cfq-iosched: fix use-after-free of cfqq
[deliverable/linux.git] / drivers / media / dvb / frontends / cx24123.c
1 /*
2 * Conexant cx24123/cx24109 - DVB QPSK Satellite demod/tuner driver
3 *
4 * Copyright (C) 2005 Steven Toth <stoth@linuxtv.org>
5 *
6 * Support for KWorld DVB-S 100 by Vadim Catana <skystar@moldova.cc>
7 *
8 * Support for CX24123/CX24113-NIM by Patrick Boettcher <pb@linuxtv.org>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/init.h>
29
30 #include "dvb_frontend.h"
31 #include "cx24123.h"
32
33 #define XTAL 10111000
34
35 static int force_band;
36 module_param(force_band, int, 0644);
37 MODULE_PARM_DESC(force_band, "Force a specific band select "\
38 "(1-9, default:off).");
39
40 static int debug;
41 module_param(debug, int, 0644);
42 MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
43
44 #define info(args...) do { printk(KERN_INFO "CX24123: " args); } while (0)
45 #define err(args...) do { printk(KERN_ERR "CX24123: " args); } while (0)
46
47 #define dprintk(args...) \
48 do { \
49 if (debug) { \
50 printk(KERN_DEBUG "CX24123: %s: ", __func__); \
51 printk(args); \
52 } \
53 } while (0)
54
55 struct cx24123_state {
56 struct i2c_adapter *i2c;
57 const struct cx24123_config *config;
58
59 struct dvb_frontend frontend;
60
61 /* Some PLL specifics for tuning */
62 u32 VCAarg;
63 u32 VGAarg;
64 u32 bandselectarg;
65 u32 pllarg;
66 u32 FILTune;
67
68 struct i2c_adapter tuner_i2c_adapter;
69
70 u8 demod_rev;
71
72 /* The Demod/Tuner can't easily provide these, we cache them */
73 u32 currentfreq;
74 u32 currentsymbolrate;
75 };
76
77 /* Various tuner defaults need to be established for a given symbol rate Sps */
78 static struct cx24123_AGC_val {
79 u32 symbolrate_low;
80 u32 symbolrate_high;
81 u32 VCAprogdata;
82 u32 VGAprogdata;
83 u32 FILTune;
84 } cx24123_AGC_vals[] =
85 {
86 {
87 .symbolrate_low = 1000000,
88 .symbolrate_high = 4999999,
89 /* the specs recommend other values for VGA offsets,
90 but tests show they are wrong */
91 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
92 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x07,
93 .FILTune = 0x27f /* 0.41 V */
94 },
95 {
96 .symbolrate_low = 5000000,
97 .symbolrate_high = 14999999,
98 .VGAprogdata = (1 << 19) | (0x180 << 9) | 0x1e0,
99 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x1f,
100 .FILTune = 0x317 /* 0.90 V */
101 },
102 {
103 .symbolrate_low = 15000000,
104 .symbolrate_high = 45000000,
105 .VGAprogdata = (1 << 19) | (0x100 << 9) | 0x180,
106 .VCAprogdata = (2 << 19) | (0x07 << 9) | 0x3f,
107 .FILTune = 0x145 /* 2.70 V */
108 },
109 };
110
111 /*
112 * Various tuner defaults need to be established for a given frequency kHz.
113 * fixme: The bounds on the bands do not match the doc in real life.
114 * fixme: Some of them have been moved, other might need adjustment.
115 */
116 static struct cx24123_bandselect_val {
117 u32 freq_low;
118 u32 freq_high;
119 u32 VCOdivider;
120 u32 progdata;
121 } cx24123_bandselect_vals[] =
122 {
123 /* band 1 */
124 {
125 .freq_low = 950000,
126 .freq_high = 1074999,
127 .VCOdivider = 4,
128 .progdata = (0 << 19) | (0 << 9) | 0x40,
129 },
130
131 /* band 2 */
132 {
133 .freq_low = 1075000,
134 .freq_high = 1177999,
135 .VCOdivider = 4,
136 .progdata = (0 << 19) | (0 << 9) | 0x80,
137 },
138
139 /* band 3 */
140 {
141 .freq_low = 1178000,
142 .freq_high = 1295999,
143 .VCOdivider = 2,
144 .progdata = (0 << 19) | (1 << 9) | 0x01,
145 },
146
147 /* band 4 */
148 {
149 .freq_low = 1296000,
150 .freq_high = 1431999,
151 .VCOdivider = 2,
152 .progdata = (0 << 19) | (1 << 9) | 0x02,
153 },
154
155 /* band 5 */
156 {
157 .freq_low = 1432000,
158 .freq_high = 1575999,
159 .VCOdivider = 2,
160 .progdata = (0 << 19) | (1 << 9) | 0x04,
161 },
162
163 /* band 6 */
164 {
165 .freq_low = 1576000,
166 .freq_high = 1717999,
167 .VCOdivider = 2,
168 .progdata = (0 << 19) | (1 << 9) | 0x08,
169 },
170
171 /* band 7 */
172 {
173 .freq_low = 1718000,
174 .freq_high = 1855999,
175 .VCOdivider = 2,
176 .progdata = (0 << 19) | (1 << 9) | 0x10,
177 },
178
179 /* band 8 */
180 {
181 .freq_low = 1856000,
182 .freq_high = 2035999,
183 .VCOdivider = 2,
184 .progdata = (0 << 19) | (1 << 9) | 0x20,
