Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / media / common / tuners / xc4000.c
1 /*
2 * Driver for Xceive XC4000 "QAM/8VSB single chip tuner"
3 *
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 * Copyright (c) 2009 Devin Heitmueller <dheitmueller@kernellabs.com>
7 * Copyright (c) 2009 Davide Ferri <d.ferri@zero11.it>
8 * Copyright (c) 2010 Istvan Varga <istvan_v@mailbox.hu>
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/videodev2.h>
28 #include <linux/delay.h>
29 #include <linux/dvb/frontend.h>
30 #include <linux/i2c.h>
31 #include <linux/mutex.h>
32 #include <asm/unaligned.h>
33
34 #include "dvb_frontend.h"
35
36 #include "xc4000.h"
37 #include "tuner-i2c.h"
38 #include "tuner-xc2028-types.h"
39
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "Debugging level (0 to 2, default: 0 (off)).");
43
44 static int no_poweroff;
45 module_param(no_poweroff, int, 0644);
46 MODULE_PARM_DESC(no_poweroff, "Power management (1: disabled, 2: enabled, "
47 "0 (default): use device-specific default mode).");
48
49 static int audio_std;
50 module_param(audio_std, int, 0644);
51 MODULE_PARM_DESC(audio_std, "Audio standard. XC4000 audio decoder explicitly "
52 "needs to know what audio standard is needed for some video standards "
53 "with audio A2 or NICAM. The valid settings are a sum of:\n"
54 " 1: use NICAM/B or A2/B instead of NICAM/A or A2/A\n"
55 " 2: use A2 instead of NICAM or BTSC\n"
56 " 4: use SECAM/K3 instead of K1\n"
57 " 8: use PAL-D/K audio for SECAM-D/K\n"
58 "16: use FM radio input 1 instead of input 2\n"
59 "32: use mono audio (the lower three bits are ignored)");
60
61 static char firmware_name[30];
62 module_param_string(firmware_name, firmware_name, sizeof(firmware_name), 0);
63 MODULE_PARM_DESC(firmware_name, "Firmware file name. Allows overriding the "
64 "default firmware name.");
65
66 static DEFINE_MUTEX(xc4000_list_mutex);
67 static LIST_HEAD(hybrid_tuner_instance_list);
68
69 #define dprintk(level, fmt, arg...) if (debug >= level) \
70 printk(KERN_INFO "%s: " fmt, "xc4000", ## arg)
71
72 /* struct for storing firmware table */
73 struct firmware_description {
74 unsigned int type;
75 v4l2_std_id id;
76 __u16 int_freq;
77 unsigned char *ptr;
78 unsigned int size;
79 };
80
81 struct firmware_properties {
82 unsigned int type;
83 v4l2_std_id id;
84 v4l2_std_id std_req;
85 __u16 int_freq;
86 unsigned int scode_table;
87 int scode_nr;
88 };
89
90 struct xc4000_priv {
91 struct tuner_i2c_props i2c_props;
92 struct list_head hybrid_tuner_instance_list;
93 struct firmware_description *firm;
94 int firm_size;
95 u32 if_khz;
96 u32 freq_hz;
97 u32 bandwidth;
98 u8 video_standard;
99 u8 rf_mode;
100 u8 default_pm;
101 u8 dvb_amplitude;
102 u8 set_smoothedcvbs;
103 u8 ignore_i2c_write_errors;
104 __u16 firm_version;
105 struct firmware_properties cur_fw;
106 __u16 hwmodel;
107 __u16 hwvers;
108 struct mutex lock;
109 };
110
111 #define XC4000_AUDIO_STD_B 1
112 #define XC4000_AUDIO_STD_A2 2
113 #define XC4000_AUDIO_STD_K3 4
114 #define XC4000_AUDIO_STD_L 8
115 #define XC4000_AUDIO_STD_INPUT1 16
116 #define XC4000_AUDIO_STD_MONO 32
117
118 #define XC4000_DEFAULT_FIRMWARE "dvb-fe-xc4000-1.4.fw"
119
120 /* Misc Defines */
121 #define MAX_TV_STANDARD 24
122 #define XC_MAX_I2C_WRITE_LENGTH 64
123 #define XC_POWERED_DOWN 0x80000000U
124
125 /* Signal Types */
126 #define XC_RF_MODE_AIR 0
127 #define XC_RF_MODE_CABLE 1
128
129 /* Product id */
130 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
131 #define XC_PRODUCT_ID_XC4000 0x0FA0
132 #define XC_PRODUCT_ID_XC4100 0x1004
133
134 /* Registers (Write-only) */
135 #define XREG_INIT 0x00
136 #define XREG_VIDEO_MODE 0x01
137 #define XREG_AUDIO_MODE 0x02
138 #define XREG_RF_FREQ 0x03
139 #define XREG_D_CODE 0x04
140 #define XREG_DIRECTSITTING_MODE 0x05
141 #define XREG_SEEK_MODE 0x06
142 #define XREG_POWER_DOWN 0x08
143 #define XREG_SIGNALSOURCE 0x0A
144 #define XREG_SMOOTHEDCVBS 0x0E
145 #define XREG_AMPLITUDE 0x10
146
147 /* Registers (Read-only) */
148 #define XREG_ADC_ENV 0x00
149 #define XREG_QUALITY 0x01
150 #define XREG_FRAME_LINES 0x02
151 #define XREG_HSYNC_FREQ 0x03
152 #define XREG_LOCK 0x04
153 #define XREG_FREQ_ERROR 0x05
154 #define XREG_SNR 0x06
155 #define XREG_VERSION 0x07
156 #define XREG_PRODUCT_ID 0x08
157
158 /*
159 Basic firmware description. This will remain with
160 the driver for documentation purposes.
161
162 This represents an I2C firmware file encoded as a
163 string of unsigned char. Format is as follows:
164
165 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
166 char[1 ]=len0_LSB -> length of first write transaction
167 char[2 ]=data0 -> first byte to be sent
168 char[3 ]=data1
169 char[4 ]=data2
170 char[ ]=...
171 char[M ]=dataN -> last byte to be sent
172 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
173 char[M+2]=len1_LSB -> length of second write transaction
174 char[M+3]=data0
175 char[M+4]=data1
176 ...
177 etc.
178
179 The [len] value should be interpreted as follows:
180
181 len= len_MSB _ len_LSB
182 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
183 len=0000_0000_0000_0000 : Reset command: Do hardware reset
184 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
185 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
186
187 For the RESET and WAIT commands, the two following bytes will contain
188 immediately the length of the following transaction.
