Merge branches 'tracing/kmemtrace2' and 'tracing/ftrace' into tracing/urgent
[deliverable/linux.git] / drivers / media / common / tuners / xc5000.c
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3 *
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 *
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/videodev2.h>
26 #include <linux/delay.h>
27 #include <linux/dvb/frontend.h>
28 #include <linux/i2c.h>
29
30 #include "dvb_frontend.h"
31
32 #include "xc5000.h"
33 #include "tuner-i2c.h"
34
35 static int debug;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38
39 static DEFINE_MUTEX(xc5000_list_mutex);
40 static LIST_HEAD(hybrid_tuner_instance_list);
41
42 #define dprintk(level, fmt, arg...) if (debug >= level) \
43 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
44
45 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
46 #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
47
48 struct xc5000_priv {
49 struct tuner_i2c_props i2c_props;
50 struct list_head hybrid_tuner_instance_list;
51
52 u32 if_khz;
53 u32 freq_hz;
54 u32 bandwidth;
55 u8 video_standard;
56 u8 rf_mode;
57 };
58
59 /* Misc Defines */
60 #define MAX_TV_STANDARD 23
61 #define XC_MAX_I2C_WRITE_LENGTH 64
62
63 /* Signal Types */
64 #define XC_RF_MODE_AIR 0
65 #define XC_RF_MODE_CABLE 1
66
67 /* Result codes */
68 #define XC_RESULT_SUCCESS 0
69 #define XC_RESULT_RESET_FAILURE 1
70 #define XC_RESULT_I2C_WRITE_FAILURE 2
71 #define XC_RESULT_I2C_READ_FAILURE 3
72 #define XC_RESULT_OUT_OF_RANGE 5
73
74 /* Product id */
75 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
76 #define XC_PRODUCT_ID_FW_LOADED 0x1388
77
78 /* Registers */
79 #define XREG_INIT 0x00
80 #define XREG_VIDEO_MODE 0x01
81 #define XREG_AUDIO_MODE 0x02
82 #define XREG_RF_FREQ 0x03
83 #define XREG_D_CODE 0x04
84 #define XREG_IF_OUT 0x05
85 #define XREG_SEEK_MODE 0x07
86 #define XREG_POWER_DOWN 0x0A
87 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
88 #define XREG_SMOOTHEDCVBS 0x0E
89 #define XREG_XTALFREQ 0x0F
90 #define XREG_FINERFFREQ 0x10
91 #define XREG_DDIMODE 0x11
92
93 #define XREG_ADC_ENV 0x00
94 #define XREG_QUALITY 0x01
95 #define XREG_FRAME_LINES 0x02
96 #define XREG_HSYNC_FREQ 0x03
97 #define XREG_LOCK 0x04
98 #define XREG_FREQ_ERROR 0x05
99 #define XREG_SNR 0x06
100 #define XREG_VERSION 0x07
101 #define XREG_PRODUCT_ID 0x08
102 #define XREG_BUSY 0x09
103
104 /*
105 Basic firmware description. This will remain with
106 the driver for documentation purposes.
107
108 This represents an I2C firmware file encoded as a
109 string of unsigned char. Format is as follows:
110
111 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
112 char[1 ]=len0_LSB -> length of first write transaction
113 char[2 ]=data0 -> first byte to be sent
114 char[3 ]=data1
115 char[4 ]=data2
116 char[ ]=...
117 char[M ]=dataN -> last byte to be sent
118 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
119 char[M+2]=len1_LSB -> length of second write transaction
120 char[M+3]=data0
121 char[M+4]=data1
122 ...
123 etc.
124
125 The [len] value should be interpreted as follows:
126
127 len= len_MSB _ len_LSB
128 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
129 len=0000_0000_0000_0000 : Reset command: Do hardware reset
130 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
131 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
132
133 For the RESET and WAIT commands, the two following bytes will contain
134 immediately the length of the following transaction.
