md/raid5: allow the stripe_cache to grow and shrink.
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74 * Stripe cache
75 */
76
77 #define NR_STRIPES 256
78 #define STRIPE_SIZE PAGE_SIZE
79 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD 1
82 #define BYPASS_THRESHOLD 1
83 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH 8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90 return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95 return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100 spin_lock_irq(conf->hash_locks + hash);
101 spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106 spin_unlock(&conf->device_lock);
107 spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112 int i;
113 local_irq_disable();
114 spin_lock(conf->hash_locks);
115 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117 spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122 int i;
123 spin_unlock(&conf->device_lock);
124 for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125 spin_unlock(conf->hash_locks + i - 1);
126 local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130 * order without overlap. There may be several bio's per stripe+device, and
131 * a bio could span several devices.
132 * When walking this list for a particular stripe+device, we must never proceed
133 * beyond a bio that extends past this device, as the next bio might no longer
134 * be valid.
135 * This function is used to determine the 'next' bio in the list, given the sector
136 * of the current stripe+device
137 */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140 int sectors = bio_sectors(bio);
141 if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142 return bio->bi_next;
143 else
144 return NULL;
145 }
146
147 /*
148 * We maintain a biased count of active stripes in the bottom 16 bits of
149 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150 */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154 return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160 return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166 atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170 unsigned int cnt)
171 {
172 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173 int old, new;
174
175 do {
176 old = atomic_read(segments);
177 new = (old & 0xffff) | (cnt << 16);
178 } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184 atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190 if (sh->ddf_layout)
191 /* ddf always start from first device */
192 return 0;
193 /* md starts just after Q block */
194 if (sh->qd_idx == sh->disks - 1)
195 return 0;
196 else
197 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201 disk++;
202 return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206 * We need to map each disk to a 'slot', where the data disks are slot
207 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208 * is raid_disks-1. This help does that mapping.
209 */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211 int *count, int syndrome_disks)
212 {
213 int slot = *count;
214
215 if (sh->ddf_layout)
216 (*count)++;
217 if (idx == sh->pd_idx)
218 return syndrome_disks;
219 if (idx == sh->qd_idx)
220 return syndrome_disks + 1;
221 if (!sh->ddf_layout)
222 (*count)++;
223 return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228 struct bio *bi = return_bi;
229 while (bi) {
230
231 return_bi = bi->bi_next;
232 bi->bi_next = NULL;
233 bi->bi_iter.bi_size = 0;
234 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235 bi, 0);
236 bio_endio(bi, 0);
237 bi = return_bi;
238 }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245 return sh->check_state || sh->reconstruct_state ||
246 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252 struct r5conf *conf = sh->raid_conf;
253 struct r5worker_group *group;
254 int thread_cnt;
255 int i, cpu = sh->cpu;
256
257 if (!cpu_online(cpu)) {
258 cpu = cpumask_any(cpu_online_mask);
259 sh->cpu = cpu;
260 }
261
262 if (list_empty(&sh->lru)) {
263 struct r5worker_group *group;
264 group = conf->worker_groups + cpu_to_group(cpu);
265 list_add_tail(&sh->lru, &group->handle_list);
266 group->stripes_cnt++;
267 sh->group = group;
268 }
269
270 if (conf->worker_cnt_per_group == 0) {
271 md_wakeup_thread(conf->mddev->thread);
272 return;
273 }
274
275 group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277 group->workers[0].working = true;
278 /* at least one worker should run to avoid race */
279 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282 /* wakeup more workers */
283 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284 if (group->workers[i].working == false) {
285 group->workers[i].working = true;
286 queue_work_on(sh->cpu, raid5_wq,
287 &group->workers[i].work);
288 thread_cnt--;
289 }
290 }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294 struct list_head *temp_inactive_list)
295 {
296 BUG_ON(!list_empty(&sh->lru));
297 BUG_ON(atomic_read(&conf->active_stripes)==0);
298 if (test_bit(STRIPE_HANDLE, &sh->state)) {
299 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301 list_add_tail(&sh->lru, &conf->delayed_list);
302 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303 sh->bm_seq - conf->seq_write > 0)
304 list_add_tail(&sh->lru, &conf->bitmap_list);
305 else {
306 clear_bit(STRIPE_DELAYED, &sh->state);
307 clear_bit(STRIPE_BIT_DELAY, &sh->state);
308 if (conf->worker_cnt_per_group == 0) {
309 list_add_tail(&sh->lru, &conf->handle_list);
310 } else {
311 raid5_wakeup_stripe_thread(sh);
312 return;
313 }
314 }
315 md_wakeup_thread(conf->mddev->thread);
316 } else {
317 BUG_ON(stripe_operations_active(sh));
318 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319 if (atomic_dec_return(&conf->preread_active_stripes)
320 < IO_THRESHOLD)
321 md_wakeup_thread(conf->mddev->thread);
322 atomic_dec(&conf->active_stripes);
323 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324 list_add_tail(&sh->lru, temp_inactive_list);
325 }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329 struct list_head *temp_inactive_list)
330 {
331 if (atomic_dec_and_test(&sh->count))
332 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337 *
338 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339 * given time. Adding stripes only takes device lock, while deleting stripes
340 * only takes hash lock.
341 */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343 struct list_head *temp_inactive_list,
344 int hash)
345 {
346 int size;
347 bool do_wakeup = false;
348 unsigned long flags;
349
350 if (hash == NR_STRIPE_HASH_LOCKS) {
351 size = NR_STRIPE_HASH_LOCKS;
352 hash = NR_STRIPE_HASH_LOCKS - 1;
353 } else
354 size = 1;
355 while (size) {
356 struct list_head *list = &temp_inactive_list[size - 1];
357
358 /*
359 * We don't hold any lock here yet, get_active_stripe() might
360 * remove stripes from the list
361 */
362 if (!list_empty_careful(list)) {
363 spin_lock_irqsave(conf->hash_locks + hash, flags);
364 if (list_empty(conf->inactive_list + hash) &&
365 !list_empty(list))
366 atomic_dec(&conf->empty_inactive_list_nr);
367 list_splice_tail_init(list, conf->inactive_list + hash);
368 do_wakeup = true;
369 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370 }
371 size--;
372 hash--;
373 }
374
375 if (do_wakeup) {
376 wake_up(&conf->wait_for_stripe);
377 if (conf->retry_read_aligned)
378 md_wakeup_thread(conf->mddev->thread);
379 }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384 struct list_head *temp_inactive_list)
385 {
386 struct stripe_head *sh;
387 int count = 0;
388 struct llist_node *head;
389
390 head = llist_del_all(&conf->released_stripes);
391 head = llist_reverse_order(head);
392 while (head) {
393 int hash;
394
395 sh = llist_entry(head, struct stripe_head, release_list);
396 head = llist_next(head);
397 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398 smp_mb();
399 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400 /*
401 * Don't worry the bit is set here, because if the bit is set
402 * again, the count is always > 1. This is true for
403 * STRIPE_ON_UNPLUG_LIST bit too.
404 */
405 hash = sh->hash_lock_index;
406 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407 count++;
408 }
409
410 return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415 struct r5conf *conf = sh->raid_conf;
416 unsigned long flags;
417 struct list_head list;
418 int hash;
419 bool wakeup;
420
421 /* Avoid release_list until the last reference.
422 */
423 if (atomic_add_unless(&sh->count, -1, 1))
424 return;
425
426 if (unlikely(!conf->mddev->thread) ||
427 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428 goto slow_path;
429 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430 if (wakeup)
431 md_wakeup_thread(conf->mddev->thread);
432 return;
433 slow_path:
434 local_irq_save(flags);
435 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437 INIT_LIST_HEAD(&list);
438 hash = sh->hash_lock_index;
439 do_release_stripe(conf, sh, &list);
440 spin_unlock(&conf->device_lock);
441 release_inactive_stripe_list(conf, &list, hash);
442 }
443 local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448 pr_debug("remove_hash(), stripe %llu\n",
449 (unsigned long long)sh->sector);
450
451 hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456 struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458 pr_debug("insert_hash(), stripe %llu\n",
459 (unsigned long long)sh->sector);
460
461 hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467 struct stripe_head *sh = NULL;
468 struct list_head *first;
469
470 if (list_empty(conf->inactive_list + hash))
471 goto out;
472 first = (conf->inactive_list + hash)->next;
473 sh = list_entry(first, struct stripe_head, lru);
474 list_del_init(first);
475 remove_hash(sh);
476 atomic_inc(&conf->active_stripes);
477 BUG_ON(hash != sh->hash_lock_index);
478 if (list_empty(conf->inactive_list + hash))
479 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481 return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486 struct page *p;
487 int i;
488 int num = sh->raid_conf->pool_size;
489
490 for (i = 0; i < num ; i++) {
491 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492 p = sh->dev[i].page;
493 if (!p)
494 continue;
495 sh->dev[i].page = NULL;
496 put_page(p);
497 }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502 int i;
503 int num = sh->raid_conf->pool_size;
504
505 for (i = 0; i < num; i++) {
506 struct page *page;
507
508 if (!(page = alloc_page(gfp))) {
509 return 1;
510 }
511 sh->dev[i].page = page;
512 sh->dev[i].orig_page = page;
513 }
514 return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519 struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523 struct r5conf *conf = sh->raid_conf;
524 int i, seq;
525
526 BUG_ON(atomic_read(&sh->count) != 0);
527 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528 BUG_ON(stripe_operations_active(sh));
529 BUG_ON(sh->batch_head);
530
531 pr_debug("init_stripe called, stripe %llu\n",
532 (unsigned long long)sector);
533 retry:
534 seq = read_seqcount_begin(&conf->gen_lock);
535 sh->generation = conf->generation - previous;
536 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537 sh->sector = sector;
538 stripe_set_idx(sector, conf, previous, sh);
539 sh->state = 0;
540
541 for (i = sh->disks; i--; ) {
542 struct r5dev *dev = &sh->dev[i];
543
544 if (dev->toread || dev->read || dev->towrite || dev->written ||
545 test_bit(R5_LOCKED, &dev->flags)) {
546 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547 (unsigned long long)sh->sector, i, dev->toread,
548 dev->read, dev->towrite, dev->written,
549 test_bit(R5_LOCKED, &dev->flags));
550 WARN_ON(1);
551 }
552 dev->flags = 0;
553 raid5_build_block(sh, i, previous);
554 }
555 if (read_seqcount_retry(&conf->gen_lock, seq))
556 goto retry;
557 sh->overwrite_disks = 0;
558 insert_hash(conf, sh);
559 sh->cpu = smp_processor_id();
560 set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564 short generation)
565 {
566 struct stripe_head *sh;
567
568 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570 if (sh->sector == sector && sh->generation == generation)
571 return sh;
572 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573 return NULL;
574 }
575
576 /*
577 * Need to check if array has failed when deciding whether to:
578 * - start an array
579 * - remove non-faulty devices
580 * - add a spare
581 * - allow a reshape
582 * This determination is simple when no reshape is happening.
583 * However if there is a reshape, we need to carefully check
584 * both the before and after sections.
585 * This is because some failed devices may only affect one
586 * of the two sections, and some non-in_sync devices may
587 * be insync in the section most affected by failed devices.
588 */
589 static int calc_degraded(struct r5conf *conf)
590 {
591 int degraded, degraded2;
592 int i;
593
594 rcu_read_lock();
595 degraded = 0;
596 for (i = 0; i < conf->previous_raid_disks; i++) {
597 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598 if (rdev && test_bit(Faulty, &rdev->flags))
599 rdev = rcu_dereference(conf->disks[i].replacement);
600 if (!rdev || test_bit(Faulty, &rdev->flags))
601 degraded++;
602 else if (test_bit(In_sync, &rdev->flags))
603 ;
604 else
605 /* not in-sync or faulty.
606 * If the reshape increases the number of devices,
607 * this is being recovered by the reshape, so
608 * this 'previous' section is not in_sync.
609 * If the number of devices is being reduced however,
610 * the device can only be part of the array if
611 * we are reverting a reshape, so this section will
612 * be in-sync.
613 */
614 if (conf->raid_disks >= conf->previous_raid_disks)
615 degraded++;
616 }
617 rcu_read_unlock();
618 if (conf->raid_disks == conf->previous_raid_disks)
619 return degraded;
620 rcu_read_lock();
621 degraded2 = 0;
622 for (i = 0; i < conf->raid_disks; i++) {
623 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624 if (rdev && test_bit(Faulty, &rdev->flags))
625 rdev = rcu_dereference(conf->disks[i].replacement);
626 if (!rdev || test_bit(Faulty, &rdev->flags))
627 degraded2++;
628 else if (test_bit(In_sync, &rdev->flags))
629 ;
630 else
631 /* not in-sync or faulty.
632 * If reshape increases the number of devices, this
633 * section has already been recovered, else it
634 * almost certainly hasn't.
635 */
636 if (conf->raid_disks <= conf->previous_raid_disks)
637 degraded2++;
638 }
639 rcu_read_unlock();
640 if (degraded2 > degraded)
641 return degraded2;
642 return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647 int degraded;
648
649 if (conf->mddev->reshape_position == MaxSector)
650 return conf->mddev->degraded > conf->max_degraded;
651
652 degraded = calc_degraded(conf);
653 if (degraded > conf->max_degraded)
654 return 1;
655 return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660 int previous, int noblock, int noquiesce)
661 {
662 struct stripe_head *sh;
663 int hash = stripe_hash_locks_hash(sector);
664
665 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667 spin_lock_irq(conf->hash_locks + hash);
668
669 do {
670 wait_event_lock_irq(conf->wait_for_stripe,
671 conf->quiesce == 0 || noquiesce,
672 *(conf->hash_locks + hash));
673 sh = __find_stripe(conf, sector, conf->generation - previous);
674 if (!sh) {
675 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676 sh = get_free_stripe(conf, hash);
677 if (!sh && llist_empty(&conf->released_stripes) &&
678 !test_bit(R5_DID_ALLOC, &conf->cache_state))
679 set_bit(R5_ALLOC_MORE,
680 &conf->cache_state);
681 }
682 if (noblock && sh == NULL)
683 break;
684 if (!sh) {
685 set_bit(R5_INACTIVE_BLOCKED,
686 &conf->cache_state);
687 wait_event_lock_irq(
688 conf->wait_for_stripe,
689 !list_empty(conf->inactive_list + hash) &&
690 (atomic_read(&conf->active_stripes)
691 < (conf->max_nr_stripes * 3 / 4)
692 || !test_bit(R5_INACTIVE_BLOCKED,
693 &conf->cache_state)),
694 *(conf->hash_locks + hash));
695 clear_bit(R5_INACTIVE_BLOCKED,
696 &conf->cache_state);
697 } else {
698 init_stripe(sh, sector, previous);
699 atomic_inc(&sh->count);
700 }
701 } else if (!atomic_inc_not_zero(&sh->count)) {
702 spin_lock(&conf->device_lock);
703 if (!atomic_read(&sh->count)) {
704 if (!test_bit(STRIPE_HANDLE, &sh->state))
705 atomic_inc(&conf->active_stripes);
706 BUG_ON(list_empty(&sh->lru) &&
707 !test_bit(STRIPE_EXPANDING, &sh->state));
708 list_del_init(&sh->lru);
709 if (sh->group) {
710 sh->group->stripes_cnt--;
711 sh->group = NULL;
712 }
713 }
714 atomic_inc(&sh->count);
715 spin_unlock(&conf->device_lock);
716 }
717 } while (sh == NULL);
718
719 spin_unlock_irq(conf->hash_locks + hash);
720 return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731 local_irq_disable();
732 if (sh1 > sh2) {
733 spin_lock(&sh2->stripe_lock);
734 spin_lock_nested(&sh1->stripe_lock, 1);
735 } else {
736 spin_lock(&sh1->stripe_lock);
737 spin_lock_nested(&sh2->stripe_lock, 1);
738 }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743 spin_unlock(&sh1->stripe_lock);
744 spin_unlock(&sh2->stripe_lock);
745 local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752 is_full_stripe_write(sh);
753 }
754
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758 struct stripe_head *head;
759 sector_t head_sector, tmp_sec;
760 int hash;
761 int dd_idx;
762
763 if (!stripe_can_batch(sh))
764 return;
765 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766 tmp_sec = sh->sector;
767 if (!sector_div(tmp_sec, conf->chunk_sectors))
768 return;
769 head_sector = sh->sector - STRIPE_SECTORS;
770
771 hash = stripe_hash_locks_hash(head_sector);
772 spin_lock_irq(conf->hash_locks + hash);
773 head = __find_stripe(conf, head_sector, conf->generation);
774 if (head && !atomic_inc_not_zero(&head->count)) {
775 spin_lock(&conf->device_lock);
776 if (!atomic_read(&head->count)) {
777 if (!test_bit(STRIPE_HANDLE, &head->state))
778 atomic_inc(&conf->active_stripes);
779 BUG_ON(list_empty(&head->lru) &&
780 !test_bit(STRIPE_EXPANDING, &head->state));
781 list_del_init(&head->lru);
782 if (head->group) {
783 head->group->stripes_cnt--;
784 head->group = NULL;
785 }
786 }
787 atomic_inc(&head->count);
788 spin_unlock(&conf->device_lock);
789 }
790 spin_unlock_irq(conf->hash_locks + hash);
791
792 if (!head)
793 return;
794 if (!stripe_can_batch(head))
795 goto out;
796
797 lock_two_stripes(head, sh);
798 /* clear_batch_ready clear the flag */
799 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800 goto unlock_out;
801
802 if (sh->batch_head)
803 goto unlock_out;
804
805 dd_idx = 0;
806 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807 dd_idx++;
808 if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809 goto unlock_out;
810
811 if (head->batch_head) {
812 spin_lock(&head->batch_head->batch_lock);
813 /* This batch list is already running */
814 if (!stripe_can_batch(head)) {
815 spin_unlock(&head->batch_head->batch_lock);
816 goto unlock_out;
817 }
818
819 /*
820 * at this point, head's BATCH_READY could be cleared, but we
821 * can still add the stripe to batch list
822 */
823 list_add(&sh->batch_list, &head->batch_list);
824 spin_unlock(&head->batch_head->batch_lock);
825
826 sh->batch_head = head->batch_head;
827 } else {
828 head->batch_head = head;
829 sh->batch_head = head->batch_head;
830 spin_lock(&head->batch_lock);
831 list_add_tail(&sh->batch_list, &head->batch_list);
832 spin_unlock(&head->batch_lock);
833 }
834
835 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836 if (atomic_dec_return(&conf->preread_active_stripes)
837 < IO_THRESHOLD)
838 md_wakeup_thread(conf->mddev->thread);
839
840 atomic_inc(&sh->count);
841 unlock_out:
842 unlock_two_stripes(head, sh);
843 out:
844 release_stripe(head);
845 }
846
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848 * in this stripe_head.
849 */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852 sector_t progress = conf->reshape_progress;
853 /* Need a memory barrier to make sure we see the value
854 * of conf->generation, or ->data_offset that was set before
855 * reshape_progress was updated.
856 */
857 smp_rmb();
858 if (progress == MaxSector)
859 return 0;
860 if (sh->generation == conf->generation - 1)
861 return 0;
862 /* We are in a reshape, and this is a new-generation stripe,
863 * so use new_data_offset.
864 */
865 return 1;
866 }
867
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875 struct r5conf *conf = sh->raid_conf;
876 int i, disks = sh->disks;
877 struct stripe_head *head_sh = sh;
878
879 might_sleep();
880
881 for (i = disks; i--; ) {
882 int rw;
883 int replace_only = 0;
884 struct bio *bi, *rbi;
885 struct md_rdev *rdev, *rrdev = NULL;
886
887 sh = head_sh;
888 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890 rw = WRITE_FUA;
891 else
892 rw = WRITE;
893 if (test_bit(R5_Discard, &sh->dev[i].flags))
894 rw |= REQ_DISCARD;
895 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896 rw = READ;
897 else if (test_and_clear_bit(R5_WantReplace,
898 &sh->dev[i].flags)) {
899 rw = WRITE;
900 replace_only = 1;
901 } else
902 continue;
903 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904 rw |= REQ_SYNC;
905
906 again:
907 bi = &sh->dev[i].req;
908 rbi = &sh->dev[i].rreq; /* For writing to replacement */
909
910 rcu_read_lock();
911 rrdev = rcu_dereference(conf->disks[i].replacement);
912 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913 rdev = rcu_dereference(conf->disks[i].rdev);
914 if (!rdev) {
915 rdev = rrdev;
916 rrdev = NULL;
917 }
918 if (rw & WRITE) {
919 if (replace_only)
920 rdev = NULL;
921 if (rdev == rrdev)
922 /* We raced and saw duplicates */
923 rrdev = NULL;
924 } else {
925 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926 rdev = rrdev;
927 rrdev = NULL;
928 }
929
930 if (rdev && test_bit(Faulty, &rdev->flags))
931 rdev = NULL;
932 if (rdev)
933 atomic_inc(&rdev->nr_pending);
934 if (rrdev && test_bit(Faulty, &rrdev->flags))
935 rrdev = NULL;
936 if (rrdev)
937 atomic_inc(&rrdev->nr_pending);
938 rcu_read_unlock();
939
940 /* We have already checked bad blocks for reads. Now
941 * need to check for writes. We never accept write errors
942 * on the replacement, so we don't to check rrdev.
943 */
944 while ((rw & WRITE) && rdev &&
945 test_bit(WriteErrorSeen, &rdev->flags)) {
946 sector_t first_bad;
947 int bad_sectors;
948 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949 &first_bad, &bad_sectors);
950 if (!bad)
951 break;
952
953 if (bad < 0) {
954 set_bit(BlockedBadBlocks, &rdev->flags);
955 if (!conf->mddev->external &&
956 conf->mddev->flags) {
957 /* It is very unlikely, but we might
958 * still need to write out the
959 * bad block log - better give it
960 * a chance*/
961 md_check_recovery(conf->mddev);
962 }
963 /*
964 * Because md_wait_for_blocked_rdev
965 * will dec nr_pending, we must
966 * increment it first.
967 */
968 atomic_inc(&rdev->nr_pending);
969 md_wait_for_blocked_rdev(rdev, conf->mddev);
970 } else {
971 /* Acknowledged bad block - skip the write */
972 rdev_dec_pending(rdev, conf->mddev);
973 rdev = NULL;
974 }
975 }
976
977 if (rdev) {
978 if (s->syncing || s->expanding || s->expanded
979 || s->replacing)
980 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
982 set_bit(STRIPE_IO_STARTED, &sh->state);
983
984 bio_reset(bi);
985 bi->bi_bdev = rdev->bdev;
986 bi->bi_rw = rw;
987 bi->bi_end_io = (rw & WRITE)
988 ? raid5_end_write_request
989 : raid5_end_read_request;
990 bi->bi_private = sh;
991
992 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993 __func__, (unsigned long long)sh->sector,
994 bi->bi_rw, i);
995 atomic_inc(&sh->count);
996 if (sh != head_sh)
997 atomic_inc(&head_sh->count);
998 if (use_new_offset(conf, sh))
999 bi->bi_iter.bi_sector = (sh->sector
1000 + rdev->new_data_offset);
1001 else
1002 bi->bi_iter.bi_sector = (sh->sector
1003 + rdev->data_offset);
1004 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005 bi->bi_rw |= REQ_NOMERGE;
1006
1007 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009 sh->dev[i].vec.bv_page = sh->dev[i].page;
1010 bi->bi_vcnt = 1;
1011 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012 bi->bi_io_vec[0].bv_offset = 0;
1013 bi->bi_iter.bi_size = STRIPE_SIZE;
1014 /*
1015 * If this is discard request, set bi_vcnt 0. We don't
1016 * want to confuse SCSI because SCSI will replace payload
1017 */
1018 if (rw & REQ_DISCARD)
1019 bi->bi_vcnt = 0;
1020 if (rrdev)
1021 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022
1023 if (conf->mddev->gendisk)
1024 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025 bi, disk_devt(conf->mddev->gendisk),
1026 sh->dev[i].sector);
1027 generic_make_request(bi);
1028 }
1029 if (rrdev) {
1030 if (s->syncing || s->expanding || s->expanded
1031 || s->replacing)
1032 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034 set_bit(STRIPE_IO_STARTED, &sh->state);
1035
1036 bio_reset(rbi);
1037 rbi->bi_bdev = rrdev->bdev;
1038 rbi->bi_rw = rw;
1039 BUG_ON(!(rw & WRITE));
1040 rbi->bi_end_io = raid5_end_write_request;
1041 rbi->bi_private = sh;
1042
1043 pr_debug("%s: for %llu schedule op %ld on "
1044 "replacement disc %d\n",
1045 __func__, (unsigned long long)sh->sector,
1046 rbi->bi_rw, i);
1047 atomic_inc(&sh->count);
1048 if (sh != head_sh)
1049 atomic_inc(&head_sh->count);
1050 if (use_new_offset(conf, sh))
1051 rbi->bi_iter.bi_sector = (sh->sector
1052 + rrdev->new_data_offset);
1053 else
1054 rbi->bi_iter.bi_sector = (sh->sector
1055 + rrdev->data_offset);
1056 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059 rbi->bi_vcnt = 1;
1060 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061 rbi->bi_io_vec[0].bv_offset = 0;
1062 rbi->bi_iter.bi_size = STRIPE_SIZE;
1063 /*
1064 * If this is discard request, set bi_vcnt 0. We don't
1065 * want to confuse SCSI because SCSI will replace payload
1066 */
1067 if (rw & REQ_DISCARD)
1068 rbi->bi_vcnt = 0;
1069 if (conf->mddev->gendisk)
1070 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071 rbi, disk_devt(conf->mddev->gendisk),
1072 sh->dev[i].sector);
1073 generic_make_request(rbi);
1074 }
1075 if (!rdev && !rrdev) {
1076 if (rw & WRITE)
1077 set_bit(STRIPE_DEGRADED, &sh->state);
1078 pr_debug("skip op %ld on disc %d for sector %llu\n",
1079 bi->bi_rw, i, (unsigned long long)sh->sector);
1080 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081 if (sh->batch_head)
1082 set_bit(STRIPE_BATCH_ERR,
1083 &sh->batch_head->state);
1084 set_bit(STRIPE_HANDLE, &sh->state);
1085 }
1086
1087 if (!head_sh->batch_head)
1088 continue;
1089 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090 batch_list);
1091 if (sh != head_sh)
1092 goto again;
1093 }
1094 }
1095
1096 static struct dma_async_tx_descriptor *
1097 async_copy_data(int frombio, struct bio *bio, struct page **page,
1098 sector_t sector, struct dma_async_tx_descriptor *tx,
1099 struct stripe_head *sh)
1100 {
1101 struct bio_vec bvl;
1102 struct bvec_iter iter;
1103 struct page *bio_page;
1104 int page_offset;
1105 struct async_submit_ctl submit;
1106 enum async_tx_flags flags = 0;
1107
1108 if (bio->bi_iter.bi_sector >= sector)
1109 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110 else
1111 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112
1113 if (frombio)
1114 flags |= ASYNC_TX_FENCE;
1115 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
1117 bio_for_each_segment(bvl, bio, iter) {
1118 int len = bvl.bv_len;
1119 int clen;
1120 int b_offset = 0;
1121
1122 if (page_offset < 0) {
1123 b_offset = -page_offset;
1124 page_offset += b_offset;
1125 len -= b_offset;
1126 }
1127
1128 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129 clen = STRIPE_SIZE - page_offset;
1130 else
1131 clen = len;
1132
1133 if (clen > 0) {
1134 b_offset += bvl.bv_offset;
1135 bio_page = bvl.bv_page;
1136 if (frombio) {
1137 if (sh->raid_conf->skip_copy &&
1138 b_offset == 0 && page_offset == 0 &&
1139 clen == STRIPE_SIZE)
1140 *page = bio_page;
1141 else
1142 tx = async_memcpy(*page, bio_page, page_offset,
1143 b_offset, clen, &submit);
1144 } else
1145 tx = async_memcpy(bio_page, *page, b_offset,
1146 page_offset, clen, &submit);
1147 }
1148 /* chain the operations */
1149 submit.depend_tx = tx;
1150
1151 if (clen < len) /* hit end of page */
1152 break;
1153 page_offset += len;
1154 }
1155
1156 return tx;
1157 }
1158
1159 static void ops_complete_biofill(void *stripe_head_ref)
1160 {
1161 struct stripe_head *sh = stripe_head_ref;
1162 struct bio *return_bi = NULL;
1163 int i;
1164
1165 pr_debug("%s: stripe %llu\n", __func__,
1166 (unsigned long long)sh->sector);
1167
1168 /* clear completed biofills */
1169 for (i = sh->disks; i--; ) {
1170 struct r5dev *dev = &sh->dev[i];
1171
1172 /* acknowledge completion of a biofill operation */
1173 /* and check if we need to reply to a read request,
1174 * new R5_Wantfill requests are held off until
1175 * !STRIPE_BIOFILL_RUN
1176 */
1177 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178 struct bio *rbi, *rbi2;
1179
1180 BUG_ON(!dev->read);
1181 rbi = dev->read;
1182 dev->read = NULL;
1183 while (rbi && rbi->bi_iter.bi_sector <
1184 dev->sector + STRIPE_SECTORS) {
1185 rbi2 = r5_next_bio(rbi, dev->sector);
1186 if (!raid5_dec_bi_active_stripes(rbi)) {
1187 rbi->bi_next = return_bi;
1188 return_bi = rbi;
1189 }
1190 rbi = rbi2;
1191 }
1192 }
1193 }
1194 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195
1196 return_io(return_bi);
1197
1198 set_bit(STRIPE_HANDLE, &sh->state);
1199 release_stripe(sh);
1200 }
1201
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204 struct dma_async_tx_descriptor *tx = NULL;
1205 struct async_submit_ctl submit;
1206 int i;
1207
1208 BUG_ON(sh->batch_head);
1209 pr_debug("%s: stripe %llu\n", __func__,
1210 (unsigned long long)sh->sector);
1211
1212 for (i = sh->disks; i--; ) {
1213 struct r5dev *dev = &sh->dev[i];
1214 if (test_bit(R5_Wantfill, &dev->flags)) {
1215 struct bio *rbi;
1216 spin_lock_irq(&sh->stripe_lock);
1217 dev->read = rbi = dev->toread;
1218 dev->toread = NULL;
1219 spin_unlock_irq(&sh->stripe_lock);
1220 while (rbi && rbi->bi_iter.bi_sector <
1221 dev->sector + STRIPE_SECTORS) {
1222 tx = async_copy_data(0, rbi, &dev->page,
1223 dev->sector, tx, sh);
1224 rbi = r5_next_bio(rbi, dev->sector);
1225 }
1226 }
1227 }
1228
1229 atomic_inc(&sh->count);
1230 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231 async_trigger_callback(&submit);
1232 }
1233
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236 struct r5dev *tgt;
1237
1238 if (target < 0)
1239 return;
1240
1241 tgt = &sh->dev[target];
1242 set_bit(R5_UPTODATE, &tgt->flags);
1243 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244 clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249 struct stripe_head *sh = stripe_head_ref;
1250
1251 pr_debug("%s: stripe %llu\n", __func__,
1252 (unsigned long long)sh->sector);
1253
1254 /* mark the computed target(s) as uptodate */
1255 mark_target_uptodate(sh, sh->ops.target);
1256 mark_target_uptodate(sh, sh->ops.target2);
1257
1258 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259 if (sh->check_state == check_state_compute_run)
1260 sh->check_state = check_state_compute_result;
1261 set_bit(STRIPE_HANDLE, &sh->state);
1262 release_stripe(sh);
1263 }
1264
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267 struct raid5_percpu *percpu, int i)
1268 {
1269 void *addr;
1270
1271 addr = flex_array_get(percpu->scribble, i);
1272 return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278 void *addr;
1279
1280 addr = flex_array_get(percpu->scribble, i);
1281 return addr;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287 int disks = sh->disks;
1288 struct page **xor_srcs = to_addr_page(percpu, 0);
1289 int target = sh->ops.target;
1290 struct r5dev *tgt = &sh->dev[target];
1291 struct page *xor_dest = tgt->page;
1292 int count = 0;
1293 struct dma_async_tx_descriptor *tx;
1294 struct async_submit_ctl submit;
1295 int i;
1296
1297 BUG_ON(sh->batch_head);
1298
1299 pr_debug("%s: stripe %llu block: %d\n",
1300 __func__, (unsigned long long)sh->sector, target);
1301 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303 for (i = disks; i--; )
1304 if (i != target)
1305 xor_srcs[count++] = sh->dev[i].page;
1306
1307 atomic_inc(&sh->count);
1308
1309 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311 if (unlikely(count == 1))
1312 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313 else
1314 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315
1316 return tx;
1317 }
1318
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320 * @srcs - (struct page *) array of size sh->disks
1321 * @sh - stripe_head to parse
1322 *
1323 * Populates srcs in proper layout order for the stripe and returns the
1324 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1325 * destination buffer is recorded in srcs[count] and the Q destination
1326 * is recorded in srcs[count+1]].
