Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / media / dvb-frontends / dib8000.c
1 /*
2 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
3 *
4 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation, version 2.
9 */
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/i2c.h>
13 #include <linux/mutex.h>
14 #include <asm/div64.h>
15
16 #include "dvb_math.h"
17
18 #include "dvb_frontend.h"
19
20 #include "dib8000.h"
21
22 #define LAYER_ALL -1
23 #define LAYER_A 1
24 #define LAYER_B 2
25 #define LAYER_C 3
26
27 #define MAX_NUMBER_OF_FRONTENDS 6
28 /* #define DIB8000_AGC_FREEZE */
29
30 static int debug;
31 module_param(debug, int, 0644);
32 MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
33
34 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)
35
36 struct i2c_device {
37 struct i2c_adapter *adap;
38 u8 addr;
39 u8 *i2c_write_buffer;
40 u8 *i2c_read_buffer;
41 struct mutex *i2c_buffer_lock;
42 };
43
44 enum param_loop_step {
45 LOOP_TUNE_1,
46 LOOP_TUNE_2
47 };
48
49 enum dib8000_autosearch_step {
50 AS_START = 0,
51 AS_SEARCHING_FFT,
52 AS_SEARCHING_GUARD,
53 AS_DONE = 100,
54 };
55
56 enum timeout_mode {
57 SYMBOL_DEPENDENT_OFF = 0,
58 SYMBOL_DEPENDENT_ON,
59 };
60
61 struct dib8000_state {
62 struct dib8000_config cfg;
63
64 struct i2c_device i2c;
65
66 struct dibx000_i2c_master i2c_master;
67
68 u16 wbd_ref;
69
70 u8 current_band;
71 u32 current_bandwidth;
72 struct dibx000_agc_config *current_agc;
73 u32 timf;
74 u32 timf_default;
75
76 u8 div_force_off:1;
77 u8 div_state:1;
78 u16 div_sync_wait;
79
80 u8 agc_state;
81 u8 differential_constellation;
82 u8 diversity_onoff;
83
84 s16 ber_monitored_layer;
85 u16 gpio_dir;
86 u16 gpio_val;
87
88 u16 revision;
89 u8 isdbt_cfg_loaded;
90 enum frontend_tune_state tune_state;
91 s32 status;
92
93 struct dvb_frontend *fe[MAX_NUMBER_OF_FRONTENDS];
94
95 /* for the I2C transfer */
96 struct i2c_msg msg[2];
97 u8 i2c_write_buffer[4];
98 u8 i2c_read_buffer[2];
99 struct mutex i2c_buffer_lock;
100 u8 input_mode_mpeg;
101
102 u16 tuner_enable;
103 struct i2c_adapter dib8096p_tuner_adap;
104 u16 current_demod_bw;
105
106 u16 seg_mask;
107 u16 seg_diff_mask;
108 u16 mode;
109 u8 layer_b_nb_seg;
110 u8 layer_c_nb_seg;
111
112 u8 channel_parameters_set;
113 u16 autosearch_state;
114 u16 found_nfft;
115 u16 found_guard;
116 u8 subchannel;
117 u8 symbol_duration;
118 unsigned long timeout;
119 u8 longest_intlv_layer;
120 u16 output_mode;
121
122 /* for DVBv5 stats */
123 s64 init_ucb;
124 unsigned long per_jiffies_stats;
125 unsigned long ber_jiffies_stats;
126 unsigned long ber_jiffies_stats_layer[3];
127
128 #ifdef DIB8000_AGC_FREEZE
129 u16 agc1_max;
130 u16 agc1_min;
131 u16 agc2_max;
132 u16 agc2_min;
133 #endif
134 };
135
136 enum dib8000_power_mode {
137 DIB8000_POWER_ALL = 0,
138 DIB8000_POWER_INTERFACE_ONLY,
139 };
140
141 static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
142 {
143 u16 ret;
144 struct i2c_msg msg[2] = {
145 {.addr = i2c->addr >> 1, .flags = 0, .len = 2},
146 {.addr = i2c->addr >> 1, .flags = I2C_M_RD, .len = 2},
147 };
148
149 if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
150 dprintk("could not acquire lock");
151 return 0;
152 }
153
154 msg[0].buf = i2c->i2c_write_buffer;
155 msg[0].buf[0] = reg >> 8;
156 msg[0].buf[1] = reg & 0xff;
157 msg[1].buf = i2c->i2c_read_buffer;
158
159 if (i2c_transfer(i2c->adap, msg, 2) != 2)
160 dprintk("i2c read error on %d", reg);
161
162 ret = (msg[1].buf[0] << 8) | msg[1].buf[1];
163 mutex_unlock(i2c->i2c_buffer_lock);
164 return ret;
165 }
166
167 static u16 __dib8000_read_word(struct dib8000_state *state, u16 reg)
168 {
169 u16 ret;
170
171 state->i2c_write_buffer[0] = reg >> 8;
172 state->i2c_write_buffer[1] = reg & 0xff;
173
174 memset(state->msg, 0, 2 * sizeof(struct i2c_msg));
175 state->msg[0].addr = state->i2c.addr >> 1;
176 state->msg[0].flags = 0;
177 state->msg[0].buf = state->i2c_write_buffer;
178 state->msg[0].len = 2;
179 state->msg[1].addr = state->i2c.addr >> 1;
180 state->msg[1].flags = I2C_M_RD;
181 state->msg[1].buf = state->i2c_read_buffer;
182 state->msg[1].len = 2;
183
184 if (i2c_transfer(state->i2c.adap, state->msg, 2) != 2)
185 dprintk("i2c read error on %d", reg);
186
187 ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1];
188
189 return ret;
190 }
191
192 static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
193 {
194 u16 ret;
195
196 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
197 dprintk("could not acquire lock");
198 return 0;
199 }
200
201 ret = __dib8000_read_word(state, reg);
202
203 mutex_unlock(&state->i2c_buffer_lock);
204
205 return ret;
206 }
207
208 static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
209 {
210 u16 rw[2];
211
