RIGHT_ASYMMETRIC:
2578 pd_idx = sector_div(stripe2, raid_disks);
2579 if (*dd_idx >= pd_idx)
2580 (*dd_idx)++;
2581 break;
2582 case ALGORITHM_LEFT_SYMMETRIC:
2583 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2584 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2585 break;
2586 case ALGORITHM_RIGHT_SYMMETRIC:
2587 pd_idx = sector_div(stripe2, raid_disks);
2588 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2589 break;
2590 case ALGORITHM_PARITY_0:
2591 pd_idx = 0;
2592 (*dd_idx)++;
2593 break;
2594 case ALGORITHM_PARITY_N:
2595 pd_idx = data_disks;
2596 break;
2597 default:
2598 BUG();
2599 }
2600 break;
2601 case 6:
2602
2603 switch (algorithm) {
2604 case ALGORITHM_LEFT_ASYMMETRIC:
2605 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2606 qd_idx = pd_idx + 1;
2607 if (pd_idx == raid_disks-1) {
2608 (*dd_idx)++; /* Q D D D P */
2609 qd_idx = 0;
2610 } else if (*dd_idx >= pd_idx)
2611 (*dd_idx) += 2; /* D D P Q D */
2612 break;
2613 case ALGORITHM_RIGHT_ASYMMETRIC:
2614 pd_idx = sector_div(stripe2, raid_disks);
2615 qd_idx = pd_idx + 1;
2616 if (pd_idx == raid_disks-1) {
2617 (*dd_idx)++; /* Q D D D P */
2618 qd_idx = 0;
2619 } else if (*dd_idx >= pd_idx)
2620 (*dd_idx) += 2; /* D D P Q D */
2621 break;
2622 case ALGORITHM_LEFT_SYMMETRIC:
2623 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2624 qd_idx = (pd_idx + 1) % raid_disks;
2625 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2626 break;
2627 case ALGORITHM_RIGHT_SYMMETRIC:
2628 pd_idx = sector_div(stripe2, raid_disks);
2629 qd_idx = (pd_idx + 1) % raid_disks;
2630 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2631 break;
2632
2633 case ALGORITHM_PARITY_0:
2634 pd_idx = 0;
2635 qd_idx = 1;
2636 (*dd_idx) += 2;
2637 break;
2638 case ALGORITHM_PARITY_N:
2639 pd_idx = data_disks;
2640 qd_idx = data_disks + 1;
2641 break;
2642
2643 case ALGORITHM_ROTATING_ZERO_RESTART:
2644 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2645 * of blocks for computing Q is different.
2646 */
2647 pd_idx = sector_div(stripe2, raid_disks);
2648 qd_idx = pd_idx + 1;
2649 if (pd_idx == raid_disks-1) {
2650 (*dd_idx)++; /* Q D D D P */
2651 qd_idx = 0;
2652 } else if (*dd_idx >= pd_idx)
2653 (*dd_idx) += 2; /* D D P Q D */
2654 ddf_layout = 1;
2655 break;
2656
2657 case ALGORITHM_ROTATING_N_RESTART:
2658 /* Same a left_asymmetric, by first stripe is
2659 * D D D P Q rather than
2660 * Q D D D P
2661 */
2662 stripe2 += 1;
2663 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2664 qd_idx = pd_idx + 1;
2665 if (pd_idx == raid_disks-1) {
2666 (*dd_idx)++; /* Q D D D P */
2667 qd_idx = 0;
2668 } else if (*dd_idx >= pd_idx)
2669 (*dd_idx) += 2; /* D D P Q D */
2670 ddf_layout = 1;
2671 break;
2672
2673 case ALGORITHM_ROTATING_N_CONTINUE:
2674 /* Same as left_symmetric but Q is before P */
2675 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2676 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2677 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2678 ddf_layout = 1;
2679 break;
2680
2681 case ALGORITHM_LEFT_ASYMMETRIC_6:
2682 /* RAID5 left_asymmetric, with Q on last device */
2683 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2684 if (*dd_idx >= pd_idx)
2685 (*dd_idx)++;
2686 qd_idx = raid_disks - 1;
2687 break;
2688
2689 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2690 pd_idx = sector_div(stripe2, raid_disks-1);
2691 if (*dd_idx >= pd_idx)
2692 (*dd_idx)++;
2693 qd_idx = raid_disks - 1;
2694 break;
2695
2696 case ALGORITHM_LEFT_SYMMETRIC_6:
2697 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2698 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2699 qd_idx = raid_disks - 1;
2700 break;
2701
2702 case ALGORITHM_RIGHT_SYMMETRIC_6:
2703 pd_idx = sector_div(stripe2, raid_disks-1);
2704 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2705 qd_idx = raid_disks - 1;
2706 break;
2707
2708 case ALGORITHM_PARITY_0_6:
2709 pd_idx = 0;
2710 (*dd_idx)++;
2711 qd_idx = raid_disks - 1;
2712 break;
2713
2714 default:
2715 BUG();
2716 }
2717 break;
2718 }
2719
2720 if (sh) {
2721 sh->pd_idx = pd_idx;
2722 sh->qd_idx = qd_idx;
2723 sh->ddf_layout = ddf_layout;
2724 }
2725 /*
2726 * Finally, compute the new sector number
2727 */
2728 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2729 return new_sector;
2730 }
2731
2732 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2733 {
2734 struct r5conf *conf = sh->raid_conf;
2735 int raid_disks = sh->disks;
2736 int data_disks = raid_disks - conf->max_degraded;
2737 sector_t new_sector = sh->sector, check;
2738 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2739 : conf->chunk_sectors;
2740 int algorithm = previous ? conf->prev_algo
2741 : conf->algorithm;
2742 sector_t stripe;
2743 int chunk_offset;
2744 sector_t chunk_number;
2745 int dummy1, dd_idx = i;
2746 sector_t r_sector;
2747 struct stripe_head sh2;
2748
2749 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2750 stripe = new_sector;
2751
2752 if (i == sh->pd_idx)
2753 return 0;
2754 switch(conf->level) {
2755 case 4: break;
2756 case 5:
2757 switch (algorithm) {
2758 case ALGORITHM_LEFT_ASYMMETRIC:
2759 case ALGORITHM_RIGHT_ASYMMETRIC:
2760 if (i > sh->pd_idx)
2761 i--;
2762 break;
2763 case ALGORITHM_LEFT_SYMMETRIC:
2764 case ALGORITHM_RIGHT_SYMMETRIC:
2765 if (i < sh->pd_idx)
2766 i += raid_disks;
2767 i -= (sh->pd_idx + 1);
2768 break;
2769 case ALGORITHM_PARITY_0:
2770 i -= 1;
2771 break;
2772 case ALGORITHM_PARITY_N:
2773 break;
2774 default:
2775 BUG();
2776 }
2777 break;
2778 case 6:
2779 if (i == sh->qd_idx)
2780 return 0; /* It is the Q disk */
2781 switch (algorithm) {
2782 case ALGORITHM_LEFT_ASYMMETRIC:
2783 case ALGORITHM_RIGHT_ASYMMETRIC:
2784 case ALGORITHM_ROTATING_ZERO_RESTART:
2785 case ALGORITHM_ROTATING_N_RESTART:
2786 if (sh->pd_idx == raid_disks-1)
2787 i--; /* Q D D D P */
2788 else if (i > sh->pd_idx)
2789 i -= 2; /* D D P Q D */
2790 break;
2791 case ALGORITHM_LEFT_SYMMETRIC:
2792 case ALGORITHM_RIGHT_SYMMETRIC:
2793 if (sh->pd_idx == raid_disks-1)
2794 i--; /* Q D D D P */
2795 else {
2796 /* D D P Q D */
2797 if (i < sh->pd_idx)
2798 i += raid_disks;
2799 i -= (sh->pd_idx + 2);
2800 }
2801 break;
2802 case ALGORITHM_PARITY_0:
2803 i -= 2;
2804 break;
2805 case ALGORITHM_PARITY_N:
2806 break;
2807 case ALGORITHM_ROTATING_N_CONTINUE:
2808 /* Like left_symmetric, but P is before Q */
2809 if (sh->pd_idx == 0)
2810 i--; /* P D D D Q */
2811 else {
2812 /* D D Q P D */
2813 if (i < sh->pd_idx)
2814 i += raid_disks;
2815 i -= (sh->pd_idx + 1);
2816 }
2817 break;
2818 case ALGORITHM_LEFT_ASYMMETRIC_6:
2819 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2820 if (i > sh->pd_idx)
2821 i--;
2822 break;
2823 case ALGORITHM_LEFT_SYMMETRIC_6:
2824 case ALGORITHM_RIGHT_SYMMETRIC_6:
2825 if (i < sh->pd_idx)
2826 i += data_disks + 1;
2827 i -= (sh->pd_idx + 1);
2828 break;
2829 case ALGORITHM_PARITY_0_6:
2830 i -= 1;
2831 break;
2832 default:
2833 BUG();
2834 }
2835 break;
2836 }
2837
2838 chunk_number = stripe * data_disks + i;
2839 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2840
2841 check = raid5_compute_sector(conf, r_sector,
2842 previous, &dummy1, &sh2);
2843 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2844 || sh2.qd_idx != sh->qd_idx) {
2845 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2846 mdname(conf->mddev));
2847 return 0;
2848 }
2849 return r_sector;
2850 }
2851
2852 static void
2853 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2854 int rcw, int expand)
2855 {
2856 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2857 struct r5conf *conf = sh->raid_conf;
2858 int level = conf->level;
2859
2860 if (rcw) {
2861
2862 for (i = disks; i--; ) {
2863 struct r5dev *dev = &sh->dev[i];
2864
2865 if (dev->towrite) {
2866 set_bit(R5_LOCKED, &dev->flags);
2867 set_bit(R5_Wantdrain, &dev->flags);
2868 if (!expand)
2869 clear_bit(R5_UPTODATE, &dev->flags);
2870 s->locked++;
2871 }
2872 }
2873 /* if we are not expanding this is a proper write request, and
2874 * there will be bios with new data to be drained into the
2875 * stripe cache
2876 */
2877 if (!expand) {
2878 if (!s->locked)
2879 /* False alarm, nothing to do */
2880 return;
2881 sh->reconstruct_state = reconstruct_state_drain_run;
2882 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2883 } else
2884 sh->reconstruct_state = reconstruct_state_run;
2885
2886 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887
2888 if (s->locked + conf->max_degraded == disks)
2889 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2890 atomic_inc(&conf->pending_full_writes);
2891 } else {
2892 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2893 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2894 BUG_ON(level == 6 &&
2895 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2896 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2897
2898 for (i = disks; i--; ) {
2899 struct r5dev *dev = &sh->dev[i];
2900 if (i == pd_idx || i == qd_idx)
2901 continue;
2902
2903 if (dev->towrite &&
2904 (test_bit(R5_UPTODATE, &dev->flags) ||
2905 test_bit(R5_Wantcompute, &dev->flags))) {
2906 set_bit(R5_Wantdrain, &dev->flags);
2907 set_bit(R5_LOCKED, &dev->flags);
2908 clear_bit(R5_UPTODATE, &dev->flags);
2909 s->locked++;
2910 }
2911 }
2912 if (!s->locked)
2913 /* False alarm - nothing to do */
2914 return;
2915 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2916 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2917 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2918 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2919 }
2920
2921 /* keep the parity disk(s) locked while asynchronous operations
2922 * are in flight
2923 */
2924 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2925 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2926 s->locked++;
2927
2928 if (level == 6) {
2929 int qd_idx = sh->qd_idx;
2930 struct r5dev *dev = &sh->dev[qd_idx];
2931
2932 set_bit(R5_LOCKED, &dev->flags);
2933 clear_bit(R5_UPTODATE, &dev->flags);
2934 s->locked++;
2935 }
2936
2937 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2938 __func__, (unsigned long long)sh->sector,
2939 s->locked, s->ops_request);
2940 }
2941
2942 /*
2943 * Each stripe/dev can have one or more bion attached.
2944 * toread/towrite point to the first in a chain.
2945 * The bi_next chain must be in order.
2946 */
2947 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2948 int forwrite, int previous)
2949 {
2950 struct bio **bip;
2951 struct r5conf *conf = sh->raid_conf;
2952 int firstwrite=0;
2953
2954 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2955 (unsigned long long)bi->bi_iter.bi_sector,
2956 (unsigned long long)sh->sector);
2957
2958 /*
2959 * If several bio share a stripe. The bio bi_phys_segments acts as a
2960 * reference count to avoid race. The reference count should already be
2961 * increased before this function is called (for example, in
2962 * make_request()), so other bio sharing this stripe will not free the
2963 * stripe. If a stripe is owned by one stripe, the stripe lock will
2964 * protect it.
2965 */
2966 spin_lock_irq(&sh->stripe_lock);
2967 /* Don't allow new IO added to stripes in batch list */
2968 if (sh->batch_head)
2969 goto overlap;
2970 if (forwrite) {
2971 bip = &sh->dev[dd_idx].towrite;
2972 if (*bip == NULL)
2973 firstwrite = 1;
2974 } else
2975 bip = &sh->dev[dd_idx].toread;
2976 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2977 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2978 goto overlap;
2979 bip = & (*bip)->bi_next;
2980 }
2981 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2982 goto overlap;
2983
2984 if (!forwrite || previous)
2985 clear_bit(STRIPE_BATCH_READY, &sh->state);
2986
2987 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2988 if (*bip)
2989 bi->bi_next = *bip;
2990 *bip = bi;
2991 raid5_inc_bi_active_stripes(bi);
2992
2993 if (forwrite) {
2994 /* check if page is covered */
2995 sector_t sector = sh->dev[dd_idx].sector;
2996 for (bi=sh->dev[dd_idx].towrite;
2997 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2998 bi && bi->bi_iter.bi_sector <= sector;
2999 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3000 if (bio_end_sector(bi) >= sector)
3001 sector = bio_end_sector(bi);
3002 }
3003 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3004 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3005 sh->overwrite_disks++;
3006 }
3007
3008 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3009 (unsigned long long)(*bip)->bi_iter.bi_sector,
3010 (unsigned long long)sh->sector, dd_idx);
3011
3012 if (conf->mddev->bitmap && firstwrite) {
3013 /* Cannot hold spinlock over bitmap_startwrite,
3014 * but must ensure this isn't added to a batch until
3015 * we have added to the bitmap and set bm_seq.
3016 * So set STRIPE_BITMAP_PENDING to prevent
3017 * batching.
3018 * If multiple add_stripe_bio() calls race here they
3019 * much all set STRIPE_BITMAP_PENDING. So only the first one
3020 * to complete "bitmap_startwrite" gets to set
3021 * STRIPE_BIT_DELAY. This is important as once a stripe
3022 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3023 * any more.
3024 */
3025 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3026 spin_unlock_irq(&sh->stripe_lock);
3027 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3028 STRIPE_SECTORS, 0);
3029 spin_lock_irq(&sh->stripe_lock);
3030 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3031 if (!sh->batch_head) {
3032 sh->bm_seq = conf->seq_flush+1;
3033 set_bit(STRIPE_BIT_DELAY, &sh->state);
3034 }
3035 }
3036 spin_unlock_irq(&sh->stripe_lock);
3037
3038 if (stripe_can_batch(sh))
3039 stripe_add_to_batch_list(conf, sh);
3040 return 1;
3041
3042 overlap:
3043 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3044 spin_unlock_irq(&sh->stripe_lock);
3045 return 0;
3046 }
3047
3048 static void end_reshape(struct r5conf *conf);
3049
3050 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3051 struct stripe_head *sh)
3052 {
3053 int sectors_per_chunk =
3054 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3055 int dd_idx;
3056 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3057 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3058
3059 raid5_compute_sector(conf,
3060 stripe * (disks - conf->max_degraded)
3061 *sectors_per_chunk + chunk_offset,
3062 previous,
3063 &dd_idx, sh);
3064 }
3065
3066 static void
3067 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3068 struct stripe_head_state *s, int disks,
3069 struct bio **return_bi)
3070 {
3071 int i;
3072 BUG_ON(sh->batch_head);
3073 for (i = disks; i--; ) {
3074 struct bio *bi;
3075 int bitmap_end = 0;
3076
3077 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3078 struct md_rdev *rdev;
3079 rcu_read_lock();
3080 rdev = rcu_dereference(conf->disks[i].rdev);
3081 if (rdev && test_bit(In_sync, &rdev->flags))
3082 atomic_inc(&rdev->nr_pending);
3083 else
3084 rdev = NULL;
3085 rcu_read_unlock();
3086 if (rdev) {
3087 if (!rdev_set_badblocks(
3088 rdev,
3089 sh->sector,
3090 STRIPE_SECTORS, 0))
3091 md_error(conf->mddev, rdev);
3092 rdev_dec_pending(rdev, conf->mddev);
3093 }
3094 }
3095 spin_lock_irq(&sh->stripe_lock);
3096 /* fail all writes first */
3097 bi = sh->dev[i].towrite;
3098 sh->dev[i].towrite = NULL;
3099 sh->overwrite_disks = 0;
3100 spin_unlock_irq(&sh->stripe_lock);
3101 if (bi)
3102 bitmap_end = 1;
3103
3104 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3105 wake_up(&conf->wait_for_overlap);
3106
3107 while (bi && bi->bi_iter.bi_sector <
3108 sh->dev[i].sector + STRIPE_SECTORS) {
3109 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3110 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3111 if (!raid5_dec_bi_active_stripes(bi)) {
3112 md_write_end(conf->mddev);
3113 bi->bi_next = *return_bi;
3114 *return_bi = bi;
3115 }
3116 bi = nextbi;
3117 }
3118 if (bitmap_end)
3119 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3120 STRIPE_SECTORS, 0, 0);
3121 bitmap_end = 0;
3122 /* and fail all 'written' */
3123 bi = sh->dev[i].written;
3124 sh->dev[i].written = NULL;
3125 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3126 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3127 sh->dev[i].page = sh->dev[i].orig_page;
3128 }
3129
3130 if (bi) bitmap_end = 1;
3131 while (bi && bi->bi_iter.bi_sector <
3132 sh->dev[i].sector + STRIPE_SECTORS) {
3133 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3134 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3135 if (!raid5_dec_bi_active_stripes(bi)) {
3136 md_write_end(conf->mddev);
3137 bi->bi_next = *return_bi;
3138 *return_bi = bi;
3139 }
3140 bi = bi2;
3141 }
3142
3143 /* fail any reads if this device is non-operational and
3144 * the data has not reached the cache yet.
3145 */
3146 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3147 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3148 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3149 spin_lock_irq(&sh->stripe_lock);
3150 bi = sh->dev[i].toread;
3151 sh->dev[i].toread = NULL;
3152 spin_unlock_irq(&sh->stripe_lock);
3153 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3154 wake_up(&conf->wait_for_overlap);
3155 while (bi && bi->bi_iter.bi_sector <
3156 sh->dev[i].sector + STRIPE_SECTORS) {
3157 struct bio *nextbi =
3158 r5_next_bio(bi, sh->dev[i].sector);
3159 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3160 if (!raid5_dec_bi_active_stripes(bi)) {
3161 bi->bi_next = *return_bi;
3162 *return_bi = bi;
3163 }
3164 bi = nextbi;
3165 }
3166 }
3167 if (bitmap_end)
3168 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3169 STRIPE_SECTORS, 0, 0);
3170 /* If we were in the middle of a write the parity block might
3171 * still be locked - so just clear all R5_LOCKED flags
3172 */
3173 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3174 }
3175
3176 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3177 if (atomic_dec_and_test(&conf->pending_full_writes))
3178 md_wakeup_thread(conf->mddev->thread);
3179 }
3180
3181 static void
3182 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3183 struct stripe_head_state *s)
3184 {
3185 int abort = 0;
3186 int i;
3187
3188 BUG_ON(sh->batch_head);
3189 clear_bit(STRIPE_SYNCING, &sh->state);
3190 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3191 wake_up(&conf->wait_for_overlap);
3192 s->syncing = 0;
3193 s->replacing = 0;
3194 /* There is nothing more to do for sync/check/repair.
3195 * Don't even need to abort as that is handled elsewhere
3196 * if needed, and not always wanted e.g. if there is a known
3197 * bad block here.
3198 * For recover/replace we need to record a bad block on all
3199 * non-sync devices, or abort the recovery
3200 */
3201 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3202 /* During recovery devices cannot be removed, so
3203 * locking and refcounting of rdevs is not needed
3204 */
3205 for (i = 0; i < conf->raid_disks; i++) {
3206 struct md_rdev *rdev = conf->disks[i].rdev;
3207 if (rdev
3208 && !test_bit(Faulty, &rdev->flags)
3209 && !test_bit(In_sync, &rdev->flags)
3210 && !rdev_set_badblocks(rdev, sh->sector,
3211 STRIPE_SECTORS, 0))
3212 abort = 1;
3213 rdev = conf->disks[i].replacement;
3214 if (rdev
3215 && !test_bit(Faulty, &rdev->flags)
3216 && !test_bit(In_sync, &rdev->flags)
3217 && !rdev_set_badblocks(rdev, sh->sector,
3218 STRIPE_SECTORS, 0))
3219 abort = 1;
3220 }
3221 if (abort)
3222 conf->recovery_disabled =
3223 conf->mddev->recovery_disabled;
3224 }
3225 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3226 }
3227
3228 static int want_replace(struct stripe_head *sh, int disk_idx)
3229 {
3230 struct md_rdev *rdev;
3231 int rv = 0;
3232 /* Doing recovery so rcu locking not required */
3233 rdev = sh->raid_conf->disks[disk_idx].replacement;
3234 if (rdev
3235 && !test_bit(Faulty, &rdev->flags)
3236 && !test_bit(In_sync, &rdev->flags)
3237 && (rdev->recovery_offset <= sh->sector
3238 || rdev->mddev->recovery_cp <= sh->sector))
3239 rv = 1;
3240
3241 return rv;
3242 }
3243
3244 /* fetch_block - checks the given member device to see if its data needs
3245 * to be read or computed to satisfy a request.