189 */
190
191 struct XC_TV_STANDARD {
192 const char *Name;
193 u16 audio_mode;
194 u16 video_mode;
195 u16 int_freq;
196 };
197
198 /* Tuner standards */
199 #define XC4000_MN_NTSC_PAL_BTSC 0
200 #define XC4000_MN_NTSC_PAL_A2 1
201 #define XC4000_MN_NTSC_PAL_EIAJ 2
202 #define XC4000_MN_NTSC_PAL_Mono 3
203 #define XC4000_BG_PAL_A2 4
204 #define XC4000_BG_PAL_NICAM 5
205 #define XC4000_BG_PAL_MONO 6
206 #define XC4000_I_PAL_NICAM 7
207 #define XC4000_I_PAL_NICAM_MONO 8
208 #define XC4000_DK_PAL_A2 9
209 #define XC4000_DK_PAL_NICAM 10
210 #define XC4000_DK_PAL_MONO 11
211 #define XC4000_DK_SECAM_A2DK1 12
212 #define XC4000_DK_SECAM_A2LDK3 13
213 #define XC4000_DK_SECAM_A2MONO 14
214 #define XC4000_DK_SECAM_NICAM 15
215 #define XC4000_L_SECAM_NICAM 16
216 #define XC4000_LC_SECAM_NICAM 17
217 #define XC4000_DTV6 18
218 #define XC4000_DTV8 19
219 #define XC4000_DTV7_8 20
220 #define XC4000_DTV7 21
221 #define XC4000_FM_Radio_INPUT2 22
222 #define XC4000_FM_Radio_INPUT1 23
223
224 static struct XC_TV_STANDARD xc4000_standard[MAX_TV_STANDARD] = {
225 {"M/N-NTSC/PAL-BTSC", 0x0000, 0x80A0, 4500},
226 {"M/N-NTSC/PAL-A2", 0x0000, 0x80A0, 4600},
227 {"M/N-NTSC/PAL-EIAJ", 0x0040, 0x80A0, 4500},
228 {"M/N-NTSC/PAL-Mono", 0x0078, 0x80A0, 4500},
229 {"B/G-PAL-A2", 0x0000, 0x8159, 5640},
230 {"B/G-PAL-NICAM", 0x0004, 0x8159, 5740},
231 {"B/G-PAL-MONO", 0x0078, 0x8159, 5500},
232 {"I-PAL-NICAM", 0x0080, 0x8049, 6240},
233 {"I-PAL-NICAM-MONO", 0x0078, 0x8049, 6000},
234 {"D/K-PAL-A2", 0x0000, 0x8049, 6380},
235 {"D/K-PAL-NICAM", 0x0080, 0x8049, 6200},
236 {"D/K-PAL-MONO", 0x0078, 0x8049, 6500},
237 {"D/K-SECAM-A2 DK1", 0x0000, 0x8049, 6340},
238 {"D/K-SECAM-A2 L/DK3", 0x0000, 0x8049, 6000},
239 {"D/K-SECAM-A2 MONO", 0x0078, 0x8049, 6500},
240 {"D/K-SECAM-NICAM", 0x0080, 0x8049, 6200},
241 {"L-SECAM-NICAM", 0x8080, 0x0009, 6200},
242 {"L'-SECAM-NICAM", 0x8080, 0x4009, 6200},
243 {"DTV6", 0x00C0, 0x8002, 0},
244 {"DTV8", 0x00C0, 0x800B, 0},
245 {"DTV7/8", 0x00C0, 0x801B, 0},
246 {"DTV7", 0x00C0, 0x8007, 0},
247 {"FM Radio-INPUT2", 0x0008, 0x9800, 10700},
248 {"FM Radio-INPUT1", 0x0008, 0x9000, 10700}
249 };
250
251 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val);
252 static int xc4000_tuner_reset(struct dvb_frontend *fe);
253 static void xc_debug_dump(struct xc4000_priv *priv);
254
255 static int xc_send_i2c_data(struct xc4000_priv *priv, u8 *buf, int len)
256 {
257 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
258 .flags = 0, .buf = buf, .len = len };
259 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
260 if (priv->ignore_i2c_write_errors == 0) {
261 printk(KERN_ERR "xc4000: I2C write failed (len=%i)\n",
262 len);
263 if (len == 4) {
264 printk(KERN_ERR "bytes %02x %02x %02x %02x\n", buf[0],
265 buf[1], buf[2], buf[3]);
266 }
267 return -EREMOTEIO;
268 }
269 }
270 return 0;
271 }
272
273 static int xc4000_tuner_reset(struct dvb_frontend *fe)
274 {
275 struct xc4000_priv *priv = fe->tuner_priv;
276 int ret;
277
278 dprintk(1, "%s()\n", __func__);
279
280 if (fe->callback) {
281 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
282 fe->dvb->priv :
283 priv->i2c_props.adap->algo_data,
284 DVB_FRONTEND_COMPONENT_TUNER,
285 XC4000_TUNER_RESET, 0);
286 if (ret) {
287 printk(KERN_ERR "xc4000: reset failed\n");
288 return -EREMOTEIO;
289 }
290 } else {
291 printk(KERN_ERR "xc4000: no tuner reset callback function, "
292 "fatal\n");
293 return -EINVAL;
294 }
295 return 0;
296 }
297
298 static int xc_write_reg(struct xc4000_priv *priv, u16 regAddr, u16 i2cData)
299 {
300 u8 buf[4];
301 int result;
302
303 buf[0] = (regAddr >> 8) & 0xFF;
304 buf[1] = regAddr & 0xFF;
305 buf[2] = (i2cData >> 8) & 0xFF;
306 buf[3] = i2cData & 0xFF;
307 result = xc_send_i2c_data(priv, buf, 4);
308
309 return result;
310 }
311
312 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
313 {
314 struct xc4000_priv *priv = fe->tuner_priv;
315
316 int i, nbytes_to_send, result;
317 unsigned int len, pos, index;
318 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
319
320 index = 0;
321 while ((i2c_sequence[index] != 0xFF) ||
322 (i2c_sequence[index + 1] != 0xFF)) {
323 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
324 if (len == 0x0000) {
325 /* RESET command */
326 /* NOTE: this is ignored, as the reset callback was */
327 /* already called by check_firmware() */
328 index += 2;
329 } else if (len & 0x8000) {
330 /* WAIT command */
331 msleep(len & 0x7FFF);
332 index += 2;
333 } else {
334 /* Send i2c data whilst ensuring individual transactions
335 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
336 */
337 index += 2;
338 buf[0] = i2c_sequence[index];
339 buf[1] = i2c_sequence[index + 1];
340 pos = 2;
341 while (pos < len) {
342 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
343 nbytes_to_send =
344 XC_MAX_I2C_WRITE_LENGTH;
345 else
346 nbytes_to_send = (len - pos + 2);
347 for (i = 2; i < nbytes_to_send; i++) {
348 buf[i] = i2c_sequence[index + pos +
349 i - 2];
350 }
351 result = xc_send_i2c_data(priv, buf,
352 nbytes_to_send);
353
354 if (result != 0)
355 return result;
356
357 pos += nbytes_to_send - 2;
358 }
359 index += len;
360 }
361 }
362 return 0;
363 }
364
365 static int xc_set_tv_standard(struct xc4000_priv *priv,
366 u16 video_mode, u16 audio_mode)
367 {
368 int ret;
369 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, video_mode, audio_mode);
370 dprintk(1, "%s() Standard = %s\n",
371 __func__,
372 xc4000_standard[priv->video_standard].Name);
373
374 /* Don't complain when the request fails because of i2c stretching */
375 priv->ignore_i2c_write_errors = 1;
376
377 ret = xc_write_reg(priv, XREG_VIDEO_MODE, video_mode);
378 if (ret == 0)
379 ret = xc_write_reg(priv, XREG_AUDIO_MODE, audio_mode);
380
381 priv->ignore_i2c_write_errors = 0;
382
383 return ret;
384 }
385
386 static int xc_set_signal_source(struct xc4000_priv *priv, u16 rf_mode)
387 {
388 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
389 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
390
391 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
392 rf_mode = XC_RF_MODE_CABLE;
