c82ce1fd8723d070fdfee347ccee274928b021ab
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
385 {
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
391 head = llist_reverse_order(head);
392 while (head) {
393 int hash;
394
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407 count++;
408 }
409
410 return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415 struct r5conf *conf = sh->raid_conf;
416 unsigned long flags;
417 struct list_head list;
418 int hash;
419 bool wakeup;
420
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433 slow_path:
434 local_irq_save(flags);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
440 spin_unlock(&conf->device_lock);
441 release_inactive_stripe_list(conf, &list, hash);
442 }
443 local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
460
461 hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
470 if (list_empty(conf->inactive_list + hash))
471 goto out;
472 first = (conf->inactive_list + hash)->next;
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
477 BUG_ON(hash != sh->hash_lock_index);
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 struct page *p;
487 int i;
488 int num = sh->raid_conf->pool_size;
489
490 for (i = 0; i < num ; i++) {
491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
496 put_page(p);
497 }
498 }
499
500 static int grow_buffers(struct stripe_head *sh)
501 {
502 int i;
503 int num = sh->raid_conf->pool_size;
504
505 for (i = 0; i < num; i++) {
506 struct page *page;
507
508 if (!(page = alloc_page(GFP_KERNEL))) {
509 return 1;
510 }
511 sh->dev[i].page = page;
512 sh->dev[i].orig_page = page;
513 }
514 return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 struct r5conf *conf = sh->raid_conf;
524 int i, seq;
525
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 BUG_ON(stripe_operations_active(sh));
529 BUG_ON(sh->batch_head);
530
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
540
541 for (i = sh->disks; i--; ) {
542 struct r5dev *dev = &sh->dev[i];
543
544 if (dev->toread || dev->read || dev->towrite || dev->written ||
545 test_bit(R5_LOCKED, &dev->flags)) {
546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh->sector, i, dev->toread,
548 dev->read, dev->towrite, dev->written,
549 test_bit(R5_LOCKED, &dev->flags));
550 WARN_ON(1);
551 }
552 dev->flags = 0;
553 raid5_build_block(sh, i, previous);
554 }
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
557 sh->overwrite_disks = 0;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 short generation)
565 {
566 struct stripe_head *sh;
567
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 if (sh->sector == sector && sh->generation == generation)
571 return sh;
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 return NULL;
574 }
575
576 /*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 int degraded, degraded2;
592 int i;
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
620 rcu_read_lock();
621 degraded2 = 0;
622 for (i = 0; i < conf->raid_disks; i++) {
623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
626 if (!rdev || test_bit(Faulty, &rdev->flags))
627 degraded2++;
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
637 degraded2++;
638 }
639 rcu_read_unlock();
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 int previous, int noblock, int noquiesce)
661 {
662 struct stripe_head *sh;
663 int hash = stripe_hash_locks_hash(sector);
664
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667 spin_lock_irq(conf->hash_locks + hash);
668
669 do {
670 wait_event_lock_irq(conf->wait_for_stripe,
671 conf->quiesce == 0 || noquiesce,
672 *(conf->hash_locks + hash));
673 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!sh) {
675 if (!conf->inactive_blocked)
676 sh = get_free_stripe(conf, hash);
677 if (noblock && sh == NULL)
678 break;
679 if (!sh) {
680 conf->inactive_blocked = 1;
681 wait_event_lock_irq(
682 conf->wait_for_stripe,
683 !list_empty(conf->inactive_list + hash) &&
684 (atomic_read(&conf->active_stripes)
685 < (conf->max_nr_stripes * 3 / 4)
686 || !conf->inactive_blocked),
687 *(conf->hash_locks + hash));
688 conf->inactive_blocked = 0;
689 } else {
690 init_stripe(sh, sector, previous);
691 atomic_inc(&sh->count);
692 }
693 } else if (!atomic_inc_not_zero(&sh->count)) {
694 spin_lock(&conf->device_lock);
695 if (!atomic_read(&sh->count)) {
696 if (!test_bit(STRIPE_HANDLE, &sh->state))
697 atomic_inc(&conf->active_stripes);
698 BUG_ON(list_empty(&sh->lru) &&
699 !test_bit(STRIPE_EXPANDING, &sh->state));
700 list_del_init(&sh->lru);
701 if (sh->group) {
702 sh->group->stripes_cnt--;
703 sh->group = NULL;
704 }
705 }
706 atomic_inc(&sh->count);
707 spin_unlock(&conf->device_lock);
708 }
709 } while (sh == NULL);
710
711 spin_unlock_irq(conf->hash_locks + hash);
712 return sh;
713 }
714
715 static bool is_full_stripe_write(struct stripe_head *sh)
716 {
717 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
718 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
719 }
720
721 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
722 {
723 local_irq_disable();
724 if (sh1 > sh2) {
725 spin_lock(&sh2->stripe_lock);
726 spin_lock_nested(&sh1->stripe_lock, 1);
727 } else {
728 spin_lock(&sh1->stripe_lock);
729 spin_lock_nested(&sh2->stripe_lock, 1);
730 }
731 }
732
733 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
734 {
735 spin_unlock(&sh1->stripe_lock);
736 spin_unlock(&sh2->stripe_lock);
737 local_irq_enable();
738 }
739
740 /* Only freshly new full stripe normal write stripe can be added to a batch list */
741 static bool stripe_can_batch(struct stripe_head *sh)
742 {
743 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
744 is_full_stripe_write(sh);
745 }
746
747 /* we only do back search */
748 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
749 {
750 struct stripe_head *head;
751 sector_t head_sector, tmp_sec;
752 int hash;
753 int dd_idx;
754
755 if (!stripe_can_batch(sh))
756 return;
757 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
758 tmp_sec = sh->sector;
759 if (!sector_div(tmp_sec, conf->chunk_sectors))
760 return;
761 head_sector = sh->sector - STRIPE_SECTORS;
762
763 hash = stripe_hash_locks_hash(head_sector);
764 spin_lock_irq(conf->hash_locks + hash);
765 head = __find_stripe(conf, head_sector, conf->generation);
766 if (head && !atomic_inc_not_zero(&head->count)) {
767 spin_lock(&conf->device_lock);
768 if (!atomic_read(&head->count)) {
769 if (!test_bit(STRIPE_HANDLE, &head->state))
770 atomic_inc(&conf->active_stripes);
771 BUG_ON(list_empty(&head->lru) &&
772 !test_bit(STRIPE_EXPANDING, &head->state));
773 list_del_init(&head->lru);
774 if (head->group) {
775 head->group->stripes_cnt--;
776 head->group = NULL;
777 }
778 }
779 atomic_inc(&head->count);
780 spin_unlock(&conf->device_lock);
781 }
782 spin_unlock_irq(conf->hash_locks + hash);
783
784 if (!head)
785 return;
786 if (!stripe_can_batch(head))
787 goto out;
788
789 lock_two_stripes(head, sh);
790 /* clear_batch_ready clear the flag */
791 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
792 goto unlock_out;
793
794 if (sh->batch_head)
795 goto unlock_out;
796
797 dd_idx = 0;
798 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
799 dd_idx++;
800 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
801 goto unlock_out;
802
803 if (head->batch_head) {
804 spin_lock(&head->batch_head->batch_lock);
805 /* This batch list is already running */
806 if (!stripe_can_batch(head)) {
807 spin_unlock(&head->batch_head->batch_lock);
808 goto unlock_out;
809 }
810
811 /*
812 * at this point, head's BATCH_READY could be cleared, but we
813 * can still add the stripe to batch list
814 */
815 list_add(&sh->batch_list, &head->batch_list);
816 spin_unlock(&head->batch_head->batch_lock);
817
818 sh->batch_head = head->batch_head;
819 } else {
820 head->batch_head = head;
821 sh->batch_head = head->batch_head;
822 spin_lock(&head->batch_lock);
823 list_add_tail(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_lock);
825 }
826
827 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
828 if (atomic_dec_return(&conf->preread_active_stripes)
829 < IO_THRESHOLD)
830 md_wakeup_thread(conf->mddev->thread);
831
832 atomic_inc(&sh->count);
833 unlock_out:
834 unlock_two_stripes(head, sh);
835 out:
836 release_stripe(head);
837 }
838
839 /* Determine if 'data_offset' or 'new_data_offset' should be used
840 * in this stripe_head.
841 */
842 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
843 {
844 sector_t progress = conf->reshape_progress;
845 /* Need a memory barrier to make sure we see the value
846 * of conf->generation, or ->data_offset that was set before
847 * reshape_progress was updated.
848 */
849 smp_rmb();
850 if (progress == MaxSector)
851 return 0;
852 if (sh->generation == conf->generation - 1)
853 return 0;
854 /* We are in a reshape, and this is a new-generation stripe,
855 * so use new_data_offset.
856 */
857 return 1;
858 }
859
860 static void
861 raid5_end_read_request(struct bio *bi, int error);
862 static void
863 raid5_end_write_request(struct bio *bi, int error);
864
865 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
866 {
867 struct r5conf *conf = sh->raid_conf;
868 int i, disks = sh->disks;
869 struct stripe_head *head_sh = sh;
870
871 might_sleep();
872
873 for (i = disks; i--; ) {
874 int rw;
875 int replace_only = 0;
876 struct bio *bi, *rbi;
877 struct md_rdev *rdev, *rrdev = NULL;
878
879 sh = head_sh;
880 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
881 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
882 rw = WRITE_FUA;
883 else
884 rw = WRITE;
885 if (test_bit(R5_Discard, &sh->dev[i].flags))
886 rw |= REQ_DISCARD;
887 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
888 rw = READ;
889 else if (test_and_clear_bit(R5_WantReplace,
890 &sh->dev[i].flags)) {
891 rw = WRITE;
892 replace_only = 1;
893 } else
894 continue;
895 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
896 rw |= REQ_SYNC;
897
898 again:
899 bi = &sh->dev[i].req;
900 rbi = &sh->dev[i].rreq; /* For writing to replacement */
901
902 rcu_read_lock();
903 rrdev = rcu_dereference(conf->disks[i].replacement);
904 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
905 rdev = rcu_dereference(conf->disks[i].rdev);
906 if (!rdev) {
907 rdev = rrdev;
908 rrdev = NULL;
909 }
910 if (rw & WRITE) {
911 if (replace_only)
912 rdev = NULL;
913 if (rdev == rrdev)
914 /* We raced and saw duplicates */
915 rrdev = NULL;
916 } else {
917 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
918 rdev = rrdev;
919 rrdev = NULL;
920 }
921
922 if (rdev && test_bit(Faulty, &rdev->flags))
923 rdev = NULL;
924 if (rdev)
925 atomic_inc(&rdev->nr_pending);
926 if (rrdev && test_bit(Faulty, &rrdev->flags))
927 rrdev = NULL;
928 if (rrdev)
929 atomic_inc(&rrdev->nr_pending);
930 rcu_read_unlock();
931
932 /* We have already checked bad blocks for reads. Now
933 * need to check for writes. We never accept write errors
934 * on the replacement, so we don't to check rrdev.
935 */
936 while ((rw & WRITE) && rdev &&
937 test_bit(WriteErrorSeen, &rdev->flags)) {
938 sector_t first_bad;
939 int bad_sectors;
940 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
941 &first_bad, &bad_sectors);
942 if (!bad)
943 break;
944
945 if (bad < 0) {
946 set_bit(BlockedBadBlocks, &rdev->flags);
947 if (!conf->mddev->external &&
948 conf->mddev->flags) {
949 /* It is very unlikely, but we might
950 * still need to write out the
951 * bad block log - better give it
952 * a chance*/
953 md_check_recovery(conf->mddev);
954 }
955 /*
956 * Because md_wait_for_blocked_rdev
957 * will dec nr_pending, we must
958 * increment it first.
959 */
960 atomic_inc(&rdev->nr_pending);
961 md_wait_for_blocked_rdev(rdev, conf->mddev);
962 } else {
963 /* Acknowledged bad block - skip the write */
964 rdev_dec_pending(rdev, conf->mddev);
965 rdev = NULL;
966 }
967 }
968
969 if (rdev) {
970 if (s->syncing || s->expanding || s->expanded
971 || s->replacing)
972 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
973
974 set_bit(STRIPE_IO_STARTED, &sh->state);
975
976 bio_reset(bi);
977 bi->bi_bdev = rdev->bdev;
978 bi->bi_rw = rw;
979 bi->bi_end_io = (rw & WRITE)
980 ? raid5_end_write_request
981 : raid5_end_read_request;
982 bi->bi_private = sh;
983
984 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
985 __func__, (unsigned long long)sh->sector,
986 bi->bi_rw, i);
987 atomic_inc(&sh->count);
988 if (sh != head_sh)
989 atomic_inc(&head_sh->count);
990 if (use_new_offset(conf, sh))
991 bi->bi_iter.bi_sector = (sh->sector
992 + rdev->new_data_offset);
993 else
994 bi->bi_iter.bi_sector = (sh->sector
995 + rdev->data_offset);
996 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
997 bi->bi_rw |= REQ_NOMERGE;
998
999 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1000 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1001 sh->dev[i].vec.bv_page = sh->dev[i].page;
1002 bi->bi_vcnt = 1;
1003 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1004 bi->bi_io_vec[0].bv_offset = 0;
1005 bi->bi_iter.bi_size = STRIPE_SIZE;
1006 /*
1007 * If this is discard request, set bi_vcnt 0. We don't
1008 * want to confuse SCSI because SCSI will replace payload
1009 */
1010 if (rw & REQ_DISCARD)
1011 bi->bi_vcnt = 0;
1012 if (rrdev)
1013 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1014
1015 if (conf->mddev->gendisk)
1016 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1017 bi, disk_devt(conf->mddev->gendisk),
1018 sh->dev[i].sector);
1019 generic_make_request(bi);
1020 }
1021 if (rrdev) {
1022 if (s->syncing || s->expanding || s->expanded
1023 || s->replacing)
1024 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1025
1026 set_bit(STRIPE_IO_STARTED, &sh->state);
1027
1028 bio_reset(rbi);
1029 rbi->bi_bdev = rrdev->bdev;
1030 rbi->bi_rw = rw;
1031 BUG_ON(!(rw & WRITE));
1032 rbi->bi_end_io = raid5_end_write_request;
1033 rbi->bi_private = sh;
1034
1035 pr_debug("%s: for %llu schedule op %ld on "
1036 "replacement disc %d\n",
1037 __func__, (unsigned long long)sh->sector,
1038 rbi->bi_rw, i);
1039 atomic_inc(&sh->count);
1040 if (sh != head_sh)
1041 atomic_inc(&head_sh->count);
1042 if (use_new_offset(conf, sh))
1043 rbi->bi_iter.bi_sector = (sh->sector
1044 + rrdev->new_data_offset);
1045 else
1046 rbi->bi_iter.bi_sector = (sh->sector
1047 + rrdev->data_offset);
1048 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1049 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1050 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1051 rbi->bi_vcnt = 1;
1052 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1053 rbi->bi_io_vec[0].bv_offset = 0;
1054 rbi->bi_iter.bi_size = STRIPE_SIZE;
1055 /*
1056 * If this is discard request, set bi_vcnt 0. We don't
1057 * want to confuse SCSI because SCSI will replace payload
1058 */
1059 if (rw & REQ_DISCARD)
1060 rbi->bi_vcnt = 0;
1061 if (conf->mddev->gendisk)
1062 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1063 rbi, disk_devt(conf->mddev->gendisk),
1064 sh->dev[i].sector);
1065 generic_make_request(rbi);
1066 }
1067 if (!rdev && !rrdev) {
1068 if (rw & WRITE)
1069 set_bit(STRIPE_DEGRADED, &sh->state);
1070 pr_debug("skip op %ld on disc %d for sector %llu\n",
1071 bi->bi_rw, i, (unsigned long long)sh->sector);
1072 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1073 if (sh->batch_head)
1074 set_bit(STRIPE_BATCH_ERR,
1075 &sh->batch_head->state);
1076 set_bit(STRIPE_HANDLE, &sh->state);
1077 }
1078
1079 if (!head_sh->batch_head)
1080 continue;
1081 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1082 batch_list);
1083 if (sh != head_sh)
1084 goto again;
1085 }
1086 }
1087
1088 static struct dma_async_tx_descriptor *
1089 async_copy_data(int frombio, struct bio *bio, struct page **page,
1090 sector_t sector, struct dma_async_tx_descriptor *tx,
1091 struct stripe_head *sh)
1092 {
1093 struct bio_vec bvl;
1094 struct bvec_iter iter;
1095 struct page *bio_page;
1096 int page_offset;
1097 struct async_submit_ctl submit;
1098 enum async_tx_flags flags = 0;
1099
1100 if (bio->bi_iter.bi_sector >= sector)
1101 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1102 else
1103 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1104
1105 if (frombio)
1106 flags |= ASYNC_TX_FENCE;
1107 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1108
1109 bio_for_each_segment(bvl, bio, iter) {
1110 int len = bvl.bv_len;
1111 int clen;
1112 int b_offset = 0;
1113
1114 if (page_offset < 0) {
1115 b_offset = -page_offset;
1116 page_offset += b_offset;
1117 len -= b_offset;
1118 }
1119
1120 if (len > 0 && page_offset + len > STRIPE_SIZE)
1121 clen = STRIPE_SIZE - page_offset;
1122 else
1123 clen = len;
1124
1125 if (clen > 0) {
1126 b_offset += bvl.bv_offset;
1127 bio_page = bvl.bv_page;
1128 if (frombio) {
1129 if (sh->raid_conf->skip_copy &&
1130 b_offset == 0 && page_offset == 0 &&
1131 clen == STRIPE_SIZE)
1132 *page = bio_page;
1133 else
1134 tx = async_memcpy(*page, bio_page, page_offset,
1135 b_offset, clen, &submit);
1136 } else
1137 tx = async_memcpy(bio_page, *page, b_offset,
1138 page_offset, clen, &submit);
1139 }
1140 /* chain the operations */
1141 submit.depend_tx = tx;
1142
1143 if (clen < len) /* hit end of page */
1144 break;
1145 page_offset += len;
1146 }
1147
1148 return tx;
1149 }
1150
1151 static void ops_complete_biofill(void *stripe_head_ref)
1152 {
1153 struct stripe_head *sh = stripe_head_ref;
1154 struct bio *return_bi = NULL;
1155 int i;
1156
1157 pr_debug("%s: stripe %llu\n", __func__,
1158 (unsigned long long)sh->sector);
1159
1160 /* clear completed biofills */
1161 for (i = sh->disks; i--; ) {
1162 struct r5dev *dev = &sh->dev[i];
1163
1164 /* acknowledge completion of a biofill operation */
1165 /* and check if we need to reply to a read request,
1166 * new R5_Wantfill requests are held off until
1167 * !STRIPE_BIOFILL_RUN
1168 */
1169 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1170 struct bio *rbi, *rbi2;
1171
1172 BUG_ON(!dev->read);
1173 rbi = dev->read;
1174 dev->read = NULL;
1175 while (rbi && rbi->bi_iter.bi_sector <
1176 dev->sector + STRIPE_SECTORS) {
1177 rbi2 = r5_next_bio(rbi, dev->sector);
1178 if (!raid5_dec_bi_active_stripes(rbi)) {
1179 rbi->bi_next = return_bi;
1180 return_bi = rbi;
1181 }
1182 rbi = rbi2;
1183 }
1184 }
1185 }
1186 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1187
1188 return_io(return_bi);
1189
1190 set_bit(STRIPE_HANDLE, &sh->state);
1191 release_stripe(sh);
1192 }
1193
1194 static void ops_run_biofill(struct stripe_head *sh)
1195 {
1196 struct dma_async_tx_descriptor *tx = NULL;
1197 struct async_submit_ctl submit;
1198 int i;
1199
1200 BUG_ON(sh->batch_head);
1201 pr_debug("%s: stripe %llu\n", __func__,
1202 (unsigned long long)sh->sector);
1203
1204 for (i = sh->disks; i--; ) {
1205 struct r5dev *dev = &sh->dev[i];
1206 if (test_bit(R5_Wantfill, &dev->flags)) {
1207 struct bio *rbi;
1208 spin_lock_irq(&sh->stripe_lock);
1209 dev->read = rbi = dev->toread;
1210 dev->toread = NULL;
1211 spin_unlock_irq(&sh->stripe_lock);
1212 while (rbi && rbi->bi_iter.bi_sector <
1213 dev->sector + STRIPE_SECTORS) {
1214 tx = async_copy_data(0, rbi, &dev->page,
1215 dev->sector, tx, sh);
1216 rbi = r5_next_bio(rbi, dev->sector);
1217 }
1218 }
1219 }
1220
1221 atomic_inc(&sh->count);
1222 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1223 async_trigger_callback(&submit);
1224 }
1225
1226 static void mark_target_uptodate(struct stripe_head *sh, int target)
1227 {
1228 struct r5dev *tgt;
1229
1230 if (target < 0)
1231 return;
1232
1233 tgt = &sh->dev[target];
1234 set_bit(R5_UPTODATE, &tgt->flags);
1235 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1236 clear_bit(R5_Wantcompute, &tgt->flags);
1237 }
1238
1239 static void ops_complete_compute(void *stripe_head_ref)
1240 {
1241 struct stripe_head *sh = stripe_head_ref;
1242
1243 pr_debug("%s: stripe %llu\n", __func__,
1244 (unsigned long long)sh->sector);
1245
1246 /* mark the computed target(s) as uptodate */
1247 mark_target_uptodate(sh, sh->ops.target);
1248 mark_target_uptodate(sh, sh->ops.target2);
1249
1250 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1251 if (sh->check_state == check_state_compute_run)
1252 sh->check_state = check_state_compute_result;
1253 set_bit(STRIPE_HANDLE, &sh->state);
1254 release_stripe(sh);
1255 }
1256
1257 /* return a pointer to the address conversion region of the scribble buffer */
1258 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1259 struct raid5_percpu *percpu, int i)
1260 {
1261 void *addr;
1262
1263 addr = flex_array_get(percpu->scribble, i);
1264 return addr + sizeof(struct page *) * (sh->disks + 2);
1265 }
1266
1267 /* return a pointer to the address conversion region of the scribble buffer */
1268 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1269 {
1270 void *addr;
1271
1272 addr = flex_array_get(percpu->scribble, i);
1273 return addr;
1274 }
1275
1276 static struct dma_async_tx_descriptor *
1277 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1278 {
1279 int disks = sh->disks;
1280 struct page **xor_srcs = to_addr_page(percpu, 0);
1281 int target = sh->ops.target;
1282 struct r5dev *tgt = &sh->dev[target];
1283 struct page *xor_dest = tgt->page;
1284 int count = 0;
1285 struct dma_async_tx_descriptor *tx;
1286 struct async_submit_ctl submit;
1287 int i;
1288
1289 BUG_ON(sh->batch_head);
1290
1291 pr_debug("%s: stripe %llu block: %d\n",
1292 __func__, (unsigned long long)sh->sector, target);
1293 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1294
1295 for (i = disks; i--; )
1296 if (i != target)
1297 xor_srcs[count++] = sh->dev[i].page;
1298
1299 atomic_inc(&sh->count);
1300
1301 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1302 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1303 if (unlikely(count == 1))
1304 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1305 else
1306 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1307
1308 return tx;
1309 }
1310
1311 /* set_syndrome_sources - populate source buffers for gen_syndrome
1312 * @srcs - (struct page *) array of size sh->disks
1313 * @sh - stripe_head to parse
1314 *
1315 * Populates srcs in proper layout order for the stripe and returns the
1316 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1317 * destination buffer is recorded in srcs[count] and the Q destination
1318 * is recorded in srcs[count+1]].
