[media] v4l/dvb: fix compiler warnings
[deliverable/linux.git] / drivers / media / dvb / frontends / af9013.c
1 /*
2 * Afatech AF9013 demodulator driver
3 *
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6 *
7 * Thanks to Afatech who kindly provided information.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 */
24
25 #include "af9013_priv.h"
26
27 int af9013_debug;
28 module_param_named(debug, af9013_debug, int, 0644);
29 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
30
31 struct af9013_state {
32 struct i2c_adapter *i2c;
33 struct dvb_frontend fe;
34 struct af9013_config config;
35
36 /* tuner/demod RF and IF AGC limits used for signal strength calc */
37 u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
38 u16 signal_strength;
39 u32 ber;
40 u32 ucblocks;
41 u16 snr;
42 u32 bandwidth_hz;
43 fe_status_t fe_status;
44 unsigned long set_frontend_jiffies;
45 unsigned long read_status_jiffies;
46 bool first_tune;
47 bool i2c_gate_state;
48 unsigned int statistics_step:3;
49 struct delayed_work statistics_work;
50 };
51
52 /* write multiple registers */
53 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
54 const u8 *val, int len)
55 {
56 int ret;
57 u8 buf[3+len];
58 struct i2c_msg msg[1] = {
59 {
60 .addr = priv->config.i2c_addr,
61 .flags = 0,
62 .len = sizeof(buf),
63 .buf = buf,
64 }
65 };
66
67 buf[0] = (reg >> 8) & 0xff;
68 buf[1] = (reg >> 0) & 0xff;
69 buf[2] = mbox;
70 memcpy(&buf[3], val, len);
71
72 ret = i2c_transfer(priv->i2c, msg, 1);
73 if (ret == 1) {
74 ret = 0;
75 } else {
76 warn("i2c wr failed=%d reg=%04x len=%d", ret, reg, len);
77 ret = -EREMOTEIO;
78 }
79 return ret;
80 }
81
82 /* read multiple registers */
83 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
84 u8 *val, int len)
85 {
86 int ret;
87 u8 buf[3];
88 struct i2c_msg msg[2] = {
89 {
90 .addr = priv->config.i2c_addr,
91 .flags = 0,
92 .len = 3,
93 .buf = buf,
94 }, {
95 .addr = priv->config.i2c_addr,
96 .flags = I2C_M_RD,
97 .len = len,
98 .buf = val,
99 }
100 };
101
102 buf[0] = (reg >> 8) & 0xff;
103 buf[1] = (reg >> 0) & 0xff;
104 buf[2] = mbox;
105
106 ret = i2c_transfer(priv->i2c, msg, 2);
107 if (ret == 2) {
108 ret = 0;
109 } else {
110 warn("i2c rd failed=%d reg=%04x len=%d", ret, reg, len);
111 ret = -EREMOTEIO;
112 }
113 return ret;
114 }
115
116 /* write multiple registers */
117 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
118 int len)
119 {
120 int ret, i;
121 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
122
123 if ((priv->config.ts_mode == AF9013_TS_USB) &&
124 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
125 mbox |= ((len - 1) << 2);
126 ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
127 } else {
128 for (i = 0; i < len; i++) {
129 ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
130 if (ret)
131 goto err;
132 }
133 }
134
135 err:
136 return 0;
137 }
138
139 /* read multiple registers */
140 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
141 {
142 int ret, i;
143 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
144
145 if ((priv->config.ts_mode == AF9013_TS_USB) &&
146 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
147 mbox |= ((len - 1) << 2);
148 ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
149 } else {
150 for (i = 0; i < len; i++) {
151 ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
152 if (ret)
153 goto err;
154 }
155 }
156
157 err:
158 return 0;
159 }
160
161 /* write single register */
162 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
163 {
164 return af9013_wr_regs(priv, reg, &val, 1);
165 }
166
167 /* read single register */
168 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
169 {
170 return af9013_rd_regs(priv, reg, val, 1);
171 }
172
173 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
174 u8 len)
175 {
176 u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
177 return af9013_wr_regs_i2c(state, mbox, reg, val, len);
178 }
179
180 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
181 int len, u8 val)
182 {
183 int ret;
184 u8 tmp, mask;
185
186 /* no need for read if whole reg is written */