1327 */
1328 static int set_syndrome_sources(struct page **srcs,
1329 struct stripe_head *sh,
1330 int srctype)
1331 {
1332 int disks = sh->disks;
1333 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334 int d0_idx = raid6_d0(sh);
1335 int count;
1336 int i;
1337
1338 for (i = 0; i < disks; i++)
1339 srcs[i] = NULL;
1340
1341 count = 0;
1342 i = d0_idx;
1343 do {
1344 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345 struct r5dev *dev = &sh->dev[i];
1346
1347 if (i == sh->qd_idx || i == sh->pd_idx ||
1348 (srctype == SYNDROME_SRC_ALL) ||
1349 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350 test_bit(R5_Wantdrain, &dev->flags)) ||
1351 (srctype == SYNDROME_SRC_WRITTEN &&
1352 dev->written))
1353 srcs[slot] = sh->dev[i].page;
1354 i = raid6_next_disk(i, disks);
1355 } while (i != d0_idx);
1356
1357 return syndrome_disks;
1358 }
1359
1360 static struct dma_async_tx_descriptor *
1361 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362 {
1363 int disks = sh->disks;
1364 struct page **blocks = to_addr_page(percpu, 0);
1365 int target;
1366 int qd_idx = sh->qd_idx;
1367 struct dma_async_tx_descriptor *tx;
1368 struct async_submit_ctl submit;
1369 struct r5dev *tgt;
1370 struct page *dest;
1371 int i;
1372 int count;
1373
1374 BUG_ON(sh->batch_head);
1375 if (sh->ops.target < 0)
1376 target = sh->ops.target2;
1377 else if (sh->ops.target2 < 0)
1378 target = sh->ops.target;
1379 else
1380 /* we should only have one valid target */
1381 BUG();
1382 BUG_ON(target < 0);
1383 pr_debug("%s: stripe %llu block: %d\n",
1384 __func__, (unsigned long long)sh->sector, target);
1385
1386 tgt = &sh->dev[target];
1387 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388 dest = tgt->page;
1389
1390 atomic_inc(&sh->count);
1391
1392 if (target == qd_idx) {
1393 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394 blocks[count] = NULL; /* regenerating p is not necessary */
1395 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1396 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397 ops_complete_compute, sh,
1398 to_addr_conv(sh, percpu, 0));
1399 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400 } else {
1401 /* Compute any data- or p-drive using XOR */
1402 count = 0;
1403 for (i = disks; i-- ; ) {
1404 if (i == target || i == qd_idx)
1405 continue;
1406 blocks[count++] = sh->dev[i].page;
1407 }
1408
1409 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410 NULL, ops_complete_compute, sh,
1411 to_addr_conv(sh, percpu, 0));
1412 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413 }
1414
1415 return tx;
1416 }
1417
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421 int i, count, disks = sh->disks;
1422 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423 int d0_idx = raid6_d0(sh);
1424 int faila = -1, failb = -1;
1425 int target = sh->ops.target;
1426 int target2 = sh->ops.target2;
1427 struct r5dev *tgt = &sh->dev[target];
1428 struct r5dev *tgt2 = &sh->dev[target2];
1429 struct dma_async_tx_descriptor *tx;
1430 struct page **blocks = to_addr_page(percpu, 0);
1431 struct async_submit_ctl submit;
1432
1433 BUG_ON(sh->batch_head);
1434 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435 __func__, (unsigned long long)sh->sector, target, target2);
1436 BUG_ON(target < 0 || target2 < 0);
1437 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
1440 /* we need to open-code set_syndrome_sources to handle the
1441 * slot number conversion for 'faila' and 'failb'
1442 */
1443 for (i = 0; i < disks ; i++)
1444 blocks[i] = NULL;
1445 count = 0;
1446 i = d0_idx;
1447 do {
1448 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450 blocks[slot] = sh->dev[i].page;
1451
1452 if (i == target)
1453 faila = slot;
1454 if (i == target2)
1455 failb = slot;
1456 i = raid6_next_disk(i, disks);
1457 } while (i != d0_idx);
1458
1459 BUG_ON(faila == failb);
1460 if (failb < faila)
1461 swap(faila, failb);
1462 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463 __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465 atomic_inc(&sh->count);
1466
1467 if (failb == syndrome_disks+1) {
1468 /* Q disk is one of the missing disks */
1469 if (faila == syndrome_disks) {
1470 /* Missing P+Q, just recompute */
1471 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472 ops_complete_compute, sh,
1473 to_addr_conv(sh, percpu, 0));
1474 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475 STRIPE_SIZE, &submit);
1476 } else {
1477 struct page *dest;
1478 int data_target;
1479 int qd_idx = sh->qd_idx;
1480
1481 /* Missing D+Q: recompute D from P, then recompute Q */
1482 if (target == qd_idx)
1483 data_target = target2;
1484 else
1485 data_target = target;
1486
1487 count = 0;
1488 for (i = disks; i-- ; ) {
1489 if (i == data_target || i == qd_idx)
1490 continue;
1491 blocks[count++] = sh->dev[i].page;
1492 }
1493 dest = sh->dev[data_target].page;
1494 init_async_submit(&submit,
1495 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496 NULL, NULL, NULL,
1497 to_addr_conv(sh, percpu, 0));
1498 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499 &submit);
1500
1501 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1502 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503 ops_complete_compute, sh,
1504 to_addr_conv(sh, percpu, 0));
1505 return async_gen_syndrome(blocks, 0, count+2,
1506 STRIPE_SIZE, &submit);
1507 }
1508 } else {
1509 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510 ops_complete_compute, sh,
1511 to_addr_conv(sh, percpu, 0));
1512 if (failb == syndrome_disks) {
1513 /* We're missing D+P. */
1514 return async_raid6_datap_recov(syndrome_disks+2,
1515 STRIPE_SIZE, faila,
1516 blocks, &submit);
1517 } else {
1518 /* We're missing D+D. */
1519 return async_raid6_2data_recov(syndrome_disks+2,
1520 STRIPE_SIZE, faila, failb,
1521 blocks, &submit);
1522 }
1523 }
1524 }
1525
1526 static void ops_complete_prexor(void *stripe_head_ref)
1527 {
1528 struct stripe_head *sh = stripe_head_ref;
1529
1530 pr_debug("%s: stripe %llu\n", __func__,
1531 (unsigned long long)sh->sector);
1532 }
1533
1534 static struct dma_async_tx_descriptor *
1535 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536 struct dma_async_tx_descriptor *tx)
1537 {
1538 int disks = sh->disks;
1539 struct page **xor_srcs = to_addr_page(percpu, 0);
1540 int count = 0, pd_idx = sh->pd_idx, i;
1541 struct async_submit_ctl submit;
1542
1543 /* existing parity data subtracted */
1544 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
1546 BUG_ON(sh->batch_head);
1547 pr_debug("%s: stripe %llu\n", __func__,
1548 (unsigned long long)sh->sector);
1549
1550 for (i = disks; i--; ) {
1551 struct r5dev *dev = &sh->dev[i];
1552 /* Only process blocks that are known to be uptodate */
1553 if (test_bit(R5_Wantdrain, &dev->flags))
1554 xor_srcs[count++] = dev->page;
1555 }
1556
1557 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560
1561 return tx;
1562 }
1563
1564 static struct dma_async_tx_descriptor *
1565 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566 struct dma_async_tx_descriptor *tx)
1567 {
1568 struct page **blocks = to_addr_page(percpu, 0);
1569 int count;
1570 struct async_submit_ctl submit;
1571
1572 pr_debug("%s: stripe %llu\n", __func__,
1573 (unsigned long long)sh->sector);
1574
1575 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1580
1581 return tx;
1582 }
1583
1584 static struct dma_async_tx_descriptor *
1585 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 {
1587 int disks = sh->disks;
1588 int i;
1589 struct stripe_head *head_sh = sh;
1590
1591 pr_debug("%s: stripe %llu\n", __func__,
1592 (unsigned long long)sh->sector);
1593
1594 for (i = disks; i--; ) {
1595 struct r5dev *dev;
1596 struct bio *chosen;
1597
1598 sh = head_sh;
1599 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600 struct bio *wbi;
1601
1602 again:
1603 dev = &sh->dev[i];
1604 spin_lock_irq(&sh->stripe_lock);
1605 chosen = dev->towrite;
1606 dev->towrite = NULL;
1607 sh->overwrite_disks = 0;
1608 BUG_ON(dev->written);
1609 wbi = dev->written = chosen;
1610 spin_unlock_irq(&sh->stripe_lock);
1611 WARN_ON(dev->page != dev->orig_page);
1612
1613 while (wbi && wbi->bi_iter.bi_sector <
1614 dev->sector + STRIPE_SECTORS) {
1615 if (wbi->bi_rw & REQ_FUA)
1616 set_bit(R5_WantFUA, &dev->flags);
1617 if (wbi->bi_rw & REQ_SYNC)
1618 set_bit(R5_SyncIO, &dev->flags);
1619 if (wbi->bi_rw & REQ_DISCARD)
1620 set_bit(R5_Discard, &dev->flags);
1621 else {
1622 tx = async_copy_data(1, wbi, &dev->page,
1623 dev->sector, tx, sh);
1624 if (dev->page != dev->orig_page) {
1625 set_bit(R5_SkipCopy, &dev->flags);
1626 clear_bit(R5_UPTODATE, &dev->flags);
1627 clear_bit(R5_OVERWRITE, &dev->flags);
1628 }
1629 }
1630 wbi = r5_next_bio(wbi, dev->sector);
1631 }
1632
1633 if (head_sh->batch_head) {
1634 sh = list_first_entry(&sh->batch_list,
1635 struct stripe_head,
1636 batch_list);
1637 if (sh == head_sh)
1638 continue;
1639 goto again;
1640 }
1641 }
1642 }
1643
1644 return tx;
1645 }
1646
1647 static void ops_complete_reconstruct(void *stripe_head_ref)
1648 {
1649 struct stripe_head *sh = stripe_head_ref;
1650 int disks = sh->disks;
1651 int pd_idx = sh->pd_idx;
1652 int qd_idx = sh->qd_idx;
1653 int i;
1654 bool fua = false, sync = false, discard = false;
1655
1656 pr_debug("%s: stripe %llu\n", __func__,
1657 (unsigned long long)sh->sector);
1658
1659 for (i = disks; i--; ) {
1660 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1661 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1663 }
1664
1665 for (i = disks; i--; ) {
1666 struct r5dev *dev = &sh->dev[i];
1667
1668 if (dev->written || i == pd_idx || i == qd_idx) {
1669 if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670 set_bit(R5_UPTODATE, &dev->flags);
1671 if (fua)
1672 set_bit(R5_WantFUA, &dev->flags);
1673 if (sync)
1674 set_bit(R5_SyncIO, &dev->flags);
1675 }
1676 }
1677
1678 if (sh->reconstruct_state == reconstruct_state_drain_run)
1679 sh->reconstruct_state = reconstruct_state_drain_result;
1680 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682 else {
1683 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684 sh->reconstruct_state = reconstruct_state_result;
1685 }
1686
1687 set_bit(STRIPE_HANDLE, &sh->state);
1688 release_stripe(sh);
1689 }
1690
1691 static void
1692 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693 struct dma_async_tx_descriptor *tx)
1694 {
1695 int disks = sh->disks;
1696 struct page **xor_srcs;
1697 struct async_submit_ctl submit;
1698 int count, pd_idx = sh->pd_idx, i;
1699 struct page *xor_dest;
1700 int prexor = 0;
1701 unsigned long flags;
1702 int j = 0;
1703 struct stripe_head *head_sh = sh;
1704 int last_stripe;
1705
1706 pr_debug("%s: stripe %llu\n", __func__,
1707 (unsigned long long)sh->sector);
1708
1709 for (i = 0; i < sh->disks; i++) {
1710 if (pd_idx == i)
1711 continue;
1712 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713 break;
1714 }
1715 if (i >= sh->disks) {
1716 atomic_inc(&sh->count);
1717 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718 ops_complete_reconstruct(sh);
1719 return;
1720 }
1721 again:
1722 count = 0;
1723 xor_srcs = to_addr_page(percpu, j);
1724 /* check if prexor is active which means only process blocks
1725 * that are part of a read-modify-write (written)
1726 */
1727 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728 prexor = 1;
1729 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730 for (i = disks; i--; ) {
1731 struct r5dev *dev = &sh->dev[i];
1732 if (head_sh->dev[i].written)
1733 xor_srcs[count++] = dev->page;
1734 }
1735 } else {
1736 xor_dest = sh->dev[pd_idx].page;
1737 for (i = disks; i--; ) {
1738 struct r5dev *dev = &sh->dev[i];
1739 if (i != pd_idx)
1740 xor_srcs[count++] = dev->page;
1741 }
1742 }
1743
1744 /* 1/ if we prexor'd then the dest is reused as a source
1745 * 2/ if we did not prexor then we are redoing the parity
1746 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747 * for the synchronous xor case
1748 */
1749 last_stripe = !head_sh->batch_head ||
1750 list_first_entry(&sh->batch_list,
1751 struct stripe_head, batch_list) == head_sh;
1752 if (last_stripe) {
1753 flags = ASYNC_TX_ACK |
1754 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756 atomic_inc(&head_sh->count);
1757 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758 to_addr_conv(sh, percpu, j));
1759 } else {
1760 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761 init_async_submit(&submit, flags, tx, NULL, NULL,
1762 to_addr_conv(sh, percpu, j));
1763 }
1764
1765 if (unlikely(count == 1))
1766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767 else
1768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769 if (!last_stripe) {
1770 j++;
1771 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772 batch_list);
1773 goto again;
1774 }
1775 }
1776
1777 static void
1778 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779 struct dma_async_tx_descriptor *tx)
1780 {
1781 struct async_submit_ctl submit;
1782 struct page **blocks;
1783 int count, i, j = 0;
1784 struct stripe_head *head_sh = sh;
1785 int last_stripe;
1786 int synflags;
1787 unsigned long txflags;
1788
1789 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
1791 for (i = 0; i < sh->disks; i++) {
1792 if (sh->pd_idx == i || sh->qd_idx == i)
1793 continue;
1794 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795 break;
1796 }
1797 if (i >= sh->disks) {
1798 atomic_inc(&sh->count);
1799 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801 ops_complete_reconstruct(sh);
1802 return;
1803 }
1804
1805 again:
1806 blocks = to_addr_page(percpu, j);
1807
1808 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809 synflags = SYNDROME_SRC_WRITTEN;
1810 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811 } else {
1812 synflags = SYNDROME_SRC_ALL;
1813 txflags = ASYNC_TX_ACK;
1814 }
1815
1816 count = set_syndrome_sources(blocks, sh, synflags);
1817 last_stripe = !head_sh->batch_head ||
1818 list_first_entry(&sh->batch_list,
1819 struct stripe_head, batch_list) == head_sh;
1820
1821 if (last_stripe) {
1822 atomic_inc(&head_sh->count);
1823 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824 head_sh, to_addr_conv(sh, percpu, j));
1825 } else
1826 init_async_submit(&submit, 0, tx, NULL, NULL,
1827 to_addr_conv(sh, percpu, j));
1828 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1829 if (!last_stripe) {
1830 j++;
1831 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832 batch_list);
1833 goto again;
1834 }
1835 }
1836
1837 static void ops_complete_check(void *stripe_head_ref)
1838 {
1839 struct stripe_head *sh = stripe_head_ref;
1840
1841 pr_debug("%s: stripe %llu\n", __func__,
1842 (unsigned long long)sh->sector);
1843
1844 sh->check_state = check_state_check_result;
1845 set_bit(STRIPE_HANDLE, &sh->state);
1846 release_stripe(sh);
1847 }
1848
1849 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 {
1851 int disks = sh->disks;
1852 int pd_idx = sh->pd_idx;
1853 int qd_idx = sh->qd_idx;
1854 struct page *xor_dest;
1855 struct page **xor_srcs = to_addr_page(percpu, 0);
1856 struct dma_async_tx_descriptor *tx;
1857 struct async_submit_ctl submit;
1858 int count;
1859 int i;
1860
1861 pr_debug("%s: stripe %llu\n", __func__,
1862 (unsigned long long)sh->sector);
1863
1864 BUG_ON(sh->batch_head);
1865 count = 0;
1866 xor_dest = sh->dev[pd_idx].page;
1867 xor_srcs[count++] = xor_dest;
1868 for (i = disks; i--; ) {
1869 if (i == pd_idx || i == qd_idx)
1870 continue;
1871 xor_srcs[count++] = sh->dev[i].page;
1872 }
1873
1874 init_async_submit(&submit, 0, NULL, NULL, NULL,
1875 to_addr_conv(sh, percpu, 0));
1876 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877 &sh->ops.zero_sum_result, &submit);
1878
1879 atomic_inc(&sh->count);
1880 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881 tx = async_trigger_callback(&submit);
1882 }
1883
1884 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885 {
1886 struct page **srcs = to_addr_page(percpu, 0);
1887 struct async_submit_ctl submit;
1888 int count;
1889
1890 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891 (unsigned long long)sh->sector, checkp);
1892
1893 BUG_ON(sh->batch_head);
1894 count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895 if (!checkp)
1896 srcs[count] = NULL;
1897
1898 atomic_inc(&sh->count);
1899 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900 sh, to_addr_conv(sh, percpu, 0));
1901 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 }
1904
1905 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 {
1907 int overlap_clear = 0, i, disks = sh->disks;
1908 struct dma_async_tx_descriptor *tx = NULL;
1909 struct r5conf *conf = sh->raid_conf;
1910 int level = conf->level;
1911 struct raid5_percpu *percpu;
1912 unsigned long cpu;
1913
1914 cpu = get_cpu();
1915 percpu = per_cpu_ptr(conf->percpu, cpu);
1916 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917 ops_run_biofill(sh);
1918 overlap_clear++;
1919 }
1920
1921 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922 if (level < 6)
1923 tx = ops_run_compute5(sh, percpu);
1924 else {
1925 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926 tx = ops_run_compute6_1(sh, percpu);
1927 else
1928 tx = ops_run_compute6_2(sh, percpu);
1929 }
1930 /* terminate the chain if reconstruct is not set to be run */
1931 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932 async_tx_ack(tx);
1933 }
1934
1935 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936 if (level < 6)
1937 tx = ops_run_prexor5(sh, percpu, tx);
1938 else
1939 tx = ops_run_prexor6(sh, percpu, tx);
1940 }
1941
1942 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943 tx = ops_run_biodrain(sh, tx);
1944 overlap_clear++;
1945 }
1946
1947 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948 if (level < 6)
1949 ops_run_reconstruct5(sh, percpu, tx);
1950 else
1951 ops_run_reconstruct6(sh, percpu, tx);
1952 }
1953
1954 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955 if (sh->check_state == check_state_run)
1956 ops_run_check_p(sh, percpu);
1957 else if (sh->check_state == check_state_run_q)
1958 ops_run_check_pq(sh, percpu, 0);
1959 else if (sh->check_state == check_state_run_pq)
1960 ops_run_check_pq(sh, percpu, 1);
1961 else
1962 BUG();
1963 }
1964
1965 if (overlap_clear && !sh->batch_head)
1966 for (i = disks; i--; ) {
1967 struct r5dev *dev = &sh->dev[i];
1968 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969 wake_up(&sh->raid_conf->wait_for_overlap);
1970 }
1971 put_cpu();
1972 }
1973
1974 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1975 {
1976 struct stripe_head *sh;
1977 sh = kmem_cache_zalloc(conf->slab_cache, gfp);
1978 if (!sh)
1979 return 0;
1980
1981 sh->raid_conf = conf;
1982
1983 spin_lock_init(&sh->stripe_lock);
1984
1985 if (grow_buffers(sh, gfp)) {
1986 shrink_buffers(sh);
1987 kmem_cache_free(conf->slab_cache, sh);
1988 return 0;
1989 }
1990 sh->hash_lock_index =
1991 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
1992 /* we just created an active stripe so... */
1993 atomic_set(&sh->count, 1);
1994 atomic_inc(&conf->active_stripes);
1995 INIT_LIST_HEAD(&sh->lru);
1996
1997 spin_lock_init(&sh->batch_lock);
1998 INIT_LIST_HEAD(&sh->batch_list);
1999 sh->batch_head = NULL;
2000 release_stripe(sh);
2001 conf->max_nr_stripes++;
2002 return 1;
2003 }
2004
2005 static int grow_stripes(struct r5conf *conf, int num)
2006 {
2007 struct kmem_cache *sc;
2008 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2009
2010 if (conf->mddev->gendisk)
2011 sprintf(conf->cache_name[0],
2012 "raid%d-%s", conf->level, mdname(conf->mddev));
2013 else
2014 sprintf(conf->cache_name[0],
2015 "raid%d-%p", conf->level, conf->mddev);
2016 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2017
2018 conf->active_name = 0;
2019 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2020 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2021 0, 0, NULL);
2022 if (!sc)
2023 return 1;
2024 conf->slab_cache = sc;
2025 conf->pool_size = devs;
2026 while (num--)
2027 if (!grow_one_stripe(conf, GFP_KERNEL))
2028 return 1;
2029
2030 return 0;
2031 }
2032
2033 /**
2034 * scribble_len - return the required size of the scribble region
2035 * @num - total number of disks in the array
2036 *
2037 * The size must be enough to contain:
2038 * 1/ a struct page pointer for each device in the array +2
2039 * 2/ room to convert each entry in (1) to its corresponding dma
2040 * (dma_map_page()) or page (page_address()) address.
2041 *
2042 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2043 * calculate over all devices (not just the data blocks), using zeros in place
2044 * of the P and Q blocks.
2045 */
2046 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2047 {
2048 struct flex_array *ret;
2049 size_t len;
2050
2051 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2052 ret = flex_array_alloc(len, cnt, flags);
2053 if (!ret)
2054 return NULL;
2055 /* always prealloc all elements, so no locking is required */
2056 if (flex_array_prealloc(ret, 0, cnt, flags)) {
2057 flex_array_free(ret);
2058 return NULL;
2059 }
2060 return ret;
2061 }
2062
2063 static int resize_stripes(struct r5conf *conf, int newsize)
2064 {
2065 /* Make all the stripes able to hold 'newsize' devices.
2066 * New slots in each stripe get 'page' set to a new page.
2067 *
2068 * This happens in stages:
2069 * 1/ create a new kmem_cache and allocate the required number of
2070 * stripe_heads.
2071 * 2/ gather all the old stripe_heads and transfer the pages across
2072 * to the new stripe_heads. This will have the side effect of
2073 * freezing the array as once all stripe_heads have been collected,
2074 * no IO will be possible. Old stripe heads are freed once their
2075 * pages have been transferred over, and the old kmem_cache is
2076 * freed when all stripes are done.
2077 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2078 * we simple return a failre status - no need to clean anything up.
2079 * 4/ allocate new pages for the new slots in the new stripe_heads.
2080 * If this fails, we don't bother trying the shrink the
2081 * stripe_heads down again, we just leave them as they are.
2082 * As each stripe_head is processed the new one is released into
2083 * active service.
2084 *
2085 * Once step2 is started, we cannot afford to wait for a write,
2086 * so we use GFP_NOIO allocations.
2087 */
2088 struct stripe_head *osh, *nsh;
2089 LIST_HEAD(newstripes);
2090 struct disk_info *ndisks;
2091 unsigned long cpu;
2092 int err;
2093 struct kmem_cache *sc;
2094 int i;
2095 int hash, cnt;
2096
2097 if (newsize <= conf->pool_size)
2098 return 0; /* never bother to shrink */
2099
2100 err = md_allow_write(conf->mddev);
2101 if (err)
2102 return err;
2103
2104 /* Step 1 */
2105 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2106 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2107 0, 0, NULL);
2108 if (!sc)
2109 return -ENOMEM;
2110
2111 for (i = conf->max_nr_stripes; i; i--) {
2112 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
2113 if (!nsh)
2114 break;
2115
2116 nsh->raid_conf = conf;
2117 spin_lock_init(&nsh->stripe_lock);
2118
2119 list_add(&nsh->lru, &newstripes);
2120 }
2121 if (i) {
2122 /* didn't get enough, give up */
2123 while (!list_empty(&newstripes)) {
2124 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2125 list_del(&nsh->lru);
2126 kmem_cache_free(sc, nsh);
2127 }
2128 kmem_cache_destroy(sc);
2129 return -ENOMEM;
2130 }
2131 /* Step 2 - Must use GFP_NOIO now.
2132 * OK, we have enough stripes, start collecting inactive
2133 * stripes and copying them over
2134 */
2135 hash = 0;
2136 cnt = 0;
2137 list_for_each_entry(nsh, &newstripes, lru) {
2138 lock_device_hash_lock(conf, hash);
2139 wait_event_cmd(conf->wait_for_stripe,
2140 !list_empty(conf->inactive_list + hash),
2141 unlock_device_hash_lock(conf, hash),
2142 lock_device_hash_lock(conf, hash));
2143 osh = get_free_stripe(conf, hash);
2144 unlock_device_hash_lock(conf, hash);
2145 atomic_set(&nsh->count, 1);
2146 for(i=0; i<conf->pool_size; i++) {
2147 nsh->dev[i].page = osh->dev[i].page;
2148 nsh->dev[i].orig_page = osh->dev[i].page;
2149 }
2150 for( ; i<newsize; i++)
2151 nsh->dev[i].page = NULL;
2152 nsh->hash_lock_index = hash;
2153 kmem_cache_free(conf->slab_cache, osh);
2154 cnt++;
2155 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2156 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2157 hash++;
2158 cnt = 0;
2159 }
2160 }
2161 kmem_cache_destroy(conf->slab_cache);
2162
2163 /* Step 3.
2164 * At this point, we are holding all the stripes so the array
2165 * is completely stalled, so now is a good time to resize
2166 * conf->disks and the scribble region
2167 */
2168 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2169 if (ndisks) {
2170 for (i=0; i<conf->raid_disks; i++)
2171 ndisks[i] = conf->disks[i];
2172 kfree(conf->disks);
2173 conf->disks = ndisks;
2174 } else
2175 err = -ENOMEM;
2176
2177 get_online_cpus();
2178 for_each_present_cpu(cpu) {
2179 struct raid5_percpu *percpu;
2180 struct flex_array *scribble;
2181
2182 percpu = per_cpu_ptr(conf->percpu, cpu);
2183 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2184 STRIPE_SECTORS, GFP_NOIO);
2185
2186 if (scribble) {
2187 flex_array_free(percpu->scribble);
2188 percpu->scribble = scribble;
2189 } else {
2190 err = -ENOMEM;
2191 break;
2192 }
2193 }
2194 put_online_cpus();
2195
2196 /* Step 4, return new stripes to service */
2197 while(!list_empty(&newstripes)) {
2198 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2199 list_del_init(&nsh->lru);
2200
2201 for (i=conf->raid_disks; i < newsize; i++)
2202 if (nsh->dev[i].page == NULL) {
2203 struct page *p = alloc_page(GFP_NOIO);
2204 nsh->dev[i].page = p;
2205 nsh->dev[i].orig_page = p;
2206 if (!p)
2207 err = -ENOMEM;
2208 }
2209 release_stripe(nsh);
2210 }
2211 /* critical section pass, GFP_NOIO no longer needed */
2212
2213 conf->slab_cache = sc;
2214 conf->active_name = 1-conf->active_name;
2215 conf->pool_size = newsize;
2216 return err;
2217 }
2218
2219 static int drop_one_stripe(struct r5conf *conf)
2220 {
2221 struct stripe_head *sh;
2222 int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2223
2224 spin_lock_irq(conf->hash_locks + hash);
2225 sh = get_free_stripe(conf, hash);
2226 spin_unlock_irq(conf->hash_locks + hash);
2227 if (!sh)
2228 return 0;
2229 BUG_ON(atomic_read(&sh->count));
2230 shrink_buffers(sh);
2231 kmem_cache_free(conf->slab_cache, sh);
2232 atomic_dec(&conf->active_stripes);
2233 conf->max_nr_stripes--;
2234 return 1;
2235 }
2236
2237 static void shrink_stripes(struct r5conf *conf)
2238 {
2239 while (conf->max_nr_stripes &&
2240 drop_one_stripe(conf))
2241 ;
2242
2243 if (conf->slab_cache)
2244 kmem_cache_destroy(conf->slab_cache);
2245 conf->slab_cache = NULL;
2246 }
2247
2248 static void raid5_end_read_request(struct bio * bi, int error)
2249 {
2250 struct stripe_head *sh = bi->bi_private;
2251 struct r5conf *conf = sh->raid_conf;
2252 int disks = sh->disks, i;
2253 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2254 char b[BDEVNAME_SIZE];
2255 struct md_rdev *rdev = NULL;
2256 sector_t s;
2257
2258 for (i=0 ; i<disks; i++)
2259 if (bi == &sh->dev[i].req)
2260 break;
2261
2262 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2263 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2264 uptodate);
2265 if (i == disks) {
2266 BUG();
2267 return;
2268 }
2269 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2270 /* If replacement finished while this request was outstanding,
2271 * 'replacement' might be NULL already.