1319 */
1320 static int set_syndrome_sources(struct page **srcs,
1321 struct stripe_head *sh,
1322 int srctype)
1323 {
1324 int disks = sh->disks;
1325 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1326 int d0_idx = raid6_d0(sh);
1327 int count;
1328 int i;
1329
1330 for (i = 0; i < disks; i++)
1331 srcs[i] = NULL;
1332
1333 count = 0;
1334 i = d0_idx;
1335 do {
1336 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1337 struct r5dev *dev = &sh->dev[i];
1338
1339 if (i == sh->qd_idx || i == sh->pd_idx ||
1340 (srctype == SYNDROME_SRC_ALL) ||
1341 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1342 test_bit(R5_Wantdrain, &dev->flags)) ||
1343 (srctype == SYNDROME_SRC_WRITTEN &&
1344 dev->written))
1345 srcs[slot] = sh->dev[i].page;
1346 i = raid6_next_disk(i, disks);
1347 } while (i != d0_idx);
1348
1349 return syndrome_disks;
1350 }
1351
1352 static struct dma_async_tx_descriptor *
1353 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1354 {
1355 int disks = sh->disks;
1356 struct page **blocks = to_addr_page(percpu, 0);
1357 int target;
1358 int qd_idx = sh->qd_idx;
1359 struct dma_async_tx_descriptor *tx;
1360 struct async_submit_ctl submit;
1361 struct r5dev *tgt;
1362 struct page *dest;
1363 int i;
1364 int count;
1365
1366 BUG_ON(sh->batch_head);
1367 if (sh->ops.target < 0)
1368 target = sh->ops.target2;
1369 else if (sh->ops.target2 < 0)
1370 target = sh->ops.target;
1371 else
1372 /* we should only have one valid target */
1373 BUG();
1374 BUG_ON(target < 0);
1375 pr_debug("%s: stripe %llu block: %d\n",
1376 __func__, (unsigned long long)sh->sector, target);
1377
1378 tgt = &sh->dev[target];
1379 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1380 dest = tgt->page;
1381
1382 atomic_inc(&sh->count);
1383
1384 if (target == qd_idx) {
1385 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1386 blocks[count] = NULL; /* regenerating p is not necessary */
1387 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1388 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1389 ops_complete_compute, sh,
1390 to_addr_conv(sh, percpu, 0));
1391 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1392 } else {
1393 /* Compute any data- or p-drive using XOR */
1394 count = 0;
1395 for (i = disks; i-- ; ) {
1396 if (i == target || i == qd_idx)
1397 continue;
1398 blocks[count++] = sh->dev[i].page;
1399 }
1400
1401 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1402 NULL, ops_complete_compute, sh,
1403 to_addr_conv(sh, percpu, 0));
1404 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1405 }
1406
1407 return tx;
1408 }
1409
1410 static struct dma_async_tx_descriptor *
1411 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1412 {
1413 int i, count, disks = sh->disks;
1414 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1415 int d0_idx = raid6_d0(sh);
1416 int faila = -1, failb = -1;
1417 int target = sh->ops.target;
1418 int target2 = sh->ops.target2;
1419 struct r5dev *tgt = &sh->dev[target];
1420 struct r5dev *tgt2 = &sh->dev[target2];
1421 struct dma_async_tx_descriptor *tx;
1422 struct page **blocks = to_addr_page(percpu, 0);
1423 struct async_submit_ctl submit;
1424
1425 BUG_ON(sh->batch_head);
1426 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1427 __func__, (unsigned long long)sh->sector, target, target2);
1428 BUG_ON(target < 0 || target2 < 0);
1429 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1430 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1431
1432 /* we need to open-code set_syndrome_sources to handle the
1433 * slot number conversion for 'faila' and 'failb'
1434 */
1435 for (i = 0; i < disks ; i++)
1436 blocks[i] = NULL;
1437 count = 0;
1438 i = d0_idx;
1439 do {
1440 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1441
1442 blocks[slot] = sh->dev[i].page;
1443
1444 if (i == target)
1445 faila = slot;
1446 if (i == target2)
1447 failb = slot;
1448 i = raid6_next_disk(i, disks);
1449 } while (i != d0_idx);
1450
1451 BUG_ON(faila == failb);
1452 if (failb < faila)
1453 swap(faila, failb);
1454 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1455 __func__, (unsigned long long)sh->sector, faila, failb);
1456
1457 atomic_inc(&sh->count);
1458
1459 if (failb == syndrome_disks+1) {
1460 /* Q disk is one of the missing disks */
1461 if (faila == syndrome_disks) {
1462 /* Missing P+Q, just recompute */
1463 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1464 ops_complete_compute, sh,
1465 to_addr_conv(sh, percpu, 0));
1466 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1467 STRIPE_SIZE, &submit);
1468 } else {
1469 struct page *dest;
1470 int data_target;
1471 int qd_idx = sh->qd_idx;
1472
1473 /* Missing D+Q: recompute D from P, then recompute Q */
1474 if (target == qd_idx)
1475 data_target = target2;
1476 else
1477 data_target = target;
1478
1479 count = 0;
1480 for (i = disks; i-- ; ) {
1481 if (i == data_target || i == qd_idx)
1482 continue;
1483 blocks[count++] = sh->dev[i].page;
1484 }
1485 dest = sh->dev[data_target].page;
1486 init_async_submit(&submit,
1487 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1488 NULL, NULL, NULL,
1489 to_addr_conv(sh, percpu, 0));
1490 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1491 &submit);
1492
1493 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1494 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1495 ops_complete_compute, sh,
1496 to_addr_conv(sh, percpu, 0));
1497 return async_gen_syndrome(blocks, 0, count+2,
1498 STRIPE_SIZE, &submit);
1499 }
1500 } else {
1501 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1502 ops_complete_compute, sh,
1503 to_addr_conv(sh, percpu, 0));
1504 if (failb == syndrome_disks) {
1505 /* We're missing D+P. */
1506 return async_raid6_datap_recov(syndrome_disks+2,
1507 STRIPE_SIZE, faila,
1508 blocks, &submit);
1509 } else {
1510 /* We're missing D+D. */
1511 return async_raid6_2data_recov(syndrome_disks+2,
1512 STRIPE_SIZE, faila, failb,
1513 blocks, &submit);
1514 }
1515 }
1516 }
1517
1518 static void ops_complete_prexor(void *stripe_head_ref)
1519 {
1520 struct stripe_head *sh = stripe_head_ref;
1521
1522 pr_debug("%s: stripe %llu\n", __func__,
1523 (unsigned long long)sh->sector);
1524 }
1525
1526 static struct dma_async_tx_descriptor *
1527 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1528 struct dma_async_tx_descriptor *tx)
1529 {
1530 int disks = sh->disks;
1531 struct page **xor_srcs = to_addr_page(percpu, 0);
1532 int count = 0, pd_idx = sh->pd_idx, i;
1533 struct async_submit_ctl submit;
1534
1535 /* existing parity data subtracted */
1536 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1537
1538 BUG_ON(sh->batch_head);
1539 pr_debug("%s: stripe %llu\n", __func__,
1540 (unsigned long long)sh->sector);
1541
1542 for (i = disks; i--; ) {
1543 struct r5dev *dev = &sh->dev[i];
1544 /* Only process blocks that are known to be uptodate */
1545 if (test_bit(R5_Wantdrain, &dev->flags))
1546 xor_srcs[count++] = dev->page;
1547 }
1548
1549 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1550 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1551 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1552
1553 return tx;
1554 }
1555
1556 static struct dma_async_tx_descriptor *
1557 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1558 struct dma_async_tx_descriptor *tx)
1559 {
1560 struct page **blocks = to_addr_page(percpu, 0);
1561 int count;
1562 struct async_submit_ctl submit;
1563
1564 pr_debug("%s: stripe %llu\n", __func__,
1565 (unsigned long long)sh->sector);
1566
1567 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1568
1569 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1570 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1571 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1572
1573 return tx;
1574 }
1575
1576 static struct dma_async_tx_descriptor *
1577 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1578 {
1579 int disks = sh->disks;
1580 int i;
1581 struct stripe_head *head_sh = sh;
1582
1583 pr_debug("%s: stripe %llu\n", __func__,
1584 (unsigned long long)sh->sector);
1585
1586 for (i = disks; i--; ) {
1587 struct r5dev *dev;
1588 struct bio *chosen;
1589
1590 sh = head_sh;
1591 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1592 struct bio *wbi;
1593
1594 again:
1595 dev = &sh->dev[i];
1596 spin_lock_irq(&sh->stripe_lock);
1597 chosen = dev->towrite;
1598 dev->towrite = NULL;
1599 sh->overwrite_disks = 0;
1600 BUG_ON(dev->written);
1601 wbi = dev->written = chosen;
1602 spin_unlock_irq(&sh->stripe_lock);
1603 WARN_ON(dev->page != dev->orig_page);
1604
1605 while (wbi && wbi->bi_iter.bi_sector <
1606 dev->sector + STRIPE_SECTORS) {
1607 if (wbi->bi_rw & REQ_FUA)
1608 set_bit(R5_WantFUA, &dev->flags);
1609 if (wbi->bi_rw & REQ_SYNC)
1610 set_bit(R5_SyncIO, &dev->flags);
1611 if (wbi->bi_rw & REQ_DISCARD)
1612 set_bit(R5_Discard, &dev->flags);
1613 else {
1614 tx = async_copy_data(1, wbi, &dev->page,
1615 dev->sector, tx, sh);
1616 if (dev->page != dev->orig_page) {
1617 set_bit(R5_SkipCopy, &dev->flags);
1618 clear_bit(R5_UPTODATE, &dev->flags);
1619 clear_bit(R5_OVERWRITE, &dev->flags);
1620 }
1621 }
1622 wbi = r5_next_bio(wbi, dev->sector);
1623 }
1624
1625 if (head_sh->batch_head) {
1626 sh = list_first_entry(&sh->batch_list,
1627 struct stripe_head,
1628 batch_list);
1629 if (sh == head_sh)
1630 continue;
1631 goto again;
1632 }
1633 }
1634 }
1635
1636 return tx;
1637 }
1638
1639 static void ops_complete_reconstruct(void *stripe_head_ref)
1640 {
1641 struct stripe_head *sh = stripe_head_ref;
1642 int disks = sh->disks;
1643 int pd_idx = sh->pd_idx;
1644 int qd_idx = sh->qd_idx;
1645 int i;
1646 bool fua = false, sync = false, discard = false;
1647
1648 pr_debug("%s: stripe %llu\n", __func__,
1649 (unsigned long long)sh->sector);
1650
1651 for (i = disks; i--; ) {
1652 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1653 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1654 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1655 }
1656
1657 for (i = disks; i--; ) {
1658 struct r5dev *dev = &sh->dev[i];
1659
1660 if (dev->written || i == pd_idx || i == qd_idx) {
1661 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1662 set_bit(R5_UPTODATE, &dev->flags);
1663 if (fua)
1664 set_bit(R5_WantFUA, &dev->flags);
1665 if (sync)
1666 set_bit(R5_SyncIO, &dev->flags);
1667 }
1668 }
1669
1670 if (sh->reconstruct_state == reconstruct_state_drain_run)
1671 sh->reconstruct_state = reconstruct_state_drain_result;
1672 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1673 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1674 else {
1675 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1676 sh->reconstruct_state = reconstruct_state_result;
1677 }
1678
1679 set_bit(STRIPE_HANDLE, &sh->state);
1680 release_stripe(sh);
1681 }
1682
1683 static void
1684 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1685 struct dma_async_tx_descriptor *tx)
1686 {
1687 int disks = sh->disks;
1688 struct page **xor_srcs;
1689 struct async_submit_ctl submit;
1690 int count, pd_idx = sh->pd_idx, i;
1691 struct page *xor_dest;
1692 int prexor = 0;
1693 unsigned long flags;
1694 int j = 0;
1695 struct stripe_head *head_sh = sh;
1696 int last_stripe;
1697
1698 pr_debug("%s: stripe %llu\n", __func__,
1699 (unsigned long long)sh->sector);
1700
1701 for (i = 0; i < sh->disks; i++) {
1702 if (pd_idx == i)
1703 continue;
1704 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1705 break;
1706 }
1707 if (i >= sh->disks) {
1708 atomic_inc(&sh->count);
1709 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1710 ops_complete_reconstruct(sh);
1711 return;
1712 }
1713 again:
1714 count = 0;
1715 xor_srcs = to_addr_page(percpu, j);
1716 /* check if prexor is active which means only process blocks
1717 * that are part of a read-modify-write (written)
1718 */
1719 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1720 prexor = 1;
1721 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1722 for (i = disks; i--; ) {
1723 struct r5dev *dev = &sh->dev[i];
1724 if (head_sh->dev[i].written)
1725 xor_srcs[count++] = dev->page;
1726 }
1727 } else {
1728 xor_dest = sh->dev[pd_idx].page;
1729 for (i = disks; i--; ) {
1730 struct r5dev *dev = &sh->dev[i];
1731 if (i != pd_idx)
1732 xor_srcs[count++] = dev->page;
1733 }
1734 }
1735
1736 /* 1/ if we prexor'd then the dest is reused as a source
1737 * 2/ if we did not prexor then we are redoing the parity
1738 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1739 * for the synchronous xor case
1740 */
1741 last_stripe = !head_sh->batch_head ||
1742 list_first_entry(&sh->batch_list,
1743 struct stripe_head, batch_list) == head_sh;
1744 if (last_stripe) {
1745 flags = ASYNC_TX_ACK |
1746 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1747
1748 atomic_inc(&head_sh->count);
1749 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1750 to_addr_conv(sh, percpu, j));
1751 } else {
1752 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1753 init_async_submit(&submit, flags, tx, NULL, NULL,
1754 to_addr_conv(sh, percpu, j));
1755 }
1756
1757 if (unlikely(count == 1))
1758 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1759 else
1760 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1761 if (!last_stripe) {
1762 j++;
1763 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1764 batch_list);
1765 goto again;
1766 }
1767 }
1768
1769 static void
1770 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1771 struct dma_async_tx_descriptor *tx)
1772 {
1773 struct async_submit_ctl submit;
1774 struct page **blocks;
1775 int count, i, j = 0;
1776 struct stripe_head *head_sh = sh;
1777 int last_stripe;
1778 int synflags;
1779 unsigned long txflags;
1780
1781 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1782
1783 for (i = 0; i < sh->disks; i++) {
1784 if (sh->pd_idx == i || sh->qd_idx == i)
1785 continue;
1786 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1787 break;
1788 }
1789 if (i >= sh->disks) {
1790 atomic_inc(&sh->count);
1791 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1792 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1793 ops_complete_reconstruct(sh);
1794 return;
1795 }
1796
1797 again:
1798 blocks = to_addr_page(percpu, j);
1799
1800 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1801 synflags = SYNDROME_SRC_WRITTEN;
1802 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1803 } else {
1804 synflags = SYNDROME_SRC_ALL;
1805 txflags = ASYNC_TX_ACK;
1806 }
1807
1808 count = set_syndrome_sources(blocks, sh, synflags);
1809 last_stripe = !head_sh->batch_head ||
1810 list_first_entry(&sh->batch_list,
1811 struct stripe_head, batch_list) == head_sh;
1812
1813 if (last_stripe) {
1814 atomic_inc(&head_sh->count);
1815 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1816 head_sh, to_addr_conv(sh, percpu, j));
1817 } else
1818 init_async_submit(&submit, 0, tx, NULL, NULL,
1819 to_addr_conv(sh, percpu, j));
1820 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1821 if (!last_stripe) {
1822 j++;
1823 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1824 batch_list);
1825 goto again;
1826 }
1827 }
1828
1829 static void ops_complete_check(void *stripe_head_ref)
1830 {
1831 struct stripe_head *sh = stripe_head_ref;
1832
1833 pr_debug("%s: stripe %llu\n", __func__,
1834 (unsigned long long)sh->sector);
1835
1836 sh->check_state = check_state_check_result;
1837 set_bit(STRIPE_HANDLE, &sh->state);
1838 release_stripe(sh);
1839 }
1840
1841 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1842 {
1843 int disks = sh->disks;
1844 int pd_idx = sh->pd_idx;
1845 int qd_idx = sh->qd_idx;
1846 struct page *xor_dest;
1847 struct page **xor_srcs = to_addr_page(percpu, 0);
1848 struct dma_async_tx_descriptor *tx;
1849 struct async_submit_ctl submit;
1850 int count;
1851 int i;
1852
1853 pr_debug("%s: stripe %llu\n", __func__,
1854 (unsigned long long)sh->sector);
1855
1856 BUG_ON(sh->batch_head);
1857 count = 0;
1858 xor_dest = sh->dev[pd_idx].page;
1859 xor_srcs[count++] = xor_dest;
1860 for (i = disks; i--; ) {
1861 if (i == pd_idx || i == qd_idx)
1862 continue;
1863 xor_srcs[count++] = sh->dev[i].page;
1864 }
1865
1866 init_async_submit(&submit, 0, NULL, NULL, NULL,
1867 to_addr_conv(sh, percpu, 0));
1868 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1869 &sh->ops.zero_sum_result, &submit);
1870
1871 atomic_inc(&sh->count);
1872 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1873 tx = async_trigger_callback(&submit);
1874 }
1875
1876 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1877 {
1878 struct page **srcs = to_addr_page(percpu, 0);
1879 struct async_submit_ctl submit;
1880 int count;
1881
1882 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1883 (unsigned long long)sh->sector, checkp);
1884
1885 BUG_ON(sh->batch_head);
1886 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1887 if (!checkp)
1888 srcs[count] = NULL;
1889
1890 atomic_inc(&sh->count);
1891 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1892 sh, to_addr_conv(sh, percpu, 0));
1893 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1894 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1895 }
1896
1897 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1898 {
1899 int overlap_clear = 0, i, disks = sh->disks;
1900 struct dma_async_tx_descriptor *tx = NULL;
1901 struct r5conf *conf = sh->raid_conf;
1902 int level = conf->level;
1903 struct raid5_percpu *percpu;
1904 unsigned long cpu;
1905
1906 cpu = get_cpu();
1907 percpu = per_cpu_ptr(conf->percpu, cpu);
1908 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1909 ops_run_biofill(sh);
1910 overlap_clear++;
1911 }
1912
1913 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1914 if (level < 6)
1915 tx = ops_run_compute5(sh, percpu);
1916 else {
1917 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1918 tx = ops_run_compute6_1(sh, percpu);
1919 else
1920 tx = ops_run_compute6_2(sh, percpu);
1921 }
1922 /* terminate the chain if reconstruct is not set to be run */
1923 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1924 async_tx_ack(tx);
1925 }
1926
1927 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1928 if (level < 6)
1929 tx = ops_run_prexor5(sh, percpu, tx);
1930 else
1931 tx = ops_run_prexor6(sh, percpu, tx);
1932 }
1933
1934 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1935 tx = ops_run_biodrain(sh, tx);
1936 overlap_clear++;
1937 }
1938
1939 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1940 if (level < 6)
1941 ops_run_reconstruct5(sh, percpu, tx);
1942 else
1943 ops_run_reconstruct6(sh, percpu, tx);
1944 }
1945
1946 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1947 if (sh->check_state == check_state_run)
1948 ops_run_check_p(sh, percpu);
1949 else if (sh->check_state == check_state_run_q)
1950 ops_run_check_pq(sh, percpu, 0);
1951 else if (sh->check_state == check_state_run_pq)
1952 ops_run_check_pq(sh, percpu, 1);
1953 else
1954 BUG();
1955 }
1956
1957 if (overlap_clear && !sh->batch_head)
1958 for (i = disks; i--; ) {
1959 struct r5dev *dev = &sh->dev[i];
1960 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1961 wake_up(&sh->raid_conf->wait_for_overlap);
1962 }
1963 put_cpu();
1964 }
1965
1966 static int grow_one_stripe(struct r5conf *conf, int hash)
1967 {
1968 struct stripe_head *sh;
1969 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1970 if (!sh)
1971 return 0;
1972
1973 sh->raid_conf = conf;
1974
1975 spin_lock_init(&sh->stripe_lock);
1976
1977 if (grow_buffers(sh)) {
1978 shrink_buffers(sh);
1979 kmem_cache_free(conf->slab_cache, sh);
1980 return 0;
1981 }
1982 sh->hash_lock_index = hash;
1983 /* we just created an active stripe so... */
1984 atomic_set(&sh->count, 1);
1985 atomic_inc(&conf->active_stripes);
1986 INIT_LIST_HEAD(&sh->lru);
1987
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 sh->batch_head = NULL;
1991 release_stripe(sh);
1992 return 1;
1993 }
1994
1995 static int grow_stripes(struct r5conf *conf, int num)
1996 {
1997 struct kmem_cache *sc;
1998 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1999 int hash;
2000
2001 if (conf->mddev->gendisk)
2002 sprintf(conf->cache_name[0],
2003 "raid%d-%s", conf->level, mdname(conf->mddev));
2004 else
2005 sprintf(conf->cache_name[0],
2006 "raid%d-%p", conf->level, conf->mddev);
2007 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2008
2009 conf->active_name = 0;
2010 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2011 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2012 0, 0, NULL);
2013 if (!sc)
2014 return 1;
2015 conf->slab_cache = sc;
2016 conf->pool_size = devs;
2017 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2018 while (num--) {
2019 if (!grow_one_stripe(conf, hash))
2020 return 1;
2021 conf->max_nr_stripes++;
2022 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
2023 }
2024 return 0;
2025 }
2026
2027 /**
2028 * scribble_len - return the required size of the scribble region
2029 * @num - total number of disks in the array
2030 *
2031 * The size must be enough to contain:
2032 * 1/ a struct page pointer for each device in the array +2
2033 * 2/ room to convert each entry in (1) to its corresponding dma
2034 * (dma_map_page()) or page (page_address()) address.
2035 *
2036 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2037 * calculate over all devices (not just the data blocks), using zeros in place
2038 * of the P and Q blocks.
2039 */
2040 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2041 {
2042 struct flex_array *ret;
2043 size_t len;
2044
2045 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2046 ret = flex_array_alloc(len, cnt, flags);
2047 if (!ret)
2048 return NULL;
2049 /* always prealloc all elements, so no locking is required */
2050 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2051 flex_array_free(ret);
2052 return NULL;
2053 }
2054 return ret;
2055 }
2056
2057 static int resize_stripes(struct r5conf *conf, int newsize)
2058 {
2059 /* Make all the stripes able to hold 'newsize' devices.
2060 * New slots in each stripe get 'page' set to a new page.
2061 *
2062 * This happens in stages:
2063 * 1/ create a new kmem_cache and allocate the required number of
2064 * stripe_heads.
2065 * 2/ gather all the old stripe_heads and transfer the pages across
2066 * to the new stripe_heads. This will have the side effect of
2067 * freezing the array as once all stripe_heads have been collected,
2068 * no IO will be possible. Old stripe heads are freed once their
2069 * pages have been transferred over, and the old kmem_cache is
2070 * freed when all stripes are done.
2071 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2072 * we simple return a failre status - no need to clean anything up.
2073 * 4/ allocate new pages for the new slots in the new stripe_heads.
2074 * If this fails, we don't bother trying the shrink the
2075 * stripe_heads down again, we just leave them as they are.
2076 * As each stripe_head is processed the new one is released into
2077 * active service.
2078 *
2079 * Once step2 is started, we cannot afford to wait for a write,
2080 * so we use GFP_NOIO allocations.
2081 */
2082 struct stripe_head *osh, *nsh;
2083 LIST_HEAD(newstripes);
2084 struct disk_info *ndisks;
2085 unsigned long cpu;
2086 int err;
2087 struct kmem_cache *sc;
2088 int i;
2089 int hash, cnt;
2090
2091 if (newsize <= conf->pool_size)
2092 return 0; /* never bother to shrink */
2093
2094 err = md_allow_write(conf->mddev);
2095 if (err)
2096 return err;
2097
2098 /* Step 1 */
2099 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2100 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2101 0, 0, NULL);
2102 if (!sc)
2103 return -ENOMEM;
2104
2105 for (i = conf->max_nr_stripes; i; i--) {
2106 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2107 if (!nsh)
2108 break;
2109
2110 nsh->raid_conf = conf;
2111 spin_lock_init(&nsh->stripe_lock);
2112
2113 list_add(&nsh->lru, &newstripes);
2114 }
2115 if (i) {
2116 /* didn't get enough, give up */
2117 while (!list_empty(&newstripes)) {
2118 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2119 list_del(&nsh->lru);
2120 kmem_cache_free(sc, nsh);
2121 }
2122 kmem_cache_destroy(sc);
2123 return -ENOMEM;
2124 }
2125 /* Step 2 - Must use GFP_NOIO now.
2126 * OK, we have enough stripes, start collecting inactive
2127 * stripes and copying them over
2128 */
2129 hash = 0;
2130 cnt = 0;
2131 list_for_each_entry(nsh, &newstripes, lru) {
2132 lock_device_hash_lock(conf, hash);
2133 wait_event_cmd(conf->wait_for_stripe,
2134 !list_empty(conf->inactive_list + hash),
2135 unlock_device_hash_lock(conf, hash),
2136 lock_device_hash_lock(conf, hash));
2137 osh = get_free_stripe(conf, hash);
2138 unlock_device_hash_lock(conf, hash);
2139 atomic_set(&nsh->count, 1);
2140 for(i=0; i<conf->pool_size; i++) {
2141 nsh->dev[i].page = osh->dev[i].page;
2142 nsh->dev[i].orig_page = osh->dev[i].page;
2143 }
2144 for( ; i<newsize; i++)
2145 nsh->dev[i].page = NULL;
2146 nsh->hash_lock_index = hash;
2147 kmem_cache_free(conf->slab_cache, osh);
2148 cnt++;
2149 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2150 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2151 hash++;
2152 cnt = 0;
2153 }
2154 }
2155 kmem_cache_destroy(conf->slab_cache);
2156
2157 /* Step 3.
2158 * At this point, we are holding all the stripes so the array
2159 * is completely stalled, so now is a good time to resize
2160 * conf->disks and the scribble region
2161 */
2162 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2163 if (ndisks) {
2164 for (i=0; i<conf->raid_disks; i++)
2165 ndisks[i] = conf->disks[i];
2166 kfree(conf->disks);
2167 conf->disks = ndisks;
2168 } else
2169 err = -ENOMEM;
2170
2171 get_online_cpus();
2172 for_each_present_cpu(cpu) {
2173 struct raid5_percpu *percpu;
2174 struct flex_array *scribble;
2175
2176 percpu = per_cpu_ptr(conf->percpu, cpu);
2177 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2178 STRIPE_SECTORS, GFP_NOIO);
2179
2180 if (scribble) {
2181 flex_array_free(percpu->scribble);
2182 percpu->scribble = scribble;
2183 } else {
2184 err = -ENOMEM;
2185 break;
2186 }
2187 }
2188 put_online_cpus();
2189
2190 /* Step 4, return new stripes to service */
2191 while(!list_empty(&newstripes)) {
2192 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2193 list_del_init(&nsh->lru);
2194
2195 for (i=conf->raid_disks; i < newsize; i++)
2196 if (nsh->dev[i].page == NULL) {
2197 struct page *p = alloc_page(GFP_NOIO);
2198 nsh->dev[i].page = p;
2199 nsh->dev[i].orig_page = p;
2200 if (!p)
2201 err = -ENOMEM;
2202 }
2203 release_stripe(nsh);
2204 }
2205 /* critical section pass, GFP_NOIO no longer needed */
2206
2207 conf->slab_cache = sc;
2208 conf->active_name = 1-conf->active_name;
2209 conf->pool_size = newsize;
2210 return err;
2211 }
2212
2213 static int drop_one_stripe(struct r5conf *conf, int hash)
2214 {
2215 struct stripe_head *sh;
2216
2217 spin_lock_irq(conf->hash_locks + hash);
2218 sh = get_free_stripe(conf, hash);
2219 spin_unlock_irq(conf->hash_locks + hash);
2220 if (!sh)
2221 return 0;
2222 BUG_ON(atomic_read(&sh->count));
2223 shrink_buffers(sh);
2224 kmem_cache_free(conf->slab_cache, sh);
2225 atomic_dec(&conf->active_stripes);
2226 return 1;
2227 }
2228
2229 static void shrink_stripes(struct r5conf *conf)
2230 {
2231 int hash;
2232 for (hash = 0; hash < NR_STRIPE_HASH_LOCKS; hash++)
2233 while (drop_one_stripe(conf, hash))
2234 ;
2235
2236 if (conf->slab_cache)
2237 kmem_cache_destroy(conf->slab_cache);
2238 conf->slab_cache = NULL;
2239 }
2240
2241 static void raid5_end_read_request(struct bio * bi, int error)
2242 {
2243 struct stripe_head *sh = bi->bi_private;
2244 struct r5conf *conf = sh->raid_conf;
2245 int disks = sh->disks, i;
2246 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2247 char b[BDEVNAME_SIZE];
2248 struct md_rdev *rdev = NULL;
2249 sector_t s;
2250
2251 for (i=0 ; i<disks; i++)
2252 if (bi == &sh->dev[i].req)
2253 break;
2254
2255 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2256 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2257 uptodate);
2258 if (i == disks) {
2259 BUG();
2260 return;
2261 }
2262 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2263 /* If replacement finished while this request was outstanding,
2264 * 'replacement' might be NULL already.
2265 * In that case it moved down to 'rdev'.
2266 * rdev is not removed until all requests are finished.
2267 */
2268 rdev = conf->disks[i].replacement;
2269 if (!rdev)
2270 rdev = conf->disks[i].rdev;
2271
2272 if (use_new_offset(conf, sh))
2273 s = sh->sector + rdev->new_data_offset;
2274 else
2275 s = sh->sector + rdev->data_offset;
2276 if (uptodate) {
2277 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2278 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2279 /* Note that this cannot happen on a
2280 * replacement device. We just fail those on
2281 * any error
2282 */
2283 printk_ratelimited(
2284 KERN_INFO
2285 "md/raid:%s: read error corrected"
2286 " (%lu sectors at %llu on %s)\n",
2287 mdname(conf->mddev), STRIPE_SECTORS,
2288 (unsigned long long)s,
2289 bdevname(rdev->bdev, b));
2290 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2291 clear_bit(R5_ReadError, &sh->dev[i].flags);
2292 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2293 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2294 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2295
2296 if (atomic_read(&rdev->read_errors))
2297 atomic_set(&rdev->read_errors, 0);
2298 } else {
2299 const char *bdn = bdevname(rdev->bdev, b);
2300 int retry = 0;
2301 int set_bad = 0;
2302
2303 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2304 atomic_inc(&rdev->read_errors);
2305 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2306 printk_ratelimited(
2307 KERN_WARNING
2308 "md/raid:%s: read error on replacement device "
2309 "(sector %llu on %s).\n",
2310 mdname(conf->mddev),
2311 (unsigned long long)s,
2312 bdn);
2313 else if (conf->mddev->degraded >= conf->max_degraded) {
2314 set_bad = 1;
2315 printk_ratelimited(
2316 KERN_WARNING
2317 "md/raid:%s: read error not correctable "
2318 "(sector %llu on %s).\n",
2319 mdname(conf->mddev),
2320 (unsigned long long)s,
2321 bdn);
2322 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2323 /* Oh, no!!! */
2324 set_bad = 1;
2325 printk_ratelimited(
2326 KERN_WARNING
2327 "md/raid:%s: read error NOT corrected!! "
2328 "(sector %llu on %s).\n",
2329 mdname(conf->mddev),
2330 (unsigned long long)s,
2331 bdn);
2332 } else if (atomic_read(&rdev->read_errors)
2333 > conf->max_nr_stripes)
2334 printk(KERN_WARNING
2335 "md/raid:%s: Too many read errors, failing device %s.\n",
2336 mdname(conf->mddev), bdn);
2337 else
2338 retry = 1;
2339 if (set_bad && test_bit(In_sync, &rdev->flags)
2340 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2341 retry = 1;
2342 if (retry)
2343 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2344 set_bit(R5_ReadError, &sh->dev[i].flags);
2345 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2346 } else
2347 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2348 else {
2349 clear_bit(R5_ReadError, &sh->dev[i].flags);
2350 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2351 if (!(set_bad
2352 && test_bit(In_sync, &rdev->flags)
2353 && rdev_set_badblocks(
2354 rdev, sh->sector, STRIPE_SECTORS, 0)))
2355 md_error(conf->mddev, rdev);
2356 }
2357 }
2358 rdev_dec_pending(rdev, conf->mddev);
2359 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2360 set_bit(STRIPE_HANDLE, &sh->state);
2361 release_stripe(sh);
2362 }
2363
2364 static void raid5_end_write_request(struct bio *bi, int error)
2365 {
2366 struct stripe_head *sh = bi->bi_private;
2367 struct r5conf *conf = sh->raid_conf;
2368 int disks = sh->disks, i;
2369 struct md_rdev *uninitialized_var(rdev);
2370 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2371 sector_t first_bad;
2372 int bad_sectors;
2373 int replacement = 0;
2374
2375 for (i = 0 ; i < disks; i++) {
2376 if (bi == &sh->dev[i].req) {
2377 rdev = conf->disks[i].rdev;
2378 break;
2379 }
2380 if (bi == &sh->dev[i].rreq) {
2381 rdev = conf->disks[i].replacement;
2382 if (rdev)
2383 replacement = 1;
2384 else
2385 /* rdev was removed and 'replacement'
2386 * replaced it. rdev is not removed
2387 * until all requests are finished.
2388 */
2389 rdev = conf->disks[i].rdev;
2390 break;
2391 }
2392 }
2393 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2394 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2395 uptodate);
2396 if (i == disks) {
2397 BUG();
2398 return;
2399 }
2400
2401 if (replacement) {
2402 if (!uptodate)
2403 md_error(conf->mddev, rdev);
2404 else if (is_badblock(rdev, sh->sector,
2405 STRIPE_SECTORS,
2406 &first_bad, &bad_sectors))
2407 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2408 } else {
2409 if (!uptodate) {
2410 set_bit(STRIPE_DEGRADED, &sh->state);
2411 set_bit(WriteErrorSeen, &rdev->flags);
2412 set_bit(R5_WriteError, &sh->dev[i].flags);
2413 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2414 set_bit(MD_RECOVERY_NEEDED,
2415 &rdev->mddev->recovery);
2416 } else if (is_badblock(rdev, sh->sector,
2417 STRIPE_SECTORS,
2418 &first_bad, &bad_sectors)) {
2419 set_bit(R5_MadeGood, &sh->dev[i].flags);
2420 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2421 /* That was a successful write so make
2422 * sure it looks like we already did
2423 * a re-write.