185 },
186
187 /* band 9 */
188 {
189 .freq_low = 2036000,
190 .freq_high = 2150000,
191 .VCOdivider = 2,
192 .progdata = (0 << 19) | (1 << 9) | 0x40,
193 },
194 };
195
196 static struct {
197 u8 reg;
198 u8 data;
199 } cx24123_regdata[] =
200 {
201 {0x00, 0x03}, /* Reset system */
202 {0x00, 0x00}, /* Clear reset */
203 {0x03, 0x07}, /* QPSK, DVB, Auto Acquisition (default) */
204 {0x04, 0x10}, /* MPEG */
205 {0x05, 0x04}, /* MPEG */
206 {0x06, 0x31}, /* MPEG (default) */
207 {0x0b, 0x00}, /* Freq search start point (default) */
208 {0x0c, 0x00}, /* Demodulator sample gain (default) */
209 {0x0d, 0x7f}, /* Force driver to shift until the maximum (+-10 MHz) */
210 {0x0e, 0x03}, /* Default non-inverted, FEC 3/4 (default) */
211 {0x0f, 0xfe}, /* FEC search mask (all supported codes) */
212 {0x10, 0x01}, /* Default search inversion, no repeat (default) */
213 {0x16, 0x00}, /* Enable reading of frequency */
214 {0x17, 0x01}, /* Enable EsNO Ready Counter */
215 {0x1c, 0x80}, /* Enable error counter */
216 {0x20, 0x00}, /* Tuner burst clock rate = 500KHz */
217 {0x21, 0x15}, /* Tuner burst mode, word length = 0x15 */
218 {0x28, 0x00}, /* Enable FILTERV with positive pol., DiSEqC 2.x off */
219 {0x29, 0x00}, /* DiSEqC LNB_DC off */
220 {0x2a, 0xb0}, /* DiSEqC Parameters (default) */
221 {0x2b, 0x73}, /* DiSEqC Tone Frequency (default) */
222 {0x2c, 0x00}, /* DiSEqC Message (0x2c - 0x31) */
223 {0x2d, 0x00},
224 {0x2e, 0x00},
225 {0x2f, 0x00},
226 {0x30, 0x00},
227 {0x31, 0x00},
228 {0x32, 0x8c}, /* DiSEqC Parameters (default) */
229 {0x33, 0x00}, /* Interrupts off (0x33 - 0x34) */
230 {0x34, 0x00},
231 {0x35, 0x03}, /* DiSEqC Tone Amplitude (default) */
232 {0x36, 0x02}, /* DiSEqC Parameters (default) */
233 {0x37, 0x3a}, /* DiSEqC Parameters (default) */
234 {0x3a, 0x00}, /* Enable AGC accumulator (for signal strength) */
235 {0x44, 0x00}, /* Constellation (default) */
236 {0x45, 0x00}, /* Symbol count (default) */
237 {0x46, 0x0d}, /* Symbol rate estimator on (default) */
238 {0x56, 0xc1}, /* Error Counter = Viterbi BER */
239 {0x57, 0xff}, /* Error Counter Window (default) */
240 {0x5c, 0x20}, /* Acquisition AFC Expiration window (default is 0x10) */
241 {0x67, 0x83}, /* Non-DCII symbol clock */
242 };
243
244 static int cx24123_i2c_writereg(struct cx24123_state *state,
245 u8 i2c_addr, int reg, int data)
246 {
247 u8 buf[] = { reg, data };
248 struct i2c_msg msg = {
249 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
250 };
251 int err;
252
253 /* printk(KERN_DEBUG "wr(%02x): %02x %02x\n", i2c_addr, reg, data); */
254
255 err = i2c_transfer(state->i2c, &msg, 1);
256 if (err != 1) {
257 printk("%s: writereg error(err == %i, reg == 0x%02x,"
258 " data == 0x%02x)\n", __func__, err, reg, data);
259 return err;
260 }
261
262 return 0;
263 }
264
265 static int cx24123_i2c_readreg(struct cx24123_state *state, u8 i2c_addr, u8 reg)
266 {
267 int ret;
268 u8 b = 0;
269 struct i2c_msg msg[] = {
270 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
271 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &b, .len = 1 }
272 };
273
274 ret = i2c_transfer(state->i2c, msg, 2);
275
276 if (ret != 2) {
277 err("%s: reg=0x%x (error=%d)\n", __func__, reg, ret);
278 return ret;
279 }
280
281 /* printk(KERN_DEBUG "rd(%02x): %02x %02x\n", i2c_addr, reg, b); */
282
283 return b;
284 }
285
286 #define cx24123_readreg(state, reg) \
287 cx24123_i2c_readreg(state, state->config->demod_address, reg)
288 #define cx24123_writereg(state, reg, val) \
289 cx24123_i2c_writereg(state, state->config->demod_address, reg, val)
290
291 static int cx24123_set_inversion(struct cx24123_state *state,
292 fe_spectral_inversion_t inversion)
293 {
294 u8 nom_reg = cx24123_readreg(state, 0x0e);
295 u8 auto_reg = cx24123_readreg(state, 0x10);
296
297 switch (inversion) {
298 case INVERSION_OFF:
299 dprintk("inversion off\n");
300 cx24123_writereg(state, 0x0e, nom_reg & ~0x80);
301 cx24123_writereg(state, 0x10, auto_reg | 0x80);
302 break;
303 case INVERSION_ON:
304 dprintk("inversion on\n");
305 cx24123_writereg(state, 0x0e, nom_reg | 0x80);
306 cx24123_writereg(state, 0x10, auto_reg | 0x80);
307 break;
308 case INVERSION_AUTO:
309 dprintk("inversion auto\n");
310 cx24123_writereg(state, 0x10, auto_reg & ~0x80);
311 break;
312 default:
313 return -EINVAL;
314 }
315
316 return 0;
317 }
318
319 static int cx24123_get_inversion(struct cx24123_state *state,
320 fe_spectral_inversion_t *inversion)
321 {
322 u8 val;
323
324 val = cx24123_readreg(state, 0x1b) >> 7;
325
326 if (val == 0) {
327 dprintk("read inversion off\n");
328 *inversion = INVERSION_OFF;
329 } else {
330 dprintk("read inversion on\n");
331 *inversion = INVERSION_ON;
332 }
333
334 return 0;
335 }
336
337 static int cx24123_set_fec(struct cx24123_state *state, fe_code_rate_t fec)
338 {
339 u8 nom_reg = cx24123_readreg(state, 0x0e) & ~0x07;
340
341 if ((fec < FEC_NONE) || (fec > FEC_AUTO))
342 fec = FEC_AUTO;
343
344 /* Set the soft decision threshold */
345 if (fec == FEC_1_2)
346 cx24123_writereg(state, 0x43,
347 cx24123_readreg(state, 0x43) | 0x01);
348 else
349 cx24123_writereg(state, 0x43,
350 cx24123_readreg(state, 0x43) & ~0x01);
351
352 switch (fec) {
353 case FEC_1_2:
354 dprintk("set FEC to 1/2\n");
355 cx24123_writereg(state, 0x0e, nom_reg | 0x01);
356 cx24123_writereg(state, 0x0f, 0x02);
357 break;
358 case FEC_2_3:
359 dprintk("set FEC to 2/3\n");
360 cx24123_writereg(state, 0x0e, nom_reg | 0x02);
361 cx24123_writereg(state, 0x0f, 0x04);
362 break;
363 case FEC_3_4:
364 dprintk("set FEC to 3/4\n");
365 cx24123_writereg(state, 0x0e, nom_reg | 0x03);
366 cx24123_writereg(state, 0x0f, 0x08);
367 break;
368 case FEC_4_5:
369 dprintk("set FEC to 4/5\n");
370 cx24123_writereg(state, 0x0e, nom_reg | 0x04);
371 cx24123_writereg(state, 0x0f, 0x10);
372 break;
373 case FEC_5_6:
374 dprintk("set FEC to 5/6\n");
375 cx24123_writereg(state, 0x0e, nom_reg | 0x05);
376 cx24123_writereg(state, 0x0f, 0x20);
377 break;
378 case FEC_6_7:
379 dprintk("set FEC to 6/7\n");
380 cx24123_writereg(state, 0x0e, nom_reg | 0x06);
381 cx24123_writereg(state, 0x0f, 0x40);
382 break;
383 case FEC_7_8:
384 dprintk("set FEC to 7/8\n");
385 cx24123_writereg(state, 0x0e, nom_reg | 0x07);
386 cx24123_writereg(state, 0x0f, 0x80);
387 break;
388 case FEC_AUTO:
389 dprintk("set FEC to auto\n");
390 cx24123_writereg(state, 0x0f, 0xfe);
391 break;
392 default:
393 return -EOPNOTSUPP;
394 }
395
396 return 0;
397 }
398
399 static int cx24123_get_fec(struct cx24123_state *state, fe_code_rate_t *fec)
400 {
401 int ret;
402
403 ret = cx24123_readreg(state, 0x1b);
404 if (ret < 0)
405 return ret;
406 ret = ret & 0x07;
407
408 switch (ret) {
409 case 1:
410 *fec = FEC_1_2;
411 break;
412 case 2:
413 *fec = FEC_2_3;
414 break;
415 case 3:
416 *fec = FEC_3_4;
417 break;
418 case 4:
419 *fec = FEC_4_5;
420 break;
421 case 5:
422 *fec = FEC_5_6;
423 break;
424 case 6:
425 *fec = FEC_6_7;
426 break;
427 case 7:
428 *fec = FEC_7_8;
429 break;
430 default:
431 /* this can happen when there's no lock */
432 *fec = FEC_NONE;
433 }
434
435 return 0;
436 }
437
438 /* Approximation of closest integer of log2(a/b). It actually gives the
439 lowest integer i such that 2^i >= round(a/b) */
440 static u32 cx24123_int_log2(u32 a, u32 b)
441 {
442 u32 exp, nearest = 0;
443 u32 div = a / b;
444 if (a % b >= b / 2)
445 ++div;
446 if (div < (1 << 31)) {
447 for (exp = 1; div > exp; nearest++)
448 exp += exp;
449 }
450 return nearest;
451 }
452
453 static int cx24123_set_symbolrate(struct cx24123_state *state, u32 srate)
454 {
455 u32 tmp, sample_rate, ratio, sample_gain;
456 u8 pll_mult;
457
458 /* check if symbol rate is within limits */
459 if ((srate > state->frontend.ops.info.symbol_rate_max) ||
460 (srate < state->frontend.ops.info.symbol_rate_min))
461 return -EOPNOTSUPP;
462
463 /* choose the sampling rate high enough for the required operation,
464 while optimizing the power consumed by the demodulator */
465 if (srate < (XTAL*2)/2)
466 pll_mult = 2;
467 else if (srate < (XTAL*3)/2)
468 pll_mult = 3;
469 else if (srate < (XTAL*4)/2)
470 pll_mult = 4;
471 else if (srate < (XTAL*5)/2)
472 pll_mult = 5;
473 else if (srate < (XTAL*6)/2)
474 pll_mult = 6;
475 else if (srate < (XTAL*7)/2)
476 pll_mult = 7;
477 else if (srate < (XTAL*8)/2)
478 pll_mult = 8;
479 else
480 pll_mult = 9;
481
482
483 sample_rate = pll_mult * XTAL;