212 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
213 dprintk("could not acquire lock");
214 return 0;
215 }
216
217 rw[0] = __dib8000_read_word(state, reg + 0);
218 rw[1] = __dib8000_read_word(state, reg + 1);
219
220 mutex_unlock(&state->i2c_buffer_lock);
221
222 return ((rw[0] << 16) | (rw[1]));
223 }
224
225 static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
226 {
227 struct i2c_msg msg = {.addr = i2c->addr >> 1, .flags = 0, .len = 4};
228 int ret = 0;
229
230 if (mutex_lock_interruptible(i2c->i2c_buffer_lock) < 0) {
231 dprintk("could not acquire lock");
232 return -EINVAL;
233 }
234
235 msg.buf = i2c->i2c_write_buffer;
236 msg.buf[0] = (reg >> 8) & 0xff;
237 msg.buf[1] = reg & 0xff;
238 msg.buf[2] = (val >> 8) & 0xff;
239 msg.buf[3] = val & 0xff;
240
241 ret = i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
242 mutex_unlock(i2c->i2c_buffer_lock);
243
244 return ret;
245 }
246
247 static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
248 {
249 int ret;
250
251 if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) {
252 dprintk("could not acquire lock");
253 return -EINVAL;
254 }
255
256 state->i2c_write_buffer[0] = (reg >> 8) & 0xff;
257 state->i2c_write_buffer[1] = reg & 0xff;
258 state->i2c_write_buffer[2] = (val >> 8) & 0xff;
259 state->i2c_write_buffer[3] = val & 0xff;
260
261 memset(&state->msg[0], 0, sizeof(struct i2c_msg));
262 state->msg[0].addr = state->i2c.addr >> 1;
263 state->msg[0].flags = 0;
264 state->msg[0].buf = state->i2c_write_buffer;
265 state->msg[0].len = 4;
266
267 ret = (i2c_transfer(state->i2c.adap, state->msg, 1) != 1 ?
268 -EREMOTEIO : 0);
269 mutex_unlock(&state->i2c_buffer_lock);
270
271 return ret;
272 }
273
274 static const s16 coeff_2k_sb_1seg_dqpsk[8] = {
275 (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
276 (920 << 5) | 0x09
277 };
278
279 static const s16 coeff_2k_sb_1seg[8] = {
280 (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
281 };
282
283 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
284 (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
285 (-931 << 5) | 0x0f
286 };
287
288 static const s16 coeff_2k_sb_3seg_0dqpsk[8] = {
289 (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
290 (982 << 5) | 0x0c
291 };
292
293 static const s16 coeff_2k_sb_3seg_1dqpsk[8] = {
294 (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
295 (-720 << 5) | 0x0d
296 };
297
298 static const s16 coeff_2k_sb_3seg[8] = {
299 (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
300 (-610 << 5) | 0x0a
301 };
302
303 static const s16 coeff_4k_sb_1seg_dqpsk[8] = {
304 (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
305 (-922 << 5) | 0x0d
306 };
307
308 static const s16 coeff_4k_sb_1seg[8] = {
309 (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
310 (-655 << 5) | 0x0a
311 };
312
313 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
314 (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
315 (-958 << 5) | 0x13
316 };
317
318 static const s16 coeff_4k_sb_3seg_0dqpsk[8] = {
319 (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
320 (-568 << 5) | 0x0f
321 };
322
323 static const s16 coeff_4k_sb_3seg_1dqpsk[8] = {
324 (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
325 (-848 << 5) | 0x13
326 };
327
328 static const s16 coeff_4k_sb_3seg[8] = {
329 (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
330 (-869 << 5) | 0x13
331 };
332
333 static const s16 coeff_8k_sb_1seg_dqpsk[8] = {
334 (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
335 (-598 << 5) | 0x10
336 };
337
338 static const s16 coeff_8k_sb_1seg[8] = {
339 (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
340 (585 << 5) | 0x0f
341 };
342
343 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
344 (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
345 (0 << 5) | 0x14
346 };
347
348 static const s16 coeff_8k_sb_3seg_0dqpsk[8] = {
349 (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
350 (-877 << 5) | 0x15
351 };
352
353 static const s16 coeff_8k_sb_3seg_1dqpsk[8] = {
354 (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
355 (-921 << 5) | 0x14
356 };
357
358 static const s16 coeff_8k_sb_3seg[8] = {
359 (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
360 (690 << 5) | 0x14
361 };
362
363 static const s16 ana_fe_coeff_3seg[24] = {
364 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
365 };
366
367 static const s16 ana_fe_coeff_1seg[24] = {
368 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
369 };
370
371 static const s16 ana_fe_coeff_13seg[24] = {
372 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
373 };
374
375 static u16 fft_to_mode(struct dib8000_state *state)
376 {
377 u16 mode;
378 switch (state->fe[0]->dtv_property_cache.transmission_mode) {
379 case TRANSMISSION_MODE_2K:
380 mode = 1;
381 break;
382 case TRANSMISSION_MODE_4K:
383 mode = 2;
384 break;
385 default:
386 case TRANSMISSION_MODE_AUTO:
387 case TRANSMISSION_MODE_8K:
388 mode = 3;
389 break;
390 }
391 return mode;
392 }
393
394 static void dib8000_set_acquisition_mode(struct dib8000_state *state)
395 {
396 u16 nud = dib8000_read_word(state, 298);
397 nud |= (1 << 3) | (1 << 0);
398 dprintk("acquisition mode activated");
399 dib8000_write_word(state, 298, nud);
400 }
401 static int dib8000_set_output_mode(struct dvb_frontend *fe, int mode)
402 {
403 struct dib8000_state *state = fe->demodulator_priv;
404 u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
405
406 state->output_mode = mode;
407 outreg = 0;
408 fifo_threshold = 1792;
409 smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
410
411 dprintk("-I- Setting output mode for demod %p to %d",
412 &state->fe[0], mode);
413
414 switch (mode) {
415 case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
416 outreg = (1 << 10); /* 0x0400 */
417 break;
418 case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
419 outreg = (1 << 10) | (1 << 6); /* 0x0440 */
420 break;
421 case OUTMODE_MPEG2_SERIAL: // STBs with serial input
422 outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
423 break;
424 case OUTMODE_DIVERSITY:
425 if (state->cfg.hostbus_diversity) {
426 outreg = (1 << 10) | (4 << 6); /* 0x0500 */
427 sram &= 0xfdff;
428 } else
429 sram |= 0x0c00;
430 break;
431 case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
432 smo_mode |= (3 << 1);
433 fifo_threshold = 512;
434 outreg = (1 << 10) | (5 << 6);
435 break;
436 case OUTMODE_HIGH_Z: // disable
437 outreg = 0;
438 break;
439
440 case OUTMODE_ANALOG_ADC:
441 outreg = (1 << 10) | (3 << 6);
442 dib8000_set_acquisition_mode(state);
443 break;
444
445 default:
446 dprintk("Unhandled output_mode passed to be set for demod %p",
447 &state->fe[0]);
448 return -EINVAL;
449 }
450
451 if (state->cfg.output_mpeg2_in_188_bytes)
452 smo_mode |= (1 << 5);
453
454 dib8000_write_word(state, 299, smo_mode);
455 dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
456 dib8000_write_word(state, 1286, outreg);
457 dib8000_write_word(state, 1291, sram);
458
459 return 0;
460 }
461
462 static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
463 {
464 struct dib8000_state *state = fe->demodulator_priv;
465 u16 tmp, sync_wait = dib8000_read_word(state, 273) & 0xfff0;
466
467 dprintk("set diversity input to %i", onoff);
468 if (!state->differential_constellation) {
469 dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
470 dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
471 } else {
472 dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
473 dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
474 }
475 state->diversity_onoff = onoff;
476
477 switch (onoff) {
478 case 0: /* only use the internal way - not the diversity input */
479 dib8000_write_word(state, 270, 1);
480 dib8000_write_word(state, 271, 0);
481 break;
482 case 1: /* both ways */
483 dib8000_write_word(state, 270, 6);
484 dib8000_write_word(state, 271, 6);
485 break;
486 case 2: /* only the diversity input */
487 dib8000_write_word(state, 270, 0);
488 dib8000_write_word(state, 271, 1);
489 break;
490 }
491
492 if (state->revision == 0x8002) {
493 tmp = dib8000_read_word(state, 903);
494 dib8000_write_word(state, 903, tmp & ~(1 << 3));
495 msleep(30);
496 dib8000_write_word(state, 903, tmp | (1 << 3));
497 }
498 return 0;
499 }
500
501 static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
502 {
503 /* by default everything is going to be powered off */
504 u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
505 reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3,
506 reg_1280;
507
508 if (state->revision != 0x8090)
509 reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
510 else
511 reg_1280 = (dib8000_read_word(state, 1280) & 0x707f) | 0x8f80;
512
513 /* now, depending on the requested mode, we power on */
514 switch (mode) {
515 /* power up everything in the demod */
516 case DIB8000_POWER_ALL:
517 reg_774 = 0x0000;
518 reg_775 = 0x0000;
519 reg_776 = 0x0000;
520 reg_900 &= 0xfffc;
521 if (state->revision != 0x8090)
522 reg_1280 &= 0x00ff;
523 else
524 reg_1280 &= 0x707f;
525 break;
526 case DIB8000_POWER_INTERFACE_ONLY:
527 if (state->revision != 0x8090)
528 reg_1280 &= 0x00ff;
529 else
530 reg_1280 &= 0xfa7b;
531 break;
532 }
533
534 dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280);
535 dib8000_write_word(state, 774, reg_774);
536 dib8000_write_word(state, 775, reg_775);
537 dib8000_write_word(state, 776, reg_776);
538 dib8000_write_word(state, 900, reg_900);
539 dib8000_write_word(state, 1280, reg_1280);
540 }
541