2424 */
2425 set_bit(R5_ReWrite, &sh->dev[i].flags);
2426 }
2427 }
2428 rdev_dec_pending(rdev, conf->mddev);
2429
2430 if (sh->batch_head && !uptodate)
2431 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2432
2433 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2434 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2435 set_bit(STRIPE_HANDLE, &sh->state);
2436 release_stripe(sh);
2437
2438 if (sh->batch_head && sh != sh->batch_head)
2439 release_stripe(sh->batch_head);
2440 }
2441
2442 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2443
2444 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2445 {
2446 struct r5dev *dev = &sh->dev[i];
2447
2448 bio_init(&dev->req);
2449 dev->req.bi_io_vec = &dev->vec;
2450 dev->req.bi_max_vecs = 1;
2451 dev->req.bi_private = sh;
2452
2453 bio_init(&dev->rreq);
2454 dev->rreq.bi_io_vec = &dev->rvec;
2455 dev->rreq.bi_max_vecs = 1;
2456 dev->rreq.bi_private = sh;
2457
2458 dev->flags = 0;
2459 dev->sector = compute_blocknr(sh, i, previous);
2460 }
2461
2462 static void error(struct mddev *mddev, struct md_rdev *rdev)
2463 {
2464 char b[BDEVNAME_SIZE];
2465 struct r5conf *conf = mddev->private;
2466 unsigned long flags;
2467 pr_debug("raid456: error called\n");
2468
2469 spin_lock_irqsave(&conf->device_lock, flags);
2470 clear_bit(In_sync, &rdev->flags);
2471 mddev->degraded = calc_degraded(conf);
2472 spin_unlock_irqrestore(&conf->device_lock, flags);
2473 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2474
2475 set_bit(Blocked, &rdev->flags);
2476 set_bit(Faulty, &rdev->flags);
2477 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2478 printk(KERN_ALERT
2479 "md/raid:%s: Disk failure on %s, disabling device.\n"
2480 "md/raid:%s: Operation continuing on %d devices.\n",
2481 mdname(mddev),
2482 bdevname(rdev->bdev, b),
2483 mdname(mddev),
2484 conf->raid_disks - mddev->degraded);
2485 }
2486
2487 /*
2488 * Input: a 'big' sector number,
2489 * Output: index of the data and parity disk, and the sector # in them.
2490 */
2491 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2492 int previous, int *dd_idx,
2493 struct stripe_head *sh)
2494 {
2495 sector_t stripe, stripe2;
2496 sector_t chunk_number;
2497 unsigned int chunk_offset;
2498 int pd_idx, qd_idx;
2499 int ddf_layout = 0;
2500 sector_t new_sector;
2501 int algorithm = previous ? conf->prev_algo
2502 : conf->algorithm;
2503 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2504 : conf->chunk_sectors;
2505 int raid_disks = previous ? conf->previous_raid_disks
2506 : conf->raid_disks;
2507 int data_disks = raid_disks - conf->max_degraded;
2508
2509 /* First compute the information on this sector */
2510
2511 /*
2512 * Compute the chunk number and the sector offset inside the chunk
2513 */
2514 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2515 chunk_number = r_sector;
2516
2517 /*
2518 * Compute the stripe number
2519 */
2520 stripe = chunk_number;
2521 *dd_idx = sector_div(stripe, data_disks);
2522 stripe2 = stripe;
2523 /*
2524 * Select the parity disk based on the user selected algorithm.
2525 */
2526 pd_idx = qd_idx = -1;
2527 switch(conf->level) {
2528 case 4:
2529 pd_idx = data_disks;
2530 break;
2531 case 5:
2532 switch (algorithm) {
2533 case ALGORITHM_LEFT_ASYMMETRIC:
2534 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2535 if (*dd_idx >= pd_idx)
2536 (*dd_idx)++;
2537 break;
2538 case ALGORITHM_RIGHT_ASYMMETRIC:
2539 pd_idx = sector_div(stripe2, raid_disks);
2540 if (*dd_idx >= pd_idx)
2541 (*dd_idx)++;
2542 break;
2543 case ALGORITHM_LEFT_SYMMETRIC:
2544 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2545 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2546 break;
2547 case ALGORITHM_RIGHT_SYMMETRIC:
2548 pd_idx = sector_div(stripe2, raid_disks);
2549 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2550 break;
2551 case ALGORITHM_PARITY_0:
2552 pd_idx = 0;
2553 (*dd_idx)++;
2554 break;
2555 case ALGORITHM_PARITY_N:
2556 pd_idx = data_disks;
2557 break;
2558 default:
2559 BUG();
2560 }
2561 break;
2562 case 6:
2563
2564 switch (algorithm) {
2565 case ALGORITHM_LEFT_ASYMMETRIC:
2566 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2567 qd_idx = pd_idx + 1;
2568 if (pd_idx == raid_disks-1) {
2569 (*dd_idx)++; /* Q D D D P */
2570 qd_idx = 0;
2571 } else if (*dd_idx >= pd_idx)
2572 (*dd_idx) += 2; /* D D P Q D */
2573 break;
2574 case ALGORITHM_RIGHT_ASYMMETRIC:
2575 pd_idx = sector_div(stripe2, raid_disks);
2576 qd_idx = pd_idx + 1;
2577 if (pd_idx == raid_disks-1) {
2578 (*dd_idx)++; /* Q D D D P */
2579 qd_idx = 0;
2580 } else if (*dd_idx >= pd_idx)
2581 (*dd_idx) += 2; /* D D P Q D */
2582 break;
2583 case ALGORITHM_LEFT_SYMMETRIC:
2584 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2585 qd_idx = (pd_idx + 1) % raid_disks;
2586 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2587 break;
2588 case ALGORITHM_RIGHT_SYMMETRIC:
2589 pd_idx = sector_div(stripe2, raid_disks);
2590 qd_idx = (pd_idx + 1) % raid_disks;
2591 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2592 break;
2593
2594 case ALGORITHM_PARITY_0:
2595 pd_idx = 0;
2596 qd_idx = 1;
2597 (*dd_idx) += 2;
2598 break;
2599 case ALGORITHM_PARITY_N:
2600 pd_idx = data_disks;
2601 qd_idx = data_disks + 1;
2602 break;
2603
2604 case ALGORITHM_ROTATING_ZERO_RESTART:
2605 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2606 * of blocks for computing Q is different.
2607 */
2608 pd_idx = sector_div(stripe2, raid_disks);
2609 qd_idx = pd_idx + 1;
2610 if (pd_idx == raid_disks-1) {
2611 (*dd_idx)++; /* Q D D D P */
2612 qd_idx = 0;
2613 } else if (*dd_idx >= pd_idx)
2614 (*dd_idx) += 2; /* D D P Q D */
2615 ddf_layout = 1;
2616 break;
2617
2618 case ALGORITHM_ROTATING_N_RESTART:
2619 /* Same a left_asymmetric, by first stripe is
2620 * D D D P Q rather than
2621 * Q D D D P
2622 */
2623 stripe2 += 1;
2624 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2625 qd_idx = pd_idx + 1;
2626 if (pd_idx == raid_disks-1) {
2627 (*dd_idx)++; /* Q D D D P */
2628 qd_idx = 0;
2629 } else if (*dd_idx >= pd_idx)
2630 (*dd_idx) += 2; /* D D P Q D */
2631 ddf_layout = 1;
2632 break;
2633
2634 case ALGORITHM_ROTATING_N_CONTINUE:
2635 /* Same as left_symmetric but Q is before P */
2636 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2637 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2638 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2639 ddf_layout = 1;
2640 break;
2641
2642 case ALGORITHM_LEFT_ASYMMETRIC_6:
2643 /* RAID5 left_asymmetric, with Q on last device */
2644 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2645 if (*dd_idx >= pd_idx)
2646 (*dd_idx)++;
2647 qd_idx = raid_disks - 1;
2648 break;
2649
2650 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2651 pd_idx = sector_div(stripe2, raid_disks-1);
2652 if (*dd_idx >= pd_idx)
2653 (*dd_idx)++;
2654 qd_idx = raid_disks - 1;
2655 break;
2656
2657 case ALGORITHM_LEFT_SYMMETRIC_6:
2658 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2659 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2660 qd_idx = raid_disks - 1;
2661 break;
2662
2663 case ALGORITHM_RIGHT_SYMMETRIC_6:
2664 pd_idx = sector_div(stripe2, raid_disks-1);
2665 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2666 qd_idx = raid_disks - 1;
2667 break;
2668
2669 case ALGORITHM_PARITY_0_6:
2670 pd_idx = 0;
2671 (*dd_idx)++;
2672 qd_idx = raid_disks - 1;
2673 break;
2674
2675 default:
2676 BUG();
2677 }
2678 break;
2679 }
2680
2681 if (sh) {
2682 sh->pd_idx = pd_idx;
2683 sh->qd_idx = qd_idx;
2684 sh->ddf_layout = ddf_layout;
2685 }
2686 /*
2687 * Finally, compute the new sector number
2688 */
2689 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2690 return new_sector;
2691 }
2692
2693 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2694 {
2695 struct r5conf *conf = sh->raid_conf;
2696 int raid_disks = sh->disks;
2697 int data_disks = raid_disks - conf->max_degraded;
2698 sector_t new_sector = sh->sector, check;
2699 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2700 : conf->chunk_sectors;
2701 int algorithm = previous ? conf->prev_algo
2702 : conf->algorithm;
2703 sector_t stripe;
2704 int chunk_offset;
2705 sector_t chunk_number;
2706 int dummy1, dd_idx = i;
2707 sector_t r_sector;
2708 struct stripe_head sh2;
2709
2710 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2711 stripe = new_sector;
2712
2713 if (i == sh->pd_idx)
2714 return 0;
2715 switch(conf->level) {
2716 case 4: break;
2717 case 5:
2718 switch (algorithm) {
2719 case ALGORITHM_LEFT_ASYMMETRIC:
2720 case ALGORITHM_RIGHT_ASYMMETRIC:
2721 if (i > sh->pd_idx)
2722 i--;
2723 break;
2724 case ALGORITHM_LEFT_SYMMETRIC:
2725 case ALGORITHM_RIGHT_SYMMETRIC:
2726 if (i < sh->pd_idx)
2727 i += raid_disks;
2728 i -= (sh->pd_idx + 1);
2729 break;
2730 case ALGORITHM_PARITY_0:
2731 i -= 1;
2732 break;
2733 case ALGORITHM_PARITY_N:
2734 break;
2735 default:
2736 BUG();
2737 }
2738 break;
2739 case 6:
2740 if (i == sh->qd_idx)
2741 return 0; /* It is the Q disk */
2742 switch (algorithm) {
2743 case ALGORITHM_LEFT_ASYMMETRIC:
2744 case ALGORITHM_RIGHT_ASYMMETRIC:
2745 case ALGORITHM_ROTATING_ZERO_RESTART:
2746 case ALGORITHM_ROTATING_N_RESTART:
2747 if (sh->pd_idx == raid_disks-1)
2748 i--; /* Q D D D P */
2749 else if (i > sh->pd_idx)
2750 i -= 2; /* D D P Q D */
2751 break;
2752 case ALGORITHM_LEFT_SYMMETRIC:
2753 case ALGORITHM_RIGHT_SYMMETRIC:
2754 if (sh->pd_idx == raid_disks-1)
2755 i--; /* Q D D D P */
2756 else {
2757 /* D D P Q D */
2758 if (i < sh->pd_idx)
2759 i += raid_disks;
2760 i -= (sh->pd_idx + 2);
2761 }
2762 break;
2763 case ALGORITHM_PARITY_0:
2764 i -= 2;
2765 break;
2766 case ALGORITHM_PARITY_N:
2767 break;
2768 case ALGORITHM_ROTATING_N_CONTINUE:
2769 /* Like left_symmetric, but P is before Q */
2770 if (sh->pd_idx == 0)
2771 i--; /* P D D D Q */
2772 else {
2773 /* D D Q P D */
2774 if (i < sh->pd_idx)
2775 i += raid_disks;
2776 i -= (sh->pd_idx + 1);
2777 }
2778 break;
2779 case ALGORITHM_LEFT_ASYMMETRIC_6:
2780 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2781 if (i > sh->pd_idx)
2782 i--;
2783 break;
2784 case ALGORITHM_LEFT_SYMMETRIC_6:
2785 case ALGORITHM_RIGHT_SYMMETRIC_6:
2786 if (i < sh->pd_idx)
2787 i += data_disks + 1;
2788 i -= (sh->pd_idx + 1);
2789 break;
2790 case ALGORITHM_PARITY_0_6:
2791 i -= 1;
2792 break;
2793 default:
2794 BUG();
2795 }
2796 break;
2797 }
2798
2799 chunk_number = stripe * data_disks + i;
2800 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2801
2802 check = raid5_compute_sector(conf, r_sector,
2803 previous, &dummy1, &sh2);
2804 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2805 || sh2.qd_idx != sh->qd_idx) {
2806 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2807 mdname(conf->mddev));
2808 return 0;
2809 }
2810 return r_sector;
2811 }
2812
2813 static void
2814 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2815 int rcw, int expand)
2816 {
2817 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2818 struct r5conf *conf = sh->raid_conf;
2819 int level = conf->level;
2820
2821 if (rcw) {
2822
2823 for (i = disks; i--; ) {
2824 struct r5dev *dev = &sh->dev[i];
2825
2826 if (dev->towrite) {
2827 set_bit(R5_LOCKED, &dev->flags);
2828 set_bit(R5_Wantdrain, &dev->flags);
2829 if (!expand)
2830 clear_bit(R5_UPTODATE, &dev->flags);
2831 s->locked++;
2832 }
2833 }
2834 /* if we are not expanding this is a proper write request, and
2835 * there will be bios with new data to be drained into the
2836 * stripe cache
2837 */
2838 if (!expand) {
2839 if (!s->locked)
2840 /* False alarm, nothing to do */
2841 return;
2842 sh->reconstruct_state = reconstruct_state_drain_run;
2843 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2844 } else
2845 sh->reconstruct_state = reconstruct_state_run;
2846
2847 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2848
2849 if (s->locked + conf->max_degraded == disks)
2850 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2851 atomic_inc(&conf->pending_full_writes);
2852 } else {
2853 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2854 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2855 BUG_ON(level == 6 &&
2856 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2857 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2858
2859 for (i = disks; i--; ) {
2860 struct r5dev *dev = &sh->dev[i];
2861 if (i == pd_idx || i == qd_idx)
2862 continue;
2863
2864 if (dev->towrite &&
2865 (test_bit(R5_UPTODATE, &dev->flags) ||
2866 test_bit(R5_Wantcompute, &dev->flags))) {
2867 set_bit(R5_Wantdrain, &dev->flags);
2868 set_bit(R5_LOCKED, &dev->flags);
2869 clear_bit(R5_UPTODATE, &dev->flags);
2870 s->locked++;
2871 }
2872 }
2873 if (!s->locked)
2874 /* False alarm - nothing to do */
2875 return;
2876 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2877 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2878 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2879 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2880 }
2881
2882 /* keep the parity disk(s) locked while asynchronous operations
2883 * are in flight
2884 */
2885 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2886 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2887 s->locked++;
2888
2889 if (level == 6) {
2890 int qd_idx = sh->qd_idx;
2891 struct r5dev *dev = &sh->dev[qd_idx];
2892
2893 set_bit(R5_LOCKED, &dev->flags);
2894 clear_bit(R5_UPTODATE, &dev->flags);
2895 s->locked++;
2896 }
2897
2898 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2899 __func__, (unsigned long long)sh->sector,
2900 s->locked, s->ops_request);
2901 }
2902
2903 /*
2904 * Each stripe/dev can have one or more bion attached.
2905 * toread/towrite point to the first in a chain.
2906 * The bi_next chain must be in order.
2907 */
2908 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2909 int forwrite, int previous)
2910 {
2911 struct bio **bip;
2912 struct r5conf *conf = sh->raid_conf;
2913 int firstwrite=0;
2914
2915 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2916 (unsigned long long)bi->bi_iter.bi_sector,
2917 (unsigned long long)sh->sector);
2918
2919 /*
2920 * If several bio share a stripe. The bio bi_phys_segments acts as a
2921 * reference count to avoid race. The reference count should already be
2922 * increased before this function is called (for example, in
2923 * make_request()), so other bio sharing this stripe will not free the
2924 * stripe. If a stripe is owned by one stripe, the stripe lock will
2925 * protect it.
2926 */
2927 spin_lock_irq(&sh->stripe_lock);
2928 /* Don't allow new IO added to stripes in batch list */
2929 if (sh->batch_head)
2930 goto overlap;
2931 if (forwrite) {
2932 bip = &sh->dev[dd_idx].towrite;
2933 if (*bip == NULL)
2934 firstwrite = 1;
2935 } else
2936 bip = &sh->dev[dd_idx].toread;
2937 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2938 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2939 goto overlap;
2940 bip = & (*bip)->bi_next;
2941 }
2942 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2943 goto overlap;
2944
2945 if (!forwrite || previous)
2946 clear_bit(STRIPE_BATCH_READY, &sh->state);
2947
2948 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2949 if (*bip)
2950 bi->bi_next = *bip;
2951 *bip = bi;
2952 raid5_inc_bi_active_stripes(bi);
2953
2954 if (forwrite) {
2955 /* check if page is covered */
2956 sector_t sector = sh->dev[dd_idx].sector;
2957 for (bi=sh->dev[dd_idx].towrite;
2958 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2959 bi && bi->bi_iter.bi_sector <= sector;
2960 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2961 if (bio_end_sector(bi) >= sector)
2962 sector = bio_end_sector(bi);
2963 }
2964 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2965 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2966 sh->overwrite_disks++;
2967 }
2968
2969 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2970 (unsigned long long)(*bip)->bi_iter.bi_sector,
2971 (unsigned long long)sh->sector, dd_idx);
2972 spin_unlock_irq(&sh->stripe_lock);
2973
2974 if (conf->mddev->bitmap && firstwrite) {
2975 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2976 STRIPE_SECTORS, 0);
2977 sh->bm_seq = conf->seq_flush+1;
2978 set_bit(STRIPE_BIT_DELAY, &sh->state);
2979 }
2980
2981 if (stripe_can_batch(sh))
2982 stripe_add_to_batch_list(conf, sh);
2983 return 1;
2984
2985 overlap:
2986 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2987 spin_unlock_irq(&sh->stripe_lock);
2988 return 0;
2989 }
2990
2991 static void end_reshape(struct r5conf *conf);
2992
2993 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2994 struct stripe_head *sh)
2995 {
2996 int sectors_per_chunk =
2997 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2998 int dd_idx;
2999 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3000 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3001
3002 raid5_compute_sector(conf,
3003 stripe * (disks - conf->max_degraded)
3004 *sectors_per_chunk + chunk_offset,
3005 previous,
3006 &dd_idx, sh);
3007 }
3008
3009 static void
3010 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3011 struct stripe_head_state *s, int disks,
3012 struct bio **return_bi)
3013 {
3014 int i;
3015 BUG_ON(sh->batch_head);
3016 for (i = disks; i--; ) {
3017 struct bio *bi;
3018 int bitmap_end = 0;
3019
3020 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3021 struct md_rdev *rdev;
3022 rcu_read_lock();
3023 rdev = rcu_dereference(conf->disks[i].rdev);
3024 if (rdev && test_bit(In_sync, &rdev->flags))
3025 atomic_inc(&rdev->nr_pending);
3026 else
3027 rdev = NULL;
3028 rcu_read_unlock();
3029 if (rdev) {
3030 if (!rdev_set_badblocks(
3031 rdev,
3032 sh->sector,
3033 STRIPE_SECTORS, 0))
3034 md_error(conf->mddev, rdev);
3035 rdev_dec_pending(rdev, conf->mddev);
3036 }
3037 }
3038 spin_lock_irq(&sh->stripe_lock);
3039 /* fail all writes first */
3040 bi = sh->dev[i].towrite;
3041 sh->dev[i].towrite = NULL;
3042 sh->overwrite_disks = 0;
3043 spin_unlock_irq(&sh->stripe_lock);
3044 if (bi)
3045 bitmap_end = 1;
3046
3047 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3048 wake_up(&conf->wait_for_overlap);
3049
3050 while (bi && bi->bi_iter.bi_sector <
3051 sh->dev[i].sector + STRIPE_SECTORS) {
3052 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3053 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3054 if (!raid5_dec_bi_active_stripes(bi)) {
3055 md_write_end(conf->mddev);
3056 bi->bi_next = *return_bi;
3057 *return_bi = bi;
3058 }
3059 bi = nextbi;
3060 }
3061 if (bitmap_end)
3062 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3063 STRIPE_SECTORS, 0, 0);
3064 bitmap_end = 0;
3065 /* and fail all 'written' */
3066 bi = sh->dev[i].written;
3067 sh->dev[i].written = NULL;
3068 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3069 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3070 sh->dev[i].page = sh->dev[i].orig_page;
3071 }
3072
3073 if (bi) bitmap_end = 1;
3074 while (bi && bi->bi_iter.bi_sector <
3075 sh->dev[i].sector + STRIPE_SECTORS) {
3076 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3077 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3078 if (!raid5_dec_bi_active_stripes(bi)) {
3079 md_write_end(conf->mddev);
3080 bi->bi_next = *return_bi;
3081 *return_bi = bi;
3082 }
3083 bi = bi2;
3084 }
3085
3086 /* fail any reads if this device is non-operational and
3087 * the data has not reached the cache yet.
3088 */
3089 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3090 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3091 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3092 spin_lock_irq(&sh->stripe_lock);
3093 bi = sh->dev[i].toread;
3094 sh->dev[i].toread = NULL;
3095 spin_unlock_irq(&sh->stripe_lock);
3096 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3097 wake_up(&conf->wait_for_overlap);
3098 while (bi && bi->bi_iter.bi_sector <
3099 sh->dev[i].sector + STRIPE_SECTORS) {
3100 struct bio *nextbi =
3101 r5_next_bio(bi, sh->dev[i].sector);
3102 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3103 if (!raid5_dec_bi_active_stripes(bi)) {
3104 bi->bi_next = *return_bi;
3105 *return_bi = bi;
3106 }
3107 bi = nextbi;
3108 }
3109 }
3110 if (bitmap_end)
3111 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3112 STRIPE_SECTORS, 0, 0);
3113 /* If we were in the middle of a write the parity block might
3114 * still be locked - so just clear all R5_LOCKED flags
3115 */
3116 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3117 }
3118
3119 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3120 if (atomic_dec_and_test(&conf->pending_full_writes))
3121 md_wakeup_thread(conf->mddev->thread);
3122 }
3123
3124 static void
3125 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3126 struct stripe_head_state *s)
3127 {
3128 int abort = 0;
3129 int i;
3130
3131 BUG_ON(sh->batch_head);
3132 clear_bit(STRIPE_SYNCING, &sh->state);
3133 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3134 wake_up(&conf->wait_for_overlap);
3135 s->syncing = 0;
3136 s->replacing = 0;
3137 /* There is nothing more to do for sync/check/repair.
3138 * Don't even need to abort as that is handled elsewhere
3139 * if needed, and not always wanted e.g. if there is a known
3140 * bad block here.
3141 * For recover/replace we need to record a bad block on all
3142 * non-sync devices, or abort the recovery
3143 */
3144 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3145 /* During recovery devices cannot be removed, so
3146 * locking and refcounting of rdevs is not needed
3147 */
3148 for (i = 0; i < conf->raid_disks; i++) {
3149 struct md_rdev *rdev = conf->disks[i].rdev;
3150 if (rdev
3151 && !test_bit(Faulty, &rdev->flags)
3152 && !test_bit(In_sync, &rdev->flags)
3153 && !rdev_set_badblocks(rdev, sh->sector,
3154 STRIPE_SECTORS, 0))
3155 abort = 1;
3156 rdev = conf->disks[i].replacement;
3157 if (rdev
3158 && !test_bit(Faulty, &rdev->flags)
3159 && !test_bit(In_sync, &rdev->flags)
3160 && !rdev_set_badblocks(rdev, sh->sector,
3161 STRIPE_SECTORS, 0))
3162 abort = 1;
3163 }
3164 if (abort)
3165 conf->recovery_disabled =
3166 conf->mddev->recovery_disabled;
3167 }
3168 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3169 }
3170
3171 static int want_replace(struct stripe_head *sh, int disk_idx)
3172 {
3173 struct md_rdev *rdev;
3174 int rv = 0;
3175 /* Doing recovery so rcu locking not required */
3176 rdev = sh->raid_conf->disks[disk_idx].replacement;
3177 if (rdev
3178 && !test_bit(Faulty, &rdev->flags)
3179 && !test_bit(In_sync, &rdev->flags)
3180 && (rdev->recovery_offset <= sh->sector
3181 || rdev->mddev->recovery_cp <= sh->sector))
3182 rv = 1;
3183
3184 return rv;
3185 }
3186
3187 /* fetch_block - checks the given member device to see if its data needs
3188 * to be read or computed to satisfy a request.
3189 *
3190 * Returns 1 when no more member devices need to be checked, otherwise returns
3191 * 0 to tell the loop in handle_stripe_fill to continue
3192 */
3193
3194 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3195 int disk_idx, int disks)
3196 {
3197 struct r5dev *dev = &sh->dev[disk_idx];
3198 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3199 &sh->dev[s->failed_num[1]] };
3200 int i;
3201
3202
3203 if (test_bit(R5_LOCKED, &dev->flags) ||
3204 test_bit(R5_UPTODATE, &dev->flags))
3205 /* No point reading this as we already have it or have
3206 * decided to get it.
3207 */
3208 return 0;
3209
3210 if (dev->toread ||
3211 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3212 /* We need this block to directly satisfy a request */
3213 return 1;
3214
3215 if (s->syncing || s->expanding ||
3216 (s->replacing && want_replace(sh, disk_idx)))
3217 /* When syncing, or expanding we read everything.
3218 * When replacing, we need the replaced block.
3219 */
3220 return 1;
3221
3222 if ((s->failed >= 1 && fdev[0]->toread) ||
3223 (s->failed >= 2 && fdev[1]->toread))
3224 /* If we want to read from a failed device, then
3225 * we need to actually read every other device.
3226 */
3227 return 1;
3228
3229 /* Sometimes neither read-modify-write nor reconstruct-write
3230 * cycles can work. In those cases we read every block we
3231 * can. Then the parity-update is certain to have enough to
3232 * work with.
3233 * This can only be a problem when we need to write something,
3234 * and some device has failed. If either of those tests
3235 * fail we need look no further.
3236 */
3237 if (!s->failed || !s->to_write)
3238 return 0;
3239
3240 if (test_bit(R5_Insync, &dev->flags) &&
3241 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3242 /* Pre-reads at not permitted until after short delay
3243 * to gather multiple requests. However if this
3244 * device is no Insync, the block could only be be computed
3245 * and there is no need to delay that.
3246 */
3247 return 0;
3248
3249 for (i = 0; i < s->failed; i++) {
3250 if (fdev[i]->towrite &&
3251 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3252 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3253 /* If we have a partial write to a failed
3254 * device, then we will need to reconstruct
3255 * the content of that device, so all other
3256 * devices must be read.
3257 */
3258 return 1;
3259 }
3260
3261 /* If we are forced to do a reconstruct-write, either because
3262 * the current RAID6 implementation only supports that, or
3263 * or because parity cannot be trusted and we are currently
3264 * recovering it, there is extra need to be careful.
3265 * If one of the devices that we would need to read, because
3266 * it is not being overwritten (and maybe not written at all)
3267 * is missing/faulty, then we need to read everything we can.
3268 */
3269 if (sh->raid_conf->level != 6 &&
3270 sh->sector < sh->raid_conf->mddev->recovery_cp)
3271 /* reconstruct-write isn't being forced */
3272 return 0;
3273 for (i = 0; i < s->failed; i++) {
3274 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3275 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3276 return 1;
3277 }
3278
3279 return 0;
3280 }
3281
3282 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3283 int disk_idx, int disks)
3284 {
3285 struct r5dev *dev = &sh->dev[disk_idx];
3286
3287 /* is the data in this block needed, and can we get it? */
3288 if (need_this_block(sh, s, disk_idx, disks)) {
3289 /* we would like to get this block, possibly by computing it,
3290 * otherwise read it if the backing disk is insync
3291 */
3292 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3293 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3294 if ((s->uptodate == disks - 1) &&
3295 (s->failed && (disk_idx == s->failed_num[0] ||
3296 disk_idx == s->failed_num[1]))) {
3297 /* have disk failed, and we're requested to fetch it;
3298 * do compute it
3299 */
3300 pr_debug("Computing stripe %llu block %d\n",
3301 (unsigned long long)sh->sector, disk_idx);
3302 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3303 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3304 set_bit(R5_Wantcompute, &dev->flags);
3305 sh->ops.target = disk_idx;
3306 sh->ops.target2 = -1; /* no 2nd target */
3307 s->req_compute = 1;
3308 /* Careful: from this point on 'uptodate' is in the eye
3309 * of raid_run_ops which services 'compute' operations
3310 * before writes. R5_Wantcompute flags a block that will
3311 * be R5_UPTODATE by the time it is needed for a
3312 * subsequent operation.
