V4L/DVB (9049): convert tuner drivers to use dvb_frontend->callback
[deliverable/linux.git] / drivers / media / common / tuners / xc5000.c
1 /*
2 * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
3 *
4 * Copyright (c) 2007 Xceive Corporation
5 * Copyright (c) 2007 Steven Toth <stoth@linuxtv.org>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 *
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/videodev2.h>
26 #include <linux/delay.h>
27 #include <linux/dvb/frontend.h>
28 #include <linux/i2c.h>
29
30 #include "dvb_frontend.h"
31
32 #include "xc5000.h"
33 #include "tuner-i2c.h"
34
35 static int debug;
36 module_param(debug, int, 0644);
37 MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
38
39 static int xc5000_load_fw_on_attach;
40 module_param_named(init_fw, xc5000_load_fw_on_attach, int, 0644);
41 MODULE_PARM_DESC(init_fw, "Load firmware during driver initialization.");
42
43 static DEFINE_MUTEX(xc5000_list_mutex);
44 static LIST_HEAD(hybrid_tuner_instance_list);
45
46 #define dprintk(level,fmt, arg...) if (debug >= level) \
47 printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
48
49 #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
50 #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
51
52 struct xc5000_priv {
53 struct tuner_i2c_props i2c_props;
54 struct list_head hybrid_tuner_instance_list;
55
56 u32 if_khz;
57 u32 freq_hz;
58 u32 bandwidth;
59 u8 video_standard;
60 u8 rf_mode;
61 };
62
63 /* Misc Defines */
64 #define MAX_TV_STANDARD 23
65 #define XC_MAX_I2C_WRITE_LENGTH 64
66
67 /* Signal Types */
68 #define XC_RF_MODE_AIR 0
69 #define XC_RF_MODE_CABLE 1
70
71 /* Result codes */
72 #define XC_RESULT_SUCCESS 0
73 #define XC_RESULT_RESET_FAILURE 1
74 #define XC_RESULT_I2C_WRITE_FAILURE 2
75 #define XC_RESULT_I2C_READ_FAILURE 3
76 #define XC_RESULT_OUT_OF_RANGE 5
77
78 /* Product id */
79 #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
80 #define XC_PRODUCT_ID_FW_LOADED 0x1388
81
82 /* Registers */
83 #define XREG_INIT 0x00
84 #define XREG_VIDEO_MODE 0x01
85 #define XREG_AUDIO_MODE 0x02
86 #define XREG_RF_FREQ 0x03
87 #define XREG_D_CODE 0x04
88 #define XREG_IF_OUT 0x05
89 #define XREG_SEEK_MODE 0x07
90 #define XREG_POWER_DOWN 0x0A
91 #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
92 #define XREG_SMOOTHEDCVBS 0x0E
93 #define XREG_XTALFREQ 0x0F
94 #define XREG_FINERFFREQ 0x10
95 #define XREG_DDIMODE 0x11
96
97 #define XREG_ADC_ENV 0x00
98 #define XREG_QUALITY 0x01
99 #define XREG_FRAME_LINES 0x02
100 #define XREG_HSYNC_FREQ 0x03
101 #define XREG_LOCK 0x04
102 #define XREG_FREQ_ERROR 0x05
103 #define XREG_SNR 0x06
104 #define XREG_VERSION 0x07
105 #define XREG_PRODUCT_ID 0x08
106 #define XREG_BUSY 0x09
107
108 /*
109 Basic firmware description. This will remain with
110 the driver for documentation purposes.
111
112 This represents an I2C firmware file encoded as a
113 string of unsigned char. Format is as follows:
114
115 char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
116 char[1 ]=len0_LSB -> length of first write transaction
117 char[2 ]=data0 -> first byte to be sent
118 char[3 ]=data1
119 char[4 ]=data2
120 char[ ]=...
121 char[M ]=dataN -> last byte to be sent
122 char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
123 char[M+2]=len1_LSB -> length of second write transaction
124 char[M+3]=data0
125 char[M+4]=data1
126 ...
127 etc.
128
129 The [len] value should be interpreted as follows:
130
131 len= len_MSB _ len_LSB
132 len=1111_1111_1111_1111 : End of I2C_SEQUENCE
133 len=0000_0000_0000_0000 : Reset command: Do hardware reset
134 len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
135 len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
136
137 For the RESET and WAIT commands, the two following bytes will contain
138 immediately the length of the following transaction.