187 if (len != 8) {
188 ret = af9013_rd_reg(state, reg, &tmp);
189 if (ret)
190 return ret;
191
192 mask = (0xff >> (8 - len)) << pos;
193 val <<= pos;
194 tmp &= ~mask;
195 val |= tmp;
196 }
197
198 return af9013_wr_reg(state, reg, val);
199 }
200
201 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
202 int len, u8 *val)
203 {
204 int ret;
205 u8 tmp;
206
207 ret = af9013_rd_reg(state, reg, &tmp);
208 if (ret)
209 return ret;
210
211 *val = (tmp >> pos);
212 *val &= (0xff >> (8 - len));
213
214 return 0;
215 }
216
217 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
218 {
219 int ret;
220 u8 pos;
221 u16 addr;
222
223 dbg("%s: gpio=%d gpioval=%02x", __func__, gpio, gpioval);
224
225 /*
226 * GPIO0 & GPIO1 0xd735
227 * GPIO2 & GPIO3 0xd736
228 */
229
230 switch (gpio) {
231 case 0:
232 case 1:
233 addr = 0xd735;
234 break;
235 case 2:
236 case 3:
237 addr = 0xd736;
238 break;
239
240 default:
241 err("invalid gpio:%d\n", gpio);
242 ret = -EINVAL;
243 goto err;
244 };
245
246 switch (gpio) {
247 case 0:
248 case 2:
249 pos = 0;
250 break;
251 case 1:
252 case 3:
253 default:
254 pos = 4;
255 break;
256 };
257
258 ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
259 if (ret)
260 goto err;
261
262 return ret;
263 err:
264 dbg("%s: failed=%d", __func__, ret);
265 return ret;
266 }
267
268 static u32 af913_div(u32 a, u32 b, u32 x)
269 {
270 u32 r = 0, c = 0, i;
271
272 dbg("%s: a=%d b=%d x=%d", __func__, a, b, x);
273
274 if (a > b) {
275 c = a / b;
276 a = a - c * b;
277 }
278
279 for (i = 0; i < x; i++) {
280 if (a >= b) {
281 r += 1;
282 a -= b;
283 }
284 a <<= 1;
285 r <<= 1;
286 }
287 r = (c << (u32)x) + r;
288
289 dbg("%s: a=%d b=%d x=%d r=%x", __func__, a, b, x, r);
290 return r;
291 }
292
293 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
294 {
295 int ret, i;
296 u8 tmp;
297
298 dbg("%s: onoff=%d", __func__, onoff);
299
300 /* enable reset */
301 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
302 if (ret)
303 goto err;
304
305 /* start reset mechanism */
306 ret = af9013_wr_reg(state, 0xaeff, 1);
307 if (ret)
308 goto err;
309
310 /* wait reset performs */
311 for (i = 0; i < 150; i++) {
312 ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
313 if (ret)
314 goto err;
315
316 if (tmp)
317 break; /* reset done */
318
319 usleep_range(5000, 25000);
320 }
321
322 if (!tmp)
323 return -ETIMEDOUT;
324
325 if (onoff) {
326 /* clear reset */
327 ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
328 if (ret)
329 goto err;
330
331 /* disable reset */
332 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
333
334 /* power on */
335 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
336 } else {
337 /* power off */
338 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
339 }
340
341 return ret;
342 err:
343 dbg("%s: failed=%d", __func__, ret);
344 return ret;
345 }
346
347 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
348 {
349 struct af9013_state *state = fe->demodulator_priv;
350 int ret;
351
352 dbg("%s", __func__);
353
354 /* reset and start BER counter */
355 ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
356 if (ret)
357 goto err;
358
359 return ret;
360 err:
361 dbg("%s: failed=%d", __func__, ret);
362 return ret;
363 }
364
365 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
366 {
367 struct af9013_state *state = fe->demodulator_priv;
368 int ret;
369 u8 buf[5];
370
371 dbg("%s", __func__);
372
373 /* check if error bit count is ready */
374 ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
375 if (ret)
376 goto err;
377
378 if (!buf[0]) {
379 dbg("%s: not ready", __func__);
380 return 0;
381 }
382
383 ret = af9013_rd_regs(state, 0xd387, buf, 5);
384 if (ret)
385 goto err;
386
387 state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
388 state->ucblocks += (buf[4] << 8) | buf[3];
389
390 return ret;
391 err:
392 dbg("%s: failed=%d", __func__, ret);
393 return ret;
394 }
395
396 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
397 {
398 struct af9013_state *state = fe->demodulator_priv;
399 int ret;
400
401 dbg("%s", __func__);
402
403 /* start SNR meas */