3313 */
3314 s->uptodate++;
3315 return 1;
3316 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3317 /* Computing 2-failure is *very* expensive; only
3318 * do it if failed >= 2
3319 */
3320 int other;
3321 for (other = disks; other--; ) {
3322 if (other == disk_idx)
3323 continue;
3324 if (!test_bit(R5_UPTODATE,
3325 &sh->dev[other].flags))
3326 break;
3327 }
3328 BUG_ON(other < 0);
3329 pr_debug("Computing stripe %llu blocks %d,%d\n",
3330 (unsigned long long)sh->sector,
3331 disk_idx, other);
3332 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3333 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3334 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3335 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3336 sh->ops.target = disk_idx;
3337 sh->ops.target2 = other;
3338 s->uptodate += 2;
3339 s->req_compute = 1;
3340 return 1;
3341 } else if (test_bit(R5_Insync, &dev->flags)) {
3342 set_bit(R5_LOCKED, &dev->flags);
3343 set_bit(R5_Wantread, &dev->flags);
3344 s->locked++;
3345 pr_debug("Reading block %d (sync=%d)\n",
3346 disk_idx, s->syncing);
3347 }
3348 }
3349
3350 return 0;
3351 }
3352
3353 /**
3354 * handle_stripe_fill - read or compute data to satisfy pending requests.
3355 */
3356 static void handle_stripe_fill(struct stripe_head *sh,
3357 struct stripe_head_state *s,
3358 int disks)
3359 {
3360 int i;
3361
3362 BUG_ON(sh->batch_head);
3363 /* look for blocks to read/compute, skip this if a compute
3364 * is already in flight, or if the stripe contents are in the
3365 * midst of changing due to a write
3366 */
3367 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3368 !sh->reconstruct_state)
3369 for (i = disks; i--; )
3370 if (fetch_block(sh, s, i, disks))
3371 break;
3372 set_bit(STRIPE_HANDLE, &sh->state);
3373 }
3374
3375 /* handle_stripe_clean_event
3376 * any written block on an uptodate or failed drive can be returned.
3377 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3378 * never LOCKED, so we don't need to test 'failed' directly.
3379 */
3380 static void handle_stripe_clean_event(struct r5conf *conf,
3381 struct stripe_head *sh, int disks, struct bio **return_bi)
3382 {
3383 int i;
3384 struct r5dev *dev;
3385 int discard_pending = 0;
3386 struct stripe_head *head_sh = sh;
3387 bool do_endio = false;
3388 int wakeup_nr = 0;
3389
3390 for (i = disks; i--; )
3391 if (sh->dev[i].written) {
3392 dev = &sh->dev[i];
3393 if (!test_bit(R5_LOCKED, &dev->flags) &&
3394 (test_bit(R5_UPTODATE, &dev->flags) ||
3395 test_bit(R5_Discard, &dev->flags) ||
3396 test_bit(R5_SkipCopy, &dev->flags))) {
3397 /* We can return any write requests */
3398 struct bio *wbi, *wbi2;
3399 pr_debug("Return write for disc %d\n", i);
3400 if (test_and_clear_bit(R5_Discard, &dev->flags))
3401 clear_bit(R5_UPTODATE, &dev->flags);
3402 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3403 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3404 }
3405 do_endio = true;
3406
3407 returnbi:
3408 dev->page = dev->orig_page;
3409 wbi = dev->written;
3410 dev->written = NULL;
3411 while (wbi && wbi->bi_iter.bi_sector <
3412 dev->sector + STRIPE_SECTORS) {
3413 wbi2 = r5_next_bio(wbi, dev->sector);
3414 if (!raid5_dec_bi_active_stripes(wbi)) {
3415 md_write_end(conf->mddev);
3416 wbi->bi_next = *return_bi;
3417 *return_bi = wbi;
3418 }
3419 wbi = wbi2;
3420 }
3421 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3422 STRIPE_SECTORS,
3423 !test_bit(STRIPE_DEGRADED, &sh->state),
3424 0);
3425 if (head_sh->batch_head) {
3426 sh = list_first_entry(&sh->batch_list,
3427 struct stripe_head,
3428 batch_list);
3429 if (sh != head_sh) {
3430 dev = &sh->dev[i];
3431 goto returnbi;
3432 }
3433 }
3434 sh = head_sh;
3435 dev = &sh->dev[i];
3436 } else if (test_bit(R5_Discard, &dev->flags))
3437 discard_pending = 1;
3438 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3439 WARN_ON(dev->page != dev->orig_page);
3440 }
3441 if (!discard_pending &&
3442 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3443 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3444 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3445 if (sh->qd_idx >= 0) {
3446 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3447 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3448 }
3449 /* now that discard is done we can proceed with any sync */
3450 clear_bit(STRIPE_DISCARD, &sh->state);
3451 /*
3452 * SCSI discard will change some bio fields and the stripe has
3453 * no updated data, so remove it from hash list and the stripe
3454 * will be reinitialized
3455 */
3456 spin_lock_irq(&conf->device_lock);
3457 unhash:
3458 remove_hash(sh);
3459 if (head_sh->batch_head) {
3460 sh = list_first_entry(&sh->batch_list,
3461 struct stripe_head, batch_list);
3462 if (sh != head_sh)
3463 goto unhash;
3464 }
3465 spin_unlock_irq(&conf->device_lock);
3466 sh = head_sh;
3467
3468 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3469 set_bit(STRIPE_HANDLE, &sh->state);
3470
3471 }
3472
3473 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3474 if (atomic_dec_and_test(&conf->pending_full_writes))
3475 md_wakeup_thread(conf->mddev->thread);
3476
3477 if (!head_sh->batch_head || !do_endio)
3478 return;
3479 for (i = 0; i < head_sh->disks; i++) {
3480 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3481 wakeup_nr++;
3482 }
3483 while (!list_empty(&head_sh->batch_list)) {
3484 int i;
3485 sh = list_first_entry(&head_sh->batch_list,
3486 struct stripe_head, batch_list);
3487 list_del_init(&sh->batch_list);
3488
3489 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3490 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3491 (1 << STRIPE_PREREAD_ACTIVE) |
3492 STRIPE_EXPAND_SYNC_FLAG));
3493 sh->check_state = head_sh->check_state;
3494 sh->reconstruct_state = head_sh->reconstruct_state;
3495 for (i = 0; i < sh->disks; i++) {
3496 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3497 wakeup_nr++;
3498 sh->dev[i].flags = head_sh->dev[i].flags;
3499 }
3500
3501 spin_lock_irq(&sh->stripe_lock);
3502 sh->batch_head = NULL;
3503 spin_unlock_irq(&sh->stripe_lock);
3504 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3505 set_bit(STRIPE_HANDLE, &sh->state);
3506 release_stripe(sh);
3507 }
3508
3509 spin_lock_irq(&head_sh->stripe_lock);
3510 head_sh->batch_head = NULL;
3511 spin_unlock_irq(&head_sh->stripe_lock);
3512 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3513 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3514 set_bit(STRIPE_HANDLE, &head_sh->state);
3515 }
3516
3517 static void handle_stripe_dirtying(struct r5conf *conf,
3518 struct stripe_head *sh,
3519 struct stripe_head_state *s,
3520 int disks)
3521 {
3522 int rmw = 0, rcw = 0, i;
3523 sector_t recovery_cp = conf->mddev->recovery_cp;
3524
3525 /* Check whether resync is now happening or should start.
3526 * If yes, then the array is dirty (after unclean shutdown or
3527 * initial creation), so parity in some stripes might be inconsistent.
3528 * In this case, we need to always do reconstruct-write, to ensure
3529 * that in case of drive failure or read-error correction, we
3530 * generate correct data from the parity.
3531 */
3532 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3533 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3534 s->failed == 0)) {
3535 /* Calculate the real rcw later - for now make it
3536 * look like rcw is cheaper
3537 */
3538 rcw = 1; rmw = 2;
3539 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3540 conf->rmw_level, (unsigned long long)recovery_cp,
3541 (unsigned long long)sh->sector);
3542 } else for (i = disks; i--; ) {
3543 /* would I have to read this buffer for read_modify_write */
3544 struct r5dev *dev = &sh->dev[i];
3545 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3546 !test_bit(R5_LOCKED, &dev->flags) &&
3547 !(test_bit(R5_UPTODATE, &dev->flags) ||
3548 test_bit(R5_Wantcompute, &dev->flags))) {
3549 if (test_bit(R5_Insync, &dev->flags))
3550 rmw++;
3551 else
3552 rmw += 2*disks; /* cannot read it */
3553 }
3554 /* Would I have to read this buffer for reconstruct_write */
3555 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3556 i != sh->pd_idx && i != sh->qd_idx &&
3557 !test_bit(R5_LOCKED, &dev->flags) &&
3558 !(test_bit(R5_UPTODATE, &dev->flags) ||
3559 test_bit(R5_Wantcompute, &dev->flags))) {
3560 if (test_bit(R5_Insync, &dev->flags))
3561 rcw++;
3562 else
3563 rcw += 2*disks;
3564 }
3565 }
3566 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3567 (unsigned long long)sh->sector, rmw, rcw);
3568 set_bit(STRIPE_HANDLE, &sh->state);
3569 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3570 /* prefer read-modify-write, but need to get some data */
3571 if (conf->mddev->queue)
3572 blk_add_trace_msg(conf->mddev->queue,
3573 "raid5 rmw %llu %d",
3574 (unsigned long long)sh->sector, rmw);
3575 for (i = disks; i--; ) {
3576 struct r5dev *dev = &sh->dev[i];
3577 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3578 !test_bit(R5_LOCKED, &dev->flags) &&
3579 !(test_bit(R5_UPTODATE, &dev->flags) ||
3580 test_bit(R5_Wantcompute, &dev->flags)) &&
3581 test_bit(R5_Insync, &dev->flags)) {
3582 if (test_bit(STRIPE_PREREAD_ACTIVE,
3583 &sh->state)) {
3584 pr_debug("Read_old block %d for r-m-w\n",
3585 i);
3586 set_bit(R5_LOCKED, &dev->flags);
3587 set_bit(R5_Wantread, &dev->flags);
3588 s->locked++;
3589 } else {
3590 set_bit(STRIPE_DELAYED, &sh->state);
3591 set_bit(STRIPE_HANDLE, &sh->state);
3592 }
3593 }
3594 }
3595 }
3596 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3597 /* want reconstruct write, but need to get some data */
3598 int qread =0;
3599 rcw = 0;
3600 for (i = disks; i--; ) {
3601 struct r5dev *dev = &sh->dev[i];
3602 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3603 i != sh->pd_idx && i != sh->qd_idx &&
3604 !test_bit(R5_LOCKED, &dev->flags) &&
3605 !(test_bit(R5_UPTODATE, &dev->flags) ||
3606 test_bit(R5_Wantcompute, &dev->flags))) {
3607 rcw++;
3608 if (test_bit(R5_Insync, &dev->flags) &&
3609 test_bit(STRIPE_PREREAD_ACTIVE,
3610 &sh->state)) {
3611 pr_debug("Read_old block "
3612 "%d for Reconstruct\n", i);
3613 set_bit(R5_LOCKED, &dev->flags);
3614 set_bit(R5_Wantread, &dev->flags);
3615 s->locked++;
3616 qread++;
3617 } else {
3618 set_bit(STRIPE_DELAYED, &sh->state);
3619 set_bit(STRIPE_HANDLE, &sh->state);
3620 }
3621 }
3622 }
3623 if (rcw && conf->mddev->queue)
3624 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3625 (unsigned long long)sh->sector,
3626 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3627 }
3628
3629 if (rcw > disks && rmw > disks &&
3630 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3631 set_bit(STRIPE_DELAYED, &sh->state);
3632
3633 /* now if nothing is locked, and if we have enough data,
3634 * we can start a write request
3635 */
3636 /* since handle_stripe can be called at any time we need to handle the
3637 * case where a compute block operation has been submitted and then a
3638 * subsequent call wants to start a write request. raid_run_ops only
3639 * handles the case where compute block and reconstruct are requested
3640 * simultaneously. If this is not the case then new writes need to be
3641 * held off until the compute completes.
3642 */
3643 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3644 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3645 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3646 schedule_reconstruction(sh, s, rcw == 0, 0);
3647 }
3648
3649 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3650 struct stripe_head_state *s, int disks)
3651 {
3652 struct r5dev *dev = NULL;
3653
3654 BUG_ON(sh->batch_head);
3655 set_bit(STRIPE_HANDLE, &sh->state);
3656
3657 switch (sh->check_state) {
3658 case check_state_idle:
3659 /* start a new check operation if there are no failures */
3660 if (s->failed == 0) {
3661 BUG_ON(s->uptodate != disks);
3662 sh->check_state = check_state_run;
3663 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3664 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3665 s->uptodate--;
3666 break;
3667 }
3668 dev = &sh->dev[s->failed_num[0]];
3669 /* fall through */
3670 case check_state_compute_result:
3671 sh->check_state = check_state_idle;
3672 if (!dev)
3673 dev = &sh->dev[sh->pd_idx];
3674
3675 /* check that a write has not made the stripe insync */
3676 if (test_bit(STRIPE_INSYNC, &sh->state))
3677 break;
3678
3679 /* either failed parity check, or recovery is happening */
3680 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3681 BUG_ON(s->uptodate != disks);
3682
3683 set_bit(R5_LOCKED, &dev->flags);
3684 s->locked++;
3685 set_bit(R5_Wantwrite, &dev->flags);
3686
3687 clear_bit(STRIPE_DEGRADED, &sh->state);
3688 set_bit(STRIPE_INSYNC, &sh->state);
3689 break;
3690 case check_state_run:
3691 break; /* we will be called again upon completion */
3692 case check_state_check_result:
3693 sh->check_state = check_state_idle;
3694
3695 /* if a failure occurred during the check operation, leave
3696 * STRIPE_INSYNC not set and let the stripe be handled again
3697 */
3698 if (s->failed)
3699 break;
3700
3701 /* handle a successful check operation, if parity is correct
3702 * we are done. Otherwise update the mismatch count and repair
3703 * parity if !MD_RECOVERY_CHECK
3704 */
3705 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3706 /* parity is correct (on disc,
3707 * not in buffer any more)
3708 */
3709 set_bit(STRIPE_INSYNC, &sh->state);
3710 else {
3711 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3712 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3713 /* don't try to repair!! */
3714 set_bit(STRIPE_INSYNC, &sh->state);
3715 else {
3716 sh->check_state = check_state_compute_run;
3717 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3718 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3719 set_bit(R5_Wantcompute,
3720 &sh->dev[sh->pd_idx].flags);
3721 sh->ops.target = sh->pd_idx;
3722 sh->ops.target2 = -1;
3723 s->uptodate++;
3724 }
3725 }
3726 break;
3727 case check_state_compute_run:
3728 break;
3729 default:
3730 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3731 __func__, sh->check_state,
3732 (unsigned long long) sh->sector);
3733 BUG();
3734 }
3735 }
3736
3737 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3738 struct stripe_head_state *s,
3739 int disks)
3740 {
3741 int pd_idx = sh->pd_idx;
3742 int qd_idx = sh->qd_idx;
3743 struct r5dev *dev;
3744
3745 BUG_ON(sh->batch_head);
3746 set_bit(STRIPE_HANDLE, &sh->state);
3747
3748 BUG_ON(s->failed > 2);
3749
3750 /* Want to check and possibly repair P and Q.
3751 * However there could be one 'failed' device, in which
3752 * case we can only check one of them, possibly using the
3753 * other to generate missing data
3754 */
3755
3756 switch (sh->check_state) {
3757 case check_state_idle:
3758 /* start a new check operation if there are < 2 failures */
3759 if (s->failed == s->q_failed) {
3760 /* The only possible failed device holds Q, so it
3761 * makes sense to check P (If anything else were failed,
3762 * we would have used P to recreate it).
3763 */
3764 sh->check_state = check_state_run;
3765 }
3766 if (!s->q_failed && s->failed < 2) {
3767 /* Q is not failed, and we didn't use it to generate
3768 * anything, so it makes sense to check it
3769 */
3770 if (sh->check_state == check_state_run)
3771 sh->check_state = check_state_run_pq;
3772 else
3773 sh->check_state = check_state_run_q;
3774 }
3775
3776 /* discard potentially stale zero_sum_result */
3777 sh->ops.zero_sum_result = 0;
3778
3779 if (sh->check_state == check_state_run) {
3780 /* async_xor_zero_sum destroys the contents of P */
3781 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3782 s->uptodate--;
3783 }
3784 if (sh->check_state >= check_state_run &&
3785 sh->check_state <= check_state_run_pq) {
3786 /* async_syndrome_zero_sum preserves P and Q, so
3787 * no need to mark them !uptodate here
3788 */
3789 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3790 break;
3791 }
3792
3793 /* we have 2-disk failure */
3794 BUG_ON(s->failed != 2);
3795 /* fall through */
3796 case check_state_compute_result:
3797 sh->check_state = check_state_idle;
3798
3799 /* check that a write has not made the stripe insync */
3800 if (test_bit(STRIPE_INSYNC, &sh->state))
3801 break;
3802
3803 /* now write out any block on a failed drive,
3804 * or P or Q if they were recomputed
3805 */
3806 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3807 if (s->failed == 2) {
3808 dev = &sh->dev[s->failed_num[1]];
3809 s->locked++;
3810 set_bit(R5_LOCKED, &dev->flags);
3811 set_bit(R5_Wantwrite, &dev->flags);
3812 }
3813 if (s->failed >= 1) {
3814 dev = &sh->dev[s->failed_num[0]];
3815 s->locked++;
3816 set_bit(R5_LOCKED, &dev->flags);
3817 set_bit(R5_Wantwrite, &dev->flags);
3818 }
3819 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3820 dev = &sh->dev[pd_idx];
3821 s->locked++;
3822 set_bit(R5_LOCKED, &dev->flags);
3823 set_bit(R5_Wantwrite, &dev->flags);
3824 }
3825 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3826 dev = &sh->dev[qd_idx];
3827 s->locked++;
3828 set_bit(R5_LOCKED, &dev->flags);
3829 set_bit(R5_Wantwrite, &dev->flags);
3830 }
3831 clear_bit(STRIPE_DEGRADED, &sh->state);
3832
3833 set_bit(STRIPE_INSYNC, &sh->state);
3834 break;
3835 case check_state_run:
3836 case check_state_run_q:
3837 case check_state_run_pq:
3838 break; /* we will be called again upon completion */
3839 case check_state_check_result:
3840 sh->check_state = check_state_idle;
3841
3842 /* handle a successful check operation, if parity is correct
3843 * we are done. Otherwise update the mismatch count and repair
3844 * parity if !MD_RECOVERY_CHECK
3845 */
3846 if (sh->ops.zero_sum_result == 0) {
3847 /* both parities are correct */
3848 if (!s->failed)
3849 set_bit(STRIPE_INSYNC, &sh->state);
3850 else {
3851 /* in contrast to the raid5 case we can validate
3852 * parity, but still have a failure to write
3853 * back
3854 */
3855 sh->check_state = check_state_compute_result;
3856 /* Returning at this point means that we may go
3857 * off and bring p and/or q uptodate again so
3858 * we make sure to check zero_sum_result again
3859 * to verify if p or q need writeback
3860 */
3861 }
3862 } else {
3863 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3864 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3865 /* don't try to repair!! */
3866 set_bit(STRIPE_INSYNC, &sh->state);
3867 else {
3868 int *target = &sh->ops.target;
3869
3870 sh->ops.target = -1;
3871 sh->ops.target2 = -1;
3872 sh->check_state = check_state_compute_run;
3873 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3874 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3875 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3876 set_bit(R5_Wantcompute,
3877 &sh->dev[pd_idx].flags);
3878 *target = pd_idx;
3879 target = &sh->ops.target2;
3880 s->uptodate++;
3881 }
3882 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3883 set_bit(R5_Wantcompute,
3884 &sh->dev[qd_idx].flags);
3885 *target = qd_idx;
3886 s->uptodate++;
3887 }
3888 }
3889 }
3890 break;
3891 case check_state_compute_run:
3892 break;
3893 default:
3894 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3895 __func__, sh->check_state,
3896 (unsigned long long) sh->sector);
3897 BUG();
3898 }
3899 }
3900
3901 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3902 {
3903 int i;
3904
3905 /* We have read all the blocks in this stripe and now we need to
3906 * copy some of them into a target stripe for expand.
3907 */
3908 struct dma_async_tx_descriptor *tx = NULL;
3909 BUG_ON(sh->batch_head);
3910 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3911 for (i = 0; i < sh->disks; i++)
3912 if (i != sh->pd_idx && i != sh->qd_idx) {
3913 int dd_idx, j;
3914 struct stripe_head *sh2;
3915 struct async_submit_ctl submit;
3916
3917 sector_t bn = compute_blocknr(sh, i, 1);
3918 sector_t s = raid5_compute_sector(conf, bn, 0,
3919 &dd_idx, NULL);
3920 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3921 if (sh2 == NULL)
3922 /* so far only the early blocks of this stripe
3923 * have been requested. When later blocks
3924 * get requested, we will try again
3925 */
3926 continue;
3927 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3928 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3929 /* must have already done this block */
3930 release_stripe(sh2);
3931 continue;
3932 }
3933
3934 /* place all the copies on one channel */
3935 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3936 tx = async_memcpy(sh2->dev[dd_idx].page,
3937 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3938 &submit);
3939
3940 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3941 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3942 for (j = 0; j < conf->raid_disks; j++)
3943 if (j != sh2->pd_idx &&
3944 j != sh2->qd_idx &&
3945 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3946 break;
3947 if (j == conf->raid_disks) {
3948 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3949 set_bit(STRIPE_HANDLE, &sh2->state);
3950 }
3951 release_stripe(sh2);
3952
3953 }
3954 /* done submitting copies, wait for them to complete */
3955 async_tx_quiesce(&tx);
3956 }
3957
3958 /*
3959 * handle_stripe - do things to a stripe.
3960 *
3961 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3962 * state of various bits to see what needs to be done.
3963 * Possible results:
3964 * return some read requests which now have data
3965 * return some write requests which are safely on storage
3966 * schedule a read on some buffers
3967 * schedule a write of some buffers
3968 * return confirmation of parity correctness
3969 *
3970 */
3971
3972 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3973 {
3974 struct r5conf *conf = sh->raid_conf;
3975 int disks = sh->disks;
3976 struct r5dev *dev;
3977 int i;
3978 int do_recovery = 0;
3979
3980 memset(s, 0, sizeof(*s));
3981
3982 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3983 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3984 s->failed_num[0] = -1;
3985 s->failed_num[1] = -1;
3986
3987 /* Now to look around and see what can be done */
3988 rcu_read_lock();
3989 for (i=disks; i--; ) {
3990 struct md_rdev *rdev;
3991 sector_t first_bad;
3992 int bad_sectors;
3993 int is_bad = 0;
3994
3995 dev = &sh->dev[i];
3996
3997 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3998 i, dev->flags,
3999 dev->toread, dev->towrite, dev->written);
4000 /* maybe we can reply to a read
4001 *
4002 * new wantfill requests are only permitted while
4003 * ops_complete_biofill is guaranteed to be inactive
4004 */
4005 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4006 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4007 set_bit(R5_Wantfill, &dev->flags);
4008
4009 /* now count some things */
4010 if (test_bit(R5_LOCKED, &dev->flags))
4011 s->locked++;
4012 if (test_bit(R5_UPTODATE, &dev->flags))
4013 s->uptodate++;
4014 if (test_bit(R5_Wantcompute, &dev->flags)) {
4015 s->compute++;
4016 BUG_ON(s->compute > 2);
4017 }
4018
4019 if (test_bit(R5_Wantfill, &dev->flags))
4020 s->to_fill++;
4021 else if (dev->toread)
4022 s->to_read++;
4023 if (dev->towrite) {
4024 s->to_write++;
4025 if (!test_bit(R5_OVERWRITE, &dev->flags))
4026 s->non_overwrite++;
4027 }
4028 if (dev->written)
4029 s->written++;
4030 /* Prefer to use the replacement for reads, but only
4031 * if it is recovered enough and has no bad blocks.
4032 */
4033 rdev = rcu_dereference(conf->disks[i].replacement);
4034 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4035 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4036 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4037 &first_bad, &bad_sectors))
4038 set_bit(R5_ReadRepl, &dev->flags);
4039 else {
4040 if (rdev)
4041 set_bit(R5_NeedReplace, &dev->flags);
4042 rdev = rcu_dereference(conf->disks[i].rdev);
4043 clear_bit(R5_ReadRepl, &dev->flags);
4044 }
4045 if (rdev && test_bit(Faulty, &rdev->flags))
4046 rdev = NULL;
4047 if (rdev) {
4048 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4049 &first_bad, &bad_sectors);
4050 if (s->blocked_rdev == NULL
4051 && (test_bit(Blocked, &rdev->flags)
4052 || is_bad < 0)) {
4053 if (is_bad < 0)
4054 set_bit(BlockedBadBlocks,
4055 &rdev->flags);
4056 s->blocked_rdev = rdev;
4057 atomic_inc(&rdev->nr_pending);
4058 }
4059 }
4060 clear_bit(R5_Insync, &dev->flags);
4061 if (!rdev)
4062 /* Not in-sync */;
4063 else if (is_bad) {
4064 /* also not in-sync */
4065 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4066 test_bit(R5_UPTODATE, &dev->flags)) {
4067 /* treat as in-sync, but with a read error
4068 * which we can now try to correct
4069 */
4070 set_bit(R5_Insync, &dev->flags);
4071 set_bit(R5_ReadError, &dev->flags);
4072 }
4073 } else if (test_bit(In_sync, &rdev->flags))
4074 set_bit(R5_Insync, &dev->flags);
4075 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4076 /* in sync if before recovery_offset */
4077 set_bit(R5_Insync, &dev->flags);
4078 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4079 test_bit(R5_Expanded, &dev->flags))
4080 /* If we've reshaped into here, we assume it is Insync.
4081 * We will shortly update recovery_offset to make
4082 * it official.
4083 */
4084 set_bit(R5_Insync, &dev->flags);
4085
4086 if (test_bit(R5_WriteError, &dev->flags)) {
4087 /* This flag does not apply to '.replacement'
4088 * only to .rdev, so make sure to check that*/
4089 struct md_rdev *rdev2 = rcu_dereference(
4090 conf->disks[i].rdev);
4091 if (rdev2 == rdev)
4092 clear_bit(R5_Insync, &dev->flags);
4093 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4094 s->handle_bad_blocks = 1;
4095 atomic_inc(&rdev2->nr_pending);
4096 } else
4097 clear_bit(R5_WriteError, &dev->flags);
4098 }
4099 if (test_bit(R5_MadeGood, &dev->flags)) {
4100 /* This flag does not apply to '.replacement'
4101 * only to .rdev, so make sure to check that*/
4102 struct md_rdev *rdev2 = rcu_dereference(
4103 conf->disks[i].rdev);
4104 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4105 s->handle_bad_blocks = 1;
4106 atomic_inc(&rdev2->nr_pending);
4107 } else
4108 clear_bit(R5_MadeGood, &dev->flags);
4109 }
4110 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4111 struct md_rdev *rdev2 = rcu_dereference(
4112 conf->disks[i].replacement);
4113 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4114 s->handle_bad_blocks = 1;
4115 atomic_inc(&rdev2->nr_pending);
4116 } else
4117 clear_bit(R5_MadeGoodRepl, &dev->flags);
4118 }
4119 if (!test_bit(R5_Insync, &dev->flags)) {
4120 /* The ReadError flag will just be confusing now */
4121 clear_bit(R5_ReadError, &dev->flags);
4122 clear_bit(R5_ReWrite, &dev->flags);
4123 }
4124 if (test_bit(R5_ReadError, &dev->flags))
4125 clear_bit(R5_Insync, &dev->flags);
4126 if (!test_bit(R5_Insync, &dev->flags)) {
4127 if (s->failed < 2)
4128 s->failed_num[s->failed] = i;
4129 s->failed++;
4130 if (rdev && !test_bit(Faulty, &rdev->flags))
4131 do_recovery = 1;
4132 }
4133 }
4134 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4135 /* If there is a failed device being replaced,
4136 * we must be recovering.
4137 * else if we are after recovery_cp, we must be syncing
4138 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4139 * else we can only be replacing
4140 * sync and recovery both need to read all devices, and so
4141 * use the same flag.
4142 */
4143 if (do_recovery ||
4144 sh->sector >= conf->mddev->recovery_cp ||
4145 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4146 s->syncing = 1;
4147 else
4148 s->replacing = 1;
4149 }
4150 rcu_read_unlock();
4151 }
4152
4153 static int clear_batch_ready(struct stripe_head *sh)
4154 {
4155 struct stripe_head *tmp;
4156 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4157 return 0;
4158 spin_lock(&sh->stripe_lock);
4159 if (!sh->batch_head) {
4160 spin_unlock(&sh->stripe_lock);
4161 return 0;
4162 }
4163
4164 /*
4165 * this stripe could be added to a batch list before we check
4166 * BATCH_READY, skips it
4167 */
4168 if (sh->batch_head != sh) {
4169 spin_unlock(&sh->stripe_lock);
4170 return 1;
4171 }
4172 spin_lock(&sh->batch_lock);
4173 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4174 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4175 spin_unlock(&sh->batch_lock);
4176 spin_unlock(&sh->stripe_lock);
4177
4178 /*
4179 * BATCH_READY is cleared, no new stripes can be added.