139
140 */
141 typedef struct {
142 char *Name;
143 u16 AudioMode;
144 u16 VideoMode;
145 } XC_TV_STANDARD;
146
147 /* Tuner standards */
148 #define MN_NTSC_PAL_BTSC 0
149 #define MN_NTSC_PAL_A2 1
150 #define MN_NTSC_PAL_EIAJ 2
151 #define MN_NTSC_PAL_Mono 3
152 #define BG_PAL_A2 4
153 #define BG_PAL_NICAM 5
154 #define BG_PAL_MONO 6
155 #define I_PAL_NICAM 7
156 #define I_PAL_NICAM_MONO 8
157 #define DK_PAL_A2 9
158 #define DK_PAL_NICAM 10
159 #define DK_PAL_MONO 11
160 #define DK_SECAM_A2DK1 12
161 #define DK_SECAM_A2LDK3 13
162 #define DK_SECAM_A2MONO 14
163 #define L_SECAM_NICAM 15
164 #define LC_SECAM_NICAM 16
165 #define DTV6 17
166 #define DTV8 18
167 #define DTV7_8 19
168 #define DTV7 20
169 #define FM_Radio_INPUT2 21
170 #define FM_Radio_INPUT1 22
171
172 static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
173 {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
174 {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
175 {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
176 {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
177 {"B/G-PAL-A2", 0x0A00, 0x8049},
178 {"B/G-PAL-NICAM", 0x0C04, 0x8049},
179 {"B/G-PAL-MONO", 0x0878, 0x8059},
180 {"I-PAL-NICAM", 0x1080, 0x8009},
181 {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
182 {"D/K-PAL-A2", 0x1600, 0x8009},
183 {"D/K-PAL-NICAM", 0x0E80, 0x8009},
184 {"D/K-PAL-MONO", 0x1478, 0x8009},
185 {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
186 {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
187 {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
188 {"L-SECAM-NICAM", 0x8E82, 0x0009},
189 {"L'-SECAM-NICAM", 0x8E82, 0x4009},
190 {"DTV6", 0x00C0, 0x8002},
191 {"DTV8", 0x00C0, 0x800B},
192 {"DTV7/8", 0x00C0, 0x801B},
193 {"DTV7", 0x00C0, 0x8007},
194 {"FM Radio-INPUT2", 0x9802, 0x9002},
195 {"FM Radio-INPUT1", 0x0208, 0x9002}
196 };
197
198 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
199 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
200 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
201 static void xc5000_TunerReset(struct dvb_frontend *fe);
202
203 static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
204 {
205 return xc5000_writeregs(priv, buf, len)
206 ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
207 }
208
209 static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
210 {
211 return xc5000_readregs(priv, buf, len)
212 ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
213 }
214
215 static int xc_reset(struct dvb_frontend *fe)
216 {
217 xc5000_TunerReset(fe);
218 return XC_RESULT_SUCCESS;
219 }
220
221 static void xc_wait(int wait_ms)
222 {
223 msleep(wait_ms);
224 }
225
226 static void xc5000_TunerReset(struct dvb_frontend *fe)
227 {
228 struct xc5000_priv *priv = fe->tuner_priv;
229 int ret;
230
231 dprintk(1, "%s()\n", __func__);
232
233 if (fe->callback) {
234 ret = fe->callback(((fe->dvb) && (fe->dvb->priv)) ?