3246 *
3247 * Returns 1 when no more member devices need to be checked, otherwise returns
3248 * 0 to tell the loop in handle_stripe_fill to continue
3249 */
3250
3251 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3252 int disk_idx, int disks)
3253 {
3254 struct r5dev *dev = &sh->dev[disk_idx];
3255 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3256 &sh->dev[s->failed_num[1]] };
3257 int i;
3258
3259
3260 if (test_bit(R5_LOCKED, &dev->flags) ||
3261 test_bit(R5_UPTODATE, &dev->flags))
3262 /* No point reading this as we already have it or have
3263 * decided to get it.
3264 */
3265 return 0;
3266
3267 if (dev->toread ||
3268 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3269 /* We need this block to directly satisfy a request */
3270 return 1;
3271
3272 if (s->syncing || s->expanding ||
3273 (s->replacing && want_replace(sh, disk_idx)))
3274 /* When syncing, or expanding we read everything.
3275 * When replacing, we need the replaced block.
3276 */
3277 return 1;
3278
3279 if ((s->failed >= 1 && fdev[0]->toread) ||
3280 (s->failed >= 2 && fdev[1]->toread))
3281 /* If we want to read from a failed device, then
3282 * we need to actually read every other device.
3283 */
3284 return 1;
3285
3286 /* Sometimes neither read-modify-write nor reconstruct-write
3287 * cycles can work. In those cases we read every block we
3288 * can. Then the parity-update is certain to have enough to
3289 * work with.
3290 * This can only be a problem when we need to write something,
3291 * and some device has failed. If either of those tests
3292 * fail we need look no further.
3293 */
3294 if (!s->failed || !s->to_write)
3295 return 0;
3296
3297 if (test_bit(R5_Insync, &dev->flags) &&
3298 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3299 /* Pre-reads at not permitted until after short delay
3300 * to gather multiple requests. However if this
3301 * device is no Insync, the block could only be be computed
3302 * and there is no need to delay that.
3303 */
3304 return 0;
3305
3306 for (i = 0; i < s->failed; i++) {
3307 if (fdev[i]->towrite &&
3308 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3309 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3310 /* If we have a partial write to a failed
3311 * device, then we will need to reconstruct
3312 * the content of that device, so all other
3313 * devices must be read.
3314 */
3315 return 1;
3316 }
3317
3318 /* If we are forced to do a reconstruct-write, either because
3319 * the current RAID6 implementation only supports that, or
3320 * or because parity cannot be trusted and we are currently
3321 * recovering it, there is extra need to be careful.
3322 * If one of the devices that we would need to read, because
3323 * it is not being overwritten (and maybe not written at all)
3324 * is missing/faulty, then we need to read everything we can.
3325 */
3326 if (sh->raid_conf->level != 6 &&
3327 sh->sector < sh->raid_conf->mddev->recovery_cp)
3328 /* reconstruct-write isn't being forced */
3329 return 0;
3330 for (i = 0; i < s->failed; i++) {
3331 if (s->failed_num[i] != sh->pd_idx &&
3332 s->failed_num[i] != sh->qd_idx &&
3333 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3334 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3335 return 1;
3336 }
3337
3338 return 0;
3339 }
3340
3341 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3342 int disk_idx, int disks)
3343 {
3344 struct r5dev *dev = &sh->dev[disk_idx];
3345
3346 /* is the data in this block needed, and can we get it? */
3347 if (need_this_block(sh, s, disk_idx, disks)) {
3348 /* we would like to get this block, possibly by computing it,
3349 * otherwise read it if the backing disk is insync
3350 */
3351 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3352 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3353 BUG_ON(sh->batch_head);
3354 if ((s->uptodate == disks - 1) &&
3355 (s->failed && (disk_idx == s->failed_num[0] ||
3356 disk_idx == s->failed_num[1]))) {
3357 /* have disk failed, and we're requested to fetch it;
3358 * do compute it
3359 */
3360 pr_debug("Computing stripe %llu block %d\n",
3361 (unsigned long long)sh->sector, disk_idx);
3362 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3363 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3364 set_bit(R5_Wantcompute, &dev->flags);
3365 sh->ops.target = disk_idx;
3366 sh->ops.target2 = -1; /* no 2nd target */
3367 s->req_compute = 1;
3368 /* Careful: from this point on 'uptodate' is in the eye
3369 * of raid_run_ops which services 'compute' operations
3370 * before writes. R5_Wantcompute flags a block that will
3371 * be R5_UPTODATE by the time it is needed for a
3372 * subsequent operation.
3373 */
3374 s->uptodate++;
3375 return 1;
3376 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3377 /* Computing 2-failure is *very* expensive; only
3378 * do it if failed >= 2
3379 */
3380 int other;
3381 for (other = disks; other--; ) {
3382 if (other == disk_idx)
3383 continue;
3384 if (!test_bit(R5_UPTODATE,
3385 &sh->dev[other].flags))
3386 break;
3387 }
3388 BUG_ON(other < 0);
3389 pr_debug("Computing stripe %llu blocks %d,%d\n",
3390 (unsigned long long)sh->sector,
3391 disk_idx, other);
3392 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3393 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3394 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3395 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3396 sh->ops.target = disk_idx;
3397 sh->ops.target2 = other;
3398 s->uptodate += 2;
3399 s->req_compute = 1;
3400 return 1;
3401 } else if (test_bit(R5_Insync, &dev->flags)) {
3402 set_bit(R5_LOCKED, &dev->flags);
3403 set_bit(R5_Wantread, &dev->flags);
3404 s->locked++;
3405 pr_debug("Reading block %d (sync=%d)\n",
3406 disk_idx, s->syncing);
3407 }
3408 }
3409
3410 return 0;
3411 }
3412
3413 /**
3414 * handle_stripe_fill - read or compute data to satisfy pending requests.
3415 */
3416 static void handle_stripe_fill(struct stripe_head *sh,
3417 struct stripe_head_state *s,
3418 int disks)
3419 {
3420 int i;
3421
3422 /* look for blocks to read/compute, skip this if a compute
3423 * is already in flight, or if the stripe contents are in the
3424 * midst of changing due to a write
3425 */
3426 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3427 !sh->reconstruct_state)
3428 for (i = disks; i--; )
3429 if (fetch_block(sh, s, i, disks))
3430 break;
3431 set_bit(STRIPE_HANDLE, &sh->state);
3432 }
3433
3434 static void break_stripe_batch_list(struct stripe_head *head_sh,
3435 unsigned long handle_flags);
3436 /* handle_stripe_clean_event
3437 * any written block on an uptodate or failed drive can be returned.
3438 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3439 * never LOCKED, so we don't need to test 'failed' directly.
3440 */
3441 static void handle_stripe_clean_event(struct r5conf *conf,
3442 struct stripe_head *sh, int disks, struct bio **return_bi)
3443 {
3444 int i;
3445 struct r5dev *dev;
3446 int discard_pending = 0;
3447 struct stripe_head *head_sh = sh;
3448 bool do_endio = false;
3449
3450 for (i = disks; i--; )
3451 if (sh->dev[i].written) {
3452 dev = &sh->dev[i];
3453 if (!test_bit(R5_LOCKED, &dev->flags) &&
3454 (test_bit(R5_UPTODATE, &dev->flags) ||
3455 test_bit(R5_Discard, &dev->flags) ||
3456 test_bit(R5_SkipCopy, &dev->flags))) {
3457 /* We can return any write requests */
3458 struct bio *wbi, *wbi2;
3459 pr_debug("Return write for disc %d\n", i);
3460 if (test_and_clear_bit(R5_Discard, &dev->flags))
3461 clear_bit(R5_UPTODATE, &dev->flags);
3462 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3463 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3464 }
3465 do_endio = true;
3466
3467 returnbi:
3468 dev->page = dev->orig_page;
3469 wbi = dev->written;
3470 dev->written = NULL;
3471 while (wbi && wbi->bi_iter.bi_sector <
3472 dev->sector + STRIPE_SECTORS) {
3473 wbi2 = r5_next_bio(wbi, dev->sector);
3474 if (!raid5_dec_bi_active_stripes(wbi)) {
3475 md_write_end(conf->mddev);
3476 wbi->bi_next = *return_bi;
3477 *return_bi = wbi;
3478 }
3479 wbi = wbi2;
3480 }
3481 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3482 STRIPE_SECTORS,
3483 !test_bit(STRIPE_DEGRADED, &sh->state),
3484 0);
3485 if (head_sh->batch_head) {
3486 sh = list_first_entry(&sh->batch_list,
3487 struct stripe_head,
3488 batch_list);
3489 if (sh != head_sh) {
3490 dev = &sh->dev[i];
3491 goto returnbi;
3492 }
3493 }
3494 sh = head_sh;
3495 dev = &sh->dev[i];
3496 } else if (test_bit(R5_Discard, &dev->flags))
3497 discard_pending = 1;
3498 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3499 WARN_ON(dev->page != dev->orig_page);
3500 }
3501 if (!discard_pending &&
3502 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3503 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3504 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3505 if (sh->qd_idx >= 0) {
3506 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3507 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3508 }
3509 /* now that discard is done we can proceed with any sync */
3510 clear_bit(STRIPE_DISCARD, &sh->state);
3511 /*
3512 * SCSI discard will change some bio fields and the stripe has
3513 * no updated data, so remove it from hash list and the stripe
3514 * will be reinitialized
3515 */
3516 spin_lock_irq(&conf->device_lock);
3517 unhash:
3518 remove_hash(sh);
3519 if (head_sh->batch_head) {
3520 sh = list_first_entry(&sh->batch_list,
3521 struct stripe_head, batch_list);
3522 if (sh != head_sh)
3523 goto unhash;
3524 }
3525 spin_unlock_irq(&conf->device_lock);
3526 sh = head_sh;
3527
3528 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3529 set_bit(STRIPE_HANDLE, &sh->state);
3530
3531 }
3532
3533 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3534 if (atomic_dec_and_test(&conf->pending_full_writes))
3535 md_wakeup_thread(conf->mddev->thread);
3536
3537 if (head_sh->batch_head && do_endio)
3538 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3539 }
3540
3541 static void handle_stripe_dirtying(struct r5conf *conf,
3542 struct stripe_head *sh,
3543 struct stripe_head_state *s,
3544 int disks)
3545 {
3546 int rmw = 0, rcw = 0, i;
3547 sector_t recovery_cp = conf->mddev->recovery_cp;
3548
3549 /* Check whether resync is now happening or should start.
3550 * If yes, then the array is dirty (after unclean shutdown or
3551 * initial creation), so parity in some stripes might be inconsistent.
3552 * In this case, we need to always do reconstruct-write, to ensure
3553 * that in case of drive failure or read-error correction, we
3554 * generate correct data from the parity.
3555 */
3556 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3557 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3558 s->failed == 0)) {
3559 /* Calculate the real rcw later - for now make it
3560 * look like rcw is cheaper
3561 */
3562 rcw = 1; rmw = 2;
3563 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3564 conf->rmw_level, (unsigned long long)recovery_cp,
3565 (unsigned long long)sh->sector);
3566 } else for (i = disks; i--; ) {
3567 /* would I have to read this buffer for read_modify_write */
3568 struct r5dev *dev = &sh->dev[i];
3569 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3570 !test_bit(R5_LOCKED, &dev->flags) &&
3571 !(test_bit(R5_UPTODATE, &dev->flags) ||
3572 test_bit(R5_Wantcompute, &dev->flags))) {
3573 if (test_bit(R5_Insync, &dev->flags))
3574 rmw++;
3575 else
3576 rmw += 2*disks; /* cannot read it */
3577 }
3578 /* Would I have to read this buffer for reconstruct_write */
3579 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3580 i != sh->pd_idx && i != sh->qd_idx &&
3581 !test_bit(R5_LOCKED, &dev->flags) &&
3582 !(test_bit(R5_UPTODATE, &dev->flags) ||
3583 test_bit(R5_Wantcompute, &dev->flags))) {
3584 if (test_bit(R5_Insync, &dev->flags))
3585 rcw++;
3586 else
3587 rcw += 2*disks;
3588 }
3589 }
3590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3591 (unsigned long long)sh->sector, rmw, rcw);
3592 set_bit(STRIPE_HANDLE, &sh->state);
3593 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3594 /* prefer read-modify-write, but need to get some data */
3595 if (conf->mddev->queue)
3596 blk_add_trace_msg(conf->mddev->queue,
3597 "raid5 rmw %llu %d",
3598 (unsigned long long)sh->sector, rmw);
3599 for (i = disks; i--; ) {
3600 struct r5dev *dev = &sh->dev[i];
3601 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3602 !test_bit(R5_LOCKED, &dev->flags) &&
3603 !(test_bit(R5_UPTODATE, &dev->flags) ||
3604 test_bit(R5_Wantcompute, &dev->flags)) &&
3605 test_bit(R5_Insync, &dev->flags)) {
3606 if (test_bit(STRIPE_PREREAD_ACTIVE,
3607 &sh->state)) {
3608 pr_debug("Read_old block %d for r-m-w\n",
3609 i);
3610 set_bit(R5_LOCKED, &dev->flags);
3611 set_bit(R5_Wantread, &dev->flags);
3612 s->locked++;
3613 } else {
3614 set_bit(STRIPE_DELAYED, &sh->state);
3615 set_bit(STRIPE_HANDLE, &sh->state);
3616 }
3617 }
3618 }
3619 }
3620 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3621 /* want reconstruct write, but need to get some data */
3622 int qread =0;
3623 rcw = 0;
3624 for (i = disks; i--; ) {
3625 struct r5dev *dev = &sh->dev[i];
3626 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3627 i != sh->pd_idx && i != sh->qd_idx &&
3628 !test_bit(R5_LOCKED, &dev->flags) &&
3629 !(test_bit(R5_UPTODATE, &dev->flags) ||
3630 test_bit(R5_Wantcompute, &dev->flags))) {
3631 rcw++;
3632 if (test_bit(R5_Insync, &dev->flags) &&
3633 test_bit(STRIPE_PREREAD_ACTIVE,
3634 &sh->state)) {
3635 pr_debug("Read_old block "
3636 "%d for Reconstruct\n", i);
3637 set_bit(R5_LOCKED, &dev->flags);
3638 set_bit(R5_Wantread, &dev->flags);
3639 s->locked++;
3640 qread++;
3641 } else {
3642 set_bit(STRIPE_DELAYED, &sh->state);
3643 set_bit(STRIPE_HANDLE, &sh->state);
3644 }
3645 }
3646 }
3647 if (rcw && conf->mddev->queue)
3648 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3649 (unsigned long long)sh->sector,
3650 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3651 }
3652
3653 if (rcw > disks && rmw > disks &&
3654 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3655 set_bit(STRIPE_DELAYED, &sh->state);
3656
3657 /* now if nothing is locked, and if we have enough data,
3658 * we can start a write request
3659 */
3660 /* since handle_stripe can be called at any time we need to handle the
3661 * case where a compute block operation has been submitted and then a
3662 * subsequent call wants to start a write request. raid_run_ops only
3663 * handles the case where compute block and reconstruct are requested
3664 * simultaneously. If this is not the case then new writes need to be
3665 * held off until the compute completes.
3666 */
3667 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3668 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3669 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3670 schedule_reconstruction(sh, s, rcw == 0, 0);
3671 }
3672
3673 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3674 struct stripe_head_state *s, int disks)
3675 {
3676 struct r5dev *dev = NULL;
3677
3678 BUG_ON(sh->batch_head);
3679 set_bit(STRIPE_HANDLE, &sh->state);
3680
3681 switch (sh->check_state) {
3682 case check_state_idle:
3683 /* start a new check operation if there are no failures */
3684 if (s->failed == 0) {
3685 BUG_ON(s->uptodate != disks);
3686 sh->check_state = check_state_run;
3687 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3688 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3689 s->uptodate--;
3690 break;
3691 }
3692 dev = &sh->dev[s->failed_num[0]];
3693 /* fall through */
3694 case check_state_compute_result:
3695 sh->check_state = check_state_idle;
3696 if (!dev)
3697 dev = &sh->dev[sh->pd_idx];
3698
3699 /* check that a write has not made the stripe insync */
3700 if (test_bit(STRIPE_INSYNC, &sh->state))
3701 break;
3702
3703 /* either failed parity check, or recovery is happening */
3704 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3705 BUG_ON(s->uptodate != disks);
3706
3707 set_bit(R5_LOCKED, &dev->flags);
3708 s->locked++;
3709 set_bit(R5_Wantwrite, &dev->flags);
3710
3711 clear_bit(STRIPE_DEGRADED, &sh->state);
3712 set_bit(STRIPE_INSYNC, &sh->state);
3713 break;
3714 case check_state_run:
3715 break; /* we will be called again upon completion */
3716 case check_state_check_result:
3717 sh->check_state = check_state_idle;
3718
3719 /* if a failure occurred during the check operation, leave
3720 * STRIPE_INSYNC not set and let the stripe be handled again
3721 */
3722 if (s->failed)
3723 break;
3724
3725 /* handle a successful check operation, if parity is correct
3726 * we are done. Otherwise update the mismatch count and repair
3727 * parity if !MD_RECOVERY_CHECK
3728 */
3729 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3730 /* parity is correct (on disc,
3731 * not in buffer any more)
3732 */
3733 set_bit(STRIPE_INSYNC, &sh->state);
3734 else {
3735 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3736 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3737 /* don't try to repair!! */
3738 set_bit(STRIPE_INSYNC, &sh->state);
3739 else {
3740 sh->check_state = check_state_compute_run;
3741 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3742 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3743 set_bit(R5_Wantcompute,
3744 &sh->dev[sh->pd_idx].flags);
3745 sh->ops.target = sh->pd_idx;
3746 sh->ops.target2 = -1;
3747 s->uptodate++;
3748 }
3749 }
3750 break;
3751 case check_state_compute_run:
3752 break;
3753 default:
3754 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3755 __func__, sh->check_state,
3756 (unsigned long long) sh->sector);
3757 BUG();
3758 }
3759 }
3760
3761 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3762 struct stripe_head_state *s,
3763 int disks)
3764 {
3765 int pd_idx = sh->pd_idx;
3766 int qd_idx = sh->qd_idx;
3767 struct r5dev *dev;
3768
3769 BUG_ON(sh->batch_head);
3770 set_bit(STRIPE_HANDLE, &sh->state);
3771
3772 BUG_ON(s->failed > 2);
3773
3774 /* Want to check and possibly repair P and Q.
3775 * However there could be one 'failed' device, in which
3776 * case we can only check one of them, possibly using the
3777 * other to generate missing data
3778 */
3779
3780 switch (sh->check_state) {
3781 case check_state_idle:
3782 /* start a new check operation if there are < 2 failures */
3783 if (s->failed == s->q_failed) {
3784 /* The only possible failed device holds Q, so it
3785 * makes sense to check P (If anything else were failed,
3786 * we would have used P to recreate it).
3787 */
3788 sh->check_state = check_state_run;
3789 }
3790 if (!s->q_failed && s->failed < 2) {
3791 /* Q is not failed, and we didn't use it to generate
3792 * anything, so it makes sense to check it
3793 */
3794 if (sh->check_state == check_state_run)
3795 sh->check_state = check_state_run_pq;
3796 else
3797 sh->check_state = check_state_run_q;
3798 }
3799
3800 /* discard potentially stale zero_sum_result */
3801 sh->ops.zero_sum_result = 0;
3802
3803 if (sh->check_state == check_state_run) {
3804 /* async_xor_zero_sum destroys the contents of P */
3805 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3806 s->uptodate--;
3807 }
3808 if (sh->check_state >= check_state_run &&
3809 sh->check_state <= check_state_run_pq) {
3810 /* async_syndrome_zero_sum preserves P and Q, so
3811 * no need to mark them !uptodate here
3812 */
3813 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3814 break;
3815 }
3816
3817 /* we have 2-disk failure */
3818 BUG_ON(s->failed != 2);
3819 /* fall through */
3820 case check_state_compute_result:
3821 sh->check_state = check_state_idle;
3822
3823 /* check that a write has not made the stripe insync */
3824 if (test_bit(STRIPE_INSYNC, &sh->state))
3825 break;
3826
3827 /* now write out any block on a failed drive,
3828 * or P or Q if they were recomputed
3829 */
3830 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3831 if (s->failed == 2) {
3832 dev = &sh->dev[s->failed_num[1]];
3833 s->locked++;
3834 set_bit(R5_LOCKED, &dev->flags);
3835 set_bit(R5_Wantwrite, &dev->flags);
3836 }
3837 if (s->failed >= 1) {
3838 dev = &sh->dev[s->failed_num[0]];
3839 s->locked++;
3840 set_bit(R5_LOCKED, &dev->flags);
3841 set_bit(R5_Wantwrite, &dev->flags);
3842 }
3843 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3844 dev = &sh->dev[pd_idx];
3845 s->locked++;
3846 set_bit(R5_LOCKED, &dev->flags);
3847 set_bit(R5_Wantwrite, &dev->flags);
3848 }
3849 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3850 dev = &sh->dev[qd_idx];
3851 s->locked++;
3852 set_bit(R5_LOCKED, &dev->flags);
3853 set_bit(R5_Wantwrite, &dev->flags);
3854 }
3855 clear_bit(STRIPE_DEGRADED, &sh->state);
3856
3857 set_bit(STRIPE_INSYNC, &sh->state);
3858 break;
3859 case check_state_run:
3860 case check_state_run_q:
3861 case check_state_run_pq:
3862 break; /* we will be called again upon completion */
3863 case check_state_check_result:
3864 sh->check_state = check_state_idle;
3865
3866 /* handle a successful check operation, if parity is correct
3867 * we are done. Otherwise update the mismatch count and repair
3868 * parity if !MD_RECOVERY_CHECK
3869 */
3870 if (sh->ops.zero_sum_result == 0) {
3871 /* both parities are correct */
3872 if (!s->failed)
3873 set_bit(STRIPE_INSYNC, &sh->state);
3874 else {
3875 /* in contrast to the raid5 case we can validate
3876 * parity, but still have a failure to write
3877 * back
3878 */
3879 sh->check_state = check_state_compute_result;
3880 /* Returning at this point means that we may go
3881 * off and bring p and/or q uptodate again so
3882 * we make sure to check zero_sum_result again
3883 * to verify if p or q need writeback
3884 */
3885 }
3886 } else {
3887 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3888 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3889 /* don't try to repair!! */
3890 set_bit(STRIPE_INSYNC, &sh->state);
3891 else {
3892 int *target = &sh->ops.target;
3893
3894 sh->ops.target = -1;
3895 sh->ops.target2 = -1;
3896 sh->check_state = check_state_compute_run;
3897 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3899 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3900 set_bit(R5_Wantcompute,
3901 &sh->dev[pd_idx].flags);
3902 *target = pd_idx;
3903 target = &sh->ops.target2;
3904 s->uptodate++;
3905 }
3906 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3907 set_bit(R5_Wantcompute,
3908 &sh->dev[qd_idx].flags);
3909 *target = qd_idx;
3910 s->uptodate++;
3911 }
3912 }
3913 }
3914 break;
3915 case check_state_compute_run:
3916 break;
3917 default:
3918 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3919 __func__, sh->check_state,
3920 (unsigned long long) sh->sector);
3921 BUG();
3922 }
3923 }
3924
3925 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3926 {
3927 int i;
3928
3929 /* We have read all the blocks in this stripe and now we need to
3930 * copy some of them into a target stripe for expand.