4180 * batch_list can be accessed without lock
4181 */
4182 return 0;
4183 }
4184
4185 static void check_break_stripe_batch_list(struct stripe_head *sh)
4186 {
4187 struct stripe_head *head_sh, *next;
4188 int i;
4189
4190 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4191 return;
4192
4193 head_sh = sh;
4194 do {
4195 sh = list_first_entry(&sh->batch_list,
4196 struct stripe_head, batch_list);
4197 BUG_ON(sh == head_sh);
4198 } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4199
4200 while (sh != head_sh) {
4201 next = list_first_entry(&sh->batch_list,
4202 struct stripe_head, batch_list);
4203 list_del_init(&sh->batch_list);
4204
4205 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4206 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4207 (1 << STRIPE_PREREAD_ACTIVE) |
4208 (1 << STRIPE_DEGRADED) |
4209 STRIPE_EXPAND_SYNC_FLAG));
4210 sh->check_state = head_sh->check_state;
4211 sh->reconstruct_state = head_sh->reconstruct_state;
4212 for (i = 0; i < sh->disks; i++)
4213 sh->dev[i].flags = head_sh->dev[i].flags &
4214 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4215
4216 spin_lock_irq(&sh->stripe_lock);
4217 sh->batch_head = NULL;
4218 spin_unlock_irq(&sh->stripe_lock);
4219
4220 set_bit(STRIPE_HANDLE, &sh->state);
4221 release_stripe(sh);
4222
4223 sh = next;
4224 }
4225 }
4226
4227 static void handle_stripe(struct stripe_head *sh)
4228 {
4229 struct stripe_head_state s;
4230 struct r5conf *conf = sh->raid_conf;
4231 int i;
4232 int prexor;
4233 int disks = sh->disks;
4234 struct r5dev *pdev, *qdev;
4235
4236 clear_bit(STRIPE_HANDLE, &sh->state);
4237 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4238 /* already being handled, ensure it gets handled
4239 * again when current action finishes */
4240 set_bit(STRIPE_HANDLE, &sh->state);
4241 return;
4242 }
4243
4244 if (clear_batch_ready(sh) ) {
4245 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4246 return;
4247 }
4248
4249 check_break_stripe_batch_list(sh);
4250
4251 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4252 spin_lock(&sh->stripe_lock);
4253 /* Cannot process 'sync' concurrently with 'discard' */
4254 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4255 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4256 set_bit(STRIPE_SYNCING, &sh->state);
4257 clear_bit(STRIPE_INSYNC, &sh->state);
4258 clear_bit(STRIPE_REPLACED, &sh->state);
4259 }
4260 spin_unlock(&sh->stripe_lock);
4261 }
4262 clear_bit(STRIPE_DELAYED, &sh->state);
4263
4264 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4265 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4266 (unsigned long long)sh->sector, sh->state,
4267 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4268 sh->check_state, sh->reconstruct_state);
4269
4270 analyse_stripe(sh, &s);
4271
4272 if (s.handle_bad_blocks) {
4273 set_bit(STRIPE_HANDLE, &sh->state);
4274 goto finish;
4275 }
4276
4277 if (unlikely(s.blocked_rdev)) {
4278 if (s.syncing || s.expanding || s.expanded ||
4279 s.replacing || s.to_write || s.written) {
4280 set_bit(STRIPE_HANDLE, &sh->state);
4281 goto finish;
4282 }
4283 /* There is nothing for the blocked_rdev to block */
4284 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4285 s.blocked_rdev = NULL;
4286 }
4287
4288 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4289 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4290 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4291 }
4292
4293 pr_debug("locked=%d uptodate=%d to_read=%d"
4294 " to_write=%d failed=%d failed_num=%d,%d\n",
4295 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4296 s.failed_num[0], s.failed_num[1]);
4297 /* check if the array has lost more than max_degraded devices and,
4298 * if so, some requests might need to be failed.
4299 */
4300 if (s.failed > conf->max_degraded) {
4301 sh->check_state = 0;
4302 sh->reconstruct_state = 0;
4303 if (s.to_read+s.to_write+s.written)
4304 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4305 if (s.syncing + s.replacing)
4306 handle_failed_sync(conf, sh, &s);
4307 }
4308
4309 /* Now we check to see if any write operations have recently
4310 * completed
4311 */
4312 prexor = 0;
4313 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4314 prexor = 1;
4315 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4316 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4317 sh->reconstruct_state = reconstruct_state_idle;
4318
4319 /* All the 'written' buffers and the parity block are ready to
4320 * be written back to disk
4321 */
4322 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4323 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4324 BUG_ON(sh->qd_idx >= 0 &&
4325 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4326 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4327 for (i = disks; i--; ) {
4328 struct r5dev *dev = &sh->dev[i];
4329 if (test_bit(R5_LOCKED, &dev->flags) &&
4330 (i == sh->pd_idx || i == sh->qd_idx ||
4331 dev->written)) {
4332 pr_debug("Writing block %d\n", i);
4333 set_bit(R5_Wantwrite, &dev->flags);
4334 if (prexor)
4335 continue;
4336 if (s.failed > 1)
4337 continue;
4338 if (!test_bit(R5_Insync, &dev->flags) ||
4339 ((i == sh->pd_idx || i == sh->qd_idx) &&
4340 s.failed == 0))
4341 set_bit(STRIPE_INSYNC, &sh->state);
4342 }
4343 }
4344 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4345 s.dec_preread_active = 1;
4346 }
4347
4348 /*
4349 * might be able to return some write requests if the parity blocks
4350 * are safe, or on a failed drive
4351 */
4352 pdev = &sh->dev[sh->pd_idx];
4353 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4354 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4355 qdev = &sh->dev[sh->qd_idx];
4356 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4357 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4358 || conf->level < 6;
4359
4360 if (s.written &&
4361 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4362 && !test_bit(R5_LOCKED, &pdev->flags)
4363 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4364 test_bit(R5_Discard, &pdev->flags))))) &&
4365 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4366 && !test_bit(R5_LOCKED, &qdev->flags)
4367 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4368 test_bit(R5_Discard, &qdev->flags))))))
4369 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4370
4371 /* Now we might consider reading some blocks, either to check/generate
4372 * parity, or to satisfy requests
4373 * or to load a block that is being partially written.
4374 */
4375 if (s.to_read || s.non_overwrite
4376 || (conf->level == 6 && s.to_write && s.failed)
4377 || (s.syncing && (s.uptodate + s.compute < disks))
4378 || s.replacing
4379 || s.expanding)
4380 handle_stripe_fill(sh, &s, disks);
4381
4382 /* Now to consider new write requests and what else, if anything
4383 * should be read. We do not handle new writes when:
4384 * 1/ A 'write' operation (copy+xor) is already in flight.
4385 * 2/ A 'check' operation is in flight, as it may clobber the parity
4386 * block.
4387 */
4388 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4389 handle_stripe_dirtying(conf, sh, &s, disks);
4390
4391 /* maybe we need to check and possibly fix the parity for this stripe
4392 * Any reads will already have been scheduled, so we just see if enough
4393 * data is available. The parity check is held off while parity
4394 * dependent operations are in flight.
4395 */
4396 if (sh->check_state ||
4397 (s.syncing && s.locked == 0 &&
4398 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4399 !test_bit(STRIPE_INSYNC, &sh->state))) {
4400 if (conf->level == 6)
4401 handle_parity_checks6(conf, sh, &s, disks);
4402 else
4403 handle_parity_checks5(conf, sh, &s, disks);
4404 }
4405
4406 if ((s.replacing || s.syncing) && s.locked == 0
4407 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4408 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4409 /* Write out to replacement devices where possible */
4410 for (i = 0; i < conf->raid_disks; i++)
4411 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4412 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4413 set_bit(R5_WantReplace, &sh->dev[i].flags);
4414 set_bit(R5_LOCKED, &sh->dev[i].flags);
4415 s.locked++;
4416 }
4417 if (s.replacing)
4418 set_bit(STRIPE_INSYNC, &sh->state);
4419 set_bit(STRIPE_REPLACED, &sh->state);
4420 }
4421 if ((s.syncing || s.replacing) && s.locked == 0 &&
4422 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4423 test_bit(STRIPE_INSYNC, &sh->state)) {
4424 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4425 clear_bit(STRIPE_SYNCING, &sh->state);
4426 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4427 wake_up(&conf->wait_for_overlap);
4428 }
4429
4430 /* If the failed drives are just a ReadError, then we might need
4431 * to progress the repair/check process
4432 */
4433 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4434 for (i = 0; i < s.failed; i++) {
4435 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4436 if (test_bit(R5_ReadError, &dev->flags)
4437 && !test_bit(R5_LOCKED, &dev->flags)
4438 && test_bit(R5_UPTODATE, &dev->flags)
4439 ) {
4440 if (!test_bit(R5_ReWrite, &dev->flags)) {
4441 set_bit(R5_Wantwrite, &dev->flags);
4442 set_bit(R5_ReWrite, &dev->flags);
4443 set_bit(R5_LOCKED, &dev->flags);
4444 s.locked++;
4445 } else {
4446 /* let's read it back */
4447 set_bit(R5_Wantread, &dev->flags);
4448 set_bit(R5_LOCKED, &dev->flags);
4449 s.locked++;
4450 }
4451 }
4452 }
4453
4454 /* Finish reconstruct operations initiated by the expansion process */
4455 if (sh->reconstruct_state == reconstruct_state_result) {
4456 struct stripe_head *sh_src
4457 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4458 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4459 /* sh cannot be written until sh_src has been read.
4460 * so arrange for sh to be delayed a little
4461 */
4462 set_bit(STRIPE_DELAYED, &sh->state);
4463 set_bit(STRIPE_HANDLE, &sh->state);
4464 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4465 &sh_src->state))
4466 atomic_inc(&conf->preread_active_stripes);
4467 release_stripe(sh_src);
4468 goto finish;
4469 }
4470 if (sh_src)
4471 release_stripe(sh_src);
4472
4473 sh->reconstruct_state = reconstruct_state_idle;
4474 clear_bit(STRIPE_EXPANDING, &sh->state);
4475 for (i = conf->raid_disks; i--; ) {
4476 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4477 set_bit(R5_LOCKED, &sh->dev[i].flags);
4478 s.locked++;
4479 }
4480 }
4481
4482 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4483 !sh->reconstruct_state) {
4484 /* Need to write out all blocks after computing parity */
4485 sh->disks = conf->raid_disks;
4486 stripe_set_idx(sh->sector, conf, 0, sh);
4487 schedule_reconstruction(sh, &s, 1, 1);
4488 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4489 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4490 atomic_dec(&conf->reshape_stripes);
4491 wake_up(&conf->wait_for_overlap);
4492 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4493 }
4494
4495 if (s.expanding && s.locked == 0 &&
4496 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4497 handle_stripe_expansion(conf, sh);
4498
4499 finish:
4500 /* wait for this device to become unblocked */
4501 if (unlikely(s.blocked_rdev)) {
4502 if (conf->mddev->external)
4503 md_wait_for_blocked_rdev(s.blocked_rdev,
4504 conf->mddev);
4505 else
4506 /* Internal metadata will immediately
4507 * be written by raid5d, so we don't
4508 * need to wait here.
4509 */
4510 rdev_dec_pending(s.blocked_rdev,
4511 conf->mddev);
4512 }
4513
4514 if (s.handle_bad_blocks)
4515 for (i = disks; i--; ) {
4516 struct md_rdev *rdev;
4517 struct r5dev *dev = &sh->dev[i];
4518 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4519 /* We own a safe reference to the rdev */
4520 rdev = conf->disks[i].rdev;
4521 if (!rdev_set_badblocks(rdev, sh->sector,
4522 STRIPE_SECTORS, 0))
4523 md_error(conf->mddev, rdev);
4524 rdev_dec_pending(rdev, conf->mddev);
4525 }
4526 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4527 rdev = conf->disks[i].rdev;
4528 rdev_clear_badblocks(rdev, sh->sector,
4529 STRIPE_SECTORS, 0);
4530 rdev_dec_pending(rdev, conf->mddev);
4531 }
4532 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4533 rdev = conf->disks[i].replacement;
4534 if (!rdev)
4535 /* rdev have been moved down */
4536 rdev = conf->disks[i].rdev;
4537 rdev_clear_badblocks(rdev, sh->sector,
4538 STRIPE_SECTORS, 0);
4539 rdev_dec_pending(rdev, conf->mddev);
4540 }
4541 }
4542
4543 if (s.ops_request)
4544 raid_run_ops(sh, s.ops_request);
4545
4546 ops_run_io(sh, &s);
4547
4548 if (s.dec_preread_active) {
4549 /* We delay this until after ops_run_io so that if make_request
4550 * is waiting on a flush, it won't continue until the writes
4551 * have actually been submitted.
4552 */
4553 atomic_dec(&conf->preread_active_stripes);
4554 if (atomic_read(&conf->preread_active_stripes) <
4555 IO_THRESHOLD)
4556 md_wakeup_thread(conf->mddev->thread);
4557 }
4558
4559 return_io(s.return_bi);
4560
4561 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4562 }
4563
4564 static void raid5_activate_delayed(struct r5conf *conf)
4565 {
4566 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4567 while (!list_empty(&conf->delayed_list)) {
4568 struct list_head *l = conf->delayed_list.next;
4569 struct stripe_head *sh;
4570 sh = list_entry(l, struct stripe_head, lru);
4571 list_del_init(l);
4572 clear_bit(STRIPE_DELAYED, &sh->state);
4573 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4574 atomic_inc(&conf->preread_active_stripes);
4575 list_add_tail(&sh->lru, &conf->hold_list);
4576 raid5_wakeup_stripe_thread(sh);
4577 }
4578 }
4579 }
4580
4581 static void activate_bit_delay(struct r5conf *conf,
4582 struct list_head *temp_inactive_list)
4583 {
4584 /* device_lock is held */
4585 struct list_head head;
4586 list_add(&head, &conf->bitmap_list);
4587 list_del_init(&conf->bitmap_list);
4588 while (!list_empty(&head)) {
4589 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4590 int hash;
4591 list_del_init(&sh->lru);
4592 atomic_inc(&sh->count);
4593 hash = sh->hash_lock_index;
4594 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4595 }
4596 }
4597
4598 static int raid5_congested(struct mddev *mddev, int bits)
4599 {
4600 struct r5conf *conf = mddev->private;
4601
4602 /* No difference between reads and writes. Just check
4603 * how busy the stripe_cache is
4604 */
4605
4606 if (conf->inactive_blocked)
4607 return 1;
4608 if (conf->quiesce)
4609 return 1;
4610 if (atomic_read(&conf->empty_inactive_list_nr))
4611 return 1;
4612
4613 return 0;
4614 }
4615
4616 /* We want read requests to align with chunks where possible,
4617 * but write requests don't need to.
4618 */
4619 static int raid5_mergeable_bvec(struct mddev *mddev,
4620 struct bvec_merge_data *bvm,
4621 struct bio_vec *biovec)
4622 {
4623 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4624 int max;
4625 unsigned int chunk_sectors = mddev->chunk_sectors;
4626 unsigned int bio_sectors = bvm->bi_size >> 9;
4627
4628 if ((bvm->bi_rw & 1) == WRITE)
4629 return biovec->bv_len; /* always allow writes to be mergeable */
4630
4631 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4632 chunk_sectors = mddev->new_chunk_sectors;
4633 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4634 if (max < 0) max = 0;
4635 if (max <= biovec->bv_len && bio_sectors == 0)
4636 return biovec->bv_len;
4637 else
4638 return max;
4639 }
4640
4641 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4642 {
4643 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4644 unsigned int chunk_sectors = mddev->chunk_sectors;
4645 unsigned int bio_sectors = bio_sectors(bio);
4646
4647 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4648 chunk_sectors = mddev->new_chunk_sectors;
4649 return chunk_sectors >=
4650 ((sector & (chunk_sectors - 1)) + bio_sectors);
4651 }
4652
4653 /*
4654 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4655 * later sampled by raid5d.
4656 */
4657 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4658 {
4659 unsigned long flags;
4660
4661 spin_lock_irqsave(&conf->device_lock, flags);
4662
4663 bi->bi_next = conf->retry_read_aligned_list;
4664 conf->retry_read_aligned_list = bi;
4665
4666 spin_unlock_irqrestore(&conf->device_lock, flags);
4667 md_wakeup_thread(conf->mddev->thread);
4668 }
4669
4670 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4671 {
4672 struct bio *bi;
4673
4674 bi = conf->retry_read_aligned;
4675 if (bi) {
4676 conf->retry_read_aligned = NULL;
4677 return bi;
4678 }
4679 bi = conf->retry_read_aligned_list;
4680 if(bi) {
4681 conf->retry_read_aligned_list = bi->bi_next;
4682 bi->bi_next = NULL;
4683 /*
4684 * this sets the active strip count to 1 and the processed
4685 * strip count to zero (upper 8 bits)
4686 */
4687 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4688 }
4689
4690 return bi;
4691 }
4692
4693 /*
4694 * The "raid5_align_endio" should check if the read succeeded and if it
4695 * did, call bio_endio on the original bio (having bio_put the new bio
4696 * first).
4697 * If the read failed..
4698 */
4699 static void raid5_align_endio(struct bio *bi, int error)
4700 {
4701 struct bio* raid_bi = bi->bi_private;
4702 struct mddev *mddev;
4703 struct r5conf *conf;
4704 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4705 struct md_rdev *rdev;
4706
4707 bio_put(bi);
4708
4709 rdev = (void*)raid_bi->bi_next;
4710 raid_bi->bi_next = NULL;
4711 mddev = rdev->mddev;
4712 conf = mddev->private;
4713
4714 rdev_dec_pending(rdev, conf->mddev);
4715
4716 if (!error && uptodate) {
4717 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4718 raid_bi, 0);
4719 bio_endio(raid_bi, 0);
4720 if (atomic_dec_and_test(&conf->active_aligned_reads))
4721 wake_up(&conf->wait_for_stripe);
4722 return;
4723 }
4724
4725 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4726
4727 add_bio_to_retry(raid_bi, conf);
4728 }
4729
4730 static int bio_fits_rdev(struct bio *bi)
4731 {
4732 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4733
4734 if (bio_sectors(bi) > queue_max_sectors(q))
4735 return 0;
4736 blk_recount_segments(q, bi);
4737 if (bi->bi_phys_segments > queue_max_segments(q))
4738 return 0;
4739
4740 if (q->merge_bvec_fn)
4741 /* it's too hard to apply the merge_bvec_fn at this stage,
4742 * just just give up
4743 */
4744 return 0;
4745
4746 return 1;
4747 }
4748
4749 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4750 {
4751 struct r5conf *conf = mddev->private;
4752 int dd_idx;
4753 struct bio* align_bi;
4754 struct md_rdev *rdev;
4755 sector_t end_sector;
4756
4757 if (!in_chunk_boundary(mddev, raid_bio)) {
4758 pr_debug("chunk_aligned_read : non aligned\n");
4759 return 0;
4760 }
4761 /*
4762 * use bio_clone_mddev to make a copy of the bio
4763 */
4764 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4765 if (!align_bi)
4766 return 0;
4767 /*
4768 * set bi_end_io to a new function, and set bi_private to the
4769 * original bio.
4770 */
4771 align_bi->bi_end_io = raid5_align_endio;
4772 align_bi->bi_private = raid_bio;
4773 /*
4774 * compute position
4775 */
4776 align_bi->bi_iter.bi_sector =
4777 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4778 0, &dd_idx, NULL);
4779
4780 end_sector = bio_end_sector(align_bi);
4781 rcu_read_lock();
4782 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4783 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4784 rdev->recovery_offset < end_sector) {
4785 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4786 if (rdev &&
4787 (test_bit(Faulty, &rdev->flags) ||
4788 !(test_bit(In_sync, &rdev->flags) ||
4789 rdev->recovery_offset >= end_sector)))
4790 rdev = NULL;
4791 }
4792 if (rdev) {
4793 sector_t first_bad;
4794 int bad_sectors;
4795
4796 atomic_inc(&rdev->nr_pending);
4797 rcu_read_unlock();
4798 raid_bio->bi_next = (void*)rdev;
4799 align_bi->bi_bdev = rdev->bdev;
4800 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4801
4802 if (!bio_fits_rdev(align_bi) ||
4803 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4804 bio_sectors(align_bi),
4805 &first_bad, &bad_sectors)) {
4806 /* too big in some way, or has a known bad block */
4807 bio_put(align_bi);
4808 rdev_dec_pending(rdev, mddev);
4809 return 0;
4810 }
4811
4812 /* No reshape active, so we can trust rdev->data_offset */
4813 align_bi->bi_iter.bi_sector += rdev->data_offset;
4814
4815 spin_lock_irq(&conf->device_lock);
4816 wait_event_lock_irq(conf->wait_for_stripe,
4817 conf->quiesce == 0,
4818 conf->device_lock);
4819 atomic_inc(&conf->active_aligned_reads);
4820 spin_unlock_irq(&conf->device_lock);
4821
4822 if (mddev->gendisk)
4823 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4824 align_bi, disk_devt(mddev->gendisk),
4825 raid_bio->bi_iter.bi_sector);
4826 generic_make_request(align_bi);
4827 return 1;
4828 } else {
4829 rcu_read_unlock();
4830 bio_put(align_bi);
4831 return 0;
4832 }
4833 }
4834
4835 /* __get_priority_stripe - get the next stripe to process
4836 *
4837 * Full stripe writes are allowed to pass preread active stripes up until
4838 * the bypass_threshold is exceeded. In general the bypass_count
4839 * increments when the handle_list is handled before the hold_list; however, it
4840 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4841 * stripe with in flight i/o. The bypass_count will be reset when the
4842 * head of the hold_list has changed, i.e. the head was promoted to the
4843 * handle_list.
4844 */
4845 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4846 {
4847 struct stripe_head *sh = NULL, *tmp;
4848 struct list_head *handle_list = NULL;
4849 struct r5worker_group *wg = NULL;
4850
4851 if (conf->worker_cnt_per_group == 0) {
4852 handle_list = &conf->handle_list;
4853 } else if (group != ANY_GROUP) {
4854 handle_list = &conf->worker_groups[group].handle_list;
4855 wg = &conf->worker_groups[group];
4856 } else {
4857 int i;
4858 for (i = 0; i < conf->group_cnt; i++) {
4859 handle_list = &conf->worker_groups[i].handle_list;
4860 wg = &conf->worker_groups[i];
4861 if (!list_empty(handle_list))
4862 break;
4863 }
4864 }
4865
4866 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4867 __func__,
4868 list_empty(handle_list) ? "empty" : "busy",
4869 list_empty(&conf->hold_list) ? "empty" : "busy",
4870 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4871
4872 if (!list_empty(handle_list)) {
4873 sh = list_entry(handle_list->next, typeof(*sh), lru);
4874
4875 if (list_empty(&conf->hold_list))
4876 conf->bypass_count = 0;
4877 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4878 if (conf->hold_list.next == conf->last_hold)
4879 conf->bypass_count++;
4880 else {
4881 conf->last_hold = conf->hold_list.next;
4882 conf->bypass_count -= conf->bypass_threshold;
4883 if (conf->bypass_count < 0)
4884 conf->bypass_count = 0;
4885 }
4886 }
4887 } else if (!list_empty(&conf->hold_list) &&
4888 ((conf->bypass_threshold &&
4889 conf->bypass_count > conf->bypass_threshold) ||
4890 atomic_read(&conf->pending_full_writes) == 0)) {
4891
4892 list_for_each_entry(tmp, &conf->hold_list, lru) {
4893 if (conf->worker_cnt_per_group == 0 ||
4894 group == ANY_GROUP ||
4895 !cpu_online(tmp->cpu) ||
4896 cpu_to_group(tmp->cpu) == group) {
4897 sh = tmp;
4898 break;
4899 }
4900 }
4901
4902 if (sh) {
4903 conf->bypass_count -= conf->bypass_threshold;
4904 if (conf->bypass_count < 0)
4905 conf->bypass_count = 0;
4906 }
4907 wg = NULL;
4908 }
4909
4910 if (!sh)
4911 return NULL;
4912
4913 if (wg) {
4914 wg->stripes_cnt--;
4915 sh->group = NULL;
4916 }
4917 list_del_init(&sh->lru);
4918 BUG_ON(atomic_inc_return(&sh->count) != 1);
4919 return sh;
4920 }
4921
4922 struct raid5_plug_cb {
4923 struct blk_plug_cb cb;
4924 struct list_head list;
4925 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4926 };
4927
4928 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4929 {
4930 struct raid5_plug_cb *cb = container_of(
4931 blk_cb, struct raid5_plug_cb, cb);
4932 struct stripe_head *sh;
4933 struct mddev *mddev = cb->cb.data;
4934 struct r5conf *conf = mddev->private;
4935 int cnt = 0;
4936 int hash;
4937
4938 if (cb->list.next && !list_empty(&cb->list)) {
4939 spin_lock_irq(&conf->device_lock);
4940 while (!list_empty(&cb->list)) {
4941 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4942 list_del_init(&sh->lru);
4943 /*
4944 * avoid race release_stripe_plug() sees
4945 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4946 * is still in our list
4947 */
4948 smp_mb__before_atomic();
4949 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4950 /*
4951 * STRIPE_ON_RELEASE_LIST could be set here. In that
4952 * case, the count is always > 1 here
4953 */
4954 hash = sh->hash_lock_index;
4955 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4956 cnt++;
4957 }
4958 spin_unlock_irq(&conf->device_lock);
4959 }
4960 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4961 NR_STRIPE_HASH_LOCKS);
4962 if (mddev->queue)
4963 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4964 kfree(cb);
4965 }
4966
4967 static void release_stripe_plug(struct mddev *mddev,
4968 struct stripe_head *sh)
4969 {
4970 struct blk_plug_cb *blk_cb = blk_check_plugged(
4971 raid5_unplug, mddev,
4972 sizeof(struct raid5_plug_cb));
4973 struct raid5_plug_cb *cb;
4974
4975 if (!blk_cb) {
4976 release_stripe(sh);
4977 return;
4978 }
4979
4980 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4981
4982 if (cb->list.next == NULL) {
4983 int i;
4984 INIT_LIST_HEAD(&cb->list);
4985 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4986 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4987 }
4988
4989 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4990 list_add_tail(&sh->lru, &cb->list);
4991 else
4992 release_stripe(sh);
4993 }
4994
4995 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4996 {
4997 struct r5conf *conf = mddev->private;
4998 sector_t logical_sector, last_sector;
4999 struct stripe_head *sh;
5000 int remaining;
5001 int stripe_sectors;
5002
5003 if (mddev->reshape_position != MaxSector)
5004 /* Skip discard while reshape is happening */
5005 return;
5006
5007 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5008 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5009
5010 bi->bi_next = NULL;
5011 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5012
5013 stripe_sectors = conf->chunk_sectors *
5014 (conf->raid_disks - conf->max_degraded);
5015 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5016 stripe_sectors);
5017 sector_div(last_sector, stripe_sectors);
5018
5019 logical_sector *= conf->chunk_sectors;
5020 last_sector *= conf->chunk_sectors;
5021
5022 for (; logical_sector < last_sector;
5023 logical_sector += STRIPE_SECTORS) {
5024 DEFINE_WAIT(w);
5025 int d;
5026 again:
5027 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5028 prepare_to_wait(&conf->wait_for_overlap, &w,
5029 TASK_UNINTERRUPTIBLE);
5030 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5031 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5032 release_stripe(sh);
5033 schedule();
5034 goto again;
5035 }
5036 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5037 spin_lock_irq(&sh->stripe_lock);
5038 for (d = 0; d < conf->raid_disks; d++) {
5039 if (d == sh->pd_idx || d == sh->qd_idx)
5040 continue;
5041 if (sh->dev[d].towrite || sh->dev[d].toread) {
5042 set_bit(R5_Overlap, &sh->dev[d].flags);
5043 spin_unlock_irq(&sh->stripe_lock);
5044 release_stripe(sh);
5045 schedule();
5046 goto again;
5047 }
5048 }
5049 set_bit(STRIPE_DISCARD, &sh->state);
5050 finish_wait(&conf->wait_for_overlap, &w);
5051 sh->overwrite_disks = 0;
5052 for (d = 0; d < conf->raid_disks; d++) {
5053 if (d == sh->pd_idx || d == sh->qd_idx)
5054 continue;
5055 sh->dev[d].towrite = bi;
5056 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5057 raid5_inc_bi_active_stripes(bi);
5058 sh->overwrite_disks++;
5059 }
5060 spin_unlock_irq(&sh->stripe_lock);
5061 if (conf->mddev->bitmap) {
5062 for (d = 0;
5063 d < conf->raid_disks - conf->max_degraded;
5064 d++)
5065 bitmap_startwrite(mddev->bitmap,
5066 sh->sector,
5067 STRIPE_SECTORS,
5068 0);
5069 sh->bm_seq = conf->seq_flush + 1;
5070 set_bit(STRIPE_BIT_DELAY, &sh->state);
5071 }
5072
5073 set_bit(STRIPE_HANDLE, &sh->state);
5074 clear_bit(STRIPE_DELAYED, &sh->state);
5075 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5076 atomic_inc(&conf->preread_active_stripes);
5077 release_stripe_plug(mddev, sh);
5078 }
5079
5080 remaining = raid5_dec_bi_active_stripes(bi);
5081 if (remaining == 0) {
5082 md_write_end(mddev);
5083 bio_endio(bi, 0);
5084 }
5085 }
5086
5087 static void make_request(struct mddev *mddev, struct bio * bi)
5088 {
5089 struct r5conf *conf = mddev->private;
5090 int dd_idx;
5091 sector_t new_sector;
5092 sector_t logical_sector, last_sector;
5093 struct stripe_head *sh;
5094 const int rw = bio_data_dir(bi);
5095 int remaining;
5096 DEFINE_WAIT(w);
5097 bool do_prepare;
5098
5099 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5100 md_flush_request(mddev, bi);
5101 return;
5102 }
5103
5104 md_write_start(mddev, bi);
5105
5106 if (rw == READ &&
5107 mddev->reshape_position == MaxSector &&
5108 chunk_aligned_read(mddev,bi))
5109 return;
5110
5111 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5112 make_discard_request(mddev, bi);
5113 return;
5114 }
5115
5116 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5117 last_sector = bio_end_sector(bi);
5118 bi->bi_next = NULL;
5119 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5120
5121 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5122 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5123 int previous;
5124 int seq;
5125
5126 do_prepare = false;
5127 retry:
5128 seq = read_seqcount_begin(&conf->gen_lock);
5129 previous = 0;
5130 if (do_prepare)
5131 prepare_to_wait(&conf->wait_for_overlap, &w,
5132 TASK_UNINTERRUPTIBLE);
5133 if (unlikely(conf->reshape_progress != MaxSector)) {
5134 /* spinlock is needed as reshape_progress may be
5135 * 64bit on a 32bit platform, and so it might be
5136 * possible to see a half-updated value
5137 * Of course reshape_progress could change after
5138 * the lock is dropped, so once we get a reference
5139 * to the stripe that we think it is, we will have
5140 * to check again.