542 static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
543 {
544 int ret = 0;
545 u16 reg, reg_907 = dib8000_read_word(state, 907);
546 u16 reg_908 = dib8000_read_word(state, 908);
547
548 switch (no) {
549 case DIBX000_SLOW_ADC_ON:
550 if (state->revision != 0x8090) {
551 reg_908 |= (1 << 1) | (1 << 0);
552 ret |= dib8000_write_word(state, 908, reg_908);
553 reg_908 &= ~(1 << 1);
554 } else {
555 reg = dib8000_read_word(state, 1925);
556 /* en_slowAdc = 1 & reset_sladc = 1 */
557 dib8000_write_word(state, 1925, reg |
558 (1<<4) | (1<<2));
559
560 /* read acces to make it works... strange ... */
561 reg = dib8000_read_word(state, 1925);
562 msleep(20);
563 /* en_slowAdc = 1 & reset_sladc = 0 */
564 dib8000_write_word(state, 1925, reg & ~(1<<4));
565
566 reg = dib8000_read_word(state, 921) & ~((0x3 << 14)
567 | (0x3 << 12));
568 /* ref = Vin1 => Vbg ; sel = Vin0 or Vin3 ;
569 (Vin2 = Vcm) */
570 dib8000_write_word(state, 921, reg | (1 << 14)
571 | (3 << 12));
572 }
573 break;
574
575 case DIBX000_SLOW_ADC_OFF:
576 if (state->revision == 0x8090) {
577 reg = dib8000_read_word(state, 1925);
578 /* reset_sladc = 1 en_slowAdc = 0 */
579 dib8000_write_word(state, 1925,
580 (reg & ~(1<<2)) | (1<<4));
581 }
582 reg_908 |= (1 << 1) | (1 << 0);
583 break;
584
585 case DIBX000_ADC_ON:
586 reg_907 &= 0x0fff;
587 reg_908 &= 0x0003;
588 break;
589
590 case DIBX000_ADC_OFF: // leave the VBG voltage on
591 reg_907 = (1 << 13) | (1 << 12);
592 reg_908 = (1 << 6) | (1 << 5) | (1 << 4) | (1 << 3) | (1 << 1);
593 break;
594
595 case DIBX000_VBG_ENABLE:
596 reg_907 &= ~(1 << 15);
597 break;
598
599 case DIBX000_VBG_DISABLE:
600 reg_907 |= (1 << 15);
601 break;
602
603 default:
604 break;
605 }
606
607 ret |= dib8000_write_word(state, 907, reg_907);
608 ret |= dib8000_write_word(state, 908, reg_908);
609
610 return ret;
611 }
612
613 static int dib8000_set_bandwidth(struct dvb_frontend *fe, u32 bw)
614 {
615 struct dib8000_state *state = fe->demodulator_priv;
616 u32 timf;
617
618 if (bw == 0)
619 bw = 6000;
620
621 if (state->timf == 0) {
622 dprintk("using default timf");
623 timf = state->timf_default;
624 } else {
625 dprintk("using updated timf");
626 timf = state->timf;
627 }
628
629 dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
630 dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
631
632 return 0;
633 }
634
635 static int dib8000_sad_calib(struct dib8000_state *state)
636 {
637 u8 sad_sel = 3;
638
639 if (state->revision == 0x8090) {
640 dib8000_write_word(state, 922, (sad_sel << 2));
641 dib8000_write_word(state, 923, 2048);
642
643 dib8000_write_word(state, 922, (sad_sel << 2) | 0x1);
644 dib8000_write_word(state, 922, (sad_sel << 2));
645 } else {
646 /* internal */
647 dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
648 dib8000_write_word(state, 924, 776);
649
650 /* do the calibration */
651 dib8000_write_word(state, 923, (1 << 0));
652 dib8000_write_word(state, 923, (0 << 0));
653 }
654
655 msleep(1);
656 return 0;
657 }
658
659 static int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
660 {
661 struct dib8000_state *state = fe->demodulator_priv;
662 if (value > 4095)
663 value = 4095;
664 state->wbd_ref = value;
665 return dib8000_write_word(state, 106, value);
666 }
667
668 static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
669 {
670 dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
671 if (state->revision != 0x8090) {
672 dib8000_write_word(state, 23,
673 (u16) (((bw->internal * 1000) >> 16) & 0xffff));
674 dib8000_write_word(state, 24,
675 (u16) ((bw->internal * 1000) & 0xffff));
676 } else {
677 dib8000_write_word(state, 23, (u16) (((bw->internal / 2 * 1000) >> 16) & 0xffff));
678 dib8000_write_word(state, 24,
679 (u16) ((bw->internal / 2 * 1000) & 0xffff));
680 }
681 dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
682 dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
683 dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
684
685 if (state->revision != 0x8090)
686 dib8000_write_word(state, 922, bw->sad_cfg);
687 }
688
689 static void dib8000_reset_pll(struct dib8000_state *state)
690 {
691 const struct dibx000_bandwidth_config *pll = state->cfg.pll;
692 u16 clk_cfg1, reg;
693
694 if (state->revision != 0x8090) {
695 dib8000_write_word(state, 901,
696 (pll->pll_prediv << 8) | (pll->pll_ratio << 0));
697
698 clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
699 (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) |
700 (1 << 3) | (pll->pll_range << 1) |
701 (pll->pll_reset << 0);
702
703 dib8000_write_word(state, 902, clk_cfg1);
704 clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
705 dib8000_write_word(state, 902, clk_cfg1);
706
707 dprintk("clk_cfg1: 0x%04x", clk_cfg1);
708
709 /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