404 ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
405 if (ret)
406 goto err;
407
408 return ret;
409 err:
410 dbg("%s: failed=%d", __func__, ret);
411 return ret;
412 }
413
414 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
415 {
416 struct af9013_state *state = fe->demodulator_priv;
417 int ret, i, len;
418 u8 buf[3], tmp;
419 u32 snr_val;
420 const struct af9013_snr *uninitialized_var(snr_lut);
421
422 dbg("%s", __func__);
423
424 /* check if SNR ready */
425 ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
426 if (ret)
427 goto err;
428
429 if (!tmp) {
430 dbg("%s: not ready", __func__);
431 return 0;
432 }
433
434 /* read value */
435 ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
436 if (ret)
437 goto err;
438
439 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
440
441 /* read current modulation */
442 ret = af9013_rd_reg(state, 0xd3c1, &tmp);
443 if (ret)
444 goto err;
445
446 switch ((tmp >> 6) & 3) {
447 case 0:
448 len = ARRAY_SIZE(qpsk_snr_lut);
449 snr_lut = qpsk_snr_lut;
450 break;
451 case 1:
452 len = ARRAY_SIZE(qam16_snr_lut);
453 snr_lut = qam16_snr_lut;
454 break;
455 case 2:
456 len = ARRAY_SIZE(qam64_snr_lut);
457 snr_lut = qam64_snr_lut;
458 break;
459 default:
460 goto err;
461 break;
462 }
463
464 for (i = 0; i < len; i++) {
465 tmp = snr_lut[i].snr;
466
467 if (snr_val < snr_lut[i].val)
468 break;
469 }
470 state->snr = tmp * 10; /* dB/10 */
471
472 return ret;
473 err:
474 dbg("%s: failed=%d", __func__, ret);
475 return ret;
476 }
477
478 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
479 {
480 struct af9013_state *state = fe->demodulator_priv;
481 int ret = 0;
482 u8 buf[2], rf_gain, if_gain;
483 int signal_strength;
484
485 dbg("%s", __func__);
486
487 if (!state->signal_strength_en)
488 return 0;
489
490 ret = af9013_rd_regs(state, 0xd07c, buf, 2);
491 if (ret)
492 goto err;
493
494 rf_gain = buf[0];
495 if_gain = buf[1];
496
497 signal_strength = (0xffff / \
498 (9 * (state->rf_50 + state->if_50) - \
499 11 * (state->rf_80 + state->if_80))) * \
500 (10 * (rf_gain + if_gain) - \
501 11 * (state->rf_80 + state->if_80));
502 if (signal_strength < 0)
503 signal_strength = 0;
504 else if (signal_strength > 0xffff)
505 signal_strength = 0xffff;
506
507 state->signal_strength = signal_strength;
508
509 return ret;
510 err:
511 dbg("%s: failed=%d", __func__, ret);
512 return ret;
513 }
514
515 static void af9013_statistics_work(struct work_struct *work)
516 {
517 struct af9013_state *state = container_of(work,
518 struct af9013_state, statistics_work.work);
519 unsigned int next_msec;
520
521 /* update only signal strength when demod is not locked */
522 if (!(state->fe_status & FE_HAS_LOCK)) {
523 state->statistics_step = 0;
524 state->ber = 0;
525 state->snr = 0;
526 }
527
528 switch (state->statistics_step) {
529 default:
530 state->statistics_step = 0;
531 case 0:
532 af9013_statistics_signal_strength(&state->fe);
533 state->statistics_step++;
534 next_msec = 300;
535 break;
536 case 1:
537 af9013_statistics_snr_start(&state->fe);
538 state->statistics_step++;
539 next_msec = 200;
540 break;
541 case 2:
542 af9013_statistics_ber_unc_start(&state->fe);
543 state->statistics_step++;
544 next_msec = 1000;
545 break;
546 case 3:
547 af9013_statistics_snr_result(&state->fe);
548 state->statistics_step++;
549 next_msec = 400;
550 break;
551 case 4:
552 af9013_statistics_ber_unc_result(&state->fe);
553 state->statistics_step++;
554 next_msec = 100;
555 break;
556 }
557
558 schedule_delayed_work(&state->statistics_work,
559 msecs_to_jiffies(next_msec));
560 }
561
562 static int af9013_get_tune_settings(struct dvb_frontend *fe,
563 struct dvb_frontend_tune_settings *fesettings)
564 {
565 fesettings->min_delay_ms = 800;
566 fesettings->step_size = 0;
567 fesettings->max_drift = 0;
568
569 return 0;
570 }
571
572 static int af9013_set_frontend(struct dvb_frontend *fe)
573 {
574 struct af9013_state *state = fe->demodulator_priv;
575 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
576 int ret, i, sampling_freq;
577 bool auto_mode, spec_inv;
578 u8 buf[6];