393 printk(KERN_ERR
394 "%s(), Invalid mode, defaulting to CABLE",
395 __func__);
396 }
397 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
398 }
399
400 static const struct dvb_tuner_ops xc4000_tuner_ops;
401
402 static int xc_set_rf_frequency(struct xc4000_priv *priv, u32 freq_hz)
403 {
404 u16 freq_code;
405
406 dprintk(1, "%s(%u)\n", __func__, freq_hz);
407
408 if ((freq_hz > xc4000_tuner_ops.info.frequency_max) ||
409 (freq_hz < xc4000_tuner_ops.info.frequency_min))
410 return -EINVAL;
411
412 freq_code = (u16)(freq_hz / 15625);
413
414 /* WAS: Starting in firmware version 1.1.44, Xceive recommends using the
415 FINERFREQ for all normal tuning (the doc indicates reg 0x03 should
416 only be used for fast scanning for channel lock) */
417 /* WAS: XREG_FINERFREQ */
418 return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
419 }
420
421 static int xc_get_adc_envelope(struct xc4000_priv *priv, u16 *adc_envelope)
422 {
423 return xc4000_readreg(priv, XREG_ADC_ENV, adc_envelope);
424 }
425
426 static int xc_get_frequency_error(struct xc4000_priv *priv, u32 *freq_error_hz)
427 {
428 int result;
429 u16 regData;
430 u32 tmp;
431
432 result = xc4000_readreg(priv, XREG_FREQ_ERROR, &regData);
433 if (result != 0)
434 return result;
435
436 tmp = (u32)regData & 0xFFFFU;
437 tmp = (tmp < 0x8000U ? tmp : 0x10000U - tmp);
438 (*freq_error_hz) = tmp * 15625;
439 return result;
440 }
441
442 static int xc_get_lock_status(struct xc4000_priv *priv, u16 *lock_status)
443 {
444 return xc4000_readreg(priv, XREG_LOCK, lock_status);
445 }
446
447 static int xc_get_version(struct xc4000_priv *priv,
448 u8 *hw_majorversion, u8 *hw_minorversion,
449 u8 *fw_majorversion, u8 *fw_minorversion)
450 {
451 u16 data;
452 int result;
453
454 result = xc4000_readreg(priv, XREG_VERSION, &data);
455 if (result != 0)
456 return result;
457
458 (*hw_majorversion) = (data >> 12) & 0x0F;
459 (*hw_minorversion) = (data >> 8) & 0x0F;
460 (*fw_majorversion) = (data >> 4) & 0x0F;
461 (*fw_minorversion) = data & 0x0F;
462
463 return 0;
464 }
465
466 static int xc_get_hsync_freq(struct xc4000_priv *priv, u32 *hsync_freq_hz)
467 {
468 u16 regData;
469 int result;
470
471 result = xc4000_readreg(priv, XREG_HSYNC_FREQ, &regData);
472 if (result != 0)
473 return result;
474
475 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
476 return result;
477 }
478
479 static int xc_get_frame_lines(struct xc4000_priv *priv, u16 *frame_lines)
480 {
481 return xc4000_readreg(priv, XREG_FRAME_LINES, frame_lines);
482 }
483
484 static int xc_get_quality(struct xc4000_priv *priv, u16 *quality)
485 {
486 return xc4000_readreg(priv, XREG_QUALITY, quality);
487 }
488
489 static u16 xc_wait_for_lock(struct xc4000_priv *priv)
490 {
491 u16 lock_state = 0;
492 int watchdog_count = 40;
493
494 while ((lock_state == 0) && (watchdog_count > 0)) {
495 xc_get_lock_status(priv, &lock_state);
496 if (lock_state != 1) {
497 msleep(5);
498 watchdog_count--;
499 }
500 }
501 return lock_state;
502 }
503
504 static int xc_tune_channel(struct xc4000_priv *priv, u32 freq_hz)
505 {
506 int found = 1;
507 int result;
508
509 dprintk(1, "%s(%u)\n", __func__, freq_hz);
510
511 /* Don't complain when the request fails because of i2c stretching */
512 priv->ignore_i2c_write_errors = 1;
513 result = xc_set_rf_frequency(priv, freq_hz);
514 priv->ignore_i2c_write_errors = 0;
515
516 if (result != 0)
517 return 0;
518
519 /* wait for lock only in analog TV mode */
520 if ((priv->cur_fw.type & (FM | DTV6 | DTV7 | DTV78 | DTV8)) == 0) {
521 if (xc_wait_for_lock(priv) != 1)
522 found = 0;
523 }
524
525 /* Wait for stats to stabilize.
526 * Frame Lines needs two frame times after initial lock
527 * before it is valid.
528 */
529 msleep(debug ? 100 : 10);
530
531 if (debug)
532 xc_debug_dump(priv);
533
534 return found;
535 }
536
537 static int xc4000_readreg(struct xc4000_priv *priv, u16 reg, u16 *val)
538 {
539 u8 buf[2] = { reg >> 8, reg & 0xff };
540 u8 bval[2] = { 0, 0 };
541 struct i2c_msg msg[2] = {
542 { .addr = priv->i2c_props.addr,
543 .flags = 0, .buf = &buf[0], .len = 2 },
544 { .addr = priv->i2c_props.addr,
545 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
546 };
547
548 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
549 printk(KERN_ERR "xc4000: I2C read failed\n");
550 return -EREMOTEIO;
551 }
552
553 *val = (bval[0] << 8) | bval[1];
554 return 0;
555 }
556
557 #define dump_firm_type(t) dump_firm_type_and_int_freq(t, 0)
558 static void dump_firm_type_and_int_freq(unsigned int type, u16 int_freq)
559 {
560 if (type & BASE)
561 printk(KERN_CONT "BASE ");
562 if (type & INIT1)
563 printk(KERN_CONT "INIT1 ");
564 if (type & F8MHZ)
565 printk(KERN_CONT "F8MHZ ");
566 if (type & MTS)
567 printk(KERN_CONT "MTS ");
568 if (type & D2620)
569 printk(KERN_CONT "D2620 ");
570 if (type & D2633)
571 printk(KERN_CONT "D2633 ");
572 if (type & DTV6)
573 printk(KERN_CONT "DTV6 ");
574 if (type & QAM)
575 printk(KERN_CONT "QAM ");
576 if (type & DTV7)
577 printk(KERN_CONT "DTV7 ");
578 if (type & DTV78)
579 printk(KERN_CONT "DTV78 ");
580 if (type & DTV8)
581 printk(KERN_CONT "DTV8 ");
582 if (type & FM)
583 printk(KERN_CONT "FM ");
584 if (type & INPUT1)
585 printk(KERN_CONT "INPUT1 ");
586 if (type & LCD)
587 printk(KERN_CONT "LCD ");
588 if (type & NOGD)
589 printk(KERN_CONT "NOGD ");
590 if (type & MONO)
591 printk(KERN_CONT "MONO ");
592 if (type & ATSC)
593 printk(KERN_CONT "ATSC ");
594 if (type & IF)
595 printk(KERN_CONT "IF ");
596 if (type & LG60)
597 printk(KERN_CONT "LG60 ");
598 if (type & ATI638)
599 printk(KERN_CONT "ATI638 ");
600 if (type & OREN538)
601 printk(KERN_CONT "OREN538 ");
602 if (type & OREN36)
603 printk(KERN_CONT "OREN36 ");
604 if (type & TOYOTA388)
605 printk(KERN_CONT "TOYOTA388 ");
606 if (type & TOYOTA794)
607 printk(KERN_CONT "TOYOTA794 ");
608 if (type & DIBCOM52)
609 printk(KERN_CONT "DIBCOM52 ");
610 if (type & ZARLINK456)
611 printk(KERN_CONT "ZARLINK456 ");
612 if (type & CHINA)
613 printk(KERN_CONT "CHINA ");
614 if (type & F6MHZ)
615 printk(KERN_CONT "F6MHZ ");
616 if (type & INPUT2)