484
485 /*
486 SYSSymbolRate[21:0] = (srate << 23) / sample_rate
487
488 We have to use 32 bit unsigned arithmetic without precision loss.
489 The maximum srate is 45000000 or 0x02AEA540. This number has
490 only 6 clear bits on top, hence we can shift it left only 6 bits
491 at a time. Borrowed from cx24110.c
492 */
493
494 tmp = srate << 6;
495 ratio = tmp / sample_rate;
496
497 tmp = (tmp % sample_rate) << 6;
498 ratio = (ratio << 6) + (tmp / sample_rate);
499
500 tmp = (tmp % sample_rate) << 6;
501 ratio = (ratio << 6) + (tmp / sample_rate);
502
503 tmp = (tmp % sample_rate) << 5;
504 ratio = (ratio << 5) + (tmp / sample_rate);
505
506
507 cx24123_writereg(state, 0x01, pll_mult * 6);
508
509 cx24123_writereg(state, 0x08, (ratio >> 16) & 0x3f);
510 cx24123_writereg(state, 0x09, (ratio >> 8) & 0xff);
511 cx24123_writereg(state, 0x0a, ratio & 0xff);
512
513 /* also set the demodulator sample gain */
514 sample_gain = cx24123_int_log2(sample_rate, srate);
515 tmp = cx24123_readreg(state, 0x0c) & ~0xe0;
516 cx24123_writereg(state, 0x0c, tmp | sample_gain << 5);
517
518 dprintk("srate=%d, ratio=0x%08x, sample_rate=%i sample_gain=%d\n",
519 srate, ratio, sample_rate, sample_gain);
520
521 return 0;
522 }
523
524 /*
525 * Based on the required frequency and symbolrate, the tuner AGC has
526 * to be configured and the correct band selected.
527 * Calculate those values.
528 */
529 static int cx24123_pll_calculate(struct dvb_frontend *fe,
530 struct dvb_frontend_parameters *p)
531 {
532 struct cx24123_state *state = fe->demodulator_priv;
533 u32 ndiv = 0, adiv = 0, vco_div = 0;
534 int i = 0;
535 int pump = 2;
536 int band = 0;
537 int num_bands = ARRAY_SIZE(cx24123_bandselect_vals);
538 struct cx24123_bandselect_val *bsv = NULL;
539 struct cx24123_AGC_val *agcv = NULL;
540
541 /* Defaults for low freq, low rate */
542 state->VCAarg = cx24123_AGC_vals[0].VCAprogdata;
543 state->VGAarg = cx24123_AGC_vals[0].VGAprogdata;
544 state->bandselectarg = cx24123_bandselect_vals[0].progdata;
545 vco_div = cx24123_bandselect_vals[0].VCOdivider;
546
547 /* For the given symbol rate, determine the VCA, VGA and
548 * FILTUNE programming bits */
549 for (i = 0; i < ARRAY_SIZE(cx24123_AGC_vals); i++) {
550 agcv = &cx24123_AGC_vals[i];
551 if ((agcv->symbolrate_low <= p->u.qpsk.symbol_rate) &&
552 (agcv->symbolrate_high >= p->u.qpsk.symbol_rate)) {
553 state->VCAarg = agcv->VCAprogdata;
554 state->VGAarg = agcv->VGAprogdata;
555 state->FILTune = agcv->FILTune;
556 }
557 }
558
559 /* determine the band to use */
560 if (force_band < 1 || force_band > num_bands) {
561 for (i = 0; i < num_bands; i++) {
562 bsv = &cx24123_bandselect_vals[i];
563 if ((bsv->freq_low <= p->frequency) &&
564 (bsv->freq_high >= p->frequency))
565 band = i;
566 }
567 } else
568 band = force_band - 1;
569
570 state->bandselectarg = cx24123_bandselect_vals[band].progdata;
571 vco_div = cx24123_bandselect_vals[band].VCOdivider;
572
573 /* determine the charge pump current */
574 if (p->frequency < (cx24123_bandselect_vals[band].freq_low +
575 cx24123_bandselect_vals[band].freq_high) / 2)
576 pump = 0x01;
577 else
578 pump = 0x02;
579
580 /* Determine the N/A dividers for the requested lband freq (in kHz). */
581 /* Note: the reference divider R=10, frequency is in KHz,
582 * XTAL is in Hz */
583 ndiv = (((p->frequency * vco_div * 10) /
584 (2 * XTAL / 1000)) / 32) & 0x1ff;
585 adiv = (((p->frequency * vco_div * 10) /
586 (2 * XTAL / 1000)) % 32) & 0x1f;
587
588 if (adiv == 0 && ndiv > 0)
589 ndiv--;
590
591 /* control bits 11, refdiv 11, charge pump polarity 1,
592 * charge pump current, ndiv, adiv */
593 state->pllarg = (3 << 19) | (3 << 17) | (1 << 16) |
594 (pump << 14) | (ndiv << 5) | adiv;
595
596 return 0;
597 }
598
599 /*
600 * Tuner data is 21 bits long, must be left-aligned in data.