3931 */
3932 struct dma_async_tx_descriptor *tx = NULL;
3933 BUG_ON(sh->batch_head);
3934 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3935 for (i = 0; i < sh->disks; i++)
3936 if (i != sh->pd_idx && i != sh->qd_idx) {
3937 int dd_idx, j;
3938 struct stripe_head *sh2;
3939 struct async_submit_ctl submit;
3940
3941 sector_t bn = compute_blocknr(sh, i, 1);
3942 sector_t s = raid5_compute_sector(conf, bn, 0,
3943 &dd_idx, NULL);
3944 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3945 if (sh2 == NULL)
3946 /* so far only the early blocks of this stripe
3947 * have been requested. When later blocks
3948 * get requested, we will try again
3949 */
3950 continue;
3951 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3952 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3953 /* must have already done this block */
3954 release_stripe(sh2);
3955 continue;
3956 }
3957
3958 /* place all the copies on one channel */
3959 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3960 tx = async_memcpy(sh2->dev[dd_idx].page,
3961 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3962 &submit);
3963
3964 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3965 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3966 for (j = 0; j < conf->raid_disks; j++)
3967 if (j != sh2->pd_idx &&
3968 j != sh2->qd_idx &&
3969 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3970 break;
3971 if (j == conf->raid_disks) {
3972 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3973 set_bit(STRIPE_HANDLE, &sh2->state);
3974 }
3975 release_stripe(sh2);
3976
3977 }
3978 /* done submitting copies, wait for them to complete */
3979 async_tx_quiesce(&tx);
3980 }
3981
3982 /*
3983 * handle_stripe - do things to a stripe.
3984 *
3985 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3986 * state of various bits to see what needs to be done.
3987 * Possible results:
3988 * return some read requests which now have data
3989 * return some write requests which are safely on storage
3990 * schedule a read on some buffers
3991 * schedule a write of some buffers
3992 * return confirmation of parity correctness
3993 *
3994 */
3995
3996 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3997 {
3998 struct r5conf *conf = sh->raid_conf;
3999 int disks = sh->disks;
4000 struct r5dev *dev;
4001 int i;
4002 int do_recovery = 0;
4003
4004 memset(s, 0, sizeof(*s));
4005
4006 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4007 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4008 s->failed_num[0] = -1;
4009 s->failed_num[1] = -1;
4010
4011 /* Now to look around and see what can be done */
4012 rcu_read_lock();
4013 for (i=disks; i--; ) {
4014 struct md_rdev *rdev;
4015 sector_t first_bad;
4016 int bad_sectors;
4017 int is_bad = 0;
4018
4019 dev = &sh->dev[i];
4020
4021 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4022 i, dev->flags,
4023 dev->toread, dev->towrite, dev->written);
4024 /* maybe we can reply to a read
4025 *
4026 * new wantfill requests are only permitted while
4027 * ops_complete_biofill is guaranteed to be inactive
4028 */
4029 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4030 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4031 set_bit(R5_Wantfill, &dev->flags);
4032
4033 /* now count some things */
4034 if (test_bit(R5_LOCKED, &dev->flags))
4035 s->locked++;
4036 if (test_bit(R5_UPTODATE, &dev->flags))
4037 s->uptodate++;
4038 if (test_bit(R5_Wantcompute, &dev->flags)) {
4039 s->compute++;
4040 BUG_ON(s->compute > 2);
4041 }
4042
4043 if (test_bit(R5_Wantfill, &dev->flags))
4044 s->to_fill++;
4045 else if (dev->toread)
4046 s->to_read++;
4047 if (dev->towrite) {
4048 s->to_write++;
4049 if (!test_bit(R5_OVERWRITE, &dev->flags))
4050 s->non_overwrite++;
4051 }
4052 if (dev->written)
4053 s->written++;
4054 /* Prefer to use the replacement for reads, but only
4055 * if it is recovered enough and has no bad blocks.
4056 */
4057 rdev = rcu_dereference(conf->disks[i].replacement);
4058 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4059 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4060 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4061 &first_bad, &bad_sectors))
4062 set_bit(R5_ReadRepl, &dev->flags);
4063 else {
4064 if (rdev)
4065 set_bit(R5_NeedReplace, &dev->flags);
4066 rdev = rcu_dereference(conf->disks[i].rdev);
4067 clear_bit(R5_ReadRepl, &dev->flags);
4068 }
4069 if (rdev && test_bit(Faulty, &rdev->flags))
4070 rdev = NULL;
4071 if (rdev) {
4072 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4073 &first_bad, &bad_sectors);
4074 if (s->blocked_rdev == NULL
4075 && (test_bit(Blocked, &rdev->flags)
4076 || is_bad < 0)) {
4077 if (is_bad < 0)
4078 set_bit(BlockedBadBlocks,
4079 &rdev->flags);
4080 s->blocked_rdev = rdev;
4081 atomic_inc(&rdev->nr_pending);
4082 }
4083 }
4084 clear_bit(R5_Insync, &dev->flags);
4085 if (!rdev)
4086 /* Not in-sync */;
4087 else if (is_bad) {
4088 /* also not in-sync */
4089 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4090 test_bit(R5_UPTODATE, &dev->flags)) {
4091 /* treat as in-sync, but with a read error
4092 * which we can now try to correct
4093 */
4094 set_bit(R5_Insync, &dev->flags);
4095 set_bit(R5_ReadError, &dev->flags);
4096 }
4097 } else if (test_bit(In_sync, &rdev->flags))
4098 set_bit(R5_Insync, &dev->flags);
4099 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4100 /* in sync if before recovery_offset */
4101 set_bit(R5_Insync, &dev->flags);
4102 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4103 test_bit(R5_Expanded, &dev->flags))
4104 /* If we've reshaped into here, we assume it is Insync.
4105 * We will shortly update recovery_offset to make
4106 * it official.
4107 */
4108 set_bit(R5_Insync, &dev->flags);
4109
4110 if (test_bit(R5_WriteError, &dev->flags)) {
4111 /* This flag does not apply to '.replacement'
4112 * only to .rdev, so make sure to check that*/
4113 struct md_rdev *rdev2 = rcu_dereference(
4114 conf->disks[i].rdev);
4115 if (rdev2 == rdev)
4116 clear_bit(R5_Insync, &dev->flags);
4117 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118 s->handle_bad_blocks = 1;
4119 atomic_inc(&rdev2->nr_pending);
4120 } else
4121 clear_bit(R5_WriteError, &dev->flags);
4122 }
4123 if (test_bit(R5_MadeGood, &dev->flags)) {
4124 /* This flag does not apply to '.replacement'
4125 * only to .rdev, so make sure to check that*/
4126 struct md_rdev *rdev2 = rcu_dereference(
4127 conf->disks[i].rdev);
4128 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4129 s->handle_bad_blocks = 1;
4130 atomic_inc(&rdev2->nr_pending);
4131 } else
4132 clear_bit(R5_MadeGood, &dev->flags);
4133 }
4134 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4135 struct md_rdev *rdev2 = rcu_dereference(
4136 conf->disks[i].replacement);
4137 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4138 s->handle_bad_blocks = 1;
4139 atomic_inc(&rdev2->nr_pending);
4140 } else
4141 clear_bit(R5_MadeGoodRepl, &dev->flags);
4142 }
4143 if (!test_bit(R5_Insync, &dev->flags)) {
4144 /* The ReadError flag will just be confusing now */
4145 clear_bit(R5_ReadError, &dev->flags);
4146 clear_bit(R5_ReWrite, &dev->flags);
4147 }
4148 if (test_bit(R5_ReadError, &dev->flags))
4149 clear_bit(R5_Insync, &dev->flags);
4150 if (!test_bit(R5_Insync, &dev->flags)) {
4151 if (s->failed < 2)
4152 s->failed_num[s->failed] = i;
4153 s->failed++;
4154 if (rdev && !test_bit(Faulty, &rdev->flags))
4155 do_recovery = 1;
4156 }
4157 }
4158 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4159 /* If there is a failed device being replaced,
4160 * we must be recovering.
4161 * else if we are after recovery_cp, we must be syncing
4162 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4163 * else we can only be replacing
4164 * sync and recovery both need to read all devices, and so
4165 * use the same flag.
4166 */
4167 if (do_recovery ||
4168 sh->sector >= conf->mddev->recovery_cp ||
4169 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4170 s->syncing = 1;
4171 else
4172 s->replacing = 1;
4173 }
4174 rcu_read_unlock();
4175 }
4176
4177 static int clear_batch_ready(struct stripe_head *sh)
4178 {
4179 /* Return '1' if this is a member of batch, or
4180 * '0' if it is a lone stripe or a head which can now be
4181 * handled.
4182 */
4183 struct stripe_head *tmp;
4184 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4185 return (sh->batch_head && sh->batch_head != sh);
4186 spin_lock(&sh->stripe_lock);
4187 if (!sh->batch_head) {
4188 spin_unlock(&sh->stripe_lock);
4189 return 0;
4190 }
4191
4192 /*
4193 * this stripe could be added to a batch list before we check
4194 * BATCH_READY, skips it
4195 */
4196 if (sh->batch_head != sh) {
4197 spin_unlock(&sh->stripe_lock);
4198 return 1;
4199 }
4200 spin_lock(&sh->batch_lock);
4201 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4202 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4203 spin_unlock(&sh->batch_lock);
4204 spin_unlock(&sh->stripe_lock);
4205
4206 /*
4207 * BATCH_READY is cleared, no new stripes can be added.
4208 * batch_list can be accessed without lock
4209 */
4210 return 0;
4211 }
4212
4213 static void break_stripe_batch_list(struct stripe_head *head_sh,
4214 unsigned long handle_flags)
4215 {
4216 struct stripe_head *sh, *next;
4217 int i;
4218 int do_wakeup = 0;
4219
4220 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4221
4222 list_del_init(&sh->batch_list);
4223
4224 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4225 (1 << STRIPE_SYNCING) |
4226 (1 << STRIPE_REPLACED) |
4227 (1 << STRIPE_PREREAD_ACTIVE) |
4228 (1 << STRIPE_DELAYED) |
4229 (1 << STRIPE_BIT_DELAY) |
4230 (1 << STRIPE_FULL_WRITE) |
4231 (1 << STRIPE_BIOFILL_RUN) |
4232 (1 << STRIPE_COMPUTE_RUN) |
4233 (1 << STRIPE_OPS_REQ_PENDING) |
4234 (1 << STRIPE_DISCARD) |
4235 (1 << STRIPE_BATCH_READY) |
4236 (1 << STRIPE_BATCH_ERR) |
4237 (1 << STRIPE_BITMAP_PENDING)));
4238 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4239 (1 << STRIPE_REPLACED)));
4240
4241 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4242 (1 << STRIPE_DEGRADED)),
4243 head_sh->state & (1 << STRIPE_INSYNC));
4244
4245 sh->check_state = head_sh->check_state;
4246 sh->reconstruct_state = head_sh->reconstruct_state;
4247 for (i = 0; i < sh->disks; i++) {
4248 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4249 do_wakeup = 1;
4250 sh->dev[i].flags = head_sh->dev[i].flags &
4251 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4252 }
4253 spin_lock_irq(&sh->stripe_lock);
4254 sh->batch_head = NULL;
4255 spin_unlock_irq(&sh->stripe_lock);
4256 if (handle_flags == 0 ||
4257 sh->state & handle_flags)
4258 set_bit(STRIPE_HANDLE, &sh->state);
4259 release_stripe(sh);
4260 }
4261 spin_lock_irq(&head_sh->stripe_lock);
4262 head_sh->batch_head = NULL;
4263 spin_unlock_irq(&head_sh->stripe_lock);
4264 for (i = 0; i < head_sh->disks; i++)
4265 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4266 do_wakeup = 1;
4267 if (head_sh->state & handle_flags)
4268 set_bit(STRIPE_HANDLE, &head_sh->state);
4269
4270 if (do_wakeup)
4271 wake_up(&head_sh->raid_conf->wait_for_overlap);
4272 }
4273
4274 static void handle_stripe(struct stripe_head *sh)
4275 {
4276 struct stripe_head_state s;
4277 struct r5conf *conf = sh->raid_conf;
4278 int i;
4279 int prexor;
4280 int disks = sh->disks;
4281 struct r5dev *pdev, *qdev;
4282
4283 clear_bit(STRIPE_HANDLE, &sh->state);
4284 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4285 /* already being handled, ensure it gets handled
4286 * again when current action finishes */
4287 set_bit(STRIPE_HANDLE, &sh->state);
4288 return;
4289 }
4290
4291 if (clear_batch_ready(sh) ) {
4292 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4293 return;
4294 }
4295
4296 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4297 break_stripe_batch_list(sh, 0);
4298
4299 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4300 spin_lock(&sh->stripe_lock);
4301 /* Cannot process 'sync' concurrently with 'discard' */
4302 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4303 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4304 set_bit(STRIPE_SYNCING, &sh->state);
4305 clear_bit(STRIPE_INSYNC, &sh->state);
4306 clear_bit(STRIPE_REPLACED, &sh->state);
4307 }
4308 spin_unlock(&sh->stripe_lock);
4309 }
4310 clear_bit(STRIPE_DELAYED, &sh->state);
4311
4312 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4313 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4314 (unsigned long long)sh->sector, sh->state,
4315 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4316 sh->check_state, sh->reconstruct_state);
4317
4318 analyse_stripe(sh, &s);
4319
4320 if (s.handle_bad_blocks) {
4321 set_bit(STRIPE_HANDLE, &sh->state);
4322 goto finish;
4323 }
4324
4325 if (unlikely(s.blocked_rdev)) {
4326 if (s.syncing || s.expanding || s.expanded ||
4327 s.replacing || s.to_write || s.written) {
4328 set_bit(STRIPE_HANDLE, &sh->state);
4329 goto finish;
4330 }
4331 /* There is nothing for the blocked_rdev to block */
4332 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4333 s.blocked_rdev = NULL;
4334 }
4335
4336 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4337 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4338 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4339 }
4340
4341 pr_debug("locked=%d uptodate=%d to_read=%d"
4342 " to_write=%d failed=%d failed_num=%d,%d\n",
4343 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4344 s.failed_num[0], s.failed_num[1]);
4345 /* check if the array has lost more than max_degraded devices and,
4346 * if so, some requests might need to be failed.
4347 */
4348 if (s.failed > conf->max_degraded) {
4349 sh->check_state = 0;
4350 sh->reconstruct_state = 0;
4351 break_stripe_batch_list(sh, 0);
4352 if (s.to_read+s.to_write+s.written)
4353 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4354 if (s.syncing + s.replacing)
4355 handle_failed_sync(conf, sh, &s);
4356 }
4357
4358 /* Now we check to see if any write operations have recently
4359 * completed
4360 */
4361 prexor = 0;
4362 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4363 prexor = 1;
4364 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4365 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4366 sh->reconstruct_state = reconstruct_state_idle;
4367
4368 /* All the 'written' buffers and the parity block are ready to
4369 * be written back to disk
4370 */
4371 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4372 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4373 BUG_ON(sh->qd_idx >= 0 &&
4374 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4375 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4376 for (i = disks; i--; ) {
4377 struct r5dev *dev = &sh->dev[i];
4378 if (test_bit(R5_LOCKED, &dev->flags) &&
4379 (i == sh->pd_idx || i == sh->qd_idx ||
4380 dev->written)) {
4381 pr_debug("Writing block %d\n", i);
4382 set_bit(R5_Wantwrite, &dev->flags);
4383 if (prexor)
4384 continue;
4385 if (s.failed > 1)
4386 continue;
4387 if (!test_bit(R5_Insync, &dev->flags) ||
4388 ((i == sh->pd_idx || i == sh->qd_idx) &&
4389 s.failed == 0))
4390 set_bit(STRIPE_INSYNC, &sh->state);
4391 }
4392 }
4393 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4394 s.dec_preread_active = 1;
4395 }
4396
4397 /*
4398 * might be able to return some write requests if the parity blocks
4399 * are safe, or on a failed drive
4400 */
4401 pdev = &sh->dev[sh->pd_idx];
4402 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4403 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4404 qdev = &sh->dev[sh->qd_idx];
4405 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4406 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4407 || conf->level < 6;
4408
4409 if (s.written &&
4410 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4411 && !test_bit(R5_LOCKED, &pdev->flags)
4412 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4413 test_bit(R5_Discard, &pdev->flags))))) &&
4414 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4415 && !test_bit(R5_LOCKED, &qdev->flags)
4416 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4417 test_bit(R5_Discard, &qdev->flags))))))
4418 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4419
4420 /* Now we might consider reading some blocks, either to check/generate
4421 * parity, or to satisfy requests
4422 * or to load a block that is being partially written.
4423 */
4424 if (s.to_read || s.non_overwrite
4425 || (conf->level == 6 && s.to_write && s.failed)
4426 || (s.syncing && (s.uptodate + s.compute < disks))
4427 || s.replacing
4428 || s.expanding)
4429 handle_stripe_fill(sh, &s, disks);
4430
4431 /* Now to consider new write requests and what else, if anything
4432 * should be read. We do not handle new writes when:
4433 * 1/ A 'write' operation (copy+xor) is already in flight.
4434 * 2/ A 'check' operation is in flight, as it may clobber the parity
4435 * block.
4436 */
4437 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4438 handle_stripe_dirtying(conf, sh, &s, disks);
4439
4440 /* maybe we need to check and possibly fix the parity for this stripe
4441 * Any reads will already have been scheduled, so we just see if enough
4442 * data is available. The parity check is held off while parity
4443 * dependent operations are in flight.
4444 */
4445 if (sh->check_state ||
4446 (s.syncing && s.locked == 0 &&
4447 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4448 !test_bit(STRIPE_INSYNC, &sh->state))) {
4449 if (conf->level == 6)
4450 handle_parity_checks6(conf, sh, &s, disks);
4451 else
4452 handle_parity_checks5(conf, sh, &s, disks);
4453 }
4454
4455 if ((s.replacing || s.syncing) && s.locked == 0
4456 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4457 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4458 /* Write out to replacement devices where possible */
4459 for (i = 0; i < conf->raid_disks; i++)
4460 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4461 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4462 set_bit(R5_WantReplace, &sh->dev[i].flags);
4463 set_bit(R5_LOCKED, &sh->dev[i].flags);
4464 s.locked++;
4465 }
4466 if (s.replacing)
4467 set_bit(STRIPE_INSYNC, &sh->state);
4468 set_bit(STRIPE_REPLACED, &sh->state);
4469 }
4470 if ((s.syncing || s.replacing) && s.locked == 0 &&
4471 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4472 test_bit(STRIPE_INSYNC, &sh->state)) {
4473 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4474 clear_bit(STRIPE_SYNCING, &sh->state);
4475 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4476 wake_up(&conf->wait_for_overlap);
4477 }
4478
4479 /* If the failed drives are just a ReadError, then we might need
4480 * to progress the repair/check process
4481 */
4482 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4483 for (i = 0; i < s.failed; i++) {
4484 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4485 if (test_bit(R5_ReadError, &dev->flags)
4486 && !test_bit(R5_LOCKED, &dev->flags)
4487 && test_bit(R5_UPTODATE, &dev->flags)
4488 ) {
4489 if (!test_bit(R5_ReWrite, &dev->flags)) {
4490 set_bit(R5_Wantwrite, &dev->flags);
4491 set_bit(R5_ReWrite, &dev->flags);
4492 set_bit(R5_LOCKED, &dev->flags);
4493 s.locked++;
4494 } else {
4495 /* let's read it back */
4496 set_bit(R5_Wantread, &dev->flags);
4497 set_bit(R5_LOCKED, &dev->flags);
4498 s.locked++;
4499 }
4500 }
4501 }
4502
4503 /* Finish reconstruct operations initiated by the expansion process */
4504 if (sh->reconstruct_state == reconstruct_state_result) {
4505 struct stripe_head *sh_src
4506 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4507 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4508 /* sh cannot be written until sh_src has been read.