2272 * In that case it moved down to 'rdev'.
2273 * rdev is not removed until all requests are finished.
2274 */
2275 rdev = conf->disks[i].replacement;
2276 if (!rdev)
2277 rdev = conf->disks[i].rdev;
2278
2279 if (use_new_offset(conf, sh))
2280 s = sh->sector + rdev->new_data_offset;
2281 else
2282 s = sh->sector + rdev->data_offset;
2283 if (uptodate) {
2284 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2285 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2286 /* Note that this cannot happen on a
2287 * replacement device. We just fail those on
2288 * any error
2289 */
2290 printk_ratelimited(
2291 KERN_INFO
2292 "md/raid:%s: read error corrected"
2293 " (%lu sectors at %llu on %s)\n",
2294 mdname(conf->mddev), STRIPE_SECTORS,
2295 (unsigned long long)s,
2296 bdevname(rdev->bdev, b));
2297 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2298 clear_bit(R5_ReadError, &sh->dev[i].flags);
2299 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2300 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2301 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2302
2303 if (atomic_read(&rdev->read_errors))
2304 atomic_set(&rdev->read_errors, 0);
2305 } else {
2306 const char *bdn = bdevname(rdev->bdev, b);
2307 int retry = 0;
2308 int set_bad = 0;
2309
2310 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2311 atomic_inc(&rdev->read_errors);
2312 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2313 printk_ratelimited(
2314 KERN_WARNING
2315 "md/raid:%s: read error on replacement device "
2316 "(sector %llu on %s).\n",
2317 mdname(conf->mddev),
2318 (unsigned long long)s,
2319 bdn);
2320 else if (conf->mddev->degraded >= conf->max_degraded) {
2321 set_bad = 1;
2322 printk_ratelimited(
2323 KERN_WARNING
2324 "md/raid:%s: read error not correctable "
2325 "(sector %llu on %s).\n",
2326 mdname(conf->mddev),
2327 (unsigned long long)s,
2328 bdn);
2329 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2330 /* Oh, no!!! */
2331 set_bad = 1;
2332 printk_ratelimited(
2333 KERN_WARNING
2334 "md/raid:%s: read error NOT corrected!! "
2335 "(sector %llu on %s).\n",
2336 mdname(conf->mddev),
2337 (unsigned long long)s,
2338 bdn);
2339 } else if (atomic_read(&rdev->read_errors)
2340 > conf->max_nr_stripes)
2341 printk(KERN_WARNING
2342 "md/raid:%s: Too many read errors, failing device %s.\n",
2343 mdname(conf->mddev), bdn);
2344 else
2345 retry = 1;
2346 if (set_bad && test_bit(In_sync, &rdev->flags)
2347 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2348 retry = 1;
2349 if (retry)
2350 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2351 set_bit(R5_ReadError, &sh->dev[i].flags);
2352 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2353 } else
2354 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2355 else {
2356 clear_bit(R5_ReadError, &sh->dev[i].flags);
2357 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2358 if (!(set_bad
2359 && test_bit(In_sync, &rdev->flags)
2360 && rdev_set_badblocks(
2361 rdev, sh->sector, STRIPE_SECTORS, 0)))
2362 md_error(conf->mddev, rdev);
2363 }
2364 }
2365 rdev_dec_pending(rdev, conf->mddev);
2366 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2367 set_bit(STRIPE_HANDLE, &sh->state);
2368 release_stripe(sh);
2369 }
2370
2371 static void raid5_end_write_request(struct bio *bi, int error)
2372 {
2373 struct stripe_head *sh = bi->bi_private;
2374 struct r5conf *conf = sh->raid_conf;
2375 int disks = sh->disks, i;
2376 struct md_rdev *uninitialized_var(rdev);
2377 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2378 sector_t first_bad;
2379 int bad_sectors;
2380 int replacement = 0;
2381
2382 for (i = 0 ; i < disks; i++) {
2383 if (bi == &sh->dev[i].req) {
2384 rdev = conf->disks[i].rdev;
2385 break;
2386 }
2387 if (bi == &sh->dev[i].rreq) {
2388 rdev = conf->disks[i].replacement;
2389 if (rdev)
2390 replacement = 1;
2391 else
2392 /* rdev was removed and 'replacement'
2393 * replaced it. rdev is not removed
2394 * until all requests are finished.
2395 */
2396 rdev = conf->disks[i].rdev;
2397 break;
2398 }
2399 }
2400 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2401 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2402 uptodate);
2403 if (i == disks) {
2404 BUG();
2405 return;
2406 }
2407
2408 if (replacement) {
2409 if (!uptodate)
2410 md_error(conf->mddev, rdev);
2411 else if (is_badblock(rdev, sh->sector,
2412 STRIPE_SECTORS,
2413 &first_bad, &bad_sectors))
2414 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2415 } else {
2416 if (!uptodate) {
2417 set_bit(STRIPE_DEGRADED, &sh->state);
2418 set_bit(WriteErrorSeen, &rdev->flags);
2419 set_bit(R5_WriteError, &sh->dev[i].flags);
2420 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2421 set_bit(MD_RECOVERY_NEEDED,
2422 &rdev->mddev->recovery);
2423 } else if (is_badblock(rdev, sh->sector,
2424 STRIPE_SECTORS,
2425 &first_bad, &bad_sectors)) {
2426 set_bit(R5_MadeGood, &sh->dev[i].flags);
2427 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2428 /* That was a successful write so make
2429 * sure it looks like we already did
2430 * a re-write.
2431 */
2432 set_bit(R5_ReWrite, &sh->dev[i].flags);
2433 }
2434 }
2435 rdev_dec_pending(rdev, conf->mddev);
2436
2437 if (sh->batch_head && !uptodate)
2438 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2439
2440 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2441 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2442 set_bit(STRIPE_HANDLE, &sh->state);
2443 release_stripe(sh);
2444
2445 if (sh->batch_head && sh != sh->batch_head)
2446 release_stripe(sh->batch_head);
2447 }
2448
2449 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2450
2451 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2452 {
2453 struct r5dev *dev = &sh->dev[i];
2454
2455 bio_init(&dev->req);
2456 dev->req.bi_io_vec = &dev->vec;
2457 dev->req.bi_max_vecs = 1;
2458 dev->req.bi_private = sh;
2459
2460 bio_init(&dev->rreq);
2461 dev->rreq.bi_io_vec = &dev->rvec;
2462 dev->rreq.bi_max_vecs = 1;
2463 dev->rreq.bi_private = sh;
2464
2465 dev->flags = 0;
2466 dev->sector = compute_blocknr(sh, i, previous);
2467 }
2468
2469 static void error(struct mddev *mddev, struct md_rdev *rdev)
2470 {
2471 char b[BDEVNAME_SIZE];
2472 struct r5conf *conf = mddev->private;
2473 unsigned long flags;
2474 pr_debug("raid456: error called\n");
2475
2476 spin_lock_irqsave(&conf->device_lock, flags);
2477 clear_bit(In_sync, &rdev->flags);
2478 mddev->degraded = calc_degraded(conf);
2479 spin_unlock_irqrestore(&conf->device_lock, flags);
2480 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2481
2482 set_bit(Blocked, &rdev->flags);
2483 set_bit(Faulty, &rdev->flags);
2484 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2485 printk(KERN_ALERT
2486 "md/raid:%s: Disk failure on %s, disabling device.\n"
2487 "md/raid:%s: Operation continuing on %d devices.\n",
2488 mdname(mddev),
2489 bdevname(rdev->bdev, b),
2490 mdname(mddev),
2491 conf->raid_disks - mddev->degraded);
2492 }
2493
2494 /*
2495 * Input: a 'big' sector number,
2496 * Output: index of the data and parity disk, and the sector # in them.
2497 */
2498 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2499 int previous, int *dd_idx,
2500 struct stripe_head *sh)
2501 {
2502 sector_t stripe, stripe2;
2503 sector_t chunk_number;
2504 unsigned int chunk_offset;
2505 int pd_idx, qd_idx;
2506 int ddf_layout = 0;
2507 sector_t new_sector;
2508 int algorithm = previous ? conf->prev_algo
2509 : conf->algorithm;
2510 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2511 : conf->chunk_sectors;
2512 int raid_disks = previous ? conf->previous_raid_disks
2513 : conf->raid_disks;
2514 int data_disks = raid_disks - conf->max_degraded;
2515
2516 /* First compute the information on this sector */
2517
2518 /*
2519 * Compute the chunk number and the sector offset inside the chunk
2520 */
2521 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2522 chunk_number = r_sector;
2523
2524 /*
2525 * Compute the stripe number
2526 */
2527 stripe = chunk_number;
2528 *dd_idx = sector_div(stripe, data_disks);
2529 stripe2 = stripe;
2530 /*
2531 * Select the parity disk based on the user selected algorithm.
2532 */
2533 pd_idx = qd_idx = -1;
2534 switch(conf->level) {
2535 case 4:
2536 pd_idx = data_disks;
2537 break;
2538 case 5:
2539 switch (algorithm) {
2540 case ALGORITHM_LEFT_ASYMMETRIC:
2541 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2542 if (*dd_idx >= pd_idx)
2543 (*dd_idx)++;
2544 break;
2545 case ALGORITHM_RIGHT_ASYMMETRIC:
2546 pd_idx = sector_div(stripe2, raid_disks);
2547 if (*dd_idx >= pd_idx)
2548 (*dd_idx)++;
2549 break;
2550 case ALGORITHM_LEFT_SYMMETRIC:
2551 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2552 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2553 break;
2554 case ALGORITHM_RIGHT_SYMMETRIC:
2555 pd_idx = sector_div(stripe2, raid_disks);
2556 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2557 break;
2558 case ALGORITHM_PARITY_0:
2559 pd_idx = 0;
2560 (*dd_idx)++;
2561 break;
2562 case ALGORITHM_PARITY_N:
2563 pd_idx = data_disks;
2564 break;
2565 default:
2566 BUG();
2567 }
2568 break;
2569 case 6:
2570
2571 switch (algorithm) {
2572 case ALGORITHM_LEFT_ASYMMETRIC:
2573 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2574 qd_idx = pd_idx + 1;
2575 if (pd_idx == raid_disks-1) {
2576 (*dd_idx)++; /* Q D D D P */
2577 qd_idx = 0;
2578 } else if (*dd_idx >= pd_idx)
2579 (*dd_idx) += 2; /* D D P Q D */
2580 break;
2581 case ALGORITHM_RIGHT_ASYMMETRIC:
2582 pd_idx = sector_div(stripe2, raid_disks);
2583 qd_idx = pd_idx + 1;
2584 if (pd_idx == raid_disks-1) {
2585 (*dd_idx)++; /* Q D D D P */
2586 qd_idx = 0;
2587 } else if (*dd_idx >= pd_idx)
2588 (*dd_idx) += 2; /* D D P Q D */
2589 break;
2590 case ALGORITHM_LEFT_SYMMETRIC:
2591 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2592 qd_idx = (pd_idx + 1) % raid_disks;
2593 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2594 break;
2595 case ALGORITHM_RIGHT_SYMMETRIC:
2596 pd_idx = sector_div(stripe2, raid_disks);
2597 qd_idx = (pd_idx + 1) % raid_disks;
2598 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2599 break;
2600
2601 case ALGORITHM_PARITY_0:
2602 pd_idx = 0;
2603 qd_idx = 1;
2604 (*dd_idx) += 2;
2605 break;
2606 case ALGORITHM_PARITY_N:
2607 pd_idx = data_disks;
2608 qd_idx = data_disks + 1;
2609 break;
2610
2611 case ALGORITHM_ROTATING_ZERO_RESTART:
2612 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2613 * of blocks for computing Q is different.
2614 */
2615 pd_idx = sector_div(stripe2, raid_disks);
2616 qd_idx = pd_idx + 1;
2617 if (pd_idx == raid_disks-1) {
2618 (*dd_idx)++; /* Q D D D P */
2619 qd_idx = 0;
2620 } else if (*dd_idx >= pd_idx)
2621 (*dd_idx) += 2; /* D D P Q D */
2622 ddf_layout = 1;
2623 break;
2624
2625 case ALGORITHM_ROTATING_N_RESTART:
2626 /* Same a left_asymmetric, by first stripe is
2627 * D D D P Q rather than
2628 * Q D D D P
2629 */
2630 stripe2 += 1;
2631 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2632 qd_idx = pd_idx + 1;
2633 if (pd_idx == raid_disks-1) {
2634 (*dd_idx)++; /* Q D D D P */
2635 qd_idx = 0;
2636 } else if (*dd_idx >= pd_idx)
2637 (*dd_idx) += 2; /* D D P Q D */
2638 ddf_layout = 1;
2639 break;
2640
2641 case ALGORITHM_ROTATING_N_CONTINUE:
2642 /* Same as left_symmetric but Q is before P */
2643 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2644 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2645 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2646 ddf_layout = 1;
2647 break;
2648
2649 case ALGORITHM_LEFT_ASYMMETRIC_6:
2650 /* RAID5 left_asymmetric, with Q on last device */
2651 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2652 if (*dd_idx >= pd_idx)
2653 (*dd_idx)++;
2654 qd_idx = raid_disks - 1;
2655 break;
2656
2657 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2658 pd_idx = sector_div(stripe2, raid_disks-1);
2659 if (*dd_idx >= pd_idx)
2660 (*dd_idx)++;
2661 qd_idx = raid_disks - 1;
2662 break;
2663
2664 case ALGORITHM_LEFT_SYMMETRIC_6:
2665 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2666 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2667 qd_idx = raid_disks - 1;
2668 break;
2669
2670 case ALGORITHM_RIGHT_SYMMETRIC_6:
2671 pd_idx = sector_div(stripe2, raid_disks-1);
2672 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2673 qd_idx = raid_disks - 1;
2674 break;
2675
2676 case ALGORITHM_PARITY_0_6:
2677 pd_idx = 0;
2678 (*dd_idx)++;
2679 qd_idx = raid_disks - 1;
2680 break;
2681
2682 default:
2683 BUG();
2684 }
2685 break;
2686 }
2687
2688 if (sh) {
2689 sh->pd_idx = pd_idx;
2690 sh->qd_idx = qd_idx;
2691 sh->ddf_layout = ddf_layout;
2692 }
2693 /*
2694 * Finally, compute the new sector number
2695 */
2696 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2697 return new_sector;
2698 }
2699
2700 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2701 {
2702 struct r5conf *conf = sh->raid_conf;
2703 int raid_disks = sh->disks;
2704 int data_disks = raid_disks - conf->max_degraded;
2705 sector_t new_sector = sh->sector, check;
2706 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2707 : conf->chunk_sectors;
2708 int algorithm = previous ? conf->prev_algo
2709 : conf->algorithm;
2710 sector_t stripe;
2711 int chunk_offset;
2712 sector_t chunk_number;
2713 int dummy1, dd_idx = i;
2714 sector_t r_sector;
2715 struct stripe_head sh2;
2716
2717 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2718 stripe = new_sector;
2719
2720 if (i == sh->pd_idx)
2721 return 0;
2722 switch(conf->level) {
2723 case 4: break;
2724 case 5:
2725 switch (algorithm) {
2726 case ALGORITHM_LEFT_ASYMMETRIC:
2727 case ALGORITHM_RIGHT_ASYMMETRIC:
2728 if (i > sh->pd_idx)
2729 i--;
2730 break;
2731 case ALGORITHM_LEFT_SYMMETRIC:
2732 case ALGORITHM_RIGHT_SYMMETRIC:
2733 if (i < sh->pd_idx)
2734 i += raid_disks;
2735 i -= (sh->pd_idx + 1);
2736 break;
2737 case ALGORITHM_PARITY_0:
2738 i -= 1;
2739 break;
2740 case ALGORITHM_PARITY_N:
2741 break;
2742 default:
2743 BUG();
2744 }
2745 break;
2746 case 6:
2747 if (i == sh->qd_idx)
2748 return 0; /* It is the Q disk */
2749 switch (algorithm) {
2750 case ALGORITHM_LEFT_ASYMMETRIC:
2751 case ALGORITHM_RIGHT_ASYMMETRIC:
2752 case ALGORITHM_ROTATING_ZERO_RESTART:
2753 case ALGORITHM_ROTATING_N_RESTART:
2754 if (sh->pd_idx == raid_disks-1)
2755 i--; /* Q D D D P */
2756 else if (i > sh->pd_idx)
2757 i -= 2; /* D D P Q D */
2758 break;
2759 case ALGORITHM_LEFT_SYMMETRIC:
2760 case ALGORITHM_RIGHT_SYMMETRIC:
2761 if (sh->pd_idx == raid_disks-1)
2762 i--; /* Q D D D P */
2763 else {
2764 /* D D P Q D */
2765 if (i < sh->pd_idx)
2766 i += raid_disks;
2767 i -= (sh->pd_idx + 2);
2768 }
2769 break;
2770 case ALGORITHM_PARITY_0:
2771 i -= 2;
2772 break;
2773 case ALGORITHM_PARITY_N:
2774 break;
2775 case ALGORITHM_ROTATING_N_CONTINUE:
2776 /* Like left_symmetric, but P is before Q */
2777 if (sh->pd_idx == 0)
2778 i--; /* P D D D Q */
2779 else {
2780 /* D D Q P D */
2781 if (i < sh->pd_idx)
2782 i += raid_disks;
2783 i -= (sh->pd_idx + 1);
2784 }
2785 break;
2786 case ALGORITHM_LEFT_ASYMMETRIC_6:
2787 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2788 if (i > sh->pd_idx)
2789 i--;
2790 break;
2791 case ALGORITHM_LEFT_SYMMETRIC_6:
2792 case ALGORITHM_RIGHT_SYMMETRIC_6:
2793 if (i < sh->pd_idx)
2794 i += data_disks + 1;
2795 i -= (sh->pd_idx + 1);
2796 break;
2797 case ALGORITHM_PARITY_0_6:
2798 i -= 1;
2799 break;
2800 default:
2801 BUG();
2802 }
2803 break;
2804 }
2805
2806 chunk_number = stripe * data_disks + i;
2807 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2808
2809 check = raid5_compute_sector(conf, r_sector,
2810 previous, &dummy1, &sh2);
2811 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2812 || sh2.qd_idx != sh->qd_idx) {
2813 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2814 mdname(conf->mddev));
2815 return 0;
2816 }
2817 return r_sector;
2818 }
2819
2820 static void
2821 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2822 int rcw, int expand)
2823 {
2824 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2825 struct r5conf *conf = sh->raid_conf;
2826 int level = conf->level;
2827
2828 if (rcw) {
2829
2830 for (i = disks; i--; ) {
2831 struct r5dev *dev = &sh->dev[i];
2832
2833 if (dev->towrite) {
2834 set_bit(R5_LOCKED, &dev->flags);
2835 set_bit(R5_Wantdrain, &dev->flags);
2836 if (!expand)
2837 clear_bit(R5_UPTODATE, &dev->flags);
2838 s->locked++;
2839 }
2840 }
2841 /* if we are not expanding this is a proper write request, and
2842 * there will be bios with new data to be drained into the
2843 * stripe cache
2844 */
2845 if (!expand) {
2846 if (!s->locked)
2847 /* False alarm, nothing to do */
2848 return;
2849 sh->reconstruct_state = reconstruct_state_drain_run;
2850 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2851 } else
2852 sh->reconstruct_state = reconstruct_state_run;
2853
2854 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2855
2856 if (s->locked + conf->max_degraded == disks)
2857 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2858 atomic_inc(&conf->pending_full_writes);
2859 } else {
2860 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2861 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2862 BUG_ON(level == 6 &&
2863 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2864 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2865
2866 for (i = disks; i--; ) {
2867 struct r5dev *dev = &sh->dev[i];
2868 if (i == pd_idx || i == qd_idx)
2869 continue;
2870
2871 if (dev->towrite &&
2872 (test_bit(R5_UPTODATE, &dev->flags) ||
2873 test_bit(R5_Wantcompute, &dev->flags))) {
2874 set_bit(R5_Wantdrain, &dev->flags);
2875 set_bit(R5_LOCKED, &dev->flags);
2876 clear_bit(R5_UPTODATE, &dev->flags);
2877 s->locked++;
2878 }
2879 }
2880 if (!s->locked)
2881 /* False alarm - nothing to do */
2882 return;
2883 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2884 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2885 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2886 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2887 }
2888
2889 /* keep the parity disk(s) locked while asynchronous operations
2890 * are in flight
2891 */
2892 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2893 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2894 s->locked++;
2895
2896 if (level == 6) {
2897 int qd_idx = sh->qd_idx;
2898 struct r5dev *dev = &sh->dev[qd_idx];
2899
2900 set_bit(R5_LOCKED, &dev->flags);
2901 clear_bit(R5_UPTODATE, &dev->flags);
2902 s->locked++;
2903 }
2904
2905 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2906 __func__, (unsigned long long)sh->sector,
2907 s->locked, s->ops_request);
2908 }
2909
2910 /*
2911 * Each stripe/dev can have one or more bion attached.
2912 * toread/towrite point to the first in a chain.
2913 * The bi_next chain must be in order.
2914 */
2915 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2916 int forwrite, int previous)
2917 {
2918 struct bio **bip;
2919 struct r5conf *conf = sh->raid_conf;
2920 int firstwrite=0;
2921
2922 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2923 (unsigned long long)bi->bi_iter.bi_sector,
2924 (unsigned long long)sh->sector);
2925
2926 /*
2927 * If several bio share a stripe. The bio bi_phys_segments acts as a
2928 * reference count to avoid race. The reference count should already be
2929 * increased before this function is called (for example, in
2930 * make_request()), so other bio sharing this stripe will not free the
2931 * stripe. If a stripe is owned by one stripe, the stripe lock will
2932 * protect it.
2933 */
2934 spin_lock_irq(&sh->stripe_lock);
2935 /* Don't allow new IO added to stripes in batch list */
2936 if (sh->batch_head)
2937 goto overlap;
2938 if (forwrite) {
2939 bip = &sh->dev[dd_idx].towrite;
2940 if (*bip == NULL)
2941 firstwrite = 1;
2942 } else
2943 bip = &sh->dev[dd_idx].toread;
2944 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2945 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2946 goto overlap;
2947 bip = & (*bip)->bi_next;
2948 }
2949 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2950 goto overlap;
2951
2952 if (!forwrite || previous)
2953 clear_bit(STRIPE_BATCH_READY, &sh->state);
2954
2955 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2956 if (*bip)
2957 bi->bi_next = *bip;
2958 *bip = bi;
2959 raid5_inc_bi_active_stripes(bi);
2960
2961 if (forwrite) {
2962 /* check if page is covered */
2963 sector_t sector = sh->dev[dd_idx].sector;
2964 for (bi=sh->dev[dd_idx].towrite;
2965 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2966 bi && bi->bi_iter.bi_sector <= sector;
2967 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2968 if (bio_end_sector(bi) >= sector)
2969 sector = bio_end_sector(bi);
2970 }
2971 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2972 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2973 sh->overwrite_disks++;
2974 }
2975
2976 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2977 (unsigned long long)(*bip)->bi_iter.bi_sector,
2978 (unsigned long long)sh->sector, dd_idx);
2979 spin_unlock_irq(&sh->stripe_lock);
2980
2981 if (conf->mddev->bitmap && firstwrite) {
2982 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2983 STRIPE_SECTORS, 0);
2984 sh->bm_seq = conf->seq_flush+1;
2985 set_bit(STRIPE_BIT_DELAY, &sh->state);
2986 }
2987
2988 if (stripe_can_batch(sh))
2989 stripe_add_to_batch_list(conf, sh);
2990 return 1;
2991
2992 overlap:
2993 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2994 spin_unlock_irq(&sh->stripe_lock);
2995 return 0;
2996 }
2997
2998 static void end_reshape(struct r5conf *conf);
2999
3000 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3001 struct stripe_head *sh)
3002 {
3003 int sectors_per_chunk =
3004 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3005 int dd_idx;
3006 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3007 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3008
3009 raid5_compute_sector(conf,
3010 stripe * (disks - conf->max_degraded)
3011 *sectors_per_chunk + chunk_offset,
3012 previous,
3013 &dd_idx, sh);
3014 }
3015
3016 static void
3017 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3018 struct stripe_head_state *s, int disks,
3019 struct bio **return_bi)
3020 {
3021 int i;
3022 BUG_ON(sh->batch_head);
3023 for (i = disks; i--; ) {
3024 struct bio *bi;
3025 int bitmap_end = 0;
3026
3027 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3028 struct md_rdev *rdev;
3029 rcu_read_lock();
3030 rdev = rcu_dereference(conf->disks[i].rdev);
3031 if (rdev && test_bit(In_sync, &rdev->flags))
3032 atomic_inc(&rdev->nr_pending);
3033 else
3034 rdev = NULL;
3035 rcu_read_unlock();
3036 if (rdev) {
3037 if (!rdev_set_badblocks(
3038 rdev,
3039 sh->sector,
3040 STRIPE_SECTORS, 0))
3041 md_error(conf->mddev, rdev);
3042 rdev_dec_pending(rdev, conf->mddev);
3043 }
3044 }
3045 spin_lock_irq(&sh->stripe_lock);
3046 /* fail all writes first */
3047 bi = sh->dev[i].towrite;
3048 sh->dev[i].towrite = NULL;
3049 sh->overwrite_disks = 0;
3050 spin_unlock_irq(&sh->stripe_lock);
3051 if (bi)
3052 bitmap_end = 1;
3053
3054 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3055 wake_up(&conf->wait_for_overlap);
3056
3057 while (bi && bi->bi_iter.bi_sector <
3058 sh->dev[i].sector + STRIPE_SECTORS) {
3059 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3060 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3061 if (!raid5_dec_bi_active_stripes(bi)) {
3062 md_write_end(conf->mddev);
3063 bi->bi_next = *return_bi;
3064 *return_bi = bi;
3065 }
3066 bi = nextbi;
3067 }
3068 if (bitmap_end)
3069 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3070 STRIPE_SECTORS, 0, 0);
3071 bitmap_end = 0;
3072 /* and fail all 'written' */
3073 bi = sh->dev[i].written;
3074 sh->dev[i].written = NULL;
3075 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3076 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3077 sh->dev[i].page = sh->dev[i].orig_page;
3078 }
3079
3080 if (bi) bitmap_end = 1;
3081 while (bi && bi->bi_iter.bi_sector <
3082 sh->dev[i].sector + STRIPE_SECTORS) {
3083 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3084 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3085 if (!raid5_dec_bi_active_stripes(bi)) {
3086 md_write_end(conf->mddev);
3087 bi->bi_next = *return_bi;
3088 *return_bi = bi;
3089 }
3090 bi = bi2;
3091 }
3092
3093 /* fail any reads if this device is non-operational and
3094 * the data has not reached the cache yet.
3095 */
3096 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3097 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3098 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3099 spin_lock_irq(&sh->stripe_lock);
3100 bi = sh->dev[i].toread;
3101 sh->dev[i].toread = NULL;
3102 spin_unlock_irq(&sh->stripe_lock);
3103 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3104 wake_up(&conf->wait_for_overlap);
3105 while (bi && bi->bi_iter.bi_sector <
3106 sh->dev[i].sector + STRIPE_SECTORS) {
3107 struct bio *nextbi =
3108 r5_next_bio(bi, sh->dev[i].sector);
3109 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3110 if (!raid5_dec_bi_active_stripes(bi)) {
3111 bi->bi_next = *return_bi;
3112 *return_bi = bi;
3113 }
3114 bi = nextbi;
3115 }
3116 }
3117 if (bitmap_end)
3118 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3119 STRIPE_SECTORS, 0, 0);
3120 /* If we were in the middle of a write the parity block might
3121 * still be locked - so just clear all R5_LOCKED flags
3122 */
3123 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3127 if (atomic_dec_and_test(&conf->pending_full_writes))
3128 md_wakeup_thread(conf->mddev->thread);
3129 }
3130
3131 static void
3132 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3133 struct stripe_head_state *s)
3134 {
3135 int abort = 0;
3136 int i;
3137
3138 BUG_ON(sh->batch_head);
3139 clear_bit(STRIPE_SYNCING, &sh->state);
3140 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3141 wake_up(&conf->wait_for_overlap);
3142 s->syncing = 0;
3143 s->replacing = 0;
3144 /* There is nothing more to do for sync/check/repair.
3145 * Don't even need to abort as that is handled elsewhere
3146 * if needed, and not always wanted e.g. if there is a known
3147 * bad block here.
3148 * For recover/replace we need to record a bad block on all
3149 * non-sync devices, or abort the recovery
3150 */
3151 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3152 /* During recovery devices cannot be removed, so
3153 * locking and refcounting of rdevs is not needed
3154 */
3155 for (i = 0; i < conf->raid_disks; i++) {
3156 struct md_rdev *rdev = conf->disks[i].rdev;
3157 if (rdev
3158 && !test_bit(Faulty, &rdev->flags)
3159 && !test_bit(In_sync, &rdev->flags)
3160 && !rdev_set_badblocks(rdev, sh->sector,
3161 STRIPE_SECTORS, 0))
3162 abort = 1;
3163 rdev = conf->disks[i].replacement;
3164 if (rdev
3165 && !test_bit(Faulty, &rdev->flags)
3166 && !test_bit(In_sync, &rdev->flags)
3167 && !rdev_set_badblocks(rdev, sh->sector,
3168 STRIPE_SECTORS, 0))
3169 abort = 1;
3170 }
3171 if (abort)
3172 conf->recovery_disabled =
3173 conf->mddev->recovery_disabled;
3174 }
3175 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3176 }
3177
3178 static int want_replace(struct stripe_head *sh, int disk_idx)
3179 {
3180 struct md_rdev *rdev;
3181 int rv = 0;
3182 /* Doing recovery so rcu locking not required */
3183 rdev = sh->raid_conf->disks[disk_idx].replacement;
3184 if (rdev
3185 && !test_bit(Faulty, &rdev->flags)
3186 && !test_bit(In_sync, &rdev->flags)
3187 && (rdev->recovery_offset <= sh->sector
3188 || rdev->mddev->recovery_cp <= sh->sector))
3189 rv = 1;
3190
3191 return rv;
3192 }
3193
3194 /* fetch_block - checks the given member device to see if its data needs
3195 * to be read or computed to satisfy a request.