601 * Tuner cx24109 is written through a dedicated 3wire interface
602 * on the demod chip.
603 */
604 static int cx24123_pll_writereg(struct dvb_frontend *fe,
605 struct dvb_frontend_parameters *p, u32 data)
606 {
607 struct cx24123_state *state = fe->demodulator_priv;
608 unsigned long timeout;
609
610 dprintk("pll writereg called, data=0x%08x\n", data);
611
612 /* align the 21 bytes into to bit23 boundary */
613 data = data << 3;
614
615 /* Reset the demod pll word length to 0x15 bits */
616 cx24123_writereg(state, 0x21, 0x15);
617
618 /* write the msb 8 bits, wait for the send to be completed */
619 timeout = jiffies + msecs_to_jiffies(40);
620 cx24123_writereg(state, 0x22, (data >> 16) & 0xff);
621 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
622 if (time_after(jiffies, timeout)) {
623 err("%s: demodulator is not responding, "\
624 "possibly hung, aborting.\n", __func__);
625 return -EREMOTEIO;
626 }
627 msleep(10);
628 }
629
630 /* send another 8 bytes, wait for the send to be completed */
631 timeout = jiffies + msecs_to_jiffies(40);
632 cx24123_writereg(state, 0x22, (data >> 8) & 0xff);
633 while ((cx24123_readreg(state, 0x20) & 0x40) == 0) {
634 if (time_after(jiffies, timeout)) {
635 err("%s: demodulator is not responding, "\
636 "possibly hung, aborting.\n", __func__);
637 return -EREMOTEIO;
638 }
639 msleep(10);
640 }
641
642 /* send the lower 5 bits of this byte, padded with 3 LBB,
643 * wait for the send to be completed */
644 timeout = jiffies + msecs_to_jiffies(40);
645 cx24123_writereg(state, 0x22, (data) & 0xff);
646 while ((cx24123_readreg(state, 0x20) & 0x80)) {
647 if (time_after(jiffies, timeout)) {
648 err("%s: demodulator is not responding," \
649 "possibly hung, aborting.\n", __func__);
650 return -EREMOTEIO;
651 }
652 msleep(10);
653 }
654
655 /* Trigger the demod to configure the tuner */
656 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) | 2);
657 cx24123_writereg(state, 0x20, cx24123_readreg(state, 0x20) & 0xfd);
658
659 return 0;
660 }
661
662 static int cx24123_pll_tune(struct dvb_frontend *fe,
663 struct dvb_frontend_parameters *p)
664 {
665 struct cx24123_state *state = fe->demodulator_priv;
666 u8 val;
667
668 dprintk("frequency=%i\n", p->frequency);
669
670 if (cx24123_pll_calculate(fe, p) != 0) {
671 err("%s: cx24123_pll_calcutate failed\n", __func__);
672 return -EINVAL;
673 }
674
675 /* Write the new VCO/VGA */
676 cx24123_pll_writereg(fe, p, state->VCAarg);
677 cx24123_pll_writereg(fe, p, state->VGAarg);
678
679 /* Write the new bandselect and pll args */
680 cx24123_pll_writereg(fe, p, state->bandselectarg);
681 cx24123_pll_writereg(fe, p, state->pllarg);
682
683 /* set the FILTUNE voltage */
684 val = cx24123_readreg(state, 0x28) & ~0x3;
685 cx24123_writereg(state, 0x27, state->FILTune >> 2);
686 cx24123_writereg(state, 0x28, val | (state->FILTune & 0x3));
687
688 dprintk("pll tune VCA=%d, band=%d, pll=%d\n", state->VCAarg,
689 state->bandselectarg, state->pllarg);
690
691 return 0;
692 }
693
694
695 /*
696 * 0x23:
697 * [7:7] = BTI enabled
698 * [6:6] = I2C repeater enabled
699 * [5:5] = I2C repeater start
700 * [0:0] = BTI start
701 */
702
703 /* mode == 1 -> i2c-repeater, 0 -> bti */
704 static int cx24123_repeater_mode(struct cx24123_state *state, u8 mode, u8 start)
705 {
706 u8 r = cx24123_readreg(state, 0x23) & 0x1e;
707 if (mode)
708 r |= (1 << 6) | (start << 5);
709 else
710 r |= (1 << 7) | (start);
711 return cx24123_writereg(state, 0x23, r);
712 }
713
714 static int cx24123_initfe(struct dvb_frontend *fe)
715 {
716 struct cx24123_state *state = fe->demodulator_priv;
717 int i;
718
719 dprintk("init frontend\n");
720
721 /* Configure the demod to a good set of defaults */
722 for (i = 0; i < ARRAY_SIZE(cx24123_regdata); i++)
723 cx24123_writereg(state, cx24123_regdata[i].reg,
724 cx24123_regdata[i].data);
725
726 /* Set the LNB polarity */
727 if (state->config->lnb_polarity)
728 cx24123_writereg(state, 0x32,
729 cx24123_readreg(state, 0x32) | 0x02);
730
731 if (state->config->dont_use_pll)
732 cx24123_repeater_mode(state, 1, 0);
733
734 return 0;
735 }
736