4509 * so arrange for sh to be delayed a little
4510 */
4511 set_bit(STRIPE_DELAYED, &sh->state);
4512 set_bit(STRIPE_HANDLE, &sh->state);
4513 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4514 &sh_src->state))
4515 atomic_inc(&conf->preread_active_stripes);
4516 release_stripe(sh_src);
4517 goto finish;
4518 }
4519 if (sh_src)
4520 release_stripe(sh_src);
4521
4522 sh->reconstruct_state = reconstruct_state_idle;
4523 clear_bit(STRIPE_EXPANDING, &sh->state);
4524 for (i = conf->raid_disks; i--; ) {
4525 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4526 set_bit(R5_LOCKED, &sh->dev[i].flags);
4527 s.locked++;
4528 }
4529 }
4530
4531 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4532 !sh->reconstruct_state) {
4533 /* Need to write out all blocks after computing parity */
4534 sh->disks = conf->raid_disks;
4535 stripe_set_idx(sh->sector, conf, 0, sh);
4536 schedule_reconstruction(sh, &s, 1, 1);
4537 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4538 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4539 atomic_dec(&conf->reshape_stripes);
4540 wake_up(&conf->wait_for_overlap);
4541 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4542 }
4543
4544 if (s.expanding && s.locked == 0 &&
4545 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4546 handle_stripe_expansion(conf, sh);
4547
4548 finish:
4549 /* wait for this device to become unblocked */
4550 if (unlikely(s.blocked_rdev)) {
4551 if (conf->mddev->external)
4552 md_wait_for_blocked_rdev(s.blocked_rdev,
4553 conf->mddev);
4554 else
4555 /* Internal metadata will immediately
4556 * be written by raid5d, so we don't
4557 * need to wait here.
4558 */
4559 rdev_dec_pending(s.blocked_rdev,
4560 conf->mddev);
4561 }
4562
4563 if (s.handle_bad_blocks)
4564 for (i = disks; i--; ) {
4565 struct md_rdev *rdev;
4566 struct r5dev *dev = &sh->dev[i];
4567 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4568 /* We own a safe reference to the rdev */
4569 rdev = conf->disks[i].rdev;
4570 if (!rdev_set_badblocks(rdev, sh->sector,
4571 STRIPE_SECTORS, 0))
4572 md_error(conf->mddev, rdev);
4573 rdev_dec_pending(rdev, conf->mddev);
4574 }
4575 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4576 rdev = conf->disks[i].rdev;
4577 rdev_clear_badblocks(rdev, sh->sector,
4578 STRIPE_SECTORS, 0);
4579 rdev_dec_pending(rdev, conf->mddev);
4580 }
4581 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4582 rdev = conf->disks[i].replacement;
4583 if (!rdev)
4584 /* rdev have been moved down */
4585 rdev = conf->disks[i].rdev;
4586 rdev_clear_badblocks(rdev, sh->sector,
4587 STRIPE_SECTORS, 0);
4588 rdev_dec_pending(rdev, conf->mddev);
4589 }
4590 }
4591
4592 if (s.ops_request)
4593 raid_run_ops(sh, s.ops_request);
4594
4595 ops_run_io(sh, &s);
4596
4597 if (s.dec_preread_active) {
4598 /* We delay this until after ops_run_io so that if make_request
4599 * is waiting on a flush, it won't continue until the writes
4600 * have actually been submitted.
4601 */
4602 atomic_dec(&conf->preread_active_stripes);
4603 if (atomic_read(&conf->preread_active_stripes) <
4604 IO_THRESHOLD)
4605 md_wakeup_thread(conf->mddev->thread);
4606 }
4607
4608 return_io(s.return_bi);
4609
4610 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4611 }
4612
4613 static void raid5_activate_delayed(struct r5conf *conf)
4614 {
4615 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4616 while (!list_empty(&conf->delayed_list)) {
4617 struct list_head *l = conf->delayed_list.next;
4618 struct stripe_head *sh;
4619 sh = list_entry(l, struct stripe_head, lru);
4620 list_del_init(l);
4621 clear_bit(STRIPE_DELAYED, &sh->state);
4622 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4623 atomic_inc(&conf->preread_active_stripes);
4624 list_add_tail(&sh->lru, &conf->hold_list);
4625 raid5_wakeup_stripe_thread(sh);
4626 }
4627 }
4628 }
4629
4630 static void activate_bit_delay(struct r5conf *conf,
4631 struct list_head *temp_inactive_list)
4632 {
4633 /* device_lock is held */
4634 struct list_head head;
4635 list_add(&head, &conf->bitmap_list);
4636 list_del_init(&conf->bitmap_list);
4637 while (!list_empty(&head)) {
4638 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4639 int hash;
4640 list_del_init(&sh->lru);
4641 atomic_inc(&sh->count);
4642 hash = sh->hash_lock_index;
4643 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4644 }
4645 }
4646
4647 static int raid5_congested(struct mddev *mddev, int bits)
4648 {
4649 struct r5conf *conf = mddev->private;
4650
4651 /* No difference between reads and writes. Just check
4652 * how busy the stripe_cache is
4653 */
4654
4655 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4656 return 1;
4657 if (conf->quiesce)
4658 return 1;
4659 if (atomic_read(&conf->empty_inactive_list_nr))
4660 return 1;
4661
4662 return 0;
4663 }
4664
4665 /* We want read requests to align with chunks where possible,
4666 * but write requests don't need to.
4667 */
4668 static int raid5_mergeable_bvec(struct mddev *mddev,
4669 struct bvec_merge_data *bvm,
4670 struct bio_vec *biovec)
4671 {
4672 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4673 int max;
4674 unsigned int chunk_sectors = mddev->chunk_sectors;
4675 unsigned int bio_sectors = bvm->bi_size >> 9;
4676
4677 /*
4678 * always allow writes to be mergeable, read as well if array
4679 * is degraded as we'll go through stripe cache anyway.
4680 */
4681 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4682 return biovec->bv_len;
4683
4684 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4685 chunk_sectors = mddev->new_chunk_sectors;
4686 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4687 if (max < 0) max = 0;
4688 if (max <= biovec->bv_len && bio_sectors == 0)
4689 return biovec->bv_len;
4690 else
4691 return max;
4692 }
4693
4694 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4695 {
4696 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4697 unsigned int chunk_sectors = mddev->chunk_sectors;
4698 unsigned int bio_sectors = bio_sectors(bio);
4699
4700 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4701 chunk_sectors = mddev->new_chunk_sectors;
4702 return chunk_sectors >=
4703 ((sector & (chunk_sectors - 1)) + bio_sectors);
4704 }
4705
4706 /*
4707 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4708 * later sampled by raid5d.
4709 */
4710 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4711 {
4712 unsigned long flags;
4713
4714 spin_lock_irqsave(&conf->device_lock, flags);
4715
4716 bi->bi_next = conf->retry_read_aligned_list;
4717 conf->retry_read_aligned_list = bi;
4718
4719 spin_unlock_irqrestore(&conf->device_lock, flags);
4720 md_wakeup_thread(conf->mddev->thread);
4721 }
4722
4723 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4724 {
4725 struct bio *bi;
4726
4727 bi = conf->retry_read_aligned;
4728 if (bi) {
4729 conf->retry_read_aligned = NULL;
4730 return bi;
4731 }
4732 bi = conf->retry_read_aligned_list;
4733 if(bi) {
4734 conf->retry_read_aligned_list = bi->bi_next;
4735 bi->bi_next = NULL;
4736 /*
4737 * this sets the active strip count to 1 and the processed
4738 * strip count to zero (upper 8 bits)
4739 */
4740 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4741 }
4742
4743 return bi;
4744 }
4745
4746 /*
4747 * The "raid5_align_endio" should check if the read succeeded and if it
4748 * did, call bio_endio on the original bio (having bio_put the new bio
4749 * first).
4750 * If the read failed..
4751 */
4752 static void raid5_align_endio(struct bio *bi, int error)
4753 {
4754 struct bio* raid_bi = bi->bi_private;
4755 struct mddev *mddev;
4756 struct r5conf *conf;
4757 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4758 struct md_rdev *rdev;
4759
4760 bio_put(bi);
4761
4762 rdev = (void*)raid_bi->bi_next;
4763 raid_bi->bi_next = NULL;
4764 mddev = rdev->mddev;
4765 conf = mddev->private;
4766
4767 rdev_dec_pending(rdev, conf->mddev);
4768
4769 if (!error && uptodate) {
4770 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4771 raid_bi, 0);
4772 bio_endio(raid_bi, 0);
4773 if (atomic_dec_and_test(&conf->active_aligned_reads))
4774 wake_up(&conf->wait_for_quiescent);
4775 return;
4776 }
4777
4778 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4779
4780 add_bio_to_retry(raid_bi, conf);
4781 }
4782
4783 static int bio_fits_rdev(struct bio *bi)
4784 {
4785 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4786
4787 if (bio_sectors(bi) > queue_max_sectors(q))
4788 return 0;
4789 blk_recount_segments(q, bi);
4790 if (bi->bi_phys_segments > queue_max_segments(q))
4791 return 0;
4792
4793 if (q->merge_bvec_fn)
4794 /* it's too hard to apply the merge_bvec_fn at this stage,
4795 * just just give up
4796 */
4797 return 0;
4798
4799 return 1;
4800 }
4801
4802 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4803 {
4804 struct r5conf *conf = mddev->private;
4805 int dd_idx;
4806 struct bio* align_bi;
4807 struct md_rdev *rdev;
4808 sector_t end_sector;
4809
4810 if (!in_chunk_boundary(mddev, raid_bio)) {
4811 pr_debug("chunk_aligned_read : non aligned\n");
4812 return 0;
4813 }
4814 /*
4815 * use bio_clone_mddev to make a copy of the bio
4816 */
4817 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4818 if (!align_bi)
4819 return 0;
4820 /*
4821 * set bi_end_io to a new function, and set bi_private to the
4822 * original bio.
4823 */
4824 align_bi->bi_end_io = raid5_align_endio;
4825 align_bi->bi_private = raid_bio;
4826 /*
4827 * compute position
4828 */
4829 align_bi->bi_iter.bi_sector =
4830 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4831 0, &dd_idx, NULL);
4832
4833 end_sector = bio_end_sector(align_bi);
4834 rcu_read_lock();
4835 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4836 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4837 rdev->recovery_offset < end_sector) {
4838 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4839 if (rdev &&
4840 (test_bit(Faulty, &rdev->flags) ||
4841 !(test_bit(In_sync, &rdev->flags) ||
4842 rdev->recovery_offset >= end_sector)))
4843 rdev = NULL;
4844 }
4845 if (rdev) {
4846 sector_t first_bad;
4847 int bad_sectors;
4848
4849 atomic_inc(&rdev->nr_pending);
4850 rcu_read_unlock();
4851 raid_bio->bi_next = (void*)rdev;
4852 align_bi->bi_bdev = rdev->bdev;
4853 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4854
4855 if (!bio_fits_rdev(align_bi) ||
4856 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4857 bio_sectors(align_bi),
4858 &first_bad, &bad_sectors)) {
4859 /* too big in some way, or has a known bad block */
4860 bio_put(align_bi);
4861 rdev_dec_pending(rdev, mddev);
4862 return 0;
4863 }
4864
4865 /* No reshape active, so we can trust rdev->data_offset */
4866 align_bi->bi_iter.bi_sector += rdev->data_offset;
4867
4868 spin_lock_irq(&conf->device_lock);
4869 wait_event_lock_irq(conf->wait_for_quiescent,
4870 conf->quiesce == 0,
4871 conf->device_lock);
4872 atomic_inc(&conf->active_aligned_reads);
4873 spin_unlock_irq(&conf->device_lock);
4874
4875 if (mddev->gendisk)
4876 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4877 align_bi, disk_devt(mddev->gendisk),
4878 raid_bio->bi_iter.bi_sector);
4879 generic_make_request(align_bi);
4880 return 1;
4881 } else {
4882 rcu_read_unlock();
4883 bio_put(align_bi);
4884 return 0;
4885 }
4886 }
4887
4888 /* __get_priority_stripe - get the next stripe to process
4889 *
4890 * Full stripe writes are allowed to pass preread active stripes up until
4891 * the bypass_threshold is exceeded. In general the bypass_count
4892 * increments when the handle_list is handled before the hold_list; however, it
4893 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4894 * stripe with in flight i/o. The bypass_count will be reset when the
4895 * head of the hold_list has changed, i.e. the head was promoted to the
4896 * handle_list.
4897 */
4898 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4899 {
4900 struct stripe_head *sh = NULL, *tmp;
4901 struct list_head *handle_list = NULL;
4902 struct r5worker_group *wg = NULL;
4903
4904 if (conf->worker_cnt_per_group == 0) {
4905 handle_list = &conf->handle_list;
4906 } else if (group != ANY_GROUP) {
4907 handle_list = &conf->worker_groups[group].handle_list;
4908 wg = &conf->worker_groups[group];
4909 } else {
4910 int i;
4911 for (i = 0; i < conf->group_cnt; i++) {
4912 handle_list = &conf->worker_groups[i].handle_list;
4913 wg = &conf->worker_groups[i];
4914 if (!list_empty(handle_list))
4915 break;
4916 }
4917 }
4918
4919 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4920 __func__,
4921 list_empty(handle_list) ? "empty" : "busy",
4922 list_empty(&conf->hold_list) ? "empty" : "busy",
4923 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4924
4925 if (!list_empty(handle_list)) {
4926 sh = list_entry(handle_list->next, typeof(*sh), lru);
4927
4928 if (list_empty(&conf->hold_list))
4929 conf->bypass_count = 0;
4930 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4931 if (conf->hold_list.next == conf->last_hold)
4932 conf->bypass_count++;
4933 else {
4934 conf->last_hold = conf->hold_list.next;
4935 conf->bypass_count -= conf->bypass_threshold;
4936 if (conf->bypass_count < 0)
4937 conf->bypass_count = 0;
4938 }
4939 }
4940 } else if (!list_empty(&conf->hold_list) &&
4941 ((conf->bypass_threshold &&
4942 conf->bypass_count > conf->bypass_threshold) ||
4943 atomic_read(&conf->pending_full_writes) == 0)) {
4944
4945 list_for_each_entry(tmp, &conf->hold_list, lru) {
4946 if (conf->worker_cnt_per_group == 0 ||
4947 group == ANY_GROUP ||
4948 !cpu_online(tmp->cpu) ||
4949 cpu_to_group(tmp->cpu) == group) {
4950 sh = tmp;
4951 break;
4952 }
4953 }
4954
4955 if (sh) {
4956 conf->bypass_count -= conf->bypass_threshold;
4957 if (conf->bypass_count < 0)
4958 conf->bypass_count = 0;
4959 }
4960 wg = NULL;
4961 }
4962
4963 if (!sh)
4964 return NULL;
4965
4966 if (wg) {
4967 wg->stripes_cnt--;
4968 sh->group = NULL;
4969 }
4970 list_del_init(&sh->lru);
4971 BUG_ON(atomic_inc_return(&sh->count) != 1);
4972 return sh;
4973 }
4974
4975 struct raid5_plug_cb {
4976 struct blk_plug_cb cb;
4977 struct list_head list;
4978 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4979 };
4980
4981 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4982 {
4983 struct raid5_plug_cb *cb = container_of(
4984 blk_cb, struct raid5_plug_cb, cb);
4985 struct stripe_head *sh;
4986 struct mddev *mddev = cb->cb.data;
4987 struct r5conf *conf = mddev->private;
4988 int cnt = 0;
4989 int hash;
4990
4991 if (cb->list.next && !list_empty(&cb->list)) {
4992 spin_lock_irq(&conf->device_lock);
4993 while (!list_empty(&cb->list)) {
4994 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4995 list_del_init(&sh->lru);
4996 /*
4997 * avoid race release_stripe_plug() sees
4998 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4999 * is still in our list
5000 */
5001 smp_mb__before_atomic();
5002 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5003 /*
5004 * STRIPE_ON_RELEASE_LIST could be set here. In that
5005 * case, the count is always > 1 here
5006 */
5007 hash = sh->hash_lock_index;
5008 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5009 cnt++;
5010 }
5011 spin_unlock_irq(&conf->device_lock);
5012 }
5013 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5014 NR_STRIPE_HASH_LOCKS);
5015 if (mddev->queue)
5016 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5017 kfree(cb);
5018 }
5019
5020 static void release_stripe_plug(struct mddev *mddev,
5021 struct stripe_head *sh)
5022 {
5023 struct blk_plug_cb *blk_cb = blk_check_plugged(
5024 raid5_unplug, mddev,
5025 sizeof(struct raid5_plug_cb));
5026 struct raid5_plug_cb *cb;
5027
5028 if (!blk_cb) {
5029 release_stripe(sh);
5030 return;
5031 }
5032
5033 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5034
5035 if (cb->list.next == NULL) {
5036 int i;
5037 INIT_LIST_HEAD(&cb->list);
5038 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5039 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5040 }
5041
5042 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5043 list_add_tail(&sh->lru, &cb->list);
5044 else
5045 release_stripe(sh);
5046 }
5047
5048 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5049 {
5050 struct r5conf *conf = mddev->private;
5051 sector_t logical_sector, last_sector;
5052 struct stripe_head *sh;
5053 int remaining;
5054 int stripe_sectors;
5055
5056 if (mddev->reshape_position != MaxSector)
5057 /* Skip discard while reshape is happening */
5058 return;
5059
5060 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5061 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5062
5063 bi->bi_next = NULL;
5064 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5065
5066 stripe_sectors = conf->chunk_sectors *
5067 (conf->raid_disks - conf->max_degraded);
5068 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5069 stripe_sectors);
5070 sector_div(last_sector, stripe_sectors);
5071
5072 logical_sector *= conf->chunk_sectors;
5073 last_sector *= conf->chunk_sectors;
5074
5075 for (; logical_sector < last_sector;
5076 logical_sector += STRIPE_SECTORS) {
5077 DEFINE_WAIT(w);
5078 int d;
5079 again:
5080 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5081 prepare_to_wait(&conf->wait_for_overlap, &w,
5082 TASK_UNINTERRUPTIBLE);
5083 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5084 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5085 release_stripe(sh);
5086 schedule();
5087 goto again;
5088 }
5089 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5090 spin_lock_irq(&sh->stripe_lock);
5091 for (d = 0; d < conf->raid_disks; d++) {
5092 if (d == sh->pd_idx || d == sh->qd_idx)
5093 continue;
5094 if (sh->dev[d].towrite || sh->dev[d].toread) {
5095 set_bit(R5_Overlap, &sh->dev[d].flags);
5096 spin_unlock_irq(&sh->stripe_lock);
5097 release_stripe(sh);
5098 schedule();
5099 goto again;
5100 }
5101 }
5102 set_bit(STRIPE_DISCARD, &sh->state);
5103 finish_wait(&conf->wait_for_overlap, &w);
5104 sh->overwrite_disks = 0;
5105 for (d = 0; d < conf->raid_disks; d++) {
5106 if (d == sh->pd_idx || d == sh->qd_idx)
5107 continue;
5108 sh->dev[d].towrite = bi;
5109 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5110 raid5_inc_bi_active_stripes(bi);
5111 sh->overwrite_disks++;
5112 }
5113 spin_unlock_irq(&sh->stripe_lock);
5114 if (conf->mddev->bitmap) {
5115 for (d = 0;
5116 d < conf->raid_disks - conf->max_degraded;
5117 d++)
5118 bitmap_startwrite(mddev->bitmap,
5119 sh->sector,
5120 STRIPE_SECTORS,
5121 0);
5122 sh->bm_seq = conf->seq_flush + 1;
5123 set_bit(STRIPE_BIT_DELAY, &sh->state);
5124 }
5125
5126 set_bit(STRIPE_HANDLE, &sh->state);
5127 clear_bit(STRIPE_DELAYED, &sh->state);
5128 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5129 atomic_inc(&conf->preread_active_stripes);
5130 release_stripe_plug(mddev, sh);
5131 }
5132
5133 remaining = raid5_dec_bi_active_stripes(bi);
5134 if (remaining == 0) {
5135 md_write_end(mddev);
5136 bio_endio(bi, 0);
5137 }
5138 }
5139
5140 static void make_request(struct mddev *mddev, struct bio * bi)
5141 {
5142 struct r5conf *conf = mddev->private;
5143 int dd_idx;
5144 sector_t new_sector;
5145 sector_t logical_sector, last_sector;
5146 struct stripe_head *sh;
5147 const int rw = bio_data_dir(bi);
5148 int remaining;
5149 DEFINE_WAIT(w);
5150 bool do_prepare;
5151
5152 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5153 md_flush_request(mddev, bi);
5154 return;
5155 }
5156
5157 md_write_start(mddev, bi);
5158
5159 /*
5160 * If array is degraded, better not do chunk aligned read because
5161 * later we might have to read it again in order to reconstruct
5162 * data on failed drives.
5163 */
5164 if (rw == READ && mddev->degraded == 0 &&
5165 mddev->reshape_position == MaxSector &&
5166 chunk_aligned_read(mddev,bi))
5167 return;
5168
5169 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5170 make_discard_request(mddev, bi);
5171 return;
5172 }
5173
5174 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5175 last_sector = bio_end_sector(bi);
5176 bi->bi_next = NULL;
5177 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5178
5179 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5180 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5181 int previous;
5182 int seq;
5183
5184 do_prepare = false;
5185 retry:
5186 seq = read_seqcount_begin(&conf->gen_lock);
5187 previous = 0;
5188 if (do_prepare)
5189 prepare_to_wait(&conf->wait_for_overlap, &w,
5190 TASK_UNINTERRUPTIBLE);
5191 if (unlikely(conf->reshape_progress != MaxSector)) {
5192 /* spinlock is needed as reshape_progress may be
5193 * 64bit on a 32bit platform, and so it might be
5194 * possible to see a half-updated value
5195 * Of course reshape_progress could change after
5196 * the lock is dropped, so once we get a reference
5197 * to the stripe that we think it is, we will have
5198 * to check again.