3196 *
3197 * Returns 1 when no more member devices need to be checked, otherwise returns
3198 * 0 to tell the loop in handle_stripe_fill to continue
3199 */
3200
3201 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3202 int disk_idx, int disks)
3203 {
3204 struct r5dev *dev = &sh->dev[disk_idx];
3205 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3206 &sh->dev[s->failed_num[1]] };
3207 int i;
3208
3209
3210 if (test_bit(R5_LOCKED, &dev->flags) ||
3211 test_bit(R5_UPTODATE, &dev->flags))
3212 /* No point reading this as we already have it or have
3213 * decided to get it.
3214 */
3215 return 0;
3216
3217 if (dev->toread ||
3218 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3219 /* We need this block to directly satisfy a request */
3220 return 1;
3221
3222 if (s->syncing || s->expanding ||
3223 (s->replacing && want_replace(sh, disk_idx)))
3224 /* When syncing, or expanding we read everything.
3225 * When replacing, we need the replaced block.
3226 */
3227 return 1;
3228
3229 if ((s->failed >= 1 && fdev[0]->toread) ||
3230 (s->failed >= 2 && fdev[1]->toread))
3231 /* If we want to read from a failed device, then
3232 * we need to actually read every other device.
3233 */
3234 return 1;
3235
3236 /* Sometimes neither read-modify-write nor reconstruct-write
3237 * cycles can work. In those cases we read every block we
3238 * can. Then the parity-update is certain to have enough to
3239 * work with.
3240 * This can only be a problem when we need to write something,
3241 * and some device has failed. If either of those tests
3242 * fail we need look no further.
3243 */
3244 if (!s->failed || !s->to_write)
3245 return 0;
3246
3247 if (test_bit(R5_Insync, &dev->flags) &&
3248 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3249 /* Pre-reads at not permitted until after short delay
3250 * to gather multiple requests. However if this
3251 * device is no Insync, the block could only be be computed
3252 * and there is no need to delay that.
3253 */
3254 return 0;
3255
3256 for (i = 0; i < s->failed; i++) {
3257 if (fdev[i]->towrite &&
3258 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3259 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3260 /* If we have a partial write to a failed
3261 * device, then we will need to reconstruct
3262 * the content of that device, so all other
3263 * devices must be read.
3264 */
3265 return 1;
3266 }
3267
3268 /* If we are forced to do a reconstruct-write, either because
3269 * the current RAID6 implementation only supports that, or
3270 * or because parity cannot be trusted and we are currently
3271 * recovering it, there is extra need to be careful.
3272 * If one of the devices that we would need to read, because
3273 * it is not being overwritten (and maybe not written at all)
3274 * is missing/faulty, then we need to read everything we can.
3275 */
3276 if (sh->raid_conf->level != 6 &&
3277 sh->sector < sh->raid_conf->mddev->recovery_cp)
3278 /* reconstruct-write isn't being forced */
3279 return 0;
3280 for (i = 0; i < s->failed; i++) {
3281 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3282 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3283 return 1;
3284 }
3285
3286 return 0;
3287 }
3288
3289 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3290 int disk_idx, int disks)
3291 {
3292 struct r5dev *dev = &sh->dev[disk_idx];
3293
3294 /* is the data in this block needed, and can we get it? */
3295 if (need_this_block(sh, s, disk_idx, disks)) {
3296 /* we would like to get this block, possibly by computing it,
3297 * otherwise read it if the backing disk is insync
3298 */
3299 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3300 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3301 if ((s->uptodate == disks - 1) &&
3302 (s->failed && (disk_idx == s->failed_num[0] ||
3303 disk_idx == s->failed_num[1]))) {
3304 /* have disk failed, and we're requested to fetch it;
3305 * do compute it
3306 */
3307 pr_debug("Computing stripe %llu block %d\n",
3308 (unsigned long long)sh->sector, disk_idx);
3309 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3310 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3311 set_bit(R5_Wantcompute, &dev->flags);
3312 sh->ops.target = disk_idx;
3313 sh->ops.target2 = -1; /* no 2nd target */
3314 s->req_compute = 1;
3315 /* Careful: from this point on 'uptodate' is in the eye
3316 * of raid_run_ops which services 'compute' operations
3317 * before writes. R5_Wantcompute flags a block that will
3318 * be R5_UPTODATE by the time it is needed for a
3319 * subsequent operation.
3320 */
3321 s->uptodate++;
3322 return 1;
3323 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3324 /* Computing 2-failure is *very* expensive; only
3325 * do it if failed >= 2
3326 */
3327 int other;
3328 for (other = disks; other--; ) {
3329 if (other == disk_idx)
3330 continue;
3331 if (!test_bit(R5_UPTODATE,
3332 &sh->dev[other].flags))
3333 break;
3334 }
3335 BUG_ON(other < 0);
3336 pr_debug("Computing stripe %llu blocks %d,%d\n",
3337 (unsigned long long)sh->sector,
3338 disk_idx, other);
3339 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3340 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3341 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3342 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3343 sh->ops.target = disk_idx;
3344 sh->ops.target2 = other;
3345 s->uptodate += 2;
3346 s->req_compute = 1;
3347 return 1;
3348 } else if (test_bit(R5_Insync, &dev->flags)) {
3349 set_bit(R5_LOCKED, &dev->flags);
3350 set_bit(R5_Wantread, &dev->flags);
3351 s->locked++;
3352 pr_debug("Reading block %d (sync=%d)\n",
3353 disk_idx, s->syncing);
3354 }
3355 }
3356
3357 return 0;
3358 }
3359
3360 /**
3361 * handle_stripe_fill - read or compute data to satisfy pending requests.
3362 */
3363 static void handle_stripe_fill(struct stripe_head *sh,
3364 struct stripe_head_state *s,
3365 int disks)
3366 {
3367 int i;
3368
3369 BUG_ON(sh->batch_head);
3370 /* look for blocks to read/compute, skip this if a compute
3371 * is already in flight, or if the stripe contents are in the
3372 * midst of changing due to a write
3373 */
3374 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3375 !sh->reconstruct_state)
3376 for (i = disks; i--; )
3377 if (fetch_block(sh, s, i, disks))
3378 break;
3379 set_bit(STRIPE_HANDLE, &sh->state);
3380 }
3381
3382 /* handle_stripe_clean_event
3383 * any written block on an uptodate or failed drive can be returned.
3384 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3385 * never LOCKED, so we don't need to test 'failed' directly.
3386 */
3387 static void handle_stripe_clean_event(struct r5conf *conf,
3388 struct stripe_head *sh, int disks, struct bio **return_bi)
3389 {
3390 int i;
3391 struct r5dev *dev;
3392 int discard_pending = 0;
3393 struct stripe_head *head_sh = sh;
3394 bool do_endio = false;
3395 int wakeup_nr = 0;
3396
3397 for (i = disks; i--; )
3398 if (sh->dev[i].written) {
3399 dev = &sh->dev[i];
3400 if (!test_bit(R5_LOCKED, &dev->flags) &&
3401 (test_bit(R5_UPTODATE, &dev->flags) ||
3402 test_bit(R5_Discard, &dev->flags) ||
3403 test_bit(R5_SkipCopy, &dev->flags))) {
3404 /* We can return any write requests */
3405 struct bio *wbi, *wbi2;
3406 pr_debug("Return write for disc %d\n", i);
3407 if (test_and_clear_bit(R5_Discard, &dev->flags))
3408 clear_bit(R5_UPTODATE, &dev->flags);
3409 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3410 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3411 }
3412 do_endio = true;
3413
3414 returnbi:
3415 dev->page = dev->orig_page;
3416 wbi = dev->written;
3417 dev->written = NULL;
3418 while (wbi && wbi->bi_iter.bi_sector <
3419 dev->sector + STRIPE_SECTORS) {
3420 wbi2 = r5_next_bio(wbi, dev->sector);
3421 if (!raid5_dec_bi_active_stripes(wbi)) {
3422 md_write_end(conf->mddev);
3423 wbi->bi_next = *return_bi;
3424 *return_bi = wbi;
3425 }
3426 wbi = wbi2;
3427 }
3428 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3429 STRIPE_SECTORS,
3430 !test_bit(STRIPE_DEGRADED, &sh->state),
3431 0);
3432 if (head_sh->batch_head) {
3433 sh = list_first_entry(&sh->batch_list,
3434 struct stripe_head,
3435 batch_list);
3436 if (sh != head_sh) {
3437 dev = &sh->dev[i];
3438 goto returnbi;
3439 }
3440 }
3441 sh = head_sh;
3442 dev = &sh->dev[i];
3443 } else if (test_bit(R5_Discard, &dev->flags))
3444 discard_pending = 1;
3445 WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3446 WARN_ON(dev->page != dev->orig_page);
3447 }
3448 if (!discard_pending &&
3449 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3450 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3451 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3452 if (sh->qd_idx >= 0) {
3453 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3454 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3455 }
3456 /* now that discard is done we can proceed with any sync */
3457 clear_bit(STRIPE_DISCARD, &sh->state);
3458 /*
3459 * SCSI discard will change some bio fields and the stripe has
3460 * no updated data, so remove it from hash list and the stripe
3461 * will be reinitialized
3462 */
3463 spin_lock_irq(&conf->device_lock);
3464 unhash:
3465 remove_hash(sh);
3466 if (head_sh->batch_head) {
3467 sh = list_first_entry(&sh->batch_list,
3468 struct stripe_head, batch_list);
3469 if (sh != head_sh)
3470 goto unhash;
3471 }
3472 spin_unlock_irq(&conf->device_lock);
3473 sh = head_sh;
3474
3475 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3476 set_bit(STRIPE_HANDLE, &sh->state);
3477
3478 }
3479
3480 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3481 if (atomic_dec_and_test(&conf->pending_full_writes))
3482 md_wakeup_thread(conf->mddev->thread);
3483
3484 if (!head_sh->batch_head || !do_endio)
3485 return;
3486 for (i = 0; i < head_sh->disks; i++) {
3487 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3488 wakeup_nr++;
3489 }
3490 while (!list_empty(&head_sh->batch_list)) {
3491 int i;
3492 sh = list_first_entry(&head_sh->batch_list,
3493 struct stripe_head, batch_list);
3494 list_del_init(&sh->batch_list);
3495
3496 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3497 head_sh->state & ~((1 << STRIPE_ACTIVE) |
3498 (1 << STRIPE_PREREAD_ACTIVE) |
3499 STRIPE_EXPAND_SYNC_FLAG));
3500 sh->check_state = head_sh->check_state;
3501 sh->reconstruct_state = head_sh->reconstruct_state;
3502 for (i = 0; i < sh->disks; i++) {
3503 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3504 wakeup_nr++;
3505 sh->dev[i].flags = head_sh->dev[i].flags;
3506 }
3507
3508 spin_lock_irq(&sh->stripe_lock);
3509 sh->batch_head = NULL;
3510 spin_unlock_irq(&sh->stripe_lock);
3511 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3512 set_bit(STRIPE_HANDLE, &sh->state);
3513 release_stripe(sh);
3514 }
3515
3516 spin_lock_irq(&head_sh->stripe_lock);
3517 head_sh->batch_head = NULL;
3518 spin_unlock_irq(&head_sh->stripe_lock);
3519 wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3520 if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3521 set_bit(STRIPE_HANDLE, &head_sh->state);
3522 }
3523
3524 static void handle_stripe_dirtying(struct r5conf *conf,
3525 struct stripe_head *sh,
3526 struct stripe_head_state *s,
3527 int disks)
3528 {
3529 int rmw = 0, rcw = 0, i;
3530 sector_t recovery_cp = conf->mddev->recovery_cp;
3531
3532 /* Check whether resync is now happening or should start.
3533 * If yes, then the array is dirty (after unclean shutdown or
3534 * initial creation), so parity in some stripes might be inconsistent.
3535 * In this case, we need to always do reconstruct-write, to ensure
3536 * that in case of drive failure or read-error correction, we
3537 * generate correct data from the parity.
3538 */
3539 if (conf->rmw_level == PARITY_DISABLE_RMW ||
3540 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3541 s->failed == 0)) {
3542 /* Calculate the real rcw later - for now make it
3543 * look like rcw is cheaper
3544 */
3545 rcw = 1; rmw = 2;
3546 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3547 conf->rmw_level, (unsigned long long)recovery_cp,
3548 (unsigned long long)sh->sector);
3549 } else for (i = disks; i--; ) {
3550 /* would I have to read this buffer for read_modify_write */
3551 struct r5dev *dev = &sh->dev[i];
3552 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3553 !test_bit(R5_LOCKED, &dev->flags) &&
3554 !(test_bit(R5_UPTODATE, &dev->flags) ||
3555 test_bit(R5_Wantcompute, &dev->flags))) {
3556 if (test_bit(R5_Insync, &dev->flags))
3557 rmw++;
3558 else
3559 rmw += 2*disks; /* cannot read it */
3560 }
3561 /* Would I have to read this buffer for reconstruct_write */
3562 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3563 i != sh->pd_idx && i != sh->qd_idx &&
3564 !test_bit(R5_LOCKED, &dev->flags) &&
3565 !(test_bit(R5_UPTODATE, &dev->flags) ||
3566 test_bit(R5_Wantcompute, &dev->flags))) {
3567 if (test_bit(R5_Insync, &dev->flags))
3568 rcw++;
3569 else
3570 rcw += 2*disks;
3571 }
3572 }
3573 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3574 (unsigned long long)sh->sector, rmw, rcw);
3575 set_bit(STRIPE_HANDLE, &sh->state);
3576 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3577 /* prefer read-modify-write, but need to get some data */
3578 if (conf->mddev->queue)
3579 blk_add_trace_msg(conf->mddev->queue,
3580 "raid5 rmw %llu %d",
3581 (unsigned long long)sh->sector, rmw);
3582 for (i = disks; i--; ) {
3583 struct r5dev *dev = &sh->dev[i];
3584 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3585 !test_bit(R5_LOCKED, &dev->flags) &&
3586 !(test_bit(R5_UPTODATE, &dev->flags) ||
3587 test_bit(R5_Wantcompute, &dev->flags)) &&
3588 test_bit(R5_Insync, &dev->flags)) {
3589 if (test_bit(STRIPE_PREREAD_ACTIVE,
3590 &sh->state)) {
3591 pr_debug("Read_old block %d for r-m-w\n",
3592 i);
3593 set_bit(R5_LOCKED, &dev->flags);
3594 set_bit(R5_Wantread, &dev->flags);
3595 s->locked++;
3596 } else {
3597 set_bit(STRIPE_DELAYED, &sh->state);
3598 set_bit(STRIPE_HANDLE, &sh->state);
3599 }
3600 }
3601 }
3602 }
3603 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3604 /* want reconstruct write, but need to get some data */
3605 int qread =0;
3606 rcw = 0;
3607 for (i = disks; i--; ) {
3608 struct r5dev *dev = &sh->dev[i];
3609 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3610 i != sh->pd_idx && i != sh->qd_idx &&
3611 !test_bit(R5_LOCKED, &dev->flags) &&
3612 !(test_bit(R5_UPTODATE, &dev->flags) ||
3613 test_bit(R5_Wantcompute, &dev->flags))) {
3614 rcw++;
3615 if (test_bit(R5_Insync, &dev->flags) &&
3616 test_bit(STRIPE_PREREAD_ACTIVE,
3617 &sh->state)) {
3618 pr_debug("Read_old block "
3619 "%d for Reconstruct\n", i);
3620 set_bit(R5_LOCKED, &dev->flags);
3621 set_bit(R5_Wantread, &dev->flags);
3622 s->locked++;
3623 qread++;
3624 } else {
3625 set_bit(STRIPE_DELAYED, &sh->state);
3626 set_bit(STRIPE_HANDLE, &sh->state);
3627 }
3628 }
3629 }
3630 if (rcw && conf->mddev->queue)
3631 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3632 (unsigned long long)sh->sector,
3633 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3634 }
3635
3636 if (rcw > disks && rmw > disks &&
3637 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3638 set_bit(STRIPE_DELAYED, &sh->state);
3639
3640 /* now if nothing is locked, and if we have enough data,
3641 * we can start a write request
3642 */
3643 /* since handle_stripe can be called at any time we need to handle the
3644 * case where a compute block operation has been submitted and then a
3645 * subsequent call wants to start a write request. raid_run_ops only
3646 * handles the case where compute block and reconstruct are requested
3647 * simultaneously. If this is not the case then new writes need to be
3648 * held off until the compute completes.
3649 */
3650 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3651 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3652 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3653 schedule_reconstruction(sh, s, rcw == 0, 0);
3654 }
3655
3656 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3657 struct stripe_head_state *s, int disks)
3658 {
3659 struct r5dev *dev = NULL;
3660
3661 BUG_ON(sh->batch_head);
3662 set_bit(STRIPE_HANDLE, &sh->state);
3663
3664 switch (sh->check_state) {
3665 case check_state_idle:
3666 /* start a new check operation if there are no failures */
3667 if (s->failed == 0) {
3668 BUG_ON(s->uptodate != disks);
3669 sh->check_state = check_state_run;
3670 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3671 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3672 s->uptodate--;
3673 break;
3674 }
3675 dev = &sh->dev[s->failed_num[0]];
3676 /* fall through */
3677 case check_state_compute_result:
3678 sh->check_state = check_state_idle;
3679 if (!dev)
3680 dev = &sh->dev[sh->pd_idx];
3681
3682 /* check that a write has not made the stripe insync */
3683 if (test_bit(STRIPE_INSYNC, &sh->state))
3684 break;
3685
3686 /* either failed parity check, or recovery is happening */
3687 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3688 BUG_ON(s->uptodate != disks);
3689
3690 set_bit(R5_LOCKED, &dev->flags);
3691 s->locked++;
3692 set_bit(R5_Wantwrite, &dev->flags);
3693
3694 clear_bit(STRIPE_DEGRADED, &sh->state);
3695 set_bit(STRIPE_INSYNC, &sh->state);
3696 break;
3697 case check_state_run:
3698 break; /* we will be called again upon completion */
3699 case check_state_check_result:
3700 sh->check_state = check_state_idle;
3701
3702 /* if a failure occurred during the check operation, leave
3703 * STRIPE_INSYNC not set and let the stripe be handled again
3704 */
3705 if (s->failed)
3706 break;
3707
3708 /* handle a successful check operation, if parity is correct
3709 * we are done. Otherwise update the mismatch count and repair
3710 * parity if !MD_RECOVERY_CHECK
3711 */
3712 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3713 /* parity is correct (on disc,
3714 * not in buffer any more)
3715 */
3716 set_bit(STRIPE_INSYNC, &sh->state);
3717 else {
3718 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3719 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3720 /* don't try to repair!! */
3721 set_bit(STRIPE_INSYNC, &sh->state);
3722 else {
3723 sh->check_state = check_state_compute_run;
3724 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3725 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3726 set_bit(R5_Wantcompute,
3727 &sh->dev[sh->pd_idx].flags);
3728 sh->ops.target = sh->pd_idx;
3729 sh->ops.target2 = -1;
3730 s->uptodate++;
3731 }
3732 }
3733 break;
3734 case check_state_compute_run:
3735 break;
3736 default:
3737 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3738 __func__, sh->check_state,
3739 (unsigned long long) sh->sector);
3740 BUG();
3741 }
3742 }
3743
3744 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3745 struct stripe_head_state *s,
3746 int disks)
3747 {
3748 int pd_idx = sh->pd_idx;
3749 int qd_idx = sh->qd_idx;
3750 struct r5dev *dev;
3751
3752 BUG_ON(sh->batch_head);
3753 set_bit(STRIPE_HANDLE, &sh->state);
3754
3755 BUG_ON(s->failed > 2);
3756
3757 /* Want to check and possibly repair P and Q.
3758 * However there could be one 'failed' device, in which
3759 * case we can only check one of them, possibly using the
3760 * other to generate missing data
3761 */
3762
3763 switch (sh->check_state) {
3764 case check_state_idle:
3765 /* start a new check operation if there are < 2 failures */
3766 if (s->failed == s->q_failed) {
3767 /* The only possible failed device holds Q, so it
3768 * makes sense to check P (If anything else were failed,
3769 * we would have used P to recreate it).
3770 */
3771 sh->check_state = check_state_run;
3772 }
3773 if (!s->q_failed && s->failed < 2) {
3774 /* Q is not failed, and we didn't use it to generate
3775 * anything, so it makes sense to check it
3776 */
3777 if (sh->check_state == check_state_run)
3778 sh->check_state = check_state_run_pq;
3779 else
3780 sh->check_state = check_state_run_q;
3781 }
3782
3783 /* discard potentially stale zero_sum_result */
3784 sh->ops.zero_sum_result = 0;
3785
3786 if (sh->check_state == check_state_run) {
3787 /* async_xor_zero_sum destroys the contents of P */
3788 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3789 s->uptodate--;
3790 }
3791 if (sh->check_state >= check_state_run &&
3792 sh->check_state <= check_state_run_pq) {
3793 /* async_syndrome_zero_sum preserves P and Q, so
3794 * no need to mark them !uptodate here
3795 */
3796 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3797 break;
3798 }
3799
3800 /* we have 2-disk failure */
3801 BUG_ON(s->failed != 2);
3802 /* fall through */
3803 case check_state_compute_result:
3804 sh->check_state = check_state_idle;
3805
3806 /* check that a write has not made the stripe insync */
3807 if (test_bit(STRIPE_INSYNC, &sh->state))
3808 break;
3809
3810 /* now write out any block on a failed drive,
3811 * or P or Q if they were recomputed
3812 */
3813 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3814 if (s->failed == 2) {
3815 dev = &sh->dev[s->failed_num[1]];
3816 s->locked++;
3817 set_bit(R5_LOCKED, &dev->flags);
3818 set_bit(R5_Wantwrite, &dev->flags);
3819 }
3820 if (s->failed >= 1) {
3821 dev = &sh->dev[s->failed_num[0]];
3822 s->locked++;
3823 set_bit(R5_LOCKED, &dev->flags);
3824 set_bit(R5_Wantwrite, &dev->flags);
3825 }
3826 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3827 dev = &sh->dev[pd_idx];
3828 s->locked++;
3829 set_bit(R5_LOCKED, &dev->flags);
3830 set_bit(R5_Wantwrite, &dev->flags);
3831 }
3832 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3833 dev = &sh->dev[qd_idx];
3834 s->locked++;
3835 set_bit(R5_LOCKED, &dev->flags);
3836 set_bit(R5_Wantwrite, &dev->flags);
3837 }
3838 clear_bit(STRIPE_DEGRADED, &sh->state);
3839
3840 set_bit(STRIPE_INSYNC, &sh->state);
3841 break;
3842 case check_state_run:
3843 case check_state_run_q:
3844 case check_state_run_pq:
3845 break; /* we will be called again upon completion */
3846 case check_state_check_result:
3847 sh->check_state = check_state_idle;
3848
3849 /* handle a successful check operation, if parity is correct
3850 * we are done. Otherwise update the mismatch count and repair
3851 * parity if !MD_RECOVERY_CHECK
3852 */
3853 if (sh->ops.zero_sum_result == 0) {
3854 /* both parities are correct */
3855 if (!s->failed)
3856 set_bit(STRIPE_INSYNC, &sh->state);
3857 else {
3858 /* in contrast to the raid5 case we can validate
3859 * parity, but still have a failure to write
3860 * back
3861 */
3862 sh->check_state = check_state_compute_result;
3863 /* Returning at this point means that we may go
3864 * off and bring p and/or q uptodate again so
3865 * we make sure to check zero_sum_result again
3866 * to verify if p or q need writeback
3867 */
3868 }
3869 } else {
3870 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3871 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3872 /* don't try to repair!! */
3873 set_bit(STRIPE_INSYNC, &sh->state);
3874 else {
3875 int *target = &sh->ops.target;
3876
3877 sh->ops.target = -1;
3878 sh->ops.target2 = -1;
3879 sh->check_state = check_state_compute_run;
3880 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3881 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3882 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3883 set_bit(R5_Wantcompute,
3884 &sh->dev[pd_idx].flags);
3885 *target = pd_idx;
3886 target = &sh->ops.target2;
3887 s->uptodate++;
3888 }
3889 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3890 set_bit(R5_Wantcompute,
3891 &sh->dev[qd_idx].flags);
3892 *target = qd_idx;
3893 s->uptodate++;
3894 }
3895 }
3896 }
3897 break;
3898 case check_state_compute_run:
3899 break;
3900 default:
3901 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3902 __func__, sh->check_state,
3903 (unsigned long long) sh->sector);
3904 BUG();
3905 }
3906 }
3907
3908 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3909 {
3910 int i;
3911
3912 /* We have read all the blocks in this stripe and now we need to
3913 * copy some of them into a target stripe for expand.
3914 */
3915 struct dma_async_tx_descriptor *tx = NULL;
3916 BUG_ON(sh->batch_head);
3917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3918 for (i = 0; i < sh->disks; i++)
3919 if (i != sh->pd_idx && i != sh->qd_idx) {
3920 int dd_idx, j;
3921 struct stripe_head *sh2;
3922 struct async_submit_ctl submit;
3923
3924 sector_t bn = compute_blocknr(sh, i, 1);
3925 sector_t s = raid5_compute_sector(conf, bn, 0,
3926 &dd_idx, NULL);
3927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
3928 if (sh2 == NULL)
3929 /* so far only the early blocks of this stripe
3930 * have been requested. When later blocks
3931 * get requested, we will try again
3932 */
3933 continue;
3934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3936 /* must have already done this block */
3937 release_stripe(sh2);
3938 continue;
3939 }
3940
3941 /* place all the copies on one channel */
3942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3943 tx = async_memcpy(sh2->dev[dd_idx].page,
3944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
3945 &submit);
3946
3947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3949 for (j = 0; j < conf->raid_disks; j++)
3950 if (j != sh2->pd_idx &&
3951 j != sh2->qd_idx &&
3952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3953 break;
3954 if (j == conf->raid_disks) {
3955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3956 set_bit(STRIPE_HANDLE, &sh2->state);
3957 }
3958 release_stripe(sh2);
3959
3960 }
3961 /* done submitting copies, wait for them to complete */
3962 async_tx_quiesce(&tx);
3963 }
3964
3965 /*
3966 * handle_stripe - do things to a stripe.
3967 *
3968 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3969 * state of various bits to see what needs to be done.
3970 * Possible results:
3971 * return some read requests which now have data
3972 * return some write requests which are safely on storage
3973 * schedule a read on some buffers
3974 * schedule a write of some buffers
3975 * return confirmation of parity correctness
3976 *
3977 */
3978
3979 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3980 {
3981 struct r5conf *conf = sh->raid_conf;
3982 int disks = sh->disks;
3983 struct r5dev *dev;
3984 int i;
3985 int do_recovery = 0;
3986
3987 memset(s, 0, sizeof(*s));
3988
3989 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3990 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3991 s->failed_num[0] = -1;
3992 s->failed_num[1] = -1;
3993
3994 /* Now to look around and see what can be done */
3995 rcu_read_lock();
3996 for (i=disks; i--; ) {
3997 struct md_rdev *rdev;
3998 sector_t first_bad;
3999 int bad_sectors;
4000 int is_bad = 0;
4001
4002 dev = &sh->dev[i];
4003
4004 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4005 i, dev->flags,
4006 dev->toread, dev->towrite, dev->written);
4007 /* maybe we can reply to a read
4008 *
4009 * new wantfill requests are only permitted while
4010 * ops_complete_biofill is guaranteed to be inactive
4011 */
4012 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4013 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4014 set_bit(R5_Wantfill, &dev->flags);
4015
4016 /* now count some things */
4017 if (test_bit(R5_LOCKED, &dev->flags))
4018 s->locked++;
4019 if (test_bit(R5_UPTODATE, &dev->flags))
4020 s->uptodate++;
4021 if (test_bit(R5_Wantcompute, &dev->flags)) {
4022 s->compute++;
4023 BUG_ON(s->compute > 2);
4024 }
4025
4026 if (test_bit(R5_Wantfill, &dev->flags))
4027 s->to_fill++;
4028 else if (dev->toread)
4029 s->to_read++;
4030 if (dev->towrite) {
4031 s->to_write++;
4032 if (!test_bit(R5_OVERWRITE, &dev->flags))
4033 s->non_overwrite++;
4034 }
4035 if (dev->written)
4036 s->written++;
4037 /* Prefer to use the replacement for reads, but only
4038 * if it is recovered enough and has no bad blocks.
4039 */
4040 rdev = rcu_dereference(conf->disks[i].replacement);
4041 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4042 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4043 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4044 &first_bad, &bad_sectors))
4045 set_bit(R5_ReadRepl, &dev->flags);
4046 else {
4047 if (rdev)
4048 set_bit(R5_NeedReplace, &dev->flags);
4049 rdev = rcu_dereference(conf->disks[i].rdev);
4050 clear_bit(R5_ReadRepl, &dev->flags);
4051 }
4052 if (rdev && test_bit(Faulty, &rdev->flags))
4053 rdev = NULL;
4054 if (rdev) {
4055 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4056 &first_bad, &bad_sectors);
4057 if (s->blocked_rdev == NULL
4058 && (test_bit(Blocked, &rdev->flags)
4059 || is_bad < 0)) {
4060 if (is_bad < 0)
4061 set_bit(BlockedBadBlocks,
4062 &rdev->flags);
4063 s->blocked_rdev = rdev;
4064 atomic_inc(&rdev->nr_pending);
4065 }
4066 }
4067 clear_bit(R5_Insync, &dev->flags);
4068 if (!rdev)
4069 /* Not in-sync */;
4070 else if (is_bad) {
4071 /* also not in-sync */
4072 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4073 test_bit(R5_UPTODATE, &dev->flags)) {
4074 /* treat as in-sync, but with a read error
4075 * which we can now try to correct
4076 */
4077 set_bit(R5_Insync, &dev->flags);
4078 set_bit(R5_ReadError, &dev->flags);
4079 }
4080 } else if (test_bit(In_sync, &rdev->flags))
4081 set_bit(R5_Insync, &dev->flags);
4082 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4083 /* in sync if before recovery_offset */
4084 set_bit(R5_Insync, &dev->flags);
4085 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4086 test_bit(R5_Expanded, &dev->flags))
4087 /* If we've reshaped into here, we assume it is Insync.
4088 * We will shortly update recovery_offset to make
4089 * it official.