737 static int cx24123_set_voltage(struct dvb_frontend *fe,
738 fe_sec_voltage_t voltage)
739 {
740 struct cx24123_state *state = fe->demodulator_priv;
741 u8 val;
742
743 val = cx24123_readreg(state, 0x29) & ~0x40;
744
745 switch (voltage) {
746 case SEC_VOLTAGE_13:
747 dprintk("setting voltage 13V\n");
748 return cx24123_writereg(state, 0x29, val & 0x7f);
749 case SEC_VOLTAGE_18:
750 dprintk("setting voltage 18V\n");
751 return cx24123_writereg(state, 0x29, val | 0x80);
752 case SEC_VOLTAGE_OFF:
753 /* already handled in cx88-dvb */
754 return 0;
755 default:
756 return -EINVAL;
757 };
758
759 return 0;
760 }
761
762 /* wait for diseqc queue to become ready (or timeout) */
763 static void cx24123_wait_for_diseqc(struct cx24123_state *state)
764 {
765 unsigned long timeout = jiffies + msecs_to_jiffies(200);
766 while (!(cx24123_readreg(state, 0x29) & 0x40)) {
767 if (time_after(jiffies, timeout)) {
768 err("%s: diseqc queue not ready, " \
769 "command may be lost.\n", __func__);
770 break;
771 }
772 msleep(10);
773 }
774 }
775
776 static int cx24123_send_diseqc_msg(struct dvb_frontend *fe,
777 struct dvb_diseqc_master_cmd *cmd)
778 {
779 struct cx24123_state *state = fe->demodulator_priv;
780 int i, val, tone;
781
782 dprintk("\n");
783
784 /* stop continuous tone if enabled */
785 tone = cx24123_readreg(state, 0x29);
786 if (tone & 0x10)
787 cx24123_writereg(state, 0x29, tone & ~0x50);
788
789 /* wait for diseqc queue ready */
790 cx24123_wait_for_diseqc(state);
791
792 /* select tone mode */
793 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
794
795 for (i = 0; i < cmd->msg_len; i++)
796 cx24123_writereg(state, 0x2C + i, cmd->msg[i]);
797
798 val = cx24123_readreg(state, 0x29);
799 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40) |
800 ((cmd->msg_len-3) & 3));
801
802 /* wait for diseqc message to finish sending */
803 cx24123_wait_for_diseqc(state);
804
805 /* restart continuous tone if enabled */
806 if (tone & 0x10)
807 cx24123_writereg(state, 0x29, tone & ~0x40);
808
809 return 0;
810 }
811
812 static int cx24123_diseqc_send_burst(struct dvb_frontend *fe,
813 fe_sec_mini_cmd_t burst)
814 {
815 struct cx24123_state *state = fe->demodulator_priv;
816 int val, tone;
817
818 dprintk("\n");
819
820 /* stop continuous tone if enabled */
821 tone = cx24123_readreg(state, 0x29);
822 if (tone & 0x10)
823 cx24123_writereg(state, 0x29, tone & ~0x50);
824
825 /* wait for diseqc queue ready */
826 cx24123_wait_for_diseqc(state);
827
828 /* select tone mode */
829 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) | 0x4);
830 msleep(30);
831 val = cx24123_readreg(state, 0x29);
832 if (burst == SEC_MINI_A)
833 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x00));
834 else if (burst == SEC_MINI_B)
835 cx24123_writereg(state, 0x29, ((val & 0x90) | 0x40 | 0x08));
836 else
837 return -EINVAL;
838
839 cx24123_wait_for_diseqc(state);
840 cx24123_writereg(state, 0x2a, cx24123_readreg(state, 0x2a) & 0xfb);
841
842 /* restart continuous tone if enabled */
843 if (tone & 0x10)
844 cx24123_writereg(state, 0x29, tone & ~0x40);
845
846 return 0;
847 }
848
849 static int cx24123_read_status(struct dvb_frontend *fe, fe_status_t *status)
850 {
851 struct cx24123_state *state = fe->demodulator_priv;
852 int sync = cx24123_readreg(state, 0x14);
853
854 *status = 0;
855 if (state->config->dont_use_pll) {
856 u32 tun_status = 0;
857 if (fe->ops.tuner_ops.get_status)
858 fe->ops.tuner_ops.get_status(fe, &tun_status);
859 if (tun_status & TUNER_STATUS_LOCKED)
860 *status |= FE_HAS_SIGNAL;
861 } else {
862 int lock = cx24123_readreg(state, 0x20);
863 if (lock & 0x01)
864 *status |= FE_HAS_SIGNAL;
865 }
866
867 if (sync & 0x02)
868 *status |= FE_HAS_CARRIER; /* Phase locked */
869 if (sync & 0x04)
870 *status |= FE_HAS_VITERBI;
871
872 /* Reed-Solomon Status */
873 if (sync & 0x08)
874 *status |= FE_HAS_SYNC;
875 if (sync & 0x80)
876 *status |= FE_HAS_LOCK; /*Full Sync */
877
878 return 0;
879 }
880
881 /*
882 * Configured to return the measurement of errors in blocks,
883 * because no UCBLOCKS value is available, so this value doubles up
884 * to satisfy both measurements.