5199 */
5200 spin_lock_irq(&conf->device_lock);
5201 if (mddev->reshape_backwards
5202 ? logical_sector < conf->reshape_progress
5203 : logical_sector >= conf->reshape_progress) {
5204 previous = 1;
5205 } else {
5206 if (mddev->reshape_backwards
5207 ? logical_sector < conf->reshape_safe
5208 : logical_sector >= conf->reshape_safe) {
5209 spin_unlock_irq(&conf->device_lock);
5210 schedule();
5211 do_prepare = true;
5212 goto retry;
5213 }
5214 }
5215 spin_unlock_irq(&conf->device_lock);
5216 }
5217
5218 new_sector = raid5_compute_sector(conf, logical_sector,
5219 previous,
5220 &dd_idx, NULL);
5221 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5222 (unsigned long long)new_sector,
5223 (unsigned long long)logical_sector);
5224
5225 sh = get_active_stripe(conf, new_sector, previous,
5226 (bi->bi_rw&RWA_MASK), 0);
5227 if (sh) {
5228 if (unlikely(previous)) {
5229 /* expansion might have moved on while waiting for a
5230 * stripe, so we must do the range check again.
5231 * Expansion could still move past after this
5232 * test, but as we are holding a reference to
5233 * 'sh', we know that if that happens,
5234 * STRIPE_EXPANDING will get set and the expansion
5235 * won't proceed until we finish with the stripe.
5236 */
5237 int must_retry = 0;
5238 spin_lock_irq(&conf->device_lock);
5239 if (mddev->reshape_backwards
5240 ? logical_sector >= conf->reshape_progress
5241 : logical_sector < conf->reshape_progress)
5242 /* mismatch, need to try again */
5243 must_retry = 1;
5244 spin_unlock_irq(&conf->device_lock);
5245 if (must_retry) {
5246 release_stripe(sh);
5247 schedule();
5248 do_prepare = true;
5249 goto retry;
5250 }
5251 }
5252 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5253 /* Might have got the wrong stripe_head
5254 * by accident
5255 */
5256 release_stripe(sh);
5257 goto retry;
5258 }
5259
5260 if (rw == WRITE &&
5261 logical_sector >= mddev->suspend_lo &&
5262 logical_sector < mddev->suspend_hi) {
5263 release_stripe(sh);
5264 /* As the suspend_* range is controlled by
5265 * userspace, we want an interruptible
5266 * wait.
5267 */
5268 flush_signals(current);
5269 prepare_to_wait(&conf->wait_for_overlap,
5270 &w, TASK_INTERRUPTIBLE);
5271 if (logical_sector >= mddev->suspend_lo &&
5272 logical_sector < mddev->suspend_hi) {
5273 schedule();
5274 do_prepare = true;
5275 }
5276 goto retry;
5277 }
5278
5279 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5280 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5281 /* Stripe is busy expanding or
5282 * add failed due to overlap. Flush everything
5283 * and wait a while
5284 */
5285 md_wakeup_thread(mddev->thread);
5286 release_stripe(sh);
5287 schedule();
5288 do_prepare = true;
5289 goto retry;
5290 }
5291 set_bit(STRIPE_HANDLE, &sh->state);
5292 clear_bit(STRIPE_DELAYED, &sh->state);
5293 if ((!sh->batch_head || sh == sh->batch_head) &&
5294 (bi->bi_rw & REQ_SYNC) &&
5295 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5296 atomic_inc(&conf->preread_active_stripes);
5297 release_stripe_plug(mddev, sh);
5298 } else {
5299 /* cannot get stripe for read-ahead, just give-up */
5300 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5301 break;
5302 }
5303 }
5304 finish_wait(&conf->wait_for_overlap, &w);
5305
5306 remaining = raid5_dec_bi_active_stripes(bi);
5307 if (remaining == 0) {
5308
5309 if ( rw == WRITE )
5310 md_write_end(mddev);
5311
5312 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5313 bi, 0);
5314 bio_endio(bi, 0);
5315 }
5316 }
5317
5318 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5319
5320 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5321 {
5322 /* reshaping is quite different to recovery/resync so it is
5323 * handled quite separately ... here.
5324 *
5325 * On each call to sync_request, we gather one chunk worth of
5326 * destination stripes and flag them as expanding.
5327 * Then we find all the source stripes and request reads.
5328 * As the reads complete, handle_stripe will copy the data
5329 * into the destination stripe and release that stripe.
5330 */
5331 struct r5conf *conf = mddev->private;
5332 struct stripe_head *sh;
5333 sector_t first_sector, last_sector;
5334 int raid_disks = conf->previous_raid_disks;
5335 int data_disks = raid_disks - conf->max_degraded;
5336 int new_data_disks = conf->raid_disks - conf->max_degraded;
5337 int i;
5338 int dd_idx;
5339 sector_t writepos, readpos, safepos;
5340 sector_t stripe_addr;
5341 int reshape_sectors;
5342 struct list_head stripes;
5343
5344 if (sector_nr == 0) {
5345 /* If restarting in the middle, skip the initial sectors */
5346 if (mddev->reshape_backwards &&
5347 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5348 sector_nr = raid5_size(mddev, 0, 0)
5349 - conf->reshape_progress;
5350 } else if (!mddev->reshape_backwards &&
5351 conf->reshape_progress > 0)
5352 sector_nr = conf->reshape_progress;
5353 sector_div(sector_nr, new_data_disks);
5354 if (sector_nr) {
5355 mddev->curr_resync_completed = sector_nr;
5356 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5357 *skipped = 1;
5358 return sector_nr;
5359 }
5360 }
5361
5362 /* We need to process a full chunk at a time.
5363 * If old and new chunk sizes differ, we need to process the
5364 * largest of these
5365 */
5366 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5367 reshape_sectors = mddev->new_chunk_sectors;
5368 else
5369 reshape_sectors = mddev->chunk_sectors;
5370
5371 /* We update the metadata at least every 10 seconds, or when
5372 * the data about to be copied would over-write the source of
5373 * the data at the front of the range. i.e. one new_stripe
5374 * along from reshape_progress new_maps to after where
5375 * reshape_safe old_maps to
5376 */
5377 writepos = conf->reshape_progress;
5378 sector_div(writepos, new_data_disks);
5379 readpos = conf->reshape_progress;
5380 sector_div(readpos, data_disks);
5381 safepos = conf->reshape_safe;
5382 sector_div(safepos, data_disks);
5383 if (mddev->reshape_backwards) {
5384 writepos -= min_t(sector_t, reshape_sectors, writepos);
5385 readpos += reshape_sectors;
5386 safepos += reshape_sectors;
5387 } else {
5388 writepos += reshape_sectors;
5389 readpos -= min_t(sector_t, reshape_sectors, readpos);
5390 safepos -= min_t(sector_t, reshape_sectors, safepos);
5391 }
5392
5393 /* Having calculated the 'writepos' possibly use it
5394 * to set 'stripe_addr' which is where we will write to.
5395 */
5396 if (mddev->reshape_backwards) {
5397 BUG_ON(conf->reshape_progress == 0);
5398 stripe_addr = writepos;
5399 BUG_ON((mddev->dev_sectors &
5400 ~((sector_t)reshape_sectors - 1))
5401 - reshape_sectors - stripe_addr
5402 != sector_nr);
5403 } else {
5404 BUG_ON(writepos != sector_nr + reshape_sectors);
5405 stripe_addr = sector_nr;
5406 }
5407
5408 /* 'writepos' is the most advanced device address we might write.
5409 * 'readpos' is the least advanced device address we might read.
5410 * 'safepos' is the least address recorded in the metadata as having
5411 * been reshaped.
5412 * If there is a min_offset_diff, these are adjusted either by
5413 * increasing the safepos/readpos if diff is negative, or
5414 * increasing writepos if diff is positive.
5415 * If 'readpos' is then behind 'writepos', there is no way that we can
5416 * ensure safety in the face of a crash - that must be done by userspace
5417 * making a backup of the data. So in that case there is no particular
5418 * rush to update metadata.
5419 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5420 * update the metadata to advance 'safepos' to match 'readpos' so that
5421 * we can be safe in the event of a crash.
5422 * So we insist on updating metadata if safepos is behind writepos and
5423 * readpos is beyond writepos.
5424 * In any case, update the metadata every 10 seconds.
5425 * Maybe that number should be configurable, but I'm not sure it is
5426 * worth it.... maybe it could be a multiple of safemode_delay???
5427 */
5428 if (conf->min_offset_diff < 0) {
5429 safepos += -conf->min_offset_diff;
5430 readpos += -conf->min_offset_diff;
5431 } else
5432 writepos += conf->min_offset_diff;
5433
5434 if ((mddev->reshape_backwards
5435 ? (safepos > writepos && readpos < writepos)
5436 : (safepos < writepos && readpos > writepos)) ||
5437 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5438 /* Cannot proceed until we've updated the superblock... */
5439 wait_event(conf->wait_for_overlap,
5440 atomic_read(&conf->reshape_stripes)==0
5441 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5442 if (atomic_read(&conf->reshape_stripes) != 0)
5443 return 0;
5444 mddev->reshape_position = conf->reshape_progress;
5445 mddev->curr_resync_completed = sector_nr;
5446 conf->reshape_checkpoint = jiffies;
5447 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5448 md_wakeup_thread(mddev->thread);
5449 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5450 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5451 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5452 return 0;
5453 spin_lock_irq(&conf->device_lock);
5454 conf->reshape_safe = mddev->reshape_position;
5455 spin_unlock_irq(&conf->device_lock);
5456 wake_up(&conf->wait_for_overlap);
5457 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5458 }
5459
5460 INIT_LIST_HEAD(&stripes);
5461 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5462 int j;
5463 int skipped_disk = 0;
5464 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5465 set_bit(STRIPE_EXPANDING, &sh->state);
5466 atomic_inc(&conf->reshape_stripes);
5467 /* If any of this stripe is beyond the end of the old
5468 * array, then we need to zero those blocks
5469 */
5470 for (j=sh->disks; j--;) {
5471 sector_t s;
5472 if (j == sh->pd_idx)
5473 continue;
5474 if (conf->level == 6 &&
5475 j == sh->qd_idx)
5476 continue;
5477 s = compute_blocknr(sh, j, 0);
5478 if (s < raid5_size(mddev, 0, 0)) {
5479 skipped_disk = 1;
5480 continue;
5481 }
5482 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5483 set_bit(R5_Expanded, &sh->dev[j].flags);
5484 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5485 }
5486 if (!skipped_disk) {
5487 set_bit(STRIPE_EXPAND_READY, &sh->state);
5488 set_bit(STRIPE_HANDLE, &sh->state);
5489 }
5490 list_add(&sh->lru, &stripes);
5491 }
5492 spin_lock_irq(&conf->device_lock);
5493 if (mddev->reshape_backwards)
5494 conf->reshape_progress -= reshape_sectors * new_data_disks;
5495 else
5496 conf->reshape_progress += reshape_sectors * new_data_disks;
5497 spin_unlock_irq(&conf->device_lock);
5498 /* Ok, those stripe are ready. We can start scheduling
5499 * reads on the source stripes.
5500 * The source stripes are determined by mapping the first and last
5501 * block on the destination stripes.
5502 */
5503 first_sector =
5504 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5505 1, &dd_idx, NULL);
5506 last_sector =
5507 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5508 * new_data_disks - 1),
5509 1, &dd_idx, NULL);
5510 if (last_sector >= mddev->dev_sectors)
5511 last_sector = mddev->dev_sectors - 1;
5512 while (first_sector <= last_sector) {
5513 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5514 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5515 set_bit(STRIPE_HANDLE, &sh->state);
5516 release_stripe(sh);
5517 first_sector += STRIPE_SECTORS;
5518 }
5519 /* Now that the sources are clearly marked, we can release
5520 * the destination stripes
5521 */
5522 while (!list_empty(&stripes)) {
5523 sh = list_entry(stripes.next, struct stripe_head, lru);
5524 list_del_init(&sh->lru);
5525 release_stripe(sh);
5526 }
5527 /* If this takes us to the resync_max point where we have to pause,
5528 * then we need to write out the superblock.
5529 */
5530 sector_nr += reshape_sectors;
5531 if ((sector_nr - mddev->curr_resync_completed) * 2
5532 >= mddev->resync_max - mddev->curr_resync_completed) {
5533 /* Cannot proceed until we've updated the superblock... */
5534 wait_event(conf->wait_for_overlap,
5535 atomic_read(&conf->reshape_stripes) == 0
5536 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5537 if (atomic_read(&conf->reshape_stripes) != 0)
5538 goto ret;
5539 mddev->reshape_position = conf->reshape_progress;
5540 mddev->curr_resync_completed = sector_nr;
5541 conf->reshape_checkpoint = jiffies;
5542 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5543 md_wakeup_thread(mddev->thread);
5544 wait_event(mddev->sb_wait,
5545 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5546 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5547 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5548 goto ret;
5549 spin_lock_irq(&conf->device_lock);
5550 conf->reshape_safe = mddev->reshape_position;
5551 spin_unlock_irq(&conf->device_lock);
5552 wake_up(&conf->wait_for_overlap);
5553 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5554 }
5555 ret:
5556 return reshape_sectors;
5557 }
5558
5559 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5560 {
5561 struct r5conf *conf = mddev->private;
5562 struct stripe_head *sh;
5563 sector_t max_sector = mddev->dev_sectors;
5564 sector_t sync_blocks;
5565 int still_degraded = 0;
5566 int i;
5567
5568 if (sector_nr >= max_sector) {
5569 /* just being told to finish up .. nothing much to do */
5570
5571 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5572 end_reshape(conf);
5573 return 0;
5574 }
5575
5576 if (mddev->curr_resync < max_sector) /* aborted */
5577 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5578 &sync_blocks, 1);
5579 else /* completed sync */
5580 conf->fullsync = 0;
5581 bitmap_close_sync(mddev->bitmap);
5582
5583 return 0;
5584 }
5585
5586 /* Allow raid5_quiesce to complete */
5587 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5588
5589 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5590 return reshape_request(mddev, sector_nr, skipped);
5591
5592 /* No need to check resync_max as we never do more than one
5593 * stripe, and as resync_max will always be on a chunk boundary,
5594 * if the check in md_do_sync didn't fire, there is no chance
5595 * of overstepping resync_max here
5596 */
5597
5598 /* if there is too many failed drives and we are trying
5599 * to resync, then assert that we are finished, because there is
5600 * nothing we can do.
5601 */
5602 if (mddev->degraded >= conf->max_degraded &&
5603 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5604 sector_t rv = mddev->dev_sectors - sector_nr;
5605 *skipped = 1;
5606 return rv;
5607 }
5608 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5609 !conf->fullsync &&
5610 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5611 sync_blocks >= STRIPE_SECTORS) {
5612 /* we can skip this block, and probably more */
5613 sync_blocks /= STRIPE_SECTORS;
5614 *skipped = 1;
5615 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5616 }
5617
5618 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5619
5620 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5621 if (sh == NULL) {
5622 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5623 /* make sure we don't swamp the stripe cache if someone else
5624 * is trying to get access
5625 */
5626 schedule_timeout_uninterruptible(1);
5627 }
5628 /* Need to check if array will still be degraded after recovery/resync
5629 * Note in case of > 1 drive failures it's possible we're rebuilding
5630 * one drive while leaving another faulty drive in array.
5631 */
5632 rcu_read_lock();
5633 for (i = 0; i < conf->raid_disks; i++) {
5634 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5635
5636 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5637 still_degraded = 1;
5638 }
5639 rcu_read_unlock();
5640
5641 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5642
5643 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5644 set_bit(STRIPE_HANDLE, &sh->state);
5645
5646 release_stripe(sh);
5647
5648 return STRIPE_SECTORS;
5649 }
5650
5651 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5652 {
5653 /* We may not be able to submit a whole bio at once as there
5654 * may not be enough stripe_heads available.
5655 * We cannot pre-allocate enough stripe_heads as we may need
5656 * more than exist in the cache (if we allow ever large chunks).
5657 * So we do one stripe head at a time and record in
5658 * ->bi_hw_segments how many have been done.
5659 *
5660 * We *know* that this entire raid_bio is in one chunk, so
5661 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5662 */
5663 struct stripe_head *sh;
5664 int dd_idx;
5665 sector_t sector, logical_sector, last_sector;
5666 int scnt = 0;
5667 int remaining;
5668 int handled = 0;
5669
5670 logical_sector = raid_bio->bi_iter.bi_sector &
5671 ~((sector_t)STRIPE_SECTORS-1);
5672 sector = raid5_compute_sector(conf, logical_sector,
5673 0, &dd_idx, NULL);
5674 last_sector = bio_end_sector(raid_bio);
5675
5676 for (; logical_sector < last_sector;
5677 logical_sector += STRIPE_SECTORS,
5678 sector += STRIPE_SECTORS,
5679 scnt++) {
5680
5681 if (scnt < raid5_bi_processed_stripes(raid_bio))
5682 /* already done this stripe */
5683 continue;
5684
5685 sh = get_active_stripe(conf, sector, 0, 1, 1);
5686
5687 if (!sh) {
5688 /* failed to get a stripe - must wait */
5689 raid5_set_bi_processed_stripes(raid_bio, scnt);
5690 conf->retry_read_aligned = raid_bio;
5691 return handled;
5692 }
5693
5694 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5695 release_stripe(sh);
5696 raid5_set_bi_processed_stripes(raid_bio, scnt);
5697 conf->retry_read_aligned = raid_bio;
5698 return handled;
5699 }
5700
5701 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5702 handle_stripe(sh);
5703 release_stripe(sh);
5704 handled++;
5705 }
5706 remaining = raid5_dec_bi_active_stripes(raid_bio);
5707 if (remaining == 0) {
5708 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5709 raid_bio, 0);
5710 bio_endio(raid_bio, 0);
5711 }
5712 if (atomic_dec_and_test(&conf->active_aligned_reads))
5713 wake_up(&conf->wait_for_quiescent);
5714 return handled;
5715 }
5716
5717 static int handle_active_stripes(struct r5conf *conf, int group,
5718 struct r5worker *worker,
5719 struct list_head *temp_inactive_list)
5720 {
5721 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5722 int i, batch_size = 0, hash;
5723 bool release_inactive = false;
5724
5725 while (batch_size < MAX_STRIPE_BATCH &&
5726 (sh = __get_priority_stripe(conf, group)) != NULL)
5727 batch[batch_size++] = sh;
5728
5729 if (batch_size == 0) {
5730 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5731 if (!list_empty(temp_inactive_list + i))
5732 break;
5733 if (i == NR_STRIPE_HASH_LOCKS)
5734 return batch_size;
5735 release_inactive = true;
5736 }
5737 spin_unlock_irq(&conf->device_lock);
5738
5739 release_inactive_stripe_list(conf, temp_inactive_list,
5740 NR_STRIPE_HASH_LOCKS);
5741
5742 if (release_inactive) {
5743 spin_lock_irq(&conf->device_lock);
5744 return 0;
5745 }
5746
5747 for (i = 0; i < batch_size; i++)
5748 handle_stripe(batch[i]);
5749
5750 cond_resched();
5751
5752 spin_lock_irq(&conf->device_lock);
5753 for (i = 0; i < batch_size; i++) {
5754 hash = batch[i]->hash_lock_index;
5755 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5756 }
5757 return batch_size;
5758 }
5759
5760 static void raid5_do_work(struct work_struct *work)
5761 {
5762 struct r5worker *worker = container_of(work, struct r5worker, work);
5763 struct r5worker_group *group = worker->group;
5764 struct r5conf *conf = group->conf;
5765 int group_id = group - conf->worker_groups;
5766 int handled;
5767 struct blk_plug plug;
5768
5769 pr_debug("+++ raid5worker active\n");
5770
5771 blk_start_plug(&plug);
5772 handled = 0;
5773 spin_lock_irq(&conf->device_lock);
5774 while (1) {
5775 int batch_size, released;
5776
5777 released = release_stripe_list(conf, worker->temp_inactive_list);
5778
5779 batch_size = handle_active_stripes(conf, group_id, worker,
5780 worker->temp_inactive_list);
5781 worker->working = false;
5782 if (!batch_size && !released)
5783 break;
5784 handled += batch_size;
5785 }
5786 pr_debug("%d stripes handled\n", handled);
5787
5788 spin_unlock_irq(&conf->device_lock);
5789 blk_finish_plug(&plug);
5790
5791 pr_debug("--- raid5worker inactive\n");
5792 }
5793
5794 /*
5795 * This is our raid5 kernel thread.
5796 *
5797 * We scan the hash table for stripes which can be handled now.
5798 * During the scan, completed stripes are saved for us by the interrupt
5799 * handler, so that they will not have to wait for our next wakeup.