617 printk(KERN_CONT "INPUT2 ");
618 if (type & SCODE)
619 printk(KERN_CONT "SCODE ");
620 if (type & HAS_IF)
621 printk(KERN_CONT "HAS_IF_%d ", int_freq);
622 }
623
624 static int seek_firmware(struct dvb_frontend *fe, unsigned int type,
625 v4l2_std_id *id)
626 {
627 struct xc4000_priv *priv = fe->tuner_priv;
628 int i, best_i = -1;
629 unsigned int best_nr_diffs = 255U;
630
631 if (!priv->firm) {
632 printk(KERN_ERR "Error! firmware not loaded\n");
633 return -EINVAL;
634 }
635
636 if (((type & ~SCODE) == 0) && (*id == 0))
637 *id = V4L2_STD_PAL;
638
639 /* Seek for generic video standard match */
640 for (i = 0; i < priv->firm_size; i++) {
641 v4l2_std_id id_diff_mask =
642 (priv->firm[i].id ^ (*id)) & (*id);
643 unsigned int type_diff_mask =
644 (priv->firm[i].type ^ type)
645 & (BASE_TYPES | DTV_TYPES | LCD | NOGD | MONO | SCODE);
646 unsigned int nr_diffs;
647
648 if (type_diff_mask
649 & (BASE | INIT1 | FM | DTV6 | DTV7 | DTV78 | DTV8 | SCODE))
650 continue;
651
652 nr_diffs = hweight64(id_diff_mask) + hweight32(type_diff_mask);
653 if (!nr_diffs) /* Supports all the requested standards */
654 goto found;
655
656 if (nr_diffs < best_nr_diffs) {
657 best_nr_diffs = nr_diffs;
658 best_i = i;
659 }
660 }
661
662 /* FIXME: Would make sense to seek for type "hint" match ? */
663 if (best_i < 0) {
664 i = -ENOENT;
665 goto ret;
666 }
667
668 if (best_nr_diffs > 0U) {
669 printk(KERN_WARNING
670 "Selecting best matching firmware (%u bits differ) for "
671 "type=(%x), id %016llx:\n",
672 best_nr_diffs, type, (unsigned long long)*id);
673 i = best_i;
674 }
675
676 found:
677 *id = priv->firm[i].id;
678
679 ret:
680 if (debug) {
681 printk(KERN_DEBUG "%s firmware for type=",
682 (i < 0) ? "Can't find" : "Found");
683 dump_firm_type(type);
684 printk(KERN_DEBUG "(%x), id %016llx.\n", type, (unsigned long long)*id);
685 }
686 return i;
687 }
688
689 static int load_firmware(struct dvb_frontend *fe, unsigned int type,
690 v4l2_std_id *id)
691 {
692 struct xc4000_priv *priv = fe->tuner_priv;
693 int pos, rc;
694 unsigned char *p;
695
696 pos = seek_firmware(fe, type, id);
697 if (pos < 0)
698 return pos;
699
700 p = priv->firm[pos].ptr;
701
702 /* Don't complain when the request fails because of i2c stretching */
703 priv->ignore_i2c_write_errors = 1;
704
705 rc = xc_load_i2c_sequence(fe, p);
706
707 priv->ignore_i2c_write_errors = 0;
708
709 return rc;
710 }
711
712 static int xc4000_fwupload(struct dvb_frontend *fe)
713 {
714 struct xc4000_priv *priv = fe->tuner_priv;
715 const struct firmware *fw = NULL;
716 const unsigned char *p, *endp;
717 int rc = 0;
718 int n, n_array;
719 char name[33];
720 const char *fname;
721
722 if (firmware_name[0] != '\0')
723 fname = firmware_name;
724 else
725 fname = XC4000_DEFAULT_FIRMWARE;
726
727 dprintk(1, "Reading firmware %s\n", fname);
728 rc = request_firmware(&fw, fname, priv->i2c_props.adap->dev.parent);
729 if (rc < 0) {
730 if (rc == -ENOENT)
731 printk(KERN_ERR "Error: firmware %s not found.\n", fname);
732 else
733 printk(KERN_ERR "Error %d while requesting firmware %s\n",
734 rc, fname);
735
736 return rc;
737 }
738 p = fw->data;
739 endp = p + fw->size;
740
741 if (fw->size < sizeof(name) - 1 + 2 + 2) {
742 printk(KERN_ERR "Error: firmware file %s has invalid size!\n",
743 fname);
744 goto corrupt;
745 }
746
747 memcpy(name, p, sizeof(name) - 1);
748 name[sizeof(name) - 1] = '\0';
749 p += sizeof(name) - 1;
750
751 priv->firm_version = get_unaligned_le16(p);
752 p += 2;
753
754 n_array = get_unaligned_le16(p);
755 p += 2;
756
757 dprintk(1, "Loading %d firmware images from %s, type: %s, ver %d.%d\n",
758 n_array, fname, name,
759 priv->firm_version >> 8, priv->firm_version & 0xff);
760
761 priv->firm = kcalloc(n_array, sizeof(*priv->firm), GFP_KERNEL);
762 if (priv->firm == NULL) {
763 printk(KERN_ERR "Not enough memory to load firmware file.\n");
764 rc = -ENOMEM;
765 goto done;
766 }
767 priv->firm_size = n_array;
768
769 n = -1;
770 while (p < endp) {
771 __u32 type, size;
772 v4l2_std_id id;
773 __u16 int_freq = 0;
774
775 n++;
776 if (n >= n_array) {
777 printk(KERN_ERR "More firmware images in file than "
778 "were expected!\n");
779 goto corrupt;
780 }
781
782 /* Checks if there's enough bytes to read */
783 if (endp - p < sizeof(type) + sizeof(id) + sizeof(size))
784 goto header;
785
786 type = get_unaligned_le32(p);
787 p += sizeof(type);
788
789 id = get_unaligned_le64(p);
790 p += sizeof(id);
791
792 if (type & HAS_IF) {
793 int_freq = get_unaligned_le16(p);
794 p += sizeof(int_freq);
795 if (endp - p < sizeof(size))
796 goto header;
797 }
798
799 size = get_unaligned_le32(p);
800 p += sizeof(size);
801
802 if (!size || size > endp - p) {
803 printk(KERN_ERR "Firmware type (%x), id %llx is corrupted (size=%d, expected %d)\n",
804 type, (unsigned long long)id,
805 (unsigned)(endp - p), size);
806 goto corrupt;
807 }
808
809 priv->firm[n].ptr = kzalloc(size, GFP_KERNEL);
810 if (priv->firm[n].ptr == NULL) {
811 printk(KERN_ERR "Not enough memory to load firmware file.\n");
812 rc = -ENOMEM;
813 goto done;
814 }
815
816 if (debug) {
817 printk(KERN_DEBUG "Reading firmware type ");
818 dump_firm_type_and_int_freq(type, int_freq);
819 printk(KERN_DEBUG "(%x), id %llx, size=%d.\n",
820 type, (unsigned long long)id, size);
821 }
822
823 memcpy(priv->firm[n].ptr, p, size);
824 priv->firm[n].type = type;
825 priv->firm[n].id = id;
826 priv->firm[n].size = size;
827 priv->firm[n].int_freq = int_freq;
828
829 p += size;
830 }
831
832 if (n + 1 != priv->firm_size) {
833 printk(KERN_ERR "Firmware file is incomplete!\n");
834 goto corrupt;
835 }
836
837 goto done;
838
839 header:
840 printk(KERN_ERR "Firmware header is incomplete!\n");
841 corrupt:
842 rc = -EINVAL;
843 printk(KERN_ERR "Error: firmware file is corrupted!\n");
844
845 done:
846 release_firmware(fw);
847 if (rc == 0)
848 dprintk(1, "Firmware files loaded.\n");
849
850 return rc;
851 }
852
853 static int load_scode(struct dvb_frontend *fe, unsigned int type,
854 v4l2_std_id *id, __u16 int_freq, int scode)
855 {
856 struct xc4000_priv *priv = fe->tuner_priv;