4090 */
4091 set_bit(R5_Insync, &dev->flags);
4092
4093 if (test_bit(R5_WriteError, &dev->flags)) {
4094 /* This flag does not apply to '.replacement'
4095 * only to .rdev, so make sure to check that*/
4096 struct md_rdev *rdev2 = rcu_dereference(
4097 conf->disks[i].rdev);
4098 if (rdev2 == rdev)
4099 clear_bit(R5_Insync, &dev->flags);
4100 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4101 s->handle_bad_blocks = 1;
4102 atomic_inc(&rdev2->nr_pending);
4103 } else
4104 clear_bit(R5_WriteError, &dev->flags);
4105 }
4106 if (test_bit(R5_MadeGood, &dev->flags)) {
4107 /* This flag does not apply to '.replacement'
4108 * only to .rdev, so make sure to check that*/
4109 struct md_rdev *rdev2 = rcu_dereference(
4110 conf->disks[i].rdev);
4111 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4112 s->handle_bad_blocks = 1;
4113 atomic_inc(&rdev2->nr_pending);
4114 } else
4115 clear_bit(R5_MadeGood, &dev->flags);
4116 }
4117 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4118 struct md_rdev *rdev2 = rcu_dereference(
4119 conf->disks[i].replacement);
4120 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4121 s->handle_bad_blocks = 1;
4122 atomic_inc(&rdev2->nr_pending);
4123 } else
4124 clear_bit(R5_MadeGoodRepl, &dev->flags);
4125 }
4126 if (!test_bit(R5_Insync, &dev->flags)) {
4127 /* The ReadError flag will just be confusing now */
4128 clear_bit(R5_ReadError, &dev->flags);
4129 clear_bit(R5_ReWrite, &dev->flags);
4130 }
4131 if (test_bit(R5_ReadError, &dev->flags))
4132 clear_bit(R5_Insync, &dev->flags);
4133 if (!test_bit(R5_Insync, &dev->flags)) {
4134 if (s->failed < 2)
4135 s->failed_num[s->failed] = i;
4136 s->failed++;
4137 if (rdev && !test_bit(Faulty, &rdev->flags))
4138 do_recovery = 1;
4139 }
4140 }
4141 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4142 /* If there is a failed device being replaced,
4143 * we must be recovering.
4144 * else if we are after recovery_cp, we must be syncing
4145 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4146 * else we can only be replacing
4147 * sync and recovery both need to read all devices, and so
4148 * use the same flag.
4149 */
4150 if (do_recovery ||
4151 sh->sector >= conf->mddev->recovery_cp ||
4152 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4153 s->syncing = 1;
4154 else
4155 s->replacing = 1;
4156 }
4157 rcu_read_unlock();
4158 }
4159
4160 static int clear_batch_ready(struct stripe_head *sh)
4161 {
4162 struct stripe_head *tmp;
4163 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4164 return 0;
4165 spin_lock(&sh->stripe_lock);
4166 if (!sh->batch_head) {
4167 spin_unlock(&sh->stripe_lock);
4168 return 0;
4169 }
4170
4171 /*
4172 * this stripe could be added to a batch list before we check
4173 * BATCH_READY, skips it
4174 */
4175 if (sh->batch_head != sh) {
4176 spin_unlock(&sh->stripe_lock);
4177 return 1;
4178 }
4179 spin_lock(&sh->batch_lock);
4180 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4181 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4182 spin_unlock(&sh->batch_lock);
4183 spin_unlock(&sh->stripe_lock);
4184
4185 /*
4186 * BATCH_READY is cleared, no new stripes can be added.
4187 * batch_list can be accessed without lock
4188 */
4189 return 0;
4190 }
4191
4192 static void check_break_stripe_batch_list(struct stripe_head *sh)
4193 {
4194 struct stripe_head *head_sh, *next;
4195 int i;
4196
4197 if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4198 return;
4199
4200 head_sh = sh;
4201 do {
4202 sh = list_first_entry(&sh->batch_list,
4203 struct stripe_head, batch_list);
4204 BUG_ON(sh == head_sh);
4205 } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4206
4207 while (sh != head_sh) {
4208 next = list_first_entry(&sh->batch_list,
4209 struct stripe_head, batch_list);
4210 list_del_init(&sh->batch_list);
4211
4212 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4213 head_sh->state & ~((1 << STRIPE_ACTIVE) |
4214 (1 << STRIPE_PREREAD_ACTIVE) |
4215 (1 << STRIPE_DEGRADED) |
4216 STRIPE_EXPAND_SYNC_FLAG));
4217 sh->check_state = head_sh->check_state;
4218 sh->reconstruct_state = head_sh->reconstruct_state;
4219 for (i = 0; i < sh->disks; i++)
4220 sh->dev[i].flags = head_sh->dev[i].flags &
4221 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4222
4223 spin_lock_irq(&sh->stripe_lock);
4224 sh->batch_head = NULL;
4225 spin_unlock_irq(&sh->stripe_lock);
4226
4227 set_bit(STRIPE_HANDLE, &sh->state);
4228 release_stripe(sh);
4229
4230 sh = next;
4231 }
4232 }
4233
4234 static void handle_stripe(struct stripe_head *sh)
4235 {
4236 struct stripe_head_state s;
4237 struct r5conf *conf = sh->raid_conf;
4238 int i;
4239 int prexor;
4240 int disks = sh->disks;
4241 struct r5dev *pdev, *qdev;
4242
4243 clear_bit(STRIPE_HANDLE, &sh->state);
4244 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4245 /* already being handled, ensure it gets handled
4246 * again when current action finishes */
4247 set_bit(STRIPE_HANDLE, &sh->state);
4248 return;
4249 }
4250
4251 if (clear_batch_ready(sh) ) {
4252 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4253 return;
4254 }
4255
4256 check_break_stripe_batch_list(sh);
4257
4258 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4259 spin_lock(&sh->stripe_lock);
4260 /* Cannot process 'sync' concurrently with 'discard' */
4261 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4262 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4263 set_bit(STRIPE_SYNCING, &sh->state);
4264 clear_bit(STRIPE_INSYNC, &sh->state);
4265 clear_bit(STRIPE_REPLACED, &sh->state);
4266 }
4267 spin_unlock(&sh->stripe_lock);
4268 }
4269 clear_bit(STRIPE_DELAYED, &sh->state);
4270
4271 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4272 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4273 (unsigned long long)sh->sector, sh->state,
4274 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4275 sh->check_state, sh->reconstruct_state);
4276
4277 analyse_stripe(sh, &s);
4278
4279 if (s.handle_bad_blocks) {
4280 set_bit(STRIPE_HANDLE, &sh->state);
4281 goto finish;
4282 }
4283
4284 if (unlikely(s.blocked_rdev)) {
4285 if (s.syncing || s.expanding || s.expanded ||
4286 s.replacing || s.to_write || s.written) {
4287 set_bit(STRIPE_HANDLE, &sh->state);
4288 goto finish;
4289 }
4290 /* There is nothing for the blocked_rdev to block */
4291 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4292 s.blocked_rdev = NULL;
4293 }
4294
4295 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4296 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4297 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4298 }
4299
4300 pr_debug("locked=%d uptodate=%d to_read=%d"
4301 " to_write=%d failed=%d failed_num=%d,%d\n",
4302 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4303 s.failed_num[0], s.failed_num[1]);
4304 /* check if the array has lost more than max_degraded devices and,
4305 * if so, some requests might need to be failed.
4306 */
4307 if (s.failed > conf->max_degraded) {
4308 sh->check_state = 0;
4309 sh->reconstruct_state = 0;
4310 if (s.to_read+s.to_write+s.written)
4311 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4312 if (s.syncing + s.replacing)
4313 handle_failed_sync(conf, sh, &s);
4314 }
4315
4316 /* Now we check to see if any write operations have recently
4317 * completed
4318 */
4319 prexor = 0;
4320 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4321 prexor = 1;
4322 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4323 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4324 sh->reconstruct_state = reconstruct_state_idle;
4325
4326 /* All the 'written' buffers and the parity block are ready to
4327 * be written back to disk
4328 */
4329 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4330 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4331 BUG_ON(sh->qd_idx >= 0 &&
4332 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4333 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4334 for (i = disks; i--; ) {
4335 struct r5dev *dev = &sh->dev[i];
4336 if (test_bit(R5_LOCKED, &dev->flags) &&
4337 (i == sh->pd_idx || i == sh->qd_idx ||
4338 dev->written)) {
4339 pr_debug("Writing block %d\n", i);
4340 set_bit(R5_Wantwrite, &dev->flags);
4341 if (prexor)
4342 continue;
4343 if (s.failed > 1)
4344 continue;
4345 if (!test_bit(R5_Insync, &dev->flags) ||
4346 ((i == sh->pd_idx || i == sh->qd_idx) &&
4347 s.failed == 0))
4348 set_bit(STRIPE_INSYNC, &sh->state);
4349 }
4350 }
4351 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4352 s.dec_preread_active = 1;
4353 }
4354
4355 /*
4356 * might be able to return some write requests if the parity blocks
4357 * are safe, or on a failed drive
4358 */
4359 pdev = &sh->dev[sh->pd_idx];
4360 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4361 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4362 qdev = &sh->dev[sh->qd_idx];
4363 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4364 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4365 || conf->level < 6;
4366
4367 if (s.written &&
4368 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4369 && !test_bit(R5_LOCKED, &pdev->flags)
4370 && (test_bit(R5_UPTODATE, &pdev->flags) ||
4371 test_bit(R5_Discard, &pdev->flags))))) &&
4372 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4373 && !test_bit(R5_LOCKED, &qdev->flags)
4374 && (test_bit(R5_UPTODATE, &qdev->flags) ||
4375 test_bit(R5_Discard, &qdev->flags))))))
4376 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4377
4378 /* Now we might consider reading some blocks, either to check/generate
4379 * parity, or to satisfy requests
4380 * or to load a block that is being partially written.
4381 */
4382 if (s.to_read || s.non_overwrite
4383 || (conf->level == 6 && s.to_write && s.failed)
4384 || (s.syncing && (s.uptodate + s.compute < disks))
4385 || s.replacing
4386 || s.expanding)
4387 handle_stripe_fill(sh, &s, disks);
4388
4389 /* Now to consider new write requests and what else, if anything
4390 * should be read. We do not handle new writes when:
4391 * 1/ A 'write' operation (copy+xor) is already in flight.
4392 * 2/ A 'check' operation is in flight, as it may clobber the parity
4393 * block.
4394 */
4395 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4396 handle_stripe_dirtying(conf, sh, &s, disks);
4397
4398 /* maybe we need to check and possibly fix the parity for this stripe
4399 * Any reads will already have been scheduled, so we just see if enough
4400 * data is available. The parity check is held off while parity
4401 * dependent operations are in flight.
4402 */
4403 if (sh->check_state ||
4404 (s.syncing && s.locked == 0 &&
4405 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4406 !test_bit(STRIPE_INSYNC, &sh->state))) {
4407 if (conf->level == 6)
4408 handle_parity_checks6(conf, sh, &s, disks);
4409 else
4410 handle_parity_checks5(conf, sh, &s, disks);
4411 }
4412
4413 if ((s.replacing || s.syncing) && s.locked == 0
4414 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4415 && !test_bit(STRIPE_REPLACED, &sh->state)) {
4416 /* Write out to replacement devices where possible */
4417 for (i = 0; i < conf->raid_disks; i++)
4418 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4419 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4420 set_bit(R5_WantReplace, &sh->dev[i].flags);
4421 set_bit(R5_LOCKED, &sh->dev[i].flags);
4422 s.locked++;
4423 }
4424 if (s.replacing)
4425 set_bit(STRIPE_INSYNC, &sh->state);
4426 set_bit(STRIPE_REPLACED, &sh->state);
4427 }
4428 if ((s.syncing || s.replacing) && s.locked == 0 &&
4429 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4430 test_bit(STRIPE_INSYNC, &sh->state)) {
4431 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4432 clear_bit(STRIPE_SYNCING, &sh->state);
4433 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4434 wake_up(&conf->wait_for_overlap);
4435 }
4436
4437 /* If the failed drives are just a ReadError, then we might need
4438 * to progress the repair/check process
4439 */
4440 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4441 for (i = 0; i < s.failed; i++) {
4442 struct r5dev *dev = &sh->dev[s.failed_num[i]];
4443 if (test_bit(R5_ReadError, &dev->flags)
4444 && !test_bit(R5_LOCKED, &dev->flags)
4445 && test_bit(R5_UPTODATE, &dev->flags)
4446 ) {
4447 if (!test_bit(R5_ReWrite, &dev->flags)) {
4448 set_bit(R5_Wantwrite, &dev->flags);
4449 set_bit(R5_ReWrite, &dev->flags);
4450 set_bit(R5_LOCKED, &dev->flags);
4451 s.locked++;
4452 } else {
4453 /* let's read it back */
4454 set_bit(R5_Wantread, &dev->flags);
4455 set_bit(R5_LOCKED, &dev->flags);
4456 s.locked++;
4457 }
4458 }
4459 }
4460
4461 /* Finish reconstruct operations initiated by the expansion process */
4462 if (sh->reconstruct_state == reconstruct_state_result) {
4463 struct stripe_head *sh_src
4464 = get_active_stripe(conf, sh->sector, 1, 1, 1);
4465 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4466 /* sh cannot be written until sh_src has been read.
4467 * so arrange for sh to be delayed a little
4468 */
4469 set_bit(STRIPE_DELAYED, &sh->state);
4470 set_bit(STRIPE_HANDLE, &sh->state);
4471 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4472 &sh_src->state))
4473 atomic_inc(&conf->preread_active_stripes);
4474 release_stripe(sh_src);
4475 goto finish;
4476 }
4477 if (sh_src)
4478 release_stripe(sh_src);
4479
4480 sh->reconstruct_state = reconstruct_state_idle;
4481 clear_bit(STRIPE_EXPANDING, &sh->state);
4482 for (i = conf->raid_disks; i--; ) {
4483 set_bit(R5_Wantwrite, &sh->dev[i].flags);
4484 set_bit(R5_LOCKED, &sh->dev[i].flags);
4485 s.locked++;
4486 }
4487 }
4488
4489 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4490 !sh->reconstruct_state) {
4491 /* Need to write out all blocks after computing parity */
4492 sh->disks = conf->raid_disks;
4493 stripe_set_idx(sh->sector, conf, 0, sh);
4494 schedule_reconstruction(sh, &s, 1, 1);
4495 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4496 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4497 atomic_dec(&conf->reshape_stripes);
4498 wake_up(&conf->wait_for_overlap);
4499 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4500 }
4501
4502 if (s.expanding && s.locked == 0 &&
4503 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4504 handle_stripe_expansion(conf, sh);
4505
4506 finish:
4507 /* wait for this device to become unblocked */
4508 if (unlikely(s.blocked_rdev)) {
4509 if (conf->mddev->external)
4510 md_wait_for_blocked_rdev(s.blocked_rdev,
4511 conf->mddev);
4512 else
4513 /* Internal metadata will immediately
4514 * be written by raid5d, so we don't
4515 * need to wait here.
4516 */
4517 rdev_dec_pending(s.blocked_rdev,
4518 conf->mddev);
4519 }
4520
4521 if (s.handle_bad_blocks)
4522 for (i = disks; i--; ) {
4523 struct md_rdev *rdev;
4524 struct r5dev *dev = &sh->dev[i];
4525 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4526 /* We own a safe reference to the rdev */
4527 rdev = conf->disks[i].rdev;
4528 if (!rdev_set_badblocks(rdev, sh->sector,
4529 STRIPE_SECTORS, 0))
4530 md_error(conf->mddev, rdev);
4531 rdev_dec_pending(rdev, conf->mddev);
4532 }
4533 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4534 rdev = conf->disks[i].rdev;
4535 rdev_clear_badblocks(rdev, sh->sector,
4536 STRIPE_SECTORS, 0);
4537 rdev_dec_pending(rdev, conf->mddev);
4538 }
4539 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4540 rdev = conf->disks[i].replacement;
4541 if (!rdev)
4542 /* rdev have been moved down */
4543 rdev = conf->disks[i].rdev;
4544 rdev_clear_badblocks(rdev, sh->sector,
4545 STRIPE_SECTORS, 0);
4546 rdev_dec_pending(rdev, conf->mddev);
4547 }
4548 }
4549
4550 if (s.ops_request)
4551 raid_run_ops(sh, s.ops_request);
4552
4553 ops_run_io(sh, &s);
4554
4555 if (s.dec_preread_active) {
4556 /* We delay this until after ops_run_io so that if make_request
4557 * is waiting on a flush, it won't continue until the writes
4558 * have actually been submitted.
4559 */
4560 atomic_dec(&conf->preread_active_stripes);
4561 if (atomic_read(&conf->preread_active_stripes) <
4562 IO_THRESHOLD)
4563 md_wakeup_thread(conf->mddev->thread);
4564 }
4565
4566 return_io(s.return_bi);
4567
4568 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4569 }
4570
4571 static void raid5_activate_delayed(struct r5conf *conf)
4572 {
4573 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4574 while (!list_empty(&conf->delayed_list)) {
4575 struct list_head *l = conf->delayed_list.next;
4576 struct stripe_head *sh;
4577 sh = list_entry(l, struct stripe_head, lru);
4578 list_del_init(l);
4579 clear_bit(STRIPE_DELAYED, &sh->state);
4580 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4581 atomic_inc(&conf->preread_active_stripes);
4582 list_add_tail(&sh->lru, &conf->hold_list);
4583 raid5_wakeup_stripe_thread(sh);
4584 }
4585 }
4586 }
4587
4588 static void activate_bit_delay(struct r5conf *conf,
4589 struct list_head *temp_inactive_list)
4590 {
4591 /* device_lock is held */
4592 struct list_head head;
4593 list_add(&head, &conf->bitmap_list);
4594 list_del_init(&conf->bitmap_list);
4595 while (!list_empty(&head)) {
4596 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4597 int hash;
4598 list_del_init(&sh->lru);
4599 atomic_inc(&sh->count);
4600 hash = sh->hash_lock_index;
4601 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4602 }
4603 }
4604
4605 static int raid5_congested(struct mddev *mddev, int bits)
4606 {
4607 struct r5conf *conf = mddev->private;
4608
4609 /* No difference between reads and writes. Just check
4610 * how busy the stripe_cache is
4611 */
4612
4613 if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4614 return 1;
4615 if (conf->quiesce)
4616 return 1;
4617 if (atomic_read(&conf->empty_inactive_list_nr))
4618 return 1;
4619
4620 return 0;
4621 }
4622
4623 /* We want read requests to align with chunks where possible,
4624 * but write requests don't need to.
4625 */
4626 static int raid5_mergeable_bvec(struct mddev *mddev,
4627 struct bvec_merge_data *bvm,
4628 struct bio_vec *biovec)
4629 {
4630 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4631 int max;
4632 unsigned int chunk_sectors = mddev->chunk_sectors;
4633 unsigned int bio_sectors = bvm->bi_size >> 9;
4634
4635 if ((bvm->bi_rw & 1) == WRITE)
4636 return biovec->bv_len; /* always allow writes to be mergeable */
4637
4638 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4639 chunk_sectors = mddev->new_chunk_sectors;
4640 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4641 if (max < 0) max = 0;
4642 if (max <= biovec->bv_len && bio_sectors == 0)
4643 return biovec->bv_len;
4644 else
4645 return max;
4646 }
4647
4648 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4649 {
4650 sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4651 unsigned int chunk_sectors = mddev->chunk_sectors;
4652 unsigned int bio_sectors = bio_sectors(bio);
4653
4654 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4655 chunk_sectors = mddev->new_chunk_sectors;
4656 return chunk_sectors >=
4657 ((sector & (chunk_sectors - 1)) + bio_sectors);
4658 }
4659
4660 /*
4661 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
4662 * later sampled by raid5d.
4663 */
4664 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4665 {
4666 unsigned long flags;
4667
4668 spin_lock_irqsave(&conf->device_lock, flags);
4669
4670 bi->bi_next = conf->retry_read_aligned_list;
4671 conf->retry_read_aligned_list = bi;
4672
4673 spin_unlock_irqrestore(&conf->device_lock, flags);
4674 md_wakeup_thread(conf->mddev->thread);
4675 }
4676
4677 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4678 {
4679 struct bio *bi;
4680
4681 bi = conf->retry_read_aligned;
4682 if (bi) {
4683 conf->retry_read_aligned = NULL;
4684 return bi;
4685 }
4686 bi = conf->retry_read_aligned_list;
4687 if(bi) {
4688 conf->retry_read_aligned_list = bi->bi_next;
4689 bi->bi_next = NULL;
4690 /*
4691 * this sets the active strip count to 1 and the processed
4692 * strip count to zero (upper 8 bits)
4693 */
4694 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4695 }
4696
4697 return bi;
4698 }
4699
4700 /*
4701 * The "raid5_align_endio" should check if the read succeeded and if it
4702 * did, call bio_endio on the original bio (having bio_put the new bio
4703 * first).
4704 * If the read failed..
4705 */
4706 static void raid5_align_endio(struct bio *bi, int error)
4707 {
4708 struct bio* raid_bi = bi->bi_private;
4709 struct mddev *mddev;
4710 struct r5conf *conf;
4711 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4712 struct md_rdev *rdev;
4713
4714 bio_put(bi);
4715
4716 rdev = (void*)raid_bi->bi_next;
4717 raid_bi->bi_next = NULL;
4718 mddev = rdev->mddev;
4719 conf = mddev->private;
4720
4721 rdev_dec_pending(rdev, conf->mddev);
4722
4723 if (!error && uptodate) {
4724 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4725 raid_bi, 0);
4726 bio_endio(raid_bi, 0);
4727 if (atomic_dec_and_test(&conf->active_aligned_reads))
4728 wake_up(&conf->wait_for_stripe);
4729 return;
4730 }
4731
4732 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4733
4734 add_bio_to_retry(raid_bi, conf);
4735 }
4736
4737 static int bio_fits_rdev(struct bio *bi)
4738 {
4739 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4740
4741 if (bio_sectors(bi) > queue_max_sectors(q))
4742 return 0;
4743 blk_recount_segments(q, bi);
4744 if (bi->bi_phys_segments > queue_max_segments(q))
4745 return 0;
4746
4747 if (q->merge_bvec_fn)
4748 /* it's too hard to apply the merge_bvec_fn at this stage,
4749 * just just give up
4750 */
4751 return 0;
4752
4753 return 1;
4754 }
4755
4756 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4757 {
4758 struct r5conf *conf = mddev->private;
4759 int dd_idx;
4760 struct bio* align_bi;
4761 struct md_rdev *rdev;
4762 sector_t end_sector;
4763
4764 if (!in_chunk_boundary(mddev, raid_bio)) {
4765 pr_debug("chunk_aligned_read : non aligned\n");
4766 return 0;
4767 }
4768 /*
4769 * use bio_clone_mddev to make a copy of the bio
4770 */
4771 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4772 if (!align_bi)
4773 return 0;
4774 /*
4775 * set bi_end_io to a new function, and set bi_private to the
4776 * original bio.
4777 */
4778 align_bi->bi_end_io = raid5_align_endio;
4779 align_bi->bi_private = raid_bio;
4780 /*
4781 * compute position
4782 */
4783 align_bi->bi_iter.bi_sector =
4784 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4785 0, &dd_idx, NULL);
4786
4787 end_sector = bio_end_sector(align_bi);
4788 rcu_read_lock();
4789 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4790 if (!rdev || test_bit(Faulty, &rdev->flags) ||
4791 rdev->recovery_offset < end_sector) {
4792 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4793 if (rdev &&
4794 (test_bit(Faulty, &rdev->flags) ||
4795 !(test_bit(In_sync, &rdev->flags) ||
4796 rdev->recovery_offset >= end_sector)))
4797 rdev = NULL;
4798 }
4799 if (rdev) {
4800 sector_t first_bad;
4801 int bad_sectors;
4802
4803 atomic_inc(&rdev->nr_pending);
4804 rcu_read_unlock();
4805 raid_bio->bi_next = (void*)rdev;
4806 align_bi->bi_bdev = rdev->bdev;
4807 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4808
4809 if (!bio_fits_rdev(align_bi) ||
4810 is_badblock(rdev, align_bi->bi_iter.bi_sector,
4811 bio_sectors(align_bi),
4812 &first_bad, &bad_sectors)) {
4813 /* too big in some way, or has a known bad block */
4814 bio_put(align_bi);
4815 rdev_dec_pending(rdev, mddev);
4816 return 0;
4817 }
4818
4819 /* No reshape active, so we can trust rdev->data_offset */
4820 align_bi->bi_iter.bi_sector += rdev->data_offset;
4821
4822 spin_lock_irq(&conf->device_lock);
4823 wait_event_lock_irq(conf->wait_for_stripe,
4824 conf->quiesce == 0,
4825 conf->device_lock);
4826 atomic_inc(&conf->active_aligned_reads);
4827 spin_unlock_irq(&conf->device_lock);
4828
4829 if (mddev->gendisk)
4830 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4831 align_bi, disk_devt(mddev->gendisk),
4832 raid_bio->bi_iter.bi_sector);
4833 generic_make_request(align_bi);
4834 return 1;
4835 } else {
4836 rcu_read_unlock();
4837 bio_put(align_bi);
4838 return 0;
4839 }
4840 }
4841
4842 /* __get_priority_stripe - get the next stripe to process
4843 *
4844 * Full stripe writes are allowed to pass preread active stripes up until
4845 * the bypass_threshold is exceeded. In general the bypass_count
4846 * increments when the handle_list is handled before the hold_list; however, it
4847 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4848 * stripe with in flight i/o. The bypass_count will be reset when the
4849 * head of the hold_list has changed, i.e. the head was promoted to the
4850 * handle_list.
4851 */
4852 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4853 {
4854 struct stripe_head *sh = NULL, *tmp;
4855 struct list_head *handle_list = NULL;
4856 struct r5worker_group *wg = NULL;
4857
4858 if (conf->worker_cnt_per_group == 0) {
4859 handle_list = &conf->handle_list;
4860 } else if (group != ANY_GROUP) {
4861 handle_list = &conf->worker_groups[group].handle_list;
4862 wg = &conf->worker_groups[group];
4863 } else {
4864 int i;
4865 for (i = 0; i < conf->group_cnt; i++) {
4866 handle_list = &conf->worker_groups[i].handle_list;
4867 wg = &conf->worker_groups[i];
4868 if (!list_empty(handle_list))
4869 break;
4870 }
4871 }
4872
4873 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4874 __func__,
4875 list_empty(handle_list) ? "empty" : "busy",
4876 list_empty(&conf->hold_list) ? "empty" : "busy",
4877 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4878
4879 if (!list_empty(handle_list)) {
4880 sh = list_entry(handle_list->next, typeof(*sh), lru);
4881
4882 if (list_empty(&conf->hold_list))
4883 conf->bypass_count = 0;
4884 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4885 if (conf->hold_list.next == conf->last_hold)
4886 conf->bypass_count++;
4887 else {
4888 conf->last_hold = conf->hold_list.next;
4889 conf->bypass_count -= conf->bypass_threshold;
4890 if (conf->bypass_count < 0)
4891 conf->bypass_count = 0;
4892 }
4893 }
4894 } else if (!list_empty(&conf->hold_list) &&
4895 ((conf->bypass_threshold &&
4896 conf->bypass_count > conf->bypass_threshold) ||
4897 atomic_read(&conf->pending_full_writes) == 0)) {
4898
4899 list_for_each_entry(tmp, &conf->hold_list, lru) {
4900 if (conf->worker_cnt_per_group == 0 ||
4901 group == ANY_GROUP ||
4902 !cpu_online(tmp->cpu) ||
4903 cpu_to_group(tmp->cpu) == group) {
4904 sh = tmp;
4905 break;
4906 }
4907 }
4908
4909 if (sh) {
4910 conf->bypass_count -= conf->bypass_threshold;
4911 if (conf->bypass_count < 0)
4912 conf->bypass_count = 0;
4913 }
4914 wg = NULL;
4915 }
4916
4917 if (!sh)
4918 return NULL;
4919
4920 if (wg) {
4921 wg->stripes_cnt--;
4922 sh->group = NULL;
4923 }
4924 list_del_init(&sh->lru);
4925 BUG_ON(atomic_inc_return(&sh->count) != 1);
4926 return sh;
4927 }
4928
4929 struct raid5_plug_cb {
4930 struct blk_plug_cb cb;
4931 struct list_head list;
4932 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4933 };
4934
4935 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4936 {
4937 struct raid5_plug_cb *cb = container_of(
4938 blk_cb, struct raid5_plug_cb, cb);
4939 struct stripe_head *sh;
4940 struct mddev *mddev = cb->cb.data;
4941 struct r5conf *conf = mddev->private;
4942 int cnt = 0;
4943 int hash;
4944
4945 if (cb->list.next && !list_empty(&cb->list)) {
4946 spin_lock_irq(&conf->device_lock);
4947 while (!list_empty(&cb->list)) {
4948 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4949 list_del_init(&sh->lru);
4950 /*
4951 * avoid race release_stripe_plug() sees
4952 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4953 * is still in our list
4954 */
4955 smp_mb__before_atomic();
4956 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4957 /*
4958 * STRIPE_ON_RELEASE_LIST could be set here. In that
4959 * case, the count is always > 1 here
4960 */
4961 hash = sh->hash_lock_index;
4962 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4963 cnt++;
4964 }
4965 spin_unlock_irq(&conf->device_lock);
4966 }
4967 release_inactive_stripe_list(conf, cb->temp_inactive_list,
4968 NR_STRIPE_HASH_LOCKS);
4969 if (mddev->queue)
4970 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4971 kfree(cb);
4972 }
4973
4974 static void release_stripe_plug(struct mddev *mddev,
4975 struct stripe_head *sh)
4976 {
4977 struct blk_plug_cb *blk_cb = blk_check_plugged(
4978 raid5_unplug, mddev,
4979 sizeof(struct raid5_plug_cb));
4980 struct raid5_plug_cb *cb;
4981
4982 if (!blk_cb) {
4983 release_stripe(sh);
4984 return;
4985 }
4986
4987 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4988
4989 if (cb->list.next == NULL) {
4990 int i;
4991 INIT_LIST_HEAD(&cb->list);
4992 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
4993 INIT_LIST_HEAD(cb->temp_inactive_list + i);
4994 }
4995
4996 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4997 list_add_tail(&sh->lru, &cb->list);
4998 else
4999 release_stripe(sh);
5000 }
5001
5002 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5003 {
5004 struct r5conf *conf = mddev->private;
5005 sector_t logical_sector, last_sector;
5006 struct stripe_head *sh;
5007 int remaining;
5008 int stripe_sectors;
5009
5010 if (mddev->reshape_position != MaxSector)
5011 /* Skip discard while reshape is happening */
5012 return;
5013
5014 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5015 last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5016
5017 bi->bi_next = NULL;
5018 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5019
5020 stripe_sectors = conf->chunk_sectors *
5021 (conf->raid_disks - conf->max_degraded);
5022 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5023 stripe_sectors);
5024 sector_div(last_sector, stripe_sectors);
5025
5026 logical_sector *= conf->chunk_sectors;
5027 last_sector *= conf->chunk_sectors;
5028
5029 for (; logical_sector < last_sector;
5030 logical_sector += STRIPE_SECTORS) {
5031 DEFINE_WAIT(w);
5032 int d;
5033 again:
5034 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5035 prepare_to_wait(&conf->wait_for_overlap, &w,
5036 TASK_UNINTERRUPTIBLE);
5037 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5038 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5039 release_stripe(sh);
5040 schedule();
5041 goto again;
5042 }
5043 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5044 spin_lock_irq(&sh->stripe_lock);
5045 for (d = 0; d < conf->raid_disks; d++) {
5046 if (d == sh->pd_idx || d == sh->qd_idx)
5047 continue;
5048 if (sh->dev[d].towrite || sh->dev[d].toread) {
5049 set_bit(R5_Overlap, &sh->dev[d].flags);
5050 spin_unlock_irq(&sh->stripe_lock);
5051 release_stripe(sh);
5052 schedule();
5053 goto again;
5054 }
5055 }
5056 set_bit(STRIPE_DISCARD, &sh->state);
5057 finish_wait(&conf->wait_for_overlap, &w);
5058 sh->overwrite_disks = 0;
5059 for (d = 0; d < conf->raid_disks; d++) {
5060 if (d == sh->pd_idx || d == sh->qd_idx)
5061 continue;
5062 sh->dev[d].towrite = bi;
5063 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5064 raid5_inc_bi_active_stripes(bi);
5065 sh->overwrite_disks++;
5066 }
5067 spin_unlock_irq(&sh->stripe_lock);
5068 if (conf->mddev->bitmap) {
5069 for (d = 0;
5070 d < conf->raid_disks - conf->max_degraded;
5071 d++)
5072 bitmap_startwrite(mddev->bitmap,
5073 sh->sector,
5074 STRIPE_SECTORS,
5075 0);
5076 sh->bm_seq = conf->seq_flush + 1;
5077 set_bit(STRIPE_BIT_DELAY, &sh->state);
5078 }
5079
5080 set_bit(STRIPE_HANDLE, &sh->state);
5081 clear_bit(STRIPE_DELAYED, &sh->state);
5082 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5083 atomic_inc(&conf->preread_active_stripes);
5084 release_stripe_plug(mddev, sh);
5085 }
5086
5087 remaining = raid5_dec_bi_active_stripes(bi);
5088 if (remaining == 0) {
5089 md_write_end(mddev);
5090 bio_endio(bi, 0);
5091 }
5092 }
5093
5094 static void make_request(struct mddev *mddev, struct bio * bi)
5095 {
5096 struct r5conf *conf = mddev->private;
5097 int dd_idx;
5098 sector_t new_sector;
5099 sector_t logical_sector, last_sector;
5100 struct stripe_head *sh;
5101 const int rw = bio_data_dir(bi);
5102 int remaining;
5103 DEFINE_WAIT(w);
5104 bool do_prepare;
5105
5106 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5107 md_flush_request(mddev, bi);
5108 return;
5109 }
5110
5111 md_write_start(mddev, bi);
5112
5113 if (rw == READ &&
5114 mddev->reshape_position == MaxSector &&
5115 chunk_aligned_read(mddev,bi))
5116 return;
5117
5118 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5119 make_discard_request(mddev, bi);
5120 return;
5121 }
5122
5123 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5124 last_sector = bio_end_sector(bi);
5125 bi->bi_next = NULL;
5126 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5127
5128 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5129 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5130 int previous;
5131 int seq;
5132
5133 do_prepare = false;
5134 retry:
5135 seq = read_seqcount_begin(&conf->gen_lock);
5136 previous = 0;
5137 if (do_prepare)
5138 prepare_to_wait(&conf->wait_for_overlap, &w,
5139 TASK_UNINTERRUPTIBLE);
5140 if (unlikely(conf->reshape_progress != MaxSector)) {
5141 /* spinlock is needed as reshape_progress may be
5142 * 64bit on a 32bit platform, and so it might be
5143 * possible to see a half-updated value
5144 * Of course reshape_progress could change after
5145 * the lock is dropped, so once we get a reference
5146 * to the stripe that we think it is, we will have
5147 * to check again.
