md/raid5: call break_stripe_batch_list from handle_stripe_clean_event
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
385 {
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
391 head = llist_reverse_order(head);
392 while (head) {
393 int hash;
394
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407 count++;
408 }
409
410 return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415 struct r5conf *conf = sh->raid_conf;
416 unsigned long flags;
417 struct list_head list;
418 int hash;
419 bool wakeup;
420
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433 slow_path:
434 local_irq_save(flags);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
440 spin_unlock(&conf->device_lock);
441 release_inactive_stripe_list(conf, &list, hash);
442 }
443 local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
460
461 hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
470 if (list_empty(conf->inactive_list + hash))
471 goto out;
472 first = (conf->inactive_list + hash)->next;
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
477 BUG_ON(hash != sh->hash_lock_index);
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 struct page *p;
487 int i;
488 int num = sh->raid_conf->pool_size;
489
490 for (i = 0; i < num ; i++) {
491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
496 put_page(p);
497 }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502 int i;
503 int num = sh->raid_conf->pool_size;
504
505 for (i = 0; i < num; i++) {
506 struct page *page;
507
508 if (!(page = alloc_page(gfp))) {
509 return 1;
510 }
511 sh->dev[i].page = page;
512 sh->dev[i].orig_page = page;
513 }
514 return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 struct r5conf *conf = sh->raid_conf;
524 int i, seq;
525
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 BUG_ON(stripe_operations_active(sh));
529 BUG_ON(sh->batch_head);
530
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
540
541 for (i = sh->disks; i--; ) {
542 struct r5dev *dev = &sh->dev[i];
543
544 if (dev->toread || dev->read || dev->towrite || dev->written ||
545 test_bit(R5_LOCKED, &dev->flags)) {
546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh->sector, i, dev->toread,
548 dev->read, dev->towrite, dev->written,
549 test_bit(R5_LOCKED, &dev->flags));
550 WARN_ON(1);
551 }
552 dev->flags = 0;
553 raid5_build_block(sh, i, previous);
554 }
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
557 sh->overwrite_disks = 0;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 short generation)
565 {
566 struct stripe_head *sh;
567
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 if (sh->sector == sector && sh->generation == generation)
571 return sh;
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 return NULL;
574 }
575
576 /*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 int degraded, degraded2;
592 int i;
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
620 rcu_read_lock();
621 degraded2 = 0;
622 for (i = 0; i < conf->raid_disks; i++) {
623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
626 if (!rdev || test_bit(Faulty, &rdev->flags))
627 degraded2++;
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
637 degraded2++;
638 }
639 rcu_read_unlock();
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 int previous, int noblock, int noquiesce)
661 {
662 struct stripe_head *sh;
663 int hash = stripe_hash_locks_hash(sector);
664
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667 spin_lock_irq(conf->hash_locks + hash);
668
669 do {
670 wait_event_lock_irq(conf->wait_for_stripe,
671 conf->quiesce == 0 || noquiesce,
672 *(conf->hash_locks + hash));
673 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!sh) {
675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 sh = get_free_stripe(conf, hash);
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
681 }
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
694 *(conf->hash_locks + hash));
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
697 } else {
698 init_stripe(sh, sector, previous);
699 atomic_inc(&sh->count);
700 }
701 } else if (!atomic_inc_not_zero(&sh->count)) {
702 spin_lock(&conf->device_lock);
703 if (!atomic_read(&sh->count)) {
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
708 list_del_init(&sh->lru);
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
713 }
714 atomic_inc(&sh->count);
715 spin_unlock(&conf->device_lock);
716 }
717 } while (sh == NULL);
718
719 spin_unlock_irq(conf->hash_locks + hash);
720 return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
738 }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 !test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
753 is_full_stripe_write(sh);
754 }
755
756 /* we only do back search */
757 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
758 {
759 struct stripe_head *head;
760 sector_t head_sector, tmp_sec;
761 int hash;
762 int dd_idx;
763
764 if (!stripe_can_batch(sh))
765 return;
766 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
767 tmp_sec = sh->sector;
768 if (!sector_div(tmp_sec, conf->chunk_sectors))
769 return;
770 head_sector = sh->sector - STRIPE_SECTORS;
771
772 hash = stripe_hash_locks_hash(head_sector);
773 spin_lock_irq(conf->hash_locks + hash);
774 head = __find_stripe(conf, head_sector, conf->generation);
775 if (head && !atomic_inc_not_zero(&head->count)) {
776 spin_lock(&conf->device_lock);
777 if (!atomic_read(&head->count)) {
778 if (!test_bit(STRIPE_HANDLE, &head->state))
779 atomic_inc(&conf->active_stripes);
780 BUG_ON(list_empty(&head->lru) &&
781 !test_bit(STRIPE_EXPANDING, &head->state));
782 list_del_init(&head->lru);
783 if (head->group) {
784 head->group->stripes_cnt--;
785 head->group = NULL;
786 }
787 }
788 atomic_inc(&head->count);
789 spin_unlock(&conf->device_lock);
790 }
791 spin_unlock_irq(conf->hash_locks + hash);
792
793 if (!head)
794 return;
795 if (!stripe_can_batch(head))
796 goto out;
797
798 lock_two_stripes(head, sh);
799 /* clear_batch_ready clear the flag */
800 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
801 goto unlock_out;
802
803 if (sh->batch_head)
804 goto unlock_out;
805
806 dd_idx = 0;
807 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
808 dd_idx++;
809 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
810 goto unlock_out;
811
812 if (head->batch_head) {
813 spin_lock(&head->batch_head->batch_lock);
814 /* This batch list is already running */
815 if (!stripe_can_batch(head)) {
816 spin_unlock(&head->batch_head->batch_lock);
817 goto unlock_out;
818 }
819
820 /*
821 * at this point, head's BATCH_READY could be cleared, but we
822 * can still add the stripe to batch list
823 */
824 list_add(&sh->batch_list, &head->batch_list);
825 spin_unlock(&head->batch_head->batch_lock);
826
827 sh->batch_head = head->batch_head;
828 } else {
829 head->batch_head = head;
830 sh->batch_head = head->batch_head;
831 spin_lock(&head->batch_lock);
832 list_add_tail(&sh->batch_list, &head->batch_list);
833 spin_unlock(&head->batch_lock);
834 }
835
836 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
837 if (atomic_dec_return(&conf->preread_active_stripes)
838 < IO_THRESHOLD)
839 md_wakeup_thread(conf->mddev->thread);
840
841 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
842 int seq = sh->bm_seq;
843 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
844 sh->batch_head->bm_seq > seq)
845 seq = sh->batch_head->bm_seq;
846 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
847 sh->batch_head->bm_seq = seq;
848 }
849
850 atomic_inc(&sh->count);
851 unlock_out:
852 unlock_two_stripes(head, sh);
853 out:
854 release_stripe(head);
855 }
856
857 /* Determine if 'data_offset' or 'new_data_offset' should be used
858 * in this stripe_head.
859 */
860 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
861 {
862 sector_t progress = conf->reshape_progress;
863 /* Need a memory barrier to make sure we see the value
864 * of conf->generation, or ->data_offset that was set before
865 * reshape_progress was updated.
866 */
867 smp_rmb();
868 if (progress == MaxSector)
869 return 0;
870 if (sh->generation == conf->generation - 1)
871 return 0;
872 /* We are in a reshape, and this is a new-generation stripe,
873 * so use new_data_offset.
874 */
875 return 1;
876 }
877
878 static void
879 raid5_end_read_request(struct bio *bi, int error);
880 static void
881 raid5_end_write_request(struct bio *bi, int error);
882
883 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
884 {
885 struct r5conf *conf = sh->raid_conf;
886 int i, disks = sh->disks;
887 struct stripe_head *head_sh = sh;
888
889 might_sleep();
890
891 for (i = disks; i--; ) {
892 int rw;
893 int replace_only = 0;
894 struct bio *bi, *rbi;
895 struct md_rdev *rdev, *rrdev = NULL;
896
897 sh = head_sh;
898 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
899 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
900 rw = WRITE_FUA;
901 else
902 rw = WRITE;
903 if (test_bit(R5_Discard, &sh->dev[i].flags))
904 rw |= REQ_DISCARD;
905 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
906 rw = READ;
907 else if (test_and_clear_bit(R5_WantReplace,
908 &sh->dev[i].flags)) {
909 rw = WRITE;
910 replace_only = 1;
911 } else
912 continue;
913 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
914 rw |= REQ_SYNC;
915
916 again:
917 bi = &sh->dev[i].req;
918 rbi = &sh->dev[i].rreq; /* For writing to replacement */
919
920 rcu_read_lock();
921 rrdev = rcu_dereference(conf->disks[i].replacement);
922 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
923 rdev = rcu_dereference(conf->disks[i].rdev);
924 if (!rdev) {
925 rdev = rrdev;
926 rrdev = NULL;
927 }
928 if (rw & WRITE) {
929 if (replace_only)
930 rdev = NULL;
931 if (rdev == rrdev)
932 /* We raced and saw duplicates */
933 rrdev = NULL;
934 } else {
935 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
936 rdev = rrdev;
937 rrdev = NULL;
938 }
939
940 if (rdev && test_bit(Faulty, &rdev->flags))
941 rdev = NULL;
942 if (rdev)
943 atomic_inc(&rdev->nr_pending);
944 if (rrdev && test_bit(Faulty, &rrdev->flags))
945 rrdev = NULL;
946 if (rrdev)
947 atomic_inc(&rrdev->nr_pending);
948 rcu_read_unlock();
949
950 /* We have already checked bad blocks for reads. Now
951 * need to check for writes. We never accept write errors
952 * on the replacement, so we don't to check rrdev.
953 */
954 while ((rw & WRITE) && rdev &&
955 test_bit(WriteErrorSeen, &rdev->flags)) {
956 sector_t first_bad;
957 int bad_sectors;
958 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
959 &first_bad, &bad_sectors);
960 if (!bad)
961 break;
962
963 if (bad < 0) {
964 set_bit(BlockedBadBlocks, &rdev->flags);
965 if (!conf->mddev->external &&
966 conf->mddev->flags) {
967 /* It is very unlikely, but we might
968 * still need to write out the
969 * bad block log - better give it
970 * a chance*/
971 md_check_recovery(conf->mddev);
972 }
973 /*
974 * Because md_wait_for_blocked_rdev
975 * will dec nr_pending, we must
976 * increment it first.
977 */
978 atomic_inc(&rdev->nr_pending);
979 md_wait_for_blocked_rdev(rdev, conf->mddev);
980 } else {
981 /* Acknowledged bad block - skip the write */
982 rdev_dec_pending(rdev, conf->mddev);
983 rdev = NULL;
984 }
985 }
986
987 if (rdev) {
988 if (s->syncing || s->expanding || s->expanded
989 || s->replacing)
990 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
991
992 set_bit(STRIPE_IO_STARTED, &sh->state);
993
994 bio_reset(bi);
995 bi->bi_bdev = rdev->bdev;
996 bi->bi_rw = rw;
997 bi->bi_end_io = (rw & WRITE)
998 ? raid5_end_write_request
999 : raid5_end_read_request;
1000 bi->bi_private = sh;
1001
1002 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
1003 __func__, (unsigned long long)sh->sector,
1004 bi->bi_rw, i);
1005 atomic_inc(&sh->count);
1006 if (sh != head_sh)
1007 atomic_inc(&head_sh->count);
1008 if (use_new_offset(conf, sh))
1009 bi->bi_iter.bi_sector = (sh->sector
1010 + rdev->new_data_offset);
1011 else
1012 bi->bi_iter.bi_sector = (sh->sector
1013 + rdev->data_offset);
1014 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1015 bi->bi_rw |= REQ_NOMERGE;
1016
1017 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1018 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1019 sh->dev[i].vec.bv_page = sh->dev[i].page;
1020 bi->bi_vcnt = 1;
1021 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1022 bi->bi_io_vec[0].bv_offset = 0;
1023 bi->bi_iter.bi_size = STRIPE_SIZE;
1024 /*
1025 * If this is discard request, set bi_vcnt 0. We don't
1026 * want to confuse SCSI because SCSI will replace payload
1027 */
1028 if (rw & REQ_DISCARD)
1029 bi->bi_vcnt = 0;
1030 if (rrdev)
1031 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1032
1033 if (conf->mddev->gendisk)
1034 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1035 bi, disk_devt(conf->mddev->gendisk),
1036 sh->dev[i].sector);
1037 generic_make_request(bi);
1038 }
1039 if (rrdev) {
1040 if (s->syncing || s->expanding || s->expanded
1041 || s->replacing)
1042 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1043
1044 set_bit(STRIPE_IO_STARTED, &sh->state);
1045
1046 bio_reset(rbi);
1047 rbi->bi_bdev = rrdev->bdev;
1048 rbi->bi_rw = rw;
1049 BUG_ON(!(rw & WRITE));
1050 rbi->bi_end_io = raid5_end_write_request;
1051 rbi->bi_private = sh;
1052
1053 pr_debug("%s: for %llu schedule op %ld on "
1054 "replacement disc %d\n",
1055 __func__, (unsigned long long)sh->sector,
1056 rbi->bi_rw, i);
1057 atomic_inc(&sh->count);
1058 if (sh != head_sh)
1059 atomic_inc(&head_sh->count);
1060 if (use_new_offset(conf, sh))
1061 rbi->bi_iter.bi_sector = (sh->sector
1062 + rrdev->new_data_offset);
1063 else
1064 rbi->bi_iter.bi_sector = (sh->sector
1065 + rrdev->data_offset);
1066 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1067 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1068 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1069 rbi->bi_vcnt = 1;
1070 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1071 rbi->bi_io_vec[0].bv_offset = 0;
1072 rbi->bi_iter.bi_size = STRIPE_SIZE;
1073 /*
1074 * If this is discard request, set bi_vcnt 0. We don't
1075 * want to confuse SCSI because SCSI will replace payload
1076 */
1077 if (rw & REQ_DISCARD)
1078 rbi->bi_vcnt = 0;
1079 if (conf->mddev->gendisk)
1080 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1081 rbi, disk_devt(conf->mddev->gendisk),
1082 sh->dev[i].sector);
1083 generic_make_request(rbi);
1084 }
1085 if (!rdev && !rrdev) {
1086 if (rw & WRITE)
1087 set_bit(STRIPE_DEGRADED, &sh->state);
1088 pr_debug("skip op %ld on disc %d for sector %llu\n",
1089 bi->bi_rw, i, (unsigned long long)sh->sector);
1090 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1091 set_bit(STRIPE_HANDLE, &sh->state);
1092 }
1093
1094 if (!head_sh->batch_head)
1095 continue;
1096 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1097 batch_list);
1098 if (sh != head_sh)
1099 goto again;
1100 }
1101 }
1102
1103 static struct dma_async_tx_descriptor *
1104 async_copy_data(int frombio, struct bio *bio, struct page **page,
1105 sector_t sector, struct dma_async_tx_descriptor *tx,
1106 struct stripe_head *sh)
1107 {
1108 struct bio_vec bvl;
1109 struct bvec_iter iter;
1110 struct page *bio_page;
1111 int page_offset;
1112 struct async_submit_ctl submit;
1113 enum async_tx_flags flags = 0;
1114
1115 if (bio->bi_iter.bi_sector >= sector)
1116 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1117 else
1118 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1119
1120 if (frombio)
1121 flags |= ASYNC_TX_FENCE;
1122 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1123
1124 bio_for_each_segment(bvl, bio, iter) {
1125 int len = bvl.bv_len;
1126 int clen;
1127 int b_offset = 0;
1128
1129 if (page_offset < 0) {
1130 b_offset = -page_offset;
1131 page_offset += b_offset;
1132 len -= b_offset;
1133 }
1134
1135 if (len > 0 && page_offset + len > STRIPE_SIZE)
1136 clen = STRIPE_SIZE - page_offset;
1137 else
1138 clen = len;
1139
1140 if (clen > 0) {
1141 b_offset += bvl.bv_offset;
1142 bio_page = bvl.bv_page;
1143 if (frombio) {
1144 if (sh->raid_conf->skip_copy &&
1145 b_offset == 0 && page_offset == 0 &&
1146 clen == STRIPE_SIZE)
1147 *page = bio_page;
1148 else
1149 tx = async_memcpy(*page, bio_page, page_offset,
1150 b_offset, clen, &submit);
1151 } else
1152 tx = async_memcpy(bio_page, *page, b_offset,
1153 page_offset, clen, &submit);
1154 }
1155 /* chain the operations */
1156 submit.depend_tx = tx;
1157
1158 if (clen < len) /* hit end of page */
1159 break;
1160 page_offset += len;
1161 }
1162
1163 return tx;
1164 }
1165
1166 static void ops_complete_biofill(void *stripe_head_ref)
1167 {
1168 struct stripe_head *sh = stripe_head_ref;
1169 struct bio *return_bi = NULL;
1170 int i;
1171
1172 pr_debug("%s: stripe %llu\n", __func__,
1173 (unsigned long long)sh->sector);
1174
1175 /* clear completed biofills */
1176 for (i = sh->disks; i--; ) {
1177 struct r5dev *dev = &sh->dev[i];
1178
1179 /* acknowledge completion of a biofill operation */
1180 /* and check if we need to reply to a read request,
1181 * new R5_Wantfill requests are held off until
1182 * !STRIPE_BIOFILL_RUN
1183 */
1184 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1185 struct bio *rbi, *rbi2;
1186
1187 BUG_ON(!dev->read);
1188 rbi = dev->read;
1189 dev->read = NULL;
1190 while (rbi && rbi->bi_iter.bi_sector <
1191 dev->sector + STRIPE_SECTORS) {
1192 rbi2 = r5_next_bio(rbi, dev->sector);
1193 if (!raid5_dec_bi_active_stripes(rbi)) {
1194 rbi->bi_next = return_bi;
1195 return_bi = rbi;
1196 }
1197 rbi = rbi2;
1198 }
1199 }
1200 }
1201 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1202
1203 return_io(return_bi);
1204
1205 set_bit(STRIPE_HANDLE, &sh->state);
1206 release_stripe(sh);
1207 }
1208
1209 static void ops_run_biofill(struct stripe_head *sh)
1210 {
1211 struct dma_async_tx_descriptor *tx = NULL;
1212 struct async_submit_ctl submit;
1213 int i;
1214
1215 BUG_ON(sh->batch_head);
1216 pr_debug("%s: stripe %llu\n", __func__,
1217 (unsigned long long)sh->sector);
1218
1219 for (i = sh->disks; i--; ) {
1220 struct r5dev *dev = &sh->dev[i];
1221 if (test_bit(R5_Wantfill, &dev->flags)) {
1222 struct bio *rbi;
1223 spin_lock_irq(&sh->stripe_lock);
1224 dev->read = rbi = dev->toread;
1225 dev->toread = NULL;
1226 spin_unlock_irq(&sh->stripe_lock);
1227 while (rbi && rbi->bi_iter.bi_sector <
1228 dev->sector + STRIPE_SECTORS) {
1229 tx = async_copy_data(0, rbi, &dev->page,
1230 dev->sector, tx, sh);
1231 rbi = r5_next_bio(rbi, dev->sector);
1232 }
1233 }
1234 }
1235
1236 atomic_inc(&sh->count);
1237 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1238 async_trigger_callback(&submit);
1239 }
1240
1241 static void mark_target_uptodate(struct stripe_head *sh, int target)
1242 {
1243 struct r5dev *tgt;
1244
1245 if (target < 0)
1246 return;
1247
1248 tgt = &sh->dev[target];
1249 set_bit(R5_UPTODATE, &tgt->flags);
1250 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1251 clear_bit(R5_Wantcompute, &tgt->flags);
1252 }
1253
1254 static void ops_complete_compute(void *stripe_head_ref)
1255 {
1256 struct stripe_head *sh = stripe_head_ref;
1257
1258 pr_debug("%s: stripe %llu\n", __func__,
1259 (unsigned long long)sh->sector);
1260
1261 /* mark the computed target(s) as uptodate */
1262 mark_target_uptodate(sh, sh->ops.target);
1263 mark_target_uptodate(sh, sh->ops.target2);
1264
1265 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1266 if (sh->check_state == check_state_compute_run)
1267 sh->check_state = check_state_compute_result;
1268 set_bit(STRIPE_HANDLE, &sh->state);
1269 release_stripe(sh);
1270 }
1271
1272 /* return a pointer to the address conversion region of the scribble buffer */
1273 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1274 struct raid5_percpu *percpu, int i)
1275 {
1276 void *addr;
1277
1278 addr = flex_array_get(percpu->scribble, i);
1279 return addr + sizeof(struct page *) * (sh->disks + 2);
1280 }
1281
1282 /* return a pointer to the address conversion region of the scribble buffer */
1283 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1284 {
1285 void *addr;
1286
1287 addr = flex_array_get(percpu->scribble, i);
1288 return addr;
1289 }
1290
1291 static struct dma_async_tx_descriptor *
1292 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1293 {
1294 int disks = sh->disks;
1295 struct page **xor_srcs = to_addr_page(percpu, 0);
1296 int target = sh->ops.target;
1297 struct r5dev *tgt = &sh->dev[target];
1298 struct page *xor_dest = tgt->page;
1299 int count = 0;
1300 struct dma_async_tx_descriptor *tx;
1301 struct async_submit_ctl submit;
1302 int i;
1303
1304 BUG_ON(sh->batch_head);
1305
1306 pr_debug("%s: stripe %llu block: %d\n",
1307 __func__, (unsigned long long)sh->sector, target);
1308 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1309
1310 for (i = disks; i--; )
1311 if (i != target)
1312 xor_srcs[count++] = sh->dev[i].page;
1313
1314 atomic_inc(&sh->count);
1315
1316 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1317 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1318 if (unlikely(count == 1))
1319 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1320 else
1321 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1322
1323 return tx;
1324 }
1325
1326 /* set_syndrome_sources - populate source buffers for gen_syndrome
1327 * @srcs - (struct page *) array of size sh->disks
1328 * @sh - stripe_head to parse
1329 *
1330 * Populates srcs in proper layout order for the stripe and returns the
1331 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1332 * destination buffer is recorded in srcs[count] and the Q destination
1333 * is recorded in srcs[count+1]].