579 u32 if_frequency, freq_cw;
580
581 dbg("%s: frequency=%d bandwidth_hz=%d", __func__,
582 c->frequency, c->bandwidth_hz);
583
584 /* program tuner */
585 if (fe->ops.tuner_ops.set_params)
586 fe->ops.tuner_ops.set_params(fe);
587
588 /* program CFOE coefficients */
589 if (c->bandwidth_hz != state->bandwidth_hz) {
590 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
591 if (coeff_lut[i].clock == state->config.clock &&
592 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
593 break;
594 }
595 }
596
597 ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
598 sizeof(coeff_lut[i].val));
599 }
600
601 /* program frequency control */
602 if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
603 /* get used IF frequency */
604 if (fe->ops.tuner_ops.get_if_frequency)
605 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
606 else
607 if_frequency = state->config.if_frequency;
608
609 sampling_freq = if_frequency;
610
611 while (sampling_freq > (state->config.clock / 2))
612 sampling_freq -= state->config.clock;
613
614 if (sampling_freq < 0) {
615 sampling_freq *= -1;
616 spec_inv = state->config.spec_inv;
617 } else {
618 spec_inv = !state->config.spec_inv;
619 }
620
621 freq_cw = af913_div(sampling_freq, state->config.clock, 23);
622
623 if (spec_inv)
624 freq_cw = 0x800000 - freq_cw;
625
626 buf[0] = (freq_cw >> 0) & 0xff;
627 buf[1] = (freq_cw >> 8) & 0xff;
628 buf[2] = (freq_cw >> 16) & 0x7f;
629
630 freq_cw = 0x800000 - freq_cw;
631
632 buf[3] = (freq_cw >> 0) & 0xff;
633 buf[4] = (freq_cw >> 8) & 0xff;
634 buf[5] = (freq_cw >> 16) & 0x7f;
635
636 ret = af9013_wr_regs(state, 0xd140, buf, 3);
637 if (ret)
638 goto err;
639
640 ret = af9013_wr_regs(state, 0x9be7, buf, 6);
641 if (ret)
642 goto err;
643 }
644
645 /* clear TPS lock flag */
646 ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
647 if (ret)
648 goto err;
649
650 /* clear MPEG2 lock flag */
651 ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
652 if (ret)
653 goto err;
654
655 /* empty channel function */
656 ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
657 if (ret)
658 goto err;
659
660 /* empty DVB-T channel function */
661 ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
662 if (ret)
663 goto err;
664
665 /* transmission parameters */
666 auto_mode = false;
667 memset(buf, 0, 3);
668
669 switch (c->transmission_mode) {
670 case TRANSMISSION_MODE_AUTO:
671 auto_mode = 1;
672 break;
673 case TRANSMISSION_MODE_2K:
674 break;
675 case TRANSMISSION_MODE_8K:
676 buf[0] |= (1 << 0);
677 break;
678 default:
679 dbg("%s: invalid transmission_mode", __func__);
680 auto_mode = 1;
681 }
682
683 switch (c->guard_interval) {
684 case GUARD_INTERVAL_AUTO:
685 auto_mode = 1;
686 break;
687 case GUARD_INTERVAL_1_32:
688 break;
689 case GUARD_INTERVAL_1_16:
690 buf[0] |= (1 << 2);
691 break;
692 case GUARD_INTERVAL_1_8:
693 buf[0] |= (2 << 2);
694 break;
695 case GUARD_INTERVAL_1_4:
696 buf[0] |= (3 << 2);
697 break;
698 default:
699 dbg("%s: invalid guard_interval", __func__);
700 auto_mode = 1;
701 }
702
703 switch (c->hierarchy) {
704 case HIERARCHY_AUTO:
705 auto_mode = 1;
706 break;
707 case HIERARCHY_NONE:
708 break;
709 case HIERARCHY_1:
710 buf[0] |= (1 << 4);
711 break;
712 case HIERARCHY_2:
713 buf[0] |= (2 << 4);
714 break;
715 case HIERARCHY_4:
716 buf[0] |= (3 << 4);
717 break;
718 default:
719 dbg("%s: invalid hierarchy", __func__);
720 auto_mode = 1;
721 };
722
723 switch (c->modulation) {
724 case QAM_AUTO:
725 auto_mode = 1;
726 break;
727 case QPSK:
728 break;
729 case QAM_16:
730 buf[1] |= (1 << 6);
731 break;
732 case QAM_64:
733 buf[1] |= (2 << 6);
734 break;
735 default:
736 dbg("%s: invalid modulation", __func__);
737 auto_mode = 1;
738 }
739
740 /* Use HP. How and which case we can switch to LP? */
741 buf[1] |= (1 << 4);
742
743 switch (c->code_rate_HP) {
744 case FEC_AUTO:
745 auto_mode = 1;
746 break;
747 case FEC_1_2:
748 break;
749 case FEC_2_3:
750 buf[2] |= (1 << 0);
751 break;
752 case FEC_3_4:
753 buf[2] |= (2 << 0);
754 break;
755 case FEC_5_6:
756 buf[2] |= (3 << 0);
757 break;
758 case FEC_7_8:
759 buf[2] |= (4 << 0);