857 int pos, rc;
858 unsigned char *p;
859 u8 scode_buf[13];
860 u8 indirect_mode[5];
861
862 dprintk(1, "%s called int_freq=%d\n", __func__, int_freq);
863
864 if (!int_freq) {
865 pos = seek_firmware(fe, type, id);
866 if (pos < 0)
867 return pos;
868 } else {
869 for (pos = 0; pos < priv->firm_size; pos++) {
870 if ((priv->firm[pos].int_freq == int_freq) &&
871 (priv->firm[pos].type & HAS_IF))
872 break;
873 }
874 if (pos == priv->firm_size)
875 return -ENOENT;
876 }
877
878 p = priv->firm[pos].ptr;
879
880 if (priv->firm[pos].size != 12 * 16 || scode >= 16)
881 return -EINVAL;
882 p += 12 * scode;
883
884 if (debug) {
885 tuner_info("Loading SCODE for type=");
886 dump_firm_type_and_int_freq(priv->firm[pos].type,
887 priv->firm[pos].int_freq);
888 printk(KERN_CONT "(%x), id %016llx.\n", priv->firm[pos].type,
889 (unsigned long long)*id);
890 }
891
892 scode_buf[0] = 0x00;
893 memcpy(&scode_buf[1], p, 12);
894
895 /* Enter direct-mode */
896 rc = xc_write_reg(priv, XREG_DIRECTSITTING_MODE, 0);
897 if (rc < 0) {
898 printk(KERN_ERR "failed to put device into direct mode!\n");
899 return -EIO;
900 }
901
902 rc = xc_send_i2c_data(priv, scode_buf, 13);
903 if (rc != 0) {
904 /* Even if the send failed, make sure we set back to indirect
905 mode */
906 printk(KERN_ERR "Failed to set scode %d\n", rc);
907 }
908
909 /* Switch back to indirect-mode */
910 memset(indirect_mode, 0, sizeof(indirect_mode));
911 indirect_mode[4] = 0x88;
912 xc_send_i2c_data(priv, indirect_mode, sizeof(indirect_mode));
913 msleep(10);
914
915 return 0;
916 }
917
918 static int check_firmware(struct dvb_frontend *fe, unsigned int type,
919 v4l2_std_id std, __u16 int_freq)
920 {
921 struct xc4000_priv *priv = fe->tuner_priv;
922 struct firmware_properties new_fw;
923 int rc = 0, is_retry = 0;
924 u16 hwmodel;
925 v4l2_std_id std0;
926 u8 hw_major, hw_minor, fw_major, fw_minor;
927
928 dprintk(1, "%s called\n", __func__);
929
930 if (!priv->firm) {
931 rc = xc4000_fwupload(fe);
932 if (rc < 0)
933 return rc;
934 }
935
936 retry:
937 new_fw.type = type;
938 new_fw.id = std;
939 new_fw.std_req = std;
940 new_fw.scode_table = SCODE;
941 new_fw.scode_nr = 0;
942 new_fw.int_freq = int_freq;
943
944 dprintk(1, "checking firmware, user requested type=");
945 if (debug) {
946 dump_firm_type(new_fw.type);
947 printk(KERN_CONT "(%x), id %016llx, ", new_fw.type,
948 (unsigned long long)new_fw.std_req);
949 if (!int_freq)
950 printk(KERN_CONT "scode_tbl ");
951 else
952 printk(KERN_CONT "int_freq %d, ", new_fw.int_freq);
953 printk(KERN_CONT "scode_nr %d\n", new_fw.scode_nr);
954 }
955
956 /* No need to reload base firmware if it matches */
957 if (priv->cur_fw.type & BASE) {
958 dprintk(1, "BASE firmware not changed.\n");
959 goto skip_base;
960 }
961
962 /* Updating BASE - forget about all currently loaded firmware */
963 memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
964
965 /* Reset is needed before loading firmware */
966 rc = xc4000_tuner_reset(fe);
967 if (rc < 0)
968 goto fail;
969
970 /* BASE firmwares are all std0 */
971 std0 = 0;
972 rc = load_firmware(fe, BASE, &std0);
973 if (rc < 0) {
974 printk(KERN_ERR "Error %d while loading base firmware\n", rc);
975 goto fail;
976 }
977
978 /* Load INIT1, if needed */
979 dprintk(1, "Load init1 firmware, if exists\n");
980
981 rc = load_firmware(fe, BASE | INIT1, &std0);
982 if (rc == -ENOENT)
983 rc = load_firmware(fe, BASE | INIT1, &std0);
984 if (rc < 0 && rc != -ENOENT) {
985 tuner_err("Error %d while loading init1 firmware\n",
986 rc);
987 goto fail;
988 }
989
990 skip_base:
991 /*
992 * No need to reload standard specific firmware if base firmware
993 * was not reloaded and requested video standards have not changed.
994 */
995 if (priv->cur_fw.type == (BASE | new_fw.type) &&
996 priv->cur_fw.std_req == std) {
997 dprintk(1, "Std-specific firmware already loaded.\n");
998 goto skip_std_specific;
999 }
1000
1001 /* Reloading std-specific firmware forces a SCODE update */
1002 priv->cur_fw.scode_table = 0;
1003
1004 /* Load the standard firmware */
1005 rc = load_firmware(fe, new_fw.type, &new_fw.id);
1006
1007 if (rc < 0)
1008 goto fail;
1009
1010 skip_std_specific:
1011 if (priv->cur_fw.scode_table == new_fw.scode_table &&
1012 priv->cur_fw.scode_nr == new_fw.scode_nr) {
1013 dprintk(1, "SCODE firmware already loaded.\n");
1014 goto check_device;
1015 }
1016
1017 /* Load SCODE firmware, if exists */
1018 rc = load_scode(fe, new_fw.type | new_fw.scode_table, &new_fw.id,
1019 new_fw.int_freq, new_fw.scode_nr);
1020 if (rc != 0)
1021 dprintk(1, "load scode failed %d\n", rc);
1022
1023 check_device:
1024 rc = xc4000_readreg(priv, XREG_PRODUCT_ID, &hwmodel);
1025
1026 if (xc_get_version(priv, &hw_major, &hw_minor, &fw_major,
1027 &fw_minor) != 0) {
1028 printk(KERN_ERR "Unable to read tuner registers.\n");
1029 goto fail;
1030 }
1031
1032 dprintk(1, "Device is Xceive %d version %d.%d, "
1033 "firmware version %d.%d\n",
1034 hwmodel, hw_major, hw_minor, fw_major, fw_minor);
1035
1036 /* Check firmware version against what we downloaded. */
1037 if (priv->firm_version != ((fw_major << 8) | fw_minor)) {
1038 printk(KERN_WARNING
1039 "Incorrect readback of firmware version %d.%d.\n",
1040 fw_major, fw_minor);
1041 goto fail;
1042 }
1043
1044 /* Check that the tuner hardware model remains consistent over time. */
1045 if (priv->hwmodel == 0 &&
1046 (hwmodel == XC_PRODUCT_ID_XC4000 ||
1047 hwmodel == XC_PRODUCT_ID_XC4100)) {
1048 priv->hwmodel = hwmodel;
1049 priv->hwvers = (hw_major << 8) | hw_minor;
1050 } else if (priv->hwmodel == 0 || priv->hwmodel != hwmodel ||
1051 priv->hwvers != ((hw_major << 8) | hw_minor)) {
1052 printk(KERN_WARNING
1053 "Read invalid device hardware information - tuner "
1054 "hung?\n");
1055 goto fail;
1056 }
1057
1058 memcpy(&priv->cur_fw, &new_fw, sizeof(priv->cur_fw));
1059
1060 /*
1061 * By setting BASE in cur_fw.type only after successfully loading all
1062 * firmwares, we can:
1063 * 1. Identify that BASE firmware with type=0 has been loaded;
1064 * 2. Tell whether BASE firmware was just changed the next time through.