135
136 */
137 struct XC_TV_STANDARD {
138 char *Name;
139 u16 AudioMode;
140 u16 VideoMode;
141 };
142
143 /* Tuner standards */
144 #define MN_NTSC_PAL_BTSC 0
145 #define MN_NTSC_PAL_A2 1
146 #define MN_NTSC_PAL_EIAJ 2
147 #define MN_NTSC_PAL_Mono 3
148 #define BG_PAL_A2 4
149 #define BG_PAL_NICAM 5
150 #define BG_PAL_MONO 6
151 #define I_PAL_NICAM 7
152 #define I_PAL_NICAM_MONO 8
153 #define DK_PAL_A2 9
154 #define DK_PAL_NICAM 10
155 #define DK_PAL_MONO 11
156 #define DK_SECAM_A2DK1 12
157 #define DK_SECAM_A2LDK3 13
158 #define DK_SECAM_A2MONO 14
159 #define L_SECAM_NICAM 15
160 #define LC_SECAM_NICAM 16
161 #define DTV6 17
162 #define DTV8 18
163 #define DTV7_8 19
164 #define DTV7 20
165 #define FM_Radio_INPUT2 21
166 #define FM_Radio_INPUT1 22
167
168 static struct XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
169 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
170 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
171 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
172 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
173 {"B/G-PAL-A2", 0x0A00, 0x8049},
174 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
175 {"B/G-PAL-MONO", 0x0878, 0x8059},
176 {"I-PAL-NICAM", 0x1080, 0x8009},
177 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
178 {"D/K-PAL-A2", 0x1600, 0x8009},
179 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
180 {"D/K-PAL-MONO", 0x1478, 0x8009},
181 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
182 {"D/K-SECAM-A2 L/DK3", 0x0E00, 0x8009},
183 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
184 {"L-SECAM-NICAM", 0x8E82, 0x0009},
185 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
186 {"DTV6", 0x00C0, 0x8002},
187 {"DTV8", 0x00C0, 0x800B},
188 {"DTV7/8", 0x00C0, 0x801B},
189 {"DTV7", 0x00C0, 0x8007},
190 {"FM Radio-INPUT2", 0x9802, 0x9002},
191 {"FM Radio-INPUT1", 0x0208, 0x9002}
192 };
193
194 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
195 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
196 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
197 static void xc5000_TunerReset(struct dvb_frontend *fe);
198
199 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
200 {
201 return xc5000_writeregs(priv, buf, len)
202 ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
203 }
204
205 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
206 {
207 return xc5000_readregs(priv, buf, len)
208 ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
209 }
210
211 static int xc_reset(struct dvb_frontend *fe)
212 {
213 xc5000_TunerReset(fe);
214 return XC_RESULT_SUCCESS;
215 }
216
217 static void xc_wait(int wait_ms)
218 {
219 msleep(wait_ms);
220 }
221
222 static void xc5000_TunerReset(struct dvb_frontend *fe)
223 {
224 struct xc5000_priv *priv = fe->tuner_priv;
225 int ret;
226
227 dprintk(1, "%s()\n", __func__);
228
229 if (fe->callback) {
230 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
231 fe->dvb->priv :
232 priv->i2c_props.adap->algo_data,
233 DVB_FRONTEND_COMPONENT_TUNER,
234 XC5000_TUNER_RESET, 0);
235 if (ret)
236 printk(KERN_ERR "xc5000: reset failed\n");
237 } else
238 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
239 }
240
241 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
242 {
243 u8 buf[4];
244 int WatchDogTimer = 5;
245 int result;
246
247 buf[0] = (regAddr >> 8) & 0xFF;
248 buf[1] = regAddr & 0xFF;