760 break;
761 default:
762 dbg("%s: invalid code_rate_HP", __func__);
763 auto_mode = 1;
764 }
765
766 switch (c->code_rate_LP) {
767 case FEC_AUTO:
768 auto_mode = 1;
769 break;
770 case FEC_1_2:
771 break;
772 case FEC_2_3:
773 buf[2] |= (1 << 3);
774 break;
775 case FEC_3_4:
776 buf[2] |= (2 << 3);
777 break;
778 case FEC_5_6:
779 buf[2] |= (3 << 3);
780 break;
781 case FEC_7_8:
782 buf[2] |= (4 << 3);
783 break;
784 case FEC_NONE:
785 break;
786 default:
787 dbg("%s: invalid code_rate_LP", __func__);
788 auto_mode = 1;
789 }
790
791 switch (c->bandwidth_hz) {
792 case 6000000:
793 break;
794 case 7000000:
795 buf[1] |= (1 << 2);
796 break;
797 case 8000000:
798 buf[1] |= (2 << 2);
799 break;
800 default:
801 dbg("%s: invalid bandwidth_hz", __func__);
802 ret = -EINVAL;
803 goto err;
804 }
805
806 ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
807 if (ret)
808 goto err;
809
810 if (auto_mode) {
811 /* clear easy mode flag */
812 ret = af9013_wr_reg(state, 0xaefd, 0);
813 if (ret)
814 goto err;
815
816 dbg("%s: auto params", __func__);
817 } else {
818 /* set easy mode flag */
819 ret = af9013_wr_reg(state, 0xaefd, 1);
820 if (ret)
821 goto err;
822
823 ret = af9013_wr_reg(state, 0xaefe, 0);
824 if (ret)
825 goto err;
826
827 dbg("%s: manual params", __func__);
828 }
829
830 /* tune */
831 ret = af9013_wr_reg(state, 0xffff, 0);
832 if (ret)
833 goto err;
834
835 state->bandwidth_hz = c->bandwidth_hz;
836 state->set_frontend_jiffies = jiffies;
837 state->first_tune = false;
838
839 return ret;
840 err:
841 dbg("%s: failed=%d", __func__, ret);
842 return ret;
843 }
844
845 static int af9013_get_frontend(struct dvb_frontend *fe)
846 {
847 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
848 struct af9013_state *state = fe->demodulator_priv;
849 int ret;
850 u8 buf[3];
851
852 dbg("%s", __func__);
853
854 ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
855 if (ret)
856 goto err;
857
858 switch ((buf[1] >> 6) & 3) {
859 case 0:
860 c->modulation = QPSK;
861 break;
862 case 1:
863 c->modulation = QAM_16;
864 break;
865 case 2:
866 c->modulation = QAM_64;
867 break;
868 }
869
870 switch ((buf[0] >> 0) & 3) {
871 case 0:
872 c->transmission_mode = TRANSMISSION_MODE_2K;
873 break;
874 case 1:
875 c->transmission_mode = TRANSMISSION_MODE_8K;
876 }
877
878 switch ((buf[0] >> 2) & 3) {
879 case 0:
880 c->guard_interval = GUARD_INTERVAL_1_32;
881 break;
882 case 1:
883 c->guard_interval = GUARD_INTERVAL_1_16;
884 break;
885 case 2:
886 c->guard_interval = GUARD_INTERVAL_1_8;
887 break;
888 case 3:
889 c->guard_interval = GUARD_INTERVAL_1_4;
890 break;
891 }
892
893 switch ((buf[0] >> 4) & 7) {
894 case 0:
895 c->hierarchy = HIERARCHY_NONE;
896 break;
897 case 1:
898 c->hierarchy = HIERARCHY_1;
899 break;
900 case 2:
901 c->hierarchy = HIERARCHY_2;
902 break;
903 case 3:
904 c->hierarchy = HIERARCHY_4;
905 break;
906 }
907
908 switch ((buf[2] >> 0) & 7) {
909 case 0:
910 c->code_rate_HP = FEC_1_2;
911 break;
912 case 1:
913 c->code_rate_HP = FEC_2_3;
914 break;
915 case 2:
916 c->code_rate_HP = FEC_3_4;
917 break;
918 case 3:
919 c->code_rate_HP = FEC_5_6;
920 break;
921 case 4:
922 c->code_rate_HP = FEC_7_8;
923 break;
924 }
925
926 switch ((buf[2] >> 3) & 7) {
927 case 0:
928 c->code_rate_LP = FEC_1_2;
929 break;
930 case 1:
931 c->code_rate_LP = FEC_2_3;
932 break;
933 case 2:
934 c->code_rate_LP = FEC_3_4;
935 break;
936 case 3:
937 c->code_rate_LP = FEC_5_6;
938 break;
939 case 4:
940 c->code_rate_LP = FEC_7_8;
941 break;
942 }
943
944 switch ((buf[1] >> 2) & 3) {
945 case 0:
946 c->bandwidth_hz = 6000000;
947 break;
948 case 1:
949 c->bandwidth_hz = 7000000;
950 break;
951 case 2:
952 c->bandwidth_hz = 8000000;
953 break;
954 }
955
956 return ret;
957 err:
958 dbg("%s: failed=%d", __func__, ret);
959 return ret;
960 }
961
962 static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
963 {
964 struct af9013_state *state = fe->demodulator_priv;
965 int ret;
966 u8 tmp;
967
968 /*
969 * Return status from the cache if it is younger than 2000ms with the
970 * exception of last tune is done during 4000ms.