1334 */
1335 static int set_syndrome_sources(struct page **srcs,
1336 struct stripe_head *sh,
1337 int srctype)
1338 {
1339 int disks = sh->disks;
1340 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1341 int d0_idx = raid6_d0(sh);
1342 int count;
1343 int i;
1344
1345 for (i = 0; i < disks; i++)
1346 srcs[i] = NULL;
1347
1348 count = 0;
1349 i = d0_idx;
1350 do {
1351 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1352 struct r5dev *dev = &sh->dev[i];
1353
1354 if (i == sh->qd_idx || i == sh->pd_idx ||
1355 (srctype == SYNDROME_SRC_ALL) ||
1356 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1357 test_bit(R5_Wantdrain, &dev->flags)) ||
1358 (srctype == SYNDROME_SRC_WRITTEN &&
1359 dev->written))
1360 srcs[slot] = sh->dev[i].page;
1361 i = raid6_next_disk(i, disks);
1362 } while (i != d0_idx);
1363
1364 return syndrome_disks;
1365 }
1366
1367 static struct dma_async_tx_descriptor *
1368 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1369 {
1370 int disks = sh->disks;
1371 struct page **blocks = to_addr_page(percpu, 0);
1372 int target;
1373 int qd_idx = sh->qd_idx;
1374 struct dma_async_tx_descriptor *tx;
1375 struct async_submit_ctl submit;
1376 struct r5dev *tgt;
1377 struct page *dest;
1378 int i;
1379 int count;
1380
1381 BUG_ON(sh->batch_head);
1382 if (sh->ops.target < 0)
1383 target = sh->ops.target2;
1384 else if (sh->ops.target2 < 0)
1385 target = sh->ops.target;
1386 else
1387 /* we should only have one valid target */
1388 BUG();
1389 BUG_ON(target < 0);
1390 pr_debug("%s: stripe %llu block: %d\n",
1391 __func__, (unsigned long long)sh->sector, target);
1392
1393 tgt = &sh->dev[target];
1394 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1395 dest = tgt->page;
1396
1397 atomic_inc(&sh->count);
1398
1399 if (target == qd_idx) {
1400 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1401 blocks[count] = NULL; /* regenerating p is not necessary */
1402 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1403 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1404 ops_complete_compute, sh,
1405 to_addr_conv(sh, percpu, 0));
1406 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1407 } else {
1408 /* Compute any data- or p-drive using XOR */
1409 count = 0;
1410 for (i = disks; i-- ; ) {
1411 if (i == target || i == qd_idx)
1412 continue;
1413 blocks[count++] = sh->dev[i].page;
1414 }
1415
1416 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1417 NULL, ops_complete_compute, sh,
1418 to_addr_conv(sh, percpu, 0));
1419 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1420 }
1421
1422 return tx;
1423 }
1424
1425 static struct dma_async_tx_descriptor *
1426 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1427 {
1428 int i, count, disks = sh->disks;
1429 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1430 int d0_idx = raid6_d0(sh);
1431 int faila = -1, failb = -1;
1432 int target = sh->ops.target;
1433 int target2 = sh->ops.target2;
1434 struct r5dev *tgt = &sh->dev[target];
1435 struct r5dev *tgt2 = &sh->dev[target2];
1436 struct dma_async_tx_descriptor *tx;
1437 struct page **blocks = to_addr_page(percpu, 0);
1438 struct async_submit_ctl submit;
1439
1440 BUG_ON(sh->batch_head);
1441 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1442 __func__, (unsigned long long)sh->sector, target, target2);
1443 BUG_ON(target < 0 || target2 < 0);
1444 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1445 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1446
1447 /* we need to open-code set_syndrome_sources to handle the
1448 * slot number conversion for 'faila' and 'failb'
1449 */
1450 for (i = 0; i < disks ; i++)
1451 blocks[i] = NULL;
1452 count = 0;
1453 i = d0_idx;
1454 do {
1455 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1456
1457 blocks[slot] = sh->dev[i].page;
1458
1459 if (i == target)
1460 faila = slot;
1461 if (i == target2)
1462 failb = slot;
1463 i = raid6_next_disk(i, disks);
1464 } while (i != d0_idx);
1465
1466 BUG_ON(faila == failb);
1467 if (failb < faila)
1468 swap(faila, failb);
1469 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1470 __func__, (unsigned long long)sh->sector, faila, failb);
1471
1472 atomic_inc(&sh->count);
1473
1474 if (failb == syndrome_disks+1) {
1475 /* Q disk is one of the missing disks */
1476 if (faila == syndrome_disks) {
1477 /* Missing P+Q, just recompute */
1478 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1479 ops_complete_compute, sh,
1480 to_addr_conv(sh, percpu, 0));
1481 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1482 STRIPE_SIZE, &submit);
1483 } else {
1484 struct page *dest;
1485 int data_target;
1486 int qd_idx = sh->qd_idx;
1487
1488 /* Missing D+Q: recompute D from P, then recompute Q */
1489 if (target == qd_idx)
1490 data_target = target2;
1491 else
1492 data_target = target;
1493
1494 count = 0;
1495 for (i = disks; i-- ; ) {
1496 if (i == data_target || i == qd_idx)
1497 continue;
1498 blocks[count++] = sh->dev[i].page;
1499 }
1500 dest = sh->dev[data_target].page;
1501 init_async_submit(&submit,
1502 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1503 NULL, NULL, NULL,
1504 to_addr_conv(sh, percpu, 0));
1505 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1506 &submit);
1507
1508 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1509 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1510 ops_complete_compute, sh,
1511 to_addr_conv(sh, percpu, 0));
1512 return async_gen_syndrome(blocks, 0, count+2,
1513 STRIPE_SIZE, &submit);
1514 }
1515 } else {
1516 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1517 ops_complete_compute, sh,
1518 to_addr_conv(sh, percpu, 0));
1519 if (failb == syndrome_disks) {
1520 /* We're missing D+P. */
1521 return async_raid6_datap_recov(syndrome_disks+2,
1522 STRIPE_SIZE, faila,
1523 blocks, &submit);
1524 } else {
1525 /* We're missing D+D. */
1526 return async_raid6_2data_recov(syndrome_disks+2,
1527 STRIPE_SIZE, faila, failb,
1528 blocks, &submit);
1529 }
1530 }
1531 }
1532
1533 static void ops_complete_prexor(void *stripe_head_ref)
1534 {
1535 struct stripe_head *sh = stripe_head_ref;
1536
1537 pr_debug("%s: stripe %llu\n", __func__,
1538 (unsigned long long)sh->sector);
1539 }
1540
1541 static struct dma_async_tx_descriptor *
1542 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1543 struct dma_async_tx_descriptor *tx)
1544 {
1545 int disks = sh->disks;
1546 struct page **xor_srcs = to_addr_page(percpu, 0);
1547 int count = 0, pd_idx = sh->pd_idx, i;
1548 struct async_submit_ctl submit;
1549
1550 /* existing parity data subtracted */
1551 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1552
1553 BUG_ON(sh->batch_head);
1554 pr_debug("%s: stripe %llu\n", __func__,
1555 (unsigned long long)sh->sector);
1556
1557 for (i = disks; i--; ) {
1558 struct r5dev *dev = &sh->dev[i];
1559 /* Only process blocks that are known to be uptodate */
1560 if (test_bit(R5_Wantdrain, &dev->flags))
1561 xor_srcs[count++] = dev->page;
1562 }
1563
1564 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1565 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1566 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1567
1568 return tx;
1569 }
1570
1571 static struct dma_async_tx_descriptor *
1572 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1573 struct dma_async_tx_descriptor *tx)
1574 {
1575 struct page **blocks = to_addr_page(percpu, 0);
1576 int count;
1577 struct async_submit_ctl submit;
1578
1579 pr_debug("%s: stripe %llu\n", __func__,
1580 (unsigned long long)sh->sector);
1581
1582 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1583
1584 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1585 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1586 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1587
1588 return tx;
1589 }
1590
1591 static struct dma_async_tx_descriptor *
1592 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1593 {
1594 int disks = sh->disks;
1595 int i;
1596 struct stripe_head *head_sh = sh;
1597
1598 pr_debug("%s: stripe %llu\n", __func__,
1599 (unsigned long long)sh->sector);
1600
1601 for (i = disks; i--; ) {
1602 struct r5dev *dev;
1603 struct bio *chosen;
1604
1605 sh = head_sh;
1606 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1607 struct bio *wbi;
1608
1609 again:
1610 dev = &sh->dev[i];
1611 spin_lock_irq(&sh->stripe_lock);
1612 chosen = dev->towrite;
1613 dev->towrite = NULL;
1614 sh->overwrite_disks = 0;
1615 BUG_ON(dev->written);
1616 wbi = dev->written = chosen;
1617 spin_unlock_irq(&sh->stripe_lock);
1618 WARN_ON(dev->page != dev->orig_page);
1619
1620 while (wbi && wbi->bi_iter.bi_sector <
1621 dev->sector + STRIPE_SECTORS) {
1622 if (wbi->bi_rw & REQ_FUA)
1623 set_bit(R5_WantFUA, &dev->flags);
1624 if (wbi->bi_rw & REQ_SYNC)
1625 set_bit(R5_SyncIO, &dev->flags);
1626 if (wbi->bi_rw & REQ_DISCARD)
1627 set_bit(R5_Discard, &dev->flags);
1628 else {
1629 tx = async_copy_data(1, wbi, &dev->page,
1630 dev->sector, tx, sh);
1631 if (dev->page != dev->orig_page) {
1632 set_bit(R5_SkipCopy, &dev->flags);
1633 clear_bit(R5_UPTODATE, &dev->flags);
1634 clear_bit(R5_OVERWRITE, &dev->flags);
1635 }
1636 }
1637 wbi = r5_next_bio(wbi, dev->sector);
1638 }
1639
1640 if (head_sh->batch_head) {
1641 sh = list_first_entry(&sh->batch_list,
1642 struct stripe_head,
1643 batch_list);
1644 if (sh == head_sh)
1645 continue;
1646 goto again;
1647 }
1648 }
1649 }
1650
1651 return tx;
1652 }
1653
1654 static void ops_complete_reconstruct(void *stripe_head_ref)
1655 {
1656 struct stripe_head *sh = stripe_head_ref;
1657 int disks = sh->disks;
1658 int pd_idx = sh->pd_idx;
1659 int qd_idx = sh->qd_idx;
1660 int i;
1661 bool fua = false, sync = false, discard = false;
1662
1663 pr_debug("%s: stripe %llu\n", __func__,
1664 (unsigned long long)sh->sector);
1665
1666 for (i = disks; i--; ) {
1667 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1668 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1669 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1670 }
1671
1672 for (i = disks; i--; ) {
1673 struct r5dev *dev = &sh->dev[i];
1674
1675 if (dev->written || i == pd_idx || i == qd_idx) {
1676 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1677 set_bit(R5_UPTODATE, &dev->flags);
1678 if (fua)
1679 set_bit(R5_WantFUA, &dev->flags);
1680 if (sync)
1681 set_bit(R5_SyncIO, &dev->flags);
1682 }
1683 }
1684
1685 if (sh->reconstruct_state == reconstruct_state_drain_run)
1686 sh->reconstruct_state = reconstruct_state_drain_result;
1687 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1688 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1689 else {
1690 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1691 sh->reconstruct_state = reconstruct_state_result;
1692 }
1693
1694 set_bit(STRIPE_HANDLE, &sh->state);
1695 release_stripe(sh);
1696 }
1697
1698 static void
1699 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1700 struct dma_async_tx_descriptor *tx)
1701 {
1702 int disks = sh->disks;
1703 struct page **xor_srcs;
1704 struct async_submit_ctl submit;
1705 int count, pd_idx = sh->pd_idx, i;
1706 struct page *xor_dest;
1707 int prexor = 0;
1708 unsigned long flags;
1709 int j = 0;
1710 struct stripe_head *head_sh = sh;
1711 int last_stripe;
1712
1713 pr_debug("%s: stripe %llu\n", __func__,
1714 (unsigned long long)sh->sector);
1715
1716 for (i = 0; i < sh->disks; i++) {
1717 if (pd_idx == i)
1718 continue;
1719 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1720 break;
1721 }
1722 if (i >= sh->disks) {
1723 atomic_inc(&sh->count);
1724 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1725 ops_complete_reconstruct(sh);
1726 return;
1727 }
1728 again:
1729 count = 0;
1730 xor_srcs = to_addr_page(percpu, j);
1731 /* check if prexor is active which means only process blocks
1732 * that are part of a read-modify-write (written)
1733 */
1734 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1735 prexor = 1;
1736 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (head_sh->dev[i].written)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 } else {
1743 xor_dest = sh->dev[pd_idx].page;
1744 for (i = disks; i--; ) {
1745 struct r5dev *dev = &sh->dev[i];
1746 if (i != pd_idx)
1747 xor_srcs[count++] = dev->page;
1748 }
1749 }
1750
1751 /* 1/ if we prexor'd then the dest is reused as a source
1752 * 2/ if we did not prexor then we are redoing the parity
1753 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1754 * for the synchronous xor case
1755 */
1756 last_stripe = !head_sh->batch_head ||
1757 list_first_entry(&sh->batch_list,
1758 struct stripe_head, batch_list) == head_sh;
1759 if (last_stripe) {
1760 flags = ASYNC_TX_ACK |
1761 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1762
1763 atomic_inc(&head_sh->count);
1764 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1765 to_addr_conv(sh, percpu, j));
1766 } else {
1767 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1768 init_async_submit(&submit, flags, tx, NULL, NULL,
1769 to_addr_conv(sh, percpu, j));
1770 }
1771
1772 if (unlikely(count == 1))
1773 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1774 else
1775 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1776 if (!last_stripe) {
1777 j++;
1778 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1779 batch_list);
1780 goto again;
1781 }
1782 }
1783
1784 static void
1785 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1786 struct dma_async_tx_descriptor *tx)
1787 {
1788 struct async_submit_ctl submit;
1789 struct page **blocks;
1790 int count, i, j = 0;
1791 struct stripe_head *head_sh = sh;
1792 int last_stripe;
1793 int synflags;
1794 unsigned long txflags;
1795
1796 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1797
1798 for (i = 0; i < sh->disks; i++) {
1799 if (sh->pd_idx == i || sh->qd_idx == i)
1800 continue;
1801 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1802 break;
1803 }
1804 if (i >= sh->disks) {
1805 atomic_inc(&sh->count);
1806 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1807 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1808 ops_complete_reconstruct(sh);
1809 return;
1810 }
1811
1812 again:
1813 blocks = to_addr_page(percpu, j);
1814
1815 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1816 synflags = SYNDROME_SRC_WRITTEN;
1817 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1818 } else {
1819 synflags = SYNDROME_SRC_ALL;
1820 txflags = ASYNC_TX_ACK;
1821 }
1822
1823 count = set_syndrome_sources(blocks, sh, synflags);
1824 last_stripe = !head_sh->batch_head ||
1825 list_first_entry(&sh->batch_list,
1826 struct stripe_head, batch_list) == head_sh;
1827
1828 if (last_stripe) {
1829 atomic_inc(&head_sh->count);
1830 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1831 head_sh, to_addr_conv(sh, percpu, j));
1832 } else
1833 init_async_submit(&submit, 0, tx, NULL, NULL,
1834 to_addr_conv(sh, percpu, j));
1835 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1836 if (!last_stripe) {
1837 j++;
1838 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1839 batch_list);
1840 goto again;
1841 }
1842 }
1843
1844 static void ops_complete_check(void *stripe_head_ref)
1845 {
1846 struct stripe_head *sh = stripe_head_ref;
1847
1848 pr_debug("%s: stripe %llu\n", __func__,
1849 (unsigned long long)sh->sector);
1850
1851 sh->check_state = check_state_check_result;
1852 set_bit(STRIPE_HANDLE, &sh->state);
1853 release_stripe(sh);
1854 }
1855
1856 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1857 {
1858 int disks = sh->disks;
1859 int pd_idx = sh->pd_idx;
1860 int qd_idx = sh->qd_idx;
1861 struct page *xor_dest;
1862 struct page **xor_srcs = to_addr_page(percpu, 0);
1863 struct dma_async_tx_descriptor *tx;
1864 struct async_submit_ctl submit;
1865 int count;
1866 int i;
1867
1868 pr_debug("%s: stripe %llu\n", __func__,
1869 (unsigned long long)sh->sector);
1870
1871 BUG_ON(sh->batch_head);
1872 count = 0;
1873 xor_dest = sh->dev[pd_idx].page;
1874 xor_srcs[count++] = xor_dest;
1875 for (i = disks; i--; ) {
1876 if (i == pd_idx || i == qd_idx)
1877 continue;
1878 xor_srcs[count++] = sh->dev[i].page;
1879 }
1880
1881 init_async_submit(&submit, 0, NULL, NULL, NULL,
1882 to_addr_conv(sh, percpu, 0));
1883 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1884 &sh->ops.zero_sum_result, &submit);
1885
1886 atomic_inc(&sh->count);
1887 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1888 tx = async_trigger_callback(&submit);
1889 }
1890
1891 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1892 {
1893 struct page **srcs = to_addr_page(percpu, 0);
1894 struct async_submit_ctl submit;
1895 int count;
1896
1897 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1898 (unsigned long long)sh->sector, checkp);
1899
1900 BUG_ON(sh->batch_head);
1901 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1902 if (!checkp)
1903 srcs[count] = NULL;
1904
1905 atomic_inc(&sh->count);
1906 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1907 sh, to_addr_conv(sh, percpu, 0));
1908 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1909 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1910 }
1911
1912 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1913 {
1914 int overlap_clear = 0, i, disks = sh->disks;
1915 struct dma_async_tx_descriptor *tx = NULL;
1916 struct r5conf *conf = sh->raid_conf;
1917 int level = conf->level;
1918 struct raid5_percpu *percpu;
1919 unsigned long cpu;
1920
1921 cpu = get_cpu();
1922 percpu = per_cpu_ptr(conf->percpu, cpu);
1923 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1924 ops_run_biofill(sh);
1925 overlap_clear++;
1926 }
1927
1928 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1929 if (level < 6)
1930 tx = ops_run_compute5(sh, percpu);
1931 else {
1932 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1933 tx = ops_run_compute6_1(sh, percpu);
1934 else
1935 tx = ops_run_compute6_2(sh, percpu);
1936 }
1937 /* terminate the chain if reconstruct is not set to be run */
1938 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1939 async_tx_ack(tx);
1940 }
1941
1942 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1943 if (level < 6)
1944 tx = ops_run_prexor5(sh, percpu, tx);
1945 else
1946 tx = ops_run_prexor6(sh, percpu, tx);
1947 }
1948
1949 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1950 tx = ops_run_biodrain(sh, tx);
1951 overlap_clear++;
1952 }
1953
1954 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1955 if (level < 6)
1956 ops_run_reconstruct5(sh, percpu, tx);
1957 else
1958 ops_run_reconstruct6(sh, percpu, tx);
1959 }
1960
1961 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1962 if (sh->check_state == check_state_run)
1963 ops_run_check_p(sh, percpu);
1964 else if (sh->check_state == check_state_run_q)
1965 ops_run_check_pq(sh, percpu, 0);
1966 else if (sh->check_state == check_state_run_pq)
1967 ops_run_check_pq(sh, percpu, 1);
1968 else
1969 BUG();
1970 }
1971
1972 if (overlap_clear && !sh->batch_head)
1973 for (i = disks; i--; ) {
1974 struct r5dev *dev = &sh->dev[i];
1975 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1976 wake_up(&sh->raid_conf->wait_for_overlap);
1977 }
1978 put_cpu();
1979 }
1980
1981 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1982 {
1983 struct stripe_head *sh;
1984
1985 sh = kmem_cache_zalloc(sc, gfp);
1986 if (sh) {
1987 spin_lock_init(&sh->stripe_lock);
1988 spin_lock_init(&sh->batch_lock);
1989 INIT_LIST_HEAD(&sh->batch_list);
1990 INIT_LIST_HEAD(&sh->lru);
1991 atomic_set(&sh->count, 1);
1992 }
1993 return sh;
1994 }
1995 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1996 {
1997 struct stripe_head *sh;
1998
1999 sh = alloc_stripe(conf->slab_cache, gfp);
2000 if (!sh)
2001 return 0;
2002
2003 sh->raid_conf = conf;
2004
2005 if (grow_buffers(sh, gfp)) {
2006 shrink_buffers(sh);
2007 kmem_cache_free(conf->slab_cache, sh);
2008 return 0;
2009 }
2010 sh->hash_lock_index =
2011 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2012 /* we just created an active stripe so... */
2013 atomic_inc(&conf->active_stripes);
2014
2015 release_stripe(sh);
2016 conf->max_nr_stripes++;
2017 return 1;
2018 }
2019
2020 static int grow_stripes(struct r5conf *conf, int num)
2021 {
2022 struct kmem_cache *sc;
2023 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2024
2025 if (conf->mddev->gendisk)
2026 sprintf(conf->cache_name[0],
2027 "raid%d-%s", conf->level, mdname(conf->mddev));
2028 else
2029 sprintf(conf->cache_name[0],
2030 "raid%d-%p", conf->level, conf->mddev);
2031 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2032
2033 conf->active_name = 0;
2034 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2035 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2036 0, 0, NULL);
2037 if (!sc)
2038 return 1;
2039 conf->slab_cache = sc;
2040 conf->pool_size = devs;
2041 while (num--)
2042 if (!grow_one_stripe(conf, GFP_KERNEL))
2043 return 1;
2044
2045 return 0;
2046 }
2047
2048 /**
2049 * scribble_len - return the required size of the scribble region
2050 * @num - total number of disks in the array
2051 *
2052 * The size must be enough to contain:
2053 * 1/ a struct page pointer for each device in the array +2
2054 * 2/ room to convert each entry in (1) to its corresponding dma
2055 * (dma_map_page()) or page (page_address()) address.
2056 *
2057 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2058 * calculate over all devices (not just the data blocks), using zeros in place
2059 * of the P and Q blocks.
2060 */
2061 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2062 {
2063 struct flex_array *ret;
2064 size_t len;
2065
2066 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2067 ret = flex_array_alloc(len, cnt, flags);
2068 if (!ret)
2069 return NULL;
2070 /* always prealloc all elements, so no locking is required */
2071 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2072 flex_array_free(ret);
2073 return NULL;
2074 }
2075 return ret;
2076 }
2077
2078 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2079 {
2080 unsigned long cpu;
2081 int err = 0;
2082
2083 mddev_suspend(conf->mddev);
2084 get_online_cpus();
2085 for_each_present_cpu(cpu) {
2086 struct raid5_percpu *percpu;
2087 struct flex_array *scribble;
2088
2089 percpu = per_cpu_ptr(conf->percpu, cpu);
2090 scribble = scribble_alloc(new_disks,
2091 new_sectors / STRIPE_SECTORS,
2092 GFP_NOIO);
2093
2094 if (scribble) {
2095 flex_array_free(percpu->scribble);
2096 percpu->scribble = scribble;
2097 } else {
2098 err = -ENOMEM;
2099 break;
2100 }
2101 }
2102 put_online_cpus();
2103 mddev_resume(conf->mddev);
2104 return err;
2105 }
2106
2107 static int resize_stripes(struct r5conf *conf, int newsize)
2108 {
2109 /* Make all the stripes able to hold 'newsize' devices.
2110 * New slots in each stripe get 'page' set to a new page.
2111 *
2112 * This happens in stages:
2113 * 1/ create a new kmem_cache and allocate the required number of
2114 * stripe_heads.
2115 * 2/ gather all the old stripe_heads and transfer the pages across
2116 * to the new stripe_heads. This will have the side effect of
2117 * freezing the array as once all stripe_heads have been collected,
2118 * no IO will be possible. Old stripe heads are freed once their
2119 * pages have been transferred over, and the old kmem_cache is
2120 * freed when all stripes are done.
2121 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2122 * we simple return a failre status - no need to clean anything up.
2123 * 4/ allocate new pages for the new slots in the new stripe_heads.
2124 * If this fails, we don't bother trying the shrink the
2125 * stripe_heads down again, we just leave them as they are.
2126 * As each stripe_head is processed the new one is released into
2127 * active service.
2128 *
2129 * Once step2 is started, we cannot afford to wait for a write,
2130 * so we use GFP_NOIO allocations.
2131 */
2132 struct stripe_head *osh, *nsh;
2133 LIST_HEAD(newstripes);
2134 struct disk_info *ndisks;
2135 int err;
2136 struct kmem_cache *sc;
2137 int i;
2138 int hash, cnt;
2139
2140 if (newsize <= conf->pool_size)
2141 return 0; /* never bother to shrink */
2142
2143 err = md_allow_write(conf->mddev);
2144 if (err)
2145 return err;
2146
2147 /* Step 1 */
2148 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2149 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2150 0, 0, NULL);
2151 if (!sc)
2152 return -ENOMEM;
2153
2154 for (i = conf->max_nr_stripes; i; i--) {
2155 nsh = alloc_stripe(sc, GFP_KERNEL);
2156 if (!nsh)
2157 break;
2158
2159 nsh->raid_conf = conf;
2160 list_add(&nsh->lru, &newstripes);
2161 }
2162 if (i) {
2163 /* didn't get enough, give up */
2164 while (!list_empty(&newstripes)) {
2165 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2166 list_del(&nsh->lru);
2167 kmem_cache_free(sc, nsh);
2168 }
2169 kmem_cache_destroy(sc);
2170 return -ENOMEM;
2171 }
2172 /* Step 2 - Must use GFP_NOIO now.
2173 * OK, we have enough stripes, start collecting inactive
2174 * stripes and copying them over
2175 */
2176 hash = 0;
2177 cnt = 0;
2178 list_for_each_entry(nsh, &newstripes, lru) {
2179 lock_device_hash_lock(conf, hash);
2180 wait_event_cmd(conf->wait_for_stripe,
2181 !list_empty(conf->inactive_list + hash),
2182 unlock_device_hash_lock(conf, hash),
2183 lock_device_hash_lock(conf, hash));
2184 osh = get_free_stripe(conf, hash);
2185 unlock_device_hash_lock(conf, hash);
2186
2187 for(i=0; i<conf->pool_size; i++) {
2188 nsh->dev[i].page = osh->dev[i].page;
2189 nsh->dev[i].orig_page = osh->dev[i].page;
2190 }
2191 nsh->hash_lock_index = hash;
2192 kmem_cache_free(conf->slab_cache, osh);
2193 cnt++;
2194 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2195 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2196 hash++;
2197 cnt = 0;
2198 }
2199 }
2200 kmem_cache_destroy(conf->slab_cache);
2201
2202 /* Step 3.
2203 * At this point, we are holding all the stripes so the array
2204 * is completely stalled, so now is a good time to resize
2205 * conf->disks and the scribble region
2206 */
2207 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2208 if (ndisks) {
2209 for (i=0; i<conf->raid_disks; i++)
2210 ndisks[i] = conf->disks[i];
2211 kfree(conf->disks);
2212 conf->disks = ndisks;
2213 } else
2214 err = -ENOMEM;
2215
2216 /* Step 4, return new stripes to service */
2217 while(!list_empty(&newstripes)) {
2218 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2219 list_del_init(&nsh->lru);
2220
2221 for (i=conf->raid_disks; i < newsize; i++)
2222 if (nsh->dev[i].page == NULL) {
2223 struct page *p = alloc_page(GFP_NOIO);
2224 nsh->dev[i].page = p;
2225 nsh->dev[i].orig_page = p;
2226 if (!p)
2227 err = -ENOMEM;
2228 }
2229 release_stripe(nsh);
2230 }
2231 /* critical section pass, GFP_NOIO no longer needed */
2232
2233 conf->slab_cache = sc;
2234 conf->active_name = 1-conf->active_name;
2235 if (!err)
2236 conf->pool_size = newsize;
2237 return err;
2238 }
2239
2240 static int drop_one_stripe(struct r5conf *conf)
2241 {
2242 struct stripe_head *sh;
2243 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2244
2245 spin_lock_irq(conf->hash_locks + hash);
2246 sh = get_free_stripe(conf, hash);
2247 spin_unlock_irq(conf->hash_locks + hash);
2248 if (!sh)
2249 return 0;
2250 BUG_ON(atomic_read(&sh->count));
2251 shrink_buffers(sh);
2252 kmem_cache_free(conf->slab_cache, sh);
2253 atomic_dec(&conf->active_stripes);
2254 conf->max_nr_stripes--;
2255 return 1;
2256 }
2257
2258 static void shrink_stripes(struct r5conf *conf)
2259 {
2260 while (conf->max_nr_stripes &&
2261 drop_one_stripe(conf))
2262 ;
2263
2264 if (conf->slab_cache)
2265 kmem_cache_destroy(conf->slab_cache);
2266 conf->slab_cache = NULL;
2267 }
2268
2269 static void raid5_end_read_request(struct bio * bi, int error)
2270 {
2271 struct stripe_head *sh = bi->bi_private;
2272 struct r5conf *conf = sh->raid_conf;
2273 int disks = sh->disks, i;
2274 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2275 char b[BDEVNAME_SIZE];
2276 struct md_rdev *rdev = NULL;
2277 sector_t s;
2278
2279 for (i=0 ; i<disks; i++)
2280 if (bi == &sh->dev[i].req)
2281 break;
2282
2283 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2284 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2285 uptodate);
2286 if (i == disks) {
2287 BUG();
2288 return;
2289 }
2290 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2291 /* If replacement finished while this request was outstanding,
2292 * 'replacement' might be NULL already.
2293 * In that case it moved down to 'rdev'.
2294 * rdev is not removed until all requests are finished.
2295 */
2296 rdev = conf->disks[i].replacement;
2297 if (!rdev)
2298 rdev = conf->disks[i].rdev;
2299
2300 if (use_new_offset(conf, sh))
2301 s = sh->sector + rdev->new_data_offset;
2302 else
2303 s = sh->sector + rdev->data_offset;
2304 if (uptodate) {
2305 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2306 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2307 /* Note that this cannot happen on a
2308 * replacement device. We just fail those on
2309 * any error
2310 */
2311 printk_ratelimited(
2312 KERN_INFO
2313 "md/raid:%s: read error corrected"
2314 " (%lu sectors at %llu on %s)\n",
2315 mdname(conf->mddev), STRIPE_SECTORS,
2316 (unsigned long long)s,
2317 bdevname(rdev->bdev, b));
2318 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2319 clear_bit(R5_ReadError, &sh->dev[i].flags);
2320 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2321 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2322 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2323
2324 if (atomic_read(&rdev->read_errors))
2325 atomic_set(&rdev->read_errors, 0);
2326 } else {
2327 const char *bdn = bdevname(rdev->bdev, b);
2328 int retry = 0;
2329 int set_bad = 0;
2330
2331 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2332 atomic_inc(&rdev->read_errors);
2333 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2334 printk_ratelimited(
2335 KERN_WARNING
2336 "md/raid:%s: read error on replacement device "
2337 "(sector %llu on %s).\n",
2338 mdname(conf->mddev),
2339 (unsigned long long)s,
2340 bdn);
2341 else if (conf->mddev->degraded >= conf->max_degraded) {
2342 set_bad = 1;
2343 printk_ratelimited(
2344 KERN_WARNING
2345 "md/raid:%s: read error not correctable "
2346 "(sector %llu on %s).\n",
2347 mdname(conf->mddev),
2348 (unsigned long long)s,
2349 bdn);
2350 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2351 /* Oh, no!!! */
2352 set_bad = 1;
2353 printk_ratelimited(
2354 KERN_WARNING
2355 "md/raid:%s: read error NOT corrected!! "
2356 "(sector %llu on %s).\n",
2357 mdname(conf->mddev),
2358 (unsigned long long)s,
2359 bdn);
2360 } else if (atomic_read(&rdev->read_errors)
2361 > conf->max_nr_stripes)
2362 printk(KERN_WARNING
2363 "md/raid:%s: Too many read errors, failing device %s.\n",
2364 mdname(conf->mddev), bdn);
2365 else
2366 retry = 1;
2367 if (set_bad && test_bit(In_sync, &rdev->flags)
2368 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2369 retry = 1;
2370 if (retry)
2371 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2372 set_bit(R5_ReadError, &sh->dev[i].flags);
2373 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2374 } else
2375 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2376 else {
2377 clear_bit(R5_ReadError, &sh->dev[i].flags);
2378 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2379 if (!(set_bad
2380 && test_bit(In_sync, &rdev->flags)
2381 && rdev_set_badblocks(
2382 rdev, sh->sector, STRIPE_SECTORS, 0)))
2383 md_error(conf->mddev, rdev);
2384 }
2385 }
2386 rdev_dec_pending(rdev, conf->mddev);
2387 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2388 set_bit(STRIPE_HANDLE, &sh->state);
2389 release_stripe(sh);
2390 }
2391
2392 static void raid5_end_write_request(struct bio *bi, int error)
2393 {
2394 struct stripe_head *sh = bi->bi_private;
2395 struct r5conf *conf = sh->raid_conf;
2396 int disks = sh->disks, i;
2397 struct md_rdev *uninitialized_var(rdev);
2398 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2399 sector_t first_bad;
2400 int bad_sectors;
2401 int replacement = 0;
2402
2403 for (i = 0 ; i < disks; i++) {
2404 if (bi == &sh->dev[i].req) {
2405 rdev = conf->disks[i].rdev;
2406 break;
2407 }
2408 if (bi == &sh->dev[i].rreq) {
2409 rdev = conf->disks[i].replacement;
2410 if (rdev)
2411 replacement = 1;
2412 else
2413 /* rdev was removed and 'replacement'
2414 * replaced it. rdev is not removed
2415 * until all requests are finished.
2416 */
2417 rdev = conf->disks[i].rdev;
2418 break;
2419 }
2420 }
2421 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2422 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2423 uptodate);
2424 if (i == disks) {
2425 BUG();
2426 return;
2427 }
2428
2429 if (replacement) {
2430 if (!uptodate)
2431 md_error(conf->mddev, rdev);
2432 else if (is_badblock(rdev, sh->sector,
2433 STRIPE_SECTORS,
2434 &first_bad, &bad_sectors))
2435 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2436 } else {
2437 if (!uptodate) {
2438 set_bit(STRIPE_DEGRADED, &sh->state);
2439 set_bit(WriteErrorSeen, &rdev->flags);
2440 set_bit(R5_WriteError, &sh->dev[i].flags);
2441 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2442 set_bit(MD_RECOVERY_NEEDED,
2443 &rdev->mddev->recovery);
2444 } else if (is_badblock(rdev, sh->sector,
2445 STRIPE_SECTORS,
2446 &first_bad, &bad_sectors)) {
2447 set_bit(R5_MadeGood, &sh->dev[i].flags);
2448 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2449 /* That was a successful write so make
2450 * sure it looks like we already did
2451 * a re-write.
2452 */
2453 set_bit(R5_ReWrite, &sh->dev[i].flags);
2454 }
2455 }
2456 rdev_dec_pending(rdev, conf->mddev);
2457
2458 if (sh->batch_head && !uptodate && !replacement)
2459 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2460
2461 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2462 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2463 set_bit(STRIPE_HANDLE, &sh->state);
2464 release_stripe(sh);
2465
2466 if (sh->batch_head && sh != sh->batch_head)
2467 release_stripe(sh->batch_head);
2468 }
2469
2470 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2471
2472 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2473 {
2474 struct r5dev *dev = &sh->dev[i];
2475
2476 bio_init(&dev->req);
2477 dev->req.bi_io_vec = &dev->vec;
2478 dev->req.bi_max_vecs = 1;
2479 dev->req.bi_private = sh;
2480
2481 bio_init(&dev->rreq);
2482 dev->rreq.bi_io_vec = &dev->rvec;
2483 dev->rreq.bi_max_vecs = 1;
2484 dev->rreq.bi_private = sh;
2485
2486 dev->flags = 0;
2487 dev->sector = compute_blocknr(sh, i, previous);
2488 }
2489
2490 static void error(struct mddev *mddev, struct md_rdev *rdev)
2491 {
2492 char b[BDEVNAME_SIZE];
2493 struct r5conf *conf = mddev->private;
2494 unsigned long flags;
2495 pr_debug("raid456: error called\n");
2496
2497 spin_lock_irqsave(&conf->device_lock, flags);
2498 clear_bit(In_sync, &rdev->flags);
2499 mddev->degraded = calc_degraded(conf);
2500 spin_unlock_irqrestore(&conf->device_lock, flags);
2501 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2502
2503 set_bit(Blocked, &rdev->flags);
2504 set_bit(Faulty, &rdev->flags);
2505 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2506 printk(KERN_ALERT
2507 "md/raid:%s: Disk failure on %s, disabling device.\n"
2508 "md/raid:%s: Operation continuing on %d devices.\n",
2509 mdname(mddev),
2510 bdevname(rdev->bdev, b),
2511 mdname(mddev),
2512 conf->raid_disks - mddev->degraded);
2513 }
2514
2515 /*
2516 * Input: a 'big' sector number,
2517 * Output: index of the data and parity disk, and the sector # in them.