885 */
886 static int cx24123_read_ber(struct dvb_frontend *fe, u32 *ber)
887 {
888 struct cx24123_state *state = fe->demodulator_priv;
889
890 /* The true bit error rate is this value divided by
891 the window size (set as 256 * 255) */
892 *ber = ((cx24123_readreg(state, 0x1c) & 0x3f) << 16) |
893 (cx24123_readreg(state, 0x1d) << 8 |
894 cx24123_readreg(state, 0x1e));
895
896 dprintk("BER = %d\n", *ber);
897
898 return 0;
899 }
900
901 static int cx24123_read_signal_strength(struct dvb_frontend *fe,
902 u16 *signal_strength)
903 {
904 struct cx24123_state *state = fe->demodulator_priv;
905
906 /* larger = better */
907 *signal_strength = cx24123_readreg(state, 0x3b) << 8;
908
909 dprintk("Signal strength = %d\n", *signal_strength);
910
911 return 0;
912 }
913
914 static int cx24123_read_snr(struct dvb_frontend *fe, u16 *snr)
915 {
916 struct cx24123_state *state = fe->demodulator_priv;
917
918 /* Inverted raw Es/N0 count, totally bogus but better than the
919 BER threshold. */
920 *snr = 65535 - (((u16)cx24123_readreg(state, 0x18) << 8) |
921 (u16)cx24123_readreg(state, 0x19));
922
923 dprintk("read S/N index = %d\n", *snr);
924
925 return 0;
926 }
927
928 static int cx24123_set_frontend(struct dvb_frontend *fe,
929 struct dvb_frontend_parameters *p)
930 {
931 struct cx24123_state *state = fe->demodulator_priv;
932
933 dprintk("\n");
934
935 if (state->config->set_ts_params)
936 state->config->set_ts_params(fe, 0);
937
938 state->currentfreq = p->frequency;
939 state->currentsymbolrate = p->u.qpsk.symbol_rate;
940
941 cx24123_set_inversion(state, p->inversion);
942 cx24123_set_fec(state, p->u.qpsk.fec_inner);
943 cx24123_set_symbolrate(state, p->u.qpsk.symbol_rate);
944
945 if (!state->config->dont_use_pll)
946 cx24123_pll_tune(fe, p);
947 else if (fe->ops.tuner_ops.set_params)
948 fe->ops.tuner_ops.set_params(fe, p);
949 else
950 err("it seems I don't have a tuner...");
951
952 /* Enable automatic acquisition and reset cycle */
953 cx24123_writereg(state, 0x03, (cx24123_readreg(state, 0x03) | 0x07));
954 cx24123_writereg(state, 0x00, 0x10);
955 cx24123_writereg(state, 0x00, 0);
956
957 if (state->config->agc_callback)
958 state->config->agc_callback(fe);
959
960 return 0;
961 }
962
963 static int cx24123_get_frontend(struct dvb_frontend *fe,
964 struct dvb_frontend_parameters *p)
965 {
966 struct cx24123_state *state = fe->demodulator_priv;
967
968 dprintk("\n");
969
970 if (cx24123_get_inversion(state, &p->inversion) != 0) {
971 err("%s: Failed to get inversion status\n", __func__);
972 return -EREMOTEIO;
973 }
974 if (cx24123_get_fec(state, &p->u.qpsk.fec_inner) != 0) {
975 err("%s: Failed to get fec status\n", __func__);
976 return -EREMOTEIO;
977 }
978 p->frequency = state->currentfreq;
979 p->u.qpsk.symbol_rate = state->currentsymbolrate;
980
981 return 0;
982 }
983
984 static int cx24123_set_tone(struct dvb_frontend *fe, fe_sec_tone_mode_t tone)
985 {
986 struct cx24123_state *state = fe->demodulator_priv;
987 u8 val;
988
989 /* wait for diseqc queue ready */
990 cx24123_wait_for_diseqc(state);
991
992 val = cx24123_readreg(state, 0x29) & ~0x40;
993
994 switch (tone) {
995 case SEC_TONE_ON:
996 dprintk("setting tone on\n");
997 return cx24123_writereg(state, 0x29, val | 0x10);
998 case SEC_TONE_OFF:
999 dprintk("setting tone off\n");
1000 return cx24123_writereg(state, 0x29, val & 0xef);
1001 default:
1002 err("CASE reached default with tone=%d\n", tone);
1003 return -EINVAL;
1004 }
1005
1006 return 0;
1007 }
1008
1009 static int cx24123_tune(struct dvb_frontend *fe,
1010 struct dvb_frontend_parameters *params,
1011 unsigned int mode_flags,
1012 unsigned int *delay,
1013 fe_status_t *status)
1014 {
1015 int retval = 0;
1016
1017 if (params != NULL)
1018 retval = cx24123_set_frontend(fe, params);
1019
1020 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
1021 cx24123_read_status(fe, status);
1022 *delay = HZ/10;
1023
1024 return retval;
1025 }
1026
1027 static int cx24123_get_algo(struct dvb_frontend *fe)
1028 {
1029 return 1; /* FE_ALGO_HW */
1030 }
1031
1032 static void cx24123_release(struct dvb_frontend *fe)
1033 {
1034 struct cx24123_state *state = fe->demodulator_priv;