5800 */
5801 static void raid5d(struct md_thread *thread)
5802 {
5803 struct mddev *mddev = thread->mddev;
5804 struct r5conf *conf = mddev->private;
5805 int handled;
5806 struct blk_plug plug;
5807
5808 pr_debug("+++ raid5d active\n");
5809
5810 md_check_recovery(mddev);
5811
5812 blk_start_plug(&plug);
5813 handled = 0;
5814 spin_lock_irq(&conf->device_lock);
5815 while (1) {
5816 struct bio *bio;
5817 int batch_size, released;
5818
5819 released = release_stripe_list(conf, conf->temp_inactive_list);
5820 if (released)
5821 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5822
5823 if (
5824 !list_empty(&conf->bitmap_list)) {
5825 /* Now is a good time to flush some bitmap updates */
5826 conf->seq_flush++;
5827 spin_unlock_irq(&conf->device_lock);
5828 bitmap_unplug(mddev->bitmap);
5829 spin_lock_irq(&conf->device_lock);
5830 conf->seq_write = conf->seq_flush;
5831 activate_bit_delay(conf, conf->temp_inactive_list);
5832 }
5833 raid5_activate_delayed(conf);
5834
5835 while ((bio = remove_bio_from_retry(conf))) {
5836 int ok;
5837 spin_unlock_irq(&conf->device_lock);
5838 ok = retry_aligned_read(conf, bio);
5839 spin_lock_irq(&conf->device_lock);
5840 if (!ok)
5841 break;
5842 handled++;
5843 }
5844
5845 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5846 conf->temp_inactive_list);
5847 if (!batch_size && !released)
5848 break;
5849 handled += batch_size;
5850
5851 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5852 spin_unlock_irq(&conf->device_lock);
5853 md_check_recovery(mddev);
5854 spin_lock_irq(&conf->device_lock);
5855 }
5856 }
5857 pr_debug("%d stripes handled\n", handled);
5858
5859 spin_unlock_irq(&conf->device_lock);
5860 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5861 grow_one_stripe(conf, __GFP_NOWARN);
5862 /* Set flag even if allocation failed. This helps
5863 * slow down allocation requests when mem is short
5864 */
5865 set_bit(R5_DID_ALLOC, &conf->cache_state);
5866 }
5867
5868 async_tx_issue_pending_all();
5869 blk_finish_plug(&plug);
5870
5871 pr_debug("--- raid5d inactive\n");
5872 }
5873
5874 static ssize_t
5875 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5876 {
5877 struct r5conf *conf;
5878 int ret = 0;
5879 spin_lock(&mddev->lock);
5880 conf = mddev->private;
5881 if (conf)
5882 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5883 spin_unlock(&mddev->lock);
5884 return ret;
5885 }
5886
5887 int
5888 raid5_set_cache_size(struct mddev *mddev, int size)
5889 {
5890 struct r5conf *conf = mddev->private;
5891 int err;
5892
5893 if (size <= 16 || size > 32768)
5894 return -EINVAL;
5895
5896 conf->min_nr_stripes = size;
5897 while (size < conf->max_nr_stripes &&
5898 drop_one_stripe(conf))
5899 ;
5900
5901
5902 err = md_allow_write(mddev);
5903 if (err)
5904 return err;
5905
5906 while (size > conf->max_nr_stripes)
5907 if (!grow_one_stripe(conf, GFP_KERNEL))
5908 break;
5909
5910 return 0;
5911 }
5912 EXPORT_SYMBOL(raid5_set_cache_size);
5913
5914 static ssize_t
5915 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5916 {
5917 struct r5conf *conf;
5918 unsigned long new;
5919 int err;
5920
5921 if (len >= PAGE_SIZE)
5922 return -EINVAL;
5923 if (kstrtoul(page, 10, &new))
5924 return -EINVAL;
5925 err = mddev_lock(mddev);
5926 if (err)
5927 return err;
5928 conf = mddev->private;
5929 if (!conf)
5930 err = -ENODEV;
5931 else
5932 err = raid5_set_cache_size(mddev, new);
5933 mddev_unlock(mddev);
5934
5935 return err ?: len;
5936 }
5937
5938 static struct md_sysfs_entry
5939 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5940 raid5_show_stripe_cache_size,
5941 raid5_store_stripe_cache_size);
5942
5943 static ssize_t
5944 raid5_show_rmw_level(struct mddev *mddev, char *page)
5945 {
5946 struct r5conf *conf = mddev->private;
5947 if (conf)
5948 return sprintf(page, "%d\n", conf->rmw_level);
5949 else
5950 return 0;
5951 }
5952
5953 static ssize_t
5954 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5955 {
5956 struct r5conf *conf = mddev->private;
5957 unsigned long new;
5958
5959 if (!conf)
5960 return -ENODEV;
5961
5962 if (len >= PAGE_SIZE)
5963 return -EINVAL;
5964
5965 if (kstrtoul(page, 10, &new))
5966 return -EINVAL;
5967
5968 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5969 return -EINVAL;
5970
5971 if (new != PARITY_DISABLE_RMW &&
5972 new != PARITY_ENABLE_RMW &&
5973 new != PARITY_PREFER_RMW)
5974 return -EINVAL;
5975
5976 conf->rmw_level = new;
5977 return len;
5978 }
5979
5980 static struct md_sysfs_entry
5981 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5982 raid5_show_rmw_level,
5983 raid5_store_rmw_level);
5984
5985
5986 static ssize_t
5987 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5988 {
5989 struct r5conf *conf;
5990 int ret = 0;
5991 spin_lock(&mddev->lock);
5992 conf = mddev->private;
5993 if (conf)
5994 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5995 spin_unlock(&mddev->lock);
5996 return ret;
5997 }
5998
5999 static ssize_t
6000 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6001 {
6002 struct r5conf *conf;
6003 unsigned long new;
6004 int err;
6005
6006 if (len >= PAGE_SIZE)
6007 return -EINVAL;
6008 if (kstrtoul(page, 10, &new))
6009 return -EINVAL;
6010
6011 err = mddev_lock(mddev);
6012 if (err)
6013 return err;
6014 conf = mddev->private;
6015 if (!conf)
6016 err = -ENODEV;
6017 else if (new > conf->min_nr_stripes)
6018 err = -EINVAL;
6019 else
6020 conf->bypass_threshold = new;
6021 mddev_unlock(mddev);
6022 return err ?: len;
6023 }
6024
6025 static struct md_sysfs_entry
6026 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6027 S_IRUGO | S_IWUSR,
6028 raid5_show_preread_threshold,
6029 raid5_store_preread_threshold);
6030
6031 static ssize_t
6032 raid5_show_skip_copy(struct mddev *mddev, char *page)
6033 {
6034 struct r5conf *conf;
6035 int ret = 0;
6036 spin_lock(&mddev->lock);
6037 conf = mddev->private;
6038 if (conf)
6039 ret = sprintf(page, "%d\n", conf->skip_copy);
6040 spin_unlock(&mddev->lock);
6041 return ret;
6042 }
6043
6044 static ssize_t
6045 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6046 {
6047 struct r5conf *conf;
6048 unsigned long new;
6049 int err;
6050
6051 if (len >= PAGE_SIZE)
6052 return -EINVAL;
6053 if (kstrtoul(page, 10, &new))
6054 return -EINVAL;
6055 new = !!new;
6056
6057 err = mddev_lock(mddev);
6058 if (err)
6059 return err;
6060 conf = mddev->private;
6061 if (!conf)
6062 err = -ENODEV;
6063 else if (new != conf->skip_copy) {
6064 mddev_suspend(mddev);
6065 conf->skip_copy = new;
6066 if (new)
6067 mddev->queue->backing_dev_info.capabilities |=
6068 BDI_CAP_STABLE_WRITES;
6069 else
6070 mddev->queue->backing_dev_info.capabilities &=
6071 ~BDI_CAP_STABLE_WRITES;
6072 mddev_resume(mddev);
6073 }
6074 mddev_unlock(mddev);
6075 return err ?: len;
6076 }
6077
6078 static struct md_sysfs_entry
6079 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6080 raid5_show_skip_copy,
6081 raid5_store_skip_copy);
6082
6083 static ssize_t
6084 stripe_cache_active_show(struct mddev *mddev, char *page)
6085 {
6086 struct r5conf *conf = mddev->private;
6087 if (conf)
6088 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6089 else
6090 return 0;
6091 }
6092
6093 static struct md_sysfs_entry
6094 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6095
6096 static ssize_t
6097 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6098 {
6099 struct r5conf *conf;
6100 int ret = 0;
6101 spin_lock(&mddev->lock);
6102 conf = mddev->private;
6103 if (conf)
6104 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6105 spin_unlock(&mddev->lock);
6106 return ret;
6107 }
6108
6109 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6110 int *group_cnt,
6111 int *worker_cnt_per_group,
6112 struct r5worker_group **worker_groups);
6113 static ssize_t
6114 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6115 {
6116 struct r5conf *conf;
6117 unsigned long new;
6118 int err;
6119 struct r5worker_group *new_groups, *old_groups;
6120 int group_cnt, worker_cnt_per_group;
6121
6122 if (len >= PAGE_SIZE)
6123 return -EINVAL;
6124 if (kstrtoul(page, 10, &new))
6125 return -EINVAL;
6126
6127 err = mddev_lock(mddev);
6128 if (err)
6129 return err;
6130 conf = mddev->private;
6131 if (!conf)
6132 err = -ENODEV;
6133 else if (new != conf->worker_cnt_per_group) {
6134 mddev_suspend(mddev);
6135
6136 old_groups = conf->worker_groups;
6137 if (old_groups)
6138 flush_workqueue(raid5_wq);
6139
6140 err = alloc_thread_groups(conf, new,
6141 &group_cnt, &worker_cnt_per_group,
6142 &new_groups);
6143 if (!err) {
6144 spin_lock_irq(&conf->device_lock);
6145 conf->group_cnt = group_cnt;
6146 conf->worker_cnt_per_group = worker_cnt_per_group;
6147 conf->worker_groups = new_groups;
6148 spin_unlock_irq(&conf->device_lock);
6149
6150 if (old_groups)
6151 kfree(old_groups[0].workers);
6152 kfree(old_groups);
6153 }
6154 mddev_resume(mddev);
6155 }
6156 mddev_unlock(mddev);
6157
6158 return err ?: len;
6159 }
6160
6161 static struct md_sysfs_entry
6162 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6163 raid5_show_group_thread_cnt,
6164 raid5_store_group_thread_cnt);
6165
6166 static struct attribute *raid5_attrs[] = {
6167 &raid5_stripecache_size.attr,
6168 &raid5_stripecache_active.attr,
6169 &raid5_preread_bypass_threshold.attr,
6170 &raid5_group_thread_cnt.attr,
6171 &raid5_skip_copy.attr,
6172 &raid5_rmw_level.attr,
6173 NULL,
6174 };
6175 static struct attribute_group raid5_attrs_group = {
6176 .name = NULL,
6177 .attrs = raid5_attrs,
6178 };
6179
6180 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6181 int *group_cnt,
6182 int *worker_cnt_per_group,
6183 struct r5worker_group **worker_groups)
6184 {
6185 int i, j, k;
6186 ssize_t size;
6187 struct r5worker *workers;
6188
6189 *worker_cnt_per_group = cnt;
6190 if (cnt == 0) {
6191 *group_cnt = 0;
6192 *worker_groups = NULL;
6193 return 0;
6194 }
6195 *group_cnt = num_possible_nodes();
6196 size = sizeof(struct r5worker) * cnt;
6197 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6198 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6199 *group_cnt, GFP_NOIO);
6200 if (!*worker_groups || !workers) {
6201 kfree(workers);
6202 kfree(*worker_groups);
6203 return -ENOMEM;
6204 }
6205
6206 for (i = 0; i < *group_cnt; i++) {
6207 struct r5worker_group *group;
6208
6209 group = &(*worker_groups)[i];
6210 INIT_LIST_HEAD(&group->handle_list);
6211 group->conf = conf;
6212 group->workers = workers + i * cnt;
6213
6214 for (j = 0; j < cnt; j++) {
6215 struct r5worker *worker = group->workers + j;
6216 worker->group = group;
6217 INIT_WORK(&worker->work, raid5_do_work);
6218
6219 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6220 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6221 }
6222 }
6223
6224 return 0;
6225 }
6226
6227 static void free_thread_groups(struct r5conf *conf)
6228 {
6229 if (conf->worker_groups)
6230 kfree(conf->worker_groups[0].workers);
6231 kfree(conf->worker_groups);
6232 conf->worker_groups = NULL;
6233 }
6234
6235 static sector_t
6236 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6237 {
6238 struct r5conf *conf = mddev->private;
6239
6240 if (!sectors)
6241 sectors = mddev->dev_sectors;
6242 if (!raid_disks)
6243 /* size is defined by the smallest of previous and new size */
6244 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6245
6246 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6247 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6248 return sectors * (raid_disks - conf->max_degraded);
6249 }
6250
6251 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6252 {
6253 safe_put_page(percpu->spare_page);
6254 if (percpu->scribble)
6255 flex_array_free(percpu->scribble);
6256 percpu->spare_page = NULL;
6257 percpu->scribble = NULL;
6258 }
6259
6260 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6261 {
6262 if (conf->level == 6 && !percpu->spare_page)
6263 percpu->spare_page = alloc_page(GFP_KERNEL);
6264 if (!percpu->scribble)
6265 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6266 conf->previous_raid_disks),
6267 max(conf->chunk_sectors,
6268 conf->prev_chunk_sectors)
6269 / STRIPE_SECTORS,
6270 GFP_KERNEL);
6271
6272 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6273 free_scratch_buffer(conf, percpu);
6274 return -ENOMEM;
6275 }
6276
6277 return 0;
6278 }
6279
6280 static void raid5_free_percpu(struct r5conf *conf)
6281 {
6282 unsigned long cpu;
6283
6284 if (!conf->percpu)
6285 return;
6286
6287 #ifdef CONFIG_HOTPLUG_CPU
6288 unregister_cpu_notifier(&conf->cpu_notify);
6289 #endif
6290
6291 get_online_cpus();
6292 for_each_possible_cpu(cpu)
6293 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6294 put_online_cpus();
6295
6296 free_percpu(conf->percpu);
6297 }
6298
6299 static void free_conf(struct r5conf *conf)
6300 {
6301 if (conf->shrinker.seeks)
6302 unregister_shrinker(&conf->shrinker);
6303 free_thread_groups(conf);
6304 shrink_stripes(conf);
6305 raid5_free_percpu(conf);
6306 kfree(conf->disks);
6307 kfree(conf->stripe_hashtbl);
6308 kfree(conf);
6309 }
6310
6311 #ifdef CONFIG_HOTPLUG_CPU
6312 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6313 void *hcpu)
6314 {
6315 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6316 long cpu = (long)hcpu;
6317 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6318
6319 switch (action) {
6320 case CPU_UP_PREPARE:
6321 case CPU_UP_PREPARE_FROZEN:
6322 if (alloc_scratch_buffer(conf, percpu)) {
6323 pr_err("%s: failed memory allocation for cpu%ld\n",
6324 __func__, cpu);
6325 return notifier_from_errno(-ENOMEM);
6326 }
6327 break;
6328 case CPU_DEAD:
6329 case CPU_DEAD_FROZEN:
6330 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6331 break;
6332 default:
6333 break;
6334 }
6335 return NOTIFY_OK;
6336 }
6337 #endif
6338
6339 static int raid5_alloc_percpu(struct r5conf *conf)
6340 {
6341 unsigned long cpu;
6342 int err = 0;
6343
6344 conf->percpu = alloc_percpu(struct raid5_percpu);
6345 if (!conf->percpu)
6346 return -ENOMEM;
6347
6348 #ifdef CONFIG_HOTPLUG_CPU
6349 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6350 conf->cpu_notify.priority = 0;
6351 err = register_cpu_notifier(&conf->cpu_notify);
6352 if (err)
6353 return err;
6354 #endif
6355
6356 get_online_cpus();
6357 for_each_present_cpu(cpu) {
6358 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6359 if (err) {
6360 pr_err("%s: failed memory allocation for cpu%ld\n",
6361 __func__, cpu);
6362 break;
6363 }
6364 }
6365 put_online_cpus();
6366
6367 return err;
6368 }
6369
6370 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6371 struct shrink_control *sc)
6372 {
6373 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6374 int ret = 0;
6375 while (ret < sc->nr_to_scan) {
6376 if (drop_one_stripe(conf) == 0)
6377 return SHRINK_STOP;
6378 ret++;
6379 }
6380 return ret;
6381 }
6382
6383 static unsigned long raid5_cache_count(struct shrinker *shrink,
6384 struct shrink_control *sc)
6385 {
6386 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6387
6388 if (conf->max_nr_stripes < conf->min_nr_stripes)
6389 /* unlikely, but not impossible */
6390 return 0;
6391 return conf->max_nr_stripes - conf->min_nr_stripes;
6392 }
6393
6394 static struct r5conf *setup_conf(struct mddev *mddev)
6395 {
6396 struct r5conf *conf;
6397 int raid_disk, memory, max_disks;
6398 struct md_rdev *rdev;
6399 struct disk_info *disk;
6400 char pers_name[6];
6401 int i;
6402 int group_cnt, worker_cnt_per_group;
6403 struct r5worker_group *new_group;
6404
6405 if (mddev->new_level != 5
6406 && mddev->new_level != 4
6407 && mddev->new_level != 6) {
6408 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6409 mdname(mddev), mddev->new_level);
6410 return ERR_PTR(-EIO);
6411 }
6412 if ((mddev->new_level == 5
6413 && !algorithm_valid_raid5(mddev->new_layout)) ||
6414 (mddev->new_level == 6
6415 && !algorithm_valid_raid6(mddev->new_layout))) {
6416 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6417 mdname(mddev), mddev->new_layout);
6418 return ERR_PTR(-EIO);
6419 }
6420 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6421 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6422 mdname(mddev), mddev->raid_disks);
6423 return ERR_PTR(-EINVAL);
6424 }
6425
6426 if (!mddev->new_chunk_sectors ||
6427 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6428 !is_power_of_2(mddev->new_chunk_sectors)) {
6429 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6430 mdname(mddev), mddev->new_chunk_sectors << 9);
6431 return ERR_PTR(-EINVAL);
6432 }
6433
6434 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6435 if (conf == NULL)
6436 goto abort;
6437 /* Don't enable multi-threading by default*/
6438 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6439 &new_group)) {
6440 conf->group_cnt = group_cnt;
6441 conf->worker_cnt_per_group = worker_cnt_per_group;
6442 conf->worker_groups = new_group;
6443 } else
6444 goto abort;
6445 spin_lock_init(&conf->device_lock);
6446 seqcount_init(&conf->gen_lock);
6447 init_waitqueue_head(&conf->wait_for_quiescent);
6448 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++) {
6449 init_waitqueue_head(&conf->wait_for_stripe[i]);
6450 }
6451 init_waitqueue_head(&conf->wait_for_overlap);
6452 INIT_LIST_HEAD(&conf->handle_list);
6453 INIT_LIST_HEAD(&conf->hold_list);
6454 INIT_LIST_HEAD(&conf->delayed_list);
6455 INIT_LIST_HEAD(&conf->bitmap_list);
6456 init_llist_head(&conf->released_stripes);
6457 atomic_set(&conf->active_stripes, 0);
6458 atomic_set(&conf->preread_active_stripes, 0);
6459 atomic_set(&conf->active_aligned_reads, 0);
6460 conf->bypass_threshold = BYPASS_THRESHOLD;
6461 conf->recovery_disabled = mddev->recovery_disabled - 1;
6462
6463 conf->raid_disks = mddev->raid_disks;
6464 if (mddev->reshape_position == MaxSector)
6465 conf->previous_raid_disks = mddev->raid_disks;
6466 else
6467 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6468 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6469
6470 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6471 GFP_KERNEL);
6472 if (!conf->disks)
6473 goto abort;
6474
6475 conf->mddev = mddev;
6476
6477 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6478 goto abort;
6479
6480 /* We init hash_locks[0] separately to that it can be used
6481 * as the reference lock in the spin_lock_nest_lock() call
6482 * in lock_all_device_hash_locks_irq in order to convince
6483 * lockdep that we know what we are doing.
6484 */
6485 spin_lock_init(conf->hash_locks);
6486 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6487 spin_lock_init(conf->hash_locks + i);
6488
6489 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6490 INIT_LIST_HEAD(conf->inactive_list + i);
6491
6492 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6493 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6494
6495 conf->level = mddev->new_level;
6496 conf->chunk_sectors = mddev->new_chunk_sectors;
6497 if (raid5_alloc_percpu(conf) != 0)
6498 goto abort;
6499
6500 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6501
6502 rdev_for_each(rdev, mddev) {
6503 raid_disk = rdev->raid_disk;
6504 if (raid_disk >= max_disks
6505 || raid_disk < 0)
6506 continue;
6507 disk = conf->disks + raid_disk;
6508
6509 if (test_bit(Replacement, &rdev->flags)) {
6510 if (disk->replacement)
6511 goto abort;
6512 disk->replacement = rdev;
6513 } else {
6514 if (disk->rdev)
6515 goto abort;
6516 disk->rdev = rdev;
6517 }
6518
6519 if (test_bit(In_sync, &rdev->flags)) {
6520 char b[BDEVNAME_SIZE];
6521 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6522 " disk %d\n",
6523 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6524 } else if (rdev->saved_raid_disk != raid_disk)
6525 /* Cannot rely on bitmap to complete recovery */
6526 conf->fullsync = 1;
6527 }
6528
6529 conf->level = mddev->new_level;
6530 if (conf->level == 6) {
6531 conf->max_degraded = 2;
6532 if (raid6_call.xor_syndrome)
6533 conf->rmw_level = PARITY_ENABLE_RMW;
6534 else
6535 conf->rmw_level = PARITY_DISABLE_RMW;
6536 } else {
6537 conf->max_degraded = 1;
6538 conf->rmw_level = PARITY_ENABLE_RMW;
6539 }
6540 conf->algorithm = mddev->new_layout;
6541 conf->reshape_progress = mddev->reshape_position;
6542 if (conf->reshape_progress != MaxSector) {
6543 conf->prev_chunk_sectors = mddev->chunk_sectors;
6544 conf->prev_algo = mddev->layout;
6545 }
6546
6547 conf->min_nr_stripes = NR_STRIPES;
6548 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6549 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6550 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6551 if (grow_stripes(conf, conf->min_nr_stripes)) {
6552 printk(KERN_ERR
6553 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6554 mdname(mddev), memory);
6555 goto abort;
6556 } else
6557 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6558 mdname(mddev), memory);
6559 /*
6560 * Losing a stripe head costs more than the time to refill it,
6561 * it reduces the queue depth and so can hurt throughput.
6562 * So set it rather large, scaled by number of devices.