971 */
972 if (time_is_after_jiffies(
973 state->read_status_jiffies + msecs_to_jiffies(2000)) &&
974 time_is_before_jiffies(
975 state->set_frontend_jiffies + msecs_to_jiffies(4000))
976 ) {
977 *status = state->fe_status;
978 return 0;
979 } else {
980 *status = 0;
981 }
982
983 /* MPEG2 lock */
984 ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
985 if (ret)
986 goto err;
987
988 if (tmp)
989 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
990 FE_HAS_SYNC | FE_HAS_LOCK;
991
992 if (!*status) {
993 /* TPS lock */
994 ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
995 if (ret)
996 goto err;
997
998 if (tmp)
999 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1000 FE_HAS_VITERBI;
1001 }
1002
1003 state->fe_status = *status;
1004 state->read_status_jiffies = jiffies;
1005
1006 return ret;
1007 err:
1008 dbg("%s: failed=%d", __func__, ret);
1009 return ret;
1010 }
1011
1012 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1013 {
1014 struct af9013_state *state = fe->demodulator_priv;
1015 *snr = state->snr;
1016 return 0;
1017 }
1018
1019 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1020 {
1021 struct af9013_state *state = fe->demodulator_priv;
1022 *strength = state->signal_strength;
1023 return 0;
1024 }
1025
1026 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1027 {
1028 struct af9013_state *state = fe->demodulator_priv;
1029 *ber = state->ber;
1030 return 0;
1031 }
1032
1033 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1034 {
1035 struct af9013_state *state = fe->demodulator_priv;
1036 *ucblocks = state->ucblocks;
1037 return 0;
1038 }
1039
1040 static int af9013_init(struct dvb_frontend *fe)
1041 {
1042 struct af9013_state *state = fe->demodulator_priv;
1043 int ret, i, len;
1044 u8 buf[3], tmp;
1045 u32 adc_cw;
1046 const struct af9013_reg_bit *init;
1047
1048 dbg("%s", __func__);
1049
1050 /* power on */
1051 ret = af9013_power_ctrl(state, 1);
1052 if (ret)
1053 goto err;
1054
1055 /* enable ADC */
1056 ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1057 if (ret)
1058 goto err;
1059
1060 /* write API version to firmware */
1061 ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1062 if (ret)
1063 goto err;
1064
1065 /* program ADC control */
1066 switch (state->config.clock) {
1067 case 28800000: /* 28.800 MHz */
1068 tmp = 0;
1069 break;
1070 case 20480000: /* 20.480 MHz */
1071 tmp = 1;
1072 break;
1073 case 28000000: /* 28.000 MHz */
1074 tmp = 2;
1075 break;
1076 case 25000000: /* 25.000 MHz */
1077 tmp = 3;
1078 break;
1079 default:
1080 err("invalid clock");
1081 return -EINVAL;
1082 }
1083
1084 adc_cw = af913_div(state->config.clock, 1000000ul, 19);
1085 buf[0] = (adc_cw >> 0) & 0xff;
1086 buf[1] = (adc_cw >> 8) & 0xff;
1087 buf[2] = (adc_cw >> 16) & 0xff;
1088
1089 ret = af9013_wr_regs(state, 0xd180, buf, 3);
1090 if (ret)
1091 goto err;
1092
1093 ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1094 if (ret)
1095 goto err;
1096
1097 /* set I2C master clock */
1098 ret = af9013_wr_reg(state, 0xd416, 0x14);
1099 if (ret)
1100 goto err;
1101
1102 /* set 16 embx */
1103 ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1104 if (ret)
1105 goto err;
1106
1107 /* set no trigger */
1108 ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1109 if (ret)
1110 goto err;
1111
1112 /* set read-update bit for constellation */
1113 ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1114 if (ret)
1115 goto err;
1116
1117 /* settings for mp2if */
1118 if (state->config.ts_mode == AF9013_TS_USB) {
1119 /* AF9015 split PSB to 1.5k + 0.5k */
1120 ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1121 if (ret)
1122 goto err;
1123 } else {
1124 /* AF9013 change the output bit to data7 */
1125 ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1126 if (ret)
1127 goto err;
1128
1129 /* AF9013 set mpeg to full speed */
1130 ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1131 if (ret)
1132 goto err;
1133 }
1134
1135 ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1136 if (ret)
1137 goto err;
1138
1139 /* load OFSM settings */
1140 dbg("%s: load ofsm settings", __func__);
1141 len = ARRAY_SIZE(ofsm_init);
1142 init = ofsm_init;
1143 for (i = 0; i < len; i++) {
1144 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1145 init[i].len, init[i].val);
1146 if (ret)
1147 goto err;
1148 }
1149
1150 /* load tuner specific settings */
1151 dbg("%s: load tuner specific settings", __func__);
1152 switch (state->config.tuner) {
1153 case AF9013_TUNER_MXL5003D:
1154 len = ARRAY_SIZE(tuner_init_mxl5003d);
1155 init = tuner_init_mxl5003d;
1156 break;
1157 case AF9013_TUNER_MXL5005D:
1158 case AF9013_TUNER_MXL5005R:
1159 case AF9013_TUNER_MXL5007T:
1160 len = ARRAY_SIZE(tuner_init_mxl5005);