249 buf[2] = (i2cData >> 8) & 0xFF;
250 buf[3] = i2cData & 0xFF;
251 result = xc_send_i2c_data(priv, buf, 4);
252 if (result == XC_RESULT_SUCCESS) {
253 /* wait for busy flag to clear */
254 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
255 buf[0] = 0;
256 buf[1] = XREG_BUSY;
257
258 result = xc_send_i2c_data(priv, buf, 2);
259 if (result == XC_RESULT_SUCCESS) {
260 result = xc_read_i2c_data(priv, buf, 2);
261 if (result == XC_RESULT_SUCCESS) {
262 if ((buf[0] == 0) && (buf[1] == 0)) {
263 /* busy flag cleared */
264 break;
265 } else {
266 xc_wait(100); /* wait 5 ms */
267 WatchDogTimer--;
268 }
269 }
270 }
271 }
272 }
273 if (WatchDogTimer < 0)
274 result = XC_RESULT_I2C_WRITE_FAILURE;
275
276 return result;
277 }
278
279 static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
280 {
281 u8 buf[2];
282 int result;
283
284 buf[0] = (regAddr >> 8) & 0xFF;
285 buf[1] = regAddr & 0xFF;
286 result = xc_send_i2c_data(priv, buf, 2);
287 if (result != XC_RESULT_SUCCESS)
288 return result;
289
290 result = xc_read_i2c_data(priv, buf, 2);
291 if (result != XC_RESULT_SUCCESS)
292 return result;
293
294 *i2cData = buf[0] * 256 + buf[1];
295 return result;
296 }
297
298 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
299 {
300 struct xc5000_priv *priv = fe->tuner_priv;
301
302 int i, nbytes_to_send, result;
303 unsigned int len, pos, index;
304 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
305
306 index = 0;
307 while ((i2c_sequence[index] != 0xFF) ||
308 (i2c_sequence[index + 1] != 0xFF)) {
309 len = i2c_sequence[index] * 256 + i2c_sequence[index+1];
310 if (len == 0x0000) {
311 /* RESET command */
312 result = xc_reset(fe);
313 index += 2;
314 if (result != XC_RESULT_SUCCESS)
315 return result;
316 } else if (len & 0x8000) {
317 /* WAIT command */
318 xc_wait(len & 0x7FFF);
319 index += 2;
320 } else {
321 /* Send i2c data whilst ensuring individual transactions
322 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
323 */
324 index += 2;
325 buf[0] = i2c_sequence[index];
326 buf[1] = i2c_sequence[index + 1];
327 pos = 2;
328 while (pos < len) {
329 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2)
330 nbytes_to_send =
331 XC_MAX_I2C_WRITE_LENGTH;
332 else
333 nbytes_to_send = (len - pos + 2);
334 for (i = 2; i < nbytes_to_send; i++) {
335 buf[i] = i2c_sequence[index + pos +
336 i - 2];
337 }
338 result = xc_send_i2c_data(priv, buf,
339 nbytes_to_send);
340
341 if (result != XC_RESULT_SUCCESS)
342 return result;
343
344 pos += nbytes_to_send - 2;
345 }
346 index += len;
347 }
348 }
349 return XC_RESULT_SUCCESS;
350 }
351
352 static int xc_initialize(struct xc5000_priv *priv)
353 {
354 dprintk(1, "%s()\n", __func__);
355 return xc_write_reg(priv, XREG_INIT, 0);
356 }
357
358 static int xc_SetTVStandard(struct xc5000_priv *priv,
359 u16 VideoMode, u16 AudioMode)
360 {
361 int ret;
362 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
363 dprintk(1, "%s() Standard = %s\n",
364 __func__,
365 XC5000_Standard[priv->video_standard].Name);
366
367 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
368 if (ret == XC_RESULT_SUCCESS)
369 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
370
371 return ret;
372 }
373
374 static int xc_shutdown(struct xc5000_priv *priv)
375 {
376 return XC_RESULT_SUCCESS;
377 /* Fixme: cannot bring tuner back alive once shutdown
378 * without reloading the driver modules.