6563 */
6564 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6565 conf->shrinker.scan_objects = raid5_cache_scan;
6566 conf->shrinker.count_objects = raid5_cache_count;
6567 conf->shrinker.batch = 128;
6568 conf->shrinker.flags = 0;
6569 register_shrinker(&conf->shrinker);
6570
6571 sprintf(pers_name, "raid%d", mddev->new_level);
6572 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6573 if (!conf->thread) {
6574 printk(KERN_ERR
6575 "md/raid:%s: couldn't allocate thread.\n",
6576 mdname(mddev));
6577 goto abort;
6578 }
6579
6580 return conf;
6581
6582 abort:
6583 if (conf) {
6584 free_conf(conf);
6585 return ERR_PTR(-EIO);
6586 } else
6587 return ERR_PTR(-ENOMEM);
6588 }
6589
6590 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6591 {
6592 switch (algo) {
6593 case ALGORITHM_PARITY_0:
6594 if (raid_disk < max_degraded)
6595 return 1;
6596 break;
6597 case ALGORITHM_PARITY_N:
6598 if (raid_disk >= raid_disks - max_degraded)
6599 return 1;
6600 break;
6601 case ALGORITHM_PARITY_0_6:
6602 if (raid_disk == 0 ||
6603 raid_disk == raid_disks - 1)
6604 return 1;
6605 break;
6606 case ALGORITHM_LEFT_ASYMMETRIC_6:
6607 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6608 case ALGORITHM_LEFT_SYMMETRIC_6:
6609 case ALGORITHM_RIGHT_SYMMETRIC_6:
6610 if (raid_disk == raid_disks - 1)
6611 return 1;
6612 }
6613 return 0;
6614 }
6615
6616 static int run(struct mddev *mddev)
6617 {
6618 struct r5conf *conf;
6619 int working_disks = 0;
6620 int dirty_parity_disks = 0;
6621 struct md_rdev *rdev;
6622 sector_t reshape_offset = 0;
6623 int i;
6624 long long min_offset_diff = 0;
6625 int first = 1;
6626
6627 if (mddev->recovery_cp != MaxSector)
6628 printk(KERN_NOTICE "md/raid:%s: not clean"
6629 " -- starting background reconstruction\n",
6630 mdname(mddev));
6631
6632 rdev_for_each(rdev, mddev) {
6633 long long diff;
6634 if (rdev->raid_disk < 0)
6635 continue;
6636 diff = (rdev->new_data_offset - rdev->data_offset);
6637 if (first) {
6638 min_offset_diff = diff;
6639 first = 0;
6640 } else if (mddev->reshape_backwards &&
6641 diff < min_offset_diff)
6642 min_offset_diff = diff;
6643 else if (!mddev->reshape_backwards &&
6644 diff > min_offset_diff)
6645 min_offset_diff = diff;
6646 }
6647
6648 if (mddev->reshape_position != MaxSector) {
6649 /* Check that we can continue the reshape.
6650 * Difficulties arise if the stripe we would write to
6651 * next is at or after the stripe we would read from next.
6652 * For a reshape that changes the number of devices, this
6653 * is only possible for a very short time, and mdadm makes
6654 * sure that time appears to have past before assembling
6655 * the array. So we fail if that time hasn't passed.
6656 * For a reshape that keeps the number of devices the same
6657 * mdadm must be monitoring the reshape can keeping the
6658 * critical areas read-only and backed up. It will start
6659 * the array in read-only mode, so we check for that.
6660 */
6661 sector_t here_new, here_old;
6662 int old_disks;
6663 int max_degraded = (mddev->level == 6 ? 2 : 1);
6664
6665 if (mddev->new_level != mddev->level) {
6666 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6667 "required - aborting.\n",
6668 mdname(mddev));
6669 return -EINVAL;
6670 }
6671 old_disks = mddev->raid_disks - mddev->delta_disks;
6672 /* reshape_position must be on a new-stripe boundary, and one
6673 * further up in new geometry must map after here in old
6674 * geometry.
6675 */
6676 here_new = mddev->reshape_position;
6677 if (sector_div(here_new, mddev->new_chunk_sectors *
6678 (mddev->raid_disks - max_degraded))) {
6679 printk(KERN_ERR "md/raid:%s: reshape_position not "
6680 "on a stripe boundary\n", mdname(mddev));
6681 return -EINVAL;
6682 }
6683 reshape_offset = here_new * mddev->new_chunk_sectors;
6684 /* here_new is the stripe we will write to */
6685 here_old = mddev->reshape_position;
6686 sector_div(here_old, mddev->chunk_sectors *
6687 (old_disks-max_degraded));
6688 /* here_old is the first stripe that we might need to read
6689 * from */
6690 if (mddev->delta_disks == 0) {
6691 if ((here_new * mddev->new_chunk_sectors !=
6692 here_old * mddev->chunk_sectors)) {
6693 printk(KERN_ERR "md/raid:%s: reshape position is"
6694 " confused - aborting\n", mdname(mddev));
6695 return -EINVAL;
6696 }
6697 /* We cannot be sure it is safe to start an in-place
6698 * reshape. It is only safe if user-space is monitoring
6699 * and taking constant backups.
6700 * mdadm always starts a situation like this in
6701 * readonly mode so it can take control before
6702 * allowing any writes. So just check for that.
6703 */
6704 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6705 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6706 /* not really in-place - so OK */;
6707 else if (mddev->ro == 0) {
6708 printk(KERN_ERR "md/raid:%s: in-place reshape "
6709 "must be started in read-only mode "
6710 "- aborting\n",
6711 mdname(mddev));
6712 return -EINVAL;
6713 }
6714 } else if (mddev->reshape_backwards
6715 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6716 here_old * mddev->chunk_sectors)
6717 : (here_new * mddev->new_chunk_sectors >=
6718 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6719 /* Reading from the same stripe as writing to - bad */
6720 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6721 "auto-recovery - aborting.\n",
6722 mdname(mddev));
6723 return -EINVAL;
6724 }
6725 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6726 mdname(mddev));
6727 /* OK, we should be able to continue; */
6728 } else {
6729 BUG_ON(mddev->level != mddev->new_level);
6730 BUG_ON(mddev->layout != mddev->new_layout);
6731 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6732 BUG_ON(mddev->delta_disks != 0);
6733 }
6734
6735 if (mddev->private == NULL)
6736 conf = setup_conf(mddev);
6737 else
6738 conf = mddev->private;
6739
6740 if (IS_ERR(conf))
6741 return PTR_ERR(conf);
6742
6743 conf->min_offset_diff = min_offset_diff;
6744 mddev->thread = conf->thread;
6745 conf->thread = NULL;
6746 mddev->private = conf;
6747
6748 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6749 i++) {
6750 rdev = conf->disks[i].rdev;
6751 if (!rdev && conf->disks[i].replacement) {
6752 /* The replacement is all we have yet */
6753 rdev = conf->disks[i].replacement;
6754 conf->disks[i].replacement = NULL;
6755 clear_bit(Replacement, &rdev->flags);
6756 conf->disks[i].rdev = rdev;
6757 }
6758 if (!rdev)
6759 continue;
6760 if (conf->disks[i].replacement &&
6761 conf->reshape_progress != MaxSector) {
6762 /* replacements and reshape simply do not mix. */
6763 printk(KERN_ERR "md: cannot handle concurrent "
6764 "replacement and reshape.\n");
6765 goto abort;
6766 }
6767 if (test_bit(In_sync, &rdev->flags)) {
6768 working_disks++;
6769 continue;
6770 }
6771 /* This disc is not fully in-sync. However if it
6772 * just stored parity (beyond the recovery_offset),
6773 * when we don't need to be concerned about the
6774 * array being dirty.
6775 * When reshape goes 'backwards', we never have
6776 * partially completed devices, so we only need
6777 * to worry about reshape going forwards.
6778 */
6779 /* Hack because v0.91 doesn't store recovery_offset properly. */
6780 if (mddev->major_version == 0 &&
6781 mddev->minor_version > 90)
6782 rdev->recovery_offset = reshape_offset;
6783
6784 if (rdev->recovery_offset < reshape_offset) {
6785 /* We need to check old and new layout */
6786 if (!only_parity(rdev->raid_disk,
6787 conf->algorithm,
6788 conf->raid_disks,
6789 conf->max_degraded))
6790 continue;
6791 }
6792 if (!only_parity(rdev->raid_disk,
6793 conf->prev_algo,
6794 conf->previous_raid_disks,
6795 conf->max_degraded))
6796 continue;
6797 dirty_parity_disks++;
6798 }
6799
6800 /*
6801 * 0 for a fully functional array, 1 or 2 for a degraded array.
6802 */
6803 mddev->degraded = calc_degraded(conf);
6804
6805 if (has_failed(conf)) {
6806 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6807 " (%d/%d failed)\n",
6808 mdname(mddev), mddev->degraded, conf->raid_disks);
6809 goto abort;
6810 }
6811
6812 /* device size must be a multiple of chunk size */
6813 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6814 mddev->resync_max_sectors = mddev->dev_sectors;
6815
6816 if (mddev->degraded > dirty_parity_disks &&
6817 mddev->recovery_cp != MaxSector) {
6818 if (mddev->ok_start_degraded)
6819 printk(KERN_WARNING
6820 "md/raid:%s: starting dirty degraded array"
6821 " - data corruption possible.\n",
6822 mdname(mddev));
6823 else {
6824 printk(KERN_ERR
6825 "md/raid:%s: cannot start dirty degraded array.\n",
6826 mdname(mddev));
6827 goto abort;
6828 }
6829 }
6830
6831 if (mddev->degraded == 0)
6832 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6833 " devices, algorithm %d\n", mdname(mddev), conf->level,
6834 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6835 mddev->new_layout);
6836 else
6837 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6838 " out of %d devices, algorithm %d\n",
6839 mdname(mddev), conf->level,
6840 mddev->raid_disks - mddev->degraded,
6841 mddev->raid_disks, mddev->new_layout);
6842
6843 print_raid5_conf(conf);
6844
6845 if (conf->reshape_progress != MaxSector) {
6846 conf->reshape_safe = conf->reshape_progress;
6847 atomic_set(&conf->reshape_stripes, 0);
6848 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6849 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6850 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6851 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6852 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6853 "reshape");
6854 }
6855
6856 /* Ok, everything is just fine now */
6857 if (mddev->to_remove == &raid5_attrs_group)
6858 mddev->to_remove = NULL;
6859 else if (mddev->kobj.sd &&
6860 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6861 printk(KERN_WARNING
6862 "raid5: failed to create sysfs attributes for %s\n",
6863 mdname(mddev));
6864 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6865
6866 if (mddev->queue) {
6867 int chunk_size;
6868 bool discard_supported = true;
6869 /* read-ahead size must cover two whole stripes, which
6870 * is 2 * (datadisks) * chunksize where 'n' is the
6871 * number of raid devices
6872 */
6873 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6874 int stripe = data_disks *
6875 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6876 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6877 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6878
6879 chunk_size = mddev->chunk_sectors << 9;
6880 blk_queue_io_min(mddev->queue, chunk_size);
6881 blk_queue_io_opt(mddev->queue, chunk_size *
6882 (conf->raid_disks - conf->max_degraded));
6883 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6884 /*
6885 * We can only discard a whole stripe. It doesn't make sense to
6886 * discard data disk but write parity disk
6887 */
6888 stripe = stripe * PAGE_SIZE;
6889 /* Round up to power of 2, as discard handling
6890 * currently assumes that */
6891 while ((stripe-1) & stripe)
6892 stripe = (stripe | (stripe-1)) + 1;
6893 mddev->queue->limits.discard_alignment = stripe;
6894 mddev->queue->limits.discard_granularity = stripe;
6895 /*
6896 * unaligned part of discard request will be ignored, so can't
6897 * guarantee discard_zeroes_data
6898 */
6899 mddev->queue->limits.discard_zeroes_data = 0;
6900
6901 blk_queue_max_write_same_sectors(mddev->queue, 0);
6902
6903 rdev_for_each(rdev, mddev) {
6904 disk_stack_limits(mddev->gendisk, rdev->bdev,
6905 rdev->data_offset << 9);
6906 disk_stack_limits(mddev->gendisk, rdev->bdev,
6907 rdev->new_data_offset << 9);
6908 /*
6909 * discard_zeroes_data is required, otherwise data
6910 * could be lost. Consider a scenario: discard a stripe
6911 * (the stripe could be inconsistent if
6912 * discard_zeroes_data is 0); write one disk of the
6913 * stripe (the stripe could be inconsistent again
6914 * depending on which disks are used to calculate
6915 * parity); the disk is broken; The stripe data of this
6916 * disk is lost.
6917 */
6918 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6919 !bdev_get_queue(rdev->bdev)->
6920 limits.discard_zeroes_data)
6921 discard_supported = false;
6922 /* Unfortunately, discard_zeroes_data is not currently
6923 * a guarantee - just a hint. So we only allow DISCARD
6924 * if the sysadmin has confirmed that only safe devices
6925 * are in use by setting a module parameter.
6926 */
6927 if (!devices_handle_discard_safely) {
6928 if (discard_supported) {
6929 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6930 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6931 }
6932 discard_supported = false;
6933 }
6934 }
6935
6936 if (discard_supported &&
6937 mddev->queue->limits.max_discard_sectors >= stripe &&
6938 mddev->queue->limits.discard_granularity >= stripe)
6939 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6940 mddev->queue);
6941 else
6942 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6943 mddev->queue);
6944 }
6945
6946 return 0;
6947 abort:
6948 md_unregister_thread(&mddev->thread);
6949 print_raid5_conf(conf);
6950 free_conf(conf);
6951 mddev->private = NULL;
6952 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6953 return -EIO;
6954 }
6955
6956 static void raid5_free(struct mddev *mddev, void *priv)
6957 {
6958 struct r5conf *conf = priv;
6959
6960 free_conf(conf);
6961 mddev->to_remove = &raid5_attrs_group;
6962 }
6963
6964 static void status(struct seq_file *seq, struct mddev *mddev)
6965 {
6966 struct r5conf *conf = mddev->private;
6967 int i;
6968
6969 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6970 mddev->chunk_sectors / 2, mddev->layout);
6971 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6972 for (i = 0; i < conf->raid_disks; i++)
6973 seq_printf (seq, "%s",
6974 conf->disks[i].rdev &&
6975 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6976 seq_printf (seq, "]");
6977 }
6978
6979 static void print_raid5_conf (struct r5conf *conf)
6980 {
6981 int i;
6982 struct disk_info *tmp;
6983
6984 printk(KERN_DEBUG "RAID conf printout:\n");
6985 if (!conf) {
6986 printk("(conf==NULL)\n");
6987 return;
6988 }
6989 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6990 conf->raid_disks,
6991 conf->raid_disks - conf->mddev->degraded);
6992
6993 for (i = 0; i < conf->raid_disks; i++) {
6994 char b[BDEVNAME_SIZE];
6995 tmp = conf->disks + i;
6996 if (tmp->rdev)
6997 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6998 i, !test_bit(Faulty, &tmp->rdev->flags),
6999 bdevname(tmp->rdev->bdev, b));
7000 }
7001 }
7002
7003 static int raid5_spare_active(struct mddev *mddev)
7004 {
7005 int i;
7006 struct r5conf *conf = mddev->private;
7007 struct disk_info *tmp;
7008 int count = 0;
7009 unsigned long flags;
7010
7011 for (i = 0; i < conf->raid_disks; i++) {
7012 tmp = conf->disks + i;
7013 if (tmp->replacement
7014 && tmp->replacement->recovery_offset == MaxSector
7015 && !test_bit(Faulty, &tmp->replacement->flags)
7016 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7017 /* Replacement has just become active. */
7018 if (!tmp->rdev
7019 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7020 count++;
7021 if (tmp->rdev) {
7022 /* Replaced device not technically faulty,
7023 * but we need to be sure it gets removed
7024 * and never re-added.
7025 */
7026 set_bit(Faulty, &tmp->rdev->flags);
7027 sysfs_notify_dirent_safe(
7028 tmp->rdev->sysfs_state);
7029 }
7030 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7031 } else if (tmp->rdev
7032 && tmp->rdev->recovery_offset == MaxSector
7033 && !test_bit(Faulty, &tmp->rdev->flags)
7034 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7035 count++;
7036 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7037 }
7038 }
7039 spin_lock_irqsave(&conf->device_lock, flags);
7040 mddev->degraded = calc_degraded(conf);
7041 spin_unlock_irqrestore(&conf->device_lock, flags);
7042 print_raid5_conf(conf);
7043 return count;
7044 }
7045
7046 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7047 {
7048 struct r5conf *conf = mddev->private;
7049 int err = 0;
7050 int number = rdev->raid_disk;
7051 struct md_rdev **rdevp;
7052 struct disk_info *p = conf->disks + number;
7053
7054 print_raid5_conf(conf);
7055 if (rdev == p->rdev)
7056 rdevp = &p->rdev;
7057 else if (rdev == p->replacement)
7058 rdevp = &p->replacement;
7059 else
7060 return 0;
7061
7062 if (number >= conf->raid_disks &&
7063 conf->reshape_progress == MaxSector)
7064 clear_bit(In_sync, &rdev->flags);
7065
7066 if (test_bit(In_sync, &rdev->flags) ||
7067 atomic_read(&rdev->nr_pending)) {
7068 err = -EBUSY;
7069 goto abort;
7070 }
7071 /* Only remove non-faulty devices if recovery
7072 * isn't possible.
7073 */
7074 if (!test_bit(Faulty, &rdev->flags) &&
7075 mddev->recovery_disabled != conf->recovery_disabled &&
7076 !has_failed(conf) &&
7077 (!p->replacement || p->replacement == rdev) &&
7078 number < conf->raid_disks) {
7079 err = -EBUSY;
7080 goto abort;
7081 }
7082 *rdevp = NULL;
7083 synchronize_rcu();
7084 if (atomic_read(&rdev->nr_pending)) {
7085 /* lost the race, try later */
7086 err = -EBUSY;
7087 *rdevp = rdev;
7088 } else if (p->replacement) {
7089 /* We must have just cleared 'rdev' */
7090 p->rdev = p->replacement;
7091 clear_bit(Replacement, &p->replacement->flags);
7092 smp_mb(); /* Make sure other CPUs may see both as identical
7093 * but will never see neither - if they are careful
7094 */
7095 p->replacement = NULL;
7096 clear_bit(WantReplacement, &rdev->flags);
7097 } else
7098 /* We might have just removed the Replacement as faulty-
7099 * clear the bit just in case
7100 */
7101 clear_bit(WantReplacement, &rdev->flags);
7102 abort:
7103
7104 print_raid5_conf(conf);
7105 return err;
7106 }
7107
7108 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7109 {
7110 struct r5conf *conf = mddev->private;
7111 int err = -EEXIST;
7112 int disk;
7113 struct disk_info *p;
7114 int first = 0;
7115 int last = conf->raid_disks - 1;
7116
7117 if (mddev->recovery_disabled == conf->recovery_disabled)
7118 return -EBUSY;
7119
7120 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7121 /* no point adding a device */
7122 return -EINVAL;
7123
7124 if (rdev->raid_disk >= 0)
7125 first = last = rdev->raid_disk;
7126
7127 /*
7128 * find the disk ... but prefer rdev->saved_raid_disk
7129 * if possible.
7130 */
7131 if (rdev->saved_raid_disk >= 0 &&
7132 rdev->saved_raid_disk >= first &&
7133 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7134 first = rdev->saved_raid_disk;
7135
7136 for (disk = first; disk <= last; disk++) {
7137 p = conf->disks + disk;
7138 if (p->rdev == NULL) {
7139 clear_bit(In_sync, &rdev->flags);
7140 rdev->raid_disk = disk;
7141 err = 0;
7142 if (rdev->saved_raid_disk != disk)
7143 conf->fullsync = 1;
7144 rcu_assign_pointer(p->rdev, rdev);
7145 goto out;
7146 }
7147 }
7148 for (disk = first; disk <= last; disk++) {
7149 p = conf->disks + disk;
7150 if (test_bit(WantReplacement, &p->rdev->flags) &&
7151 p->replacement == NULL) {
7152 clear_bit(In_sync, &rdev->flags);
7153 set_bit(Replacement, &rdev->flags);
7154 rdev->raid_disk = disk;
7155 err = 0;
7156 conf->fullsync = 1;
7157 rcu_assign_pointer(p->replacement, rdev);
7158 break;
7159 }
7160 }
7161 out:
7162 print_raid5_conf(conf);
7163 return err;
7164 }
7165
7166 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7167 {
7168 /* no resync is happening, and there is enough space
7169 * on all devices, so we can resize.
7170 * We need to make sure resync covers any new space.
7171 * If the array is shrinking we should possibly wait until
7172 * any io in the removed space completes, but it hardly seems
7173 * worth it.
7174 */
7175 sector_t newsize;
7176 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7177 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7178 if (mddev->external_size &&
7179 mddev->array_sectors > newsize)
7180 return -EINVAL;
7181 if (mddev->bitmap) {
7182 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7183 if (ret)
7184 return ret;
7185 }
7186 md_set_array_sectors(mddev, newsize);
7187 set_capacity(mddev->gendisk, mddev->array_sectors);
7188 revalidate_disk(mddev->gendisk);
7189 if (sectors > mddev->dev_sectors &&
7190 mddev->recovery_cp > mddev->dev_sectors) {
7191 mddev->recovery_cp = mddev->dev_sectors;
7192 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7193 }
7194 mddev->dev_sectors = sectors;
7195 mddev->resync_max_sectors = sectors;
7196 return 0;
7197 }
7198
7199 static int check_stripe_cache(struct mddev *mddev)
7200 {
7201 /* Can only proceed if there are plenty of stripe_heads.
7202 * We need a minimum of one full stripe,, and for sensible progress
7203 * it is best to have about 4 times that.
7204 * If we require 4 times, then the default 256 4K stripe_heads will
7205 * allow for chunk sizes up to 256K, which is probably OK.
7206 * If the chunk size is greater, user-space should request more
7207 * stripe_heads first.
7208 */
7209 struct r5conf *conf = mddev->private;
7210 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7211 > conf->min_nr_stripes ||
7212 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7213 > conf->min_nr_stripes) {
7214 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7215 mdname(mddev),
7216 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7217 / STRIPE_SIZE)*4);
7218 return 0;
7219 }
7220 return 1;
7221 }
7222
7223 static int check_reshape(struct mddev *mddev)
7224 {
7225 struct r5conf *conf = mddev->private;
7226
7227 if (mddev->delta_disks == 0 &&
7228 mddev->new_layout == mddev->layout &&
7229 mddev->new_chunk_sectors == mddev->chunk_sectors)
7230 return 0; /* nothing to do */
7231 if (has_failed(conf))
7232 return -EINVAL;
7233 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7234 /* We might be able to shrink, but the devices must
7235 * be made bigger first.