1161 init = tuner_init_mxl5005;
1162 break;
1163 case AF9013_TUNER_ENV77H11D5:
1164 len = ARRAY_SIZE(tuner_init_env77h11d5);
1165 init = tuner_init_env77h11d5;
1166 break;
1167 case AF9013_TUNER_MT2060:
1168 len = ARRAY_SIZE(tuner_init_mt2060);
1169 init = tuner_init_mt2060;
1170 break;
1171 case AF9013_TUNER_MC44S803:
1172 len = ARRAY_SIZE(tuner_init_mc44s803);
1173 init = tuner_init_mc44s803;
1174 break;
1175 case AF9013_TUNER_QT1010:
1176 case AF9013_TUNER_QT1010A:
1177 len = ARRAY_SIZE(tuner_init_qt1010);
1178 init = tuner_init_qt1010;
1179 break;
1180 case AF9013_TUNER_MT2060_2:
1181 len = ARRAY_SIZE(tuner_init_mt2060_2);
1182 init = tuner_init_mt2060_2;
1183 break;
1184 case AF9013_TUNER_TDA18271:
1185 case AF9013_TUNER_TDA18218:
1186 len = ARRAY_SIZE(tuner_init_tda18271);
1187 init = tuner_init_tda18271;
1188 break;
1189 case AF9013_TUNER_UNKNOWN:
1190 default:
1191 len = ARRAY_SIZE(tuner_init_unknown);
1192 init = tuner_init_unknown;
1193 break;
1194 }
1195
1196 for (i = 0; i < len; i++) {
1197 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1198 init[i].len, init[i].val);
1199 if (ret)
1200 goto err;
1201 }
1202
1203 /* TS mode */
1204 ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1205 if (ret)
1206 goto err;
1207
1208 /* enable lock led */
1209 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1210 if (ret)
1211 goto err;
1212
1213 /* check if we support signal strength */
1214 if (!state->signal_strength_en) {
1215 ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1216 &state->signal_strength_en);
1217 if (ret)
1218 goto err;
1219 }
1220
1221 /* read values needed for signal strength calculation */
1222 if (state->signal_strength_en && !state->rf_50) {
1223 ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1224 if (ret)
1225 goto err;
1226
1227 ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1228 if (ret)
1229 goto err;
1230
1231 ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1232 if (ret)
1233 goto err;
1234
1235 ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1236 if (ret)
1237 goto err;
1238 }
1239
1240 /* SNR */
1241 ret = af9013_wr_reg(state, 0xd2e2, 1);
1242 if (ret)
1243 goto err;
1244
1245 /* BER / UCB */
1246 buf[0] = (10000 >> 0) & 0xff;
1247 buf[1] = (10000 >> 8) & 0xff;
1248 ret = af9013_wr_regs(state, 0xd385, buf, 2);
1249 if (ret)
1250 goto err;
1251
1252 /* enable FEC monitor */
1253 ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1254 if (ret)
1255 goto err;
1256
1257 state->first_tune = true;
1258 schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1259
1260 return ret;
1261 err:
1262 dbg("%s: failed=%d", __func__, ret);
1263 return ret;
1264 }
1265
1266 static int af9013_sleep(struct dvb_frontend *fe)
1267 {
1268 struct af9013_state *state = fe->demodulator_priv;
1269 int ret;
1270
1271 dbg("%s", __func__);
1272
1273 /* stop statistics polling */
1274 cancel_delayed_work_sync(&state->statistics_work);
1275
1276 /* disable lock led */
1277 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1278 if (ret)
1279 goto err;
1280
1281 /* power off */
1282 ret = af9013_power_ctrl(state, 0);
1283 if (ret)
1284 goto err;
1285
1286 return ret;
1287 err:
1288 dbg("%s: failed=%d", __func__, ret);
1289 return ret;
1290 }
1291
1292 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1293 {
1294 int ret;
1295 struct af9013_state *state = fe->demodulator_priv;
1296
1297 dbg("%s: enable=%d", __func__, enable);
1298
1299 /* gate already open or close */
1300 if (state->i2c_gate_state == enable)
1301 return 0;
1302
1303 if (state->config.ts_mode == AF9013_TS_USB)
1304 ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1305 else
1306 ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1307 if (ret)
1308 goto err;
1309
1310 state->i2c_gate_state = enable;
1311
1312 return ret;
1313 err:
1314 dbg("%s: failed=%d", __func__, ret);
1315 return ret;
1316 }
1317
1318 static void af9013_release(struct dvb_frontend *fe)
1319 {
1320 struct af9013_state *state = fe->demodulator_priv;
1321 kfree(state);
1322 }
1323
1324 static struct dvb_frontend_ops af9013_ops;
1325
1326 static int af9013_download_firmware(struct af9013_state *state)
1327 {
1328 int i, len, remaining, ret;
1329 const struct firmware *fw;
1330 u16 checksum = 0;
1331 u8 val;
1332 u8 fw_params[4];
1333 u8 *fw_file = AF9013_DEFAULT_FIRMWARE;
1334
1335 msleep(100);
1336 /* check whether firmware is already running */
1337 ret = af9013_rd_reg(state, 0x98be, &val);
1338 if (ret)
1339 goto err;
1340 else
1341 dbg("%s: firmware status=%02x", __func__, val);
1342
1343 if (val == 0x0c) /* fw is running, no need for download */
1344 goto exit;
1345
1346 info("found a '%s' in cold state, will try to load a firmware",
1347 af9013_ops.info.name);
1348