379 * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
380 */
381 }
382
383 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
384 {
385 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
386 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
387
388 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE)) {
389 rf_mode = XC_RF_MODE_CABLE;
390 printk(KERN_ERR
391 "%s(), Invalid mode, defaulting to CABLE",
392 __func__);
393 }
394 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
395 }
396
397 static const struct dvb_tuner_ops xc5000_tuner_ops;
398
399 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
400 {
401 u16 freq_code;
402
403 dprintk(1, "%s(%u)\n", __func__, freq_hz);
404
405 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
406 (freq_hz < xc5000_tuner_ops.info.frequency_min))
407 return XC_RESULT_OUT_OF_RANGE;
408
409 freq_code = (u16)(freq_hz / 15625);
410
411 return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
412 }
413
414
415 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
416 {
417 u32 freq_code = (freq_khz * 1024)/1000;
418 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
419 __func__, freq_khz, freq_code);
420
421 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
422 }
423
424
425 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
426 {
427 return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
428 }
429
430 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
431 {
432 int result;
433 u16 regData;
434 u32 tmp;
435
436 result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
437 if (result)
438 return result;
439
440 tmp = (u32)regData;
441 (*freq_error_hz) = (tmp * 15625) / 1000;
442 return result;
443 }
444
445 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
446 {
447 return xc_read_reg(priv, XREG_LOCK, lock_status);
448 }
449
450 static int xc_get_version(struct xc5000_priv *priv,
451 u8 *hw_majorversion, u8 *hw_minorversion,
452 u8 *fw_majorversion, u8 *fw_minorversion)
453 {
454 u16 data;
455 int result;
456
457 result = xc_read_reg(priv, XREG_VERSION, &data);
458 if (result)
459 return result;
460
461 (*hw_majorversion) = (data >> 12) & 0x0F;
462 (*hw_minorversion) = (data >> 8) & 0x0F;
463 (*fw_majorversion) = (data >> 4) & 0x0F;
464 (*fw_minorversion) = data & 0x0F;
465
466 return 0;
467 }
468
469 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
470 {
471 u16 regData;
472 int result;
473
474 result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
475 if (result)
476 return result;
477
478 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
479 return result;
480 }
481
482 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
483 {
484 return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
485 }
486
487 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
488 {
489 return xc_read_reg(priv, XREG_QUALITY, quality);
490 }
491
492 static u16 WaitForLock(struct xc5000_priv *priv)
493 {
494 u16 lockState = 0;
495 int watchDogCount = 40;
496
497 while ((lockState == 0) && (watchDogCount > 0)) {
498 xc_get_lock_status(priv, &lockState);
499 if (lockState != 1) {
500 xc_wait(5);
501 watchDogCount--;
502 }
503 }
504 return lockState;
505 }
506
507 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
508 {
509 int found = 0;
510
511 dprintk(1, "%s(%u)\n", __func__, freq_hz);
512
513 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
514 return 0;
515
516 if (WaitForLock(priv) == 1)
517 found = 1;
518
519 return found;
520 }
521
522 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
523 {
524 u8 buf[2] = { reg >> 8, reg & 0xff };
525 u8 bval[2] = { 0, 0 };
526 struct i2c_msg msg[2] = {
527 { .addr = priv->i2c_props.addr,
528 .flags = 0, .buf = &buf[0], .len = 2 },
529 { .addr = priv->i2c_props.addr,
530 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
531 };
532
533 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
534 printk(KERN_WARNING "xc5000: I2C read failed\n");
535 return -EREMOTEIO;
536 }
537
538 *val = (bval[0] << 8) | bval[1];
539 return 0;
540 }
541
542 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
543 {
544 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
545 .flags = 0, .buf = buf, .len = len };
546
547 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
548 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
549 (int)len);
550 return -EREMOTEIO;
551 }
552 return 0;
553 }
554
555 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
556 {
557 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
558 .flags = I2C_M_RD, .buf = buf, .len = len };
559
560 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
561 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n", (int)len);
562 return -EREMOTEIO;
563 }
564 return 0;
565 }
566
567 static int xc5000_fwupload(struct dvb_frontend *fe)
568 {
569 struct xc5000_priv *priv = fe->tuner_priv;
570 const struct firmware *fw;
571 int ret;
572
573 /* request the firmware, this will block and timeout */
574 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
575 XC5000_DEFAULT_FIRMWARE);
576
577 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE,
578 &priv->i2c_props.adap->dev);
579 if (ret) {
580 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
581 ret = XC_RESULT_RESET_FAILURE;
582 goto out;
583 } else {
584 printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
585 fw->size);
586 ret = XC_RESULT_SUCCESS;
587 }
588
589 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
590 printk(KERN_ERR "xc5000: firmware incorrect size\n");
591 ret = XC_RESULT_RESET_FAILURE;
592 } else {
593 printk(KERN_INFO "xc5000: firmware upload\n");
594 ret = xc_load_i2c_sequence(fe, fw->data);
595 }
596
597 out:
598 release_firmware(fw);
599 return ret;
600 }
601
602 static void xc_debug_dump(struct xc5000_priv *priv)
603 {
604 u16 adc_envelope;
605 u32 freq_error_hz = 0;
606 u16 lock_status;
607 u32 hsync_freq_hz = 0;
608 u16 frame_lines;
609 u16 quality;
610 u8 hw_majorversion = 0, hw_minorversion = 0;
611 u8 fw_majorversion = 0, fw_minorversion = 0;
612
613 /* Wait for stats to stabilize.