710 if (state->cfg.pll->ADClkSrc == 0)
711 dib8000_write_word(state, 904,
712 (0 << 15) | (0 << 12) | (0 << 10) |
713 (pll->modulo << 8) |
714 (pll->ADClkSrc << 7) | (0 << 1));
715 else if (state->cfg.refclksel != 0)
716 dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
717 ((state->cfg.refclksel & 0x3) << 10) |
718 (pll->modulo << 8) |
719 (pll->ADClkSrc << 7) | (0 << 1));
720 else
721 dib8000_write_word(state, 904, (0 << 15) | (1 << 12) |
722 (3 << 10) | (pll->modulo << 8) |
723 (pll->ADClkSrc << 7) | (0 << 1));
724 } else {
725 dib8000_write_word(state, 1856, (!pll->pll_reset<<13) |
726 (pll->pll_range<<12) | (pll->pll_ratio<<6) |
727 (pll->pll_prediv));
728
729 reg = dib8000_read_word(state, 1857);
730 dib8000_write_word(state, 1857, reg|(!pll->pll_bypass<<15));
731
732 reg = dib8000_read_word(state, 1858); /* Force clk out pll /2 */
733 dib8000_write_word(state, 1858, reg | 1);
734
735 dib8000_write_word(state, 904, (pll->modulo << 8));
736 }
737
738 dib8000_reset_pll_common(state, pll);
739 }
740
741 static int dib8000_update_pll(struct dvb_frontend *fe,
742 struct dibx000_bandwidth_config *pll, u32 bw, u8 ratio)
743 {
744 struct dib8000_state *state = fe->demodulator_priv;
745 u16 reg_1857, reg_1856 = dib8000_read_word(state, 1856);
746 u8 loopdiv, prediv, oldprediv = state->cfg.pll->pll_prediv ;
747 u32 internal, xtal;
748
749 /* get back old values */
750 prediv = reg_1856 & 0x3f;
751 loopdiv = (reg_1856 >> 6) & 0x3f;
752
753 if ((pll == NULL) || (pll->pll_prediv == prediv &&
754 pll->pll_ratio == loopdiv))
755 return -EINVAL;
756
757 dprintk("Updating pll (prediv: old = %d new = %d ; loopdiv : old = %d new = %d)", prediv, pll->pll_prediv, loopdiv, pll->pll_ratio);
758 if (state->revision == 0x8090) {
759 reg_1856 &= 0xf000;
760 reg_1857 = dib8000_read_word(state, 1857);
761 /* disable PLL */
762 dib8000_write_word(state, 1857, reg_1857 & ~(1 << 15));
763
764 dib8000_write_word(state, 1856, reg_1856 |
765 ((pll->pll_ratio & 0x3f) << 6) |
766 (pll->pll_prediv & 0x3f));
767
768 /* write new system clk into P_sec_len */
769 internal = dib8000_read32(state, 23) / 1000;
770 dprintk("Old Internal = %d", internal);
771 xtal = 2 * (internal / loopdiv) * prediv;
772 internal = 1000 * (xtal/pll->pll_prediv) * pll->pll_ratio;
773 dprintk("Xtal = %d , New Fmem = %d New Fdemod = %d, New Fsampling = %d", xtal, internal/1000, internal/2000, internal/8000);
774 dprintk("New Internal = %d", internal);
775
776 dib8000_write_word(state, 23,
777 (u16) (((internal / 2) >> 16) & 0xffff));
778 dib8000_write_word(state, 24, (u16) ((internal / 2) & 0xffff));
779 /* enable PLL */
780 dib8000_write_word(state, 1857, reg_1857 | (1 << 15));
781
782 while (((dib8000_read_word(state, 1856)>>15)&0x1) != 1)
783 dprintk("Waiting for PLL to lock");
784
785 /* verify */
786 reg_1856 = dib8000_read_word(state, 1856);
787 dprintk("PLL Updated with prediv = %d and loopdiv = %d",
788 reg_1856&0x3f, (reg_1856>>6)&0x3f);
789 } else {
790 if (bw != state->current_demod_bw) {
791 /** Bandwidth change => force PLL update **/
792 dprintk("PLL: Bandwidth Change %d MHz -> %d MHz (prediv: %d->%d)", state->current_demod_bw / 1000, bw / 1000, oldprediv, state->cfg.pll->pll_prediv);
793
794 if (state->cfg.pll->pll_prediv != oldprediv) {
795 /** Full PLL change only if prediv is changed **/
796
797 /** full update => bypass and reconfigure **/
798 dprintk("PLL: New Setting for %d MHz Bandwidth (prediv: %d, ratio: %d)", bw/1000, state->cfg.pll->pll_prediv, state->cfg.pll->pll_ratio);
799 dib8000_write_word(state, 902, dib8000_read_word(state, 902) | (1<<3)); /* bypass PLL */
800 dib8000_reset_pll(state);
801 dib8000_write_word(state, 898, 0x0004); /* sad */
802 } else
803 ratio = state->cfg.pll->pll_ratio;
804
805 state->current_demod_bw = bw;
806 }
807
808 if (ratio != 0) {
809 /** ratio update => only change ratio **/
810 dprintk("PLL: Update ratio (prediv: %d, ratio: %d)", state->cfg.pll->pll_prediv, ratio);
811 dib8000_write_word(state, 901, (state->cfg.pll->pll_prediv << 8) | (ratio << 0)); /* only the PLL ratio is updated. */
812 }
813 }
814
815 return 0;
816 }
817
818 static int dib8000_reset_gpio(struct dib8000_state *st)
819 {
820 /* reset the GPIOs */
821 dib8000_write_word(st, 1029, st->cfg.gpio_dir);
822 dib8000_write_word(st, 1030, st->cfg.gpio_val);
823
824 /* TODO 782 is P_gpio_od */
825
826 dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
827
828 dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
829 return 0;
830 }
831
832 static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
833 {
834 st->cfg.gpio_dir = dib8000_read_word(st, 1029);
835 st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
836 st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