235 fe->dvb->priv :
236 priv->i2c_props.adap->algo_data,
237 DVB_FRONTEND_COMPONENT_TUNER,
238 XC5000_TUNER_RESET, 0);
239 if (ret)
240 printk(KERN_ERR "xc5000: reset failed\n");
241 } else
242 printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
243 }
244
245 static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
246 {
247 u8 buf[4];
248 int WatchDogTimer = 5;
249 int result;
250
251 buf[0] = (regAddr >> 8) & 0xFF;
252 buf[1] = regAddr & 0xFF;
253 buf[2] = (i2cData >> 8) & 0xFF;
254 buf[3] = i2cData & 0xFF;
255 result = xc_send_i2c_data(priv, buf, 4);
256 if (result == XC_RESULT_SUCCESS) {
257 /* wait for busy flag to clear */
258 while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
259 buf[0] = 0;
260 buf[1] = XREG_BUSY;
261
262 result = xc_send_i2c_data(priv, buf, 2);
263 if (result == XC_RESULT_SUCCESS) {
264 result = xc_read_i2c_data(priv, buf, 2);
265 if (result == XC_RESULT_SUCCESS) {
266 if ((buf[0] == 0) && (buf[1] == 0)) {
267 /* busy flag cleared */
268 break;
269 } else {
270 xc_wait(100); /* wait 5 ms */
271 WatchDogTimer--;
272 }
273 }
274 }
275 }
276 }
277 if (WatchDogTimer < 0)
278 result = XC_RESULT_I2C_WRITE_FAILURE;
279
280 return result;
281 }
282
283 static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
284 {
285 u8 buf[2];
286 int result;
287
288 buf[0] = (regAddr >> 8) & 0xFF;
289 buf[1] = regAddr & 0xFF;
290 result = xc_send_i2c_data(priv, buf, 2);
291 if (result != XC_RESULT_SUCCESS)
292 return result;
293
294 result = xc_read_i2c_data(priv, buf, 2);
295 if (result != XC_RESULT_SUCCESS)
296 return result;
297
298 *i2cData = buf[0] * 256 + buf[1];
299 return result;
300 }
301
302 static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
303 {
304 struct xc5000_priv *priv = fe->tuner_priv;
305
306 int i, nbytes_to_send, result;
307 unsigned int len, pos, index;
308 u8 buf[XC_MAX_I2C_WRITE_LENGTH];
309
310 index=0;
311 while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
312 len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
313 if (len == 0x0000) {
314 /* RESET command */
315 result = xc_reset(fe);
316 index += 2;
317 if (result != XC_RESULT_SUCCESS)
318 return result;
319 } else if (len & 0x8000) {
320 /* WAIT command */
321 xc_wait(len & 0x7FFF);
322 index += 2;
323 } else {
324 /* Send i2c data whilst ensuring individual transactions
325 * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
326 */
327 index += 2;
328 buf[0] = i2c_sequence[index];
329 buf[1] = i2c_sequence[index + 1];
330 pos = 2;
331 while (pos < len) {
332 if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
333 nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
334 } else {
335 nbytes_to_send = (len - pos + 2);
336 }
337 for (i=2; i<nbytes_to_send; i++) {
338 buf[i] = i2c_sequence[index + pos + i - 2];
339 }
340 result = xc_send_i2c_data(priv, buf, nbytes_to_send);
341
342 if (result != XC_RESULT_SUCCESS)
343 return result;
344
345 pos += nbytes_to_send - 2;
346 }
347 index += len;
348 }
349 }
350 return XC_RESULT_SUCCESS;
351 }
352
353 static int xc_initialize(struct xc5000_priv *priv)
354 {
355 dprintk(1, "%s()\n", __func__);
356 return xc_write_reg(priv, XREG_INIT, 0);
357 }
358
359 static int xc_SetTVStandard(struct xc5000_priv *priv,
360 u16 VideoMode, u16 AudioMode)
361 {
362 int ret;
363 dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
364 dprintk(1, "%s() Standard = %s\n",
365 __func__,
366 XC5000_Standard[priv->video_standard].Name);
367
368 ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
369 if (ret == XC_RESULT_SUCCESS)
370 ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
371
372 return ret;
373 }
374
375 static int xc_shutdown(struct xc5000_priv *priv)
376 {
377 return XC_RESULT_SUCCESS;
378 /* Fixme: cannot bring tuner back alive once shutdown
379 * without reloading the driver modules.