614 * Frame Lines needs two frame times after initial lock
615 * before it is valid.
616 */
617 xc_wait(100);
618
619 xc_get_ADC_Envelope(priv, &adc_envelope);
620 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
621
622 xc_get_frequency_error(priv, &freq_error_hz);
623 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
624
625 xc_get_lock_status(priv, &lock_status);
626 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
627 lock_status);
628
629 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
630 &fw_majorversion, &fw_minorversion);
631 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
632 hw_majorversion, hw_minorversion,
633 fw_majorversion, fw_minorversion);
634
635 xc_get_hsync_freq(priv, &hsync_freq_hz);
636 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
637
638 xc_get_frame_lines(priv, &frame_lines);
639 dprintk(1, "*** Frame lines = %d\n", frame_lines);
640
641 xc_get_quality(priv, &quality);
642 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
643 }
644
645 static int xc5000_set_params(struct dvb_frontend *fe,
646 struct dvb_frontend_parameters *params)
647 {
648 struct xc5000_priv *priv = fe->tuner_priv;
649 int ret;
650
651 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
652
653 switch (params->u.vsb.modulation) {
654 case VSB_8:
655 case VSB_16:
656 dprintk(1, "%s() VSB modulation\n", __func__);
657 priv->rf_mode = XC_RF_MODE_AIR;
658 priv->freq_hz = params->frequency - 1750000;
659 priv->bandwidth = BANDWIDTH_6_MHZ;
660 priv->video_standard = DTV6;
661 break;
662 case QAM_64:
663 case QAM_256:
664 case QAM_AUTO:
665 dprintk(1, "%s() QAM modulation\n", __func__);
666 priv->rf_mode = XC_RF_MODE_CABLE;
667 priv->freq_hz = params->frequency - 1750000;
668 priv->bandwidth = BANDWIDTH_6_MHZ;
669 priv->video_standard = DTV6;
670 break;
671 default:
672 return -EINVAL;
673 }
674
675 dprintk(1, "%s() frequency=%d (compensated)\n",
676 __func__, priv->freq_hz);
677
678 ret = xc_SetSignalSource(priv, priv->rf_mode);
679 if (ret != XC_RESULT_SUCCESS) {
680 printk(KERN_ERR
681 "xc5000: xc_SetSignalSource(%d) failed\n",
682 priv->rf_mode);
683 return -EREMOTEIO;
684 }
685
686 ret = xc_SetTVStandard(priv,
687 XC5000_Standard[priv->video_standard].VideoMode,
688 XC5000_Standard[priv->video_standard].AudioMode);
689 if (ret != XC_RESULT_SUCCESS) {
690 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
691 return -EREMOTEIO;
692 }
693
694 ret = xc_set_IF_frequency(priv, priv->if_khz);
695 if (ret != XC_RESULT_SUCCESS) {
696 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
697 priv->if_khz);
698 return -EIO;
699 }
700
701 xc_tune_channel(priv, priv->freq_hz);
702
703 if (debug)
704 xc_debug_dump(priv);
705
706 return 0;
707 }
708
709 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
710 {
711 struct xc5000_priv *priv = fe->tuner_priv;
712 int ret;
713 u16 id;
714
715 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
716 if (ret == XC_RESULT_SUCCESS) {
717 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
718 ret = XC_RESULT_RESET_FAILURE;
719 else
720 ret = XC_RESULT_SUCCESS;
721 }
722
723 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
724 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
725 return ret;
726 }
727
728 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
729
730 static int xc5000_set_analog_params(struct dvb_frontend *fe,
731 struct analog_parameters *params)
732 {
733 struct xc5000_priv *priv = fe->tuner_priv;
734 int ret;
735
736 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
737 xc_load_fw_and_init_tuner(fe);
738
739 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
740 __func__, params->frequency);
741
742 priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
743
744 /* params->frequency is in units of 62.5khz */
745 priv->freq_hz = params->frequency * 62500;
746
747 /* FIX ME: Some video standards may have several possible audio
748 standards. We simply default to one of them here.