7236 * For raid6, 4 is the minimum size.
7237 * Otherwise 2 is the minimum
7238 */
7239 int min = 2;
7240 if (mddev->level == 6)
7241 min = 4;
7242 if (mddev->raid_disks + mddev->delta_disks < min)
7243 return -EINVAL;
7244 }
7245
7246 if (!check_stripe_cache(mddev))
7247 return -ENOSPC;
7248
7249 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7250 mddev->delta_disks > 0)
7251 if (resize_chunks(conf,
7252 conf->previous_raid_disks
7253 + max(0, mddev->delta_disks),
7254 max(mddev->new_chunk_sectors,
7255 mddev->chunk_sectors)
7256 ) < 0)
7257 return -ENOMEM;
7258 return resize_stripes(conf, (conf->previous_raid_disks
7259 + mddev->delta_disks));
7260 }
7261
7262 static int raid5_start_reshape(struct mddev *mddev)
7263 {
7264 struct r5conf *conf = mddev->private;
7265 struct md_rdev *rdev;
7266 int spares = 0;
7267 unsigned long flags;
7268
7269 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7270 return -EBUSY;
7271
7272 if (!check_stripe_cache(mddev))
7273 return -ENOSPC;
7274
7275 if (has_failed(conf))
7276 return -EINVAL;
7277
7278 rdev_for_each(rdev, mddev) {
7279 if (!test_bit(In_sync, &rdev->flags)
7280 && !test_bit(Faulty, &rdev->flags))
7281 spares++;
7282 }
7283
7284 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7285 /* Not enough devices even to make a degraded array
7286 * of that size
7287 */
7288 return -EINVAL;
7289
7290 /* Refuse to reduce size of the array. Any reductions in
7291 * array size must be through explicit setting of array_size
7292 * attribute.
7293 */
7294 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7295 < mddev->array_sectors) {
7296 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7297 "before number of disks\n", mdname(mddev));
7298 return -EINVAL;
7299 }
7300
7301 atomic_set(&conf->reshape_stripes, 0);
7302 spin_lock_irq(&conf->device_lock);
7303 write_seqcount_begin(&conf->gen_lock);
7304 conf->previous_raid_disks = conf->raid_disks;
7305 conf->raid_disks += mddev->delta_disks;
7306 conf->prev_chunk_sectors = conf->chunk_sectors;
7307 conf->chunk_sectors = mddev->new_chunk_sectors;
7308 conf->prev_algo = conf->algorithm;
7309 conf->algorithm = mddev->new_layout;
7310 conf->generation++;
7311 /* Code that selects data_offset needs to see the generation update
7312 * if reshape_progress has been set - so a memory barrier needed.
7313 */
7314 smp_mb();
7315 if (mddev->reshape_backwards)
7316 conf->reshape_progress = raid5_size(mddev, 0, 0);
7317 else
7318 conf->reshape_progress = 0;
7319 conf->reshape_safe = conf->reshape_progress;
7320 write_seqcount_end(&conf->gen_lock);
7321 spin_unlock_irq(&conf->device_lock);
7322
7323 /* Now make sure any requests that proceeded on the assumption
7324 * the reshape wasn't running - like Discard or Read - have
7325 * completed.
7326 */
7327 mddev_suspend(mddev);
7328 mddev_resume(mddev);
7329
7330 /* Add some new drives, as many as will fit.
7331 * We know there are enough to make the newly sized array work.
7332 * Don't add devices if we are reducing the number of
7333 * devices in the array. This is because it is not possible
7334 * to correctly record the "partially reconstructed" state of
7335 * such devices during the reshape and confusion could result.
7336 */
7337 if (mddev->delta_disks >= 0) {
7338 rdev_for_each(rdev, mddev)
7339 if (rdev->raid_disk < 0 &&
7340 !test_bit(Faulty, &rdev->flags)) {
7341 if (raid5_add_disk(mddev, rdev) == 0) {
7342 if (rdev->raid_disk
7343 >= conf->previous_raid_disks)
7344 set_bit(In_sync, &rdev->flags);
7345 else
7346 rdev->recovery_offset = 0;
7347
7348 if (sysfs_link_rdev(mddev, rdev))
7349 /* Failure here is OK */;
7350 }
7351 } else if (rdev->raid_disk >= conf->previous_raid_disks
7352 && !test_bit(Faulty, &rdev->flags)) {
7353 /* This is a spare that was manually added */
7354 set_bit(In_sync, &rdev->flags);
7355 }
7356
7357 /* When a reshape changes the number of devices,
7358 * ->degraded is measured against the larger of the
7359 * pre and post number of devices.
7360 */
7361 spin_lock_irqsave(&conf->device_lock, flags);
7362 mddev->degraded = calc_degraded(conf);
7363 spin_unlock_irqrestore(&conf->device_lock, flags);
7364 }
7365 mddev->raid_disks = conf->raid_disks;
7366 mddev->reshape_position = conf->reshape_progress;
7367 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7368
7369 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7370 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7371 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7372 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7373 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7374 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7375 "reshape");
7376 if (!mddev->sync_thread) {
7377 mddev->recovery = 0;
7378 spin_lock_irq(&conf->device_lock);
7379 write_seqcount_begin(&conf->gen_lock);
7380 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7381 mddev->new_chunk_sectors =
7382 conf->chunk_sectors = conf->prev_chunk_sectors;
7383 mddev->new_layout = conf->algorithm = conf->prev_algo;
7384 rdev_for_each(rdev, mddev)
7385 rdev->new_data_offset = rdev->data_offset;
7386 smp_wmb();
7387 conf->generation --;
7388 conf->reshape_progress = MaxSector;
7389 mddev->reshape_position = MaxSector;
7390 write_seqcount_end(&conf->gen_lock);
7391 spin_unlock_irq(&conf->device_lock);
7392 return -EAGAIN;
7393 }
7394 conf->reshape_checkpoint = jiffies;
7395 md_wakeup_thread(mddev->sync_thread);
7396 md_new_event(mddev);
7397 return 0;
7398 }
7399
7400 /* This is called from the reshape thread and should make any
7401 * changes needed in 'conf'
7402 */
7403 static void end_reshape(struct r5conf *conf)
7404 {
7405
7406 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7407 struct md_rdev *rdev;
7408
7409 spin_lock_irq(&conf->device_lock);
7410 conf->previous_raid_disks = conf->raid_disks;
7411 rdev_for_each(rdev, conf->mddev)
7412 rdev->data_offset = rdev->new_data_offset;
7413 smp_wmb();
7414 conf->reshape_progress = MaxSector;
7415 spin_unlock_irq(&conf->device_lock);
7416 wake_up(&conf->wait_for_overlap);
7417
7418 /* read-ahead size must cover two whole stripes, which is
7419 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7420 */
7421 if (conf->mddev->queue) {
7422 int data_disks = conf->raid_disks - conf->max_degraded;
7423 int stripe = data_disks * ((conf->chunk_sectors << 9)
7424 / PAGE_SIZE);
7425 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7426 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7427 }
7428 }
7429 }
7430
7431 /* This is called from the raid5d thread with mddev_lock held.
7432 * It makes config changes to the device.
7433 */
7434 static void raid5_finish_reshape(struct mddev *mddev)
7435 {
7436 struct r5conf *conf = mddev->private;
7437
7438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7439
7440 if (mddev->delta_disks > 0) {
7441 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7442 set_capacity(mddev->gendisk, mddev->array_sectors);
7443 revalidate_disk(mddev->gendisk);
7444 } else {
7445 int d;
7446 spin_lock_irq(&conf->device_lock);
7447 mddev->degraded = calc_degraded(conf);
7448 spin_unlock_irq(&conf->device_lock);
7449 for (d = conf->raid_disks ;
7450 d < conf->raid_disks - mddev->delta_disks;
7451 d++) {
7452 struct md_rdev *rdev = conf->disks[d].rdev;
7453 if (rdev)
7454 clear_bit(In_sync, &rdev->flags);
7455 rdev = conf->disks[d].replacement;
7456 if (rdev)
7457 clear_bit(In_sync, &rdev->flags);
7458 }
7459 }
7460 mddev->layout = conf->algorithm;
7461 mddev->chunk_sectors = conf->chunk_sectors;
7462 mddev->reshape_position = MaxSector;
7463 mddev->delta_disks = 0;
7464 mddev->reshape_backwards = 0;
7465 }
7466 }
7467
7468 static void raid5_quiesce(struct mddev *mddev, int state)
7469 {
7470 struct r5conf *conf = mddev->private;
7471
7472 switch(state) {
7473 case 2: /* resume for a suspend */
7474 wake_up(&conf->wait_for_overlap);
7475 break;
7476
7477 case 1: /* stop all writes */
7478 lock_all_device_hash_locks_irq(conf);
7479 /* '2' tells resync/reshape to pause so that all
7480 * active stripes can drain
7481 */
7482 conf->quiesce = 2;
7483 wait_event_cmd(conf->wait_for_quiescent,
7484 atomic_read(&conf->active_stripes) == 0 &&
7485 atomic_read(&conf->active_aligned_reads) == 0,
7486 unlock_all_device_hash_locks_irq(conf),
7487 lock_all_device_hash_locks_irq(conf));
7488 conf->quiesce = 1;
7489 unlock_all_device_hash_locks_irq(conf);
7490 /* allow reshape to continue */
7491 wake_up(&conf->wait_for_overlap);
7492 break;
7493
7494 case 0: /* re-enable writes */
7495 lock_all_device_hash_locks_irq(conf);
7496 conf->quiesce = 0;
7497 wake_up(&conf->wait_for_quiescent);
7498 wake_up(&conf->wait_for_overlap);
7499 unlock_all_device_hash_locks_irq(conf);
7500 break;
7501 }
7502 }
7503
7504 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7505 {
7506 struct r0conf *raid0_conf = mddev->private;
7507 sector_t sectors;
7508
7509 /* for raid0 takeover only one zone is supported */
7510 if (raid0_conf->nr_strip_zones > 1) {
7511 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7512 mdname(mddev));
7513 return ERR_PTR(-EINVAL);
7514 }
7515
7516 sectors = raid0_conf->strip_zone[0].zone_end;
7517 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7518 mddev->dev_sectors = sectors;
7519 mddev->new_level = level;
7520 mddev->new_layout = ALGORITHM_PARITY_N;
7521 mddev->new_chunk_sectors = mddev->chunk_sectors;
7522 mddev->raid_disks += 1;
7523 mddev->delta_disks = 1;
7524 /* make sure it will be not marked as dirty */
7525 mddev->recovery_cp = MaxSector;
7526
7527 return setup_conf(mddev);
7528 }
7529
7530 static void *raid5_takeover_raid1(struct mddev *mddev)
7531 {
7532 int chunksect;
7533
7534 if (mddev->raid_disks != 2 ||
7535 mddev->degraded > 1)
7536 return ERR_PTR(-EINVAL);
7537
7538 /* Should check if there are write-behind devices? */
7539
7540 chunksect = 64*2; /* 64K by default */
7541
7542 /* The array must be an exact multiple of chunksize */
7543 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7544 chunksect >>= 1;
7545
7546 if ((chunksect<<9) < STRIPE_SIZE)
7547 /* array size does not allow a suitable chunk size */
7548 return ERR_PTR(-EINVAL);
7549
7550 mddev->new_level = 5;
7551 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7552 mddev->new_chunk_sectors = chunksect;
7553
7554 return setup_conf(mddev);
7555 }
7556
7557 static void *raid5_takeover_raid6(struct mddev *mddev)
7558 {
7559 int new_layout;
7560
7561 switch (mddev->layout) {
7562 case ALGORITHM_LEFT_ASYMMETRIC_6:
7563 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7564 break;
7565 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7566 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7567 break;
7568 case ALGORITHM_LEFT_SYMMETRIC_6:
7569 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7570 break;
7571 case ALGORITHM_RIGHT_SYMMETRIC_6:
7572 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7573 break;
7574 case ALGORITHM_PARITY_0_6:
7575 new_layout = ALGORITHM_PARITY_0;
7576 break;
7577 case ALGORITHM_PARITY_N:
7578 new_layout = ALGORITHM_PARITY_N;
7579 break;
7580 default:
7581 return ERR_PTR(-EINVAL);
7582 }
7583 mddev->new_level = 5;
7584 mddev->new_layout = new_layout;
7585 mddev->delta_disks = -1;
7586 mddev->raid_disks -= 1;
7587 return setup_conf(mddev);
7588 }
7589
7590 static int raid5_check_reshape(struct mddev *mddev)
7591 {
7592 /* For a 2-drive array, the layout and chunk size can be changed
7593 * immediately as not restriping is needed.
7594 * For larger arrays we record the new value - after validation
7595 * to be used by a reshape pass.
7596 */
7597 struct r5conf *conf = mddev->private;
7598 int new_chunk = mddev->new_chunk_sectors;
7599
7600 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7601 return -EINVAL;
7602 if (new_chunk > 0) {
7603 if (!is_power_of_2(new_chunk))
7604 return -EINVAL;
7605 if (new_chunk < (PAGE_SIZE>>9))
7606 return -EINVAL;
7607 if (mddev->array_sectors & (new_chunk-1))
7608 /* not factor of array size */
7609 return -EINVAL;
7610 }
7611
7612 /* They look valid */
7613
7614 if (mddev->raid_disks == 2) {
7615 /* can make the change immediately */
7616 if (mddev->new_layout >= 0) {
7617 conf->algorithm = mddev->new_layout;
7618 mddev->layout = mddev->new_layout;
7619 }
7620 if (new_chunk > 0) {
7621 conf->chunk_sectors = new_chunk ;
7622 mddev->chunk_sectors = new_chunk;
7623 }
7624 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7625 md_wakeup_thread(mddev->thread);
7626 }
7627 return check_reshape(mddev);
7628 }
7629
7630 static int raid6_check_reshape(struct mddev *mddev)
7631 {
7632 int new_chunk = mddev->new_chunk_sectors;
7633
7634 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7635 return -EINVAL;
7636 if (new_chunk > 0) {
7637 if (!is_power_of_2(new_chunk))
7638 return -EINVAL;
7639 if (new_chunk < (PAGE_SIZE >> 9))
7640 return -EINVAL;
7641 if (mddev->array_sectors & (new_chunk-1))
7642 /* not factor of array size */
7643 return -EINVAL;
7644 }
7645
7646 /* They look valid */
7647 return check_reshape(mddev);
7648 }
7649
7650 static void *raid5_takeover(struct mddev *mddev)
7651 {
7652 /* raid5 can take over:
7653 * raid0 - if there is only one strip zone - make it a raid4 layout
7654 * raid1 - if there are two drives. We need to know the chunk size
7655 * raid4 - trivial - just use a raid4 layout.
7656 * raid6 - Providing it is a *_6 layout
7657 */
7658 if (mddev->level == 0)
7659 return raid45_takeover_raid0(mddev, 5);
7660 if (mddev->level == 1)
7661 return raid5_takeover_raid1(mddev);
7662 if (mddev->level == 4) {
7663 mddev->new_layout = ALGORITHM_PARITY_N;
7664 mddev->new_level = 5;
7665 return setup_conf(mddev);
7666 }
7667 if (mddev->level == 6)
7668 return raid5_takeover_raid6(mddev);
7669
7670 return ERR_PTR(-EINVAL);
7671 }
7672
7673 static void *raid4_takeover(struct mddev *mddev)
7674 {
7675 /* raid4 can take over:
7676 * raid0 - if there is only one strip zone
7677 * raid5 - if layout is right
7678 */
7679 if (mddev->level == 0)
7680 return raid45_takeover_raid0(mddev, 4);
7681 if (mddev->level == 5 &&
7682 mddev->layout == ALGORITHM_PARITY_N) {
7683 mddev->new_layout = 0;
7684 mddev->new_level = 4;
7685 return setup_conf(mddev);
7686 }
7687 return ERR_PTR(-EINVAL);
7688 }
7689
7690 static struct md_personality raid5_personality;
7691
7692 static void *raid6_takeover(struct mddev *mddev)
7693 {
7694 /* Currently can only take over a raid5. We map the
7695 * personality to an equivalent raid6 personality
7696 * with the Q block at the end.
7697 */
7698 int new_layout;
7699
7700 if (mddev->pers != &raid5_personality)
7701 return ERR_PTR(-EINVAL);
7702 if (mddev->degraded > 1)
7703 return ERR_PTR(-EINVAL);
7704 if (mddev->raid_disks > 253)
7705 return ERR_PTR(-EINVAL);
7706 if (mddev->raid_disks < 3)
7707 return ERR_PTR(-EINVAL);
7708
7709 switch (mddev->layout) {
7710 case ALGORITHM_LEFT_ASYMMETRIC:
7711 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7712 break;
7713 case ALGORITHM_RIGHT_ASYMMETRIC:
7714 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7715 break;
7716 case ALGORITHM_LEFT_SYMMETRIC:
7717 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7718 break;
7719 case ALGORITHM_RIGHT_SYMMETRIC:
7720 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7721 break;
7722 case ALGORITHM_PARITY_0:
7723 new_layout = ALGORITHM_PARITY_0_6;
7724 break;
7725 case ALGORITHM_PARITY_N:
7726 new_layout = ALGORITHM_PARITY_N;
7727 break;
7728 default:
7729 return ERR_PTR(-EINVAL);
7730 }
7731 mddev->new_level = 6;
7732 mddev->new_layout = new_layout;
7733 mddev->delta_disks = 1;
7734 mddev->raid_disks += 1;
7735 return setup_conf(mddev);
7736 }
7737
7738 static struct md_personality raid6_personality =
7739 {
7740 .name = "raid6",
7741 .level = 6,
7742 .owner = THIS_MODULE,
7743 .make_request = make_request,
7744 .run = run,
7745 .free = raid5_free,
7746 .status = status,
7747 .error_handler = error,
7748 .hot_add_disk = raid5_add_disk,
7749 .hot_remove_disk= raid5_remove_disk,
7750 .spare_active = raid5_spare_active,
7751 .sync_request = sync_request,
7752 .resize = raid5_resize,
7753 .size = raid5_size,
7754 .check_reshape = raid6_check_reshape,
7755 .start_reshape = raid5_start_reshape,
7756 .finish_reshape = raid5_finish_reshape,
7757 .quiesce = raid5_quiesce,
7758 .takeover = raid6_takeover,
7759 .congested = raid5_congested,
7760 .mergeable_bvec = raid5_mergeable_bvec,
7761 };
7762 static struct md_personality raid5_personality =
7763 {
7764 .name = "raid5",
7765 .level = 5,
7766 .owner = THIS_MODULE,
7767 .make_request = make_request,
7768 .run = run,
7769 .free = raid5_free,
7770 .status = status,
7771 .error_handler = error,
7772 .hot_add_disk = raid5_add_disk,
7773 .hot_remove_disk= raid5_remove_disk,
7774 .spare_active = raid5_spare_active,
7775 .sync_request = sync_request,
7776 .resize = raid5_resize,
7777 .size = raid5_size,
7778 .check_reshape = raid5_check_reshape,
7779 .start_reshape = raid5_start_reshape,
7780 .finish_reshape = raid5_finish_reshape,
7781 .quiesce = raid5_quiesce,
7782 .takeover = raid5_takeover,
7783 .congested = raid5_congested,
7784 .mergeable_bvec = raid5_mergeable_bvec,
7785 };
7786
7787 static struct md_personality raid4_personality =
7788 {
7789 .name = "raid4",
7790 .level = 4,
7791 .owner = THIS_MODULE,
7792 .make_request = make_request,
7793 .run = run,
7794 .free = raid5_free,
7795 .status = status,
7796 .error_handler = error,
7797 .hot_add_disk = raid5_add_disk,
7798 .hot_remove_disk= raid5_remove_disk,
7799 .spare_active = raid5_spare_active,
7800 .sync_request = sync_request,
7801 .resize = raid5_resize,
7802 .size = raid5_size,
7803 .check_reshape = raid5_check_reshape,
7804 .start_reshape = raid5_start_reshape,
7805 .finish_reshape = raid5_finish_reshape,
7806 .quiesce = raid5_quiesce,
7807 .takeover = raid4_takeover,
7808 .congested = raid5_congested,
7809 .mergeable_bvec = raid5_mergeable_bvec,
7810 };
7811
7812 static int __init raid5_init(void)
7813 {
7814 raid5_wq = alloc_workqueue("raid5wq",
7815 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7816 if (!raid5_wq)
7817 return -ENOMEM;
7818 register_md_personality(&raid6_personality);
7819 register_md_personality(&raid5_personality);
7820 register_md_personality(&raid4_personality);
7821 return 0;
7822 }
7823
7824 static void raid5_exit(void)
7825 {
7826 unregister_md_personality(&raid6_personality);
7827 unregister_md_personality(&raid5_personality);
7828 unregister_md_personality(&raid4_personality);
7829 destroy_workqueue(raid5_wq);
7830 }
7831
7832 module_init(raid5_init);
7833 module_exit(raid5_exit);
7834 MODULE_LICENSE("GPL");
7835 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7836 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7837 MODULE_ALIAS("md-raid5");
7838 MODULE_ALIAS("md-raid4");
7839 MODULE_ALIAS("md-level-5");
7840 MODULE_ALIAS("md-level-4");
7841 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7842 MODULE_ALIAS("md-raid6");
7843 MODULE_ALIAS("md-level-6");
7844
7845 /* This used to be two separate modules, they were: */
7846 MODULE_ALIAS("raid5");
7847 MODULE_ALIAS("raid6");
This page took 0.289724 seconds and 5 git commands to generate.