5141 */
5142 spin_lock_irq(&conf->device_lock);
5143 if (mddev->reshape_backwards
5144 ? logical_sector < conf->reshape_progress
5145 : logical_sector >= conf->reshape_progress) {
5146 previous = 1;
5147 } else {
5148 if (mddev->reshape_backwards
5149 ? logical_sector < conf->reshape_safe
5150 : logical_sector >= conf->reshape_safe) {
5151 spin_unlock_irq(&conf->device_lock);
5152 schedule();
5153 do_prepare = true;
5154 goto retry;
5155 }
5156 }
5157 spin_unlock_irq(&conf->device_lock);
5158 }
5159
5160 new_sector = raid5_compute_sector(conf, logical_sector,
5161 previous,
5162 &dd_idx, NULL);
5163 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5164 (unsigned long long)new_sector,
5165 (unsigned long long)logical_sector);
5166
5167 sh = get_active_stripe(conf, new_sector, previous,
5168 (bi->bi_rw&RWA_MASK), 0);
5169 if (sh) {
5170 if (unlikely(previous)) {
5171 /* expansion might have moved on while waiting for a
5172 * stripe, so we must do the range check again.
5173 * Expansion could still move past after this
5174 * test, but as we are holding a reference to
5175 * 'sh', we know that if that happens,
5176 * STRIPE_EXPANDING will get set and the expansion
5177 * won't proceed until we finish with the stripe.
5178 */
5179 int must_retry = 0;
5180 spin_lock_irq(&conf->device_lock);
5181 if (mddev->reshape_backwards
5182 ? logical_sector >= conf->reshape_progress
5183 : logical_sector < conf->reshape_progress)
5184 /* mismatch, need to try again */
5185 must_retry = 1;
5186 spin_unlock_irq(&conf->device_lock);
5187 if (must_retry) {
5188 release_stripe(sh);
5189 schedule();
5190 do_prepare = true;
5191 goto retry;
5192 }
5193 }
5194 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5195 /* Might have got the wrong stripe_head
5196 * by accident
5197 */
5198 release_stripe(sh);
5199 goto retry;
5200 }
5201
5202 if (rw == WRITE &&
5203 logical_sector >= mddev->suspend_lo &&
5204 logical_sector < mddev->suspend_hi) {
5205 release_stripe(sh);
5206 /* As the suspend_* range is controlled by
5207 * userspace, we want an interruptible
5208 * wait.
5209 */
5210 flush_signals(current);
5211 prepare_to_wait(&conf->wait_for_overlap,
5212 &w, TASK_INTERRUPTIBLE);
5213 if (logical_sector >= mddev->suspend_lo &&
5214 logical_sector < mddev->suspend_hi) {
5215 schedule();
5216 do_prepare = true;
5217 }
5218 goto retry;
5219 }
5220
5221 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5222 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5223 /* Stripe is busy expanding or
5224 * add failed due to overlap. Flush everything
5225 * and wait a while
5226 */
5227 md_wakeup_thread(mddev->thread);
5228 release_stripe(sh);
5229 schedule();
5230 do_prepare = true;
5231 goto retry;
5232 }
5233 set_bit(STRIPE_HANDLE, &sh->state);
5234 clear_bit(STRIPE_DELAYED, &sh->state);
5235 if ((!sh->batch_head || sh == sh->batch_head) &&
5236 (bi->bi_rw & REQ_SYNC) &&
5237 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5238 atomic_inc(&conf->preread_active_stripes);
5239 release_stripe_plug(mddev, sh);
5240 } else {
5241 /* cannot get stripe for read-ahead, just give-up */
5242 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5243 break;
5244 }
5245 }
5246 finish_wait(&conf->wait_for_overlap, &w);
5247
5248 remaining = raid5_dec_bi_active_stripes(bi);
5249 if (remaining == 0) {
5250
5251 if ( rw == WRITE )
5252 md_write_end(mddev);
5253
5254 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5255 bi, 0);
5256 bio_endio(bi, 0);
5257 }
5258 }
5259
5260 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5261
5262 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5263 {
5264 /* reshaping is quite different to recovery/resync so it is
5265 * handled quite separately ... here.
5266 *
5267 * On each call to sync_request, we gather one chunk worth of
5268 * destination stripes and flag them as expanding.
5269 * Then we find all the source stripes and request reads.
5270 * As the reads complete, handle_stripe will copy the data
5271 * into the destination stripe and release that stripe.
5272 */
5273 struct r5conf *conf = mddev->private;
5274 struct stripe_head *sh;
5275 sector_t first_sector, last_sector;
5276 int raid_disks = conf->previous_raid_disks;
5277 int data_disks = raid_disks - conf->max_degraded;
5278 int new_data_disks = conf->raid_disks - conf->max_degraded;
5279 int i;
5280 int dd_idx;
5281 sector_t writepos, readpos, safepos;
5282 sector_t stripe_addr;
5283 int reshape_sectors;
5284 struct list_head stripes;
5285
5286 if (sector_nr == 0) {
5287 /* If restarting in the middle, skip the initial sectors */
5288 if (mddev->reshape_backwards &&
5289 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5290 sector_nr = raid5_size(mddev, 0, 0)
5291 - conf->reshape_progress;
5292 } else if (!mddev->reshape_backwards &&
5293 conf->reshape_progress > 0)
5294 sector_nr = conf->reshape_progress;
5295 sector_div(sector_nr, new_data_disks);
5296 if (sector_nr) {
5297 mddev->curr_resync_completed = sector_nr;
5298 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5299 *skipped = 1;
5300 return sector_nr;
5301 }
5302 }
5303
5304 /* We need to process a full chunk at a time.
5305 * If old and new chunk sizes differ, we need to process the
5306 * largest of these
5307 */
5308 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5309 reshape_sectors = mddev->new_chunk_sectors;
5310 else
5311 reshape_sectors = mddev->chunk_sectors;
5312
5313 /* We update the metadata at least every 10 seconds, or when
5314 * the data about to be copied would over-write the source of
5315 * the data at the front of the range. i.e. one new_stripe
5316 * along from reshape_progress new_maps to after where
5317 * reshape_safe old_maps to
5318 */
5319 writepos = conf->reshape_progress;
5320 sector_div(writepos, new_data_disks);
5321 readpos = conf->reshape_progress;
5322 sector_div(readpos, data_disks);
5323 safepos = conf->reshape_safe;
5324 sector_div(safepos, data_disks);
5325 if (mddev->reshape_backwards) {
5326 writepos -= min_t(sector_t, reshape_sectors, writepos);
5327 readpos += reshape_sectors;
5328 safepos += reshape_sectors;
5329 } else {
5330 writepos += reshape_sectors;
5331 readpos -= min_t(sector_t, reshape_sectors, readpos);
5332 safepos -= min_t(sector_t, reshape_sectors, safepos);
5333 }
5334
5335 /* Having calculated the 'writepos' possibly use it
5336 * to set 'stripe_addr' which is where we will write to.
5337 */
5338 if (mddev->reshape_backwards) {
5339 BUG_ON(conf->reshape_progress == 0);
5340 stripe_addr = writepos;
5341 BUG_ON((mddev->dev_sectors &
5342 ~((sector_t)reshape_sectors - 1))
5343 - reshape_sectors - stripe_addr
5344 != sector_nr);
5345 } else {
5346 BUG_ON(writepos != sector_nr + reshape_sectors);
5347 stripe_addr = sector_nr;
5348 }
5349
5350 /* 'writepos' is the most advanced device address we might write.
5351 * 'readpos' is the least advanced device address we might read.
5352 * 'safepos' is the least address recorded in the metadata as having
5353 * been reshaped.
5354 * If there is a min_offset_diff, these are adjusted either by
5355 * increasing the safepos/readpos if diff is negative, or
5356 * increasing writepos if diff is positive.
5357 * If 'readpos' is then behind 'writepos', there is no way that we can
5358 * ensure safety in the face of a crash - that must be done by userspace
5359 * making a backup of the data. So in that case there is no particular
5360 * rush to update metadata.
5361 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5362 * update the metadata to advance 'safepos' to match 'readpos' so that
5363 * we can be safe in the event of a crash.
5364 * So we insist on updating metadata if safepos is behind writepos and
5365 * readpos is beyond writepos.
5366 * In any case, update the metadata every 10 seconds.
5367 * Maybe that number should be configurable, but I'm not sure it is
5368 * worth it.... maybe it could be a multiple of safemode_delay???
5369 */
5370 if (conf->min_offset_diff < 0) {
5371 safepos += -conf->min_offset_diff;
5372 readpos += -conf->min_offset_diff;
5373 } else
5374 writepos += conf->min_offset_diff;
5375
5376 if ((mddev->reshape_backwards
5377 ? (safepos > writepos && readpos < writepos)
5378 : (safepos < writepos && readpos > writepos)) ||
5379 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5380 /* Cannot proceed until we've updated the superblock... */
5381 wait_event(conf->wait_for_overlap,
5382 atomic_read(&conf->reshape_stripes)==0
5383 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5384 if (atomic_read(&conf->reshape_stripes) != 0)
5385 return 0;
5386 mddev->reshape_position = conf->reshape_progress;
5387 mddev->curr_resync_completed = sector_nr;
5388 conf->reshape_checkpoint = jiffies;
5389 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5390 md_wakeup_thread(mddev->thread);
5391 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5392 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5393 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5394 return 0;
5395 spin_lock_irq(&conf->device_lock);
5396 conf->reshape_safe = mddev->reshape_position;
5397 spin_unlock_irq(&conf->device_lock);
5398 wake_up(&conf->wait_for_overlap);
5399 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5400 }
5401
5402 INIT_LIST_HEAD(&stripes);
5403 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5404 int j;
5405 int skipped_disk = 0;
5406 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5407 set_bit(STRIPE_EXPANDING, &sh->state);
5408 atomic_inc(&conf->reshape_stripes);
5409 /* If any of this stripe is beyond the end of the old
5410 * array, then we need to zero those blocks
5411 */
5412 for (j=sh->disks; j--;) {
5413 sector_t s;
5414 if (j == sh->pd_idx)
5415 continue;
5416 if (conf->level == 6 &&
5417 j == sh->qd_idx)
5418 continue;
5419 s = compute_blocknr(sh, j, 0);
5420 if (s < raid5_size(mddev, 0, 0)) {
5421 skipped_disk = 1;
5422 continue;
5423 }
5424 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5425 set_bit(R5_Expanded, &sh->dev[j].flags);
5426 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5427 }
5428 if (!skipped_disk) {
5429 set_bit(STRIPE_EXPAND_READY, &sh->state);
5430 set_bit(STRIPE_HANDLE, &sh->state);
5431 }
5432 list_add(&sh->lru, &stripes);
5433 }
5434 spin_lock_irq(&conf->device_lock);
5435 if (mddev->reshape_backwards)
5436 conf->reshape_progress -= reshape_sectors * new_data_disks;
5437 else
5438 conf->reshape_progress += reshape_sectors * new_data_disks;
5439 spin_unlock_irq(&conf->device_lock);
5440 /* Ok, those stripe are ready. We can start scheduling
5441 * reads on the source stripes.
5442 * The source stripes are determined by mapping the first and last
5443 * block on the destination stripes.
5444 */
5445 first_sector =
5446 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5447 1, &dd_idx, NULL);
5448 last_sector =
5449 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5450 * new_data_disks - 1),
5451 1, &dd_idx, NULL);
5452 if (last_sector >= mddev->dev_sectors)
5453 last_sector = mddev->dev_sectors - 1;
5454 while (first_sector <= last_sector) {
5455 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5456 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5457 set_bit(STRIPE_HANDLE, &sh->state);
5458 release_stripe(sh);
5459 first_sector += STRIPE_SECTORS;
5460 }
5461 /* Now that the sources are clearly marked, we can release
5462 * the destination stripes
5463 */
5464 while (!list_empty(&stripes)) {
5465 sh = list_entry(stripes.next, struct stripe_head, lru);
5466 list_del_init(&sh->lru);
5467 release_stripe(sh);
5468 }
5469 /* If this takes us to the resync_max point where we have to pause,
5470 * then we need to write out the superblock.
5471 */
5472 sector_nr += reshape_sectors;
5473 if ((sector_nr - mddev->curr_resync_completed) * 2
5474 >= mddev->resync_max - mddev->curr_resync_completed) {
5475 /* Cannot proceed until we've updated the superblock... */
5476 wait_event(conf->wait_for_overlap,
5477 atomic_read(&conf->reshape_stripes) == 0
5478 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5479 if (atomic_read(&conf->reshape_stripes) != 0)
5480 goto ret;
5481 mddev->reshape_position = conf->reshape_progress;
5482 mddev->curr_resync_completed = sector_nr;
5483 conf->reshape_checkpoint = jiffies;
5484 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5485 md_wakeup_thread(mddev->thread);
5486 wait_event(mddev->sb_wait,
5487 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5488 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5489 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5490 goto ret;
5491 spin_lock_irq(&conf->device_lock);
5492 conf->reshape_safe = mddev->reshape_position;
5493 spin_unlock_irq(&conf->device_lock);
5494 wake_up(&conf->wait_for_overlap);
5495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5496 }
5497 ret:
5498 return reshape_sectors;
5499 }
5500
5501 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5502 {
5503 struct r5conf *conf = mddev->private;
5504 struct stripe_head *sh;
5505 sector_t max_sector = mddev->dev_sectors;
5506 sector_t sync_blocks;
5507 int still_degraded = 0;
5508 int i;
5509
5510 if (sector_nr >= max_sector) {
5511 /* just being told to finish up .. nothing much to do */
5512
5513 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5514 end_reshape(conf);
5515 return 0;
5516 }
5517
5518 if (mddev->curr_resync < max_sector) /* aborted */
5519 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5520 &sync_blocks, 1);
5521 else /* completed sync */
5522 conf->fullsync = 0;
5523 bitmap_close_sync(mddev->bitmap);
5524
5525 return 0;
5526 }
5527
5528 /* Allow raid5_quiesce to complete */
5529 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5530
5531 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5532 return reshape_request(mddev, sector_nr, skipped);
5533
5534 /* No need to check resync_max as we never do more than one
5535 * stripe, and as resync_max will always be on a chunk boundary,
5536 * if the check in md_do_sync didn't fire, there is no chance
5537 * of overstepping resync_max here
5538 */
5539
5540 /* if there is too many failed drives and we are trying
5541 * to resync, then assert that we are finished, because there is
5542 * nothing we can do.
5543 */
5544 if (mddev->degraded >= conf->max_degraded &&
5545 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5546 sector_t rv = mddev->dev_sectors - sector_nr;
5547 *skipped = 1;
5548 return rv;
5549 }
5550 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5551 !conf->fullsync &&
5552 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5553 sync_blocks >= STRIPE_SECTORS) {
5554 /* we can skip this block, and probably more */
5555 sync_blocks /= STRIPE_SECTORS;
5556 *skipped = 1;
5557 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5558 }
5559
5560 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5561
5562 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5563 if (sh == NULL) {
5564 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5565 /* make sure we don't swamp the stripe cache if someone else
5566 * is trying to get access
5567 */
5568 schedule_timeout_uninterruptible(1);
5569 }
5570 /* Need to check if array will still be degraded after recovery/resync
5571 * Note in case of > 1 drive failures it's possible we're rebuilding
5572 * one drive while leaving another faulty drive in array.
5573 */
5574 rcu_read_lock();
5575 for (i = 0; i < conf->raid_disks; i++) {
5576 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5577
5578 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5579 still_degraded = 1;
5580 }
5581 rcu_read_unlock();
5582
5583 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5584
5585 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5586 set_bit(STRIPE_HANDLE, &sh->state);
5587
5588 release_stripe(sh);
5589
5590 return STRIPE_SECTORS;
5591 }
5592
5593 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5594 {
5595 /* We may not be able to submit a whole bio at once as there
5596 * may not be enough stripe_heads available.
5597 * We cannot pre-allocate enough stripe_heads as we may need
5598 * more than exist in the cache (if we allow ever large chunks).
5599 * So we do one stripe head at a time and record in
5600 * ->bi_hw_segments how many have been done.
5601 *
5602 * We *know* that this entire raid_bio is in one chunk, so
5603 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5604 */
5605 struct stripe_head *sh;
5606 int dd_idx;
5607 sector_t sector, logical_sector, last_sector;
5608 int scnt = 0;
5609 int remaining;
5610 int handled = 0;
5611
5612 logical_sector = raid_bio->bi_iter.bi_sector &
5613 ~((sector_t)STRIPE_SECTORS-1);
5614 sector = raid5_compute_sector(conf, logical_sector,
5615 0, &dd_idx, NULL);
5616 last_sector = bio_end_sector(raid_bio);
5617
5618 for (; logical_sector < last_sector;
5619 logical_sector += STRIPE_SECTORS,
5620 sector += STRIPE_SECTORS,
5621 scnt++) {
5622
5623 if (scnt < raid5_bi_processed_stripes(raid_bio))
5624 /* already done this stripe */
5625 continue;
5626
5627 sh = get_active_stripe(conf, sector, 0, 1, 1);
5628
5629 if (!sh) {
5630 /* failed to get a stripe - must wait */
5631 raid5_set_bi_processed_stripes(raid_bio, scnt);
5632 conf->retry_read_aligned = raid_bio;
5633 return handled;
5634 }
5635
5636 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5637 release_stripe(sh);
5638 raid5_set_bi_processed_stripes(raid_bio, scnt);
5639 conf->retry_read_aligned = raid_bio;
5640 return handled;
5641 }
5642
5643 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5644 handle_stripe(sh);
5645 release_stripe(sh);
5646 handled++;
5647 }
5648 remaining = raid5_dec_bi_active_stripes(raid_bio);
5649 if (remaining == 0) {
5650 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5651 raid_bio, 0);
5652 bio_endio(raid_bio, 0);
5653 }
5654 if (atomic_dec_and_test(&conf->active_aligned_reads))
5655 wake_up(&conf->wait_for_stripe);
5656 return handled;
5657 }
5658
5659 static int handle_active_stripes(struct r5conf *conf, int group,
5660 struct r5worker *worker,
5661 struct list_head *temp_inactive_list)
5662 {
5663 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5664 int i, batch_size = 0, hash;
5665 bool release_inactive = false;
5666
5667 while (batch_size < MAX_STRIPE_BATCH &&
5668 (sh = __get_priority_stripe(conf, group)) != NULL)
5669 batch[batch_size++] = sh;
5670
5671 if (batch_size == 0) {
5672 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5673 if (!list_empty(temp_inactive_list + i))
5674 break;
5675 if (i == NR_STRIPE_HASH_LOCKS)
5676 return batch_size;
5677 release_inactive = true;
5678 }
5679 spin_unlock_irq(&conf->device_lock);
5680
5681 release_inactive_stripe_list(conf, temp_inactive_list,
5682 NR_STRIPE_HASH_LOCKS);
5683
5684 if (release_inactive) {
5685 spin_lock_irq(&conf->device_lock);
5686 return 0;
5687 }
5688
5689 for (i = 0; i < batch_size; i++)
5690 handle_stripe(batch[i]);
5691
5692 cond_resched();
5693
5694 spin_lock_irq(&conf->device_lock);
5695 for (i = 0; i < batch_size; i++) {
5696 hash = batch[i]->hash_lock_index;
5697 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5698 }
5699 return batch_size;
5700 }
5701
5702 static void raid5_do_work(struct work_struct *work)
5703 {
5704 struct r5worker *worker = container_of(work, struct r5worker, work);
5705 struct r5worker_group *group = worker->group;
5706 struct r5conf *conf = group->conf;
5707 int group_id = group - conf->worker_groups;
5708 int handled;
5709 struct blk_plug plug;
5710
5711 pr_debug("+++ raid5worker active\n");
5712
5713 blk_start_plug(&plug);
5714 handled = 0;
5715 spin_lock_irq(&conf->device_lock);
5716 while (1) {
5717 int batch_size, released;
5718
5719 released = release_stripe_list(conf, worker->temp_inactive_list);
5720
5721 batch_size = handle_active_stripes(conf, group_id, worker,
5722 worker->temp_inactive_list);
5723 worker->working = false;
5724 if (!batch_size && !released)
5725 break;
5726 handled += batch_size;
5727 }
5728 pr_debug("%d stripes handled\n", handled);
5729
5730 spin_unlock_irq(&conf->device_lock);
5731 blk_finish_plug(&plug);
5732
5733 pr_debug("--- raid5worker inactive\n");
5734 }
5735
5736 /*
5737 * This is our raid5 kernel thread.
5738 *
5739 * We scan the hash table for stripes which can be handled now.
5740 * During the scan, completed stripes are saved for us by the interrupt
5741 * handler, so that they will not have to wait for our next wakeup.