380 * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
381 */
382 }
383
384 static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
385 {
386 dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
387 rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
388
389 if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
390 {
391 rf_mode = XC_RF_MODE_CABLE;
392 printk(KERN_ERR
393 "%s(), Invalid mode, defaulting to CABLE",
394 __func__);
395 }
396 return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
397 }
398
399 static const struct dvb_tuner_ops xc5000_tuner_ops;
400
401 static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
402 {
403 u16 freq_code;
404
405 dprintk(1, "%s(%u)\n", __func__, freq_hz);
406
407 if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
408 (freq_hz < xc5000_tuner_ops.info.frequency_min))
409 return XC_RESULT_OUT_OF_RANGE;
410
411 freq_code = (u16)(freq_hz / 15625);
412
413 return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
414 }
415
416
417 static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
418 {
419 u32 freq_code = (freq_khz * 1024)/1000;
420 dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
421 __func__, freq_khz, freq_code);
422
423 return xc_write_reg(priv, XREG_IF_OUT, freq_code);
424 }
425
426
427 static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
428 {
429 return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
430 }
431
432 static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
433 {
434 int result;
435 u16 regData;
436 u32 tmp;
437
438 result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
439 if (result)
440 return result;
441
442 tmp = (u32)regData;
443 (*freq_error_hz) = (tmp * 15625) / 1000;
444 return result;
445 }
446
447 static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
448 {
449 return xc_read_reg(priv, XREG_LOCK, lock_status);
450 }
451
452 static int xc_get_version(struct xc5000_priv *priv,
453 u8 *hw_majorversion, u8 *hw_minorversion,
454 u8 *fw_majorversion, u8 *fw_minorversion)
455 {
456 u16 data;
457 int result;
458
459 result = xc_read_reg(priv, XREG_VERSION, &data);
460 if (result)
461 return result;
462
463 (*hw_majorversion) = (data >> 12) & 0x0F;
464 (*hw_minorversion) = (data >> 8) & 0x0F;
465 (*fw_majorversion) = (data >> 4) & 0x0F;
466 (*fw_minorversion) = data & 0x0F;
467
468 return 0;
469 }
470
471 static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
472 {
473 u16 regData;
474 int result;
475
476 result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
477 if (result)
478 return result;
479
480 (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
481 return result;
482 }
483
484 static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
485 {
486 return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
487 }
488
489 static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
490 {
491 return xc_read_reg(priv, XREG_QUALITY, quality);
492 }
493
494 static u16 WaitForLock(struct xc5000_priv *priv)
495 {
496 u16 lockState = 0;
497 int watchDogCount = 40;
498
499 while ((lockState == 0) && (watchDogCount > 0)) {
500 xc_get_lock_status(priv, &lockState);
501 if (lockState != 1) {
502 xc_wait(5);
503 watchDogCount--;
504 }
505 }
506 return lockState;
507 }
508
509 static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
510 {
511 int found = 0;
512
513 dprintk(1, "%s(%u)\n", __func__, freq_hz);
514
515 if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
516 return 0;
517
518 if (WaitForLock(priv) == 1)
519 found = 1;
520
521 return found;
522 }
523
524 static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
525 {
526 u8 buf[2] = { reg >> 8, reg & 0xff };
527 u8 bval[2] = { 0, 0 };
528 struct i2c_msg msg[2] = {
529 { .addr = priv->i2c_props.addr,
530 .flags = 0, .buf = &buf[0], .len = 2 },
531 { .addr = priv->i2c_props.addr,
532 .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
533 };
534
535 if (i2c_transfer(priv->i2c_props.adap, msg, 2) != 2) {
536 printk(KERN_WARNING "xc5000: I2C read failed\n");
537 return -EREMOTEIO;
538 }
539
540 *val = (bval[0] << 8) | bval[1];
541 return 0;
542 }
543
544 static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
545 {
546 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
547 .flags = 0, .buf = buf, .len = len };
548
549 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
550 printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
551 (int)len);
552 return -EREMOTEIO;
553 }
554 return 0;
555 }
556
557 static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
558 {
559 struct i2c_msg msg = { .addr = priv->i2c_props.addr,
560 .flags = I2C_M_RD, .buf = buf, .len = len };
561
562 if (i2c_transfer(priv->i2c_props.adap, &msg, 1) != 1) {
563 printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
564 return -EREMOTEIO;
565 }
566 return 0;
567 }
568
569 static int xc5000_fwupload(struct dvb_frontend* fe)
570 {
571 struct xc5000_priv *priv = fe->tuner_priv;
572 const struct firmware *fw;
573 int ret;
574
575 /* request the firmware, this will block and timeout */
576 printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
577 XC5000_DEFAULT_FIRMWARE);
578
579 ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c_props.adap->dev);
580 if (ret) {
581 printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
582 ret = XC_RESULT_RESET_FAILURE;
583 goto out;
584 } else {
585 printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
586 fw->size);
587 ret = XC_RESULT_SUCCESS;
588 }
589
590 if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
591 printk(KERN_ERR "xc5000: firmware incorrect size\n");
592 ret = XC_RESULT_RESET_FAILURE;
593 } else {
594 printk(KERN_INFO "xc5000: firmware upload\n");
595 ret = xc_load_i2c_sequence(fe, fw->data );
596 }
597
598 out:
599 release_firmware(fw);
600 return ret;
601 }
602
603 static void xc_debug_dump(struct xc5000_priv *priv)
604 {
605 u16 adc_envelope;
606 u32 freq_error_hz = 0;
607 u16 lock_status;
608 u32 hsync_freq_hz = 0;
609 u16 frame_lines;
610 u16 quality;
611 u8 hw_majorversion = 0, hw_minorversion = 0;
612 u8 fw_majorversion = 0, fw_minorversion = 0;
613
614 /* Wait for stats to stabilize.