5148 */
5149 spin_lock_irq(&conf->device_lock);
5150 if (mddev->reshape_backwards
5151 ? logical_sector < conf->reshape_progress
5152 : logical_sector >= conf->reshape_progress) {
5153 previous = 1;
5154 } else {
5155 if (mddev->reshape_backwards
5156 ? logical_sector < conf->reshape_safe
5157 : logical_sector >= conf->reshape_safe) {
5158 spin_unlock_irq(&conf->device_lock);
5159 schedule();
5160 do_prepare = true;
5161 goto retry;
5162 }
5163 }
5164 spin_unlock_irq(&conf->device_lock);
5165 }
5166
5167 new_sector = raid5_compute_sector(conf, logical_sector,
5168 previous,
5169 &dd_idx, NULL);
5170 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5171 (unsigned long long)new_sector,
5172 (unsigned long long)logical_sector);
5173
5174 sh = get_active_stripe(conf, new_sector, previous,
5175 (bi->bi_rw&RWA_MASK), 0);
5176 if (sh) {
5177 if (unlikely(previous)) {
5178 /* expansion might have moved on while waiting for a
5179 * stripe, so we must do the range check again.
5180 * Expansion could still move past after this
5181 * test, but as we are holding a reference to
5182 * 'sh', we know that if that happens,
5183 * STRIPE_EXPANDING will get set and the expansion
5184 * won't proceed until we finish with the stripe.
5185 */
5186 int must_retry = 0;
5187 spin_lock_irq(&conf->device_lock);
5188 if (mddev->reshape_backwards
5189 ? logical_sector >= conf->reshape_progress
5190 : logical_sector < conf->reshape_progress)
5191 /* mismatch, need to try again */
5192 must_retry = 1;
5193 spin_unlock_irq(&conf->device_lock);
5194 if (must_retry) {
5195 release_stripe(sh);
5196 schedule();
5197 do_prepare = true;
5198 goto retry;
5199 }
5200 }
5201 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5202 /* Might have got the wrong stripe_head
5203 * by accident
5204 */
5205 release_stripe(sh);
5206 goto retry;
5207 }
5208
5209 if (rw == WRITE &&
5210 logical_sector >= mddev->suspend_lo &&
5211 logical_sector < mddev->suspend_hi) {
5212 release_stripe(sh);
5213 /* As the suspend_* range is controlled by
5214 * userspace, we want an interruptible
5215 * wait.
5216 */
5217 flush_signals(current);
5218 prepare_to_wait(&conf->wait_for_overlap,
5219 &w, TASK_INTERRUPTIBLE);
5220 if (logical_sector >= mddev->suspend_lo &&
5221 logical_sector < mddev->suspend_hi) {
5222 schedule();
5223 do_prepare = true;
5224 }
5225 goto retry;
5226 }
5227
5228 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5229 !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5230 /* Stripe is busy expanding or
5231 * add failed due to overlap. Flush everything
5232 * and wait a while
5233 */
5234 md_wakeup_thread(mddev->thread);
5235 release_stripe(sh);
5236 schedule();
5237 do_prepare = true;
5238 goto retry;
5239 }
5240 set_bit(STRIPE_HANDLE, &sh->state);
5241 clear_bit(STRIPE_DELAYED, &sh->state);
5242 if ((!sh->batch_head || sh == sh->batch_head) &&
5243 (bi->bi_rw & REQ_SYNC) &&
5244 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5245 atomic_inc(&conf->preread_active_stripes);
5246 release_stripe_plug(mddev, sh);
5247 } else {
5248 /* cannot get stripe for read-ahead, just give-up */
5249 clear_bit(BIO_UPTODATE, &bi->bi_flags);
5250 break;
5251 }
5252 }
5253 finish_wait(&conf->wait_for_overlap, &w);
5254
5255 remaining = raid5_dec_bi_active_stripes(bi);
5256 if (remaining == 0) {
5257
5258 if ( rw == WRITE )
5259 md_write_end(mddev);
5260
5261 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5262 bi, 0);
5263 bio_endio(bi, 0);
5264 }
5265 }
5266
5267 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5268
5269 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5270 {
5271 /* reshaping is quite different to recovery/resync so it is
5272 * handled quite separately ... here.
5273 *
5274 * On each call to sync_request, we gather one chunk worth of
5275 * destination stripes and flag them as expanding.
5276 * Then we find all the source stripes and request reads.
5277 * As the reads complete, handle_stripe will copy the data
5278 * into the destination stripe and release that stripe.
5279 */
5280 struct r5conf *conf = mddev->private;
5281 struct stripe_head *sh;
5282 sector_t first_sector, last_sector;
5283 int raid_disks = conf->previous_raid_disks;
5284 int data_disks = raid_disks - conf->max_degraded;
5285 int new_data_disks = conf->raid_disks - conf->max_degraded;
5286 int i;
5287 int dd_idx;
5288 sector_t writepos, readpos, safepos;
5289 sector_t stripe_addr;
5290 int reshape_sectors;
5291 struct list_head stripes;
5292
5293 if (sector_nr == 0) {
5294 /* If restarting in the middle, skip the initial sectors */
5295 if (mddev->reshape_backwards &&
5296 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5297 sector_nr = raid5_size(mddev, 0, 0)
5298 - conf->reshape_progress;
5299 } else if (!mddev->reshape_backwards &&
5300 conf->reshape_progress > 0)
5301 sector_nr = conf->reshape_progress;
5302 sector_div(sector_nr, new_data_disks);
5303 if (sector_nr) {
5304 mddev->curr_resync_completed = sector_nr;
5305 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5306 *skipped = 1;
5307 return sector_nr;
5308 }
5309 }
5310
5311 /* We need to process a full chunk at a time.
5312 * If old and new chunk sizes differ, we need to process the
5313 * largest of these
5314 */
5315 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5316 reshape_sectors = mddev->new_chunk_sectors;
5317 else
5318 reshape_sectors = mddev->chunk_sectors;
5319
5320 /* We update the metadata at least every 10 seconds, or when
5321 * the data about to be copied would over-write the source of
5322 * the data at the front of the range. i.e. one new_stripe
5323 * along from reshape_progress new_maps to after where
5324 * reshape_safe old_maps to
5325 */
5326 writepos = conf->reshape_progress;
5327 sector_div(writepos, new_data_disks);
5328 readpos = conf->reshape_progress;
5329 sector_div(readpos, data_disks);
5330 safepos = conf->reshape_safe;
5331 sector_div(safepos, data_disks);
5332 if (mddev->reshape_backwards) {
5333 writepos -= min_t(sector_t, reshape_sectors, writepos);
5334 readpos += reshape_sectors;
5335 safepos += reshape_sectors;
5336 } else {
5337 writepos += reshape_sectors;
5338 readpos -= min_t(sector_t, reshape_sectors, readpos);
5339 safepos -= min_t(sector_t, reshape_sectors, safepos);
5340 }
5341
5342 /* Having calculated the 'writepos' possibly use it
5343 * to set 'stripe_addr' which is where we will write to.
5344 */
5345 if (mddev->reshape_backwards) {
5346 BUG_ON(conf->reshape_progress == 0);
5347 stripe_addr = writepos;
5348 BUG_ON((mddev->dev_sectors &
5349 ~((sector_t)reshape_sectors - 1))
5350 - reshape_sectors - stripe_addr
5351 != sector_nr);
5352 } else {
5353 BUG_ON(writepos != sector_nr + reshape_sectors);
5354 stripe_addr = sector_nr;
5355 }
5356
5357 /* 'writepos' is the most advanced device address we might write.
5358 * 'readpos' is the least advanced device address we might read.
5359 * 'safepos' is the least address recorded in the metadata as having
5360 * been reshaped.
5361 * If there is a min_offset_diff, these are adjusted either by
5362 * increasing the safepos/readpos if diff is negative, or
5363 * increasing writepos if diff is positive.
5364 * If 'readpos' is then behind 'writepos', there is no way that we can
5365 * ensure safety in the face of a crash - that must be done by userspace
5366 * making a backup of the data. So in that case there is no particular
5367 * rush to update metadata.
5368 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5369 * update the metadata to advance 'safepos' to match 'readpos' so that
5370 * we can be safe in the event of a crash.
5371 * So we insist on updating metadata if safepos is behind writepos and
5372 * readpos is beyond writepos.
5373 * In any case, update the metadata every 10 seconds.
5374 * Maybe that number should be configurable, but I'm not sure it is
5375 * worth it.... maybe it could be a multiple of safemode_delay???
5376 */
5377 if (conf->min_offset_diff < 0) {
5378 safepos += -conf->min_offset_diff;
5379 readpos += -conf->min_offset_diff;
5380 } else
5381 writepos += conf->min_offset_diff;
5382
5383 if ((mddev->reshape_backwards
5384 ? (safepos > writepos && readpos < writepos)
5385 : (safepos < writepos && readpos > writepos)) ||
5386 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5387 /* Cannot proceed until we've updated the superblock... */
5388 wait_event(conf->wait_for_overlap,
5389 atomic_read(&conf->reshape_stripes)==0
5390 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5391 if (atomic_read(&conf->reshape_stripes) != 0)
5392 return 0;
5393 mddev->reshape_position = conf->reshape_progress;
5394 mddev->curr_resync_completed = sector_nr;
5395 conf->reshape_checkpoint = jiffies;
5396 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5397 md_wakeup_thread(mddev->thread);
5398 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5399 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5400 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5401 return 0;
5402 spin_lock_irq(&conf->device_lock);
5403 conf->reshape_safe = mddev->reshape_position;
5404 spin_unlock_irq(&conf->device_lock);
5405 wake_up(&conf->wait_for_overlap);
5406 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5407 }
5408
5409 INIT_LIST_HEAD(&stripes);
5410 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5411 int j;
5412 int skipped_disk = 0;
5413 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5414 set_bit(STRIPE_EXPANDING, &sh->state);
5415 atomic_inc(&conf->reshape_stripes);
5416 /* If any of this stripe is beyond the end of the old
5417 * array, then we need to zero those blocks
5418 */
5419 for (j=sh->disks; j--;) {
5420 sector_t s;
5421 if (j == sh->pd_idx)
5422 continue;
5423 if (conf->level == 6 &&
5424 j == sh->qd_idx)
5425 continue;
5426 s = compute_blocknr(sh, j, 0);
5427 if (s < raid5_size(mddev, 0, 0)) {
5428 skipped_disk = 1;
5429 continue;
5430 }
5431 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5432 set_bit(R5_Expanded, &sh->dev[j].flags);
5433 set_bit(R5_UPTODATE, &sh->dev[j].flags);
5434 }
5435 if (!skipped_disk) {
5436 set_bit(STRIPE_EXPAND_READY, &sh->state);
5437 set_bit(STRIPE_HANDLE, &sh->state);
5438 }
5439 list_add(&sh->lru, &stripes);
5440 }
5441 spin_lock_irq(&conf->device_lock);
5442 if (mddev->reshape_backwards)
5443 conf->reshape_progress -= reshape_sectors * new_data_disks;
5444 else
5445 conf->reshape_progress += reshape_sectors * new_data_disks;
5446 spin_unlock_irq(&conf->device_lock);
5447 /* Ok, those stripe are ready. We can start scheduling
5448 * reads on the source stripes.
5449 * The source stripes are determined by mapping the first and last
5450 * block on the destination stripes.
5451 */
5452 first_sector =
5453 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5454 1, &dd_idx, NULL);
5455 last_sector =
5456 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5457 * new_data_disks - 1),
5458 1, &dd_idx, NULL);
5459 if (last_sector >= mddev->dev_sectors)
5460 last_sector = mddev->dev_sectors - 1;
5461 while (first_sector <= last_sector) {
5462 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5463 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5464 set_bit(STRIPE_HANDLE, &sh->state);
5465 release_stripe(sh);
5466 first_sector += STRIPE_SECTORS;
5467 }
5468 /* Now that the sources are clearly marked, we can release
5469 * the destination stripes
5470 */
5471 while (!list_empty(&stripes)) {
5472 sh = list_entry(stripes.next, struct stripe_head, lru);
5473 list_del_init(&sh->lru);
5474 release_stripe(sh);
5475 }
5476 /* If this takes us to the resync_max point where we have to pause,
5477 * then we need to write out the superblock.
5478 */
5479 sector_nr += reshape_sectors;
5480 if ((sector_nr - mddev->curr_resync_completed) * 2
5481 >= mddev->resync_max - mddev->curr_resync_completed) {
5482 /* Cannot proceed until we've updated the superblock... */
5483 wait_event(conf->wait_for_overlap,
5484 atomic_read(&conf->reshape_stripes) == 0
5485 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5486 if (atomic_read(&conf->reshape_stripes) != 0)
5487 goto ret;
5488 mddev->reshape_position = conf->reshape_progress;
5489 mddev->curr_resync_completed = sector_nr;
5490 conf->reshape_checkpoint = jiffies;
5491 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5492 md_wakeup_thread(mddev->thread);
5493 wait_event(mddev->sb_wait,
5494 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5495 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5496 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5497 goto ret;
5498 spin_lock_irq(&conf->device_lock);
5499 conf->reshape_safe = mddev->reshape_position;
5500 spin_unlock_irq(&conf->device_lock);
5501 wake_up(&conf->wait_for_overlap);
5502 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5503 }
5504 ret:
5505 return reshape_sectors;
5506 }
5507
5508 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5509 {
5510 struct r5conf *conf = mddev->private;
5511 struct stripe_head *sh;
5512 sector_t max_sector = mddev->dev_sectors;
5513 sector_t sync_blocks;
5514 int still_degraded = 0;
5515 int i;
5516
5517 if (sector_nr >= max_sector) {
5518 /* just being told to finish up .. nothing much to do */
5519
5520 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5521 end_reshape(conf);
5522 return 0;
5523 }
5524
5525 if (mddev->curr_resync < max_sector) /* aborted */
5526 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5527 &sync_blocks, 1);
5528 else /* completed sync */
5529 conf->fullsync = 0;
5530 bitmap_close_sync(mddev->bitmap);
5531
5532 return 0;
5533 }
5534
5535 /* Allow raid5_quiesce to complete */
5536 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5537
5538 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5539 return reshape_request(mddev, sector_nr, skipped);
5540
5541 /* No need to check resync_max as we never do more than one
5542 * stripe, and as resync_max will always be on a chunk boundary,
5543 * if the check in md_do_sync didn't fire, there is no chance
5544 * of overstepping resync_max here
5545 */
5546
5547 /* if there is too many failed drives and we are trying
5548 * to resync, then assert that we are finished, because there is
5549 * nothing we can do.
5550 */
5551 if (mddev->degraded >= conf->max_degraded &&
5552 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5553 sector_t rv = mddev->dev_sectors - sector_nr;
5554 *skipped = 1;
5555 return rv;
5556 }
5557 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5558 !conf->fullsync &&
5559 !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5560 sync_blocks >= STRIPE_SECTORS) {
5561 /* we can skip this block, and probably more */
5562 sync_blocks /= STRIPE_SECTORS;
5563 *skipped = 1;
5564 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5565 }
5566
5567 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5568
5569 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5570 if (sh == NULL) {
5571 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5572 /* make sure we don't swamp the stripe cache if someone else
5573 * is trying to get access
5574 */
5575 schedule_timeout_uninterruptible(1);
5576 }
5577 /* Need to check if array will still be degraded after recovery/resync
5578 * Note in case of > 1 drive failures it's possible we're rebuilding
5579 * one drive while leaving another faulty drive in array.
5580 */
5581 rcu_read_lock();
5582 for (i = 0; i < conf->raid_disks; i++) {
5583 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5584
5585 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5586 still_degraded = 1;
5587 }
5588 rcu_read_unlock();
5589
5590 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5591
5592 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5593 set_bit(STRIPE_HANDLE, &sh->state);
5594
5595 release_stripe(sh);
5596
5597 return STRIPE_SECTORS;
5598 }
5599
5600 static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5601 {
5602 /* We may not be able to submit a whole bio at once as there
5603 * may not be enough stripe_heads available.
5604 * We cannot pre-allocate enough stripe_heads as we may need
5605 * more than exist in the cache (if we allow ever large chunks).
5606 * So we do one stripe head at a time and record in
5607 * ->bi_hw_segments how many have been done.
5608 *
5609 * We *know* that this entire raid_bio is in one chunk, so
5610 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5611 */
5612 struct stripe_head *sh;
5613 int dd_idx;
5614 sector_t sector, logical_sector, last_sector;
5615 int scnt = 0;
5616 int remaining;
5617 int handled = 0;
5618
5619 logical_sector = raid_bio->bi_iter.bi_sector &
5620 ~((sector_t)STRIPE_SECTORS-1);
5621 sector = raid5_compute_sector(conf, logical_sector,
5622 0, &dd_idx, NULL);
5623 last_sector = bio_end_sector(raid_bio);
5624
5625 for (; logical_sector < last_sector;
5626 logical_sector += STRIPE_SECTORS,
5627 sector += STRIPE_SECTORS,
5628 scnt++) {
5629
5630 if (scnt < raid5_bi_processed_stripes(raid_bio))
5631 /* already done this stripe */
5632 continue;
5633
5634 sh = get_active_stripe(conf, sector, 0, 1, 1);
5635
5636 if (!sh) {
5637 /* failed to get a stripe - must wait */
5638 raid5_set_bi_processed_stripes(raid_bio, scnt);
5639 conf->retry_read_aligned = raid_bio;
5640 return handled;
5641 }
5642
5643 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5644 release_stripe(sh);
5645 raid5_set_bi_processed_stripes(raid_bio, scnt);
5646 conf->retry_read_aligned = raid_bio;
5647 return handled;
5648 }
5649
5650 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5651 handle_stripe(sh);
5652 release_stripe(sh);
5653 handled++;
5654 }
5655 remaining = raid5_dec_bi_active_stripes(raid_bio);
5656 if (remaining == 0) {
5657 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5658 raid_bio, 0);
5659 bio_endio(raid_bio, 0);
5660 }
5661 if (atomic_dec_and_test(&conf->active_aligned_reads))
5662 wake_up(&conf->wait_for_stripe);
5663 return handled;
5664 }
5665
5666 static int handle_active_stripes(struct r5conf *conf, int group,
5667 struct r5worker *worker,
5668 struct list_head *temp_inactive_list)
5669 {
5670 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5671 int i, batch_size = 0, hash;
5672 bool release_inactive = false;
5673
5674 while (batch_size < MAX_STRIPE_BATCH &&
5675 (sh = __get_priority_stripe(conf, group)) != NULL)
5676 batch[batch_size++] = sh;
5677
5678 if (batch_size == 0) {
5679 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5680 if (!list_empty(temp_inactive_list + i))
5681 break;
5682 if (i == NR_STRIPE_HASH_LOCKS)
5683 return batch_size;
5684 release_inactive = true;
5685 }
5686 spin_unlock_irq(&conf->device_lock);
5687
5688 release_inactive_stripe_list(conf, temp_inactive_list,
5689 NR_STRIPE_HASH_LOCKS);
5690
5691 if (release_inactive) {
5692 spin_lock_irq(&conf->device_lock);
5693 return 0;
5694 }
5695
5696 for (i = 0; i < batch_size; i++)
5697 handle_stripe(batch[i]);
5698
5699 cond_resched();
5700
5701 spin_lock_irq(&conf->device_lock);
5702 for (i = 0; i < batch_size; i++) {
5703 hash = batch[i]->hash_lock_index;
5704 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5705 }
5706 return batch_size;
5707 }
5708
5709 static void raid5_do_work(struct work_struct *work)
5710 {
5711 struct r5worker *worker = container_of(work, struct r5worker, work);
5712 struct r5worker_group *group = worker->group;
5713 struct r5conf *conf = group->conf;
5714 int group_id = group - conf->worker_groups;
5715 int handled;
5716 struct blk_plug plug;
5717
5718 pr_debug("+++ raid5worker active\n");
5719
5720 blk_start_plug(&plug);
5721 handled = 0;
5722 spin_lock_irq(&conf->device_lock);
5723 while (1) {
5724 int batch_size, released;
5725
5726 released = release_stripe_list(conf, worker->temp_inactive_list);
5727
5728 batch_size = handle_active_stripes(conf, group_id, worker,
5729 worker->temp_inactive_list);
5730 worker->working = false;
5731 if (!batch_size && !released)
5732 break;
5733 handled += batch_size;
5734 }
5735 pr_debug("%d stripes handled\n", handled);
5736
5737 spin_unlock_irq(&conf->device_lock);
5738 blk_finish_plug(&plug);
5739
5740 pr_debug("--- raid5worker inactive\n");
5741 }
5742
5743 /*
5744 * This is our raid5 kernel thread.
5745 *
5746 * We scan the hash table for stripes which can be handled now.
5747 * During the scan, completed stripes are saved for us by the interrupt
5748 * handler, so that they will not have to wait for our next wakeup.