5742 */
5743 static void raid5d(struct md_thread *thread)
5744 {
5745 struct mddev *mddev = thread->mddev;
5746 struct r5conf *conf = mddev->private;
5747 int handled;
5748 struct blk_plug plug;
5749
5750 pr_debug("+++ raid5d active\n");
5751
5752 md_check_recovery(mddev);
5753
5754 blk_start_plug(&plug);
5755 handled = 0;
5756 spin_lock_irq(&conf->device_lock);
5757 while (1) {
5758 struct bio *bio;
5759 int batch_size, released;
5760
5761 released = release_stripe_list(conf, conf->temp_inactive_list);
5762
5763 if (
5764 !list_empty(&conf->bitmap_list)) {
5765 /* Now is a good time to flush some bitmap updates */
5766 conf->seq_flush++;
5767 spin_unlock_irq(&conf->device_lock);
5768 bitmap_unplug(mddev->bitmap);
5769 spin_lock_irq(&conf->device_lock);
5770 conf->seq_write = conf->seq_flush;
5771 activate_bit_delay(conf, conf->temp_inactive_list);
5772 }
5773 raid5_activate_delayed(conf);
5774
5775 while ((bio = remove_bio_from_retry(conf))) {
5776 int ok;
5777 spin_unlock_irq(&conf->device_lock);
5778 ok = retry_aligned_read(conf, bio);
5779 spin_lock_irq(&conf->device_lock);
5780 if (!ok)
5781 break;
5782 handled++;
5783 }
5784
5785 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5786 conf->temp_inactive_list);
5787 if (!batch_size && !released)
5788 break;
5789 handled += batch_size;
5790
5791 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5792 spin_unlock_irq(&conf->device_lock);
5793 md_check_recovery(mddev);
5794 spin_lock_irq(&conf->device_lock);
5795 }
5796 }
5797 pr_debug("%d stripes handled\n", handled);
5798
5799 spin_unlock_irq(&conf->device_lock);
5800
5801 async_tx_issue_pending_all();
5802 blk_finish_plug(&plug);
5803
5804 pr_debug("--- raid5d inactive\n");
5805 }
5806
5807 static ssize_t
5808 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5809 {
5810 struct r5conf *conf;
5811 int ret = 0;
5812 spin_lock(&mddev->lock);
5813 conf = mddev->private;
5814 if (conf)
5815 ret = sprintf(page, "%d\n", conf->max_nr_stripes);
5816 spin_unlock(&mddev->lock);
5817 return ret;
5818 }
5819
5820 int
5821 raid5_set_cache_size(struct mddev *mddev, int size)
5822 {
5823 struct r5conf *conf = mddev->private;
5824 int err;
5825 int hash;
5826
5827 if (size <= 16 || size > 32768)
5828 return -EINVAL;
5829 hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
5830 while (size < conf->max_nr_stripes) {
5831 if (drop_one_stripe(conf, hash))
5832 conf->max_nr_stripes--;
5833 else
5834 break;
5835 hash--;
5836 if (hash < 0)
5837 hash = NR_STRIPE_HASH_LOCKS - 1;
5838 }
5839 err = md_allow_write(mddev);
5840 if (err)
5841 return err;
5842 hash = conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
5843 while (size > conf->max_nr_stripes) {
5844 if (grow_one_stripe(conf, hash))
5845 conf->max_nr_stripes++;
5846 else break;
5847 hash = (hash + 1) % NR_STRIPE_HASH_LOCKS;
5848 }
5849 return 0;
5850 }
5851 EXPORT_SYMBOL(raid5_set_cache_size);
5852
5853 static ssize_t
5854 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5855 {
5856 struct r5conf *conf;
5857 unsigned long new;
5858 int err;
5859
5860 if (len >= PAGE_SIZE)
5861 return -EINVAL;
5862 if (kstrtoul(page, 10, &new))
5863 return -EINVAL;
5864 err = mddev_lock(mddev);
5865 if (err)
5866 return err;
5867 conf = mddev->private;
5868 if (!conf)
5869 err = -ENODEV;
5870 else
5871 err = raid5_set_cache_size(mddev, new);
5872 mddev_unlock(mddev);
5873
5874 return err ?: len;
5875 }
5876
5877 static struct md_sysfs_entry
5878 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5879 raid5_show_stripe_cache_size,
5880 raid5_store_stripe_cache_size);
5881
5882 static ssize_t
5883 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5884 {
5885 struct r5conf *conf;
5886 int ret = 0;
5887 spin_lock(&mddev->lock);
5888 conf = mddev->private;
5889 if (conf)
5890 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5891 spin_unlock(&mddev->lock);
5892 return ret;
5893 }
5894
5895 static ssize_t
5896 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5897 {
5898 struct r5conf *conf;
5899 unsigned long new;
5900 int err;
5901
5902 if (len >= PAGE_SIZE)
5903 return -EINVAL;
5904 if (kstrtoul(page, 10, &new))
5905 return -EINVAL;
5906
5907 err = mddev_lock(mddev);
5908 if (err)
5909 return err;
5910 conf = mddev->private;
5911 if (!conf)
5912 err = -ENODEV;
5913 else if (new > conf->max_nr_stripes)
5914 err = -EINVAL;
5915 else
5916 conf->bypass_threshold = new;
5917 mddev_unlock(mddev);
5918 return err ?: len;
5919 }
5920
5921 static struct md_sysfs_entry
5922 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5923 S_IRUGO | S_IWUSR,
5924 raid5_show_preread_threshold,
5925 raid5_store_preread_threshold);
5926
5927 static ssize_t
5928 raid5_show_skip_copy(struct mddev *mddev, char *page)
5929 {
5930 struct r5conf *conf;
5931 int ret = 0;
5932 spin_lock(&mddev->lock);
5933 conf = mddev->private;
5934 if (conf)
5935 ret = sprintf(page, "%d\n", conf->skip_copy);
5936 spin_unlock(&mddev->lock);
5937 return ret;
5938 }
5939
5940 static ssize_t
5941 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5942 {
5943 struct r5conf *conf;
5944 unsigned long new;
5945 int err;
5946
5947 if (len >= PAGE_SIZE)
5948 return -EINVAL;
5949 if (kstrtoul(page, 10, &new))
5950 return -EINVAL;
5951 new = !!new;
5952
5953 err = mddev_lock(mddev);
5954 if (err)
5955 return err;
5956 conf = mddev->private;
5957 if (!conf)
5958 err = -ENODEV;
5959 else if (new != conf->skip_copy) {
5960 mddev_suspend(mddev);
5961 conf->skip_copy = new;
5962 if (new)
5963 mddev->queue->backing_dev_info.capabilities |=
5964 BDI_CAP_STABLE_WRITES;
5965 else
5966 mddev->queue->backing_dev_info.capabilities &=
5967 ~BDI_CAP_STABLE_WRITES;
5968 mddev_resume(mddev);
5969 }
5970 mddev_unlock(mddev);
5971 return err ?: len;
5972 }
5973
5974 static struct md_sysfs_entry
5975 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
5976 raid5_show_skip_copy,
5977 raid5_store_skip_copy);
5978
5979 static ssize_t
5980 stripe_cache_active_show(struct mddev *mddev, char *page)
5981 {
5982 struct r5conf *conf = mddev->private;
5983 if (conf)
5984 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
5985 else
5986 return 0;
5987 }
5988
5989 static struct md_sysfs_entry
5990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
5991
5992 static ssize_t
5993 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
5994 {
5995 struct r5conf *conf;
5996 int ret = 0;
5997 spin_lock(&mddev->lock);
5998 conf = mddev->private;
5999 if (conf)
6000 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6001 spin_unlock(&mddev->lock);
6002 return ret;
6003 }
6004
6005 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6006 int *group_cnt,
6007 int *worker_cnt_per_group,
6008 struct r5worker_group **worker_groups);
6009 static ssize_t
6010 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6011 {
6012 struct r5conf *conf;
6013 unsigned long new;
6014 int err;
6015 struct r5worker_group *new_groups, *old_groups;
6016 int group_cnt, worker_cnt_per_group;
6017
6018 if (len >= PAGE_SIZE)
6019 return -EINVAL;
6020 if (kstrtoul(page, 10, &new))
6021 return -EINVAL;
6022
6023 err = mddev_lock(mddev);
6024 if (err)
6025 return err;
6026 conf = mddev->private;
6027 if (!conf)
6028 err = -ENODEV;
6029 else if (new != conf->worker_cnt_per_group) {
6030 mddev_suspend(mddev);
6031
6032 old_groups = conf->worker_groups;
6033 if (old_groups)
6034 flush_workqueue(raid5_wq);
6035
6036 err = alloc_thread_groups(conf, new,
6037 &group_cnt, &worker_cnt_per_group,
6038 &new_groups);
6039 if (!err) {
6040 spin_lock_irq(&conf->device_lock);
6041 conf->group_cnt = group_cnt;
6042 conf->worker_cnt_per_group = worker_cnt_per_group;
6043 conf->worker_groups = new_groups;
6044 spin_unlock_irq(&conf->device_lock);
6045
6046 if (old_groups)
6047 kfree(old_groups[0].workers);
6048 kfree(old_groups);
6049 }
6050 mddev_resume(mddev);
6051 }
6052 mddev_unlock(mddev);
6053
6054 return err ?: len;
6055 }
6056
6057 static struct md_sysfs_entry
6058 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6059 raid5_show_group_thread_cnt,
6060 raid5_store_group_thread_cnt);
6061
6062 static struct attribute *raid5_attrs[] = {
6063 &raid5_stripecache_size.attr,
6064 &raid5_stripecache_active.attr,
6065 &raid5_preread_bypass_threshold.attr,
6066 &raid5_group_thread_cnt.attr,
6067 &raid5_skip_copy.attr,
6068 NULL,
6069 };
6070 static struct attribute_group raid5_attrs_group = {
6071 .name = NULL,
6072 .attrs = raid5_attrs,
6073 };
6074
6075 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6076 int *group_cnt,
6077 int *worker_cnt_per_group,
6078 struct r5worker_group **worker_groups)
6079 {
6080 int i, j, k;
6081 ssize_t size;
6082 struct r5worker *workers;
6083
6084 *worker_cnt_per_group = cnt;
6085 if (cnt == 0) {
6086 *group_cnt = 0;
6087 *worker_groups = NULL;
6088 return 0;
6089 }
6090 *group_cnt = num_possible_nodes();
6091 size = sizeof(struct r5worker) * cnt;
6092 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6093 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6094 *group_cnt, GFP_NOIO);
6095 if (!*worker_groups || !workers) {
6096 kfree(workers);
6097 kfree(*worker_groups);
6098 return -ENOMEM;
6099 }
6100
6101 for (i = 0; i < *group_cnt; i++) {
6102 struct r5worker_group *group;
6103
6104 group = &(*worker_groups)[i];
6105 INIT_LIST_HEAD(&group->handle_list);
6106 group->conf = conf;
6107 group->workers = workers + i * cnt;
6108
6109 for (j = 0; j < cnt; j++) {
6110 struct r5worker *worker = group->workers + j;
6111 worker->group = group;
6112 INIT_WORK(&worker->work, raid5_do_work);
6113
6114 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6115 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6116 }
6117 }
6118
6119 return 0;
6120 }
6121
6122 static void free_thread_groups(struct r5conf *conf)
6123 {
6124 if (conf->worker_groups)
6125 kfree(conf->worker_groups[0].workers);
6126 kfree(conf->worker_groups);
6127 conf->worker_groups = NULL;
6128 }
6129
6130 static sector_t
6131 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6132 {
6133 struct r5conf *conf = mddev->private;
6134
6135 if (!sectors)
6136 sectors = mddev->dev_sectors;
6137 if (!raid_disks)
6138 /* size is defined by the smallest of previous and new size */
6139 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6140
6141 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6142 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6143 return sectors * (raid_disks - conf->max_degraded);
6144 }
6145
6146 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6147 {
6148 safe_put_page(percpu->spare_page);
6149 if (percpu->scribble)
6150 flex_array_free(percpu->scribble);
6151 percpu->spare_page = NULL;
6152 percpu->scribble = NULL;
6153 }
6154
6155 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6156 {
6157 if (conf->level == 6 && !percpu->spare_page)
6158 percpu->spare_page = alloc_page(GFP_KERNEL);
6159 if (!percpu->scribble)
6160 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6161 conf->previous_raid_disks), conf->chunk_sectors /
6162 STRIPE_SECTORS, GFP_KERNEL);
6163
6164 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6165 free_scratch_buffer(conf, percpu);
6166 return -ENOMEM;
6167 }
6168
6169 return 0;
6170 }
6171
6172 static void raid5_free_percpu(struct r5conf *conf)
6173 {
6174 unsigned long cpu;
6175
6176 if (!conf->percpu)
6177 return;
6178
6179 #ifdef CONFIG_HOTPLUG_CPU
6180 unregister_cpu_notifier(&conf->cpu_notify);
6181 #endif
6182
6183 get_online_cpus();
6184 for_each_possible_cpu(cpu)
6185 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6186 put_online_cpus();
6187
6188 free_percpu(conf->percpu);
6189 }
6190
6191 static void free_conf(struct r5conf *conf)
6192 {
6193 free_thread_groups(conf);
6194 shrink_stripes(conf);
6195 raid5_free_percpu(conf);
6196 kfree(conf->disks);
6197 kfree(conf->stripe_hashtbl);
6198 kfree(conf);
6199 }
6200
6201 #ifdef CONFIG_HOTPLUG_CPU
6202 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6203 void *hcpu)
6204 {
6205 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6206 long cpu = (long)hcpu;
6207 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6208
6209 switch (action) {
6210 case CPU_UP_PREPARE:
6211 case CPU_UP_PREPARE_FROZEN:
6212 if (alloc_scratch_buffer(conf, percpu)) {
6213 pr_err("%s: failed memory allocation for cpu%ld\n",
6214 __func__, cpu);
6215 return notifier_from_errno(-ENOMEM);
6216 }
6217 break;
6218 case CPU_DEAD:
6219 case CPU_DEAD_FROZEN:
6220 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6221 break;
6222 default:
6223 break;
6224 }
6225 return NOTIFY_OK;
6226 }
6227 #endif
6228
6229 static int raid5_alloc_percpu(struct r5conf *conf)
6230 {
6231 unsigned long cpu;
6232 int err = 0;
6233
6234 conf->percpu = alloc_percpu(struct raid5_percpu);
6235 if (!conf->percpu)
6236 return -ENOMEM;
6237
6238 #ifdef CONFIG_HOTPLUG_CPU
6239 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6240 conf->cpu_notify.priority = 0;
6241 err = register_cpu_notifier(&conf->cpu_notify);
6242 if (err)
6243 return err;
6244 #endif
6245
6246 get_online_cpus();
6247 for_each_present_cpu(cpu) {
6248 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6249 if (err) {
6250 pr_err("%s: failed memory allocation for cpu%ld\n",
6251 __func__, cpu);
6252 break;
6253 }
6254 }
6255 put_online_cpus();
6256
6257 return err;
6258 }
6259
6260 static struct r5conf *setup_conf(struct mddev *mddev)
6261 {
6262 struct r5conf *conf;
6263 int raid_disk, memory, max_disks;
6264 struct md_rdev *rdev;
6265 struct disk_info *disk;
6266 char pers_name[6];
6267 int i;
6268 int group_cnt, worker_cnt_per_group;
6269 struct r5worker_group *new_group;
6270
6271 if (mddev->new_level != 5
6272 && mddev->new_level != 4
6273 && mddev->new_level != 6) {
6274 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6275 mdname(mddev), mddev->new_level);
6276 return ERR_PTR(-EIO);
6277 }
6278 if ((mddev->new_level == 5
6279 && !algorithm_valid_raid5(mddev->new_layout)) ||
6280 (mddev->new_level == 6
6281 && !algorithm_valid_raid6(mddev->new_layout))) {
6282 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6283 mdname(mddev), mddev->new_layout);
6284 return ERR_PTR(-EIO);
6285 }
6286 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6287 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6288 mdname(mddev), mddev->raid_disks);
6289 return ERR_PTR(-EINVAL);
6290 }
6291
6292 if (!mddev->new_chunk_sectors ||
6293 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6294 !is_power_of_2(mddev->new_chunk_sectors)) {
6295 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6296 mdname(mddev), mddev->new_chunk_sectors << 9);
6297 return ERR_PTR(-EINVAL);
6298 }
6299
6300 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6301 if (conf == NULL)
6302 goto abort;
6303 /* Don't enable multi-threading by default*/
6304 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6305 &new_group)) {
6306 conf->group_cnt = group_cnt;
6307 conf->worker_cnt_per_group = worker_cnt_per_group;
6308 conf->worker_groups = new_group;
6309 } else
6310 goto abort;
6311 spin_lock_init(&conf->device_lock);
6312 seqcount_init(&conf->gen_lock);
6313 init_waitqueue_head(&conf->wait_for_stripe);
6314 init_waitqueue_head(&conf->wait_for_overlap);
6315 INIT_LIST_HEAD(&conf->handle_list);
6316 INIT_LIST_HEAD(&conf->hold_list);
6317 INIT_LIST_HEAD(&conf->delayed_list);
6318 INIT_LIST_HEAD(&conf->bitmap_list);
6319 init_llist_head(&conf->released_stripes);
6320 atomic_set(&conf->active_stripes, 0);
6321 atomic_set(&conf->preread_active_stripes, 0);
6322 atomic_set(&conf->active_aligned_reads, 0);
6323 conf->bypass_threshold = BYPASS_THRESHOLD;
6324 conf->recovery_disabled = mddev->recovery_disabled - 1;
6325
6326 conf->raid_disks = mddev->raid_disks;
6327 if (mddev->reshape_position == MaxSector)
6328 conf->previous_raid_disks = mddev->raid_disks;
6329 else
6330 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6331 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6332
6333 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6334 GFP_KERNEL);
6335 if (!conf->disks)
6336 goto abort;
6337
6338 conf->mddev = mddev;
6339
6340 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6341 goto abort;
6342
6343 /* We init hash_locks[0] separately to that it can be used
6344 * as the reference lock in the spin_lock_nest_lock() call
6345 * in lock_all_device_hash_locks_irq in order to convince
6346 * lockdep that we know what we are doing.
6347 */
6348 spin_lock_init(conf->hash_locks);
6349 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6350 spin_lock_init(conf->hash_locks + i);
6351
6352 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6353 INIT_LIST_HEAD(conf->inactive_list + i);
6354
6355 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6356 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6357
6358 conf->level = mddev->new_level;
6359 conf->chunk_sectors = mddev->new_chunk_sectors;
6360 if (raid5_alloc_percpu(conf) != 0)
6361 goto abort;
6362
6363 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6364
6365 rdev_for_each(rdev, mddev) {
6366 raid_disk = rdev->raid_disk;
6367 if (raid_disk >= max_disks
6368 || raid_disk < 0)
6369 continue;
6370 disk = conf->disks + raid_disk;
6371
6372 if (test_bit(Replacement, &rdev->flags)) {
6373 if (disk->replacement)
6374 goto abort;
6375 disk->replacement = rdev;
6376 } else {
6377 if (disk->rdev)
6378 goto abort;
6379 disk->rdev = rdev;
6380 }
6381
6382 if (test_bit(In_sync, &rdev->flags)) {
6383 char b[BDEVNAME_SIZE];
6384 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6385 " disk %d\n",
6386 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6387 } else if (rdev->saved_raid_disk != raid_disk)
6388 /* Cannot rely on bitmap to complete recovery */
6389 conf->fullsync = 1;
6390 }
6391
6392 conf->level = mddev->new_level;
6393 if (conf->level == 6) {
6394 conf->max_degraded = 2;
6395 if (raid6_call.xor_syndrome)
6396 conf->rmw_level = PARITY_ENABLE_RMW;
6397 else
6398 conf->rmw_level = PARITY_DISABLE_RMW;
6399 } else {
6400 conf->max_degraded = 1;
6401 conf->rmw_level = PARITY_ENABLE_RMW;
6402 }
6403 conf->algorithm = mddev->new_layout;
6404 conf->reshape_progress = mddev->reshape_position;
6405 if (conf->reshape_progress != MaxSector) {
6406 conf->prev_chunk_sectors = mddev->chunk_sectors;
6407 conf->prev_algo = mddev->layout;
6408 }
6409
6410 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
6411 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6412 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6413 if (grow_stripes(conf, NR_STRIPES)) {
6414 printk(KERN_ERR
6415 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6416 mdname(mddev), memory);
6417 goto abort;
6418 } else
6419 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6420 mdname(mddev), memory);
6421
6422 sprintf(pers_name, "raid%d", mddev->new_level);
6423 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6424 if (!conf->thread) {
6425 printk(KERN_ERR
6426 "md/raid:%s: couldn't allocate thread.\n",
6427 mdname(mddev));
6428 goto abort;
6429 }
6430
6431 return conf;
6432
6433 abort:
6434 if (conf) {
6435 free_conf(conf);
6436 return ERR_PTR(-EIO);
6437 } else
6438 return ERR_PTR(-ENOMEM);
6439 }
6440
6441 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6442 {
6443 switch (algo) {
6444 case ALGORITHM_PARITY_0:
6445 if (raid_disk < max_degraded)
6446 return 1;
6447 break;
6448 case ALGORITHM_PARITY_N:
6449 if (raid_disk >= raid_disks - max_degraded)
6450 return 1;
6451 break;
6452 case ALGORITHM_PARITY_0_6:
6453 if (raid_disk == 0 ||
6454 raid_disk == raid_disks - 1)
6455 return 1;
6456 break;
6457 case ALGORITHM_LEFT_ASYMMETRIC_6:
6458 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6459 case ALGORITHM_LEFT_SYMMETRIC_6:
6460 case ALGORITHM_RIGHT_SYMMETRIC_6:
6461 if (raid_disk == raid_disks - 1)
6462 return 1;
6463 }
6464 return 0;
6465 }
6466
6467 static int run(struct mddev *mddev)
6468 {
6469 struct r5conf *conf;
6470 int working_disks = 0;
6471 int dirty_parity_disks = 0;
6472 struct md_rdev *rdev;
6473 sector_t reshape_offset = 0;
6474 int i;
6475 long long min_offset_diff = 0;
6476 int first = 1;
6477
6478 if (mddev->recovery_cp != MaxSector)
6479 printk(KERN_NOTICE "md/raid:%s: not clean"
6480 " -- starting background reconstruction\n",
6481 mdname(mddev));
6482
6483 rdev_for_each(rdev, mddev) {
6484 long long diff;
6485 if (rdev->raid_disk < 0)
6486 continue;
6487 diff = (rdev->new_data_offset - rdev->data_offset);
6488 if (first) {
6489 min_offset_diff = diff;
6490 first = 0;
6491 } else if (mddev->reshape_backwards &&
6492 diff < min_offset_diff)
6493 min_offset_diff = diff;
6494 else if (!mddev->reshape_backwards &&
6495 diff > min_offset_diff)
6496 min_offset_diff = diff;
6497 }
6498
6499 if (mddev->reshape_position != MaxSector) {
6500 /* Check that we can continue the reshape.
6501 * Difficulties arise if the stripe we would write to
6502 * next is at or after the stripe we would read from next.
6503 * For a reshape that changes the number of devices, this
6504 * is only possible for a very short time, and mdadm makes
6505 * sure that time appears to have past before assembling
6506 * the array. So we fail if that time hasn't passed.
6507 * For a reshape that keeps the number of devices the same
6508 * mdadm must be monitoring the reshape can keeping the
6509 * critical areas read-only and backed up. It will start
6510 * the array in read-only mode, so we check for that.
6511 */
6512 sector_t here_new, here_old;
6513 int old_disks;
6514 int max_degraded = (mddev->level == 6 ? 2 : 1);
6515
6516 if (mddev->new_level != mddev->level) {
6517 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6518 "required - aborting.\n",
6519 mdname(mddev));
6520 return -EINVAL;
6521 }
6522 old_disks = mddev->raid_disks - mddev->delta_disks;
6523 /* reshape_position must be on a new-stripe boundary, and one
6524 * further up in new geometry must map after here in old
6525 * geometry.
6526 */
6527 here_new = mddev->reshape_position;
6528 if (sector_div(here_new, mddev->new_chunk_sectors *
6529 (mddev->raid_disks - max_degraded))) {
6530 printk(KERN_ERR "md/raid:%s: reshape_position not "
6531 "on a stripe boundary\n", mdname(mddev));
6532 return -EINVAL;
6533 }
6534 reshape_offset = here_new * mddev->new_chunk_sectors;
6535 /* here_new is the stripe we will write to */
6536 here_old = mddev->reshape_position;
6537 sector_div(here_old, mddev->chunk_sectors *
6538 (old_disks-max_degraded));
6539 /* here_old is the first stripe that we might need to read
6540 * from */
6541 if (mddev->delta_disks == 0) {
6542 if ((here_new * mddev->new_chunk_sectors !=
6543 here_old * mddev->chunk_sectors)) {
6544 printk(KERN_ERR "md/raid:%s: reshape position is"
6545 " confused - aborting\n", mdname(mddev));
6546 return -EINVAL;
6547 }
6548 /* We cannot be sure it is safe to start an in-place
6549 * reshape. It is only safe if user-space is monitoring
6550 * and taking constant backups.
6551 * mdadm always starts a situation like this in
6552 * readonly mode so it can take control before
6553 * allowing any writes. So just check for that.
6554 */
6555 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6556 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6557 /* not really in-place - so OK */;
6558 else if (mddev->ro == 0) {
6559 printk(KERN_ERR "md/raid:%s: in-place reshape "
6560 "must be started in read-only mode "
6561 "- aborting\n",
6562 mdname(mddev));
6563 return -EINVAL;
6564 }
6565 } else if (mddev->reshape_backwards
6566 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6567 here_old * mddev->chunk_sectors)
6568 : (here_new * mddev->new_chunk_sectors >=
6569 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6570 /* Reading from the same stripe as writing to - bad */
6571 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6572 "auto-recovery - aborting.\n",
6573 mdname(mddev));
6574 return -EINVAL;
6575 }
6576 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6577 mdname(mddev));
6578 /* OK, we should be able to continue; */
6579 } else {
6580 BUG_ON(mddev->level != mddev->new_level);
6581 BUG_ON(mddev->layout != mddev->new_layout);
6582 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6583 BUG_ON(mddev->delta_disks != 0);
6584 }
6585
6586 if (mddev->private == NULL)
6587 conf = setup_conf(mddev);
6588 else
6589 conf = mddev->private;
6590
6591 if (IS_ERR(conf))
6592 return PTR_ERR(conf);
6593
6594 conf->min_offset_diff = min_offset_diff;
6595 mddev->thread = conf->thread;
6596 conf->thread = NULL;
6597 mddev->private = conf;
6598
6599 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6600 i++) {
6601 rdev = conf->disks[i].rdev;
6602 if (!rdev && conf->disks[i].replacement) {
6603 /* The replacement is all we have yet */
6604 rdev = conf->disks[i].replacement;
6605 conf->disks[i].replacement = NULL;
6606 clear_bit(Replacement, &rdev->flags);
6607 conf->disks[i].rdev = rdev;
6608 }
6609 if (!rdev)
6610 continue;
6611 if (conf->disks[i].replacement &&
6612 conf->reshape_progress != MaxSector) {
6613 /* replacements and reshape simply do not mix. */
6614 printk(KERN_ERR "md: cannot handle concurrent "
6615 "replacement and reshape.\n");
6616 goto abort;
6617 }
6618 if (test_bit(In_sync, &rdev->flags)) {
6619 working_disks++;
6620 continue;
6621 }
6622 /* This disc is not fully in-sync. However if it
6623 * just stored parity (beyond the recovery_offset),
6624 * when we don't need to be concerned about the
6625 * array being dirty.
6626 * When reshape goes 'backwards', we never have
6627 * partially completed devices, so we only need
6628 * to worry about reshape going forwards.
6629 */
6630 /* Hack because v0.91 doesn't store recovery_offset properly. */
6631 if (mddev->major_version == 0 &&
6632 mddev->minor_version > 90)
6633 rdev->recovery_offset = reshape_offset;
6634
6635 if (rdev->recovery_offset < reshape_offset) {
6636 /* We need to check old and new layout */
6637 if (!only_parity(rdev->raid_disk,
6638 conf->algorithm,
6639 conf->raid_disks,
6640 conf->max_degraded))
6641 continue;
6642 }
6643 if (!only_parity(rdev->raid_disk,
6644 conf->prev_algo,
6645 conf->previous_raid_disks,
6646 conf->max_degraded))
6647 continue;
6648 dirty_parity_disks++;
6649 }
6650
6651 /*
6652 * 0 for a fully functional array, 1 or 2 for a degraded array.
6653 */
6654 mddev->degraded = calc_degraded(conf);
6655
6656 if (has_failed(conf)) {
6657 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6658 " (%d/%d failed)\n",
6659 mdname(mddev), mddev->degraded, conf->raid_disks);
6660 goto abort;
6661 }
6662
6663 /* device size must be a multiple of chunk size */
6664 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6665 mddev->resync_max_sectors = mddev->dev_sectors;
6666
6667 if (mddev->degraded > dirty_parity_disks &&
6668 mddev->recovery_cp != MaxSector) {
6669 if (mddev->ok_start_degraded)
6670 printk(KERN_WARNING
6671 "md/raid:%s: starting dirty degraded array"
6672 " - data corruption possible.\n",
6673 mdname(mddev));
6674 else {
6675 printk(KERN_ERR
6676 "md/raid:%s: cannot start dirty degraded array.\n",
6677 mdname(mddev));
6678 goto abort;
6679 }
6680 }
6681
6682 if (mddev->degraded == 0)
6683 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6684 " devices, algorithm %d\n", mdname(mddev), conf->level,
6685 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6686 mddev->new_layout);
6687 else
6688 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6689 " out of %d devices, algorithm %d\n",
6690 mdname(mddev), conf->level,
6691 mddev->raid_disks - mddev->degraded,
6692 mddev->raid_disks, mddev->new_layout);
6693
6694 print_raid5_conf(conf);
6695
6696 if (conf->reshape_progress != MaxSector) {
6697 conf->reshape_safe = conf->reshape_progress;
6698 atomic_set(&conf->reshape_stripes, 0);
6699 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6700 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6701 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6702 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6703 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6704 "reshape");
6705 }
6706
6707 /* Ok, everything is just fine now */
6708 if (mddev->to_remove == &raid5_attrs_group)
6709 mddev->to_remove = NULL;
6710 else if (mddev->kobj.sd &&
6711 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6712 printk(KERN_WARNING
6713 "raid5: failed to create sysfs attributes for %s\n",
6714 mdname(mddev));
6715 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6716
6717 if (mddev->queue) {
6718 int chunk_size;
6719 bool discard_supported = true;
6720 /* read-ahead size must cover two whole stripes, which
6721 * is 2 * (datadisks) * chunksize where 'n' is the
6722 * number of raid devices
6723 */
6724 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6725 int stripe = data_disks *
6726 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6727 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6728 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6729
6730 chunk_size = mddev->chunk_sectors << 9;
6731 blk_queue_io_min(mddev->queue, chunk_size);
6732 blk_queue_io_opt(mddev->queue, chunk_size *
6733 (conf->raid_disks - conf->max_degraded));
6734 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6735 /*
6736 * We can only discard a whole stripe. It doesn't make sense to
6737 * discard data disk but write parity disk
6738 */
6739 stripe = stripe * PAGE_SIZE;
6740 /* Round up to power of 2, as discard handling
6741 * currently assumes that */
6742 while ((stripe-1) & stripe)
6743 stripe = (stripe | (stripe-1)) + 1;
6744 mddev->queue->limits.discard_alignment = stripe;
6745 mddev->queue->limits.discard_granularity = stripe;
6746 /*
6747 * unaligned part of discard request will be ignored, so can't
6748 * guarantee discard_zeroes_data
6749 */
6750 mddev->queue->limits.discard_zeroes_data = 0;
6751
6752 blk_queue_max_write_same_sectors(mddev->queue, 0);
6753
6754 rdev_for_each(rdev, mddev) {
6755 disk_stack_limits(mddev->gendisk, rdev->bdev,
6756 rdev->data_offset << 9);
6757 disk_stack_limits(mddev->gendisk, rdev->bdev,
6758 rdev->new_data_offset << 9);
6759 /*
6760 * discard_zeroes_data is required, otherwise data
6761 * could be lost. Consider a scenario: discard a stripe
6762 * (the stripe could be inconsistent if
6763 * discard_zeroes_data is 0); write one disk of the
6764 * stripe (the stripe could be inconsistent again
6765 * depending on which disks are used to calculate
6766 * parity); the disk is broken; The stripe data of this
6767 * disk is lost.
6768 */
6769 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6770 !bdev_get_queue(rdev->bdev)->
6771 limits.discard_zeroes_data)
6772 discard_supported = false;
6773 /* Unfortunately, discard_zeroes_data is not currently
6774 * a guarantee - just a hint. So we only allow DISCARD
6775 * if the sysadmin has confirmed that only safe devices
6776 * are in use by setting a module parameter.
6777 */
6778 if (!devices_handle_discard_safely) {
6779 if (discard_supported) {
6780 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6781 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6782 }
6783 discard_supported = false;
6784 }
6785 }
6786
6787 if (discard_supported &&
6788 mddev->queue->limits.max_discard_sectors >= stripe &&
6789 mddev->queue->limits.discard_granularity >= stripe)
6790 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6791 mddev->queue);
6792 else
6793 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6794 mddev->queue);
6795 }
6796
6797 return 0;
6798 abort:
6799 md_unregister_thread(&mddev->thread);
6800 print_raid5_conf(conf);
6801 free_conf(conf);
6802 mddev->private = NULL;
6803 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6804 return -EIO;
6805 }
6806
6807 static void raid5_free(struct mddev *mddev, void *priv)
6808 {
6809 struct r5conf *conf = priv;
6810
6811 free_conf(conf);
6812 mddev->to_remove = &raid5_attrs_group;
6813 }
6814
6815 static void status(struct seq_file *seq, struct mddev *mddev)
6816 {
6817 struct r5conf *conf = mddev->private;
6818 int i;
6819
6820 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6821 mddev->chunk_sectors / 2, mddev->layout);
6822 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6823 for (i = 0; i < conf->raid_disks; i++)
6824 seq_printf (seq, "%s",
6825 conf->disks[i].rdev &&
6826 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6827 seq_printf (seq, "]");
6828 }
6829
6830 static void print_raid5_conf (struct r5conf *conf)
6831 {
6832 int i;
6833 struct disk_info *tmp;
6834
6835 printk(KERN_DEBUG "RAID conf printout:\n");
6836 if (!conf) {
6837 printk("(conf==NULL)\n");
6838 return;
6839 }
6840 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6841 conf->raid_disks,
6842 conf->raid_disks - conf->mddev->degraded);
6843
6844 for (i = 0; i < conf->raid_disks; i++) {
6845 char b[BDEVNAME_SIZE];
6846 tmp = conf->disks + i;
6847 if (tmp->rdev)
6848 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6849 i, !test_bit(Faulty, &tmp->rdev->flags),
6850 bdevname(tmp->rdev->bdev, b));
6851 }
6852 }
6853
6854 static int raid5_spare_active(struct mddev *mddev)
6855 {
6856 int i;
6857 struct r5conf *conf = mddev->private;
6858 struct disk_info *tmp;
6859 int count = 0;
6860 unsigned long flags;
6861
6862 for (i = 0; i < conf->raid_disks; i++) {
6863 tmp = conf->disks + i;
6864 if (tmp->replacement
6865 && tmp->replacement->recovery_offset == MaxSector
6866 && !test_bit(Faulty, &tmp->replacement->flags)
6867 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6868 /* Replacement has just become active. */
6869 if (!tmp->rdev
6870 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6871 count++;
6872 if (tmp->rdev) {
6873 /* Replaced device not technically faulty,
6874 * but we need to be sure it gets removed
6875 * and never re-added.