615 * Frame Lines needs two frame times after initial lock
616 * before it is valid.
617 */
618 xc_wait(100);
619
620 xc_get_ADC_Envelope(priv, &adc_envelope);
621 dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
622
623 xc_get_frequency_error(priv, &freq_error_hz);
624 dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
625
626 xc_get_lock_status(priv, &lock_status);
627 dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
628 lock_status);
629
630 xc_get_version(priv, &hw_majorversion, &hw_minorversion,
631 &fw_majorversion, &fw_minorversion);
632 dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
633 hw_majorversion, hw_minorversion,
634 fw_majorversion, fw_minorversion);
635
636 xc_get_hsync_freq(priv, &hsync_freq_hz);
637 dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
638
639 xc_get_frame_lines(priv, &frame_lines);
640 dprintk(1, "*** Frame lines = %d\n", frame_lines);
641
642 xc_get_quality(priv, &quality);
643 dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
644 }
645
646 static int xc5000_set_params(struct dvb_frontend *fe,
647 struct dvb_frontend_parameters *params)
648 {
649 struct xc5000_priv *priv = fe->tuner_priv;
650 int ret;
651
652 dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
653
654 switch(params->u.vsb.modulation) {
655 case VSB_8:
656 case VSB_16:
657 dprintk(1, "%s() VSB modulation\n", __func__);
658 priv->rf_mode = XC_RF_MODE_AIR;
659 priv->freq_hz = params->frequency - 1750000;
660 priv->bandwidth = BANDWIDTH_6_MHZ;
661 priv->video_standard = DTV6;
662 break;
663 case QAM_64:
664 case QAM_256:
665 case QAM_AUTO:
666 dprintk(1, "%s() QAM modulation\n", __func__);
667 priv->rf_mode = XC_RF_MODE_CABLE;
668 priv->freq_hz = params->frequency - 1750000;
669 priv->bandwidth = BANDWIDTH_6_MHZ;
670 priv->video_standard = DTV6;
671 break;
672 default:
673 return -EINVAL;
674 }
675
676 dprintk(1, "%s() frequency=%d (compensated)\n",
677 __func__, priv->freq_hz);
678
679 ret = xc_SetSignalSource(priv, priv->rf_mode);
680 if (ret != XC_RESULT_SUCCESS) {
681 printk(KERN_ERR
682 "xc5000: xc_SetSignalSource(%d) failed\n",
683 priv->rf_mode);
684 return -EREMOTEIO;
685 }
686
687 ret = xc_SetTVStandard(priv,
688 XC5000_Standard[priv->video_standard].VideoMode,
689 XC5000_Standard[priv->video_standard].AudioMode);
690 if (ret != XC_RESULT_SUCCESS) {
691 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
692 return -EREMOTEIO;
693 }
694
695 ret = xc_set_IF_frequency(priv, priv->if_khz);
696 if (ret != XC_RESULT_SUCCESS) {
697 printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
698 priv->if_khz);
699 return -EIO;
700 }
701
702 xc_tune_channel(priv, priv->freq_hz);
703
704 if (debug)
705 xc_debug_dump(priv);
706
707 return 0;
708 }
709
710 static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
711 {
712 struct xc5000_priv *priv = fe->tuner_priv;
713 int ret;
714 u16 id;
715
716 ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
717 if (ret == XC_RESULT_SUCCESS) {
718 if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
719 ret = XC_RESULT_RESET_FAILURE;
720 else
721 ret = XC_RESULT_SUCCESS;
722 }
723
724 dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
725 ret == XC_RESULT_SUCCESS ? "True" : "False", id);
726 return ret;
727 }
728
729 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
730
731 static int xc5000_set_analog_params(struct dvb_frontend *fe,
732 struct analog_parameters *params)
733 {
734 struct xc5000_priv *priv = fe->tuner_priv;
735 int ret;
736
737 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
738 xc_load_fw_and_init_tuner(fe);
739
740 dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
741 __func__, params->frequency);
742
743 priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
744
745 /* params->frequency is in units of 62.5khz */
746 priv->freq_hz = params->frequency * 62500;
747
748 /* FIX ME: Some video standards may have several possible audio
749 standards. We simply default to one of them here.