749 */
750 if (params->std & V4L2_STD_MN) {
751 /* default to BTSC audio standard */
752 priv->video_standard = MN_NTSC_PAL_BTSC;
753 goto tune_channel;
754 }
755
756 if (params->std & V4L2_STD_PAL_BG) {
757 /* default to NICAM audio standard */
758 priv->video_standard = BG_PAL_NICAM;
759 goto tune_channel;
760 }
761
762 if (params->std & V4L2_STD_PAL_I) {
763 /* default to NICAM audio standard */
764 priv->video_standard = I_PAL_NICAM;
765 goto tune_channel;
766 }
767
768 if (params->std & V4L2_STD_PAL_DK) {
769 /* default to NICAM audio standard */
770 priv->video_standard = DK_PAL_NICAM;
771 goto tune_channel;
772 }
773
774 if (params->std & V4L2_STD_SECAM_DK) {
775 /* default to A2 DK1 audio standard */
776 priv->video_standard = DK_SECAM_A2DK1;
777 goto tune_channel;
778 }
779
780 if (params->std & V4L2_STD_SECAM_L) {
781 priv->video_standard = L_SECAM_NICAM;
782 goto tune_channel;
783 }
784
785 if (params->std & V4L2_STD_SECAM_LC) {
786 priv->video_standard = LC_SECAM_NICAM;
787 goto tune_channel;
788 }
789
790 tune_channel:
791 ret = xc_SetSignalSource(priv, priv->rf_mode);
792 if (ret != XC_RESULT_SUCCESS) {
793 printk(KERN_ERR
794 "xc5000: xc_SetSignalSource(%d) failed\n",
795 priv->rf_mode);
796 return -EREMOTEIO;
797 }
798
799 ret = xc_SetTVStandard(priv,
800 XC5000_Standard[priv->video_standard].VideoMode,
801 XC5000_Standard[priv->video_standard].AudioMode);
802 if (ret != XC_RESULT_SUCCESS) {
803 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
804 return -EREMOTEIO;
805 }
806
807 xc_tune_channel(priv, priv->freq_hz);
808
809 if (debug)
810 xc_debug_dump(priv);
811
812 return 0;
813 }
814
815 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
816 {
817 struct xc5000_priv *priv = fe->tuner_priv;
818 dprintk(1, "%s()\n", __func__);
819 *freq = priv->freq_hz;
820 return 0;
821 }
822
823 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
824 {
825 struct xc5000_priv *priv = fe->tuner_priv;
826 dprintk(1, "%s()\n", __func__);
827
828 *bw = priv->bandwidth;
829 return 0;
830 }
831
832 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
833 {
834 struct xc5000_priv *priv = fe->tuner_priv;
835 u16 lock_status = 0;
836
837 xc_get_lock_status(priv, &lock_status);
838
839 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
840
841 *status = lock_status;
842
843 return 0;
844 }
845
846 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
847 {
848 struct xc5000_priv *priv = fe->tuner_priv;
849 int ret = 0;
850
851 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
852 ret = xc5000_fwupload(fe);
853 if (ret != XC_RESULT_SUCCESS)
854 return ret;
855 }
856
857 /* Start the tuner self-calibration process */
858 ret |= xc_initialize(priv);
859
860 /* Wait for calibration to complete.
861 * We could continue but XC5000 will clock stretch subsequent
862 * I2C transactions until calibration is complete. This way we
863 * don't have to rely on clock stretching working.
864 */
865 xc_wait(100);
866
867 /* Default to "CABLE" mode */
868 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
869
870 return ret;
871 }
872
873 static int xc5000_sleep(struct dvb_frontend *fe)
874 {
875 struct xc5000_priv *priv = fe->tuner_priv;
876 int ret;
877
878 dprintk(1, "%s()\n", __func__);
879
880 /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
881 * once shutdown without reloading the driver. Maybe I am not
882 * doing something right.