5749 */
5750 static void raid5d(struct md_thread *thread)
5751 {
5752 struct mddev *mddev = thread->mddev;
5753 struct r5conf *conf = mddev->private;
5754 int handled;
5755 struct blk_plug plug;
5756
5757 pr_debug("+++ raid5d active\n");
5758
5759 md_check_recovery(mddev);
5760
5761 blk_start_plug(&plug);
5762 handled = 0;
5763 spin_lock_irq(&conf->device_lock);
5764 while (1) {
5765 struct bio *bio;
5766 int batch_size, released;
5767
5768 released = release_stripe_list(conf, conf->temp_inactive_list);
5769 if (released)
5770 clear_bit(R5_DID_ALLOC, &conf->cache_state);
5771
5772 if (
5773 !list_empty(&conf->bitmap_list)) {
5774 /* Now is a good time to flush some bitmap updates */
5775 conf->seq_flush++;
5776 spin_unlock_irq(&conf->device_lock);
5777 bitmap_unplug(mddev->bitmap);
5778 spin_lock_irq(&conf->device_lock);
5779 conf->seq_write = conf->seq_flush;
5780 activate_bit_delay(conf, conf->temp_inactive_list);
5781 }
5782 raid5_activate_delayed(conf);
5783
5784 while ((bio = remove_bio_from_retry(conf))) {
5785 int ok;
5786 spin_unlock_irq(&conf->device_lock);
5787 ok = retry_aligned_read(conf, bio);
5788 spin_lock_irq(&conf->device_lock);
5789 if (!ok)
5790 break;
5791 handled++;
5792 }
5793
5794 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5795 conf->temp_inactive_list);
5796 if (!batch_size && !released)
5797 break;
5798 handled += batch_size;
5799
5800 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5801 spin_unlock_irq(&conf->device_lock);
5802 md_check_recovery(mddev);
5803 spin_lock_irq(&conf->device_lock);
5804 }
5805 }
5806 pr_debug("%d stripes handled\n", handled);
5807
5808 spin_unlock_irq(&conf->device_lock);
5809 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5810 grow_one_stripe(conf, __GFP_NOWARN);
5811 /* Set flag even if allocation failed. This helps
5812 * slow down allocation requests when mem is short
5813 */
5814 set_bit(R5_DID_ALLOC, &conf->cache_state);
5815 }
5816
5817 async_tx_issue_pending_all();
5818 blk_finish_plug(&plug);
5819
5820 pr_debug("--- raid5d inactive\n");
5821 }
5822
5823 static ssize_t
5824 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5825 {
5826 struct r5conf *conf;
5827 int ret = 0;
5828 spin_lock(&mddev->lock);
5829 conf = mddev->private;
5830 if (conf)
5831 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5832 spin_unlock(&mddev->lock);
5833 return ret;
5834 }
5835
5836 int
5837 raid5_set_cache_size(struct mddev *mddev, int size)
5838 {
5839 struct r5conf *conf = mddev->private;
5840 int err;
5841
5842 if (size <= 16 || size > 32768)
5843 return -EINVAL;
5844
5845 conf->min_nr_stripes = size;
5846 while (size < conf->max_nr_stripes &&
5847 drop_one_stripe(conf))
5848 ;
5849
5850
5851 err = md_allow_write(mddev);
5852 if (err)
5853 return err;
5854
5855 while (size > conf->max_nr_stripes)
5856 if (!grow_one_stripe(conf, GFP_KERNEL))
5857 break;
5858
5859 return 0;
5860 }
5861 EXPORT_SYMBOL(raid5_set_cache_size);
5862
5863 static ssize_t
5864 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5865 {
5866 struct r5conf *conf;
5867 unsigned long new;
5868 int err;
5869
5870 if (len >= PAGE_SIZE)
5871 return -EINVAL;
5872 if (kstrtoul(page, 10, &new))
5873 return -EINVAL;
5874 err = mddev_lock(mddev);
5875 if (err)
5876 return err;
5877 conf = mddev->private;
5878 if (!conf)
5879 err = -ENODEV;
5880 else
5881 err = raid5_set_cache_size(mddev, new);
5882 mddev_unlock(mddev);
5883
5884 return err ?: len;
5885 }
5886
5887 static struct md_sysfs_entry
5888 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5889 raid5_show_stripe_cache_size,
5890 raid5_store_stripe_cache_size);
5891
5892 static ssize_t
5893 raid5_show_rmw_level(struct mddev *mddev, char *page)
5894 {
5895 struct r5conf *conf = mddev->private;
5896 if (conf)
5897 return sprintf(page, "%d\n", conf->rmw_level);
5898 else
5899 return 0;
5900 }
5901
5902 static ssize_t
5903 raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
5904 {
5905 struct r5conf *conf = mddev->private;
5906 unsigned long new;
5907
5908 if (!conf)
5909 return -ENODEV;
5910
5911 if (len >= PAGE_SIZE)
5912 return -EINVAL;
5913
5914 if (kstrtoul(page, 10, &new))
5915 return -EINVAL;
5916
5917 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5918 return -EINVAL;
5919
5920 if (new != PARITY_DISABLE_RMW &&
5921 new != PARITY_ENABLE_RMW &&
5922 new != PARITY_PREFER_RMW)
5923 return -EINVAL;
5924
5925 conf->rmw_level = new;
5926 return len;
5927 }
5928
5929 static struct md_sysfs_entry
5930 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5931 raid5_show_rmw_level,
5932 raid5_store_rmw_level);
5933
5934
5935 static ssize_t
5936 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5937 {
5938 struct r5conf *conf;
5939 int ret = 0;
5940 spin_lock(&mddev->lock);
5941 conf = mddev->private;
5942 if (conf)
5943 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5944 spin_unlock(&mddev->lock);
5945 return ret;
5946 }
5947
5948 static ssize_t
5949 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5950 {
5951 struct r5conf *conf;
5952 unsigned long new;
5953 int err;
5954
5955 if (len >= PAGE_SIZE)
5956 return -EINVAL;
5957 if (kstrtoul(page, 10, &new))
5958 return -EINVAL;
5959
5960 err = mddev_lock(mddev);
5961 if (err)
5962 return err;
5963 conf = mddev->private;
5964 if (!conf)
5965 err = -ENODEV;
5966 else if (new > conf->min_nr_stripes)
5967 err = -EINVAL;
5968 else
5969 conf->bypass_threshold = new;
5970 mddev_unlock(mddev);
5971 return err ?: len;
5972 }
5973
5974 static struct md_sysfs_entry
5975 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5976 S_IRUGO | S_IWUSR,
5977 raid5_show_preread_threshold,
5978 raid5_store_preread_threshold);
5979
5980 static ssize_t
5981 raid5_show_skip_copy(struct mddev *mddev, char *page)
5982 {
5983 struct r5conf *conf;
5984 int ret = 0;
5985 spin_lock(&mddev->lock);
5986 conf = mddev->private;
5987 if (conf)
5988 ret = sprintf(page, "%d\n", conf->skip_copy);
5989 spin_unlock(&mddev->lock);
5990 return ret;
5991 }
5992
5993 static ssize_t
5994 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
5995 {
5996 struct r5conf *conf;
5997 unsigned long new;
5998 int err;
5999
6000 if (len >= PAGE_SIZE)
6001 return -EINVAL;
6002 if (kstrtoul(page, 10, &new))
6003 return -EINVAL;
6004 new = !!new;
6005
6006 err = mddev_lock(mddev);
6007 if (err)
6008 return err;
6009 conf = mddev->private;
6010 if (!conf)
6011 err = -ENODEV;
6012 else if (new != conf->skip_copy) {
6013 mddev_suspend(mddev);
6014 conf->skip_copy = new;
6015 if (new)
6016 mddev->queue->backing_dev_info.capabilities |=
6017 BDI_CAP_STABLE_WRITES;
6018 else
6019 mddev->queue->backing_dev_info.capabilities &=
6020 ~BDI_CAP_STABLE_WRITES;
6021 mddev_resume(mddev);
6022 }
6023 mddev_unlock(mddev);
6024 return err ?: len;
6025 }
6026
6027 static struct md_sysfs_entry
6028 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6029 raid5_show_skip_copy,
6030 raid5_store_skip_copy);
6031
6032 static ssize_t
6033 stripe_cache_active_show(struct mddev *mddev, char *page)
6034 {
6035 struct r5conf *conf = mddev->private;
6036 if (conf)
6037 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6038 else
6039 return 0;
6040 }
6041
6042 static struct md_sysfs_entry
6043 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6044
6045 static ssize_t
6046 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6047 {
6048 struct r5conf *conf;
6049 int ret = 0;
6050 spin_lock(&mddev->lock);
6051 conf = mddev->private;
6052 if (conf)
6053 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6054 spin_unlock(&mddev->lock);
6055 return ret;
6056 }
6057
6058 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6059 int *group_cnt,
6060 int *worker_cnt_per_group,
6061 struct r5worker_group **worker_groups);
6062 static ssize_t
6063 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6064 {
6065 struct r5conf *conf;
6066 unsigned long new;
6067 int err;
6068 struct r5worker_group *new_groups, *old_groups;
6069 int group_cnt, worker_cnt_per_group;
6070
6071 if (len >= PAGE_SIZE)
6072 return -EINVAL;
6073 if (kstrtoul(page, 10, &new))
6074 return -EINVAL;
6075
6076 err = mddev_lock(mddev);
6077 if (err)
6078 return err;
6079 conf = mddev->private;
6080 if (!conf)
6081 err = -ENODEV;
6082 else if (new != conf->worker_cnt_per_group) {
6083 mddev_suspend(mddev);
6084
6085 old_groups = conf->worker_groups;
6086 if (old_groups)
6087 flush_workqueue(raid5_wq);
6088
6089 err = alloc_thread_groups(conf, new,
6090 &group_cnt, &worker_cnt_per_group,
6091 &new_groups);
6092 if (!err) {
6093 spin_lock_irq(&conf->device_lock);
6094 conf->group_cnt = group_cnt;
6095 conf->worker_cnt_per_group = worker_cnt_per_group;
6096 conf->worker_groups = new_groups;
6097 spin_unlock_irq(&conf->device_lock);
6098
6099 if (old_groups)
6100 kfree(old_groups[0].workers);
6101 kfree(old_groups);
6102 }
6103 mddev_resume(mddev);
6104 }
6105 mddev_unlock(mddev);
6106
6107 return err ?: len;
6108 }
6109
6110 static struct md_sysfs_entry
6111 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6112 raid5_show_group_thread_cnt,
6113 raid5_store_group_thread_cnt);
6114
6115 static struct attribute *raid5_attrs[] = {
6116 &raid5_stripecache_size.attr,
6117 &raid5_stripecache_active.attr,
6118 &raid5_preread_bypass_threshold.attr,
6119 &raid5_group_thread_cnt.attr,
6120 &raid5_skip_copy.attr,
6121 &raid5_rmw_level.attr,
6122 NULL,
6123 };
6124 static struct attribute_group raid5_attrs_group = {
6125 .name = NULL,
6126 .attrs = raid5_attrs,
6127 };
6128
6129 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6130 int *group_cnt,
6131 int *worker_cnt_per_group,
6132 struct r5worker_group **worker_groups)
6133 {
6134 int i, j, k;
6135 ssize_t size;
6136 struct r5worker *workers;
6137
6138 *worker_cnt_per_group = cnt;
6139 if (cnt == 0) {
6140 *group_cnt = 0;
6141 *worker_groups = NULL;
6142 return 0;
6143 }
6144 *group_cnt = num_possible_nodes();
6145 size = sizeof(struct r5worker) * cnt;
6146 workers = kzalloc(size * *group_cnt, GFP_NOIO);
6147 *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6148 *group_cnt, GFP_NOIO);
6149 if (!*worker_groups || !workers) {
6150 kfree(workers);
6151 kfree(*worker_groups);
6152 return -ENOMEM;
6153 }
6154
6155 for (i = 0; i < *group_cnt; i++) {
6156 struct r5worker_group *group;
6157
6158 group = &(*worker_groups)[i];
6159 INIT_LIST_HEAD(&group->handle_list);
6160 group->conf = conf;
6161 group->workers = workers + i * cnt;
6162
6163 for (j = 0; j < cnt; j++) {
6164 struct r5worker *worker = group->workers + j;
6165 worker->group = group;
6166 INIT_WORK(&worker->work, raid5_do_work);
6167
6168 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6169 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6170 }
6171 }
6172
6173 return 0;
6174 }
6175
6176 static void free_thread_groups(struct r5conf *conf)
6177 {
6178 if (conf->worker_groups)
6179 kfree(conf->worker_groups[0].workers);
6180 kfree(conf->worker_groups);
6181 conf->worker_groups = NULL;
6182 }
6183
6184 static sector_t
6185 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6186 {
6187 struct r5conf *conf = mddev->private;
6188
6189 if (!sectors)
6190 sectors = mddev->dev_sectors;
6191 if (!raid_disks)
6192 /* size is defined by the smallest of previous and new size */
6193 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6194
6195 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6196 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6197 return sectors * (raid_disks - conf->max_degraded);
6198 }
6199
6200 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6201 {
6202 safe_put_page(percpu->spare_page);
6203 if (percpu->scribble)
6204 flex_array_free(percpu->scribble);
6205 percpu->spare_page = NULL;
6206 percpu->scribble = NULL;
6207 }
6208
6209 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6210 {
6211 if (conf->level == 6 && !percpu->spare_page)
6212 percpu->spare_page = alloc_page(GFP_KERNEL);
6213 if (!percpu->scribble)
6214 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6215 conf->previous_raid_disks), conf->chunk_sectors /
6216 STRIPE_SECTORS, GFP_KERNEL);
6217
6218 if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6219 free_scratch_buffer(conf, percpu);
6220 return -ENOMEM;
6221 }
6222
6223 return 0;
6224 }
6225
6226 static void raid5_free_percpu(struct r5conf *conf)
6227 {
6228 unsigned long cpu;
6229
6230 if (!conf->percpu)
6231 return;
6232
6233 #ifdef CONFIG_HOTPLUG_CPU
6234 unregister_cpu_notifier(&conf->cpu_notify);
6235 #endif
6236
6237 get_online_cpus();
6238 for_each_possible_cpu(cpu)
6239 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6240 put_online_cpus();
6241
6242 free_percpu(conf->percpu);
6243 }
6244
6245 static void free_conf(struct r5conf *conf)
6246 {
6247 if (conf->shrinker.seeks)
6248 unregister_shrinker(&conf->shrinker);
6249 free_thread_groups(conf);
6250 shrink_stripes(conf);
6251 raid5_free_percpu(conf);
6252 kfree(conf->disks);
6253 kfree(conf->stripe_hashtbl);
6254 kfree(conf);
6255 }
6256
6257 #ifdef CONFIG_HOTPLUG_CPU
6258 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6259 void *hcpu)
6260 {
6261 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6262 long cpu = (long)hcpu;
6263 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6264
6265 switch (action) {
6266 case CPU_UP_PREPARE:
6267 case CPU_UP_PREPARE_FROZEN:
6268 if (alloc_scratch_buffer(conf, percpu)) {
6269 pr_err("%s: failed memory allocation for cpu%ld\n",
6270 __func__, cpu);
6271 return notifier_from_errno(-ENOMEM);
6272 }
6273 break;
6274 case CPU_DEAD:
6275 case CPU_DEAD_FROZEN:
6276 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6277 break;
6278 default:
6279 break;
6280 }
6281 return NOTIFY_OK;
6282 }
6283 #endif
6284
6285 static int raid5_alloc_percpu(struct r5conf *conf)
6286 {
6287 unsigned long cpu;
6288 int err = 0;
6289
6290 conf->percpu = alloc_percpu(struct raid5_percpu);
6291 if (!conf->percpu)
6292 return -ENOMEM;
6293
6294 #ifdef CONFIG_HOTPLUG_CPU
6295 conf->cpu_notify.notifier_call = raid456_cpu_notify;
6296 conf->cpu_notify.priority = 0;
6297 err = register_cpu_notifier(&conf->cpu_notify);
6298 if (err)
6299 return err;
6300 #endif
6301
6302 get_online_cpus();
6303 for_each_present_cpu(cpu) {
6304 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6305 if (err) {
6306 pr_err("%s: failed memory allocation for cpu%ld\n",
6307 __func__, cpu);
6308 break;
6309 }
6310 }
6311 put_online_cpus();
6312
6313 return err;
6314 }
6315
6316 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6317 struct shrink_control *sc)
6318 {
6319 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6320 int ret = 0;
6321 while (ret < sc->nr_to_scan) {
6322 if (drop_one_stripe(conf) == 0)
6323 return SHRINK_STOP;
6324 ret++;
6325 }
6326 return ret;
6327 }
6328
6329 static unsigned long raid5_cache_count(struct shrinker *shrink,
6330 struct shrink_control *sc)
6331 {
6332 struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6333
6334 if (conf->max_nr_stripes < conf->min_nr_stripes)
6335 /* unlikely, but not impossible */
6336 return 0;
6337 return conf->max_nr_stripes - conf->min_nr_stripes;
6338 }
6339
6340 static struct r5conf *setup_conf(struct mddev *mddev)
6341 {
6342 struct r5conf *conf;
6343 int raid_disk, memory, max_disks;
6344 struct md_rdev *rdev;
6345 struct disk_info *disk;
6346 char pers_name[6];
6347 int i;
6348 int group_cnt, worker_cnt_per_group;
6349 struct r5worker_group *new_group;
6350
6351 if (mddev->new_level != 5
6352 && mddev->new_level != 4
6353 && mddev->new_level != 6) {
6354 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6355 mdname(mddev), mddev->new_level);
6356 return ERR_PTR(-EIO);
6357 }
6358 if ((mddev->new_level == 5
6359 && !algorithm_valid_raid5(mddev->new_layout)) ||
6360 (mddev->new_level == 6
6361 && !algorithm_valid_raid6(mddev->new_layout))) {
6362 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6363 mdname(mddev), mddev->new_layout);
6364 return ERR_PTR(-EIO);
6365 }
6366 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6367 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6368 mdname(mddev), mddev->raid_disks);
6369 return ERR_PTR(-EINVAL);
6370 }
6371
6372 if (!mddev->new_chunk_sectors ||
6373 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6374 !is_power_of_2(mddev->new_chunk_sectors)) {
6375 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6376 mdname(mddev), mddev->new_chunk_sectors << 9);
6377 return ERR_PTR(-EINVAL);
6378 }
6379
6380 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6381 if (conf == NULL)
6382 goto abort;
6383 /* Don't enable multi-threading by default*/
6384 if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6385 &new_group)) {
6386 conf->group_cnt = group_cnt;
6387 conf->worker_cnt_per_group = worker_cnt_per_group;
6388 conf->worker_groups = new_group;
6389 } else
6390 goto abort;
6391 spin_lock_init(&conf->device_lock);
6392 seqcount_init(&conf->gen_lock);
6393 init_waitqueue_head(&conf->wait_for_stripe);
6394 init_waitqueue_head(&conf->wait_for_overlap);
6395 INIT_LIST_HEAD(&conf->handle_list);
6396 INIT_LIST_HEAD(&conf->hold_list);
6397 INIT_LIST_HEAD(&conf->delayed_list);
6398 INIT_LIST_HEAD(&conf->bitmap_list);
6399 init_llist_head(&conf->released_stripes);
6400 atomic_set(&conf->active_stripes, 0);
6401 atomic_set(&conf->preread_active_stripes, 0);
6402 atomic_set(&conf->active_aligned_reads, 0);
6403 conf->bypass_threshold = BYPASS_THRESHOLD;
6404 conf->recovery_disabled = mddev->recovery_disabled - 1;
6405
6406 conf->raid_disks = mddev->raid_disks;
6407 if (mddev->reshape_position == MaxSector)
6408 conf->previous_raid_disks = mddev->raid_disks;
6409 else
6410 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6411 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6412
6413 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6414 GFP_KERNEL);
6415 if (!conf->disks)
6416 goto abort;
6417
6418 conf->mddev = mddev;
6419
6420 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6421 goto abort;
6422
6423 /* We init hash_locks[0] separately to that it can be used
6424 * as the reference lock in the spin_lock_nest_lock() call
6425 * in lock_all_device_hash_locks_irq in order to convince
6426 * lockdep that we know what we are doing.
6427 */
6428 spin_lock_init(conf->hash_locks);
6429 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6430 spin_lock_init(conf->hash_locks + i);
6431
6432 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6433 INIT_LIST_HEAD(conf->inactive_list + i);
6434
6435 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6436 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6437
6438 conf->level = mddev->new_level;
6439 conf->chunk_sectors = mddev->new_chunk_sectors;
6440 if (raid5_alloc_percpu(conf) != 0)
6441 goto abort;
6442
6443 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6444
6445 rdev_for_each(rdev, mddev) {
6446 raid_disk = rdev->raid_disk;
6447 if (raid_disk >= max_disks
6448 || raid_disk < 0)
6449 continue;
6450 disk = conf->disks + raid_disk;
6451
6452 if (test_bit(Replacement, &rdev->flags)) {
6453 if (disk->replacement)
6454 goto abort;
6455 disk->replacement = rdev;
6456 } else {
6457 if (disk->rdev)
6458 goto abort;
6459 disk->rdev = rdev;
6460 }
6461
6462 if (test_bit(In_sync, &rdev->flags)) {
6463 char b[BDEVNAME_SIZE];
6464 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6465 " disk %d\n",
6466 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6467 } else if (rdev->saved_raid_disk != raid_disk)
6468 /* Cannot rely on bitmap to complete recovery */
6469 conf->fullsync = 1;
6470 }
6471
6472 conf->level = mddev->new_level;
6473 if (conf->level == 6) {
6474 conf->max_degraded = 2;
6475 if (raid6_call.xor_syndrome)
6476 conf->rmw_level = PARITY_ENABLE_RMW;
6477 else
6478 conf->rmw_level = PARITY_DISABLE_RMW;
6479 } else {
6480 conf->max_degraded = 1;
6481 conf->rmw_level = PARITY_ENABLE_RMW;
6482 }
6483 conf->algorithm = mddev->new_layout;
6484 conf->reshape_progress = mddev->reshape_position;
6485 if (conf->reshape_progress != MaxSector) {
6486 conf->prev_chunk_sectors = mddev->chunk_sectors;
6487 conf->prev_algo = mddev->layout;
6488 }
6489
6490 conf->min_nr_stripes = NR_STRIPES;
6491 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6492 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6493 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6494 if (grow_stripes(conf, conf->min_nr_stripes)) {
6495 printk(KERN_ERR
6496 "md/raid:%s: couldn't allocate %dkB for buffers\n",
6497 mdname(mddev), memory);
6498 goto abort;
6499 } else
6500 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6501 mdname(mddev), memory);
6502 /*
6503 * Losing a stripe head costs more than the time to refill it,
6504 * it reduces the queue depth and so can hurt throughput.
6505 * So set it rather large, scaled by number of devices.
6506 */
6507 conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6508 conf->shrinker.scan_objects = raid5_cache_scan;
6509 conf->shrinker.count_objects = raid5_cache_count;
6510 conf->shrinker.batch = 128;
6511 conf->shrinker.flags = 0;
6512 register_shrinker(&conf->shrinker);
6513
6514 sprintf(pers_name, "raid%d", mddev->new_level);
6515 conf->thread = md_register_thread(raid5d, mddev, pers_name);
6516 if (!conf->thread) {
6517 printk(KERN_ERR
6518 "md/raid:%s: couldn't allocate thread.\n",
6519 mdname(mddev));
6520 goto abort;
6521 }
6522
6523 return conf;
6524
6525 abort:
6526 if (conf) {
6527 free_conf(conf);
6528 return ERR_PTR(-EIO);
6529 } else
6530 return ERR_PTR(-ENOMEM);
6531 }
6532
6533 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6534 {
6535 switch (algo) {
6536 case ALGORITHM_PARITY_0:
6537 if (raid_disk < max_degraded)
6538 return 1;
6539 break;
6540 case ALGORITHM_PARITY_N:
6541 if (raid_disk >= raid_disks - max_degraded)
6542 return 1;
6543 break;
6544 case ALGORITHM_PARITY_0_6:
6545 if (raid_disk == 0 ||
6546 raid_disk == raid_disks - 1)
6547 return 1;
6548 break;
6549 case ALGORITHM_LEFT_ASYMMETRIC_6:
6550 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6551 case ALGORITHM_LEFT_SYMMETRIC_6:
6552 case ALGORITHM_RIGHT_SYMMETRIC_6:
6553 if (raid_disk == raid_disks - 1)
6554 return 1;
6555 }
6556 return 0;
6557 }
6558
6559 static int run(struct mddev *mddev)
6560 {
6561 struct r5conf *conf;
6562 int working_disks = 0;
6563 int dirty_parity_disks = 0;
6564 struct md_rdev *rdev;
6565 sector_t reshape_offset = 0;
6566 int i;
6567 long long min_offset_diff = 0;
6568 int first = 1;
6569
6570 if (mddev->recovery_cp != MaxSector)
6571 printk(KERN_NOTICE "md/raid:%s: not clean"
6572 " -- starting background reconstruction\n",
6573 mdname(mddev));
6574
6575 rdev_for_each(rdev, mddev) {
6576 long long diff;
6577 if (rdev->raid_disk < 0)
6578 continue;
6579 diff = (rdev->new_data_offset - rdev->data_offset);
6580 if (first) {
6581 min_offset_diff = diff;
6582 first = 0;
6583 } else if (mddev->reshape_backwards &&
6584 diff < min_offset_diff)
6585 min_offset_diff = diff;
6586 else if (!mddev->reshape_backwards &&
6587 diff > min_offset_diff)
6588 min_offset_diff = diff;
6589 }
6590
6591 if (mddev->reshape_position != MaxSector) {
6592 /* Check that we can continue the reshape.
6593 * Difficulties arise if the stripe we would write to
6594 * next is at or after the stripe we would read from next.
6595 * For a reshape that changes the number of devices, this
6596 * is only possible for a very short time, and mdadm makes
6597 * sure that time appears to have past before assembling
6598 * the array. So we fail if that time hasn't passed.
6599 * For a reshape that keeps the number of devices the same
6600 * mdadm must be monitoring the reshape can keeping the
6601 * critical areas read-only and backed up. It will start
6602 * the array in read-only mode, so we check for that.
6603 */
6604 sector_t here_new, here_old;
6605 int old_disks;
6606 int max_degraded = (mddev->level == 6 ? 2 : 1);
6607
6608 if (mddev->new_level != mddev->level) {
6609 printk(KERN_ERR "md/raid:%s: unsupported reshape "
6610 "required - aborting.\n",
6611 mdname(mddev));
6612 return -EINVAL;
6613 }
6614 old_disks = mddev->raid_disks - mddev->delta_disks;
6615 /* reshape_position must be on a new-stripe boundary, and one
6616 * further up in new geometry must map after here in old
6617 * geometry.
6618 */
6619 here_new = mddev->reshape_position;
6620 if (sector_div(here_new, mddev->new_chunk_sectors *
6621 (mddev->raid_disks - max_degraded))) {
6622 printk(KERN_ERR "md/raid:%s: reshape_position not "
6623 "on a stripe boundary\n", mdname(mddev));
6624 return -EINVAL;
6625 }
6626 reshape_offset = here_new * mddev->new_chunk_sectors;
6627 /* here_new is the stripe we will write to */
6628 here_old = mddev->reshape_position;
6629 sector_div(here_old, mddev->chunk_sectors *
6630 (old_disks-max_degraded));
6631 /* here_old is the first stripe that we might need to read
6632 * from */
6633 if (mddev->delta_disks == 0) {
6634 if ((here_new * mddev->new_chunk_sectors !=
6635 here_old * mddev->chunk_sectors)) {
6636 printk(KERN_ERR "md/raid:%s: reshape position is"
6637 " confused - aborting\n", mdname(mddev));
6638 return -EINVAL;
6639 }
6640 /* We cannot be sure it is safe to start an in-place
6641 * reshape. It is only safe if user-space is monitoring
6642 * and taking constant backups.
6643 * mdadm always starts a situation like this in
6644 * readonly mode so it can take control before
6645 * allowing any writes. So just check for that.
6646 */
6647 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6648 abs(min_offset_diff) >= mddev->new_chunk_sectors)
6649 /* not really in-place - so OK */;
6650 else if (mddev->ro == 0) {
6651 printk(KERN_ERR "md/raid:%s: in-place reshape "
6652 "must be started in read-only mode "
6653 "- aborting\n",
6654 mdname(mddev));
6655 return -EINVAL;
6656 }
6657 } else if (mddev->reshape_backwards
6658 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6659 here_old * mddev->chunk_sectors)
6660 : (here_new * mddev->new_chunk_sectors >=
6661 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6662 /* Reading from the same stripe as writing to - bad */
6663 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6664 "auto-recovery - aborting.\n",
6665 mdname(mddev));
6666 return -EINVAL;
6667 }
6668 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6669 mdname(mddev));
6670 /* OK, we should be able to continue; */
6671 } else {
6672 BUG_ON(mddev->level != mddev->new_level);
6673 BUG_ON(mddev->layout != mddev->new_layout);
6674 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6675 BUG_ON(mddev->delta_disks != 0);
6676 }
6677
6678 if (mddev->private == NULL)
6679 conf = setup_conf(mddev);
6680 else
6681 conf = mddev->private;
6682
6683 if (IS_ERR(conf))
6684 return PTR_ERR(conf);
6685
6686 conf->min_offset_diff = min_offset_diff;
6687 mddev->thread = conf->thread;
6688 conf->thread = NULL;
6689 mddev->private = conf;
6690
6691 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6692 i++) {
6693 rdev = conf->disks[i].rdev;
6694 if (!rdev && conf->disks[i].replacement) {
6695 /* The replacement is all we have yet */
6696 rdev = conf->disks[i].replacement;
6697 conf->disks[i].replacement = NULL;
6698 clear_bit(Replacement, &rdev->flags);
6699 conf->disks[i].rdev = rdev;
6700 }
6701 if (!rdev)
6702 continue;
6703 if (conf->disks[i].replacement &&
6704 conf->reshape_progress != MaxSector) {
6705 /* replacements and reshape simply do not mix. */
6706 printk(KERN_ERR "md: cannot handle concurrent "
6707 "replacement and reshape.\n");
6708 goto abort;
6709 }
6710 if (test_bit(In_sync, &rdev->flags)) {
6711 working_disks++;
6712 continue;
6713 }
6714 /* This disc is not fully in-sync. However if it
6715 * just stored parity (beyond the recovery_offset),
6716 * when we don't need to be concerned about the
6717 * array being dirty.
6718 * When reshape goes 'backwards', we never have
6719 * partially completed devices, so we only need
6720 * to worry about reshape going forwards.
6721 */
6722 /* Hack because v0.91 doesn't store recovery_offset properly. */
6723 if (mddev->major_version == 0 &&
6724 mddev->minor_version > 90)
6725 rdev->recovery_offset = reshape_offset;
6726
6727 if (rdev->recovery_offset < reshape_offset) {
6728 /* We need to check old and new layout */
6729 if (!only_parity(rdev->raid_disk,
6730 conf->algorithm,
6731 conf->raid_disks,
6732 conf->max_degraded))
6733 continue;
6734 }
6735 if (!only_parity(rdev->raid_disk,
6736 conf->prev_algo,
6737 conf->previous_raid_disks,
6738 conf->max_degraded))
6739 continue;
6740 dirty_parity_disks++;
6741 }
6742
6743 /*
6744 * 0 for a fully functional array, 1 or 2 for a degraded array.
6745 */
6746 mddev->degraded = calc_degraded(conf);
6747
6748 if (has_failed(conf)) {
6749 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6750 " (%d/%d failed)\n",
6751 mdname(mddev), mddev->degraded, conf->raid_disks);
6752 goto abort;
6753 }
6754
6755 /* device size must be a multiple of chunk size */
6756 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6757 mddev->resync_max_sectors = mddev->dev_sectors;
6758
6759 if (mddev->degraded > dirty_parity_disks &&
6760 mddev->recovery_cp != MaxSector) {
6761 if (mddev->ok_start_degraded)
6762 printk(KERN_WARNING
6763 "md/raid:%s: starting dirty degraded array"
6764 " - data corruption possible.\n",
6765 mdname(mddev));
6766 else {
6767 printk(KERN_ERR
6768 "md/raid:%s: cannot start dirty degraded array.\n",
6769 mdname(mddev));
6770 goto abort;
6771 }
6772 }
6773
6774 if (mddev->degraded == 0)
6775 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6776 " devices, algorithm %d\n", mdname(mddev), conf->level,
6777 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6778 mddev->new_layout);
6779 else
6780 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6781 " out of %d devices, algorithm %d\n",
6782 mdname(mddev), conf->level,
6783 mddev->raid_disks - mddev->degraded,
6784 mddev->raid_disks, mddev->new_layout);
6785
6786 print_raid5_conf(conf);
6787
6788 if (conf->reshape_progress != MaxSector) {
6789 conf->reshape_safe = conf->reshape_progress;
6790 atomic_set(&conf->reshape_stripes, 0);
6791 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6792 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6793 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6794 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6795 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6796 "reshape");
6797 }
6798
6799 /* Ok, everything is just fine now */
6800 if (mddev->to_remove == &raid5_attrs_group)
6801 mddev->to_remove = NULL;
6802 else if (mddev->kobj.sd &&
6803 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6804 printk(KERN_WARNING
6805 "raid5: failed to create sysfs attributes for %s\n",
6806 mdname(mddev));
6807 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6808
6809 if (mddev->queue) {
6810 int chunk_size;
6811 bool discard_supported = true;
6812 /* read-ahead size must cover two whole stripes, which
6813 * is 2 * (datadisks) * chunksize where 'n' is the
6814 * number of raid devices
6815 */
6816 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6817 int stripe = data_disks *
6818 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6819 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6820 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6821
6822 chunk_size = mddev->chunk_sectors << 9;
6823 blk_queue_io_min(mddev->queue, chunk_size);
6824 blk_queue_io_opt(mddev->queue, chunk_size *
6825 (conf->raid_disks - conf->max_degraded));
6826 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6827 /*
6828 * We can only discard a whole stripe. It doesn't make sense to
6829 * discard data disk but write parity disk
6830 */
6831 stripe = stripe * PAGE_SIZE;
6832 /* Round up to power of 2, as discard handling
6833 * currently assumes that */
6834 while ((stripe-1) & stripe)
6835 stripe = (stripe | (stripe-1)) + 1;
6836 mddev->queue->limits.discard_alignment = stripe;
6837 mddev->queue->limits.discard_granularity = stripe;
6838 /*
6839 * unaligned part of discard request will be ignored, so can't
6840 * guarantee discard_zeroes_data
6841 */
6842 mddev->queue->limits.discard_zeroes_data = 0;
6843
6844 blk_queue_max_write_same_sectors(mddev->queue, 0);
6845
6846 rdev_for_each(rdev, mddev) {
6847 disk_stack_limits(mddev->gendisk, rdev->bdev,
6848 rdev->data_offset << 9);
6849 disk_stack_limits(mddev->gendisk, rdev->bdev,
6850 rdev->new_data_offset << 9);
6851 /*
6852 * discard_zeroes_data is required, otherwise data
6853 * could be lost. Consider a scenario: discard a stripe
6854 * (the stripe could be inconsistent if
6855 * discard_zeroes_data is 0); write one disk of the
6856 * stripe (the stripe could be inconsistent again
6857 * depending on which disks are used to calculate
6858 * parity); the disk is broken; The stripe data of this
6859 * disk is lost.
6860 */
6861 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6862 !bdev_get_queue(rdev->bdev)->
6863 limits.discard_zeroes_data)
6864 discard_supported = false;
6865 /* Unfortunately, discard_zeroes_data is not currently
6866 * a guarantee - just a hint. So we only allow DISCARD
6867 * if the sysadmin has confirmed that only safe devices
6868 * are in use by setting a module parameter.