837 dib8000_write_word(st, 1029, st->cfg.gpio_dir);
838
839 st->cfg.gpio_val = dib8000_read_word(st, 1030);
840 st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
841 st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
842 dib8000_write_word(st, 1030, st->cfg.gpio_val);
843
844 dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val);
845
846 return 0;
847 }
848
849 static int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
850 {
851 struct dib8000_state *state = fe->demodulator_priv;
852 return dib8000_cfg_gpio(state, num, dir, val);
853 }
854
855 static const u16 dib8000_defaults[] = {
856 /* auto search configuration - lock0 by default waiting
857 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
858 3, 7,
859 0x0004,
860 0x0400,
861 0x0814,
862
863 12, 11,
864 0x001b,
865 0x7740,
866 0x005b,
867 0x8d80,
868 0x01c9,
869 0xc380,
870 0x0000,
871 0x0080,
872 0x0000,
873 0x0090,
874 0x0001,
875 0xd4c0,
876
877 /*1, 32,
878 0x6680 // P_corm_thres Lock algorithms configuration */
879
880 11, 80, /* set ADC level to -16 */
881 (1 << 13) - 825 - 117,
882 (1 << 13) - 837 - 117,
883 (1 << 13) - 811 - 117,
884 (1 << 13) - 766 - 117,
885 (1 << 13) - 737 - 117,
886 (1 << 13) - 693 - 117,
887 (1 << 13) - 648 - 117,
888 (1 << 13) - 619 - 117,
889 (1 << 13) - 575 - 117,
890 (1 << 13) - 531 - 117,
891 (1 << 13) - 501 - 117,
892
893 4, 108,
894 0,
895 0,
896 0,
897 0,
898
899 1, 175,
900 0x0410,
901 1, 179,
902 8192, // P_fft_nb_to_cut
903
904 6, 181,
905 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
906 0x2800,
907 0x2800,
908 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
909 0x2800,
910 0x2800,
911
912 2, 193,
913 0x0666, // P_pha3_thres
914 0x0000, // P_cti_use_cpe, P_cti_use_prog
915
916 2, 205,
917 0x200f, // P_cspu_regul, P_cspu_win_cut
918 0x000f, // P_des_shift_work
919
920 5, 215,
921 0x023d, // P_adp_regul_cnt
922 0x00a4, // P_adp_noise_cnt
923 0x00a4, // P_adp_regul_ext
924 0x7ff0, // P_adp_noise_ext
925 0x3ccc, // P_adp_fil
926
927 1, 230,
928 0x0000, // P_2d_byp_ti_num
929
930 1, 263,
931 0x800, //P_equal_thres_wgn
932
933 1, 268,
934 (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
935
936 1, 270,
937 0x0001, // P_div_lock0_wait
938 1, 285,
939 0x0020, //p_fec_
940 1, 299,
941 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
942
943 1, 338,
944 (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
945 (1 << 10) |
946 (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
947 (3 << 5) | /* P_ctrl_pre_freq_step=3 */
948 (1 << 0), /* P_pre_freq_win_len=1 */
949
950 0,
951 };
952
953 static u16 dib8000_identify(struct i2c_device *client)
954 {
955 u16 value;
956
957 //because of glitches sometimes
958 value = dib8000_i2c_read16(client, 896);
959
960 if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
961 dprintk("wrong Vendor ID (read=0x%x)", value);
962 return 0;
963 }
964
965 value = dib8000_i2c_read16(client, 897);
966 if (value != 0x8000 && value != 0x8001 &&
967 value != 0x8002 && value != 0x8090) {
968 dprintk("wrong Device ID (%x)", value);
969 return 0;
970 }
971
972 switch (value) {
973 case 0x8000:
974 dprintk("found DiB8000A");
975 break;
976 case 0x8001:
977 dprintk("found DiB8000B");
978 break;
979 case 0x8002:
980 dprintk("found DiB8000C");
981 break;
982 case 0x8090:
983 dprintk("found DiB8096P");
984 break;
985 }
986 return value;
987 }
988
989 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 *unc);
990
991 static void dib8000_reset_stats(struct dvb_frontend *fe)
992 {
993 struct dib8000_state *state = fe->demodulator_priv;
994 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
995 u32 ucb;
996
997 memset(&c->strength, 0, sizeof(c->strength));
998 memset(&c->cnr, 0, sizeof(c->cnr));
999 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
1000 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
1001 memset(&c->block_error, 0, sizeof(c->block_error));
1002
1003 c->strength.len = 1;
1004 c->cnr.len = 1;
1005 c->block_error.len = 1;
1006 c->block_count.len = 1;
1007 c->post_bit_error.len = 1;
1008 c->post_bit_count.len = 1;
1009
1010 c->strength.stat[0].scale = FE_SCALE_DECIBEL;
1011 c->strength.stat[0].uvalue = 0;
1012
1013 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1014 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1015 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1016 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1017 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1018
1019 dib8000_read_unc_blocks(fe, &ucb);
1020
1021 state->init_ucb = -ucb;
1022 state->ber_jiffies_stats = 0;
1023 state->per_jiffies_stats = 0;
1024 memset(&state->ber_jiffies_stats_layer, 0,
1025 sizeof(state->ber_jiffies_stats_layer));
1026 }
1027