2518 */
2519 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2520 int previous, int *dd_idx,
2521 struct stripe_head *sh)
2522 {
2523 sector_t stripe, stripe2;
2524 sector_t chunk_number;
2525 unsigned int chunk_offset;
2526 int pd_idx, qd_idx;
2527 int ddf_layout = 0;
2528 sector_t new_sector;
2529 int algorithm = previous ? conf->prev_algo
2530 : conf->algorithm;
2531 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2532 : conf->chunk_sectors;
2533 int raid_disks = previous ? conf->previous_raid_disks
2534 : conf->raid_disks;
2535 int data_disks = raid_disks - conf->max_degraded;
2536
2537 /* First compute the information on this sector */
2538
2539 /*
2540 * Compute the chunk number and the sector offset inside the chunk
2541 */
2542 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2543 chunk_number = r_sector;
2544
2545 /*
2546 * Compute the stripe number
2547 */
2548 stripe = chunk_number;
2549 *dd_idx = sector_div(stripe, data_disks);
2550 stripe2 = stripe;
2551 /*
2552 * Select the parity disk based on the user selected algorithm.
2553 */
2554 pd_idx = qd_idx = -1;
2555 switch(conf->level) {
2556 case 4:
2557 pd_idx = data_disks;
2558 break;
2559 case 5:
2560 switch (algorithm) {
2561 case ALGORITHM_LEFT_ASYMMETRIC:
2562 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2563 if (*dd_idx >= pd_idx)
2564 (*dd_idx)++;
2565 break;
2566 case ALGORITHM_RIGHT_ASYMMETRIC:
2567 pd_idx = sector_div(stripe2, raid_disks);
2568 if (*dd_idx >= pd_idx)
2569 (*dd_idx)++;
2570 break;
2571 case ALGORITHM_LEFT_SYMMETRIC:
2572 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2573 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2574 break;
2575 case ALGORITHM_RIGHT_SYMMETRIC:
2576 pd_idx = sector_div(stripe2, raid_disks);
2577 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2578 break;
2579 case ALGORITHM_PARITY_0:
2580 pd_idx = 0;
2581 (*dd_idx)++;
2582 break;
2583 case ALGORITHM_PARITY_N:
2584 pd_idx = data_disks;
2585 break;
2586 default:
2587 BUG();
2588 }
2589 break;
2590 case 6:
2591
2592 switch (algorithm) {
2593 case ALGORITHM_LEFT_ASYMMETRIC:
2594 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2595 qd_idx = pd_idx + 1;
2596 if (pd_idx == raid_disks-1) {
2597 (*dd_idx)++; /* Q D D D P */
2598 qd_idx = 0;
2599 } else if (*dd_idx >= pd_idx)
2600 (*dd_idx) += 2; /* D D P Q D */
2601 break;
2602 case ALGORITHM_RIGHT_ASYMMETRIC:
2603 pd_idx = sector_div(stripe2, raid_disks);
2604 qd_idx = pd_idx + 1;
2605 if (pd_idx == raid_disks-1) {
2606 (*dd_idx)++; /* Q D D D P */
2607 qd_idx = 0;
2608 } else if (*dd_idx >= pd_idx)
2609 (*dd_idx) += 2; /* D D P Q D */
2610 break;
2611 case ALGORITHM_LEFT_SYMMETRIC:
2612 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2613 qd_idx = (pd_idx + 1) % raid_disks;
2614 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2615 break;
2616 case ALGORITHM_RIGHT_SYMMETRIC:
2617 pd_idx = sector_div(stripe2, raid_disks);
2618 qd_idx = (pd_idx + 1) % raid_disks;
2619 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2620 break;
2621
2622 case ALGORITHM_PARITY_0:
2623 pd_idx = 0;
2624 qd_idx = 1;
2625 (*dd_idx) += 2;
2626 break;
2627 case ALGORITHM_PARITY_N:
2628 pd_idx = data_disks;
2629 qd_idx = data_disks + 1;
2630 break;
2631
2632 case ALGORITHM_ROTATING_ZERO_RESTART:
2633 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2634 * of blocks for computing Q is different.
2635 */
2636 pd_idx = sector_div(stripe2, raid_disks);
2637 qd_idx = pd_idx + 1;
2638 if (pd_idx == raid_disks-1) {
2639 (*dd_idx)++; /* Q D D D P */
2640 qd_idx = 0;
2641 } else if (*dd_idx >= pd_idx)
2642 (*dd_idx) += 2; /* D D P Q D */
2643 ddf_layout = 1;
2644 break;
2645
2646 case ALGORITHM_ROTATING_N_RESTART:
2647 /* Same a left_asymmetric, by first stripe is
2648 * D D D P Q rather than
2649 * Q D D D P
2650 */
2651 stripe2 += 1;
2652 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2653 qd_idx = pd_idx + 1;
2654 if (pd_idx == raid_disks-1) {
2655 (*dd_idx)++; /* Q D D D P */
2656 qd_idx = 0;
2657 } else if (*dd_idx >= pd_idx)
2658 (*dd_idx) += 2; /* D D P Q D */
2659 ddf_layout = 1;
2660 break;
2661
2662 case ALGORITHM_ROTATING_N_CONTINUE:
2663 /* Same as left_symmetric but Q is before P */
2664 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2665 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2666 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2667 ddf_layout = 1;
2668 break;
2669
2670 case ALGORITHM_LEFT_ASYMMETRIC_6:
2671 /* RAID5 left_asymmetric, with Q on last device */
2672 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2673 if (*dd_idx >= pd_idx)
2674 (*dd_idx)++;
2675 qd_idx = raid_disks - 1;
2676 break;
2677
2678 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2679 pd_idx = sector_div(stripe2, raid_disks-1);
2680 if (*dd_idx >= pd_idx)
2681 (*dd_idx)++;
2682 qd_idx = raid_disks - 1;
2683 break;
2684
2685 case ALGORITHM_LEFT_SYMMETRIC_6:
2686 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2687 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2688 qd_idx = raid_disks - 1;
2689 break;
2690
2691 case ALGORITHM_RIGHT_SYMMETRIC_6:
2692 pd_idx = sector_div(stripe2, raid_disks-1);
2693 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2694 qd_idx = raid_disks - 1;
2695 break;
2696
2697 case ALGORITHM_PARITY_0_6:
2698 pd_idx = 0;
2699 (*dd_idx)++;
2700 qd_idx = raid_disks - 1;
2701 break;
2702
2703 default:
2704 BUG();
2705 }
2706 break;
2707 }
2708
2709 if (sh) {
2710 sh->pd_idx = pd_idx;
2711 sh->qd_idx = qd_idx;
2712 sh->ddf_layout = ddf_layout;
2713 }
2714 /*
2715 * Finally, compute the new sector number
2716 */
2717 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2718 return new_sector;
2719 }
2720
2721 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2722 {
2723 struct r5conf *conf = sh->raid_conf;
2724 int raid_disks = sh->disks;
2725 int data_disks = raid_disks - conf->max_degraded;
2726 sector_t new_sector = sh->sector, check;
2727 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2728 : conf->chunk_sectors;
2729 int algorithm = previous ? conf->prev_algo
2730 : conf->algorithm;
2731 sector_t stripe;
2732 int chunk_offset;
2733 sector_t chunk_number;
2734 int dummy1, dd_idx = i;
2735 sector_t r_sector;
2736 struct stripe_head sh2;
2737
2738 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2739 stripe = new_sector;
2740
2741 if (i == sh->pd_idx)
2742 return 0;
2743 switch(conf->level) {
2744 case 4: break;
2745 case 5:
2746 switch (algorithm) {
2747 case ALGORITHM_LEFT_ASYMMETRIC:
2748 case ALGORITHM_RIGHT_ASYMMETRIC:
2749 if (i > sh->pd_idx)
2750 i--;
2751 break;
2752 case ALGORITHM_LEFT_SYMMETRIC:
2753 case ALGORITHM_RIGHT_SYMMETRIC:
2754 if (i < sh->pd_idx)
2755 i += raid_disks;
2756 i -= (sh->pd_idx + 1);
2757 break;
2758 case ALGORITHM_PARITY_0:
2759 i -= 1;
2760 break;
2761 case ALGORITHM_PARITY_N:
2762 break;
2763 default:
2764 BUG();
2765 }
2766 break;
2767 case 6:
2768 if (i == sh->qd_idx)
2769 return 0; /* It is the Q disk */
2770 switch (algorithm) {
2771 case ALGORITHM_LEFT_ASYMMETRIC:
2772 case ALGORITHM_RIGHT_ASYMMETRIC:
2773 case ALGORITHM_ROTATING_ZERO_RESTART:
2774 case ALGORITHM_ROTATING_N_RESTART:
2775 if (sh->pd_idx == raid_disks-1)
2776 i--; /* Q D D D P */
2777 else if (i > sh->pd_idx)
2778 i -= 2; /* D D P Q D */
2779 break;
2780 case ALGORITHM_LEFT_SYMMETRIC:
2781 case ALGORITHM_RIGHT_SYMMETRIC:
2782 if (sh->pd_idx == raid_disks-1)
2783 i--; /* Q D D D P */
2784 else {
2785 /* D D P Q D */
2786 if (i < sh->pd_idx)
2787 i += raid_disks;
2788 i -= (sh->pd_idx + 2);
2789 }
2790 break;
2791 case ALGORITHM_PARITY_0:
2792 i -= 2;
2793 break;
2794 case ALGORITHM_PARITY_N:
2795 break;
2796 case ALGORITHM_ROTATING_N_CONTINUE:
2797 /* Like left_symmetric, but P is before Q */
2798 if (sh->pd_idx == 0)
2799 i--; /* P D D D Q */
2800 else {
2801 /* D D Q P D */
2802 if (i < sh->pd_idx)
2803 i += raid_disks;
2804 i -= (sh->pd_idx + 1);
2805 }
2806 break;
2807 case ALGORITHM_LEFT_ASYMMETRIC_6:
2808 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2809 if (i > sh->pd_idx)
2810 i--;
2811 break;
2812 case ALGORITHM_LEFT_SYMMETRIC_6:
2813 case ALGORITHM_RIGHT_SYMMETRIC_6:
2814 if (i < sh->pd_idx)
2815 i += data_disks + 1;
2816 i -= (sh->pd_idx + 1);
2817 break;
2818 case ALGORITHM_PARITY_0_6:
2819 i -= 1;
2820 break;
2821 default:
2822 BUG();
2823 }
2824 break;
2825 }
2826
2827 chunk_number = stripe * data_disks + i;
2828 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2829
2830 check = raid5_compute_sector(conf, r_sector,
2831 previous, &dummy1, &sh2);
2832 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2833 || sh2.qd_idx != sh->qd_idx) {
2834 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2835 mdname(conf->mddev));
2836 return 0;
2837 }
2838 return r_sector;
2839 }
2840
2841 static void
2842 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2843 int rcw, int expand)
2844 {
2845 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2846 struct r5conf *conf = sh->raid_conf;
2847 int level = conf->level;
2848
2849 if (rcw) {
2850
2851 for (i = disks; i--; ) {
2852 struct r5dev *dev = &sh->dev[i];
2853
2854 if (dev->towrite) {
2855 set_bit(R5_LOCKED, &dev->flags);
2856 set_bit(R5_Wantdrain, &dev->flags);
2857 if (!expand)
2858 clear_bit(R5_UPTODATE, &dev->flags);
2859 s->locked++;
2860 }
2861 }
2862 /* if we are not expanding this is a proper write request, and
2863 * there will be bios with new data to be drained into the
2864 * stripe cache
2865 */
2866 if (!expand) {
2867 if (!s->locked)
2868 /* False alarm, nothing to do */
2869 return;
2870 sh->reconstruct_state = reconstruct_state_drain_run;
2871 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2872 } else
2873 sh->reconstruct_state = reconstruct_state_run;
2874
2875 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2876
2877 if (s->locked + conf->max_degraded == disks)
2878 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2879 atomic_inc(&conf->pending_full_writes);
2880 } else {
2881 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2882 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2883 BUG_ON(level == 6 &&
2884 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2885 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2886
2887 for (i = disks; i--; ) {
2888 struct r5dev *dev = &sh->dev[i];
2889 if (i == pd_idx || i == qd_idx)
2890 continue;
2891
2892 if (dev->towrite &&
2893 (test_bit(R5_UPTODATE, &dev->flags) ||
2894 test_bit(R5_Wantcompute, &dev->flags))) {
2895 set_bit(R5_Wantdrain, &dev->flags);
2896 set_bit(R5_LOCKED, &dev->flags);
2897 clear_bit(R5_UPTODATE, &dev->flags);
2898 s->locked++;
2899 }
2900 }
2901 if (!s->locked)
2902 /* False alarm - nothing to do */
2903 return;
2904 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2905 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2906 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2907 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2908 }
2909
2910 /* keep the parity disk(s) locked while asynchronous operations
2911 * are in flight
2912 */
2913 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2914 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2915 s->locked++;
2916
2917 if (level == 6) {
2918 int qd_idx = sh->qd_idx;
2919 struct r5dev *dev = &sh->dev[qd_idx];
2920
2921 set_bit(R5_LOCKED, &dev->flags);
2922 clear_bit(R5_UPTODATE, &dev->flags);
2923 s->locked++;
2924 }
2925
2926 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2927 __func__, (unsigned long long)sh->sector,
2928 s->locked, s->ops_request);
2929 }
2930
2931 /*
2932 * Each stripe/dev can have one or more bion attached.
2933 * toread/towrite point to the first in a chain.
2934 * The bi_next chain must be in order.
2935 */
2936 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2937 int forwrite, int previous)
2938 {
2939 struct bio **bip;
2940 struct r5conf *conf = sh->raid_conf;
2941 int firstwrite=0;
2942
2943 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2944 (unsigned long long)bi->bi_iter.bi_sector,
2945 (unsigned long long)sh->sector);
2946
2947 /*
2948 * If several bio share a stripe. The bio bi_phys_segments acts as a
2949 * reference count to avoid race. The reference count should already be
2950 * increased before this function is called (for example, in
2951 * make_request()), so other bio sharing this stripe will not free the
2952 * stripe. If a stripe is owned by one stripe, the stripe lock will
2953 * protect it.
2954 */
2955 spin_lock_irq(&sh->stripe_lock);
2956 /* Don't allow new IO added to stripes in batch list */
2957 if (sh->batch_head)
2958 goto overlap;
2959 if (forwrite) {
2960 bip = &sh->dev[dd_idx].towrite;
2961 if (*bip == NULL)
2962 firstwrite = 1;
2963 } else
2964 bip = &sh->dev[dd_idx].toread;
2965 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2966 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2967 goto overlap;
2968 bip = & (*bip)->bi_next;
2969 }
2970 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2971 goto overlap;
2972
2973 if (!forwrite || previous)
2974 clear_bit(STRIPE_BATCH_READY, &sh->state);
2975
2976 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2977 if (*bip)
2978 bi->bi_next = *bip;
2979 *bip = bi;
2980 raid5_inc_bi_active_stripes(bi);
2981
2982 if (forwrite) {
2983 /* check if page is covered */
2984 sector_t sector = sh->dev[dd_idx].sector;
2985 for (bi=sh->dev[dd_idx].towrite;
2986 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2987 bi && bi->bi_iter.bi_sector <= sector;
2988 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2989 if (bio_end_sector(bi) >= sector)
2990 sector = bio_end_sector(bi);
2991 }
2992 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2993 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2994 sh->overwrite_disks++;
2995 }
2996
2997 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2998 (unsigned long long)(*bip)->bi_iter.bi_sector,
2999 (unsigned long long)sh->sector, dd_idx);
3000
3001 if (conf->mddev->bitmap && firstwrite) {
3002 /* Cannot hold spinlock over bitmap_startwrite,
3003 * but must ensure this isn't added to a batch until
3004 * we have added to the bitmap and set bm_seq.
3005 * So set STRIPE_BITMAP_PENDING to prevent
3006 * batching.
3007 * If multiple add_stripe_bio() calls race here they
3008 * much all set STRIPE_BITMAP_PENDING. So only the first one
3009 * to complete "bitmap_startwrite" gets to set
3010 * STRIPE_BIT_DELAY. This is important as once a stripe
3011 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3012 * any more.
3013 */
3014 set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3015 spin_unlock_irq(&sh->stripe_lock);
3016 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3017 STRIPE_SECTORS, 0);
3018 spin_lock_irq(&sh->stripe_lock);
3019 clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3020 if (!sh->batch_head) {
3021 sh->bm_seq = conf->seq_flush+1;
3022 set_bit(STRIPE_BIT_DELAY, &sh->state);
3023 }
3024 }
3025 spin_unlock_irq(&sh->stripe_lock);
3026
3027 if (stripe_can_batch(sh))
3028 stripe_add_to_batch_list(conf, sh);
3029 return 1;
3030
3031 overlap:
3032 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3033 spin_unlock_irq(&sh->stripe_lock);
3034 return 0;
3035 }
3036
3037 static void end_reshape(struct r5conf *conf);
3038
3039 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3040 struct stripe_head *sh)
3041 {
3042 int sectors_per_chunk =
3043 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3044 int dd_idx;
3045 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3046 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3047
3048 raid5_compute_sector(conf,
3049 stripe * (disks - conf->max_degraded)
3050 *sectors_per_chunk + chunk_offset,
3051 previous,
3052 &dd_idx, sh);
3053 }
3054
3055 static void
3056 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3057 struct stripe_head_state *s, int disks,
3058 struct bio **return_bi)
3059 {
3060 int i;
3061 BUG_ON(sh->batch_head);
3062 for (i = disks; i--; ) {
3063 struct bio *bi;
3064 int bitmap_end = 0;
3065
3066 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3067 struct md_rdev *rdev;
3068 rcu_read_lock();
3069 rdev = rcu_dereference(conf->disks[i].rdev);
3070 if (rdev && test_bit(In_sync, &rdev->flags))
3071 atomic_inc(&rdev->nr_pending);
3072 else
3073 rdev = NULL;
3074 rcu_read_unlock();
3075 if (rdev) {
3076 if (!rdev_set_badblocks(
3077 rdev,
3078 sh->sector,
3079 STRIPE_SECTORS, 0))
3080 md_error(conf->mddev, rdev);
3081 rdev_dec_pending(rdev, conf->mddev);
3082 }
3083 }
3084 spin_lock_irq(&sh->stripe_lock);
3085 /* fail all writes first */
3086 bi = sh->dev[i].towrite;
3087 sh->dev[i].towrite = NULL;
3088 sh->overwrite_disks = 0;
3089 spin_unlock_irq(&sh->stripe_lock);
3090 if (bi)
3091 bitmap_end = 1;
3092
3093 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3094 wake_up(&conf->wait_for_overlap);
3095
3096 while (bi && bi->bi_iter.bi_sector <
3097 sh->dev[i].sector + STRIPE_SECTORS) {
3098 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3099 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3100 if (!raid5_dec_bi_active_stripes(bi)) {
3101 md_write_end(conf->mddev);
3102 bi->bi_next = *return_bi;
3103 *return_bi = bi;
3104 }
3105 bi = nextbi;
3106 }
3107 if (bitmap_end)
3108 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3109 STRIPE_SECTORS, 0, 0);
3110 bitmap_end = 0;
3111 /* and fail all 'written' */
3112 bi = sh->dev[i].written;
3113 sh->dev[i].written = NULL;
3114 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3115 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3116 sh->dev[i].page = sh->dev[i].orig_page;
3117 }
3118
3119 if (bi) bitmap_end = 1;
3120 while (bi && bi->bi_iter.bi_sector <
3121 sh->dev[i].sector + STRIPE_SECTORS) {
3122 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3123 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3124 if (!raid5_dec_bi_active_stripes(bi)) {
3125 md_write_end(conf->mddev);
3126 bi->bi_next = *return_bi;
3127 *return_bi = bi;
3128 }
3129 bi = bi2;
3130 }
3131
3132 /* fail any reads if this device is non-operational and
3133 * the data has not reached the cache yet.
3134 */
3135 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3136 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3137 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3138 spin_lock_irq(&sh->stripe_lock);
3139 bi = sh->dev[i].toread;
3140 sh->dev[i].toread = NULL;
3141 spin_unlock_irq(&sh->stripe_lock);
3142 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3143 wake_up(&conf->wait_for_overlap);
3144 while (bi && bi->bi_iter.bi_sector <
3145 sh->dev[i].sector + STRIPE_SECTORS) {
3146 struct bio *nextbi =
3147 r5_next_bio(bi, sh->dev[i].sector);
3148 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3149 if (!raid5_dec_bi_active_stripes(bi)) {
3150 bi->bi_next = *return_bi;
3151 *return_bi = bi;
3152 }
3153 bi = nextbi;
3154 }
3155 }
3156 if (bitmap_end)
3157 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3158 STRIPE_SECTORS, 0, 0);
3159 /* If we were in the middle of a write the parity block might
3160 * still be locked - so just clear all R5_LOCKED flags
3161 */
3162 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3163 }
3164
3165 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3166 if (atomic_dec_and_test(&conf->pending_full_writes))
3167 md_wakeup_thread(conf->mddev->thread);
3168 }
3169
3170 static void
3171 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3172 struct stripe_head_state *s)
3173 {
3174 int abort = 0;
3175 int i;
3176
3177 BUG_ON(sh->batch_head);
3178 clear_bit(STRIPE_SYNCING, &sh->state);
3179 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3180 wake_up(&conf->wait_for_overlap);
3181 s->syncing = 0;
3182 s->replacing = 0;
3183 /* There is nothing more to do for sync/check/repair.
3184 * Don't even need to abort as that is handled elsewhere
3185 * if needed, and not always wanted e.g. if there is a known
3186 * bad block here.
3187 * For recover/replace we need to record a bad block on all
3188 * non-sync devices, or abort the recovery
3189 */
3190 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3191 /* During recovery devices cannot be removed, so
3192 * locking and refcounting of rdevs is not needed
3193 */
3194 for (i = 0; i < conf->raid_disks; i++) {
3195 struct md_rdev *rdev = conf->disks[i].rdev;
3196 if (rdev
3197 && !test_bit(Faulty, &rdev->flags)
3198 && !test_bit(In_sync, &rdev->flags)
3199 && !rdev_set_badblocks(rdev, sh->sector,
3200 STRIPE_SECTORS, 0))
3201 abort = 1;
3202 rdev = conf->disks[i].replacement;
3203 if (rdev
3204 && !test_bit(Faulty, &rdev->flags)
3205 && !test_bit(In_sync, &rdev->flags)
3206 && !rdev_set_badblocks(rdev, sh->sector,
3207 STRIPE_SECTORS, 0))
3208 abort = 1;
3209 }
3210 if (abort)
3211 conf->recovery_disabled =
3212 conf->mddev->recovery_disabled;
3213 }
3214 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3215 }
3216
3217 static int want_replace(struct stripe_head *sh, int disk_idx)
3218 {
3219 struct md_rdev *rdev;
3220 int rv = 0;
3221 /* Doing recovery so rcu locking not required */
3222 rdev = sh->raid_conf->disks[disk_idx].replacement;
3223 if (rdev
3224 && !test_bit(Faulty, &rdev->flags)
3225 && !test_bit(In_sync, &rdev->flags)
3226 && (rdev->recovery_offset <= sh->sector
3227 || rdev->mddev->recovery_cp <= sh->sector))
3228 rv = 1;
3229
3230 return rv;
3231 }
3232
3233 /* fetch_block - checks the given member device to see if its data needs
3234 * to be read or computed to satisfy a request.
3235 *
3236 * Returns 1 when no more member devices need to be checked, otherwise returns
3237 * 0 to tell the loop in handle_stripe_fill to continue
3238 */
3239
3240 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3241 int disk_idx, int disks)
3242 {
3243 struct r5dev *dev = &sh->dev[disk_idx];
3244 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3245 &sh->dev[s->failed_num[1]] };
3246 int i;
3247
3248
3249 if (test_bit(R5_LOCKED, &dev->flags) ||
3250 test_bit(R5_UPTODATE, &dev->flags))
3251 /* No point reading this as we already have it or have
3252 * decided to get it.
3253 */
3254 return 0;
3255
3256 if (dev->toread ||
3257 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3258 /* We need this block to directly satisfy a request */
3259 return 1;
3260
3261 if (s->syncing || s->expanding ||
3262 (s->replacing && want_replace(sh, disk_idx)))
3263 /* When syncing, or expanding we read everything.
3264 * When replacing, we need the replaced block.
3265 */
3266 return 1;
3267
3268 if ((s->failed >= 1 && fdev[0]->toread) ||
3269 (s->failed >= 2 && fdev[1]->toread))
3270 /* If we want to read from a failed device, then
3271 * we need to actually read every other device.
3272 */
3273 return 1;
3274
3275 /* Sometimes neither read-modify-write nor reconstruct-write
3276 * cycles can work. In those cases we read every block we
3277 * can. Then the parity-update is certain to have enough to
3278 * work with.
3279 * This can only be a problem when we need to write something,
3280 * and some device has failed. If either of those tests
3281 * fail we need look no further.
3282 */
3283 if (!s->failed || !s->to_write)
3284 return 0;
3285
3286 if (test_bit(R5_Insync, &dev->flags) &&
3287 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3288 /* Pre-reads at not permitted until after short delay
3289 * to gather multiple requests. However if this
3290 * device is no Insync, the block could only be be computed
3291 * and there is no need to delay that.
3292 */
3293 return 0;
3294
3295 for (i = 0; i < s->failed; i++) {
3296 if (fdev[i]->towrite &&
3297 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3298 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3299 /* If we have a partial write to a failed
3300 * device, then we will need to reconstruct
3301 * the content of that device, so all other
3302 * devices must be read.
3303 */
3304 return 1;
3305 }
3306
3307 /* If we are forced to do a reconstruct-write, either because
3308 * the current RAID6 implementation only supports that, or
3309 * or because parity cannot be trusted and we are currently
3310 * recovering it, there is extra need to be careful.
3311 * If one of the devices that we would need to read, because
3312 * it is not being overwritten (and maybe not written at all)
3313 * is missing/faulty, then we need to read everything we can.
3314 */
3315 if (sh->raid_conf->level != 6 &&
3316 sh->sector < sh->raid_conf->mddev->recovery_cp)
3317 /* reconstruct-write isn't being forced */
3318 return 0;
3319 for (i = 0; i < s->failed; i++) {
3320 if (s->failed_num[i] != sh->pd_idx &&
3321 s->failed_num[i] != sh->qd_idx &&
3322 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3323 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3324 return 1;
3325 }
3326
3327 return 0;
3328 }
3329
3330 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3331 int disk_idx, int disks)
3332 {
3333 struct r5dev *dev = &sh->dev[disk_idx];
3334
3335 /* is the data in this block needed, and can we get it? */
3336 if (need_this_block(sh, s, disk_idx, disks)) {
3337 /* we would like to get this block, possibly by computing it,
3338 * otherwise read it if the backing disk is insync
3339 */
3340 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3341 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3342 BUG_ON(sh->batch_head);
3343 if ((s->uptodate == disks - 1) &&
3344 (s->failed && (disk_idx == s->failed_num[0] ||
3345 disk_idx == s->failed_num[1]))) {
3346 /* have disk failed, and we're requested to fetch it;
3347 * do compute it
3348 */
3349 pr_debug("Computing stripe %llu block %d\n",
3350 (unsigned long long)sh->sector, disk_idx);
3351 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3352 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3353 set_bit(R5_Wantcompute, &dev->flags);
3354 sh->ops.target = disk_idx;
3355 sh->ops.target2 = -1; /* no 2nd target */
3356 s->req_compute = 1;
3357 /* Careful: from this point on 'uptodate' is in the eye
3358 * of raid_run_ops which services 'compute' operations
3359 * before writes. R5_Wantcompute flags a block that will
3360 * be R5_UPTODATE by the time it is needed for a
3361 * subsequent operation.
3362 */
3363 s->uptodate++;
3364 return 1;
3365 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3366 /* Computing 2-failure is *very* expensive; only
3367 * do it if failed >= 2
3368 */
3369 int other;
3370 for (other = disks; other--; ) {
3371 if (other == disk_idx)
3372 continue;
3373 if (!test_bit(R5_UPTODATE,
3374 &sh->dev[other].flags))
3375 break;
3376 }
3377 BUG_ON(other < 0);
3378 pr_debug("Computing stripe %llu blocks %d,%d\n",
3379 (unsigned long long)sh->sector,
3380 disk_idx, other);
3381 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3382 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3383 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3384 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3385 sh->ops.target = disk_idx;
3386 sh->ops.target2 = other;
3387 s->uptodate += 2;
3388 s->req_compute = 1;
3389 return 1;
3390 } else if (test_bit(R5_Insync, &dev->flags)) {
3391 set_bit(R5_LOCKED, &dev->flags);
3392 set_bit(R5_Wantread, &dev->flags);
3393 s->locked++;
3394 pr_debug("Reading block %d (sync=%d)\n",
3395 disk_idx, s->syncing);
3396 }
3397 }
3398
3399 return 0;
3400 }
3401
3402 /**
3403 * handle_stripe_fill - read or compute data to satisfy pending requests.