883 *
884 */
885
886 ret = xc_shutdown(priv);
887 if (ret != XC_RESULT_SUCCESS) {
888 printk(KERN_ERR
889 "xc5000: %s() unable to shutdown tuner\n",
890 __func__);
891 return -EREMOTEIO;
892 } else
893 return XC_RESULT_SUCCESS;
894 }
895
896 static int xc5000_init(struct dvb_frontend *fe)
897 {
898 struct xc5000_priv *priv = fe->tuner_priv;
899 dprintk(1, "%s()\n", __func__);
900
901 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
902 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
903 return -EREMOTEIO;
904 }
905
906 if (debug)
907 xc_debug_dump(priv);
908
909 return 0;
910 }
911
912 static int xc5000_release(struct dvb_frontend *fe)
913 {
914 struct xc5000_priv *priv = fe->tuner_priv;
915
916 dprintk(1, "%s()\n", __func__);
917
918 mutex_lock(&xc5000_list_mutex);
919
920 if (priv)
921 hybrid_tuner_release_state(priv);
922
923 mutex_unlock(&xc5000_list_mutex);
924
925 fe->tuner_priv = NULL;
926
927 return 0;
928 }
929
930 static const struct dvb_tuner_ops xc5000_tuner_ops = {
931 .info = {
932 .name = "Xceive XC5000",
933 .frequency_min = 1000000,
934 .frequency_max = 1023000000,
935 .frequency_step = 50000,
936 },
937
938 .release = xc5000_release,
939 .init = xc5000_init,
940 .sleep = xc5000_sleep,
941
942 .set_params = xc5000_set_params,
943 .set_analog_params = xc5000_set_analog_params,
944 .get_frequency = xc5000_get_frequency,
945 .get_bandwidth = xc5000_get_bandwidth,
946 .get_status = xc5000_get_status
947 };
948
949 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
950 struct i2c_adapter *i2c,
951 struct xc5000_config *cfg)
952 {
953 struct xc5000_priv *priv = NULL;
954 int instance;
955 u16 id = 0;
956
957 dprintk(1, "%s(%d-%04x)\n", __func__,
958 i2c ? i2c_adapter_id(i2c) : -1,
959 cfg ? cfg->i2c_address : -1);
960
961 mutex_lock(&xc5000_list_mutex);
962
963 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
964 hybrid_tuner_instance_list,
965 i2c, cfg->i2c_address, "xc5000");
966 switch (instance) {
967 case 0:
968 goto fail;
969 break;
970 case 1:
971 /* new tuner instance */
972 priv->bandwidth = BANDWIDTH_6_MHZ;
973 priv->if_khz = cfg->if_khz;
974
975 fe->tuner_priv = priv;
976 break;
977 default:
978 /* existing tuner instance */
979 fe->tuner_priv = priv;
980 break;
981 }
982
983 /* Check if firmware has been loaded. It is possible that another
984 instance of the driver has loaded the firmware.
985 */
986 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
987 goto fail;
988
989 switch (id) {
990 case XC_PRODUCT_ID_FW_LOADED:
991 printk(KERN_INFO
992 "xc5000: Successfully identified at address 0x%02x\n",
993 cfg->i2c_address);
994 printk(KERN_INFO
995 "xc5000: Firmware has been loaded previously\n");
996 break;
997 case XC_PRODUCT_ID_FW_NOT_LOADED:
998 printk(KERN_INFO
999 "xc5000: Successfully identified at address 0x%02x\n",
1000 cfg->i2c_address);
1001 printk(KERN_INFO
1002 "xc5000: Firmware has not been loaded previously\n");
1003 break;
1004 default:
1005 printk(KERN_ERR
1006 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1007 cfg->i2c_address, id);
1008 goto fail;
1009 }
1010
1011 mutex_unlock(&xc5000_list_mutex);
1012
1013 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1014 sizeof(struct dvb_tuner_ops));
1015
1016 return fe;
1017 fail:
1018 mutex_unlock(&xc5000_list_mutex);
1019
1020 xc5000_release(fe);
1021 return NULL;
1022 }
1023 EXPORT_SYMBOL(xc5000_attach);
1024
1025 MODULE_AUTHOR("Steven Toth");
1026 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1027 MODULE_LICENSE("GPL");
This page took 0.053602 seconds and 5 git commands to generate.