1028 static int dib8000_reset(struct dvb_frontend *fe)
1029 {
1030 struct dib8000_state *state = fe->demodulator_priv;
1031
1032 if ((state->revision = dib8000_identify(&state->i2c)) == 0)
1033 return -EINVAL;
1034
1035 /* sram lead in, rdy */
1036 if (state->revision != 0x8090)
1037 dib8000_write_word(state, 1287, 0x0003);
1038
1039 if (state->revision == 0x8000)
1040 dprintk("error : dib8000 MA not supported");
1041
1042 dibx000_reset_i2c_master(&state->i2c_master);
1043
1044 dib8000_set_power_mode(state, DIB8000_POWER_ALL);
1045
1046 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
1047 dib8000_set_adc_state(state, DIBX000_ADC_OFF);
1048
1049 /* restart all parts */
1050 dib8000_write_word(state, 770, 0xffff);
1051 dib8000_write_word(state, 771, 0xffff);
1052 dib8000_write_word(state, 772, 0xfffc);
1053 dib8000_write_word(state, 898, 0x000c); /* restart sad */
1054 if (state->revision == 0x8090)
1055 dib8000_write_word(state, 1280, 0x0045);
1056 else
1057 dib8000_write_word(state, 1280, 0x004d);
1058 dib8000_write_word(state, 1281, 0x000c);
1059
1060 dib8000_write_word(state, 770, 0x0000);
1061 dib8000_write_word(state, 771, 0x0000);
1062 dib8000_write_word(state, 772, 0x0000);
1063 dib8000_write_word(state, 898, 0x0004); // sad
1064 dib8000_write_word(state, 1280, 0x0000);
1065 dib8000_write_word(state, 1281, 0x0000);
1066
1067 /* drives */
1068 if (state->revision != 0x8090) {
1069 if (state->cfg.drives)
1070 dib8000_write_word(state, 906, state->cfg.drives);
1071 else {
1072 dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
1073 /* min drive SDRAM - not optimal - adjust */
1074 dib8000_write_word(state, 906, 0x2d98);
1075 }
1076 }
1077
1078 dib8000_reset_pll(state);
1079 if (state->revision != 0x8090)
1080 dib8000_write_word(state, 898, 0x0004);
1081
1082 if (dib8000_reset_gpio(state) != 0)
1083 dprintk("GPIO reset was not successful.");
1084
1085 if ((state->revision != 0x8090) &&
1086 (dib8000_set_output_mode(fe, OUTMODE_HIGH_Z) != 0))
1087 dprintk("OUTPUT_MODE could not be resetted.");
1088
1089 state->current_agc = NULL;
1090
1091 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
1092 /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
1093 if (state->cfg.pll->ifreq == 0)
1094 dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
1095 else
1096 dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
1097
1098 {
1099 u16 l = 0, r;
1100 const u16 *n;
1101 n = dib8000_defaults;
1102 l = *n++;
1103 while (l) {
1104 r = *n++;
1105 do {
1106 dib8000_write_word(state, r, *n++);
1107 r++;
1108 } while (--l);
1109 l = *n++;
1110 }
1111 }
1112
1113 state->isdbt_cfg_loaded = 0;
1114
1115 //div_cfg override for special configs
1116 if ((state->revision != 8090) && (state->cfg.div_cfg != 0))
1117 dib8000_write_word(state, 903, state->cfg.div_cfg);
1118
1119 /* unforce divstr regardless whether i2c enumeration was done or not */
1120 dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
1121
1122 dib8000_set_bandwidth(fe, 6000);
1123
1124 dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
1125 dib8000_sad_calib(state);
1126 if (state->revision != 0x8090)
1127 dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
1128
1129 /* ber_rs_len = 3 */
1130 dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5));
1131
1132 dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
1133
1134 dib8000_reset_stats(fe);
1135
1136 return 0;
1137 }
1138
1139 static void dib8000_restart_agc(struct dib8000_state *state)
1140 {
1141 // P_restart_iqc & P_restart_agc
1142 dib8000_write_word(state, 770, 0x0a00);
1143 dib8000_write_word(state, 770, 0x0000);
1144 }
1145
1146 static int dib8000_update_lna(struct dib8000_state *state)
1147 {
1148 u16 dyn_gain;
1149
1150 if (state->cfg.update_lna) {
1151 // read dyn_gain here (because it is demod-dependent and not tuner)
1152 dyn_gain = dib8000_read_word(state, 390);
1153
1154 if (state->cfg.update_lna(state->fe[0], dyn_gain)) {
1155 dib8000_restart_agc(state);
1156 return 1;
1157 }
1158 }
1159 return 0;
1160 }
1161
1162 static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
1163 {
1164 struct dibx000_agc_config *agc = NULL;
1165 int i;
1166 u16 reg;
1167
1168 if (state->current_band == band && state->current_agc != NULL)
1169 return 0;
1170 state->current_band = band;
1171
1172 for (i = 0; i < state->cfg.agc_config_count; i++)
1173 if (state->cfg.agc[i].band_caps & band) {
1174 agc = &state->cfg.agc[i];
1175 break;
1176 }
1177
1178 if (agc == NULL) {
1179 dprintk("no valid AGC configuration found for band 0x%02x", band);
1180 return -EINVAL;
1181 }
1182
1183 state->current_agc = agc;
1184
1185 /* AGC */
1186 dib8000_write_word(state, 76, agc->setup);
1187 dib8000_write_word(state, 77, agc->inv_gain);