3404 */
3405 static void handle_stripe_fill(struct stripe_head *sh,
3406 struct stripe_head_state *s,
3407 int disks)
3408 {
3409 int i;
3410
3411 /* look for blocks to read/compute, skip this if a compute
3412 * is already in flight, or if the stripe contents are in the
3413 * midst of changing due to a write
3414 */
3415 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3416 !sh->reconstruct_state)
3417 for (i = disks; i--; )
3418 if (fetch_block(sh, s, i, disks))
3419 break;
3420 set_bit(STRIPE_HANDLE, &sh->state);
3421 }
3422
3423 static void break_stripe_batch_list(struct stripe_head *head_sh,
3424 unsigned long handle_flags);
3425 /* handle_stripe_clean_event
3426 * any written block on an uptodate or failed drive can be returned.
3427 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3428 * never LOCKED, so we don't need to test 'failed' directly.
3429 */
3430 static void handle_stripe_clean_event(struct r5conf *conf,
3431 struct stripe_head *sh, int disks, struct bio **return_bi)
3432 {
3433 int i;
3434 struct r5dev *dev;
3435 int discard_pending = 0;
3436 struct stripe_head *head_sh = sh;
3437 bool do_endio = false;
3438
3439 for (i = disks; i--; )
3440 if (sh->dev[i].written) {
3441 dev = &sh->dev[i];
3442 if (!test_bit(R5_LOCKED, &dev->flags) &&
3443 (test_bit(R5_UPTODATE, &dev->flags) ||
3444 test_bit(R5_Discard, &dev->flags) ||
3445 test_bit(R5_SkipCopy, &dev->flags))) {
3446 /* We can return any write requests */
3447 struct bio *wbi, *wbi2;
3448 pr_debug("Return write for disc %d\n", i);
3449 if (test_and_clear_bit(R5_Discard, &dev->flags))
3450 clear_bit(R5_UPTODATE, &dev->flags);
3451 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3452 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3453 }
3454 do_endio = true;
3455
3456 returnbi:
3457 dev->page = dev->orig_page;
3458 wbi = dev->written;
3459 dev->written = NULL;
3460 while (wbi && wbi->bi_iter.bi_sector <
3461 dev->sector + STRIPE_SECTORS) {
3462 wbi2 = r5_next_bio(wbi, dev->sector);
3463 if (!raid5_dec_bi_active_stripes(wbi)) {
3464 md_write_end(conf->mddev);
3465 wbi->bi_next = *return_bi;
3466 *return_bi = wbi;
3467 }
3468 wbi = wbi2;
3469 }
3470 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3471 STRIPE_SECTORS,
3472 !test_bit(STRIPE_DEGRADED, &sh->state),
3473 0);
3474 if (head_sh->batch_head) {
3475 sh = list_first_entry(&sh->batch_list,
3476 struct stripe_head,
3477 batch_list);
3478 if (sh != head_sh) {
3479 dev = &sh->dev[i];
3480 goto returnbi;
3481 }
3482 }
3483 sh = head_sh;
3484 dev = &sh->dev[i];
3485 } else if (test_bit(R5_Discard, &dev->flags))
3486 discard_pending = 1;
3487 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3488 WARN_ON(dev->page != dev->orig_page);
3489 }
3490 if (!discard_pending &&
3491 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3492 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3493 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3494 if (sh->qd_idx >= 0) {
3495 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3496 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3497 }
3498 /* now that discard is done we can proceed with any sync */
3499 clear_bit(STRIPE_DISCARD, &sh->state);
3500 /*
3501 * SCSI discard will change some bio fields and the stripe has
3502 * no updated data, so remove it from hash list and the stripe
3503 * will be reinitialized
3504 */
3505 spin_lock_irq(&conf->device_lock);
3506 unhash:
3507 remove_hash(sh);
3508 if (head_sh->batch_head) {
3509 sh = list_first_entry(&sh->batch_list,
3510 struct stripe_head, batch_list);
3511 if (sh != head_sh)
3512 goto unhash;
3513 }
3514 spin_unlock_irq(&conf->device_lock);
3515 sh = head_sh;
3516
3517 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3518 set_bit(STRIPE_HANDLE, &sh->state);
3519
3520 }
3521
3522 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3523 if (atomic_dec_and_test(&conf->pending_full_writes))
3524 md_wakeup_thread(conf->mddev->thread);
3525
3526 if (head_sh->batch_head && do_endio)
3527 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3528 }
3529
3530 static void handle_stripe_dirtying(struct r5conf *conf,
3531 struct stripe_head *sh,
3532 struct stripe_head_state *s,
3533 int disks)
3534 {
3535 int rmw = 0, rcw = 0, i;
3536 sector_t recovery_cp = conf->mddev->recovery_cp;
3537
3538 /* Check whether resync is now happening or should start.
3539 * If yes, then the array is dirty (after unclean shutdown or
3540 * initial creation), so parity in some stripes might be inconsistent.
3541 * In this case, we need to always do reconstruct-write, to ensure
3542 * that in case of drive failure or read-error correction, we
3543 * generate correct data from the parity.
3544 */
3545 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3546 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3547 s->failed == 0)) {
3548 /* Calculate the real rcw later - for now make it
3549 * look like rcw is cheaper
3550 */
3551 rcw = 1; rmw = 2;
3552 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3553 conf->rmw_level, (unsigned long long)recovery_cp,
3554 (unsigned long long)sh->sector);
3555 } else for (i = disks; i--; ) {
3556 /* would I have to read this buffer for read_modify_write */
3557 struct r5dev *dev = &sh->dev[i];
3558 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3559 !test_bit(R5_LOCKED, &dev->flags) &&
3560 !(test_bit(R5_UPTODATE, &dev->flags) ||
3561 test_bit(R5_Wantcompute, &dev->flags))) {
3562 if (test_bit(R5_Insync, &dev->flags))
3563 rmw++;
3564 else
3565 rmw += 2*disks; /* cannot read it */
3566 }
3567 /* Would I have to read this buffer for reconstruct_write */
3568 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3569 i != sh->pd_idx && i != sh->qd_idx &&
3570 !test_bit(R5_LOCKED, &dev->flags) &&
3571 !(test_bit(R5_UPTODATE, &dev->flags) ||
3572 test_bit(R5_Wantcompute, &dev->flags))) {
3573 if (test_bit(R5_Insync, &dev->flags))
3574 rcw++;
3575 else
3576 rcw += 2*disks;
3577 }
3578 }
3579 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3580 (unsigned long long)sh->sector, rmw, rcw);
3581 set_bit(STRIPE_HANDLE, &sh->state);
3582 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3583 /* prefer read-modify-write, but need to get some data */
3584 if (conf->mddev->queue)
3585 blk_add_trace_msg(conf->mddev->queue,
3586 "raid5 rmw %llu %d",
3587 (unsigned long long)sh->sector, rmw);
3588 for (i = disks; i--; ) {
3589 struct r5dev *dev = &sh->dev[i];
3590 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3591 !test_bit(R5_LOCKED, &dev->flags) &&
3592 !(test_bit(R5_UPTODATE, &dev->flags) ||
3593 test_bit(R5_Wantcompute, &dev->flags)) &&
3594 test_bit(R5_Insync, &dev->flags)) {
3595 if (test_bit(STRIPE_PREREAD_ACTIVE,
3596 &sh->state)) {
3597 pr_debug("Read_old block %d for r-m-w\n",
3598 i);
3599 set_bit(R5_LOCKED, &dev->flags);
3600 set_bit(R5_Wantread, &dev->flags);
3601 s->locked++;
3602 } else {
3603 set_bit(STRIPE_DELAYED, &sh->state);
3604 set_bit(STRIPE_HANDLE, &sh->state);
3605 }
3606 }
3607 }
3608 }
3609 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3610 /* want reconstruct write, but need to get some data */
3611 int qread =0;
3612 rcw = 0;
3613 for (i = disks; i--; ) {
3614 struct r5dev *dev = &sh->dev[i];
3615 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3616 i != sh->pd_idx && i != sh->qd_idx &&
3617 !test_bit(R5_LOCKED, &dev->flags) &&
3618 !(test_bit(R5_UPTODATE, &dev->flags) ||
3619 test_bit(R5_Wantcompute, &dev->flags))) {
3620 rcw++;
3621 if (test_bit(R5_Insync, &dev->flags) &&
3622 test_bit(STRIPE_PREREAD_ACTIVE,
3623 &sh->state)) {
3624 pr_debug("Read_old block "
3625 "%d for Reconstruct\n", i);
3626 set_bit(R5_LOCKED, &dev->flags);
3627 set_bit(R5_Wantread, &dev->flags);
3628 s->locked++;
3629 qread++;
3630 } else {
3631 set_bit(STRIPE_DELAYED, &sh->state);
3632 set_bit(STRIPE_HANDLE, &sh->state);
3633 }
3634 }
3635 }
3636 if (rcw && conf->mddev->queue)
3637 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3638 (unsigned long long)sh->sector,
3639 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3640 }
3641
3642 if (rcw > disks && rmw > disks &&
3643 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3644 set_bit(STRIPE_DELAYED, &sh->state);
3645
3646 /* now if nothing is locked, and if we have enough data,
3647 * we can start a write request
3648 */
3649 /* since handle_stripe can be called at any time we need to handle the
3650 * case where a compute block operation has been submitted and then a
3651 * subsequent call wants to start a write request. raid_run_ops only
3652 * handles the case where compute block and reconstruct are requested
3653 * simultaneously. If this is not the case then new writes need to be
3654 * held off until the compute completes.
3655 */
3656 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3657 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3658 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3659 schedule_reconstruction(sh, s, rcw == 0, 0);
3660 }
3661
3662 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3663 struct stripe_head_state *s, int disks)
3664 {
3665 struct r5dev *dev = NULL;
3666
3667 BUG_ON(sh->batch_head);
3668 set_bit(STRIPE_HANDLE, &sh->state);
3669
3670 switch (sh->check_state) {
3671 case check_state_idle:
3672 /* start a new check operation if there are no failures */
3673 if (s->failed == 0) {
3674 BUG_ON(s->uptodate != disks);
3675 sh->check_state = check_state_run;
3676 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3677 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3678 s->uptodate--;
3679 break;
3680 }
3681 dev = &sh->dev[s->failed_num[0]];
3682 /* fall through */
3683 case check_state_compute_result:
3684 sh->check_state = check_state_idle;
3685 if (!dev)
3686 dev = &sh->dev[sh->pd_idx];
3687
3688 /* check that a write has not made the stripe insync */
3689 if (test_bit(STRIPE_INSYNC, &sh->state))
3690 break;
3691
3692 /* either failed parity check, or recovery is happening */
3693 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3694 BUG_ON(s->uptodate != disks);
3695
3696 set_bit(R5_LOCKED, &dev->flags);
3697 s->locked++;
3698 set_bit(R5_Wantwrite, &dev->flags);
3699
3700 clear_bit(STRIPE_DEGRADED, &sh->state);
3701 set_bit(STRIPE_INSYNC, &sh->state);
3702 break;
3703 case check_state_run:
3704 break; /* we will be called again upon completion */
3705 case check_state_check_result:
3706 sh->check_state = check_state_idle;
3707
3708 /* if a failure occurred during the check operation, leave
3709 * STRIPE_INSYNC not set and let the stripe be handled again
3710 */
3711 if (s->failed)
3712 break;
3713
3714 /* handle a successful check operation, if parity is correct
3715 * we are done. Otherwise update the mismatch count and repair
3716 * parity if !MD_RECOVERY_CHECK
3717 */
3718 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3719 /* parity is correct (on disc,
3720 * not in buffer any more)
3721 */
3722 set_bit(STRIPE_INSYNC, &sh->state);
3723 else {
3724 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3725 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3726 /* don't try to repair!! */
3727 set_bit(STRIPE_INSYNC, &sh->state);
3728 else {
3729 sh->check_state = check_state_compute_run;
3730 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3731 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3732 set_bit(R5_Wantcompute,
3733 &sh->dev[sh->pd_idx].flags);
3734 sh->ops.target = sh->pd_idx;
3735 sh->ops.target2 = -1;
3736 s->uptodate++;
3737 }
3738 }
3739 break;
3740 case check_state_compute_run:
3741 break;
3742 default:
3743 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3744 __func__, sh->check_state,
3745 (unsigned long long) sh->sector);
3746 BUG();
3747 }
3748 }
3749
3750 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3751 struct stripe_head_state *s,
3752 int disks)
3753 {
3754 int pd_idx = sh->pd_idx;
3755 int qd_idx = sh->qd_idx;
3756 struct r5dev *dev;
3757
3758 BUG_ON(sh->batch_head);
3759 set_bit(STRIPE_HANDLE, &sh->state);
3760
3761 BUG_ON(s->failed > 2);
3762
3763 /* Want to check and possibly repair P and Q.
3764 * However there could be one 'failed' device, in which
3765 * case we can only check one of them, possibly using the
3766 * other to generate missing data
3767 */
3768
3769 switch (sh->check_state) {
3770 case check_state_idle:
3771 /* start a new check operation if there are < 2 failures */
3772 if (s->failed == s->q_failed) {
3773 /* The only possible failed device holds Q, so it
3774 * makes sense to check P (If anything else were failed,
3775 * we would have used P to recreate it).
3776 */
3777 sh->check_state = check_state_run;
3778 }
3779 if (!s->q_failed && s->failed < 2) {
3780 /* Q is not failed, and we didn't use it to generate
3781 * anything, so it makes sense to check it
3782 */
3783 if (sh->check_state == check_state_run)
3784 sh->check_state = check_state_run_pq;
3785 else
3786 sh->check_state = check_state_run_q;
3787 }
3788
3789 /* discard potentially stale zero_sum_result */
3790 sh->ops.zero_sum_result = 0;
3791
3792 if (sh->check_state == check_state_run) {
3793 /* async_xor_zero_sum destroys the contents of P */
3794 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3795 s->uptodate--;
3796 }
3797 if (sh->check_state >= check_state_run &&
3798 sh->check_state <= check_state_run_pq) {
3799 /* async_syndrome_zero_sum preserves P and Q, so
3800 * no need to mark them !uptodate here
3801 */
3802 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3803 break;
3804 }
3805
3806 /* we have 2-disk failure */
3807 BUG_ON(s->failed != 2);
3808 /* fall through */
3809 case check_state_compute_result:
3810 sh->check_state = check_state_idle;
3811
3812 /* check that a write has not made the stripe insync */
3813 if (test_bit(STRIPE_INSYNC, &sh->state))
3814 break;
3815
3816 /* now write out any block on a failed drive,
3817 * or P or Q if they were recomputed
3818 */
3819 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3820 if (s->failed == 2) {
3821 dev = &sh->dev[s->failed_num[1]];
3822 s->locked++;
3823 set_bit(R5_LOCKED, &dev->flags);
3824 set_bit(R5_Wantwrite, &dev->flags);
3825 }
3826 if (s->failed >= 1) {
3827 dev = &sh->dev[s->failed_num[0]];
3828 s->locked++;
3829 set_bit(R5_LOCKED, &dev->flags);
3830 set_bit(R5_Wantwrite, &dev->flags);
3831 }
3832 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3833 dev = &sh->dev[pd_idx];
3834 s->locked++;
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantwrite, &dev->flags);
3837 }
3838 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3839 dev = &sh->dev[qd_idx];
3840 s->locked++;
3841 set_bit(R5_LOCKED, &dev->flags);
3842 set_bit(R5_Wantwrite, &dev->flags);
3843 }
3844 clear_bit(STRIPE_DEGRADED, &sh->state);
3845
3846 set_bit(STRIPE_INSYNC, &sh->state);
3847 break;
3848 case check_state_run:
3849 case check_state_run_q:
3850 case check_state_run_pq:
3851 break; /* we will be called again upon completion */
3852 case check_state_check_result:
3853 sh->check_state = check_state_idle;
3854
3855 /* handle a successful check operation, if parity is correct
3856 * we are done. Otherwise update the mismatch count and repair
3857 * parity if !MD_RECOVERY_CHECK
3858 */
3859 if (sh->ops.zero_sum_result == 0) {
3860 /* both parities are correct */
3861 if (!s->failed)
3862 set_bit(STRIPE_INSYNC, &sh->state);
3863 else {
3864 /* in contrast to the raid5 case we can validate
3865 * parity, but still have a failure to write
3866 * back
3867 */
3868 sh->check_state = check_state_compute_result;
3869 /* Returning at this point means that we may go
3870 * off and bring p and/or q uptodate again so
3871 * we make sure to check zero_sum_result again
3872 * to verify if p or q need writeback
3873 */
3874 }
3875 } else {
3876 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3877 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3878 /* don't try to repair!! */
3879 set_bit(STRIPE_INSYNC, &sh->state);
3880 else {
3881 int *target = &sh->ops.target;
3882
3883 sh->ops.target = -1;
3884 sh->ops.target2 = -1;
3885 sh->check_state = check_state_compute_run;
3886 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3887 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3888 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3889 set_bit(R5_Wantcompute,
3890 &sh->dev[pd_idx].flags);
3891 *target = pd_idx;
3892 target = &sh->ops.target2;
3893 s->uptodate++;
3894 }
3895 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3896 set_bit(R5_Wantcompute,
3897 &sh->dev[qd_idx].flags);
3898 *target = qd_idx;
3899 s->uptodate++;
3900 }
3901 }
3902 }
3903 break;
3904 case check_state_compute_run:
3905 break;
3906 default:
3907 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3908 __func__, sh->check_state,
3909 (unsigned long long) sh->sector);
3910 BUG();
3911 }
3912 }
3913
3914 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3915 {
3916 int i;
3917
3918 /* We have read all the blocks in this stripe and now we need to
3919 * copy some of them into a target stripe for expand.
3920 */
3921 struct dma_async_tx_descriptor *tx = NULL;
3922 BUG_ON(sh->batch_head);
3923 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3924 for (i = 0; i < sh->disks; i++)
3925 if (i != sh->pd_idx && i != sh->qd_idx) {
3926 int dd_idx, j;
3927 struct stripe_head *sh2;
3928 struct async_submit_ctl submit;
3929
3930 sector_t bn = compute_blocknr(sh, i, 1);
3931 sector_t s = raid5_compute_sector(conf, bn, 0,
3932 &dd_idx, NULL);
3933 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3934 if (sh2 == NULL)
3935 /* so far only the early blocks of this stripe
3936 * have been requested. When later blocks
3937 * get requested, we will try again
3938 */
3939 continue;
3940 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3941 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3942 /* must have already done this block */
3943 release_stripe(sh2);
3944 continue;
3945 }
3946
3947 /* place all the copies on one channel */
3948 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3949 tx = async_memcpy(sh2->dev[dd_idx].page,
3950 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3951 &submit);
3952
3953 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3954 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3955 for (j = 0; j < conf->raid_disks; j++)
3956 if (j != sh2->pd_idx &&
3957 j != sh2->qd_idx &&
3958 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3959 break;
3960 if (j == conf->raid_disks) {
3961 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3962 set_bit(STRIPE_HANDLE, &sh2->state);
3963 }
3964 release_stripe(sh2);
3965
3966 }
3967 /* done submitting copies, wait for them to complete */
3968 async_tx_quiesce(&tx);
3969 }
3970
3971 /*
3972 * handle_stripe - do things to a stripe.
3973 *
3974 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3975 * state of various bits to see what needs to be done.
3976 * Possible results:
3977 * return some read requests which now have data
3978 * return some write requests which are safely on storage
3979 * schedule a read on some buffers
3980 * schedule a write of some buffers
3981 * return confirmation of parity correctness
3982 *
3983 */
3984
3985 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3986 {
3987 struct r5conf *conf = sh->raid_conf;
3988 int disks = sh->disks;
3989 struct r5dev *dev;
3990 int i;
3991 int do_recovery = 0;
3992
3993 memset(s, 0, sizeof(*s));
3994
3995 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3996 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3997 s->failed_num[0] = -1;
3998 s->failed_num[1] = -1;
3999
4000 /* Now to look around and see what can be done */
4001 rcu_read_lock();
4002 for (i=disks; i--; ) {
4003 struct md_rdev *rdev;
4004 sector_t first_bad;
4005 int bad_sectors;
4006 int is_bad = 0;
4007
4008 dev = &sh->dev[i];
4009
4010 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4011 i, dev->flags,
4012 dev->toread, dev->towrite, dev->written);
4013 /* maybe we can reply to a read
4014 *
4015 * new wantfill requests are only permitted while
4016 * ops_complete_biofill is guaranteed to be inactive
4017 */
4018 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4019 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4020 set_bit(R5_Wantfill, &dev->flags);
4021
4022 /* now count some things */
4023 if (test_bit(R5_LOCKED, &dev->flags))
4024 s->locked++;
4025 if (test_bit(R5_UPTODATE, &dev->flags))
4026 s->uptodate++;
4027 if (test_bit(R5_Wantcompute, &dev->flags)) {
4028 s->compute++;
4029 BUG_ON(s->compute > 2);
4030 }
4031
4032 if (test_bit(R5_Wantfill, &dev->flags))
4033 s->to_fill++;
4034 else if (dev->toread)
4035 s->to_read++;
4036 if (dev->towrite) {
4037 s->to_write++;
4038 if (!test_bit(R5_OVERWRITE, &dev->flags))
4039 s->non_overwrite++;
4040 }
4041 if (dev->written)
4042 s->written++;
4043 /* Prefer to use the replacement for reads, but only
4044 * if it is recovered enough and has no bad blocks.
4045 */
4046 rdev = rcu_dereference(conf->disks[i].replacement);
4047 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4048 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4049 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4050 &first_bad, &bad_sectors))
4051 set_bit(R5_ReadRepl, &dev->flags);
4052 else {
4053 if (rdev)
4054 set_bit(R5_NeedReplace, &dev->flags);
4055 rdev = rcu_dereference(conf->disks[i].rdev);
4056 clear_bit(R5_ReadRepl, &dev->flags);
4057 }
4058 if (rdev && test_bit(Faulty, &rdev->flags))
4059 rdev = NULL;
4060 if (rdev) {
4061 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4062 &first_bad, &bad_sectors);
4063 if (s->blocked_rdev == NULL
4064 && (test_bit(Blocked, &rdev->flags)
4065 || is_bad < 0)) {
4066 if (is_bad < 0)
4067 set_bit(BlockedBadBlocks,
4068 &rdev->flags);
4069 s->blocked_rdev = rdev;
4070 atomic_inc(&rdev->nr_pending);
4071 }
4072 }
4073 clear_bit(R5_Insync, &dev->flags);
4074 if (!rdev)
4075 /* Not in-sync */;
4076 else if (is_bad) {
4077 /* also not in-sync */
4078 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4079 test_bit(R5_UPTODATE, &dev->flags)) {
4080 /* treat as in-sync, but with a read error
4081 * which we can now try to correct
4082 */
4083 set_bit(R5_Insync, &dev->flags);
4084 set_bit(R5_ReadError, &dev->flags);
4085 }
4086 } else if (test_bit(In_sync, &rdev->flags))
4087 set_bit(R5_Insync, &dev->flags);
4088 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4089 /* in sync if before recovery_offset */
4090 set_bit(R5_Insync, &dev->flags);
4091 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4092 test_bit(R5_Expanded, &dev->flags))
4093 /* If we've reshaped into here, we assume it is Insync.
4094 * We will shortly update recovery_offset to make
4095 * it official.
4096 */
4097 set_bit(R5_Insync, &dev->flags);
4098
4099 if (test_bit(R5_WriteError, &dev->flags)) {
4100 /* This flag does not apply to '.replacement'
4101 * only to .rdev, so make sure to check that*/
4102 struct md_rdev *rdev2 = rcu_dereference(
4103 conf->disks[i].rdev);
4104 if (rdev2 == rdev)
4105 clear_bit(R5_Insync, &dev->flags);
4106 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4107 s->handle_bad_blocks = 1;
4108 atomic_inc(&rdev2->nr_pending);
4109 } else
4110 clear_bit(R5_WriteError, &dev->flags);
4111 }
4112 if (test_bit(R5_MadeGood, &dev->flags)) {
4113 /* This flag does not apply to '.replacement'
4114 * only to .rdev, so make sure to check that*/
4115 struct md_rdev *rdev2 = rcu_dereference(
4116 conf->disks[i].rdev);
4117 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4118 s->handle_bad_blocks = 1;
4119 atomic_inc(&rdev2->nr_pending);
4120 } else
4121 clear_bit(R5_MadeGood, &dev->flags);
4122 }
4123 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4124 struct md_rdev *rdev2 = rcu_dereference(
4125 conf->disks[i].replacement);
4126 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4127 s->handle_bad_blocks = 1;
4128 atomic_inc(&rdev2->nr_pending);
4129 } else
4130 clear_bit(R5_MadeGoodRepl, &dev->flags);
4131 }
4132 if (!test_bit(R5_Insync, &dev->flags)) {
4133 /* The ReadError flag will just be confusing now */
4134 clear_bit(R5_ReadError, &dev->flags);
4135 clear_bit(R5_ReWrite, &dev->flags);
4136 }
4137 if (test_bit(R5_ReadError, &dev->flags))
4138 clear_bit(R5_Insync, &dev->flags);
4139 if (!test_bit(R5_Insync, &dev->flags)) {
4140 if (s->failed < 2)
4141 s->failed_num[s->failed] = i;
4142 s->failed++;
4143 if (rdev && !test_bit(Faulty, &rdev->flags))
4144 do_recovery = 1;
4145 }
4146 }
4147 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4148 /* If there is a failed device being replaced,
4149 * we must be recovering.
4150 * else if we are after recovery_cp, we must be syncing
4151 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4152 * else we can only be replacing
4153 * sync and recovery both need to read all devices, and so
4154 * use the same flag.
4155 */
4156 if (do_recovery ||
4157 sh->sector >= conf->mddev->recovery_cp ||
4158 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4159 s->syncing = 1;
4160 else
4161 s->replacing = 1;
4162 }
4163 rcu_read_unlock();
4164 }
4165
4166 static int clear_batch_ready(struct stripe_head *sh)
4167 {
4168 /* Return '1' if this is a member of batch, or
4169 * '0' if it is a lone stripe or a head which can now be
4170 * handled.
4171 */
4172 struct stripe_head *tmp;
4173 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4174 return (sh->batch_head && sh->batch_head != sh);
4175 spin_lock(&sh->stripe_lock);
4176 if (!sh->batch_head) {
4177 spin_unlock(&sh->stripe_lock);
4178 return 0;
4179 }
4180
4181 /*
4182 * this stripe could be added to a batch list before we check
4183 * BATCH_READY, skips it
4184 */
4185 if (sh->batch_head != sh) {
4186 spin_unlock(&sh->stripe_lock);
4187 return 1;
4188 }
4189 spin_lock(&sh->batch_lock);
4190 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4191 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4192 spin_unlock(&sh->batch_lock);
4193 spin_unlock(&sh->stripe_lock);
4194
4195 /*
4196 * BATCH_READY is cleared, no new stripes can be added.