6876 */
6877 set_bit(Faulty, &tmp->rdev->flags);
6878 sysfs_notify_dirent_safe(
6879 tmp->rdev->sysfs_state);
6880 }
6881 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6882 } else if (tmp->rdev
6883 && tmp->rdev->recovery_offset == MaxSector
6884 && !test_bit(Faulty, &tmp->rdev->flags)
6885 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6886 count++;
6887 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6888 }
6889 }
6890 spin_lock_irqsave(&conf->device_lock, flags);
6891 mddev->degraded = calc_degraded(conf);
6892 spin_unlock_irqrestore(&conf->device_lock, flags);
6893 print_raid5_conf(conf);
6894 return count;
6895 }
6896
6897 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6898 {
6899 struct r5conf *conf = mddev->private;
6900 int err = 0;
6901 int number = rdev->raid_disk;
6902 struct md_rdev **rdevp;
6903 struct disk_info *p = conf->disks + number;
6904
6905 print_raid5_conf(conf);
6906 if (rdev == p->rdev)
6907 rdevp = &p->rdev;
6908 else if (rdev == p->replacement)
6909 rdevp = &p->replacement;
6910 else
6911 return 0;
6912
6913 if (number >= conf->raid_disks &&
6914 conf->reshape_progress == MaxSector)
6915 clear_bit(In_sync, &rdev->flags);
6916
6917 if (test_bit(In_sync, &rdev->flags) ||
6918 atomic_read(&rdev->nr_pending)) {
6919 err = -EBUSY;
6920 goto abort;
6921 }
6922 /* Only remove non-faulty devices if recovery
6923 * isn't possible.
6924 */
6925 if (!test_bit(Faulty, &rdev->flags) &&
6926 mddev->recovery_disabled != conf->recovery_disabled &&
6927 !has_failed(conf) &&
6928 (!p->replacement || p->replacement == rdev) &&
6929 number < conf->raid_disks) {
6930 err = -EBUSY;
6931 goto abort;
6932 }
6933 *rdevp = NULL;
6934 synchronize_rcu();
6935 if (atomic_read(&rdev->nr_pending)) {
6936 /* lost the race, try later */
6937 err = -EBUSY;
6938 *rdevp = rdev;
6939 } else if (p->replacement) {
6940 /* We must have just cleared 'rdev' */
6941 p->rdev = p->replacement;
6942 clear_bit(Replacement, &p->replacement->flags);
6943 smp_mb(); /* Make sure other CPUs may see both as identical
6944 * but will never see neither - if they are careful
6945 */
6946 p->replacement = NULL;
6947 clear_bit(WantReplacement, &rdev->flags);
6948 } else
6949 /* We might have just removed the Replacement as faulty-
6950 * clear the bit just in case
6951 */
6952 clear_bit(WantReplacement, &rdev->flags);
6953 abort:
6954
6955 print_raid5_conf(conf);
6956 return err;
6957 }
6958
6959 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
6960 {
6961 struct r5conf *conf = mddev->private;
6962 int err = -EEXIST;
6963 int disk;
6964 struct disk_info *p;
6965 int first = 0;
6966 int last = conf->raid_disks - 1;
6967
6968 if (mddev->recovery_disabled == conf->recovery_disabled)
6969 return -EBUSY;
6970
6971 if (rdev->saved_raid_disk < 0 && has_failed(conf))
6972 /* no point adding a device */
6973 return -EINVAL;
6974
6975 if (rdev->raid_disk >= 0)
6976 first = last = rdev->raid_disk;
6977
6978 /*
6979 * find the disk ... but prefer rdev->saved_raid_disk
6980 * if possible.
6981 */
6982 if (rdev->saved_raid_disk >= 0 &&
6983 rdev->saved_raid_disk >= first &&
6984 conf->disks[rdev->saved_raid_disk].rdev == NULL)
6985 first = rdev->saved_raid_disk;
6986
6987 for (disk = first; disk <= last; disk++) {
6988 p = conf->disks + disk;
6989 if (p->rdev == NULL) {
6990 clear_bit(In_sync, &rdev->flags);
6991 rdev->raid_disk = disk;
6992 err = 0;
6993 if (rdev->saved_raid_disk != disk)
6994 conf->fullsync = 1;
6995 rcu_assign_pointer(p->rdev, rdev);
6996 goto out;
6997 }
6998 }
6999 for (disk = first; disk <= last; disk++) {
7000 p = conf->disks + disk;
7001 if (test_bit(WantReplacement, &p->rdev->flags) &&
7002 p->replacement == NULL) {
7003 clear_bit(In_sync, &rdev->flags);
7004 set_bit(Replacement, &rdev->flags);
7005 rdev->raid_disk = disk;
7006 err = 0;
7007 conf->fullsync = 1;
7008 rcu_assign_pointer(p->replacement, rdev);
7009 break;
7010 }
7011 }
7012 out:
7013 print_raid5_conf(conf);
7014 return err;
7015 }
7016
7017 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7018 {
7019 /* no resync is happening, and there is enough space
7020 * on all devices, so we can resize.
7021 * We need to make sure resync covers any new space.
7022 * If the array is shrinking we should possibly wait until
7023 * any io in the removed space completes, but it hardly seems
7024 * worth it.
7025 */
7026 sector_t newsize;
7027 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7028 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7029 if (mddev->external_size &&
7030 mddev->array_sectors > newsize)
7031 return -EINVAL;
7032 if (mddev->bitmap) {
7033 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7034 if (ret)
7035 return ret;
7036 }
7037 md_set_array_sectors(mddev, newsize);
7038 set_capacity(mddev->gendisk, mddev->array_sectors);
7039 revalidate_disk(mddev->gendisk);
7040 if (sectors > mddev->dev_sectors &&
7041 mddev->recovery_cp > mddev->dev_sectors) {
7042 mddev->recovery_cp = mddev->dev_sectors;
7043 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7044 }
7045 mddev->dev_sectors = sectors;
7046 mddev->resync_max_sectors = sectors;
7047 return 0;
7048 }
7049
7050 static int check_stripe_cache(struct mddev *mddev)
7051 {
7052 /* Can only proceed if there are plenty of stripe_heads.
7053 * We need a minimum of one full stripe,, and for sensible progress
7054 * it is best to have about 4 times that.
7055 * If we require 4 times, then the default 256 4K stripe_heads will
7056 * allow for chunk sizes up to 256K, which is probably OK.
7057 * If the chunk size is greater, user-space should request more
7058 * stripe_heads first.
7059 */
7060 struct r5conf *conf = mddev->private;
7061 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7062 > conf->max_nr_stripes ||
7063 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7064 > conf->max_nr_stripes) {
7065 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7066 mdname(mddev),
7067 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7068 / STRIPE_SIZE)*4);
7069 return 0;
7070 }
7071 return 1;
7072 }
7073
7074 static int check_reshape(struct mddev *mddev)
7075 {
7076 struct r5conf *conf = mddev->private;
7077
7078 if (mddev->delta_disks == 0 &&
7079 mddev->new_layout == mddev->layout &&
7080 mddev->new_chunk_sectors == mddev->chunk_sectors)
7081 return 0; /* nothing to do */
7082 if (has_failed(conf))
7083 return -EINVAL;
7084 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7085 /* We might be able to shrink, but the devices must
7086 * be made bigger first.
7087 * For raid6, 4 is the minimum size.
7088 * Otherwise 2 is the minimum
7089 */
7090 int min = 2;
7091 if (mddev->level == 6)
7092 min = 4;
7093 if (mddev->raid_disks + mddev->delta_disks < min)
7094 return -EINVAL;
7095 }
7096
7097 if (!check_stripe_cache(mddev))
7098 return -ENOSPC;
7099
7100 return resize_stripes(conf, (conf->previous_raid_disks
7101 + mddev->delta_disks));
7102 }
7103
7104 static int raid5_start_reshape(struct mddev *mddev)
7105 {
7106 struct r5conf *conf = mddev->private;
7107 struct md_rdev *rdev;
7108 int spares = 0;
7109 unsigned long flags;
7110
7111 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7112 return -EBUSY;
7113
7114 if (!check_stripe_cache(mddev))
7115 return -ENOSPC;
7116
7117 if (has_failed(conf))
7118 return -EINVAL;
7119
7120 rdev_for_each(rdev, mddev) {
7121 if (!test_bit(In_sync, &rdev->flags)
7122 && !test_bit(Faulty, &rdev->flags))
7123 spares++;
7124 }
7125
7126 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7127 /* Not enough devices even to make a degraded array
7128 * of that size
7129 */
7130 return -EINVAL;
7131
7132 /* Refuse to reduce size of the array. Any reductions in
7133 * array size must be through explicit setting of array_size
7134 * attribute.
7135 */
7136 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7137 < mddev->array_sectors) {
7138 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7139 "before number of disks\n", mdname(mddev));
7140 return -EINVAL;
7141 }
7142
7143 atomic_set(&conf->reshape_stripes, 0);
7144 spin_lock_irq(&conf->device_lock);
7145 write_seqcount_begin(&conf->gen_lock);
7146 conf->previous_raid_disks = conf->raid_disks;
7147 conf->raid_disks += mddev->delta_disks;
7148 conf->prev_chunk_sectors = conf->chunk_sectors;
7149 conf->chunk_sectors = mddev->new_chunk_sectors;
7150 conf->prev_algo = conf->algorithm;
7151 conf->algorithm = mddev->new_layout;
7152 conf->generation++;
7153 /* Code that selects data_offset needs to see the generation update
7154 * if reshape_progress has been set - so a memory barrier needed.
7155 */
7156 smp_mb();
7157 if (mddev->reshape_backwards)
7158 conf->reshape_progress = raid5_size(mddev, 0, 0);
7159 else
7160 conf->reshape_progress = 0;
7161 conf->reshape_safe = conf->reshape_progress;
7162 write_seqcount_end(&conf->gen_lock);
7163 spin_unlock_irq(&conf->device_lock);
7164
7165 /* Now make sure any requests that proceeded on the assumption
7166 * the reshape wasn't running - like Discard or Read - have
7167 * completed.
7168 */
7169 mddev_suspend(mddev);
7170 mddev_resume(mddev);
7171
7172 /* Add some new drives, as many as will fit.
7173 * We know there are enough to make the newly sized array work.
7174 * Don't add devices if we are reducing the number of
7175 * devices in the array. This is because it is not possible
7176 * to correctly record the "partially reconstructed" state of
7177 * such devices during the reshape and confusion could result.
7178 */
7179 if (mddev->delta_disks >= 0) {
7180 rdev_for_each(rdev, mddev)
7181 if (rdev->raid_disk < 0 &&
7182 !test_bit(Faulty, &rdev->flags)) {
7183 if (raid5_add_disk(mddev, rdev) == 0) {
7184 if (rdev->raid_disk
7185 >= conf->previous_raid_disks)
7186 set_bit(In_sync, &rdev->flags);
7187 else
7188 rdev->recovery_offset = 0;
7189
7190 if (sysfs_link_rdev(mddev, rdev))
7191 /* Failure here is OK */;
7192 }
7193 } else if (rdev->raid_disk >= conf->previous_raid_disks
7194 && !test_bit(Faulty, &rdev->flags)) {
7195 /* This is a spare that was manually added */
7196 set_bit(In_sync, &rdev->flags);
7197 }
7198
7199 /* When a reshape changes the number of devices,
7200 * ->degraded is measured against the larger of the
7201 * pre and post number of devices.
7202 */
7203 spin_lock_irqsave(&conf->device_lock, flags);
7204 mddev->degraded = calc_degraded(conf);
7205 spin_unlock_irqrestore(&conf->device_lock, flags);
7206 }
7207 mddev->raid_disks = conf->raid_disks;
7208 mddev->reshape_position = conf->reshape_progress;
7209 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7210
7211 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7212 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7213 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7214 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7215 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7216 "reshape");
7217 if (!mddev->sync_thread) {
7218 mddev->recovery = 0;
7219 spin_lock_irq(&conf->device_lock);
7220 write_seqcount_begin(&conf->gen_lock);
7221 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7222 mddev->new_chunk_sectors =
7223 conf->chunk_sectors = conf->prev_chunk_sectors;
7224 mddev->new_layout = conf->algorithm = conf->prev_algo;
7225 rdev_for_each(rdev, mddev)
7226 rdev->new_data_offset = rdev->data_offset;
7227 smp_wmb();
7228 conf->generation --;
7229 conf->reshape_progress = MaxSector;
7230 mddev->reshape_position = MaxSector;
7231 write_seqcount_end(&conf->gen_lock);
7232 spin_unlock_irq(&conf->device_lock);
7233 return -EAGAIN;
7234 }
7235 conf->reshape_checkpoint = jiffies;
7236 md_wakeup_thread(mddev->sync_thread);
7237 md_new_event(mddev);
7238 return 0;
7239 }
7240
7241 /* This is called from the reshape thread and should make any
7242 * changes needed in 'conf'
7243 */
7244 static void end_reshape(struct r5conf *conf)
7245 {
7246
7247 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7248 struct md_rdev *rdev;
7249
7250 spin_lock_irq(&conf->device_lock);
7251 conf->previous_raid_disks = conf->raid_disks;
7252 rdev_for_each(rdev, conf->mddev)
7253 rdev->data_offset = rdev->new_data_offset;
7254 smp_wmb();
7255 conf->reshape_progress = MaxSector;
7256 spin_unlock_irq(&conf->device_lock);
7257 wake_up(&conf->wait_for_overlap);
7258
7259 /* read-ahead size must cover two whole stripes, which is
7260 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7261 */
7262 if (conf->mddev->queue) {
7263 int data_disks = conf->raid_disks - conf->max_degraded;
7264 int stripe = data_disks * ((conf->chunk_sectors << 9)
7265 / PAGE_SIZE);
7266 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7267 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7268 }
7269 }
7270 }
7271
7272 /* This is called from the raid5d thread with mddev_lock held.
7273 * It makes config changes to the device.
7274 */
7275 static void raid5_finish_reshape(struct mddev *mddev)
7276 {
7277 struct r5conf *conf = mddev->private;
7278
7279 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7280
7281 if (mddev->delta_disks > 0) {
7282 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7283 set_capacity(mddev->gendisk, mddev->array_sectors);
7284 revalidate_disk(mddev->gendisk);
7285 } else {
7286 int d;
7287 spin_lock_irq(&conf->device_lock);
7288 mddev->degraded = calc_degraded(conf);
7289 spin_unlock_irq(&conf->device_lock);
7290 for (d = conf->raid_disks ;
7291 d < conf->raid_disks - mddev->delta_disks;
7292 d++) {
7293 struct md_rdev *rdev = conf->disks[d].rdev;
7294 if (rdev)
7295 clear_bit(In_sync, &rdev->flags);
7296 rdev = conf->disks[d].replacement;
7297 if (rdev)
7298 clear_bit(In_sync, &rdev->flags);
7299 }
7300 }
7301 mddev->layout = conf->algorithm;
7302 mddev->chunk_sectors = conf->chunk_sectors;
7303 mddev->reshape_position = MaxSector;
7304 mddev->delta_disks = 0;
7305 mddev->reshape_backwards = 0;
7306 }
7307 }
7308
7309 static void raid5_quiesce(struct mddev *mddev, int state)
7310 {
7311 struct r5conf *conf = mddev->private;
7312
7313 switch(state) {
7314 case 2: /* resume for a suspend */
7315 wake_up(&conf->wait_for_overlap);
7316 break;
7317
7318 case 1: /* stop all writes */
7319 lock_all_device_hash_locks_irq(conf);
7320 /* '2' tells resync/reshape to pause so that all
7321 * active stripes can drain
7322 */
7323 conf->quiesce = 2;
7324 wait_event_cmd(conf->wait_for_stripe,
7325 atomic_read(&conf->active_stripes) == 0 &&
7326 atomic_read(&conf->active_aligned_reads) == 0,
7327 unlock_all_device_hash_locks_irq(conf),
7328 lock_all_device_hash_locks_irq(conf));
7329 conf->quiesce = 1;
7330 unlock_all_device_hash_locks_irq(conf);
7331 /* allow reshape to continue */
7332 wake_up(&conf->wait_for_overlap);
7333 break;
7334
7335 case 0: /* re-enable writes */
7336 lock_all_device_hash_locks_irq(conf);
7337 conf->quiesce = 0;
7338 wake_up(&conf->wait_for_stripe);
7339 wake_up(&conf->wait_for_overlap);
7340 unlock_all_device_hash_locks_irq(conf);
7341 break;
7342 }
7343 }
7344
7345 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7346 {
7347 struct r0conf *raid0_conf = mddev->private;
7348 sector_t sectors;
7349
7350 /* for raid0 takeover only one zone is supported */
7351 if (raid0_conf->nr_strip_zones > 1) {
7352 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7353 mdname(mddev));
7354 return ERR_PTR(-EINVAL);
7355 }
7356
7357 sectors = raid0_conf->strip_zone[0].zone_end;
7358 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7359 mddev->dev_sectors = sectors;
7360 mddev->new_level = level;
7361 mddev->new_layout = ALGORITHM_PARITY_N;
7362 mddev->new_chunk_sectors = mddev->chunk_sectors;
7363 mddev->raid_disks += 1;
7364 mddev->delta_disks = 1;
7365 /* make sure it will be not marked as dirty */
7366 mddev->recovery_cp = MaxSector;
7367
7368 return setup_conf(mddev);
7369 }
7370
7371 static void *raid5_takeover_raid1(struct mddev *mddev)
7372 {
7373 int chunksect;
7374
7375 if (mddev->raid_disks != 2 ||
7376 mddev->degraded > 1)
7377 return ERR_PTR(-EINVAL);
7378
7379 /* Should check if there are write-behind devices? */
7380
7381 chunksect = 64*2; /* 64K by default */
7382
7383 /* The array must be an exact multiple of chunksize */
7384 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7385 chunksect >>= 1;
7386
7387 if ((chunksect<<9) < STRIPE_SIZE)
7388 /* array size does not allow a suitable chunk size */
7389 return ERR_PTR(-EINVAL);
7390
7391 mddev->new_level = 5;
7392 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7393 mddev->new_chunk_sectors = chunksect;
7394
7395 return setup_conf(mddev);
7396 }
7397
7398 static void *raid5_takeover_raid6(struct mddev *mddev)
7399 {
7400 int new_layout;
7401
7402 switch (mddev->layout) {
7403 case ALGORITHM_LEFT_ASYMMETRIC_6:
7404 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7405 break;
7406 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7407 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7408 break;
7409 case ALGORITHM_LEFT_SYMMETRIC_6:
7410 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7411 break;
7412 case ALGORITHM_RIGHT_SYMMETRIC_6:
7413 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7414 break;
7415 case ALGORITHM_PARITY_0_6:
7416 new_layout = ALGORITHM_PARITY_0;
7417 break;
7418 case ALGORITHM_PARITY_N:
7419 new_layout = ALGORITHM_PARITY_N;
7420 break;
7421 default:
7422 return ERR_PTR(-EINVAL);
7423 }
7424 mddev->new_level = 5;
7425 mddev->new_layout = new_layout;
7426 mddev->delta_disks = -1;
7427 mddev->raid_disks -= 1;
7428 return setup_conf(mddev);
7429 }
7430
7431 static int raid5_check_reshape(struct mddev *mddev)
7432 {
7433 /* For a 2-drive array, the layout and chunk size can be changed
7434 * immediately as not restriping is needed.
7435 * For larger arrays we record the new value - after validation
7436 * to be used by a reshape pass.
7437 */
7438 struct r5conf *conf = mddev->private;
7439 int new_chunk = mddev->new_chunk_sectors;
7440
7441 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7442 return -EINVAL;
7443 if (new_chunk > 0) {
7444 if (!is_power_of_2(new_chunk))
7445 return -EINVAL;
7446 if (new_chunk < (PAGE_SIZE>>9))
7447 return -EINVAL;
7448 if (mddev->array_sectors & (new_chunk-1))
7449 /* not factor of array size */
7450 return -EINVAL;
7451 }
7452
7453 /* They look valid */
7454
7455 if (mddev->raid_disks == 2) {
7456 /* can make the change immediately */
7457 if (mddev->new_layout >= 0) {
7458 conf->algorithm = mddev->new_layout;
7459 mddev->layout = mddev->new_layout;
7460 }
7461 if (new_chunk > 0) {
7462 conf->chunk_sectors = new_chunk ;
7463 mddev->chunk_sectors = new_chunk;
7464 }
7465 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7466 md_wakeup_thread(mddev->thread);
7467 }
7468 return check_reshape(mddev);
7469 }
7470
7471 static int raid6_check_reshape(struct mddev *mddev)
7472 {
7473 int new_chunk = mddev->new_chunk_sectors;
7474
7475 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7476 return -EINVAL;
7477 if (new_chunk > 0) {
7478 if (!is_power_of_2(new_chunk))
7479 return -EINVAL;
7480 if (new_chunk < (PAGE_SIZE >> 9))
7481 return -EINVAL;
7482 if (mddev->array_sectors & (new_chunk-1))
7483 /* not factor of array size */
7484 return -EINVAL;
7485 }
7486
7487 /* They look valid */
7488 return check_reshape(mddev);
7489 }
7490
7491 static void *raid5_takeover(struct mddev *mddev)
7492 {
7493 /* raid5 can take over:
7494 * raid0 - if there is only one strip zone - make it a raid4 layout
7495 * raid1 - if there are two drives. We need to know the chunk size
7496 * raid4 - trivial - just use a raid4 layout.
7497 * raid6 - Providing it is a *_6 layout
7498 */
7499 if (mddev->level == 0)
7500 return raid45_takeover_raid0(mddev, 5);
7501 if (mddev->level == 1)
7502 return raid5_takeover_raid1(mddev);
7503 if (mddev->level == 4) {
7504 mddev->new_layout = ALGORITHM_PARITY_N;
7505 mddev->new_level = 5;
7506 return setup_conf(mddev);
7507 }
7508 if (mddev->level == 6)
7509 return raid5_takeover_raid6(mddev);
7510
7511 return ERR_PTR(-EINVAL);
7512 }
7513
7514 static void *raid4_takeover(struct mddev *mddev)
7515 {
7516 /* raid4 can take over:
7517 * raid0 - if there is only one strip zone
7518 * raid5 - if layout is right
7519 */
7520 if (mddev->level == 0)
7521 return raid45_takeover_raid0(mddev, 4);
7522 if (mddev->level == 5 &&
7523 mddev->layout == ALGORITHM_PARITY_N) {
7524 mddev->new_layout = 0;
7525 mddev->new_level = 4;
7526 return setup_conf(mddev);
7527 }
7528 return ERR_PTR(-EINVAL);
7529 }
7530
7531 static struct md_personality raid5_personality;
7532
7533 static void *raid6_takeover(struct mddev *mddev)
7534 {
7535 /* Currently can only take over a raid5. We map the
7536 * personality to an equivalent raid6 personality
7537 * with the Q block at the end.
7538 */
7539 int new_layout;
7540
7541 if (mddev->pers != &raid5_personality)
7542 return ERR_PTR(-EINVAL);
7543 if (mddev->degraded > 1)
7544 return ERR_PTR(-EINVAL);
7545 if (mddev->raid_disks > 253)
7546 return ERR_PTR(-EINVAL);
7547 if (mddev->raid_disks < 3)
7548 return ERR_PTR(-EINVAL);
7549
7550 switch (mddev->layout) {
7551 case ALGORITHM_LEFT_ASYMMETRIC:
7552 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7553 break;
7554 case ALGORITHM_RIGHT_ASYMMETRIC:
7555 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7556 break;
7557 case ALGORITHM_LEFT_SYMMETRIC:
7558 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7559 break;
7560 case ALGORITHM_RIGHT_SYMMETRIC:
7561 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7562 break;
7563 case ALGORITHM_PARITY_0:
7564 new_layout = ALGORITHM_PARITY_0_6;
7565 break;
7566 case ALGORITHM_PARITY_N:
7567 new_layout = ALGORITHM_PARITY_N;
7568 break;
7569 default:
7570 return ERR_PTR(-EINVAL);
7571 }
7572 mddev->new_level = 6;
7573 mddev->new_layout = new_layout;
7574 mddev->delta_disks = 1;
7575 mddev->raid_disks += 1;
7576 return setup_conf(mddev);
7577 }
7578
7579 static struct md_personality raid6_personality =
7580 {
7581 .name = "raid6",
7582 .level = 6,
7583 .owner = THIS_MODULE,
7584 .make_request = make_request,
7585 .run = run,
7586 .free = raid5_free,
7587 .status = status,
7588 .error_handler = error,
7589 .hot_add_disk = raid5_add_disk,
7590 .hot_remove_disk= raid5_remove_disk,
7591 .spare_active = raid5_spare_active,
7592 .sync_request = sync_request,
7593 .resize = raid5_resize,
7594 .size = raid5_size,
7595 .check_reshape = raid6_check_reshape,
7596 .start_reshape = raid5_start_reshape,
7597 .finish_reshape = raid5_finish_reshape,
7598 .quiesce = raid5_quiesce,
7599 .takeover = raid6_takeover,
7600 .congested = raid5_congested,
7601 .mergeable_bvec = raid5_mergeable_bvec,
7602 };
7603 static struct md_personality raid5_personality =
7604 {
7605 .name = "raid5",
7606 .level = 5,
7607 .owner = THIS_MODULE,
7608 .make_request = make_request,
7609 .run = run,
7610 .free = raid5_free,
7611 .status = status,
7612 .error_handler = error,
7613 .hot_add_disk = raid5_add_disk,
7614 .hot_remove_disk= raid5_remove_disk,
7615 .spare_active = raid5_spare_active,
7616 .sync_request = sync_request,
7617 .resize = raid5_resize,
7618 .size = raid5_size,
7619 .check_reshape = raid5_check_reshape,
7620 .start_reshape = raid5_start_reshape,
7621 .finish_reshape = raid5_finish_reshape,
7622 .quiesce = raid5_quiesce,
7623 .takeover = raid5_takeover,
7624 .congested = raid5_congested,
7625 .mergeable_bvec = raid5_mergeable_bvec,
7626 };
7627
7628 static struct md_personality raid4_personality =
7629 {
7630 .name = "raid4",
7631 .level = 4,
7632 .owner = THIS_MODULE,
7633 .make_request = make_request,
7634 .run = run,
7635 .free = raid5_free,
7636 .status = status,
7637 .error_handler = error,
7638 .hot_add_disk = raid5_add_disk,
7639 .hot_remove_disk= raid5_remove_disk,
7640 .spare_active = raid5_spare_active,
7641 .sync_request = sync_request,
7642 .resize = raid5_resize,
7643 .size = raid5_size,
7644 .check_reshape = raid5_check_reshape,
7645 .start_reshape = raid5_start_reshape,
7646 .finish_reshape = raid5_finish_reshape,
7647 .quiesce = raid5_quiesce,
7648 .takeover = raid4_takeover,
7649 .congested = raid5_congested,
7650 .mergeable_bvec = raid5_mergeable_bvec,
7651 };
7652
7653 static int __init raid5_init(void)
7654 {
7655 raid5_wq = alloc_workqueue("raid5wq",
7656 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7657 if (!raid5_wq)
7658 return -ENOMEM;
7659 register_md_personality(&raid6_personality);
7660 register_md_personality(&raid5_personality);
7661 register_md_personality(&raid4_personality);
7662 return 0;
7663 }
7664
7665 static void raid5_exit(void)
7666 {
7667 unregister_md_personality(&raid6_personality);
7668 unregister_md_personality(&raid5_personality);
7669 unregister_md_personality(&raid4_personality);
7670 destroy_workqueue(raid5_wq);
7671 }
7672
7673 module_init(raid5_init);
7674 module_exit(raid5_exit);
7675 MODULE_LICENSE("GPL");
7676 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7677 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7678 MODULE_ALIAS("md-raid5");
7679 MODULE_ALIAS("md-raid4");
7680 MODULE_ALIAS("md-level-5");
7681 MODULE_ALIAS("md-level-4");
7682 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7683 MODULE_ALIAS("md-raid6");
7684 MODULE_ALIAS("md-level-6");
7685
7686 /* This used to be two separate modules, they were: */
7687 MODULE_ALIAS("raid5");
7688 MODULE_ALIAS("raid6");
This page took 0.187204 seconds and 4 git commands to generate.