1065 */
1066 priv->cur_fw.type |= BASE;
1067
1068 return 0;
1069
1070 fail:
1071 memset(&priv->cur_fw, 0, sizeof(priv->cur_fw));
1072 if (!is_retry) {
1073 msleep(50);
1074 is_retry = 1;
1075 dprintk(1, "Retrying firmware load\n");
1076 goto retry;
1077 }
1078
1079 if (rc == -ENOENT)
1080 rc = -EINVAL;
1081 return rc;
1082 }
1083
1084 static void xc_debug_dump(struct xc4000_priv *priv)
1085 {
1086 u16 adc_envelope;
1087 u32 freq_error_hz = 0;
1088 u16 lock_status;
1089 u32 hsync_freq_hz = 0;
1090 u16 frame_lines;
1091 u16 quality;
1092 u8 hw_majorversion = 0, hw_minorversion = 0;
1093 u8 fw_majorversion = 0, fw_minorversion = 0;
1094
1095 xc_get_adc_envelope(priv, &adc_envelope);
1096 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
1097
1098 xc_get_frequency_error(priv, &freq_error_hz);
1099 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
1100
1101 xc_get_lock_status(priv, &lock_status);
1102 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
1103 lock_status);
1104
1105 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
1106 &fw_majorversion, &fw_minorversion);
1107 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
1108 hw_majorversion, hw_minorversion,
1109 fw_majorversion, fw_minorversion);
1110
1111 if (priv->video_standard < XC4000_DTV6) {
1112 xc_get_hsync_freq(priv, &hsync_freq_hz);
1113 dprintk(1, "*** Horizontal sync frequency = %d Hz\n",
1114 hsync_freq_hz);
1115
1116 xc_get_frame_lines(priv, &frame_lines);
1117 dprintk(1, "*** Frame lines = %d\n", frame_lines);
1118 }
1119
1120 xc_get_quality(priv, &quality);
1121 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
1122 }
1123
1124 static int xc4000_set_params(struct dvb_frontend *fe)
1125 {
1126 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1127 u32 delsys = c->delivery_system;
1128 u32 bw = c->bandwidth_hz;
1129 struct xc4000_priv *priv = fe->tuner_priv;
1130 unsigned int type;
1131 int ret = -EREMOTEIO;
1132
1133 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, c->frequency);
1134
1135 mutex_lock(&priv->lock);
1136
1137 switch (delsys) {
1138 case SYS_ATSC:
1139 dprintk(1, "%s() VSB modulation\n", __func__);
1140 priv->rf_mode = XC_RF_MODE_AIR;
1141 priv->freq_hz = c->frequency - 1750000;
1142 priv->video_standard = XC4000_DTV6;
1143 type = DTV6;
1144 break;
1145 case SYS_DVBC_ANNEX_B:
1146 dprintk(1, "%s() QAM modulation\n", __func__);
1147 priv->rf_mode = XC_RF_MODE_CABLE;
1148 priv->freq_hz = c->frequency - 1750000;
1149 priv->video_standard = XC4000_DTV6;
1150 type = DTV6;
1151 break;
1152 case SYS_DVBT:
1153 case SYS_DVBT2:
1154 dprintk(1, "%s() OFDM\n", __func__);
1155 if (bw == 0) {
1156 if (c->frequency < 400000000) {
1157 priv->freq_hz = c->frequency - 2250000;
1158 } else {
1159 priv->freq_hz = c->frequency - 2750000;
1160 }
1161 priv->video_standard = XC4000_DTV7_8;
1162 type = DTV78;
1163 } else if (bw <= 6000000) {
1164 priv->video_standard = XC4000_DTV6;
1165 priv->freq_hz = c->frequency - 1750000;
1166 type = DTV6;
1167 } else if (bw <= 7000000) {
1168 priv->video_standard = XC4000_DTV7;
1169 priv->freq_hz = c->frequency - 2250000;
1170 type = DTV7;
1171 } else {
1172 priv->video_standard = XC4000_DTV8;
1173 priv->freq_hz = c->frequency - 2750000;
1174 type = DTV8;
1175 }
1176 priv->rf_mode = XC_RF_MODE_AIR;
1177 break;
1178 default:
1179 printk(KERN_ERR "xc4000 delivery system not supported!\n");
1180 ret = -EINVAL;
1181 goto fail;
1182 }
1183
1184 dprintk(1, "%s() frequency=%d (compensated)\n",
1185 __func__, priv->freq_hz);
1186
1187 /* Make sure the correct firmware type is loaded */
1188 if (check_firmware(fe, type, 0, priv->if_khz) != 0)
1189 goto fail;
1190
1191 priv->bandwidth = c->bandwidth_hz;
1192
1193 ret = xc_set_signal_source(priv, priv->rf_mode);
1194 if (ret != 0) {
1195 printk(KERN_ERR "xc4000: xc_set_signal_source(%d) failed\n",
1196 priv->rf_mode);
1197 goto fail;
1198 } else {
1199 u16 video_mode, audio_mode;
1200 video_mode = xc4000_standard[priv->video_standard].video_mode;
1201 audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1202 if (type == DTV6 && priv->firm_version != 0x0102)
1203 video_mode |= 0x0001;
1204 ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1205 if (ret != 0) {
1206 printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1207 /* DJH - do not return when it fails... */
1208 /* goto fail; */
1209 }
1210 }
1211
1212 if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1213 ret = 0;
1214 if (priv->dvb_amplitude != 0) {
1215 if (xc_write_reg(priv, XREG_AMPLITUDE,
1216 (priv->firm_version != 0x0102 ||
1217 priv->dvb_amplitude != 134 ?