4197 * batch_list can be accessed without lock
4198 */
4199 return 0;
4200 }
4201
4202 static void break_stripe_batch_list(struct stripe_head *head_sh,
4203 unsigned long handle_flags)
4204 {
4205 struct stripe_head *sh, *next;
4206 int i;
4207 int do_wakeup = 0;
4208
4209 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4210
4211 list_del_init(&sh->batch_list);
4212
4213 WARN_ON_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4214 (1 << STRIPE_SYNCING) |
4215 (1 << STRIPE_REPLACED) |
4216 (1 << STRIPE_PREREAD_ACTIVE) |
4217 (1 << STRIPE_DELAYED) |
4218 (1 << STRIPE_BIT_DELAY) |
4219 (1 << STRIPE_FULL_WRITE) |
4220 (1 << STRIPE_BIOFILL_RUN) |
4221 (1 << STRIPE_COMPUTE_RUN) |
4222 (1 << STRIPE_OPS_REQ_PENDING) |
4223 (1 << STRIPE_DISCARD) |
4224 (1 << STRIPE_BATCH_READY) |
4225 (1 << STRIPE_BATCH_ERR) |
4226 (1 << STRIPE_BITMAP_PENDING)));
4227 WARN_ON_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4228 (1 << STRIPE_REPLACED)));
4229
4230 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4231 (1 << STRIPE_DEGRADED)),
4232 head_sh->state & (1 << STRIPE_INSYNC));
4233
4234 sh->check_state = head_sh->check_state;
4235 sh->reconstruct_state = head_sh->reconstruct_state;
4236 for (i = 0; i < sh->disks; i++) {
4237 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4238 do_wakeup = 1;
4239 sh->dev[i].flags = head_sh->dev[i].flags &
4240 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4241 }
4242 spin_lock_irq(&sh->stripe_lock);
4243 sh->batch_head = NULL;
4244 spin_unlock_irq(&sh->stripe_lock);
4245 if (handle_flags == 0 ||
4246 sh->state & handle_flags)
4247 set_bit(STRIPE_HANDLE, &sh->state);
4248 release_stripe(sh);
4249 }
4250 spin_lock_irq(&head_sh->stripe_lock);
4251 head_sh->batch_head = NULL;
4252 spin_unlock_irq(&head_sh->stripe_lock);
4253 for (i = 0; i < head_sh->disks; i++)
4254 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4255 do_wakeup = 1;
4256 if (head_sh->state & handle_flags)
4257 set_bit(STRIPE_HANDLE, &head_sh->state);
4258
4259 if (do_wakeup)
4260 wake_up(&head_sh->raid_conf->wait_for_overlap);
4261 }
4262
4263 static void handle_stripe(struct stripe_head *sh)
4264 {
4265 struct stripe_head_state s;
4266 struct r5conf *conf = sh->raid_conf;
4267 int i;
4268 int prexor;
4269 int disks = sh->disks;
4270 struct r5dev *pdev, *qdev;
4271
4272 clear_bit(STRIPE_HANDLE, &sh->state);
4273 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4274 /* already being handled, ensure it gets handled
4275 * again when current action finishes */
4276 set_bit(STRIPE_HANDLE, &sh->state);
4277 return;
4278 }
4279
4280 if (clear_batch_ready(sh) ) {
4281 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4282 return;
4283 }
4284
4285 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4286 break_stripe_batch_list(sh, 0);
4287
4288 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4289 spin_lock(&sh->stripe_lock);
4290 /* Cannot process 'sync' concurrently with 'discard' */
4291 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4292 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4293 set_bit(STRIPE_SYNCING, &sh->state);
4294 clear_bit(STRIPE_INSYNC, &sh->state);
4295 clear_bit(STRIPE_REPLACED, &sh->state);
4296 }
4297 spin_unlock(&sh->stripe_lock);
4298 }
4299 clear_bit(STRIPE_DELAYED, &sh->state);
4300
4301 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4302 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4303 (unsigned long long)sh->sector, sh->state,
4304 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4305 sh->check_state, sh->reconstruct_state);
4306
4307 analyse_stripe(sh, &s);
4308
4309 if (s.handle_bad_blocks) {
4310 set_bit(STRIPE_HANDLE, &sh->state);
4311 goto finish;
4312 }
4313
4314 if (unlikely(s.blocked_rdev)) {
4315 if (s.syncing || s.expanding || s.expanded ||
4316 s.replacing || s.to_write || s.written) {
4317 set_bit(STRIPE_HANDLE, &sh->state);
4318 goto finish;
4319 }
4320 /* There is nothing for the blocked_rdev to block */
4321 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4322 s.blocked_rdev = NULL;
4323 }
4324
4325 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4326 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4327 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4328 }
4329
4330 pr_debug("locked=%d uptodate=%d to_read=%d"
4331 " to_write=%d failed=%d failed_num=%d,%d\n",
4332 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4333 s.failed_num[0], s.failed_num[1]);
4334 /* check if the array has lost more than max_degraded devices and,
4335 * if so, some requests might need to be failed.
4336 */
4337 if (s.failed > conf->max_degraded) {
4338 sh->check_state = 0;
4339 sh->reconstruct_state = 0;
4340 if (s.to_read+s.to_write+s.written)
4341 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4342 if (s.syncing + s.replacing)
4343 handle_failed_sync(conf, sh, &s);
4344 }
4345
4346 /* Now we check to see if any write operations have recently
4347 * completed
4348 */
4349 prexor = 0;
4350 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4351 prexor = 1;
4352 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4353 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4354 sh->reconstruct_state = reconstruct_state_idle;
4355
4356 /* All the 'written' buffers and the parity block are ready to
4357 * be written back to disk
4358 */
4359 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4360 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4361 BUG_ON(sh->qd_idx >= 0 &&
4362 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4363 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4364 for (i = disks; i--; ) {
4365 struct r5dev *dev = &sh->dev[i];
4366 if (test_bit(R5_LOCKED, &dev->flags) &&
4367 (i == sh->pd_idx || i == sh->qd_idx ||
4368 dev->written)) {
4369 pr_debug("Writing block %d\n", i);
4370 set_bit(R5_Wantwrite, &dev->flags);
4371 if (prexor)
4372 continue;
4373 if (s.failed > 1)
4374 continue;
4375 if (!test_bit(R5_Insync, &dev->flags) ||
4376 ((i == sh->pd_idx || i == sh->qd_idx) &&
4377 s.failed == 0))
4378 set_bit(STRIPE_INSYNC, &sh->state);
4379 }
4380 }
4381 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4382 s.dec_preread_active = 1;
4383 }
4384
4385 /*
4386 * might be able to return some write requests if the parity blocks
4387 * are safe, or on a failed drive
4388 */
4389 pdev = &sh->dev[sh->pd_idx];
4390 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4391 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4392 qdev = &sh->dev[sh->qd_idx];
4393 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4394 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4395 || conf->level < 6;
4396
4397 if (s.written &&
4398 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4399 && !test_bit(R5_LOCKED, &pdev->flags)
4400 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4401 test_bit(R5_Discard, &pdev->flags))))) &&
4402 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4403 && !test_bit(R5_LOCKED, &qdev->flags)
4404 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4405 test_bit(R5_Discard, &qdev->flags))))))
4406 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4407
4408 /* Now we might consider reading some blocks, either to check/generate
4409 * parity, or to satisfy requests
4410 * or to load a block that is being partially written.
4411 */
4412 if (s.to_read || s.non_overwrite
4413 || (conf->level == 6 && s.to_write && s.failed)
4414 || (s.syncing && (s.uptodate + s.compute < disks))
4415 || s.replacing
4416 || s.expanding)
4417 handle_stripe_fill(sh, &s, disks);
4418
4419 /* Now to consider new write requests and what else, if anything
4420 * should be read. We do not handle new writes when:
4421 * 1/ A 'write' operation (copy+xor) is already in flight.
4422 * 2/ A 'check' operation is in flight, as it may clobber the parity
4423 * block.
4424 */
4425 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4426 handle_stripe_dirtying(conf, sh, &s, disks);
4427
4428 /* maybe we need to check and possibly fix the parity for this stripe
4429 * Any reads will already have been scheduled, so we just see if enough
4430 * data is available. The parity check is held off while parity
4431 * dependent operations are in flight.
4432 */
4433 if (sh->check_state ||
4434 (s.syncing && s.locked == 0 &&
4435 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4436 !test_bit(STRIPE_INSYNC, &sh->state))) {
4437 if (conf->level == 6)
4438 handle_parity_checks6(conf, sh, &s, disks);
4439 else
4440 handle_parity_checks5(conf, sh, &s, disks);
4441 }
4442
4443 if ((s.replacing || s.syncing) && s.locked == 0
4444 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4445 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4446 /* Write out to replacement devices where possible */
4447 for (i = 0; i < conf->raid_disks; i++)
4448 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4449 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4450 set_bit(R5_WantReplace, &sh->dev[i].flags);
4451 set_bit(R5_LOCKED, &sh->dev[i].flags);
4452 s.locked++;
4453 }
4454 if (s.replacing)
4455 set_bit(STRIPE_INSYNC, &sh->state);
4456 set_bit(STRIPE_REPLACED, &sh->state);
4457 }
4458 if ((s.syncing || s.replacing) && s.locked == 0 &&
4459 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4460 test_bit(STRIPE_INSYNC, &sh->state)) {
4461 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4462 clear_bit(STRIPE_SYNCING, &sh->state);
4463 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4464 wake_up(&conf->wait_for_overlap);
4465 }
4466
4467 /* If the failed drives are just a ReadError, then we might need
4468 * to progress the repair/check process
4469 */
4470 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4471 for (i = 0; i < s.failed; i++) {
4472 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4473 if (test_bit(R5_ReadError, &dev->flags)
4474 && !test_bit(R5_LOCKED, &dev->flags)
4475 && test_bit(R5_UPTODATE, &dev->flags)
4476 ) {
4477 if (!test_bit(R5_ReWrite, &dev->flags)) {
4478 set_bit(R5_Wantwrite, &dev->flags);
4479 set_bit(R5_ReWrite, &dev->flags);
4480 set_bit(R5_LOCKED, &dev->flags);
4481 s.locked++;
4482 } else {
4483 /* let's read it back */
4484 set_bit(R5_Wantread, &dev->flags);
4485 set_bit(R5_LOCKED, &dev->flags);
4486 s.locked++;
4487 }
4488 }
4489 }
4490
4491 /* Finish reconstruct operations initiated by the expansion process */
4492 if (sh->reconstruct_state == reconstruct_state_result) {
4493 struct stripe_head *sh_src
4494 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4495 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4496 /* sh cannot be written until sh_src has been read.
4497 * so arrange for sh to be delayed a little
4498 */
4499 set_bit(STRIPE_DELAYED, &sh->state);
4500 set_bit(STRIPE_HANDLE, &sh->state);
4501 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4502 &sh_src->state))
4503 atomic_inc(&conf->preread_active_stripes);
4504 release_stripe(sh_src);
4505 goto finish;
4506 }
4507 if (sh_src)
4508 release_stripe(sh_src);
4509
4510 sh->reconstruct_state = reconstruct_state_idle;
4511 clear_bit(STRIPE_EXPANDING, &sh->state);
4512 for (i = conf->raid_disks; i--; ) {
4513 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4514 set_bit(R5_LOCKED, &sh->dev[i].flags);
4515 s.locked++;
4516 }
4517 }
4518
4519 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4520 !sh->reconstruct_state) {
4521 /* Need to write out all blocks after computing parity */
4522 sh->disks = conf->raid_disks;
4523 stripe_set_idx(sh->sector, conf, 0, sh);
4524 schedule_reconstruction(sh, &s, 1, 1);
4525 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4526 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4527 atomic_dec(&conf->reshape_stripes);
4528 wake_up(&conf->wait_for_overlap);
4529 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4530 }
4531
4532 if (s.expanding && s.locked == 0 &&
4533 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4534 handle_stripe_expansion(conf, sh);
4535
4536 finish:
4537 /* wait for this device to become unblocked */
4538 if (unlikely(s.blocked_rdev)) {
4539 if (conf->mddev->external)
4540 md_wait_for_blocked_rdev(s.blocked_rdev,
4541 conf->mddev);
4542 else
4543 /* Internal metadata will immediately
4544 * be written by raid5d, so we don't
4545 * need to wait here.
4546 */
4547 rdev_dec_pending(s.blocked_rdev,
4548 conf->mddev);
4549 }
4550
4551 if (s.handle_bad_blocks)
4552 for (i = disks; i--; ) {
4553 struct md_rdev *rdev;
4554 struct r5dev *dev = &sh->dev[i];
4555 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4556 /* We own a safe reference to the rdev */
4557 rdev = conf->disks[i].rdev;
4558 if (!rdev_set_badblocks(rdev, sh->sector,
4559 STRIPE_SECTORS, 0))
4560 md_error(conf->mddev, rdev);
4561 rdev_dec_pending(rdev, conf->mddev);
4562 }
4563 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4564 rdev = conf->disks[i].rdev;
4565 rdev_clear_badblocks(rdev, sh->sector,
4566 STRIPE_SECTORS, 0);
4567 rdev_dec_pending(rdev, conf->mddev);
4568 }
4569 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4570 rdev = conf->disks[i].replacement;
4571 if (!rdev)
4572 /* rdev have been moved down */
4573 rdev = conf->disks[i].rdev;
4574 rdev_clear_badblocks(rdev, sh->sector,
4575 STRIPE_SECTORS, 0);
4576 rdev_dec_pending(rdev, conf->mddev);
4577 }
4578 }
4579
4580 if (s.ops_request)
4581 raid_run_ops(sh, s.ops_request);
4582
4583 ops_run_io(sh, &s);
4584
4585 if (s.dec_preread_active) {
4586 /* We delay this until after ops_run_io so that if make_request
4587 * is waiting on a flush, it won't continue until the writes
4588 * have actually been submitted.
4589 */
4590 atomic_dec(&conf->preread_active_stripes);
4591 if (atomic_read(&conf->preread_active_stripes) <
4592 IO_THRESHOLD)
4593 md_wakeup_thread(conf->mddev->thread);
4594 }
4595
4596 return_io(s.return_bi);
4597
4598 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4599 }
4600
4601 static void raid5_activate_delayed(struct r5conf *conf)
4602 {
4603 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4604 while (!list_empty(&conf->delayed_list)) {
4605 struct list_head *l = conf->delayed_list.next;
4606 struct stripe_head *sh;
4607 sh = list_entry(l, struct stripe_head, lru);
4608 list_del_init(l);
4609 clear_bit(STRIPE_DELAYED, &sh->state);
4610 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4611 atomic_inc(&conf->preread_active_stripes);
4612 list_add_tail(&sh->lru, &conf->hold_list);
4613 raid5_wakeup_stripe_thread(sh);
4614 }
4615 }
4616 }
4617
4618 static void activate_bit_delay(struct r5conf *conf,
4619 struct list_head *temp_inactive_list)
4620 {
4621 /* device_lock is held */
4622 struct list_head head;
4623 list_add(&head, &conf->bitmap_list);
4624 list_del_init(&conf->bitmap_list);
4625 while (!list_empty(&head)) {
4626 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4627 int hash;
4628 list_del_init(&sh->lru);
4629 atomic_inc(&sh->count);
4630 hash = sh->hash_lock_index;
4631 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4632 }
4633 }
4634
4635 static int raid5_congested(struct mddev *mddev, int bits)
4636 {
4637 struct r5conf *conf = mddev->private;
4638
4639 /* No difference between reads and writes. Just check
4640 * how busy the stripe_cache is
4641 */
4642
4643 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4644 return 1;
4645 if (conf->quiesce)
4646 return 1;
4647 if (atomic_read(&conf->empty_inactive_list_nr))
4648 return 1;
4649
4650 return 0;
4651 }
4652
4653 /* We want read requests to align with chunks where possible,
4654 * but write requests don't need to.
4655 */
4656 static int raid5_mergeable_bvec(struct mddev *mddev,
4657 struct bvec_merge_data *bvm,
4658 struct bio_vec *biovec)
4659 {
4660 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4661 int max;
4662 unsigned int chunk_sectors = mddev->chunk_sectors;
4663 unsigned int bio_sectors = bvm->bi_size >> 9;
4664
4665 /*
4666 * always allow writes to be mergeable, read as well if array
4667 * is degraded as we'll go through stripe cache anyway.
4668 */
4669 if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4670 return biovec->bv_len;
4671
4672 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4673 chunk_sectors = mddev->new_chunk_sectors;
4674 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4675 if (max < 0) max = 0;
4676 if (max <= biovec->bv_len && bio_sectors == 0)
4677 return biovec->bv_len;
4678 else
4679 return max;
4680 }
4681
4682 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4683 {
4684 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4685 unsigned int chunk_sectors = mddev->chunk_sectors;
4686 unsigned int bio_sectors = bio_sectors(bio);
4687
4688 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4689 chunk_sectors = mddev->new_chunk_sectors;
4690 return chunk_sectors >=
4691 ((sector & (chunk_sectors - 1)) + bio_sectors);
4692 }
4693
4694 /*
4695 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4696 * later sampled by raid5d.
4697 */
4698 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4699 {
4700 unsigned long flags;
4701
4702 spin_lock_irqsave(&conf->device_lock, flags);
4703
4704 bi->bi_next = conf->retry_read_aligned_list;
4705 conf->retry_read_aligned_list = bi;
4706
4707 spin_unlock_irqrestore(&conf->device_lock, flags);
4708 md_wakeup_thread(conf->mddev->thread);
4709 }
4710
4711 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4712 {
4713 struct bio *bi;
4714
4715 bi = conf->retry_read_aligned;
4716 if (bi) {
4717 conf->retry_read_aligned = NULL;
4718 return bi;
4719 }
4720 bi = conf->retry_read_aligned_list;
4721 if(bi) {
4722 conf->retry_read_aligned_list = bi->bi_next;
4723 bi->bi_next = NULL;
4724 /*
4725 * this sets the active strip count to 1 and the processed
4726 * strip count to zero (upper 8 bits)
4727 */
4728 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4729 }
4730
4731 return bi;
4732 }
4733
4734 /*
4735 * The "raid5_align_endio" should check if the read succeeded and if it
4736 * did, call bio_endio on the original bio (having bio_put the new bio
4737 * first).
4738 * If the read failed..
4739 */
4740 static void raid5_align_endio(struct bio *bi, int error)
4741 {
4742 struct bio* raid_bi = bi->bi_private;
4743 struct mddev *mddev;
4744 struct r5conf *conf;
4745 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4746 struct md_rdev *rdev;
4747
4748 bio_put(bi);
4749
4750 rdev = (void*)raid_bi->bi_next;
4751 raid_bi->bi_next = NULL;
4752 mddev = rdev->mddev;
4753 conf = mddev->private;
4754
4755 rdev_dec_pending(rdev, conf->mddev);
4756
4757 if (!error && uptodate) {
4758 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4759 raid_bi, 0);
4760 bio_endio(raid_bi, 0);
4761 if (atomic_dec_and_test(&conf->active_aligned_reads))
4762 wake_up(&conf->wait_for_stripe);
4763 return;
4764 }
4765
4766 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4767
4768 add_bio_to_retry(raid_bi, conf);
4769 }
4770
4771 static int bio_fits_rdev(struct bio *bi)
4772 {
4773 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4774
4775 if (bio_sectors(bi) > queue_max_sectors(q))
4776 return 0;
4777 blk_recount_segments(q, bi);
4778 if (bi->bi_phys_segments > queue_max_segments(q))
4779 return 0;
4780
4781 if (q->merge_bvec_fn)
4782 /* it's too hard to apply the merge_bvec_fn at this stage,
4783 * just just give up
4784 */
4785 return 0;
4786
4787 return 1;
4788 }
4789
4790 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4791 {
4792 struct r5conf *conf = mddev->private;
4793 int dd_idx;
4794 struct bio* align_bi;
4795 struct md_rdev *rdev;
4796 sector_t end_sector;
4797
4798 if (!in_chunk_boundary(mddev, raid_bio)) {
4799 pr_debug("chunk_aligned_read : non aligned\n");
4800 return 0;
4801 }
4802 /*
4803 * use bio_clone_mddev to make a copy of the bio
4804 */
4805 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4806 if (!align_bi)
4807 return 0;
4808 /*
4809 * set bi_end_io to a new function, and set bi_private to the
4810 * original bio.
4811 */
4812 align_bi->bi_end_io = raid5_align_endio;
4813 align_bi->bi_private = raid_bio;
4814 /*
4815 * compute position
4816 */
4817 align_bi->bi_iter.bi_sector =
4818 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4819 0, &dd_idx, NULL);
4820
4821 end_sector = bio_end_sector(align_bi);
4822 rcu_read_lock();
4823 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4824 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4825 rdev->recovery_offset < end_sector) {
4826 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4827 if (rdev &&
4828 (test_bit(Faulty, &rdev->flags) ||
4829 !(test_bit(In_sync, &rdev->flags) ||
4830 rdev->recovery_offset >= end_sector)))
4831 rdev = NULL;
4832 }
4833 if (rdev) {
4834 sector_t first_bad;
4835 int bad_sectors;
4836
4837 atomic_inc(&rdev->nr_pending);
4838 rcu_read_unlock();
4839 raid_bio->bi_next = (void*)rdev;
4840 align_bi->bi_bdev = rdev->bdev;
4841 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4842
4843 if (!bio_fits_rdev(align_bi) ||
4844 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4845 bio_sectors(align_bi),
4846 &first_bad, &bad_sectors)) {
4847 /* too big in some way, or has a known bad block */
4848 bio_put(align_bi);
4849 rdev_dec_pending(rdev, mddev);
4850 return 0;
4851 }
4852
4853 /* No reshape active, so we can trust rdev->data_offset */
4854 align_bi->bi_iter.bi_sector += rdev->data_offset;
4855
4856 spin_lock_irq(&conf->device_lock);
4857 wait_event_lock_irq(conf->wait_for_stripe,
4858 conf->quiesce == 0,
4859 conf->device_lock);
4860 atomic_inc(&conf->active_aligned_reads);
4861 spin_unlock_irq(&conf->device_lock);
4862
4863 if (mddev->gendisk)
4864 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4865 align_bi, disk_devt(mddev->gendisk),
4866 raid_bio->bi_iter.bi_sector);
4867 generic_make_request(align_bi);
4868 return 1;
4869 } else {
4870 rcu_read_unlock();
4871 bio_put(align_bi);
4872 return 0;
4873 }
4874 }
4875
4876 /* __get_priority_stripe - get the next stripe to process
4877 *
4878 * Full stripe writes are allowed to pass preread active stripes up until
4879 * the bypass_threshold is exceeded. In general the bypass_count
4880 * increments when the handle_list is handled before the hold_list; however, it
4881 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4882 * stripe with in flight i/o. The bypass_count will be reset when the
4883 * head of the hold_list has changed, i.e. the head was promoted to the
4884 * handle_list.
4885 */
4886 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4887 {
4888 struct stripe_head *sh = NULL, *tmp;
4889 struct list_head *handle_list = NULL;
4890 struct r5worker_group *wg = NULL;
4891
4892 if (conf->worker_cnt_per_group == 0) {
4893 handle_list = &conf->handle_list;
4894 } else if (group != ANY_GROUP) {
4895 handle_list = &conf->worker_groups[group].handle_list;
4896 wg = &conf->worker_groups[group];
4897 } else {
4898 int i;
4899 for (i = 0; i < conf->group_cnt; i++) {
4900 handle_list = &conf->worker_groups[i].handle_list;
4901 wg = &conf->worker_groups[i];
4902 if (!list_empty(handle_list))
4903 break;
4904 }
4905 }
4906
4907 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4908 __func__,
4909 list_empty(handle_list) ? "empty" : "busy",
4910 list_empty(&conf->hold_list) ? "empty" : "busy",
4911 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4912
4913 if (!list_empty(handle_list)) {
4914 sh = list_entry(handle_list->next, typeof(*sh), lru);
4915
4916 if (list_empty(&conf->hold_list))
4917 conf->bypass_count = 0;
4918 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4919 if (conf->hold_list.next == conf->last_hold)
4920 conf->bypass_count++;
4921 else {
4922 conf->last_hold = conf->hold_list.next;
4923 conf->bypass_count -= conf->bypass_threshold;
4924 if (conf->bypass_count < 0)
4925 conf->bypass_count = 0;
4926 }
4927 }
4928 } else if (!list_empty(&conf->hold_list) &&
4929 ((conf->bypass_threshold &&
4930 conf->bypass_count > conf->bypass_threshold) ||
4931 atomic_read(&conf->pending_full_writes) == 0)) {
4932
4933 list_for_each_entry(tmp, &conf->hold_list, lru) {
4934 if (conf->worker_cnt_per_group == 0 ||
4935 group == ANY_GROUP ||
4936 !cpu_online(tmp->cpu) ||
4937 cpu_to_group(tmp->cpu) == group) {
4938 sh = tmp;
4939 break;
4940 }
4941 }
4942
4943 if (sh) {
4944 conf->bypass_count -= conf->bypass_threshold;
4945 if (conf->bypass_count < 0)
4946 conf->bypass_count = 0;
4947 }
4948 wg = NULL;
4949 }
4950
4951 if (!sh)
4952 return NULL;
4953
4954 if (wg) {
4955 wg->stripes_cnt--;
4956 sh->group = NULL;
4957 }
4958 list_del_init(&sh->lru);
4959 BUG_ON(atomic_inc_return(&sh->count) != 1);
4960 return sh;
4961 }
4962
4963 struct raid5_plug_cb {
4964 struct blk_plug_cb cb;
4965 struct list_head list;
4966 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4967 };
4968
4969 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4970 {
4971 struct raid5_plug_cb *cb = container_of(
4972 blk_cb, struct raid5_plug_cb, cb);
4973 struct stripe_head *sh;
4974 struct mddev *mddev = cb->cb.data;
4975 struct r5conf *conf = mddev->private;
4976 int cnt = 0;
4977 int hash;
4978
4979 if (cb->list.next && !list_empty(&cb->list)) {
4980 spin_lock_irq(&conf->device_lock);
4981 while (!list_empty(&cb->list)) {
4982 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4983 list_del_init(&sh->lru);
4984 /*
4985 * avoid race release_stripe_plug() sees
4986 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4987 * is still in our list
4988 */
4989 smp_mb__before_atomic();
4990 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4991 /*
4992 * STRIPE_ON_RELEASE_LIST could be set here. In that
4993 * case, the count is always > 1 here
4994 */
4995 hash = sh->hash_lock_index;
4996 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4997 cnt++;
4998 }
4999 spin_unlock_irq(&conf->device_lock);
5000 }
5001 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5002 NR_STRIPE_HASH_LOCKS);
5003 if (mddev->queue)
5004 trace_block_unplug(mddev->queue, cnt, !from_schedule);
5005 kfree(cb);
5006 }
5007
5008 static void release_stripe_plug(struct mddev *mddev,
5009 struct stripe_head *sh)
5010 {
5011 struct blk_plug_cb *blk_cb = blk_check_plugged(
5012 raid5_unplug, mddev,
5013 sizeof(struct raid5_plug_cb));
5014 struct raid5_plug_cb *cb;
5015
5016 if (!blk_cb) {
5017 release_stripe(sh);
5018 return;
5019 }
5020
5021 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5022
5023 if (cb->list.next == NULL) {
5024 int i;
5025 INIT_LIST_HEAD(&cb->list);
5026 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5027 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5028 }
5029
5030 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5031 list_add_tail(&sh->lru, &cb->list);
5032 else
5033 release_stripe(sh);
5034 }
5035
5036 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5037 {
5038 struct r5conf *conf = mddev->private;
5039 sector_t logical_sector, last_sector;
5040 struct stripe_head *sh;
5041 int remaining;
5042 int stripe_sectors;
5043
5044 if (mddev->reshape_position != MaxSector)
5045 /* Skip discard while reshape is happening */
5046 return;
5047
5048 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5049 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5050
5051 bi->bi_next = NULL;
5052 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5053
5054 stripe_sectors = conf->chunk_sectors *
5055 (conf->raid_disks - conf->max_degraded);
5056 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5057 stripe_sectors);
5058 sector_div(last_sector, stripe_sectors);
5059
5060 logical_sector *= conf->chunk_sectors;
5061 last_sector *= conf->chunk_sectors;
5062
5063 for (; logical_sector < last_sector;
5064 logical_sector += STRIPE_SECTORS) {
5065 DEFINE_WAIT(w);
5066 int d;
5067 again:
5068 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5069 prepare_to_wait(&conf->wait_for_overlap, &w,
5070 TASK_UNINTERRUPTIBLE);
5071 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5072 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5073 release_stripe(sh);
5074 schedule();
5075 goto again;
5076 }
5077 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5078 spin_lock_irq(&sh->stripe_lock);
5079 for (d = 0; d < conf->raid_disks; d++) {
5080 if (d == sh->pd_idx || d == sh->qd_idx)
5081 continue;
5082 if (sh->dev[d].towrite || sh->dev[d].toread) {
5083 set_bit(R5_Overlap, &sh->dev[d].flags);
5084 spin_unlock_irq(&sh->stripe_lock);
5085 release_stripe(sh);
5086 schedule();
5087 goto again;
5088 }
5089 }
5090 set_bit(STRIPE_DISCARD, &sh->state);
5091 finish_wait(&conf->wait_for_overlap, &w);
5092 sh->overwrite_disks = 0;
5093 for (d = 0; d < conf->raid_disks; d++) {
5094 if (d == sh->pd_idx || d == sh->qd_idx)
5095 continue;
5096 sh->dev[d].towrite = bi;
5097 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5098 raid5_inc_bi_active_stripes(bi);
5099 sh->overwrite_disks++;
5100 }
5101 spin_unlock_irq(&sh->stripe_lock);
5102 if (conf->mddev->bitmap) {
5103 for (d = 0;
5104 d < conf->raid_disks - conf->max_degraded;
5105 d++)
5106 bitmap_startwrite(mddev->bitmap,
5107 sh->sector,
5108 STRIPE_SECTORS,
5109 0);
5110 sh->bm_seq = conf->seq_flush + 1;
5111 set_bit(STRIPE_BIT_DELAY, &sh->state);
5112 }
5113
5114 set_bit(STRIPE_HANDLE, &sh->state);
5115 clear_bit(STRIPE_DELAYED, &sh->state);
5116 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5117 atomic_inc(&conf->preread_active_stripes);
5118 release_stripe_plug(mddev, sh);
5119 }
5120
5121 remaining = raid5_dec_bi_active_stripes(bi);
5122 if (remaining == 0) {
5123 md_write_end(mddev);
5124 bio_endio(bi, 0);
5125 }
5126 }
5127
5128 static void make_request(struct mddev *mddev, struct bio * bi)
5129 {
5130 struct r5conf *conf = mddev->private;
5131 int dd_idx;
5132 sector_t new_sector;
5133 sector_t logical_sector, last_sector;
5134 struct stripe_head *sh;
5135 const int rw = bio_data_dir(bi);
5136 int remaining;
5137 DEFINE_WAIT(w);
5138 bool do_prepare;
5139
5140 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5141 md_flush_request(mddev, bi);
5142 return;
5143 }
5144
5145 md_write_start(mddev, bi);
5146
5147 /*
5148 * If array is degraded, better not do chunk aligned read because
5149 * later we might have to read it again in order to reconstruct
5150 * data on failed drives.