750 */
751 if(params->std & V4L2_STD_MN) {
752 /* default to BTSC audio standard */
753 priv->video_standard = MN_NTSC_PAL_BTSC;
754 goto tune_channel;
755 }
756
757 if(params->std & V4L2_STD_PAL_BG) {
758 /* default to NICAM audio standard */
759 priv->video_standard = BG_PAL_NICAM;
760 goto tune_channel;
761 }
762
763 if(params->std & V4L2_STD_PAL_I) {
764 /* default to NICAM audio standard */
765 priv->video_standard = I_PAL_NICAM;
766 goto tune_channel;
767 }
768
769 if(params->std & V4L2_STD_PAL_DK) {
770 /* default to NICAM audio standard */
771 priv->video_standard = DK_PAL_NICAM;
772 goto tune_channel;
773 }
774
775 if(params->std & V4L2_STD_SECAM_DK) {
776 /* default to A2 DK1 audio standard */
777 priv->video_standard = DK_SECAM_A2DK1;
778 goto tune_channel;
779 }
780
781 if(params->std & V4L2_STD_SECAM_L) {
782 priv->video_standard = L_SECAM_NICAM;
783 goto tune_channel;
784 }
785
786 if(params->std & V4L2_STD_SECAM_LC) {
787 priv->video_standard = LC_SECAM_NICAM;
788 goto tune_channel;
789 }
790
791 tune_channel:
792 ret = xc_SetSignalSource(priv, priv->rf_mode);
793 if (ret != XC_RESULT_SUCCESS) {
794 printk(KERN_ERR
795 "xc5000: xc_SetSignalSource(%d) failed\n",
796 priv->rf_mode);
797 return -EREMOTEIO;
798 }
799
800 ret = xc_SetTVStandard(priv,
801 XC5000_Standard[priv->video_standard].VideoMode,
802 XC5000_Standard[priv->video_standard].AudioMode);
803 if (ret != XC_RESULT_SUCCESS) {
804 printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
805 return -EREMOTEIO;
806 }
807
808 xc_tune_channel(priv, priv->freq_hz);
809
810 if (debug)
811 xc_debug_dump(priv);
812
813 return 0;
814 }
815
816 static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
817 {
818 struct xc5000_priv *priv = fe->tuner_priv;
819 dprintk(1, "%s()\n", __func__);
820 *freq = priv->freq_hz;
821 return 0;
822 }
823
824 static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
825 {
826 struct xc5000_priv *priv = fe->tuner_priv;
827 dprintk(1, "%s()\n", __func__);
828
829 *bw = priv->bandwidth;
830 return 0;
831 }
832
833 static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
834 {
835 struct xc5000_priv *priv = fe->tuner_priv;
836 u16 lock_status = 0;
837
838 xc_get_lock_status(priv, &lock_status);
839
840 dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
841
842 *status = lock_status;
843
844 return 0;
845 }
846
847 static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
848 {
849 struct xc5000_priv *priv = fe->tuner_priv;
850 int ret = 0;
851
852 if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
853 ret = xc5000_fwupload(fe);
854 if (ret != XC_RESULT_SUCCESS)
855 return ret;
856 }
857
858 /* Start the tuner self-calibration process */
859 ret |= xc_initialize(priv);
860
861 /* Wait for calibration to complete.
862 * We could continue but XC5000 will clock stretch subsequent
863 * I2C transactions until calibration is complete. This way we
864 * don't have to rely on clock stretching working.
865 */
866 xc_wait( 100 );
867
868 /* Default to "CABLE" mode */
869 ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
870
871 return ret;
872 }
873
874 static int xc5000_sleep(struct dvb_frontend *fe)
875 {
876 struct xc5000_priv *priv = fe->tuner_priv;
877 int ret;
878
879 dprintk(1, "%s()\n", __func__);
880
881 /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
882 * once shutdown without reloading the driver. Maybe I am not
883 * doing something right.