1035 dprintk("\n");
1036 i2c_del_adapter(&state->tuner_i2c_adapter);
1037 kfree(state);
1038 }
1039
1040 static int cx24123_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap,
1041 struct i2c_msg msg[], int num)
1042 {
1043 struct cx24123_state *state = i2c_get_adapdata(i2c_adap);
1044 /* this repeater closes after the first stop */
1045 cx24123_repeater_mode(state, 1, 1);
1046 return i2c_transfer(state->i2c, msg, num);
1047 }
1048
1049 static u32 cx24123_tuner_i2c_func(struct i2c_adapter *adapter)
1050 {
1051 return I2C_FUNC_I2C;
1052 }
1053
1054 static struct i2c_algorithm cx24123_tuner_i2c_algo = {
1055 .master_xfer = cx24123_tuner_i2c_tuner_xfer,
1056 .functionality = cx24123_tuner_i2c_func,
1057 };
1058
1059 struct i2c_adapter *
1060 cx24123_get_tuner_i2c_adapter(struct dvb_frontend *fe)
1061 {
1062 struct cx24123_state *state = fe->demodulator_priv;
1063 return &state->tuner_i2c_adapter;
1064 }
1065 EXPORT_SYMBOL(cx24123_get_tuner_i2c_adapter);
1066
1067 static struct dvb_frontend_ops cx24123_ops;
1068
1069 struct dvb_frontend *cx24123_attach(const struct cx24123_config *config,
1070 struct i2c_adapter *i2c)
1071 {
1072 /* allocate memory for the internal state */
1073 struct cx24123_state *state =
1074 kzalloc(sizeof(struct cx24123_state), GFP_KERNEL);
1075
1076 dprintk("\n");
1077 if (state == NULL) {
1078 err("Unable to kzalloc\n");
1079 goto error;
1080 }
1081
1082 /* setup the state */
1083 state->config = config;
1084 state->i2c = i2c;
1085
1086 /* check if the demod is there */
1087 state->demod_rev = cx24123_readreg(state, 0x00);
1088 switch (state->demod_rev) {
1089 case 0xe1:
1090 info("detected CX24123C\n");
1091 break;
1092 case 0xd1:
1093 info("detected CX24123\n");
1094 break;
1095 default:
1096 err("wrong demod revision: %x\n", state->demod_rev);
1097 goto error;
1098 }
1099
1100 /* create dvb_frontend */
1101 memcpy(&state->frontend.ops, &cx24123_ops,
1102 sizeof(struct dvb_frontend_ops));
1103 state->frontend.demodulator_priv = state;
1104
1105 /* create tuner i2c adapter */
1106 if (config->dont_use_pll)
1107 cx24123_repeater_mode(state, 1, 0);
1108
1109 strlcpy(state->tuner_i2c_adapter.name, "CX24123 tuner I2C bus",
1110 sizeof(state->tuner_i2c_adapter.name));
1111 state->tuner_i2c_adapter.algo = &cx24123_tuner_i2c_algo;
1112 state->tuner_i2c_adapter.algo_data = NULL;
1113 i2c_set_adapdata(&state->tuner_i2c_adapter, state);
1114 if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
1115 err("tuner i2c bus could not be initialized\n");
1116 goto error;
1117 }
1118
1119 return &state->frontend;
1120
1121 error:
1122 kfree(state);
1123
1124 return NULL;
1125 }
1126 EXPORT_SYMBOL(cx24123_attach);
1127
1128 static struct dvb_frontend_ops cx24123_ops = {
1129
1130 .info = {
1131 .name = "Conexant CX24123/CX24109",
1132 .type = FE_QPSK,
1133 .frequency_min = 950000,
1134 .frequency_max = 2150000,
1135 .frequency_stepsize = 1011, /* kHz for QPSK frontends */
1136 .frequency_tolerance = 5000,
1137 .symbol_rate_min = 1000000,
1138 .symbol_rate_max = 45000000,
1139 .caps = FE_CAN_INVERSION_AUTO |
1140 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
1141 FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
1142 FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
1143 FE_CAN_QPSK | FE_CAN_RECOVER
1144 },
1145
1146 .release = cx24123_release,
1147
1148 .init = cx24123_initfe,
1149 .set_frontend = cx24123_set_frontend,
1150 .get_frontend = cx24123_get_frontend,
1151 .read_status = cx24123_read_status,
1152 .read_ber = cx24123_read_ber,
1153 .read_signal_strength = cx24123_read_signal_strength,
1154 .read_snr = cx24123_read_snr,
1155 .diseqc_send_master_cmd = cx24123_send_diseqc_msg,
1156 .diseqc_send_burst = cx24123_diseqc_send_burst,
1157 .set_tone = cx24123_set_tone,
1158 .set_voltage = cx24123_set_voltage,
1159 .tune = cx24123_tune,
1160 .get_frontend_algo = cx24123_get_algo,
1161 };
1162
1163 MODULE_DESCRIPTION("DVB Frontend module for Conexant " \
1164 "CX24123/CX24109/CX24113 hardware");
1165 MODULE_AUTHOR("Steven Toth");
1166 MODULE_LICENSE("GPL");
1167
This page took 0.074228 seconds and 5 git commands to generate.