5151 */
5152 if (rw == READ && mddev->degraded == 0 &&
5153 mddev->reshape_position == MaxSector &&
5154 chunk_aligned_read(mddev,bi))
5155 return;
5156
5157 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5158 make_discard_request(mddev, bi);
5159 return;
5160 }
5161
5162 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5163 last_sector = bio_end_sector(bi);
5164 bi->bi_next = NULL;
5165 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5166
5167 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5168 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5169 int previous;
5170 int seq;
5171
5172 do_prepare = false;
5173 retry:
5174 seq = read_seqcount_begin(&conf->gen_lock);
5175 previous = 0;
5176 if (do_prepare)
5177 prepare_to_wait(&conf->wait_for_overlap, &w,
5178 TASK_UNINTERRUPTIBLE);
5179 if (unlikely(conf->reshape_progress != MaxSector)) {
5180 /* spinlock is needed as reshape_progress may be
5181 * 64bit on a 32bit platform, and so it might be
5182 * possible to see a half-updated value
5183 * Of course reshape_progress could change after
5184 * the lock is dropped, so once we get a reference
5185 * to the stripe that we think it is, we will have
5186 * to check again.
5187 */
5188 spin_lock_irq(&conf->device_lock);
5189 if (mddev->reshape_backwards
5190 ? logical_sector < conf->reshape_progress
5191 : logical_sector >= conf->reshape_progress) {
5192 previous = 1;
5193 } else {
5194 if (mddev->reshape_backwards
5195 ? logical_sector < conf->reshape_safe
5196 : logical_sector >= conf->reshape_safe) {
5197 spin_unlock_irq(&conf->device_lock);
5198 schedule();
5199 do_prepare = true;
5200 goto retry;
5201 }
5202 }
5203 spin_unlock_irq(&conf->device_lock);
5204 }
5205
5206 new_sector = raid5_compute_sector(conf, logical_sector,
5207 previous,
5208 &dd_idx, NULL);
5209 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5210 (unsigned long long)new_sector,
5211 (unsigned long long)logical_sector);
5212
5213 sh = get_active_stripe(conf, new_sector, previous,
5214 (bi->bi_rw&RWA_MASK), 0);
5215 if (sh) {
5216 if (unlikely(previous)) {
5217 /* expansion might have moved on while waiting for a
5218 * stripe, so we must do the range check again.
5219 * Expansion could still move past after this
5220 * test, but as we are holding a reference to
5221 * 'sh', we know that if that happens,
5222 * STRIPE_EXPANDING will get set and the expansion
5223 * won't proceed until we finish with the stripe.
5224 */
5225 int must_retry = 0;
5226 spin_lock_irq(&conf->device_lock);
5227 if (mddev->reshape_backwards
5228 ? logical_sector >= conf->reshape_progress
5229 : logical_sector < conf->reshape_progress)
5230 /* mismatch, need to try again */
5231 must_retry = 1;
5232 spin_unlock_irq(&conf->device_lock);
5233 if (must_retry) {
5234 release_stripe(sh);
5235 schedule();
5236 do_prepare = true;
5237 goto retry;
5238 }
5239 }
5240 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5241 /* Might have got the wrong stripe_head
5242 * by accident
5243 */
5244 release_stripe(sh);
5245 goto retry;
5246 }
5247
5248 if (rw == WRITE &&
5249 logical_sector >= mddev->suspend_lo &&
5250 logical_sector < mddev->suspend_hi) {
5251 release_stripe(sh);
5252 /* As the suspend_* range is controlled by
5253 * userspace, we want an interruptible
5254 * wait.
5255 */
5256 flush_signals(current);
5257 prepare_to_wait(&conf->wait_for_overlap,
5258 &w, TASK_INTERRUPTIBLE);
5259 if (logical_sector >= mddev->suspend_lo &&
5260 logical_sector < mddev->suspend_hi) {
5261 schedule();
5262 do_prepare = true;
5263 }
5264 goto retry;
5265 }
5266
5267 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5268 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5269 /* Stripe is busy expanding or
5270 * add failed due to overlap. Flush everything
5271 * and wait a while
5272 */
5273 md_wakeup_thread(mddev->thread);
5274 release_stripe(sh);
5275 schedule();
5276 do_prepare = true;
5277 goto retry;
5278 }
5279 set_bit(STRIPE_HANDLE, &sh->state);
5280 clear_bit(STRIPE_DELAYED, &sh->state);
5281 if ((!sh->batch_head || sh == sh->batch_head) &&
5282 (bi->bi_rw & REQ_SYNC) &&
5283 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5284 atomic_inc(&conf->preread_active_stripes);
5285 release_stripe_plug(mddev, sh);
5286 } else {
5287 /* cannot get stripe for read-ahead, just give-up */
5288 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5289 break;
5290 }
5291 }
5292 finish_wait(&conf->wait_for_overlap, &w);
5293
5294 remaining = raid5_dec_bi_active_stripes(bi);
5295 if (remaining == 0) {
5296
5297 if ( rw == WRITE )
5298 md_write_end(mddev);
5299
5300 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5301 bi, 0);
5302 bio_endio(bi, 0);
5303 }
5304 }
5305
5306 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5307
5308 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5309 {
5310 /* reshaping is quite different to recovery/resync so it is
5311 * handled quite separately ... here.
5312 *
5313 * On each call to sync_request, we gather one chunk worth of
5314 * destination stripes and flag them as expanding.
5315 * Then we find all the source stripes and request reads.
5316 * As the reads complete, handle_stripe will copy the data
5317 * into the destination stripe and release that stripe.
5318 */
5319 struct r5conf *conf = mddev->private;
5320 struct stripe_head *sh;
5321 sector_t first_sector, last_sector;
5322 int raid_disks = conf->previous_raid_disks;
5323 int data_disks = raid_disks - conf->max_degraded;
5324 int new_data_disks = conf->raid_disks - conf->max_degraded;
5325 int i;
5326 int dd_idx;
5327 sector_t writepos, readpos, safepos;
5328 sector_t stripe_addr;
5329 int reshape_sectors;
5330 struct list_head stripes;
5331
5332 if (sector_nr == 0) {
5333 /* If restarting in the middle, skip the initial sectors */
5334 if (mddev->reshape_backwards &&
5335 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5336 sector_nr = raid5_size(mddev, 0, 0)
5337 - conf->reshape_progress;
5338 } else if (!mddev->reshape_backwards &&
5339 conf->reshape_progress > 0)
5340 sector_nr = conf->reshape_progress;
5341 sector_div(sector_nr, new_data_disks);
5342 if (sector_nr) {
5343 mddev->curr_resync_completed = sector_nr;
5344 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5345 *skipped = 1;
5346 return sector_nr;
5347 }
5348 }
5349
5350 /* We need to process a full chunk at a time.
5351 * If old and new chunk sizes differ, we need to process the
5352 * largest of these
5353 */
5354 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5355 reshape_sectors = mddev->new_chunk_sectors;
5356 else
5357 reshape_sectors = mddev->chunk_sectors;
5358
5359 /* We update the metadata at least every 10 seconds, or when
5360 * the data about to be copied would over-write the source of
5361 * the data at the front of the range. i.e. one new_stripe
5362 * along from reshape_progress new_maps to after where
5363 * reshape_safe old_maps to
5364 */
5365 writepos = conf->reshape_progress;
5366 sector_div(writepos, new_data_disks);
5367 readpos = conf->reshape_progress;
5368 sector_div(readpos, data_disks);
5369 safepos = conf->reshape_safe;
5370 sector_div(safepos, data_disks);
5371 if (mddev->reshape_backwards) {
5372 writepos -= min_t(sector_t, reshape_sectors, writepos);
5373 readpos += reshape_sectors;
5374 safepos += reshape_sectors;
5375 } else {
5376 writepos += reshape_sectors;
5377 readpos -= min_t(sector_t, reshape_sectors, readpos);
5378 safepos -= min_t(sector_t, reshape_sectors, safepos);
5379 }
5380
5381 /* Having calculated the 'writepos' possibly use it
5382 * to set 'stripe_addr' which is where we will write to.
5383 */
5384 if (mddev->reshape_backwards) {
5385 BUG_ON(conf->reshape_progress == 0);
5386 stripe_addr = writepos;
5387 BUG_ON((mddev->dev_sectors &
5388 ~((sector_t)reshape_sectors - 1))
5389 - reshape_sectors - stripe_addr
5390 != sector_nr);
5391 } else {
5392 BUG_ON(writepos != sector_nr + reshape_sectors);
5393 stripe_addr = sector_nr;
5394 }
5395
5396 /* 'writepos' is the most advanced device address we might write.
5397 * 'readpos' is the least advanced device address we might read.
5398 * 'safepos' is the least address recorded in the metadata as having
5399 * been reshaped.
5400 * If there is a min_offset_diff, these are adjusted either by
5401 * increasing the safepos/readpos if diff is negative, or
5402 * increasing writepos if diff is positive.
5403 * If 'readpos' is then behind 'writepos', there is no way that we can
5404 * ensure safety in the face of a crash - that must be done by userspace
5405 * making a backup of the data. So in that case there is no particular
5406 * rush to update metadata.
5407 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5408 * update the metadata to advance 'safepos' to match 'readpos' so that
5409 * we can be safe in the event of a crash.
5410 * So we insist on updating metadata if safepos is behind writepos and
5411 * readpos is beyond writepos.
5412 * In any case, update the metadata every 10 seconds.
5413 * Maybe that number should be configurable, but I'm not sure it is
5414 * worth it.... maybe it could be a multiple of safemode_delay???
5415 */
5416 if (conf->min_offset_diff < 0) {
5417 safepos += -conf->min_offset_diff;
5418 readpos += -conf->min_offset_diff;
5419 } else
5420 writepos += conf->min_offset_diff;
5421
5422 if ((mddev->reshape_backwards
5423 ? (safepos > writepos && readpos < writepos)
5424 : (safepos < writepos && readpos > writepos)) ||
5425 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5426 /* Cannot proceed until we've updated the superblock... */
5427 wait_event(conf->wait_for_overlap,
5428 atomic_read(&conf->reshape_stripes)==0
5429 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5430 if (atomic_read(&conf->reshape_stripes) != 0)
5431 return 0;
5432 mddev->reshape_position = conf->reshape_progress;
5433 mddev->curr_resync_completed = sector_nr;
5434 conf->reshape_checkpoint = jiffies;
5435 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5436 md_wakeup_thread(mddev->thread);
5437 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5438 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5439 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5440 return 0;
5441 spin_lock_irq(&conf->device_lock);
5442 conf->reshape_safe = mddev->reshape_position;
5443 spin_unlock_irq(&conf->device_lock);
5444 wake_up(&conf->wait_for_overlap);
5445 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5446 }
5447
5448 INIT_LIST_HEAD(&stripes);
5449 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5450 int j;
5451 int skipped_disk = 0;
5452 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5453 set_bit(STRIPE_EXPANDING, &sh->state);
5454 atomic_inc(&conf->reshape_stripes);
5455 /* If any of this stripe is beyond the end of the old
5456 * array, then we need to zero those blocks
5457 */
5458 for (j=sh->disks; j--;) {
5459 sector_t s;
5460 if (j == sh->pd_idx)
5461 continue;
5462 if (conf->level == 6 &&
5463 j == sh->qd_idx)
5464 continue;
5465 s = compute_blocknr(sh, j, 0);
5466 if (s < raid5_size(mddev, 0, 0)) {
5467 skipped_disk = 1;
5468 continue;
5469 }
5470 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5471 set_bit(R5_Expanded, &sh->dev[j].flags);
5472 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5473 }
5474 if (!skipped_disk) {
5475 set_bit(STRIPE_EXPAND_READY, &sh->state);
5476 set_bit(STRIPE_HANDLE, &sh->state);
5477 }
5478 list_add(&sh->lru, &stripes);
5479 }
5480 spin_lock_irq(&conf->device_lock);
5481 if (mddev->reshape_backwards)
5482 conf->reshape_progress -= reshape_sectors * new_data_disks;
5483 else
5484 conf->reshape_progress += reshape_sectors * new_data_disks;
5485 spin_unlock_irq(&conf->device_lock);
5486 /* Ok, those stripe are ready. We can start scheduling
5487 * reads on the source stripes.
5488 * The source stripes are determined by mapping the first and last
5489 * block on the destination stripes.
5490 */
5491 first_sector =
5492 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5493 1, &dd_idx, NULL);
5494 last_sector =
5495 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5496 * new_data_disks - 1),
5497 1, &dd_idx, NULL);
5498 if (last_sector >= mddev->dev_sectors)
5499 last_sector = mddev->dev_sectors - 1;
5500 while (first_sector <= last_sector) {
5501 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5502 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5503 set_bit(STRIPE_HANDLE, &sh->state);
5504 release_stripe(sh);
5505 first_sector += STRIPE_SECTORS;
5506 }
5507 /* Now that the sources are clearly marked, we can release
5508 * the destination stripes
5509 */
5510 while (!list_empty(&stripes)) {
5511 sh = list_entry(stripes.next, struct stripe_head, lru);
5512 list_del_init(&sh->lru);
5513 release_stripe(sh);
5514 }
5515 /* If this takes us to the resync_max point where we have to pause,
5516 * then we need to write out the superblock.
5517 */
5518 sector_nr += reshape_sectors;
5519 if ((sector_nr - mddev->curr_resync_completed) * 2
5520 >= mddev->resync_max - mddev->curr_resync_completed) {
5521 /* Cannot proceed until we've updated the superblock... */
5522 wait_event(conf->wait_for_overlap,
5523 atomic_read(&conf->reshape_stripes) == 0
5524 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5525 if (atomic_read(&conf->reshape_stripes) != 0)
5526 goto ret;
5527 mddev->reshape_position = conf->reshape_progress;
5528 mddev->curr_resync_completed = sector_nr;
5529 conf->reshape_checkpoint = jiffies;
5530 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5531 md_wakeup_thread(mddev->thread);
5532 wait_event(mddev->sb_wait,
5533 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5534 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5535 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5536 goto ret;
5537 spin_lock_irq(&conf->device_lock);
5538 conf->reshape_safe = mddev->reshape_position;
5539 spin_unlock_irq(&conf->device_lock);
5540 wake_up(&conf->wait_for_overlap);
5541 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5542 }
5543 ret:
5544 return reshape_sectors;
5545 }
5546
5547 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5548 {
5549 struct r5conf *conf = mddev->private;
5550 struct stripe_head *sh;
5551 sector_t max_sector = mddev->dev_sectors;
5552 sector_t sync_blocks;
5553 int still_degraded = 0;
5554 int i;
5555
5556 if (sector_nr >= max_sector) {
5557 /* just being told to finish up .. nothing much to do */
5558
5559 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5560 end_reshape(conf);
5561 return 0;
5562 }
5563
5564 if (mddev->curr_resync < max_sector) /* aborted */
5565 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5566 &sync_blocks, 1);
5567 else /* completed sync */
5568 conf->fullsync = 0;
5569 bitmap_close_sync(mddev->bitmap);
5570
5571 return 0;
5572 }
5573
5574 /* Allow raid5_quiesce to complete */
5575 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5576
5577 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5578 return reshape_request(mddev, sector_nr, skipped);
5579
5580 /* No need to check resync_max as we never do more than one
5581 * stripe, and as resync_max will always be on a chunk boundary,
5582 * if the check in md_do_sync didn't fire, there is no chance
5583 * of overstepping resync_max here
5584 */
5585
5586 /* if there is too many failed drives and we are trying
5587 * to resync, then assert that we are finished, because there is
5588 * nothing we can do.
5589 */
5590 if (mddev->degraded >= conf->max_degraded &&
5591 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5592 sector_t rv = mddev->dev_sectors - sector_nr;
5593 *skipped = 1;
5594 return rv;
5595 }
5596 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5597 !conf->fullsync &&
5598 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5599 sync_blocks >= STRIPE_SECTORS) {
5600 /* we can skip this block, and probably more */
5601 sync_blocks /= STRIPE_SECTORS;
5602 *skipped = 1;
5603 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5604 }
5605
5606 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5607
5608 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5609 if (sh == NULL) {
5610 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5611 /* make sure we don't swamp the stripe cache if someone else
5612 * is trying to get access
5613 */
5614 schedule_timeout_uninterruptible(1);
5615 }
5616 /* Need to check if array will still be degraded after recovery/resync
5617 * Note in case of > 1 drive failures it's possible we're rebuilding
5618 * one drive while leaving another faulty drive in array.
5619 */
5620 rcu_read_lock();
5621 for (i = 0; i < conf->raid_disks; i++) {
5622 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5623
5624 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5625 still_degraded = 1;
5626 }
5627 rcu_read_unlock();
5628
5629 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5630
5631 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5632 set_bit(STRIPE_HANDLE, &sh->state);
5633
5634 release_stripe(sh);
5635
5636 return STRIPE_SECTORS;
5637 }
5638
5639 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5640 {
5641 /* We may not be able to submit a whole bio at once as there
5642 * may not be enough stripe_heads available.
5643 * We cannot pre-allocate enough stripe_heads as we may need
5644 * more than exist in the cache (if we allow ever large chunks).
5645 * So we do one stripe head at a time and record in
5646 * ->bi_hw_segments how many have been done.
5647 *
5648 * We *know* that this entire raid_bio is in one chunk, so
5649 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5650 */
5651 struct stripe_head *sh;
5652 int dd_idx;
5653 sector_t sector, logical_sector, last_sector;
5654 int scnt = 0;
5655 int remaining;
5656 int handled = 0;
5657
5658 logical_sector = raid_bio->bi_iter.bi_sector &
5659 ~((sector_t)STRIPE_SECTORS-1);
5660 sector = raid5_compute_sector(conf, logical_sector,
5661 0, &dd_idx, NULL);
5662 last_sector = bio_end_sector(raid_bio);
5663
5664 for (; logical_sector < last_sector;
5665 logical_sector += STRIPE_SECTORS,
5666 sector += STRIPE_SECTORS,
5667 scnt++) {
5668
5669 if (scnt < raid5_bi_processed_stripes(raid_bio))
5670 /* already done this stripe */
5671 continue;
5672
5673 sh = get_active_stripe(conf, sector, 0, 1, 1);
5674
5675 if (!sh) {
5676 /* failed to get a stripe - must wait */
5677 raid5_set_bi_processed_stripes(raid_bio, scnt);
5678 conf->retry_read_aligned = raid_bio;
5679 return handled;
5680 }
5681
5682 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5683 release_stripe(sh);
5684 raid5_set_bi_processed_stripes(raid_bio, scnt);
5685 conf->retry_read_aligned = raid_bio;
5686 return handled;
5687 }
5688
5689 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5690 handle_stripe(sh);
5691 release_stripe(sh);
5692 handled++;
5693 }
5694 remaining = raid5_dec_bi_active_stripes(raid_bio);
5695 if (remaining == 0) {
5696 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5697 raid_bio, 0);
5698 bio_endio(raid_bio, 0);
5699 }
5700 if (atomic_dec_and_test(&conf->active_aligned_reads))
5701 wake_up(&conf->wait_for_stripe);
5702 return handled;
5703 }
5704
5705 static int handle_active_stripes(struct r5conf *conf, int group,
5706 struct r5worker *worker,
5707 struct list_head *temp_inactive_list)
5708 {
5709 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5710 int i, batch_size = 0, hash;
5711 bool release_inactive = false;
5712
5713 while (batch_size < MAX_STRIPE_BATCH &&
5714 (sh = __get_priority_stripe(conf, group)) != NULL)
5715 batch[batch_size++] = sh;
5716
5717 if (batch_size == 0) {
5718 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5719 if (!list_empty(temp_inactive_list + i))
5720 break;
5721 if (i == NR_STRIPE_HASH_LOCKS)
5722 return batch_size;
5723 release_inactive = true;
5724 }
5725 spin_unlock_irq(&conf->device_lock);
5726
5727 release_inactive_stripe_list(conf, temp_inactive_list,
5728 NR_STRIPE_HASH_LOCKS);
5729
5730 if (release_inactive) {
5731 spin_lock_irq(&conf->device_lock);
5732 return 0;
5733 }
5734
5735 for (i = 0; i < batch_size; i++)
5736 handle_stripe(batch[i]);
5737
5738 cond_resched();
5739
5740 spin_lock_irq(&conf->device_lock);
5741 for (i = 0; i < batch_size; i++) {
5742 hash = batch[i]->hash_lock_index;
5743 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5744 }
5745 return batch_size;
5746 }
5747
5748 static void raid5_do_work(struct work_struct *work)
5749 {
5750 struct r5worker *worker = container_of(work, struct r5worker, work);
5751 struct r5worker_group *group = worker->group;
5752 struct r5conf *conf = group->conf;
5753 int group_id = group - conf->worker_groups;
5754 int handled;
5755 struct blk_plug plug;
5756
5757 pr_debug("+++ raid5worker active\n");
5758
5759 blk_start_plug(&plug);
5760 handled = 0;
5761 spin_lock_irq(&conf->device_lock);
5762 while (1) {
5763 int batch_size, released;
5764
5765 released = release_stripe_list(conf, worker->temp_inactive_list);
5766
5767 batch_size = handle_active_stripes(conf, group_id, worker,
5768 worker->temp_inactive_list);
5769 worker->working = false;
5770 if (!batch_size && !released)
5771 break;
5772 handled += batch_size;
5773 }
5774 pr_debug("%d stripes handled\n", handled);
5775
5776 spin_unlock_irq(&conf->device_lock);
5777 blk_finish_plug(&plug);
5778
5779 pr_debug("--- raid5worker inactive\n");
5780 }
5781
5782 /*
5783 * This is our raid5 kernel thread.
5784 *
5785 * We scan the hash table for stripes which can be handled now.
5786 * During the scan, completed stripes are saved for us by the interrupt
5787 * handler, so that they will not have to wait for our next wakeup.