884 *
885 */
886
887 ret = xc_shutdown(priv);
888 if(ret != XC_RESULT_SUCCESS) {
889 printk(KERN_ERR
890 "xc5000: %s() unable to shutdown tuner\n",
891 __func__);
892 return -EREMOTEIO;
893 }
894 else {
895 return XC_RESULT_SUCCESS;
896 }
897 }
898
899 static int xc5000_init(struct dvb_frontend *fe)
900 {
901 struct xc5000_priv *priv = fe->tuner_priv;
902 dprintk(1, "%s()\n", __func__);
903
904 if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
905 printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
906 return -EREMOTEIO;
907 }
908
909 if (debug)
910 xc_debug_dump(priv);
911
912 return 0;
913 }
914
915 static int xc5000_release(struct dvb_frontend *fe)
916 {
917 struct xc5000_priv *priv = fe->tuner_priv;
918
919 dprintk(1, "%s()\n", __func__);
920
921 mutex_lock(&xc5000_list_mutex);
922
923 if (priv)
924 hybrid_tuner_release_state(priv);
925
926 mutex_unlock(&xc5000_list_mutex);
927
928 fe->tuner_priv = NULL;
929
930 return 0;
931 }
932
933 static const struct dvb_tuner_ops xc5000_tuner_ops = {
934 .info = {
935 .name = "Xceive XC5000",
936 .frequency_min = 1000000,
937 .frequency_max = 1023000000,
938 .frequency_step = 50000,
939 },
940
941 .release = xc5000_release,
942 .init = xc5000_init,
943 .sleep = xc5000_sleep,
944
945 .set_params = xc5000_set_params,
946 .set_analog_params = xc5000_set_analog_params,
947 .get_frequency = xc5000_get_frequency,
948 .get_bandwidth = xc5000_get_bandwidth,
949 .get_status = xc5000_get_status
950 };
951
952 struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
953 struct i2c_adapter *i2c,
954 struct xc5000_config *cfg)
955 {
956 struct xc5000_priv *priv = NULL;
957 int instance;
958 u16 id = 0;
959
960 dprintk(1, "%s(%d-%04x)\n", __func__,
961 i2c ? i2c_adapter_id(i2c) : -1,
962 cfg ? cfg->i2c_address : -1);
963
964 mutex_lock(&xc5000_list_mutex);
965
966 instance = hybrid_tuner_request_state(struct xc5000_priv, priv,
967 hybrid_tuner_instance_list,
968 i2c, cfg->i2c_address, "xc5000");
969 switch (instance) {
970 case 0:
971 goto fail;
972 break;
973 case 1:
974 /* new tuner instance */
975 priv->bandwidth = BANDWIDTH_6_MHZ;
976 priv->if_khz = cfg->if_khz;
977
978 fe->tuner_priv = priv;
979 break;
980 default:
981 /* existing tuner instance */
982 fe->tuner_priv = priv;
983 break;
984 }
985
986 /* Check if firmware has been loaded. It is possible that another
987 instance of the driver has loaded the firmware.
988 */
989 if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0)
990 goto fail;
991
992 switch(id) {
993 case XC_PRODUCT_ID_FW_LOADED:
994 printk(KERN_INFO
995 "xc5000: Successfully identified at address 0x%02x\n",
996 cfg->i2c_address);
997 printk(KERN_INFO
998 "xc5000: Firmware has been loaded previously\n");
999 break;
1000 case XC_PRODUCT_ID_FW_NOT_LOADED:
1001 printk(KERN_INFO
1002 "xc5000: Successfully identified at address 0x%02x\n",
1003 cfg->i2c_address);
1004 printk(KERN_INFO
1005 "xc5000: Firmware has not been loaded previously\n");
1006 break;
1007 default:
1008 printk(KERN_ERR
1009 "xc5000: Device not found at addr 0x%02x (0x%x)\n",
1010 cfg->i2c_address, id);
1011 goto fail;
1012 }
1013
1014 mutex_unlock(&xc5000_list_mutex);
1015
1016 memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
1017 sizeof(struct dvb_tuner_ops));
1018
1019 if (xc5000_load_fw_on_attach)
1020 xc5000_init(fe);
1021
1022 return fe;
1023 fail:
1024 mutex_unlock(&xc5000_list_mutex);
1025
1026 xc5000_release(fe);
1027 return NULL;
1028 }
1029 EXPORT_SYMBOL(xc5000_attach);
1030
1031 MODULE_AUTHOR("Steven Toth");
1032 MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
1033 MODULE_LICENSE("GPL");
This page took 0.098786 seconds and 5 git commands to generate.