6869 */
6870 if (!devices_handle_discard_safely) {
6871 if (discard_supported) {
6872 pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6873 pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6874 }
6875 discard_supported = false;
6876 }
6877 }
6878
6879 if (discard_supported &&
6880 mddev->queue->limits.max_discard_sectors >= stripe &&
6881 mddev->queue->limits.discard_granularity >= stripe)
6882 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6883 mddev->queue);
6884 else
6885 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6886 mddev->queue);
6887 }
6888
6889 return 0;
6890 abort:
6891 md_unregister_thread(&mddev->thread);
6892 print_raid5_conf(conf);
6893 free_conf(conf);
6894 mddev->private = NULL;
6895 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6896 return -EIO;
6897 }
6898
6899 static void raid5_free(struct mddev *mddev, void *priv)
6900 {
6901 struct r5conf *conf = priv;
6902
6903 free_conf(conf);
6904 mddev->to_remove = &raid5_attrs_group;
6905 }
6906
6907 static void status(struct seq_file *seq, struct mddev *mddev)
6908 {
6909 struct r5conf *conf = mddev->private;
6910 int i;
6911
6912 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6913 mddev->chunk_sectors / 2, mddev->layout);
6914 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6915 for (i = 0; i < conf->raid_disks; i++)
6916 seq_printf (seq, "%s",
6917 conf->disks[i].rdev &&
6918 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6919 seq_printf (seq, "]");
6920 }
6921
6922 static void print_raid5_conf (struct r5conf *conf)
6923 {
6924 int i;
6925 struct disk_info *tmp;
6926
6927 printk(KERN_DEBUG "RAID conf printout:\n");
6928 if (!conf) {
6929 printk("(conf==NULL)\n");
6930 return;
6931 }
6932 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6933 conf->raid_disks,
6934 conf->raid_disks - conf->mddev->degraded);
6935
6936 for (i = 0; i < conf->raid_disks; i++) {
6937 char b[BDEVNAME_SIZE];
6938 tmp = conf->disks + i;
6939 if (tmp->rdev)
6940 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6941 i, !test_bit(Faulty, &tmp->rdev->flags),
6942 bdevname(tmp->rdev->bdev, b));
6943 }
6944 }
6945
6946 static int raid5_spare_active(struct mddev *mddev)
6947 {
6948 int i;
6949 struct r5conf *conf = mddev->private;
6950 struct disk_info *tmp;
6951 int count = 0;
6952 unsigned long flags;
6953
6954 for (i = 0; i < conf->raid_disks; i++) {
6955 tmp = conf->disks + i;
6956 if (tmp->replacement
6957 && tmp->replacement->recovery_offset == MaxSector
6958 && !test_bit(Faulty, &tmp->replacement->flags)
6959 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6960 /* Replacement has just become active. */
6961 if (!tmp->rdev
6962 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6963 count++;
6964 if (tmp->rdev) {
6965 /* Replaced device not technically faulty,
6966 * but we need to be sure it gets removed
6967 * and never re-added.
6968 */
6969 set_bit(Faulty, &tmp->rdev->flags);
6970 sysfs_notify_dirent_safe(
6971 tmp->rdev->sysfs_state);
6972 }
6973 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6974 } else if (tmp->rdev
6975 && tmp->rdev->recovery_offset == MaxSector
6976 && !test_bit(Faulty, &tmp->rdev->flags)
6977 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6978 count++;
6979 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6980 }
6981 }
6982 spin_lock_irqsave(&conf->device_lock, flags);
6983 mddev->degraded = calc_degraded(conf);
6984 spin_unlock_irqrestore(&conf->device_lock, flags);
6985 print_raid5_conf(conf);
6986 return count;
6987 }
6988
6989 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
6990 {
6991 struct r5conf *conf = mddev->private;
6992 int err = 0;
6993 int number = rdev->raid_disk;
6994 struct md_rdev **rdevp;
6995 struct disk_info *p = conf->disks + number;
6996
6997 print_raid5_conf(conf);
6998 if (rdev == p->rdev)
6999 rdevp = &p->rdev;
7000 else if (rdev == p->replacement)
7001 rdevp = &p->replacement;
7002 else
7003 return 0;
7004
7005 if (number >= conf->raid_disks &&
7006 conf->reshape_progress == MaxSector)
7007 clear_bit(In_sync, &rdev->flags);
7008
7009 if (test_bit(In_sync, &rdev->flags) ||
7010 atomic_read(&rdev->nr_pending)) {
7011 err = -EBUSY;
7012 goto abort;
7013 }
7014 /* Only remove non-faulty devices if recovery
7015 * isn't possible.
7016 */
7017 if (!test_bit(Faulty, &rdev->flags) &&
7018 mddev->recovery_disabled != conf->recovery_disabled &&
7019 !has_failed(conf) &&
7020 (!p->replacement || p->replacement == rdev) &&
7021 number < conf->raid_disks) {
7022 err = -EBUSY;
7023 goto abort;
7024 }
7025 *rdevp = NULL;
7026 synchronize_rcu();
7027 if (atomic_read(&rdev->nr_pending)) {
7028 /* lost the race, try later */
7029 err = -EBUSY;
7030 *rdevp = rdev;
7031 } else if (p->replacement) {
7032 /* We must have just cleared 'rdev' */
7033 p->rdev = p->replacement;
7034 clear_bit(Replacement, &p->replacement->flags);
7035 smp_mb(); /* Make sure other CPUs may see both as identical
7036 * but will never see neither - if they are careful
7037 */
7038 p->replacement = NULL;
7039 clear_bit(WantReplacement, &rdev->flags);
7040 } else
7041 /* We might have just removed the Replacement as faulty-
7042 * clear the bit just in case
7043 */
7044 clear_bit(WantReplacement, &rdev->flags);
7045 abort:
7046
7047 print_raid5_conf(conf);
7048 return err;
7049 }
7050
7051 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7052 {
7053 struct r5conf *conf = mddev->private;
7054 int err = -EEXIST;
7055 int disk;
7056 struct disk_info *p;
7057 int first = 0;
7058 int last = conf->raid_disks - 1;
7059
7060 if (mddev->recovery_disabled == conf->recovery_disabled)
7061 return -EBUSY;
7062
7063 if (rdev->saved_raid_disk < 0 && has_failed(conf))
7064 /* no point adding a device */
7065 return -EINVAL;
7066
7067 if (rdev->raid_disk >= 0)
7068 first = last = rdev->raid_disk;
7069
7070 /*
7071 * find the disk ... but prefer rdev->saved_raid_disk
7072 * if possible.
7073 */
7074 if (rdev->saved_raid_disk >= 0 &&
7075 rdev->saved_raid_disk >= first &&
7076 conf->disks[rdev->saved_raid_disk].rdev == NULL)
7077 first = rdev->saved_raid_disk;
7078
7079 for (disk = first; disk <= last; disk++) {
7080 p = conf->disks + disk;
7081 if (p->rdev == NULL) {
7082 clear_bit(In_sync, &rdev->flags);
7083 rdev->raid_disk = disk;
7084 err = 0;
7085 if (rdev->saved_raid_disk != disk)
7086 conf->fullsync = 1;
7087 rcu_assign_pointer(p->rdev, rdev);
7088 goto out;
7089 }
7090 }
7091 for (disk = first; disk <= last; disk++) {
7092 p = conf->disks + disk;
7093 if (test_bit(WantReplacement, &p->rdev->flags) &&
7094 p->replacement == NULL) {
7095 clear_bit(In_sync, &rdev->flags);
7096 set_bit(Replacement, &rdev->flags);
7097 rdev->raid_disk = disk;
7098 err = 0;
7099 conf->fullsync = 1;
7100 rcu_assign_pointer(p->replacement, rdev);
7101 break;
7102 }
7103 }
7104 out:
7105 print_raid5_conf(conf);
7106 return err;
7107 }
7108
7109 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7110 {
7111 /* no resync is happening, and there is enough space
7112 * on all devices, so we can resize.
7113 * We need to make sure resync covers any new space.
7114 * If the array is shrinking we should possibly wait until
7115 * any io in the removed space completes, but it hardly seems
7116 * worth it.
7117 */
7118 sector_t newsize;
7119 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7120 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7121 if (mddev->external_size &&
7122 mddev->array_sectors > newsize)
7123 return -EINVAL;
7124 if (mddev->bitmap) {
7125 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7126 if (ret)
7127 return ret;
7128 }
7129 md_set_array_sectors(mddev, newsize);
7130 set_capacity(mddev->gendisk, mddev->array_sectors);
7131 revalidate_disk(mddev->gendisk);
7132 if (sectors > mddev->dev_sectors &&
7133 mddev->recovery_cp > mddev->dev_sectors) {
7134 mddev->recovery_cp = mddev->dev_sectors;
7135 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7136 }
7137 mddev->dev_sectors = sectors;
7138 mddev->resync_max_sectors = sectors;
7139 return 0;
7140 }
7141
7142 static int check_stripe_cache(struct mddev *mddev)
7143 {
7144 /* Can only proceed if there are plenty of stripe_heads.
7145 * We need a minimum of one full stripe,, and for sensible progress
7146 * it is best to have about 4 times that.
7147 * If we require 4 times, then the default 256 4K stripe_heads will
7148 * allow for chunk sizes up to 256K, which is probably OK.
7149 * If the chunk size is greater, user-space should request more
7150 * stripe_heads first.
7151 */
7152 struct r5conf *conf = mddev->private;
7153 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7154 > conf->min_nr_stripes ||
7155 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7156 > conf->min_nr_stripes) {
7157 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
7158 mdname(mddev),
7159 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7160 / STRIPE_SIZE)*4);
7161 return 0;
7162 }
7163 return 1;
7164 }
7165
7166 static int check_reshape(struct mddev *mddev)
7167 {
7168 struct r5conf *conf = mddev->private;
7169
7170 if (mddev->delta_disks == 0 &&
7171 mddev->new_layout == mddev->layout &&
7172 mddev->new_chunk_sectors == mddev->chunk_sectors)
7173 return 0; /* nothing to do */
7174 if (has_failed(conf))
7175 return -EINVAL;
7176 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7177 /* We might be able to shrink, but the devices must
7178 * be made bigger first.
7179 * For raid6, 4 is the minimum size.
7180 * Otherwise 2 is the minimum
7181 */
7182 int min = 2;
7183 if (mddev->level == 6)
7184 min = 4;
7185 if (mddev->raid_disks + mddev->delta_disks < min)
7186 return -EINVAL;
7187 }
7188
7189 if (!check_stripe_cache(mddev))
7190 return -ENOSPC;
7191
7192 return resize_stripes(conf, (conf->previous_raid_disks
7193 + mddev->delta_disks));
7194 }
7195
7196 static int raid5_start_reshape(struct mddev *mddev)
7197 {
7198 struct r5conf *conf = mddev->private;
7199 struct md_rdev *rdev;
7200 int spares = 0;
7201 unsigned long flags;
7202
7203 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7204 return -EBUSY;
7205
7206 if (!check_stripe_cache(mddev))
7207 return -ENOSPC;
7208
7209 if (has_failed(conf))
7210 return -EINVAL;
7211
7212 rdev_for_each(rdev, mddev) {
7213 if (!test_bit(In_sync, &rdev->flags)
7214 && !test_bit(Faulty, &rdev->flags))
7215 spares++;
7216 }
7217
7218 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7219 /* Not enough devices even to make a degraded array
7220 * of that size
7221 */
7222 return -EINVAL;
7223
7224 /* Refuse to reduce size of the array. Any reductions in
7225 * array size must be through explicit setting of array_size
7226 * attribute.
7227 */
7228 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7229 < mddev->array_sectors) {
7230 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7231 "before number of disks\n", mdname(mddev));
7232 return -EINVAL;
7233 }
7234
7235 atomic_set(&conf->reshape_stripes, 0);
7236 spin_lock_irq(&conf->device_lock);
7237 write_seqcount_begin(&conf->gen_lock);
7238 conf->previous_raid_disks = conf->raid_disks;
7239 conf->raid_disks += mddev->delta_disks;
7240 conf->prev_chunk_sectors = conf->chunk_sectors;
7241 conf->chunk_sectors = mddev->new_chunk_sectors;
7242 conf->prev_algo = conf->algorithm;
7243 conf->algorithm = mddev->new_layout;
7244 conf->generation++;
7245 /* Code that selects data_offset needs to see the generation update
7246 * if reshape_progress has been set - so a memory barrier needed.
7247 */
7248 smp_mb();
7249 if (mddev->reshape_backwards)
7250 conf->reshape_progress = raid5_size(mddev, 0, 0);
7251 else
7252 conf->reshape_progress = 0;
7253 conf->reshape_safe = conf->reshape_progress;
7254 write_seqcount_end(&conf->gen_lock);
7255 spin_unlock_irq(&conf->device_lock);
7256
7257 /* Now make sure any requests that proceeded on the assumption
7258 * the reshape wasn't running - like Discard or Read - have
7259 * completed.
7260 */
7261 mddev_suspend(mddev);
7262 mddev_resume(mddev);
7263
7264 /* Add some new drives, as many as will fit.
7265 * We know there are enough to make the newly sized array work.
7266 * Don't add devices if we are reducing the number of
7267 * devices in the array. This is because it is not possible
7268 * to correctly record the "partially reconstructed" state of
7269 * such devices during the reshape and confusion could result.
7270 */
7271 if (mddev->delta_disks >= 0) {
7272 rdev_for_each(rdev, mddev)
7273 if (rdev->raid_disk < 0 &&
7274 !test_bit(Faulty, &rdev->flags)) {
7275 if (raid5_add_disk(mddev, rdev) == 0) {
7276 if (rdev->raid_disk
7277 >= conf->previous_raid_disks)
7278 set_bit(In_sync, &rdev->flags);
7279 else
7280 rdev->recovery_offset = 0;
7281
7282 if (sysfs_link_rdev(mddev, rdev))
7283 /* Failure here is OK */;
7284 }
7285 } else if (rdev->raid_disk >= conf->previous_raid_disks
7286 && !test_bit(Faulty, &rdev->flags)) {
7287 /* This is a spare that was manually added */
7288 set_bit(In_sync, &rdev->flags);
7289 }
7290
7291 /* When a reshape changes the number of devices,
7292 * ->degraded is measured against the larger of the
7293 * pre and post number of devices.
7294 */
7295 spin_lock_irqsave(&conf->device_lock, flags);
7296 mddev->degraded = calc_degraded(conf);
7297 spin_unlock_irqrestore(&conf->device_lock, flags);
7298 }
7299 mddev->raid_disks = conf->raid_disks;
7300 mddev->reshape_position = conf->reshape_progress;
7301 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7302
7303 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7304 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7305 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7306 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7307 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7308 "reshape");
7309 if (!mddev->sync_thread) {
7310 mddev->recovery = 0;
7311 spin_lock_irq(&conf->device_lock);
7312 write_seqcount_begin(&conf->gen_lock);
7313 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7314 mddev->new_chunk_sectors =
7315 conf->chunk_sectors = conf->prev_chunk_sectors;
7316 mddev->new_layout = conf->algorithm = conf->prev_algo;
7317 rdev_for_each(rdev, mddev)
7318 rdev->new_data_offset = rdev->data_offset;
7319 smp_wmb();
7320 conf->generation --;
7321 conf->reshape_progress = MaxSector;
7322 mddev->reshape_position = MaxSector;
7323 write_seqcount_end(&conf->gen_lock);
7324 spin_unlock_irq(&conf->device_lock);
7325 return -EAGAIN;
7326 }
7327 conf->reshape_checkpoint = jiffies;
7328 md_wakeup_thread(mddev->sync_thread);
7329 md_new_event(mddev);
7330 return 0;
7331 }
7332
7333 /* This is called from the reshape thread and should make any
7334 * changes needed in 'conf'
7335 */
7336 static void end_reshape(struct r5conf *conf)
7337 {
7338
7339 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7340 struct md_rdev *rdev;
7341
7342 spin_lock_irq(&conf->device_lock);
7343 conf->previous_raid_disks = conf->raid_disks;
7344 rdev_for_each(rdev, conf->mddev)
7345 rdev->data_offset = rdev->new_data_offset;
7346 smp_wmb();
7347 conf->reshape_progress = MaxSector;
7348 spin_unlock_irq(&conf->device_lock);
7349 wake_up(&conf->wait_for_overlap);
7350
7351 /* read-ahead size must cover two whole stripes, which is
7352 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7353 */
7354 if (conf->mddev->queue) {
7355 int data_disks = conf->raid_disks - conf->max_degraded;
7356 int stripe = data_disks * ((conf->chunk_sectors << 9)
7357 / PAGE_SIZE);
7358 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7359 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7360 }
7361 }
7362 }
7363
7364 /* This is called from the raid5d thread with mddev_lock held.
7365 * It makes config changes to the device.
7366 */
7367 static void raid5_finish_reshape(struct mddev *mddev)
7368 {
7369 struct r5conf *conf = mddev->private;
7370
7371 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7372
7373 if (mddev->delta_disks > 0) {
7374 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7375 set_capacity(mddev->gendisk, mddev->array_sectors);
7376 revalidate_disk(mddev->gendisk);
7377 } else {
7378 int d;
7379 spin_lock_irq(&conf->device_lock);
7380 mddev->degraded = calc_degraded(conf);
7381 spin_unlock_irq(&conf->device_lock);
7382 for (d = conf->raid_disks ;
7383 d < conf->raid_disks - mddev->delta_disks;
7384 d++) {
7385 struct md_rdev *rdev = conf->disks[d].rdev;
7386 if (rdev)
7387 clear_bit(In_sync, &rdev->flags);
7388 rdev = conf->disks[d].replacement;
7389 if (rdev)
7390 clear_bit(In_sync, &rdev->flags);
7391 }
7392 }
7393 mddev->layout = conf->algorithm;
7394 mddev->chunk_sectors = conf->chunk_sectors;
7395 mddev->reshape_position = MaxSector;
7396 mddev->delta_disks = 0;
7397 mddev->reshape_backwards = 0;
7398 }
7399 }
7400
7401 static void raid5_quiesce(struct mddev *mddev, int state)
7402 {
7403 struct r5conf *conf = mddev->private;
7404
7405 switch(state) {
7406 case 2: /* resume for a suspend */
7407 wake_up(&conf->wait_for_overlap);
7408 break;
7409
7410 case 1: /* stop all writes */
7411 lock_all_device_hash_locks_irq(conf);
7412 /* '2' tells resync/reshape to pause so that all
7413 * active stripes can drain
7414 */
7415 conf->quiesce = 2;
7416 wait_event_cmd(conf->wait_for_stripe,
7417 atomic_read(&conf->active_stripes) == 0 &&
7418 atomic_read(&conf->active_aligned_reads) == 0,
7419 unlock_all_device_hash_locks_irq(conf),
7420 lock_all_device_hash_locks_irq(conf));
7421 conf->quiesce = 1;
7422 unlock_all_device_hash_locks_irq(conf);
7423 /* allow reshape to continue */
7424 wake_up(&conf->wait_for_overlap);
7425 break;
7426
7427 case 0: /* re-enable writes */
7428 lock_all_device_hash_locks_irq(conf);
7429 conf->quiesce = 0;
7430 wake_up(&conf->wait_for_stripe);
7431 wake_up(&conf->wait_for_overlap);
7432 unlock_all_device_hash_locks_irq(conf);
7433 break;
7434 }
7435 }
7436
7437 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7438 {
7439 struct r0conf *raid0_conf = mddev->private;
7440 sector_t sectors;
7441
7442 /* for raid0 takeover only one zone is supported */
7443 if (raid0_conf->nr_strip_zones > 1) {
7444 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7445 mdname(mddev));
7446 return ERR_PTR(-EINVAL);
7447 }
7448
7449 sectors = raid0_conf->strip_zone[0].zone_end;
7450 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7451 mddev->dev_sectors = sectors;
7452 mddev->new_level = level;
7453 mddev->new_layout = ALGORITHM_PARITY_N;
7454 mddev->new_chunk_sectors = mddev->chunk_sectors;
7455 mddev->raid_disks += 1;
7456 mddev->delta_disks = 1;
7457 /* make sure it will be not marked as dirty */
7458 mddev->recovery_cp = MaxSector;
7459
7460 return setup_conf(mddev);
7461 }
7462
7463 static void *raid5_takeover_raid1(struct mddev *mddev)
7464 {
7465 int chunksect;
7466
7467 if (mddev->raid_disks != 2 ||
7468 mddev->degraded > 1)
7469 return ERR_PTR(-EINVAL);
7470
7471 /* Should check if there are write-behind devices? */
7472
7473 chunksect = 64*2; /* 64K by default */
7474
7475 /* The array must be an exact multiple of chunksize */
7476 while (chunksect && (mddev->array_sectors & (chunksect-1)))
7477 chunksect >>= 1;
7478
7479 if ((chunksect<<9) < STRIPE_SIZE)
7480 /* array size does not allow a suitable chunk size */
7481 return ERR_PTR(-EINVAL);
7482
7483 mddev->new_level = 5;
7484 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7485 mddev->new_chunk_sectors = chunksect;
7486
7487 return setup_conf(mddev);
7488 }
7489
7490 static void *raid5_takeover_raid6(struct mddev *mddev)
7491 {
7492 int new_layout;
7493
7494 switch (mddev->layout) {
7495 case ALGORITHM_LEFT_ASYMMETRIC_6:
7496 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7497 break;
7498 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7499 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7500 break;
7501 case ALGORITHM_LEFT_SYMMETRIC_6:
7502 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7503 break;
7504 case ALGORITHM_RIGHT_SYMMETRIC_6:
7505 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7506 break;
7507 case ALGORITHM_PARITY_0_6:
7508 new_layout = ALGORITHM_PARITY_0;
7509 break;
7510 case ALGORITHM_PARITY_N:
7511 new_layout = ALGORITHM_PARITY_N;
7512 break;
7513 default:
7514 return ERR_PTR(-EINVAL);
7515 }
7516 mddev->new_level = 5;
7517 mddev->new_layout = new_layout;
7518 mddev->delta_disks = -1;
7519 mddev->raid_disks -= 1;
7520 return setup_conf(mddev);
7521 }
7522
7523 static int raid5_check_reshape(struct mddev *mddev)
7524 {
7525 /* For a 2-drive array, the layout and chunk size can be changed
7526 * immediately as not restriping is needed.
7527 * For larger arrays we record the new value - after validation
7528 * to be used by a reshape pass.
7529 */
7530 struct r5conf *conf = mddev->private;
7531 int new_chunk = mddev->new_chunk_sectors;
7532
7533 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7534 return -EINVAL;
7535 if (new_chunk > 0) {
7536 if (!is_power_of_2(new_chunk))
7537 return -EINVAL;
7538 if (new_chunk < (PAGE_SIZE>>9))
7539 return -EINVAL;
7540 if (mddev->array_sectors & (new_chunk-1))
7541 /* not factor of array size */
7542 return -EINVAL;
7543 }
7544
7545 /* They look valid */
7546
7547 if (mddev->raid_disks == 2) {
7548 /* can make the change immediately */
7549 if (mddev->new_layout >= 0) {
7550 conf->algorithm = mddev->new_layout;
7551 mddev->layout = mddev->new_layout;
7552 }
7553 if (new_chunk > 0) {
7554 conf->chunk_sectors = new_chunk ;
7555 mddev->chunk_sectors = new_chunk;
7556 }
7557 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7558 md_wakeup_thread(mddev->thread);
7559 }
7560 return check_reshape(mddev);
7561 }
7562
7563 static int raid6_check_reshape(struct mddev *mddev)
7564 {
7565 int new_chunk = mddev->new_chunk_sectors;
7566
7567 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7568 return -EINVAL;
7569 if (new_chunk > 0) {
7570 if (!is_power_of_2(new_chunk))
7571 return -EINVAL;
7572 if (new_chunk < (PAGE_SIZE >> 9))
7573 return -EINVAL;
7574 if (mddev->array_sectors & (new_chunk-1))
7575 /* not factor of array size */
7576 return -EINVAL;
7577 }
7578
7579 /* They look valid */
7580 return check_reshape(mddev);
7581 }
7582
7583 static void *raid5_takeover(struct mddev *mddev)
7584 {
7585 /* raid5 can take over:
7586 * raid0 - if there is only one strip zone - make it a raid4 layout
7587 * raid1 - if there are two drives. We need to know the chunk size
7588 * raid4 - trivial - just use a raid4 layout.
7589 * raid6 - Providing it is a *_6 layout
7590 */
7591 if (mddev->level == 0)
7592 return raid45_takeover_raid0(mddev, 5);
7593 if (mddev->level == 1)
7594 return raid5_takeover_raid1(mddev);
7595 if (mddev->level == 4) {
7596 mddev->new_layout = ALGORITHM_PARITY_N;
7597 mddev->new_level = 5;
7598 return setup_conf(mddev);
7599 }
7600 if (mddev->level == 6)
7601 return raid5_takeover_raid6(mddev);
7602
7603 return ERR_PTR(-EINVAL);
7604 }
7605
7606 static void *raid4_takeover(struct mddev *mddev)
7607 {
7608 /* raid4 can take over:
7609 * raid0 - if there is only one strip zone
7610 * raid5 - if layout is right
7611 */
7612 if (mddev->level == 0)
7613 return raid45_takeover_raid0(mddev, 4);
7614 if (mddev->level == 5 &&
7615 mddev->layout == ALGORITHM_PARITY_N) {
7616 mddev->new_layout = 0;
7617 mddev->new_level = 4;
7618 return setup_conf(mddev);
7619 }
7620 return ERR_PTR(-EINVAL);
7621 }
7622
7623 static struct md_personality raid5_personality;
7624
7625 static void *raid6_takeover(struct mddev *mddev)
7626 {
7627 /* Currently can only take over a raid5. We map the
7628 * personality to an equivalent raid6 personality
7629 * with the Q block at the end.
7630 */
7631 int new_layout;
7632
7633 if (mddev->pers != &raid5_personality)
7634 return ERR_PTR(-EINVAL);
7635 if (mddev->degraded > 1)
7636 return ERR_PTR(-EINVAL);
7637 if (mddev->raid_disks > 253)
7638 return ERR_PTR(-EINVAL);
7639 if (mddev->raid_disks < 3)
7640 return ERR_PTR(-EINVAL);
7641
7642 switch (mddev->layout) {
7643 case ALGORITHM_LEFT_ASYMMETRIC:
7644 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7645 break;
7646 case ALGORITHM_RIGHT_ASYMMETRIC:
7647 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7648 break;
7649 case ALGORITHM_LEFT_SYMMETRIC:
7650 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7651 break;
7652 case ALGORITHM_RIGHT_SYMMETRIC:
7653 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7654 break;
7655 case ALGORITHM_PARITY_0:
7656 new_layout = ALGORITHM_PARITY_0_6;
7657 break;
7658 case ALGORITHM_PARITY_N:
7659 new_layout = ALGORITHM_PARITY_N;
7660 break;
7661 default:
7662 return ERR_PTR(-EINVAL);
7663 }
7664 mddev->new_level = 6;
7665 mddev->new_layout = new_layout;
7666 mddev->delta_disks = 1;
7667 mddev->raid_disks += 1;
7668 return setup_conf(mddev);
7669 }
7670
7671 static struct md_personality raid6_personality =
7672 {
7673 .name = "raid6",
7674 .level = 6,
7675 .owner = THIS_MODULE,
7676 .make_request = make_request,
7677 .run = run,
7678 .free = raid5_free,
7679 .status = status,
7680 .error_handler = error,
7681 .hot_add_disk = raid5_add_disk,
7682 .hot_remove_disk= raid5_remove_disk,
7683 .spare_active = raid5_spare_active,
7684 .sync_request = sync_request,
7685 .resize = raid5_resize,
7686 .size = raid5_size,
7687 .check_reshape = raid6_check_reshape,
7688 .start_reshape = raid5_start_reshape,
7689 .finish_reshape = raid5_finish_reshape,
7690 .quiesce = raid5_quiesce,
7691 .takeover = raid6_takeover,
7692 .congested = raid5_congested,
7693 .mergeable_bvec = raid5_mergeable_bvec,
7694 };
7695 static struct md_personality raid5_personality =
7696 {
7697 .name = "raid5",
7698 .level = 5,
7699 .owner = THIS_MODULE,
7700 .make_request = make_request,
7701 .run = run,
7702 .free = raid5_free,
7703 .status = status,
7704 .error_handler = error,
7705 .hot_add_disk = raid5_add_disk,
7706 .hot_remove_disk= raid5_remove_disk,
7707 .spare_active = raid5_spare_active,
7708 .sync_request = sync_request,
7709 .resize = raid5_resize,
7710 .size = raid5_size,
7711 .check_reshape = raid5_check_reshape,
7712 .start_reshape = raid5_start_reshape,
7713 .finish_reshape = raid5_finish_reshape,
7714 .quiesce = raid5_quiesce,
7715 .takeover = raid5_takeover,
7716 .congested = raid5_congested,
7717 .mergeable_bvec = raid5_mergeable_bvec,
7718 };
7719
7720 static struct md_personality raid4_personality =
7721 {
7722 .name = "raid4",
7723 .level = 4,
7724 .owner = THIS_MODULE,
7725 .make_request = make_request,
7726 .run = run,
7727 .free = raid5_free,
7728 .status = status,
7729 .error_handler = error,
7730 .hot_add_disk = raid5_add_disk,
7731 .hot_remove_disk= raid5_remove_disk,
7732 .spare_active = raid5_spare_active,
7733 .sync_request = sync_request,
7734 .resize = raid5_resize,
7735 .size = raid5_size,
7736 .check_reshape = raid5_check_reshape,
7737 .start_reshape = raid5_start_reshape,
7738 .finish_reshape = raid5_finish_reshape,
7739 .quiesce = raid5_quiesce,
7740 .takeover = raid4_takeover,
7741 .congested = raid5_congested,
7742 .mergeable_bvec = raid5_mergeable_bvec,
7743 };
7744
7745 static int __init raid5_init(void)
7746 {
7747 raid5_wq = alloc_workqueue("raid5wq",
7748 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7749 if (!raid5_wq)
7750 return -ENOMEM;
7751 register_md_personality(&raid6_personality);
7752 register_md_personality(&raid5_personality);
7753 register_md_personality(&raid4_personality);
7754 return 0;
7755 }
7756
7757 static void raid5_exit(void)
7758 {
7759 unregister_md_personality(&raid6_personality);
7760 unregister_md_personality(&raid5_personality);
7761 unregister_md_personality(&raid4_personality);
7762 destroy_workqueue(raid5_wq);
7763 }
7764
7765 module_init(raid5_init);
7766 module_exit(raid5_exit);
7767 MODULE_LICENSE("GPL");
7768 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7769 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7770 MODULE_ALIAS("md-raid5");
7771 MODULE_ALIAS("md-raid4");
7772 MODULE_ALIAS("md-level-5");
7773 MODULE_ALIAS("md-level-4");
7774 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7775 MODULE_ALIAS("md-raid6");
7776 MODULE_ALIAS("md-level-6");
7777
7778 /* This used to be two separate modules, they were: */
7779 MODULE_ALIAS("raid5");
7780 MODULE_ALIAS("raid6");
This page took 0.207882 seconds and 6 git commands to generate.