5788 */
5789 static void raid5d(struct md_thread *thread)
5790 {
5791 struct mddev *mddev = thread->mddev;
5792 struct r5conf *conf = mddev->private;
5793 int handled;
5794 struct blk_plug plug;
5795
5796 pr_debug("+++ raid5d active\n");
5797
5798 md_check_recovery(mddev);
5799
5800 blk_start_plug(&plug);
5801 handled = 0;
5802 spin_lock_irq(&conf->device_lock);
5803 while (1) {
5804 struct bio *bio;
5805 int batch_size, released;
5806
5807 released = release_stripe_list(conf, conf->temp_inactive_list);
5808 if (released)
5809 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5810
5811 if (
5812 !list_empty(&conf->bitmap_list)) {
5813 /* Now is a good time to flush some bitmap updates */
5814 conf->seq_flush++;
5815 spin_unlock_irq(&conf->device_lock);
5816 bitmap_unplug(mddev->bitmap);
5817 spin_lock_irq(&conf->device_lock);
5818 conf->seq_write = conf->seq_flush;
5819 activate_bit_delay(conf, conf->temp_inactive_list);
5820 }
5821 raid5_activate_delayed(conf);
5822
5823 while ((bio = remove_bio_from_retry(conf))) {
5824 int ok;
5825 spin_unlock_irq(&conf->device_lock);
5826 ok = retry_aligned_read(conf, bio);
5827 spin_lock_irq(&conf->device_lock);
5828 if (!ok)
5829 break;
5830 handled++;
5831 }
5832
5833 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5834 conf->temp_inactive_list);
5835 if (!batch_size && !released)
5836 break;
5837 handled += batch_size;
5838
5839 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5840 spin_unlock_irq(&conf->device_lock);
5841 md_check_recovery(mddev);
5842 spin_lock_irq(&conf->device_lock);
5843 }
5844 }
5845 pr_debug("%d stripes handled\n", handled);
5846
5847 spin_unlock_irq(&conf->device_lock);
5848 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5849 grow_one_stripe(conf, __GFP_NOWARN);
5850 /* Set flag even if allocation failed. This helps
5851 * slow down allocation requests when mem is short
5852 */
5853 set_bit(R5_DID_ALLOC, &conf->cache_state);
5854 }
5855
5856 async_tx_issue_pending_all();
5857 blk_finish_plug(&plug);
5858
5859 pr_debug("--- raid5d inactive\n");
5860 }
5861
5862 static ssize_t
5863 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5864 {
5865 struct r5conf *conf;
5866 int ret = 0;
5867 spin_lock(&mddev->lock);
5868 conf = mddev->private;
5869 if (conf)
5870 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5871 spin_unlock(&mddev->lock);
5872 return ret;
5873 }
5874
5875 int
5876 raid5_set_cache_size(struct mddev *mddev, int size)
5877 {
5878 struct r5conf *conf = mddev->private;
5879 int err;
5880
5881 if (size <= 16 || size > 32768)
5882 return -EINVAL;
5883
5884 conf->min_nr_stripes = size;
5885 while (size < conf->max_nr_stripes &&
5886 drop_one_stripe(conf))
5887 ;
5888
5889
5890 err = md_allow_write(mddev);
5891 if (err)
5892 return err;
5893
5894 while (size > conf->max_nr_stripes)
5895 if (!grow_one_stripe(conf, GFP_KERNEL))
5896 break;
5897
5898 return 0;
5899 }
5900 EXPORT_SYMBOL(raid5_set_cache_size);
5901
5902 static ssize_t
5903 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5904 {
5905 struct r5conf *conf;
5906 unsigned long new;
5907 int err;
5908
5909 if (len >= PAGE_SIZE)
5910 return -EINVAL;
5911 if (kstrtoul(page, 10, &new))
5912 return -EINVAL;
5913 err = mddev_lock(mddev);
5914 if (err)
5915 return err;
5916 conf = mddev->private;
5917 if (!conf)
5918 err = -ENODEV;
5919 else
5920 err = raid5_set_cache_size(mddev, new);
5921 mddev_unlock(mddev);
5922
5923 return err ?: len;
5924 }
5925
5926 static struct md_sysfs_entry
5927 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5928 raid5_show_stripe_cache_size,
5929 raid5_store_stripe_cache_size);
5930
5931 static ssize_t
5932 raid5_show_rmw_level(struct mddev *mddev, char *page)
5933 {
5934 struct r5conf *conf = mddev->private;
5935 if (conf)
5936 return sprintf(page, "%d\n", conf->rmw_level);
5937 else
5938 return 0;
5939 }
5940
5941 static ssize_t
5942 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5943 {
5944 struct r5conf *conf = mddev->private;
5945 unsigned long new;
5946
5947 if (!conf)
5948 return -ENODEV;
5949
5950 if (len >= PAGE_SIZE)
5951 return -EINVAL;
5952
5953 if (kstrtoul(page, 10, &new))
5954 return -EINVAL;
5955
5956 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5957 return -EINVAL;
5958
5959 if (new != PARITY_DISABLE_RMW &&
5960 new != PARITY_ENABLE_RMW &&
5961 new != PARITY_PREFER_RMW)
5962 return -EINVAL;
5963
5964 conf->rmw_level = new;
5965 return len;
5966 }
5967
5968 static struct md_sysfs_entry
5969 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5970 raid5_show_rmw_level,
5971 raid5_store_rmw_level);
5972
5973
5974 static ssize_t
5975 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5976 {
5977 struct r5conf *conf;
5978 int ret = 0;
5979 spin_lock(&mddev->lock);
5980 conf = mddev->private;
5981 if (conf)
5982 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5983 spin_unlock(&mddev->lock);
5984 return ret;
5985 }
5986
5987 static ssize_t
5988 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5989 {
5990 struct r5conf *conf;
5991 unsigned long new;
5992 int err;
5993
5994 if (len >= PAGE_SIZE)
5995 return -EINVAL;
5996 if (kstrtoul(page, 10, &new))
5997 return -EINVAL;
5998
5999 err = mddev_lock(mddev);
6000 if (err)
6001 return err;
6002 conf = mddev->private;
6003 if (!conf)
6004 err = -ENODEV;
6005 else if (new > conf->min_nr_stripes)
6006 err = -EINVAL;
6007 else
6008 conf->bypass_threshold = new;
6009 mddev_unlock(mddev);
6010 return err ?: len;
6011 }
6012
6013 static struct md_sysfs_entry
6014 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6015 S_IRUGO | S_IWUSR,
6016 raid5_show_preread_threshold,
6017 raid5_store_preread_threshold);
6018
6019 static ssize_t
6020 raid5_show_skip_copy(struct mddev *mddev, char *page)
6021 {
6022 struct r5conf *conf;
6023 int ret = 0;
6024 spin_lock(&mddev->lock);
6025 conf = mddev->private;
6026 if (conf)
6027 ret = sprintf(page, "%d\n", conf->skip_copy);
6028 spin_unlock(&mddev->lock);
6029 return ret;
6030 }
6031
6032 static ssize_t
6033 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6034 {
6035 struct r5conf *conf;
6036 unsigned long new;
6037 int err;
6038
6039 if (len >= PAGE_SIZE)
6040 return -EINVAL;
6041 if (kstrtoul(page, 10, &new))
6042 return -EINVAL;
6043 new = !!new;
6044
6045 err = mddev_lock(mddev);
6046 if (err)
6047 return err;
6048 conf = mddev->private;
6049 if (!conf)
6050 err = -ENODEV;
6051 else if (new != conf->skip_copy) {
6052 mddev_suspend(mddev);
6053 conf->skip_copy = new;
6054 if (new)
6055 mddev->queue->backing_dev_info.capabilities |=
6056 BDI_CAP_STABLE_WRITES;
6057 else
6058 mddev->queue->backing_dev_info.capabilities &=
6059 ~BDI_CAP_STABLE_WRITES;
6060 mddev_resume(mddev);
6061 }
6062 mddev_unlock(mddev);
6063 return err ?: len;
6064 }
6065
6066 static struct md_sysfs_entry
6067 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6068 raid5_show_skip_copy,
6069 raid5_store_skip_copy);
6070
6071 static ssize_t
6072 stripe_cache_active_show(struct mddev *mddev, char *page)
6073 {
6074 struct r5conf *conf = mddev->private;
6075 if (conf)
6076 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6077 else
6078 return 0;
6079 }
6080
6081 static struct md_sysfs_entry
6082 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6083
6084 static ssize_t
6085 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6086 {
6087 struct r5conf *conf;
6088 int ret = 0;
6089 spin_lock(&mddev->lock);
6090 conf = mddev->private;
6091 if (conf)
6092 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6093 spin_unlock(&mddev->lock);
6094 return ret;
6095 }
6096
6097 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6098 int *group_cnt,
6099 int *worker_cnt_per_group,
6100 struct r5worker_group **worker_groups);
6101 static ssize_t
6102 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6103 {
6104 struct r5conf *conf;
6105 unsigned long new;
6106 int err;
6107 struct r5worker_group *new_groups, *old_groups;
6108 int group_cnt, worker_cnt_per_group;
6109
6110 if (len >= PAGE_SIZE)
6111 return -EINVAL;
6112 if (kstrtoul(page, 10, &new))
6113 return -EINVAL;
6114
6115 err = mddev_lock(mddev);
6116 if (err)
6117 return err;
6118 conf = mddev->private;
6119 if (!conf)
6120 err = -ENODEV;
6121 else if (new != conf->worker_cnt_per_group) {
6122 mddev_suspend(mddev);
6123
6124 old_groups = conf->worker_groups;
6125 if (old_groups)
6126 flush_workqueue(raid5_wq);
6127
6128 err = alloc_thread_groups(conf, new,
6129 &group_cnt, &worker_cnt_per_group,
6130 &new_groups);
6131 if (!err) {
6132 spin_lock_irq(&conf->device_lock);
6133 conf->group_cnt = group_cnt;
6134 conf->worker_cnt_per_group = worker_cnt_per_group;
6135 conf->worker_groups = new_groups;
6136 spin_unlock_irq(&conf->device_lock);
6137
6138 if (old_groups)
6139 kfree(old_groups[0].workers);
6140 kfree(old_groups);
6141 }
6142 mddev_resume(mddev);
6143 }
6144 mddev_unlock(mddev);
6145
6146 return err ?: len;
6147 }
6148
6149 static struct md_sysfs_entry
6150 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6151 raid5_show_group_thread_cnt,
6152 raid5_store_group_thread_cnt);
6153
6154 static struct attribute *raid5_attrs[] = {
6155 &raid5_stripecache_size.attr,
6156 &raid5_stripecache_active.attr,
6157 &raid5_preread_bypass_threshold.attr,
6158 &raid5_group_thread_cnt.attr,
6159 &raid5_skip_copy.attr,
6160 &raid5_rmw_level.attr,
6161 NULL,
6162 };
6163 static struct attribute_group raid5_attrs_group = {
6164 .name = NULL,
6165 .attrs = raid5_attrs,
6166 };
6167
6168 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6169 int *group_cnt,
6170 int *worker_cnt_per_group,
6171 struct r5worker_group **worker_groups)
6172 {
6173 int i, j, k;
6174 ssize_t size;
6175 struct r5worker *workers;
6176
6177 *worker_cnt_per_group = cnt;
6178 if (cnt == 0) {
6179 *group_cnt = 0;
6180 *worker_groups = NULL;
6181 return 0;
6182 }
6183 *group_cnt = num_possible_nodes();
6184 size = sizeof(struct r5worker) * cnt;
6185 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6186 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6187 *group_cnt, GFP_NOIO);
6188 if (!*worker_groups || !workers) {
6189 kfree(workers);
6190 kfree(*worker_groups);
6191 return -ENOMEM;
6192 }
6193
6194 for (i = 0; i < *group_cnt; i++) {
6195 struct r5worker_group *group;
6196
6197 group = &(*worker_groups)[i];
6198 INIT_LIST_HEAD(&group->handle_list);
6199 group->conf = conf;
6200 group->workers = workers + i * cnt;
6201
6202 for (j = 0; j < cnt; j++) {
6203 struct r5worker *worker = group->workers + j;
6204 worker->group = group;
6205 INIT_WORK(&worker->work, raid5_do_work);
6206
6207 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6208 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6209 }
6210 }
6211
6212 return 0;
6213 }
6214
6215 static void free_thread_groups(struct r5conf *conf)
6216 {
6217 if (conf->worker_groups)
6218 kfree(conf->worker_groups[0].workers);
6219 kfree(conf->worker_groups);
6220 conf->worker_groups = NULL;
6221 }
6222
6223 static sector_t
6224 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6225 {
6226 struct r5conf *conf = mddev->private;
6227
6228 if (!sectors)
6229 sectors = mddev->dev_sectors;
6230 if (!raid_disks)
6231 /* size is defined by the smallest of previous and new size */
6232 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6233
6234 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6235 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6236 return sectors * (raid_disks - conf->max_degraded);
6237 }
6238
6239 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6240 {
6241 safe_put_page(percpu->spare_page);
6242 if (percpu->scribble)
6243 flex_array_free(percpu->scribble);
6244 percpu->spare_page = NULL;
6245 percpu->scribble = NULL;
6246 }
6247
6248 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6249 {
6250 if (conf->level == 6 && !percpu->spare_page)
6251 percpu->spare_page = alloc_page(GFP_KERNEL);
6252 if (!percpu->scribble)
6253 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6254 conf->previous_raid_disks),
6255 max(conf->chunk_sectors,
6256 conf->prev_chunk_sectors)
6257 / STRIPE_SECTORS,
6258 GFP_KERNEL);
6259
6260 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6261 free_scratch_buffer(conf, percpu);
6262 return -ENOMEM;
6263 }
6264
6265 return 0;
6266 }
6267
6268 static void raid5_free_percpu(struct r5conf *conf)
6269 {
6270 unsigned long cpu;
6271
6272 if (!conf->percpu)
6273 return;
6274
6275 #ifdef CONFIG_HOTPLUG_CPU
6276 unregister_cpu_notifier(&conf->cpu_notify);
6277 #endif
6278
6279 get_online_cpus();
6280 for_each_possible_cpu(cpu)
6281 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6282 put_online_cpus();
6283
6284 free_percpu(conf->percpu);
6285 }
6286
6287 static void free_conf(struct r5conf *conf)
6288 {
6289 if (conf->shrinker.seeks)
6290 unregister_shrinker(&conf->shrinker);
6291 free_thread_groups(conf);
6292 shrink_stripes(conf);
6293 raid5_free_percpu(conf);
6294 kfree(conf->disks);
6295 kfree(conf->stripe_hashtbl);
6296 kfree(conf);
6297 }
6298
6299 #ifdef CONFIG_HOTPLUG_CPU
6300 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6301 void *hcpu)
6302 {
6303 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6304 long cpu = (long)hcpu;
6305 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6306
6307 switch (action) {
6308 case CPU_UP_PREPARE:
6309 case CPU_UP_PREPARE_FROZEN:
6310 if (alloc_scratch_buffer(conf, percpu)) {
6311 pr_err("%s: failed memory allocation for cpu%ld\n",
6312 __func__, cpu);
6313 return notifier_from_errno(-ENOMEM);
6314 }
6315 break;
6316 case CPU_DEAD:
6317 case CPU_DEAD_FROZEN:
6318 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6319 break;
6320 default:
6321 break;
6322 }
6323 return NOTIFY_OK;
6324 }
6325 #endif
6326
6327 static int raid5_alloc_percpu(struct r5conf *conf)
6328 {
6329 unsigned long cpu;
6330 int err = 0;
6331
6332 conf->percpu = alloc_percpu(struct raid5_percpu);
6333 if (!conf->percpu)
6334 return -ENOMEM;
6335
6336 #ifdef CONFIG_HOTPLUG_CPU
6337 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6338 conf->cpu_notify.priority = 0;
6339 err = register_cpu_notifier(&conf->cpu_notify);
6340 if (err)
6341 return err;
6342 #endif
6343
6344 get_online_cpus();
6345 for_each_present_cpu(cpu) {
6346 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6347 if (err) {
6348 pr_err("%s: failed memory allocation for cpu%ld\n",
6349 __func__, cpu);
6350 break;
6351 }
6352 }
6353 put_online_cpus();
6354
6355 return err;
6356 }
6357
6358 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6359 struct shrink_control *sc)
6360 {
6361 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6362 int ret = 0;
6363 while (ret < sc->nr_to_scan) {
6364 if (drop_one_stripe(conf) == 0)
6365 return SHRINK_STOP;
6366 ret++;
6367 }
6368 return ret;
6369 }
6370
6371 static unsigned long raid5_cache_count(struct shrinker *shrink,
6372 struct shrink_control *sc)
6373 {
6374 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6375
6376 if (conf->max_nr_stripes < conf->min_nr_stripes)
6377 /* unlikely, but not impossible */
6378 return 0;
6379 return conf->max_nr_stripes - conf->min_nr_stripes;
6380 }
6381
6382 static struct r5conf *setup_conf(struct mddev *mddev)
6383 {
6384 struct r5conf *conf;
6385 int raid_disk, memory, max_disks;
6386 struct md_rdev *rdev;
6387 struct disk_info *disk;
6388 char pers_name[6];
6389 int i;
6390 int group_cnt, worker_cnt_per_group;
6391 struct r5worker_group *new_group;
6392
6393 if (mddev->new_level != 5
6394 && mddev->new_level != 4
6395 && mddev->new_level != 6) {
6396 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6397 mdname(mddev), mddev->new_level);
6398 return ERR_PTR(-EIO);
6399 }
6400 if ((mddev->new_level == 5
6401 && !algorithm_valid_raid5(mddev->new_layout)) ||
6402 (mddev->new_level == 6
6403 && !algorithm_valid_raid6(mddev->new_layout))) {
6404 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6405 mdname(mddev), mddev->new_layout);
6406 return ERR_PTR(-EIO);
6407 }
6408 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6409 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6410 mdname(mddev), mddev->raid_disks);
6411 return ERR_PTR(-EINVAL);
6412 }
6413
6414 if (!mddev->new_chunk_sectors ||
6415 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6416 !is_power_of_2(mddev->new_chunk_sectors)) {
6417 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6418 mdname(mddev), mddev->new_chunk_sectors << 9);
6419 return ERR_PTR(-EINVAL);
6420 }
6421
6422 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6423 if (conf == NULL)
6424 goto abort;
6425 /* Don't enable multi-threading by default*/
6426 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6427 &new_group)) {
6428 conf->group_cnt = group_cnt;
6429 conf->worker_cnt_per_group = worker_cnt_per_group;
6430 conf->worker_groups = new_group;
6431 } else
6432 goto abort;
6433 spin_lock_init(&conf->device_lock);
6434 seqcount_init(&conf->gen_lock);
6435 init_waitqueue_head(&conf->wait_for_stripe);
6436 init_waitqueue_head(&conf->wait_for_overlap);
6437 INIT_LIST_HEAD(&conf->handle_list);
6438 INIT_LIST_HEAD(&conf->hold_list);
6439 INIT_LIST_HEAD(&conf->delayed_list);
6440 INIT_LIST_HEAD(&conf->bitmap_list);
6441 init_llist_head(&conf->released_stripes);
6442 atomic_set(&conf->active_stripes, 0);
6443 atomic_set(&conf->preread_active_stripes, 0);
6444 atomic_set(&conf->active_aligned_reads, 0);
6445 conf->bypass_threshold = BYPASS_THRESHOLD;
6446 conf->recovery_disabled = mddev->recovery_disabled - 1;
6447
6448 conf->raid_disks = mddev->raid_disks;
6449 if (mddev->reshape_position == MaxSector)
6450 conf->previous_raid_disks = mddev->raid_disks;
6451 else
6452 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6453 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6454
6455 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6456 GFP_KERNEL);
6457 if (!conf->disks)
6458 goto abort;
6459
6460 conf->mddev = mddev;
6461
6462 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6463 goto abort;
6464
6465 /* We init hash_locks[0] separately to that it can be used
6466 * as the reference lock in the spin_lock_nest_lock() call
6467 * in lock_all_device_hash_locks_irq in order to convince
6468 * lockdep that we know what we are doing.
6469 */
6470 spin_lock_init(conf->hash_locks);
6471 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6472 spin_lock_init(conf->hash_locks + i);
6473
6474 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6475 INIT_LIST_HEAD(conf->inactive_list + i);
6476
6477 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6478 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6479
6480 conf->level = mddev->new_level;
6481 conf->chunk_sectors = mddev->new_chunk_sectors;
6482 if (raid5_alloc_percpu(conf) != 0)
6483 goto abort;
6484
6485 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6486
6487 rdev_for_each(rdev, mddev) {
6488 raid_disk = rdev->raid_disk;
6489 if (raid_disk >= max_disks
6490 || raid_disk < 0)
6491 continue;
6492 disk = conf->disks + raid_disk;
6493
6494 if (test_bit(Replacement, &rdev->flags)) {
6495 if (disk->replacement)
6496 goto abort;
6497 disk->replacement = rdev;
6498 } else {
6499 if (disk->rdev)
6500 goto abort;
6501 disk->rdev = rdev;
6502 }
6503
6504 if (test_bit(In_sync, &rdev->flags)) {
6505 char b[BDEVNAME_SIZE];
6506 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6507 " disk %d\n",
6508 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6509 } else if (rdev->saved_raid_disk != raid_disk)
6510 /* Cannot rely on bitmap to complete recovery */
6511 conf->fullsync = 1;
6512 }
6513
6514 conf->level = mddev->new_level;
6515 if (conf->level == 6) {
6516 conf->max_degraded = 2;
6517 if (raid6_call.xor_syndrome)
6518 conf->rmw_level = PARITY_ENABLE_RMW;
6519 else
6520 conf->rmw_level = PARITY_DISABLE_RMW;
6521 } else {
6522 conf->max_degraded = 1;
6523 conf->rmw_level = PARITY_ENABLE_RMW;
6524 }
6525 conf->algorithm = mddev->new_layout;
6526 conf->reshape_progress = mddev->reshape_position;
6527 if (conf->reshape_progress != MaxSector) {
6528 conf->prev_chunk_sectors = mddev->chunk_sectors;
6529 conf->prev_algo = mddev->layout;
6530 }
6531
6532 conf->min_nr_stripes = NR_STRIPES;
6533 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6534 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6535 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6536 if (grow_stripes(conf, conf->min_nr_stripes)) {
6537 printk(KERN_ERR
6538 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6539 mdname(mddev), memory);
6540 goto abort;
6541 } else
6542 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6543 mdname(mddev), memory);
6544 /*
6545 * Losing a stripe head costs more than the time to refill it,
6546 * it reduces the queue depth and so can hurt throughput.
6547 * So set it rather large, scaled by number of devices.
6548 */
6549 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6550 conf->shrinker.scan_objects = raid5_cache_scan;
6551 conf->shrinker.count_objects = raid5_cache_count;
6552 conf->shrinker.batch = 128;
6553 conf->shrinker.flags = 0;
6554 register_shrinker(&conf->shrinker);
6555
6556 sprintf(pers_name, "raid%d", mddev->new_level);
6557 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6558 if (!conf->thread) {
6559 printk(KERN_ERR
6560 "md/raid:%s: couldn't allocate thread.\n",
6561 mdname(mddev));
6562 goto abort;
6563 }
6564
6565 return conf;
6566
6567 abort:
6568 if (conf) {
6569 free_conf(conf);
6570 return ERR_PTR(-EIO);
6571 } else
6572 return ERR_PTR(-ENOMEM);
6573 }
6574
6575 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6576 {
6577 switch (algo) {
6578 case ALGORITHM_PARITY_0:
6579 if (raid_disk < max_degraded)
6580 return 1;
6581 break;
6582 case ALGORITHM_PARITY_N:
6583 if (raid_disk >= raid_disks - max_degraded)
6584 return 1;
6585 break;
6586 case ALGORITHM_PARITY_0_6:
6587 if (raid_disk == 0 ||
6588 raid_disk == raid_disks - 1)
6589 return 1;
6590 break;
6591 case ALGORITHM_LEFT_ASYMMETRIC_6:
6592 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6593 case ALGORITHM_LEFT_SYMMETRIC_6:
6594 case ALGORITHM_RIGHT_SYMMETRIC_6:
6595 if (raid_disk == raid_disks - 1)
6596 return 1;
6597 }
6598 return 0;
6599 }
6600
6601 static int run(struct mddev *mddev)
6602 {
6603 struct r5conf *conf;
6604 int working_disks = 0;
6605 int dirty_parity_disks = 0;
6606 struct md_rdev *rdev;
6607 sector_t reshape_offset = 0;
6608 int i;
6609 long long min_offset_diff = 0;
6610 int first = 1;
6611
6612 if (mddev->recovery_cp != MaxSector)
6613 printk(KERN_NOTICE "md/raid:%s: not clean"
6614 " -- starting background reconstruction\n",
6615 mdname(mddev));
6616
6617 rdev_for_each(rdev, mddev) {
6618 long long diff;
6619 if (rdev->raid_disk < 0)
6620 continue;
6621 diff = (rdev->new_data_offset - rdev->data_offset);
6622 if (first) {
6623 min_offset_diff = diff;
6624 first = 0;
6625 } else if (mddev->reshape_backwards &&
6626 diff < min_offset_diff)
6627 min_offset_diff = diff;
6628 else if (!mddev->reshape_backwards &&
6629 diff > min_offset_diff)
6630 min_offset_diff = diff;
6631 }
6632
6633 if (mddev->reshape_position != MaxSector) {
6634 /* Check that we can continue the reshape.
6635 * Difficulties arise if the stripe we would write to
6636 * next is at or after the stripe we would read from next.
6637 * For a reshape that changes the number of devices, this
6638 * is only possible for a very short time, and mdadm makes
6639 * sure that time appears to have past before assembling
6640 * the array. So we fail if that time hasn't passed.
6641 * For a reshape that keeps the number of devices the same
6642 * mdadm must be monitoring the reshape can keeping the
6643 * critical areas read-only and backed up. It will start
6644 * the array in read-only mode, so we check for that.
6645 */
6646 sector_t here_new, here_old;
6647 int old_disks;
6648 int max_degraded = (mddev->level == 6 ? 2 : 1);
6649
6650 if (mddev->new_level != mddev->level) {
6651 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6652 "required - aborting.\n",
6653 mdname(mddev));
6654 return -EINVAL;
6655 }
6656 old_disks = mddev->raid_disks - mddev->delta_disks;
6657 /* reshape_position must be on a new-stripe boundary, and one
6658 * further up in new geometry must map after here in old
6659 * geometry.
6660 */
6661 here_new = mddev->reshape_position;
6662 if (sector_div(here_new, mddev->new_chunk_sectors *
6663 (mddev->raid_disks - max_degraded))) {
6664 printk(KERN_ERR "md/raid:%s: reshape_position not "
6665 "on a stripe boundary\n", mdname(mddev));
6666 return -EINVAL;
6667 }
6668 reshape_offset = here_new * mddev->new_chunk_sectors;
6669 /* here_new is the stripe we will write to */
6670 here_old = mddev->reshape_position;
6671 sector_div(here_old, mddev->chunk_sectors *
6672 (old_disks-max_degraded));
6673 /* here_old is the first stripe that we might need to read
6674 * from */
6675 if (mddev->delta_disks == 0) {
6676 if ((here_new * mddev->new_chunk_sectors !=
6677 here_old * mddev->chunk_sectors)) {
6678 printk(KERN_ERR "md/raid:%s: reshape position is"
6679 " confused - aborting\n", mdname(mddev));
6680 return -EINVAL;
6681 }
6682 /* We cannot be sure it is safe to start an in-place
6683 * reshape. It is only safe if user-space is monitoring
6684 * and taking constant backups.
6685 * mdadm always starts a situation like this in
6686 * readonly mode so it can take control before
6687 * allowing any writes. So just check for that.
6688 */
6689 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6690 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6691 /* not really in-place - so OK */;
6692 else if (mddev->ro == 0) {
6693 printk(KERN_ERR "md/raid:%s: in-place reshape "
6694 "must be started in read-only mode "
6695 "- aborting\n",
6696 mdname(mddev));
6697 return -EINVAL;
6698 }
6699 } else if (mddev->reshape_backwards
6700 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6701 here_old * mddev->chunk_sectors)
6702 : (here_new * mddev->new_chunk_sectors >=
6703 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6704 /* Reading from the same stripe as writing to - bad */
6705 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6706 "auto-recovery - aborting.\n",
6707 mdname(mddev));
6708 return -EINVAL;
6709 }
6710 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6711 mdname(mddev));
6712 /* OK, we should be able to continue; */
6713 } else {
6714 BUG_ON(mddev->level != mddev->new_level);
6715 BUG_ON(mddev->layout != mddev->new_layout);
6716 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6717 BUG_ON(mddev->delta_disks != 0);
6718 }
6719
6720 if (mddev->private == NULL)
6721 conf = setup_conf(mddev);
6722 else
6723 conf = mddev->private;
6724
6725 if (IS_ERR(conf))
6726 return PTR_ERR(conf);
6727
6728 conf->min_offset_diff = min_offset_diff;
6729 mddev->thread = conf->thread;
6730 conf->thread = NULL;
6731 mddev->private = conf;
6732
6733 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6734 i++) {
6735 rdev = conf->disks[i].rdev;
6736 if (!rdev && conf->disks[i].replacement) {
6737 /* The replacement is all we have yet */
6738 rdev = conf->disks[i].replacement;
6739 conf->disks[i].replacement = NULL;
6740 clear_bit(Replacement, &rdev->flags);
6741 conf->disks[i].rdev = rdev;
6742 }
6743 if (!rdev)
6744 continue;
6745 if (conf->disks[i].replacement &&
6746 conf->reshape_progress != MaxSector) {
6747 /* replacements and reshape simply do not mix. */
6748 printk(KERN_ERR "md: cannot handle concurrent "
6749 "replacement and reshape.\n");
6750 goto abort;
6751 }
6752 if (test_bit(In_sync, &rdev->flags)) {
6753 working_disks++;
6754 continue;
6755 }
6756 /* This disc is not fully in-sync. However if it
6757 * just stored parity (beyond the recovery_offset),
6758 * when we don't need to be concerned about the
6759 * array being dirty.
6760 * When reshape goes 'backwards', we never have
6761 * partially completed devices, so we only need
6762 * to worry about reshape going forwards.
6763 */
6764 /* Hack because v0.91 doesn't store recovery_offset properly. */
6765 if (mddev->major_version == 0 &&
6766 mddev->minor_version > 90)
6767 rdev->recovery_offset = reshape_offset;
6768
6769 if (rdev->recovery_offset < reshape_offset) {
6770 /* We need to check old and new layout */
6771 if (!only_parity(rdev->raid_disk,
6772 conf->algorithm,
6773 conf->raid_disks,
6774 conf->max_degraded))
6775 continue;
6776 }
6777 if (!only_parity(rdev->raid_disk,
6778 conf->prev_algo,
6779 conf->previous_raid_disks,
6780 conf->max_degraded))
6781 continue;
6782 dirty_parity_disks++;
6783 }
6784
6785 /*
6786 * 0 for a fully functional array, 1 or 2 for a degraded array.
6787 */
6788 mddev->degraded = calc_degraded(conf);
6789
6790 if (has_failed(conf)) {
6791 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6792 " (%d/%d failed)\n",
6793 mdname(mddev), mddev->degraded, conf->raid_disks);
6794 goto abort;
6795 }
6796
6797 /* device size must be a multiple of chunk size */
6798 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6799 mddev->resync_max_sectors = mddev->dev_sectors;
6800
6801 if (mddev->degraded > dirty_parity_disks &&
6802 mddev->recovery_cp != MaxSector) {
6803 if (mddev->ok_start_degraded)
6804 printk(KERN_WARNING
6805 "md/raid:%s: starting dirty degraded array"
6806 " - data corruption possible.\n",
6807 mdname(mddev));
6808 else {
6809 printk(KERN_ERR
6810 "md/raid:%s: cannot start dirty degraded array.\n",
6811 mdname(mddev));
6812 goto abort;
6813 }
6814 }
6815
6816 if (mddev->degraded == 0)
6817 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6818 " devices, algorithm %d\n", mdname(mddev), conf->level,
6819 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6820 mddev->new_layout);
6821 else
6822 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6823 " out of %d devices, algorithm %d\n",
6824 mdname(mddev), conf->level,
6825 mddev->raid_disks - mddev->degraded,
6826 mddev->raid_disks, mddev->new_layout);
6827
6828 print_raid5_conf(conf);
6829
6830 if (conf->reshape_progress != MaxSector) {
6831 conf->reshape_safe = conf->reshape_progress;
6832 atomic_set(&conf->reshape_stripes, 0);
6833 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6834 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6835 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6836 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6837 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6838 "reshape");
6839 }
6840
6841 /* Ok, everything is just fine now */
6842 if (mddev->to_remove == &raid5_attrs_group)
6843 mddev->to_remove = NULL;
6844 else if (mddev->kobj.sd &&
6845 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6846 printk(KERN_WARNING
6847 "raid5: failed to create sysfs attributes for %s\n",
6848 mdname(mddev));
6849 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6850
6851 if (mddev->queue) {
6852 int chunk_size;
6853 bool discard_supported = true;
6854 /* read-ahead size must cover two whole stripes, which
6855 * is 2 * (datadisks) * chunksize where 'n' is the
6856 * number of raid devices
6857 */
6858 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6859 int stripe = data_disks *
6860 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6861 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6862 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6863
6864 chunk_size = mddev->chunk_sectors << 9;
6865 blk_queue_io_min(mddev->queue, chunk_size);
6866 blk_queue_io_opt(mddev->queue, chunk_size *
6867 (conf->raid_disks - conf->max_degraded));
6868 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6869 /*
6870 * We can only discard a whole stripe. It doesn't make sense to
6871 * discard data disk but write parity disk
6872 */
6873 stripe = stripe * PAGE_SIZE;
6874 /* Round up to power of 2, as discard handling
6875 * currently assumes that */
6876 while ((stripe-1) & stripe)
6877 stripe = (stripe | (stripe-1)) + 1;
6878 mddev->queue->limits.discard_alignment = stripe;
6879 mddev->queue->limits.discard_granularity = stripe;
6880 /*
6881 * unaligned part of discard request will be ignored, so can't
6882 * guarantee discard_zeroes_data
6883 */
6884 mddev->queue->limits.discard_zeroes_data = 0;
6885
6886 blk_queue_max_write_same_sectors(mddev->queue, 0);
6887
6888 rdev_for_each(rdev, mddev) {
6889 disk_stack_limits(mddev->gendisk, rdev->bdev,
6890 rdev->data_offset << 9);
6891 disk_stack_limits(mddev->gendisk, rdev->bdev,
6892 rdev->new_data_offset << 9);
6893 /*
6894 * discard_zeroes_data is required, otherwise data
6895 * could be lost. Consider a scenario: discard a stripe
6896 * (the stripe could be inconsistent if
6897 * discard_zeroes_data is 0); write one disk of the
6898 * stripe (the stripe could be inconsistent again
6899 * depending on which disks are used to calculate
6900 * parity); the disk is broken; The stripe data of this
6901 * disk is lost.
6902 */
6903 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6904 !bdev_get_queue(rdev->bdev)->
6905 limits.discard_zeroes_data)
6906 discard_supported = false;
6907 /* Unfortunately, discard_zeroes_data is not currently
6908 * a guarantee - just a hint. So we only allow DISCARD
6909 * if the sysadmin has confirmed that only safe devices
6910 * are in use by setting a module parameter.
6911 */
6912 if (!devices_handle_discard_safely) {
6913 if (discard_supported) {
6914 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6915 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6916 }
6917 discard_supported = false;
6918 }
6919 }
6920
6921 if (discard_supported &&
6922 mddev->queue->limits.max_discard_sectors >= stripe &&
6923 mddev->queue->limits.discard_granularity >= stripe)
6924 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6925 mddev->queue);
6926 else
6927 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6928 mddev->queue);
6929 }
6930
6931 return 0;
6932 abort:
6933 md_unregister_thread(&mddev->thread);
6934 print_raid5_conf(conf);
6935 free_conf(conf);
6936 mddev->private = NULL;
6937 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6938 return -EIO;
6939 }
6940
6941 static void raid5_free(struct mddev *mddev, void *priv)
6942 {
6943 struct r5conf *conf = priv;
6944
6945 free_conf(conf);
6946 mddev->to_remove = &raid5_attrs_group;
6947 }
6948
6949 static void status(struct seq_file *seq, struct mddev *mddev)
6950 {
6951 struct r5conf *conf = mddev->private;
6952 int i;
6953
6954 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6955 mddev->chunk_sectors / 2, mddev->layout);
6956 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6957 for (i = 0; i < conf->raid_disks; i++)
6958 seq_printf (seq, "%s",
6959 conf->disks[i].rdev &&
6960 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6961 seq_printf (seq, "]");
6962 }
6963
6964 static void print_raid5_conf (struct r5conf *conf)
6965 {
6966 int i;
6967 struct disk_info *tmp;
6968
6969 printk(KERN_DEBUG "RAID conf printout:\n");
6970 if (!conf) {
6971 printk("(conf==NULL)\n");
6972 return;
6973 }
6974 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6975 conf->raid_disks,
6976 conf->raid_disks - conf->mddev->degraded);
6977
6978 for (i = 0; i < conf->raid_disks; i++) {
6979 char b[BDEVNAME_SIZE];
6980 tmp = conf->disks + i;
6981 if (tmp->rdev)
6982 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6983 i, !test_bit(Faulty, &tmp->rdev->flags),
6984 bdevname(tmp->rdev->bdev, b));
6985 }
6986 }
6987
6988 static int raid5_spare_active(struct mddev *mddev)
6989 {
6990 int i;
6991 struct r5conf *conf = mddev->private;
6992 struct disk_info *tmp;
6993 int count = 0;
6994 unsigned long flags;
6995
6996 for (i = 0; i < conf->raid_disks; i++) {
6997 tmp = conf->disks + i;
6998 if (tmp->replacement
6999 && tmp->replacement->recovery_offset == MaxSector
7000 && !test_bit(Faulty, &tmp->replacement->flags)
7001 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7002 /* Replacement has just become active. */
7003 if (!tmp->rdev
7004 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7005 count++;
7006 if (tmp->rdev) {
7007 /* Replaced device not technically faulty,
7008 * but we need to be sure it gets removed
7009 * and never re-added.