1218 priv->dvb_amplitude : 132)) != 0)
1219 ret = -EREMOTEIO;
1220 }
1221 if (priv->set_smoothedcvbs != 0) {
1222 if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1223 ret = -EREMOTEIO;
1224 }
1225 if (ret != 0) {
1226 printk(KERN_ERR "xc4000: setting registers failed\n");
1227 /* goto fail; */
1228 }
1229
1230 xc_tune_channel(priv, priv->freq_hz);
1231
1232 ret = 0;
1233
1234 fail:
1235 mutex_unlock(&priv->lock);
1236
1237 return ret;
1238 }
1239
1240 static int xc4000_set_analog_params(struct dvb_frontend *fe,
1241 struct analog_parameters *params)
1242 {
1243 struct xc4000_priv *priv = fe->tuner_priv;
1244 unsigned int type = 0;
1245 int ret = -EREMOTEIO;
1246
1247 if (params->mode == V4L2_TUNER_RADIO) {
1248 dprintk(1, "%s() frequency=%d (in units of 62.5Hz)\n",
1249 __func__, params->frequency);
1250
1251 mutex_lock(&priv->lock);
1252
1253 params->std = 0;
1254 priv->freq_hz = params->frequency * 125L / 2;
1255
1256 if (audio_std & XC4000_AUDIO_STD_INPUT1) {
1257 priv->video_standard = XC4000_FM_Radio_INPUT1;
1258 type = FM | INPUT1;
1259 } else {
1260 priv->video_standard = XC4000_FM_Radio_INPUT2;
1261 type = FM | INPUT2;
1262 }
1263
1264 goto tune_channel;
1265 }
1266
1267 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
1268 __func__, params->frequency);
1269
1270 mutex_lock(&priv->lock);
1271
1272 /* params->frequency is in units of 62.5khz */
1273 priv->freq_hz = params->frequency * 62500;
1274
1275 params->std &= V4L2_STD_ALL;
1276 /* if std is not defined, choose one */
1277 if (!params->std)
1278 params->std = V4L2_STD_PAL_BG;
1279
1280 if (audio_std & XC4000_AUDIO_STD_MONO)
1281 type = MONO;
1282
1283 if (params->std & V4L2_STD_MN) {
1284 params->std = V4L2_STD_MN;
1285 if (audio_std & XC4000_AUDIO_STD_MONO) {
1286 priv->video_standard = XC4000_MN_NTSC_PAL_Mono;
1287 } else if (audio_std & XC4000_AUDIO_STD_A2) {
1288 params->std |= V4L2_STD_A2;
1289 priv->video_standard = XC4000_MN_NTSC_PAL_A2;
1290 } else {
1291 params->std |= V4L2_STD_BTSC;
1292 priv->video_standard = XC4000_MN_NTSC_PAL_BTSC;
1293 }
1294 goto tune_channel;
1295 }
1296
1297 if (params->std & V4L2_STD_PAL_BG) {
1298 params->std = V4L2_STD_PAL_BG;
1299 if (audio_std & XC4000_AUDIO_STD_MONO) {
1300 priv->video_standard = XC4000_BG_PAL_MONO;
1301 } else if (!(audio_std & XC4000_AUDIO_STD_A2)) {
1302 if (!(audio_std & XC4000_AUDIO_STD_B)) {
1303 params->std |= V4L2_STD_NICAM_A;
1304 priv->video_standard = XC4000_BG_PAL_NICAM;
1305 } else {
1306 params->std |= V4L2_STD_NICAM_B;
1307 priv->video_standard = XC4000_BG_PAL_NICAM;
1308 }
1309 } else {
1310 if (!(audio_std & XC4000_AUDIO_STD_B)) {
1311 params->std |= V4L2_STD_A2_A;
1312 priv->video_standard = XC4000_BG_PAL_A2;
1313 } else {
1314 params->std |= V4L2_STD_A2_B;
1315 priv->video_standard = XC4000_BG_PAL_A2;
1316 }
1317 }
1318 goto tune_channel;
1319 }
1320
1321 if (params->std & V4L2_STD_PAL_I) {
1322 /* default to NICAM audio standard */
1323 params->std = V4L2_STD_PAL_I | V4L2_STD_NICAM;
1324 if (audio_std & XC4000_AUDIO_STD_MONO)
1325 priv->video_standard = XC4000_I_PAL_NICAM_MONO;
1326 else
1327 priv->video_standard = XC4000_I_PAL_NICAM;
1328 goto tune_channel;
1329 }
1330
1331 if (params->std & V4L2_STD_PAL_DK) {
1332 params->std = V4L2_STD_PAL_DK;
1333 if (audio_std & XC4000_AUDIO_STD_MONO) {
1334 priv->video_standard = XC4000_DK_PAL_MONO;
1335 } else if (audio_std & XC4000_AUDIO_STD_A2) {
1336 params->std |= V4L2_STD_A2;
1337 priv->video_standard = XC4000_DK_PAL_A2;
1338 } else {
1339 params->std |= V4L2_STD_NICAM;
1340 priv->video_standard = XC4000_DK_PAL_NICAM;
1341 }
1342 goto tune_channel;
1343 }
1344
1345 if (params->std & V4L2_STD_SECAM_DK) {
1346 /* default to A2 audio standard */
1347 params->std = V4L2_STD_SECAM_DK | V4L2_STD_A2;
1348 if (audio_std & XC4000_AUDIO_STD_L) {
1349 type = 0;
1350 priv->video_standard = XC4000_DK_SECAM_NICAM;
1351 } else if (audio_std & XC4000_AUDIO_STD_MONO) {
1352 priv->video_standard = XC4000_DK_SECAM_A2MONO;
1353 } else if (audio_std & XC4000_AUDIO_STD_K3) {
1354 params->std |= V4L2_STD_SECAM_K3;
1355 priv->video_standard = XC4000_DK_SECAM_A2LDK3;
1356 } else {
1357 priv->video_standard = XC4000_DK_SECAM_A2DK1;
1358 }
1359 goto tune_channel;
1360 }
1361
1362 if (params->std & V4L2_STD_SECAM_L) {
1363 /* default to NICAM audio standard */
1364 type = 0;
1365 params->std = V4L2_STD_SECAM_L | V4L2_STD_NICAM;
1366 priv->video_standard = XC4000_L_SECAM_NICAM;
1367 goto tune_channel;
1368 }
1369
1370 if (params->std & V4L2_STD_SECAM_LC) {
1371 /* default to NICAM audio standard */
1372 type = 0;
1373 params->std = V4L2_STD_SECAM_LC | V4L2_STD_NICAM;
1374 priv->video_standard = XC4000_LC_SECAM_NICAM;
1375 goto tune_channel;
1376 }
1377
1378 tune_channel:
1379 /* FIXME: it could be air. */
1380 priv->rf_mode = XC_RF_MODE_CABLE;
1381
1382 if (check_firmware(fe, type, params->std,
1383 xc4000_standard[priv->video_standard].int_freq) != 0)
1384 goto fail;
1385
1386 ret = xc_set_signal_source(priv, priv->rf_mode);
1387 if (ret != 0) {
1388 printk(KERN_ERR
1389 "xc4000: xc_set_signal_source(%d) failed\n",
1390 priv->rf_mode);
1391 goto fail;
1392 } else {
1393 u16 video_mode, audio_mode;
1394 video_mode = xc4000_standard[priv->video_standard].video_mode;
1395 audio_mode = xc4000_standard[priv->video_standard].audio_mode;
1396 if (priv->video_standard < XC4000_BG_PAL_A2) {
1397 if (type & NOGD)
1398 video_mode &= 0xFF7F;
1399 } else if (priv->video_standard < XC4000_I_PAL_NICAM) {
1400 if (priv->firm_version == 0x0102)
1401 video_mode &= 0xFEFF;
1402 if (audio_std & XC4000_AUDIO_STD_B)
1403 video_mode |= 0x0080;
1404 }
1405 ret = xc_set_tv_standard(priv, video_mode, audio_mode);
1406 if (ret != 0) {
1407 printk(KERN_ERR "xc4000: xc_set_tv_standard failed\n");
1408 goto fail;
1409 }
1410 }
1411
1412 if (xc_write_reg(priv, XREG_D_CODE, 0) == 0)
1413 ret = 0;
1414 if (xc_write_reg(priv, XREG_AMPLITUDE, 1) != 0)
1415 ret = -EREMOTEIO;
1416 if (priv->set_smoothedcvbs != 0) {
1417 if (xc_write_reg(priv, XREG_SMOOTHEDCVBS, 1) != 0)
1418 ret = -EREMOTEIO;
1419 }
1420 if (ret != 0) {
1421 printk(KERN_ERR "xc4000: setting registers failed\n");
1422 goto fail;
1423 }
1424
1425 xc_tune_channel(priv, priv->freq_hz);
1426
1427 ret = 0;
1428
1429 fail:
1430 mutex_unlock(&priv->lock);
1431
1432 return ret;
1433 }
1434
1435 static int xc4000_get_frequency(struct dvb_frontend *fe, u32 *freq)
1436 {
1437 struct xc4000_priv *priv = fe->tuner_priv;
1438
1439 *freq = priv->freq_hz;
1440
1441 if (debug) {
1442 mutex_lock(&priv->lock);
1443 if ((priv->cur_fw.type
1444 & (BASE | FM | DTV6 | DTV7 | DTV78 | DTV8)) == BASE) {
1445 u16 snr = 0;
1446 if (xc4000_readreg(priv, XREG_SNR, &snr) == 0) {
1447 mutex_unlock(&priv->lock);
1448 dprintk(1, "%s() freq = %u, SNR = %d\n",
1449 __func__, *freq, snr);
1450 return 0;
1451 }
1452 }
1453 mutex_unlock(&priv->lock);
1454 }
1455
1456 dprintk(1, "%s()\n", __func__);
1457
1458 return 0;
1459 }
1460
1461 static int xc4000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
1462 {
1463 struct xc4000_priv *priv = fe->tuner_priv;
1464 dprintk(1, "%s()\n", __func__);
1465
1466 *bw = priv->bandwidth;
1467 return 0;
1468 }
1469
1470 static int xc4000_get_status(struct dvb_frontend *fe, u32 *status)
1471 {
1472 struct xc4000_priv *priv = fe->tuner_priv;
1473 u16 lock_status = 0;
1474
1475 mutex_lock(&priv->lock);
1476
1477 if (priv->cur_fw.type & BASE)
1478 xc_get_lock_status(priv, &lock_status);
1479
1480 *status = (lock_status == 1 ?