1349 /* request the firmware, this will block and timeout */
1350 ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1351 if (ret) {
1352 err("did not find the firmware file. (%s) "
1353 "Please see linux/Documentation/dvb/ for more details" \
1354 " on firmware-problems. (%d)",
1355 fw_file, ret);
1356 goto err;
1357 }
1358
1359 info("downloading firmware from file '%s'", fw_file);
1360
1361 /* calc checksum */
1362 for (i = 0; i < fw->size; i++)
1363 checksum += fw->data[i];
1364
1365 fw_params[0] = checksum >> 8;
1366 fw_params[1] = checksum & 0xff;
1367 fw_params[2] = fw->size >> 8;
1368 fw_params[3] = fw->size & 0xff;
1369
1370 /* write fw checksum & size */
1371 ret = af9013_write_ofsm_regs(state, 0x50fc,
1372 fw_params, sizeof(fw_params));
1373 if (ret)
1374 goto err_release;
1375
1376 #define FW_ADDR 0x5100 /* firmware start address */
1377 #define LEN_MAX 16 /* max packet size */
1378 for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1379 len = remaining;
1380 if (len > LEN_MAX)
1381 len = LEN_MAX;
1382
1383 ret = af9013_write_ofsm_regs(state,
1384 FW_ADDR + fw->size - remaining,
1385 (u8 *) &fw->data[fw->size - remaining], len);
1386 if (ret) {
1387 err("firmware download failed:%d", ret);
1388 goto err_release;
1389 }
1390 }
1391
1392 /* request boot firmware */
1393 ret = af9013_wr_reg(state, 0xe205, 1);
1394 if (ret)
1395 goto err_release;
1396
1397 for (i = 0; i < 15; i++) {
1398 msleep(100);
1399
1400 /* check firmware status */
1401 ret = af9013_rd_reg(state, 0x98be, &val);
1402 if (ret)
1403 goto err_release;
1404
1405 dbg("%s: firmware status=%02x", __func__, val);
1406
1407 if (val == 0x0c || val == 0x04) /* success or fail */
1408 break;
1409 }
1410
1411 if (val == 0x04) {
1412 err("firmware did not run");
1413 ret = -ENODEV;
1414 } else if (val != 0x0c) {
1415 err("firmware boot timeout");
1416 ret = -ENODEV;
1417 }
1418
1419 err_release:
1420 release_firmware(fw);
1421 err:
1422 exit:
1423 if (!ret)
1424 info("found a '%s' in warm state.", af9013_ops.info.name);
1425 return ret;
1426 }
1427
1428 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1429 struct i2c_adapter *i2c)
1430 {
1431 int ret;
1432 struct af9013_state *state = NULL;
1433 u8 buf[4], i;
1434
1435 /* allocate memory for the internal state */
1436 state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1437 if (state == NULL)
1438 goto err;
1439
1440 /* setup the state */
1441 state->i2c = i2c;
1442 memcpy(&state->config, config, sizeof(struct af9013_config));
1443
1444 /* download firmware */
1445 if (state->config.ts_mode != AF9013_TS_USB) {
1446 ret = af9013_download_firmware(state);
1447 if (ret)
1448 goto err;
1449 }
1450
1451 /* firmware version */
1452 ret = af9013_rd_regs(state, 0x5103, buf, 4);
1453 if (ret)
1454 goto err;
1455
1456 info("firmware version %d.%d.%d.%d", buf[0], buf[1], buf[2], buf[3]);
1457
1458 /* set GPIOs */
1459 for (i = 0; i < sizeof(state->config.gpio); i++) {
1460 ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1461 if (ret)
1462 goto err;
1463 }
1464
1465 /* create dvb_frontend */
1466 memcpy(&state->fe.ops, &af9013_ops,
1467 sizeof(struct dvb_frontend_ops));
1468 state->fe.demodulator_priv = state;
1469
1470 INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1471
1472 return &state->fe;
1473 err:
1474 kfree(state);
1475 return NULL;
1476 }
1477 EXPORT_SYMBOL(af9013_attach);
1478
1479 static struct dvb_frontend_ops af9013_ops = {
1480 .delsys = { SYS_DVBT },
1481 .info = {
1482 .name = "Afatech AF9013",
1483 .frequency_min = 174000000,
1484 .frequency_max = 862000000,
1485 .frequency_stepsize = 250000,
1486 .frequency_tolerance = 0,
1487 .caps = FE_CAN_FEC_1_2 |
1488 FE_CAN_FEC_2_3 |
1489 FE_CAN_FEC_3_4 |
1490 FE_CAN_FEC_5_6 |
1491 FE_CAN_FEC_7_8 |
1492 FE_CAN_FEC_AUTO |
1493 FE_CAN_QPSK |
1494 FE_CAN_QAM_16 |
1495 FE_CAN_QAM_64 |
1496 FE_CAN_QAM_AUTO |
1497 FE_CAN_TRANSMISSION_MODE_AUTO |
1498 FE_CAN_GUARD_INTERVAL_AUTO |
1499 FE_CAN_HIERARCHY_AUTO |
1500 FE_CAN_RECOVER |
1501 FE_CAN_MUTE_TS
1502 },
1503
1504 .release = af9013_release,
1505
1506 .init = af9013_init,
1507 .sleep = af9013_sleep,
1508
1509 .get_tune_settings = af9013_get_tune_settings,
1510 .set_frontend = af9013_set_frontend,
1511 .get_frontend = af9013_get_frontend,
1512
1513 .read_status = af9013_read_status,
1514 .read_snr = af9013_read_snr,
1515 .read_signal_strength = af9013_read_signal_strength,
1516 .read_ber = af9013_read_ber,
1517 .read_ucblocks = af9013_read_ucblocks,
1518
1519 .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1520 };
1521
1522 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1523 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1524 MODULE_LICENSE("GPL");
This page took 0.064897 seconds and 5 git commands to generate.