7010 */
7011 set_bit(Faulty, &tmp->rdev->flags);
7012 sysfs_notify_dirent_safe(
7013 tmp->rdev->sysfs_state);
7014 }
7015 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7016 } else if (tmp->rdev
7017 && tmp->rdev->recovery_offset == MaxSector
7018 && !test_bit(Faulty, &tmp->rdev->flags)
7019 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7020 count++;
7021 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7022 }
7023 }
7024 spin_lock_irqsave(&conf->device_lock, flags);
7025 mddev->degraded = calc_degraded(conf);
7026 spin_unlock_irqrestore(&conf->device_lock, flags);
7027 print_raid5_conf(conf);
7028 return count;
7029 }
7030
7031 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7032 {
7033 struct r5conf *conf = mddev->private;
7034 int err = 0;
7035 int number = rdev->raid_disk;
7036 struct md_rdev **rdevp;
7037 struct disk_info *p = conf->disks + number;
7038
7039 print_raid5_conf(conf);
7040 if (rdev == p->rdev)
7041 rdevp = &p->rdev;
7042 else if (rdev == p->replacement)
7043 rdevp = &p->replacement;
7044 else
7045 return 0;
7046
7047 if (number >= conf->raid_disks &&
7048 conf->reshape_progress == MaxSector)
7049 clear_bit(In_sync, &rdev->flags);
7050
7051 if (test_bit(In_sync, &rdev->flags) ||
7052 atomic_read(&rdev->nr_pending)) {
7053 err = -EBUSY;
7054 goto abort;
7055 }
7056 /* Only remove non-faulty devices if recovery
7057 * isn't possible.
7058 */
7059 if (!test_bit(Faulty, &rdev->flags) &&
7060 mddev->recovery_disabled != conf->recovery_disabled &&
7061 !has_failed(conf) &&
7062 (!p->replacement || p->replacement == rdev) &&
7063 number < conf->raid_disks) {
7064 err = -EBUSY;
7065 goto abort;
7066 }
7067 *rdevp = NULL;
7068 synchronize_rcu();
7069 if (atomic_read(&rdev->nr_pending)) {
7070 /* lost the race, try later */
7071 err = -EBUSY;
7072 *rdevp = rdev;
7073 } else if (p->replacement) {
7074 /* We must have just cleared 'rdev' */
7075 p->rdev = p->replacement;
7076 clear_bit(Replacement, &p->replacement->flags);
7077 smp_mb(); /* Make sure other CPUs may see both as identical
7078 * but will never see neither - if they are careful
7079 */
7080 p->replacement = NULL;
7081 clear_bit(WantReplacement, &rdev->flags);
7082 } else
7083 /* We might have just removed the Replacement as faulty-
7084 * clear the bit just in case
7085 */
7086 clear_bit(WantReplacement, &rdev->flags);
7087 abort:
7088
7089 print_raid5_conf(conf);
7090 return err;
7091 }
7092
7093 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7094 {
7095 struct r5conf *conf = mddev->private;
7096 int err = -EEXIST;
7097 int disk;
7098 struct disk_info *p;
7099 int first = 0;
7100 int last = conf->raid_disks - 1;
7101
7102 if (mddev->recovery_disabled == conf->recovery_disabled)
7103 return -EBUSY;
7104
7105 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7106 /* no point adding a device */
7107 return -EINVAL;
7108
7109 if (rdev->raid_disk >= 0)
7110 first = last = rdev->raid_disk;
7111
7112 /*
7113 * find the disk ... but prefer rdev->saved_raid_disk
7114 * if possible.
7115 */
7116 if (rdev->saved_raid_disk >= 0 &&
7117 rdev->saved_raid_disk >= first &&
7118 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7119 first = rdev->saved_raid_disk;
7120
7121 for (disk = first; disk <= last; disk++) {
7122 p = conf->disks + disk;
7123 if (p->rdev == NULL) {
7124 clear_bit(In_sync, &rdev->flags);
7125 rdev->raid_disk = disk;
7126 err = 0;
7127 if (rdev->saved_raid_disk != disk)
7128 conf->fullsync = 1;
7129 rcu_assign_pointer(p->rdev, rdev);
7130 goto out;
7131 }
7132 }
7133 for (disk = first; disk <= last; disk++) {
7134 p = conf->disks + disk;
7135 if (test_bit(WantReplacement, &p->rdev->flags) &&
7136 p->replacement == NULL) {
7137 clear_bit(In_sync, &rdev->flags);
7138 set_bit(Replacement, &rdev->flags);
7139 rdev->raid_disk = disk;
7140 err = 0;
7141 conf->fullsync = 1;
7142 rcu_assign_pointer(p->replacement, rdev);
7143 break;
7144 }
7145 }
7146 out:
7147 print_raid5_conf(conf);
7148 return err;
7149 }
7150
7151 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7152 {
7153 /* no resync is happening, and there is enough space
7154 * on all devices, so we can resize.
7155 * We need to make sure resync covers any new space.
7156 * If the array is shrinking we should possibly wait until
7157 * any io in the removed space completes, but it hardly seems
7158 * worth it.
7159 */
7160 sector_t newsize;
7161 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7162 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7163 if (mddev->external_size &&
7164 mddev->array_sectors > newsize)
7165 return -EINVAL;
7166 if (mddev->bitmap) {
7167 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7168 if (ret)
7169 return ret;
7170 }
7171 md_set_array_sectors(mddev, newsize);
7172 set_capacity(mddev->gendisk, mddev->array_sectors);
7173 revalidate_disk(mddev->gendisk);
7174 if (sectors > mddev->dev_sectors &&
7175 mddev->recovery_cp > mddev->dev_sectors) {
7176 mddev->recovery_cp = mddev->dev_sectors;
7177 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7178 }
7179 mddev->dev_sectors = sectors;
7180 mddev->resync_max_sectors = sectors;
7181 return 0;
7182 }
7183
7184 static int check_stripe_cache(struct mddev *mddev)
7185 {
7186 /* Can only proceed if there are plenty of stripe_heads.
7187 * We need a minimum of one full stripe,, and for sensible progress
7188 * it is best to have about 4 times that.
7189 * If we require 4 times, then the default 256 4K stripe_heads will
7190 * allow for chunk sizes up to 256K, which is probably OK.
7191 * If the chunk size is greater, user-space should request more
7192 * stripe_heads first.
7193 */
7194 struct r5conf *conf = mddev->private;
7195 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7196 > conf->min_nr_stripes ||
7197 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7198 > conf->min_nr_stripes) {
7199 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7200 mdname(mddev),
7201 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7202 / STRIPE_SIZE)*4);
7203 return 0;
7204 }
7205 return 1;
7206 }
7207
7208 static int check_reshape(struct mddev *mddev)
7209 {
7210 struct r5conf *conf = mddev->private;
7211
7212 if (mddev->delta_disks == 0 &&
7213 mddev->new_layout == mddev->layout &&
7214 mddev->new_chunk_sectors == mddev->chunk_sectors)
7215 return 0; /* nothing to do */
7216 if (has_failed(conf))
7217 return -EINVAL;
7218 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7219 /* We might be able to shrink, but the devices must
7220 * be made bigger first.
7221 * For raid6, 4 is the minimum size.
7222 * Otherwise 2 is the minimum
7223 */
7224 int min = 2;
7225 if (mddev->level == 6)
7226 min = 4;
7227 if (mddev->raid_disks + mddev->delta_disks < min)
7228 return -EINVAL;
7229 }
7230
7231 if (!check_stripe_cache(mddev))
7232 return -ENOSPC;
7233
7234 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7235 mddev->delta_disks > 0)
7236 if (resize_chunks(conf,
7237 conf->previous_raid_disks
7238 + max(0, mddev->delta_disks),
7239 max(mddev->new_chunk_sectors,
7240 mddev->chunk_sectors)
7241 ) < 0)
7242 return -ENOMEM;
7243 return resize_stripes(conf, (conf->previous_raid_disks
7244 + mddev->delta_disks));
7245 }
7246
7247 static int raid5_start_reshape(struct mddev *mddev)
7248 {
7249 struct r5conf *conf = mddev->private;
7250 struct md_rdev *rdev;
7251 int spares = 0;
7252 unsigned long flags;
7253
7254 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7255 return -EBUSY;
7256
7257 if (!check_stripe_cache(mddev))
7258 return -ENOSPC;
7259
7260 if (has_failed(conf))
7261 return -EINVAL;
7262
7263 rdev_for_each(rdev, mddev) {
7264 if (!test_bit(In_sync, &rdev->flags)
7265 && !test_bit(Faulty, &rdev->flags))
7266 spares++;
7267 }
7268
7269 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7270 /* Not enough devices even to make a degraded array
7271 * of that size
7272 */
7273 return -EINVAL;
7274
7275 /* Refuse to reduce size of the array. Any reductions in
7276 * array size must be through explicit setting of array_size
7277 * attribute.
7278 */
7279 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7280 < mddev->array_sectors) {
7281 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7282 "before number of disks\n", mdname(mddev));
7283 return -EINVAL;
7284 }
7285
7286 atomic_set(&conf->reshape_stripes, 0);
7287 spin_lock_irq(&conf->device_lock);
7288 write_seqcount_begin(&conf->gen_lock);
7289 conf->previous_raid_disks = conf->raid_disks;
7290 conf->raid_disks += mddev->delta_disks;
7291 conf->prev_chunk_sectors = conf->chunk_sectors;
7292 conf->chunk_sectors = mddev->new_chunk_sectors;
7293 conf->prev_algo = conf->algorithm;
7294 conf->algorithm = mddev->new_layout;
7295 conf->generation++;
7296 /* Code that selects data_offset needs to see the generation update
7297 * if reshape_progress has been set - so a memory barrier needed.
7298 */
7299 smp_mb();
7300 if (mddev->reshape_backwards)
7301 conf->reshape_progress = raid5_size(mddev, 0, 0);
7302 else
7303 conf->reshape_progress = 0;
7304 conf->reshape_safe = conf->reshape_progress;
7305 write_seqcount_end(&conf->gen_lock);
7306 spin_unlock_irq(&conf->device_lock);
7307
7308 /* Now make sure any requests that proceeded on the assumption
7309 * the reshape wasn't running - like Discard or Read - have
7310 * completed.
7311 */
7312 mddev_suspend(mddev);
7313 mddev_resume(mddev);
7314
7315 /* Add some new drives, as many as will fit.
7316 * We know there are enough to make the newly sized array work.
7317 * Don't add devices if we are reducing the number of
7318 * devices in the array. This is because it is not possible
7319 * to correctly record the "partially reconstructed" state of
7320 * such devices during the reshape and confusion could result.
7321 */
7322 if (mddev->delta_disks >= 0) {
7323 rdev_for_each(rdev, mddev)
7324 if (rdev->raid_disk < 0 &&
7325 !test_bit(Faulty, &rdev->flags)) {
7326 if (raid5_add_disk(mddev, rdev) == 0) {
7327 if (rdev->raid_disk
7328 >= conf->previous_raid_disks)
7329 set_bit(In_sync, &rdev->flags);
7330 else
7331 rdev->recovery_offset = 0;
7332
7333 if (sysfs_link_rdev(mddev, rdev))
7334 /* Failure here is OK */;
7335 }
7336 } else if (rdev->raid_disk >= conf->previous_raid_disks
7337 && !test_bit(Faulty, &rdev->flags)) {
7338 /* This is a spare that was manually added */
7339 set_bit(In_sync, &rdev->flags);
7340 }
7341
7342 /* When a reshape changes the number of devices,
7343 * ->degraded is measured against the larger of the
7344 * pre and post number of devices.
7345 */
7346 spin_lock_irqsave(&conf->device_lock, flags);
7347 mddev->degraded = calc_degraded(conf);
7348 spin_unlock_irqrestore(&conf->device_lock, flags);
7349 }
7350 mddev->raid_disks = conf->raid_disks;
7351 mddev->reshape_position = conf->reshape_progress;
7352 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7353
7354 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7355 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7356 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7357 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7358 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7359 "reshape");
7360 if (!mddev->sync_thread) {
7361 mddev->recovery = 0;
7362 spin_lock_irq(&conf->device_lock);
7363 write_seqcount_begin(&conf->gen_lock);
7364 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7365 mddev->new_chunk_sectors =
7366 conf->chunk_sectors = conf->prev_chunk_sectors;
7367 mddev->new_layout = conf->algorithm = conf->prev_algo;
7368 rdev_for_each(rdev, mddev)
7369 rdev->new_data_offset = rdev->data_offset;
7370 smp_wmb();
7371 conf->generation --;
7372 conf->reshape_progress = MaxSector;
7373 mddev->reshape_position = MaxSector;
7374 write_seqcount_end(&conf->gen_lock);
7375 spin_unlock_irq(&conf->device_lock);
7376 return -EAGAIN;
7377 }
7378 conf->reshape_checkpoint = jiffies;
7379 md_wakeup_thread(mddev->sync_thread);
7380 md_new_event(mddev);
7381 return 0;
7382 }
7383
7384 /* This is called from the reshape thread and should make any
7385 * changes needed in 'conf'
7386 */
7387 static void end_reshape(struct r5conf *conf)
7388 {
7389
7390 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7391 struct md_rdev *rdev;
7392
7393 spin_lock_irq(&conf->device_lock);
7394 conf->previous_raid_disks = conf->raid_disks;
7395 rdev_for_each(rdev, conf->mddev)
7396 rdev->data_offset = rdev->new_data_offset;
7397 smp_wmb();
7398 conf->reshape_progress = MaxSector;
7399 spin_unlock_irq(&conf->device_lock);
7400 wake_up(&conf->wait_for_overlap);
7401
7402 /* read-ahead size must cover two whole stripes, which is
7403 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7404 */
7405 if (conf->mddev->queue) {
7406 int data_disks = conf->raid_disks - conf->max_degraded;
7407 int stripe = data_disks * ((conf->chunk_sectors << 9)
7408 / PAGE_SIZE);
7409 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7410 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7411 }
7412 }
7413 }
7414
7415 /* This is called from the raid5d thread with mddev_lock held.
7416 * It makes config changes to the device.
7417 */
7418 static void raid5_finish_reshape(struct mddev *mddev)
7419 {
7420 struct r5conf *conf = mddev->private;
7421
7422 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7423
7424 if (mddev->delta_disks > 0) {
7425 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7426 set_capacity(mddev->gendisk, mddev->array_sectors);
7427 revalidate_disk(mddev->gendisk);
7428 } else {
7429 int d;
7430 spin_lock_irq(&conf->device_lock);
7431 mddev->degraded = calc_degraded(conf);
7432 spin_unlock_irq(&conf->device_lock);
7433 for (d = conf->raid_disks ;
7434 d < conf->raid_disks - mddev->delta_disks;
7435 d++) {
7436 struct md_rdev *rdev = conf->disks[d].rdev;
7437 if (rdev)
7438 clear_bit(In_sync, &rdev->flags);
7439 rdev = conf->disks[d].replacement;
7440 if (rdev)
7441 clear_bit(In_sync, &rdev->flags);
7442 }
7443 }
7444 mddev->layout = conf->algorithm;
7445 mddev->chunk_sectors = conf->chunk_sectors;
7446 mddev->reshape_position = MaxSector;
7447 mddev->delta_disks = 0;
7448 mddev->reshape_backwards = 0;
7449 }
7450 }
7451
7452 static void raid5_quiesce(struct mddev *mddev, int state)
7453 {
7454 struct r5conf *conf = mddev->private;
7455
7456 switch(state) {
7457 case 2: /* resume for a suspend */
7458 wake_up(&conf->wait_for_overlap);
7459 break;
7460
7461 case 1: /* stop all writes */
7462 lock_all_device_hash_locks_irq(conf);
7463 /* '2' tells resync/reshape to pause so that all
7464 * active stripes can drain
7465 */
7466 conf->quiesce = 2;
7467 wait_event_cmd(conf->wait_for_stripe,
7468 atomic_read(&conf->active_stripes) == 0 &&
7469 atomic_read(&conf->active_aligned_reads) == 0,
7470 unlock_all_device_hash_locks_irq(conf),
7471 lock_all_device_hash_locks_irq(conf));
7472 conf->quiesce = 1;
7473 unlock_all_device_hash_locks_irq(conf);
7474 /* allow reshape to continue */
7475 wake_up(&conf->wait_for_overlap);
7476 break;
7477
7478 case 0: /* re-enable writes */
7479 lock_all_device_hash_locks_irq(conf);
7480 conf->quiesce = 0;
7481 wake_up(&conf->wait_for_stripe);
7482 wake_up(&conf->wait_for_overlap);
7483 unlock_all_device_hash_locks_irq(conf);
7484 break;
7485 }
7486 }
7487
7488 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7489 {
7490 struct r0conf *raid0_conf = mddev->private;
7491 sector_t sectors;
7492
7493 /* for raid0 takeover only one zone is supported */
7494 if (raid0_conf->nr_strip_zones > 1) {
7495 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7496 mdname(mddev));
7497 return ERR_PTR(-EINVAL);
7498 }
7499
7500 sectors = raid0_conf->strip_zone[0].zone_end;
7501 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7502 mddev->dev_sectors = sectors;
7503 mddev->new_level = level;
7504 mddev->new_layout = ALGORITHM_PARITY_N;
7505 mddev->new_chunk_sectors = mddev->chunk_sectors;
7506 mddev->raid_disks += 1;
7507 mddev->delta_disks = 1;
7508 /* make sure it will be not marked as dirty */
7509 mddev->recovery_cp = MaxSector;
7510
7511 return setup_conf(mddev);
7512 }
7513
7514 static void *raid5_takeover_raid1(struct mddev *mddev)
7515 {
7516 int chunksect;
7517
7518 if (mddev->raid_disks != 2 ||
7519 mddev->degraded > 1)
7520 return ERR_PTR(-EINVAL);
7521
7522 /* Should check if there are write-behind devices? */
7523
7524 chunksect = 64*2; /* 64K by default */
7525
7526 /* The array must be an exact multiple of chunksize */
7527 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7528 chunksect >>= 1;
7529
7530 if ((chunksect<<9) < STRIPE_SIZE)
7531 /* array size does not allow a suitable chunk size */
7532 return ERR_PTR(-EINVAL);
7533
7534 mddev->new_level = 5;
7535 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7536 mddev->new_chunk_sectors = chunksect;
7537
7538 return setup_conf(mddev);
7539 }
7540
7541 static void *raid5_takeover_raid6(struct mddev *mddev)
7542 {
7543 int new_layout;
7544
7545 switch (mddev->layout) {
7546 case ALGORITHM_LEFT_ASYMMETRIC_6:
7547 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7548 break;
7549 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7550 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7551 break;
7552 case ALGORITHM_LEFT_SYMMETRIC_6:
7553 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7554 break;
7555 case ALGORITHM_RIGHT_SYMMETRIC_6:
7556 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7557 break;
7558 case ALGORITHM_PARITY_0_6:
7559 new_layout = ALGORITHM_PARITY_0;
7560 break;
7561 case ALGORITHM_PARITY_N:
7562 new_layout = ALGORITHM_PARITY_N;
7563 break;
7564 default:
7565 return ERR_PTR(-EINVAL);
7566 }
7567 mddev->new_level = 5;
7568 mddev->new_layout = new_layout;
7569 mddev->delta_disks = -1;
7570 mddev->raid_disks -= 1;
7571 return setup_conf(mddev);
7572 }
7573
7574 static int raid5_check_reshape(struct mddev *mddev)
7575 {
7576 /* For a 2-drive array, the layout and chunk size can be changed
7577 * immediately as not restriping is needed.
7578 * For larger arrays we record the new value - after validation
7579 * to be used by a reshape pass.
7580 */
7581 struct r5conf *conf = mddev->private;
7582 int new_chunk = mddev->new_chunk_sectors;
7583
7584 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7585 return -EINVAL;
7586 if (new_chunk > 0) {
7587 if (!is_power_of_2(new_chunk))
7588 return -EINVAL;
7589 if (new_chunk < (PAGE_SIZE>>9))
7590 return -EINVAL;
7591 if (mddev->array_sectors & (new_chunk-1))
7592 /* not factor of array size */
7593 return -EINVAL;
7594 }
7595
7596 /* They look valid */
7597
7598 if (mddev->raid_disks == 2) {
7599 /* can make the change immediately */
7600 if (mddev->new_layout >= 0) {
7601 conf->algorithm = mddev->new_layout;
7602 mddev->layout = mddev->new_layout;
7603 }
7604 if (new_chunk > 0) {
7605 conf->chunk_sectors = new_chunk ;
7606 mddev->chunk_sectors = new_chunk;
7607 }
7608 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7609 md_wakeup_thread(mddev->thread);
7610 }
7611 return check_reshape(mddev);
7612 }
7613
7614 static int raid6_check_reshape(struct mddev *mddev)
7615 {
7616 int new_chunk = mddev->new_chunk_sectors;
7617
7618 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7619 return -EINVAL;
7620 if (new_chunk > 0) {
7621 if (!is_power_of_2(new_chunk))
7622 return -EINVAL;
7623 if (new_chunk < (PAGE_SIZE >> 9))
7624 return -EINVAL;
7625 if (mddev->array_sectors & (new_chunk-1))
7626 /* not factor of array size */
7627 return -EINVAL;
7628 }
7629
7630 /* They look valid */
7631 return check_reshape(mddev);
7632 }
7633
7634 static void *raid5_takeover(struct mddev *mddev)
7635 {
7636 /* raid5 can take over:
7637 * raid0 - if there is only one strip zone - make it a raid4 layout
7638 * raid1 - if there are two drives. We need to know the chunk size
7639 * raid4 - trivial - just use a raid4 layout.
7640 * raid6 - Providing it is a *_6 layout
7641 */
7642 if (mddev->level == 0)
7643 return raid45_takeover_raid0(mddev, 5);
7644 if (mddev->level == 1)
7645 return raid5_takeover_raid1(mddev);
7646 if (mddev->level == 4) {
7647 mddev->new_layout = ALGORITHM_PARITY_N;
7648 mddev->new_level = 5;
7649 return setup_conf(mddev);
7650 }
7651 if (mddev->level == 6)
7652 return raid5_takeover_raid6(mddev);
7653
7654 return ERR_PTR(-EINVAL);
7655 }
7656
7657 static void *raid4_takeover(struct mddev *mddev)
7658 {
7659 /* raid4 can take over:
7660 * raid0 - if there is only one strip zone
7661 * raid5 - if layout is right
7662 */
7663 if (mddev->level == 0)
7664 return raid45_takeover_raid0(mddev, 4);
7665 if (mddev->level == 5 &&
7666 mddev->layout == ALGORITHM_PARITY_N) {
7667 mddev->new_layout = 0;
7668 mddev->new_level = 4;
7669 return setup_conf(mddev);
7670 }
7671 return ERR_PTR(-EINVAL);
7672 }
7673
7674 static struct md_personality raid5_personality;
7675
7676 static void *raid6_takeover(struct mddev *mddev)
7677 {
7678 /* Currently can only take over a raid5. We map the
7679 * personality to an equivalent raid6 personality
7680 * with the Q block at the end.
7681 */
7682 int new_layout;
7683
7684 if (mddev->pers != &raid5_personality)
7685 return ERR_PTR(-EINVAL);
7686 if (mddev->degraded > 1)
7687 return ERR_PTR(-EINVAL);
7688 if (mddev->raid_disks > 253)
7689 return ERR_PTR(-EINVAL);
7690 if (mddev->raid_disks < 3)
7691 return ERR_PTR(-EINVAL);
7692
7693 switch (mddev->layout) {
7694 case ALGORITHM_LEFT_ASYMMETRIC:
7695 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7696 break;
7697 case ALGORITHM_RIGHT_ASYMMETRIC:
7698 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7699 break;
7700 case ALGORITHM_LEFT_SYMMETRIC:
7701 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7702 break;
7703 case ALGORITHM_RIGHT_SYMMETRIC:
7704 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7705 break;
7706 case ALGORITHM_PARITY_0:
7707 new_layout = ALGORITHM_PARITY_0_6;
7708 break;
7709 case ALGORITHM_PARITY_N:
7710 new_layout = ALGORITHM_PARITY_N;
7711 break;
7712 default:
7713 return ERR_PTR(-EINVAL);
7714 }
7715 mddev->new_level = 6;
7716 mddev->new_layout = new_layout;
7717 mddev->delta_disks = 1;
7718 mddev->raid_disks += 1;
7719 return setup_conf(mddev);
7720 }
7721
7722 static struct md_personality raid6_personality =
7723 {
7724 .name = "raid6",
7725 .level = 6,
7726 .owner = THIS_MODULE,
7727 .make_request = make_request,
7728 .run = run,
7729 .free = raid5_free,
7730 .status = status,
7731 .error_handler = error,
7732 .hot_add_disk = raid5_add_disk,
7733 .hot_remove_disk= raid5_remove_disk,
7734 .spare_active = raid5_spare_active,
7735 .sync_request = sync_request,
7736 .resize = raid5_resize,
7737 .size = raid5_size,
7738 .check_reshape = raid6_check_reshape,
7739 .start_reshape = raid5_start_reshape,
7740 .finish_reshape = raid5_finish_reshape,
7741 .quiesce = raid5_quiesce,
7742 .takeover = raid6_takeover,
7743 .congested = raid5_congested,
7744 .mergeable_bvec = raid5_mergeable_bvec,
7745 };
7746 static struct md_personality raid5_personality =
7747 {
7748 .name = "raid5",
7749 .level = 5,
7750 .owner = THIS_MODULE,
7751 .make_request = make_request,
7752 .run = run,
7753 .free = raid5_free,
7754 .status = status,
7755 .error_handler = error,
7756 .hot_add_disk = raid5_add_disk,
7757 .hot_remove_disk= raid5_remove_disk,
7758 .spare_active = raid5_spare_active,
7759 .sync_request = sync_request,
7760 .resize = raid5_resize,
7761 .size = raid5_size,
7762 .check_reshape = raid5_check_reshape,
7763 .start_reshape = raid5_start_reshape,
7764 .finish_reshape = raid5_finish_reshape,
7765 .quiesce = raid5_quiesce,
7766 .takeover = raid5_takeover,
7767 .congested = raid5_congested,
7768 .mergeable_bvec = raid5_mergeable_bvec,
7769 };
7770
7771 static struct md_personality raid4_personality =
7772 {
7773 .name = "raid4",
7774 .level = 4,
7775 .owner = THIS_MODULE,
7776 .make_request = make_request,
7777 .run = run,
7778 .free = raid5_free,
7779 .status = status,
7780 .error_handler = error,
7781 .hot_add_disk = raid5_add_disk,
7782 .hot_remove_disk= raid5_remove_disk,
7783 .spare_active = raid5_spare_active,
7784 .sync_request = sync_request,
7785 .resize = raid5_resize,
7786 .size = raid5_size,
7787 .check_reshape = raid5_check_reshape,
7788 .start_reshape = raid5_start_reshape,
7789 .finish_reshape = raid5_finish_reshape,
7790 .quiesce = raid5_quiesce,
7791 .takeover = raid4_takeover,
7792 .congested = raid5_congested,
7793 .mergeable_bvec = raid5_mergeable_bvec,
7794 };
7795
7796 static int __init raid5_init(void)
7797 {
7798 raid5_wq = alloc_workqueue("raid5wq",
7799 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7800 if (!raid5_wq)
7801 return -ENOMEM;
7802 register_md_personality(&raid6_personality);
7803 register_md_personality(&raid5_personality);
7804 register_md_personality(&raid4_personality);
7805 return 0;
7806 }
7807
7808 static void raid5_exit(void)
7809 {
7810 unregister_md_personality(&raid6_personality);
7811 unregister_md_personality(&raid5_personality);
7812 unregister_md_personality(&raid4_personality);
7813 destroy_workqueue(raid5_wq);
7814 }
7815
7816 module_init(raid5_init);
7817 module_exit(raid5_exit);
7818 MODULE_LICENSE("GPL");
7819 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7820 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7821 MODULE_ALIAS("md-raid5");
7822 MODULE_ALIAS("md-raid4");
7823 MODULE_ALIAS("md-level-5");
7824 MODULE_ALIAS("md-level-4");
7825 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7826 MODULE_ALIAS("md-raid6");
7827 MODULE_ALIAS("md-level-6");
7828
7829 /* This used to be two separate modules, they were: */
7830 MODULE_ALIAS("raid5");
7831 MODULE_ALIAS("raid6");
This page took 0.253455 seconds and 6 git commands to generate.