1481 TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO : 0);
1482 if (priv->cur_fw.type & (DTV6 | DTV7 | DTV78 | DTV8))
1483 *status &= (~TUNER_STATUS_STEREO);
1484
1485 mutex_unlock(&priv->lock);
1486
1487 dprintk(2, "%s() lock_status = %d\n", __func__, lock_status);
1488
1489 return 0;
1490 }
1491
1492 static int xc4000_sleep(struct dvb_frontend *fe)
1493 {
1494 struct xc4000_priv *priv = fe->tuner_priv;
1495 int ret = 0;
1496
1497 dprintk(1, "%s()\n", __func__);
1498
1499 mutex_lock(&priv->lock);
1500
1501 /* Avoid firmware reload on slow devices */
1502 if ((no_poweroff == 2 ||
1503 (no_poweroff == 0 && priv->default_pm != 0)) &&
1504 (priv->cur_fw.type & BASE) != 0) {
1505 /* force reset and firmware reload */
1506 priv->cur_fw.type = XC_POWERED_DOWN;
1507
1508 if (xc_write_reg(priv, XREG_POWER_DOWN, 0) != 0) {
1509 printk(KERN_ERR
1510 "xc4000: %s() unable to shutdown tuner\n",
1511 __func__);
1512 ret = -EREMOTEIO;
1513 }
1514 msleep(20);
1515 }
1516
1517 mutex_unlock(&priv->lock);
1518
1519 return ret;
1520 }
1521
1522 static int xc4000_init(struct dvb_frontend *fe)
1523 {
1524 dprintk(1, "%s()\n", __func__);
1525
1526 return 0;
1527 }
1528
1529 static int xc4000_release(struct dvb_frontend *fe)
1530 {
1531 struct xc4000_priv *priv = fe->tuner_priv;
1532
1533 dprintk(1, "%s()\n", __func__);
1534
1535 mutex_lock(&xc4000_list_mutex);
1536
1537 if (priv)
1538 hybrid_tuner_release_state(priv);
1539
1540 mutex_unlock(&xc4000_list_mutex);
1541
1542 fe->tuner_priv = NULL;
1543
1544 return 0;
1545 }
1546
1547 static const struct dvb_tuner_ops xc4000_tuner_ops = {
1548 .info = {
1549 .name = "Xceive XC4000",
1550 .frequency_min = 1000000,
1551 .frequency_max = 1023000000,
1552 .frequency_step = 50000,
1553 },
1554
1555 .release = xc4000_release,
1556 .init = xc4000_init,
1557 .sleep = xc4000_sleep,
1558
1559 .set_params = xc4000_set_params,
1560 .set_analog_params = xc4000_set_analog_params,
1561 .get_frequency = xc4000_get_frequency,
1562 .get_bandwidth = xc4000_get_bandwidth,
1563 .get_status = xc4000_get_status
1564 };
1565
1566 struct dvb_frontend *xc4000_attach(struct dvb_frontend *fe,
1567 struct i2c_adapter *i2c,
1568 struct xc4000_config *cfg)
1569 {
1570 struct xc4000_priv *priv = NULL;
1571 int instance;
1572 u16 id = 0;
1573
1574 dprintk(1, "%s(%d-%04x)\n", __func__,
1575 i2c ? i2c_adapter_id(i2c) : -1,
1576 cfg ? cfg->i2c_address : -1);
1577
1578 mutex_lock(&xc4000_list_mutex);
1579
1580 instance = hybrid_tuner_request_state(struct xc4000_priv, priv,
1581 hybrid_tuner_instance_list,
1582 i2c, cfg->i2c_address, "xc4000");
1583 switch (instance) {
1584 case 0:
1585 goto fail;
1586 break;
1587 case 1:
1588 /* new tuner instance */
1589 priv->bandwidth = 6000000;
1590 /* set default configuration */
1591 priv->if_khz = 4560;
1592 priv->default_pm = 0;
1593 priv->dvb_amplitude = 134;
1594 priv->set_smoothedcvbs = 1;
1595 mutex_init(&priv->lock);
1596 fe->tuner_priv = priv;
1597 break;
1598 default:
1599 /* existing tuner instance */
1600 fe->tuner_priv = priv;
1601 break;
1602 }
1603
1604 if (cfg->if_khz != 0) {
1605 /* copy configuration if provided by the caller */
1606 priv->if_khz = cfg->if_khz;
1607 priv->default_pm = cfg->default_pm;
1608 priv->dvb_amplitude = cfg->dvb_amplitude;
1609 priv->set_smoothedcvbs = cfg->set_smoothedcvbs;
1610 }
1611
1612 /* Check if firmware has been loaded. It is possible that another
1613 instance of the driver has loaded the firmware.
1614 */
1615
1616 if (instance == 1) {
1617 if (xc4000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
1618 goto fail;
1619 } else {
1620 id = ((priv->cur_fw.type & BASE) != 0 ?
1621 priv->hwmodel : XC_PRODUCT_ID_FW_NOT_LOADED);
1622 }
1623
1624 switch (id) {
1625 case XC_PRODUCT_ID_XC4000:
1626 case XC_PRODUCT_ID_XC4100:
1627 printk(KERN_INFO
1628 "xc4000: Successfully identified at address 0x%02x\n",
1629 cfg->i2c_address);
1630 printk(KERN_INFO
1631 "xc4000: Firmware has been loaded previously\n");
1632 break;
1633 case XC_PRODUCT_ID_FW_NOT_LOADED:
1634 printk(KERN_INFO
1635 "xc4000: Successfully identified at address 0x%02x\n",
1636 cfg->i2c_address);
1637 printk(KERN_INFO
1638 "xc4000: Firmware has not been loaded previously\n");
1639 break;
1640 default:
1641 printk(KERN_ERR
1642 "xc4000: Device not found at addr 0x%02x (0x%x)\n",
1643 cfg->i2c_address, id);
1644 goto fail;
1645 }
1646
1647 mutex_unlock(&xc4000_list_mutex);
1648
1649 memcpy(&fe->ops.tuner_ops, &xc4000_tuner_ops,
1650 sizeof(struct dvb_tuner_ops));
1651
1652 if (instance == 1) {
1653 int ret;
1654 mutex_lock(&priv->lock);
1655 ret = xc4000_fwupload(fe);
1656 mutex_unlock(&priv->lock);
1657 if (ret != 0)
1658 goto fail2;
1659 }
1660
1661 return fe;
1662 fail:
1663 mutex_unlock(&xc4000_list_mutex);
1664 fail2:
1665 xc4000_release(fe);
1666 return NULL;
1667 }
1668 EXPORT_SYMBOL(xc4000_attach);
1669
1670 MODULE_AUTHOR("Steven Toth, Davide Ferri");
1671 MODULE_DESCRIPTION("Xceive xc4000 silicon tuner driver");
1672 MODULE_LICENSE("GPL");
This page took 0.066779 seconds and 5 git commands to generate.