1188 dib8000_write_word(state, 78, agc->time_stabiliz);
1189 dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
1190
1191 // Demod AGC loop configuration
1192 dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
1193 dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
1194
1195 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
1196 state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
1197
1198 /* AGC continued */
1199 if (state->wbd_ref != 0)
1200 dib8000_write_word(state, 106, state->wbd_ref);
1201 else // use default
1202 dib8000_write_word(state, 106, agc->wbd_ref);
1203
1204 if (state->revision == 0x8090) {
1205 reg = dib8000_read_word(state, 922) & (0x3 << 2);
1206 dib8000_write_word(state, 922, reg | (agc->wbd_sel << 2));
1207 }
1208
1209 dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
1210 dib8000_write_word(state, 108, agc->agc1_max);
1211 dib8000_write_word(state, 109, agc->agc1_min);
1212 dib8000_write_word(state, 110, agc->agc2_max);
1213 dib8000_write_word(state, 111, agc->agc2_min);
1214 dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
1215 dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
1216 dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
1217 dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
1218
1219 dib8000_write_word(state, 75, agc->agc1_pt3);
1220 if (state->revision != 0x8090)
1221 dib8000_write_word(state, 923,
1222 (dib8000_read_word(state, 923) & 0xffe3) |
1223 (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
1224
1225 return 0;
1226 }
1227
1228 static void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
1229 {
1230 struct dib8000_state *state = fe->demodulator_priv;
1231 dib8000_set_adc_state(state, DIBX000_ADC_ON);
1232 dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
1233 }
1234
1235 static int dib8000_agc_soft_split(struct dib8000_state *state)
1236 {
1237 u16 agc, split_offset;
1238
1239 if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
1240 return 0;
1241
1242 // n_agc_global
1243 agc = dib8000_read_word(state, 390);
1244
1245 if (agc > state->current_agc->split.min_thres)
1246 split_offset = state->current_agc->split.min;
1247 else if (agc < state->current_agc->split.max_thres)
1248 split_offset = state->current_agc->split.max;
1249 else
1250 split_offset = state->current_agc->split.max *
1251 (agc - state->current_agc->split.min_thres) /
1252 (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
1253
1254 dprintk("AGC split_offset: %d", split_offset);
1255
1256 // P_agc_force_split and P_agc_split_offset
1257 dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
1258 return 5000;
1259 }
1260
1261 static int dib8000_agc_startup(struct dvb_frontend *fe)
1262 {
1263 struct dib8000_state *state = fe->demodulator_priv;
1264 enum frontend_tune_state *tune_state = &state->tune_state;
1265 int ret = 0;
1266 u16 reg;
1267 u32 upd_demod_gain_period = 0x8000;
1268
1269 switch (*tune_state) {
1270 case CT_AGC_START:
1271 // set power-up level: interf+analog+AGC
1272
1273 if (state->revision != 0x8090)
1274 dib8000_set_adc_state(state, DIBX000_ADC_ON);
1275 else {
1276 dib8000_set_power_mode(state, DIB8000_POWER_ALL);
1277
1278 reg = dib8000_read_word(state, 1947)&0xff00;
1279 dib8000_write_word(state, 1946,
1280 upd_demod_gain_period & 0xFFFF);
1281 /* bit 14 = enDemodGain */
1282 dib8000_write_word(state, 1947, reg | (1<<14) |
1283 ((upd_demod_gain_period >> 16) & 0xFF));
1284
1285 /* enable adc i & q */
1286 reg = dib8000_read_word(state, 1920);
1287 dib8000_write_word(state, 1920, (reg | 0x3) &
1288 (~(1 << 7)));
1289 }
1290
1291 if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
1292 *tune_state = CT_AGC_STOP;
1293 state->status = FE_STATUS_TUNE_FAILED;
1294 break;
1295 }
1296
1297 ret = 70;
1298 *tune_state = CT_AGC_STEP_0;
1299 break;
1300
1301 case CT_AGC_STEP_0:
1302 //AGC initialization
1303 if (state->cfg.agc_control)
1304 state->cfg.agc_control(fe, 1);
1305
1306 dib8000_restart_agc(state);
1307
1308 // wait AGC rough lock time
1309 ret = 50;
1310 *tune_state = CT_AGC_STEP_1;
1311 break;
1312
1313 case CT_AGC_STEP_1:
1314 // wait AGC accurate lock time
1315 ret = 70;
1316
1317 if (dib8000_update_lna(state))
1318 // wait only AGC rough lock time
1319 ret = 50;
1320 else
1321 *tune_state = CT_AGC_STEP_2;
1322 break;
1323
1324 case CT_AGC_STEP_2:
1325 dib8000_agc_soft_split(state);
1326
1327 if (state->cfg.agc_control)
1328 state->cfg.agc_control(fe, 0);
1329
1330 *tune_state = CT_AGC_STOP;
1331 break;
1332 default:
1333 ret = dib8000_agc_soft_split(state);
1334 break;
1335 }
1336 return ret;
1337
1338 }
1339
1340 static void dib8096p_host_bus_drive(struct dib8000_state *state, u8 drive)
1341 {
1342 u16 reg;
1343
1344 drive &= 0x7;
1345
1346 /* drive host bus 2, 3, 4 */
1347 reg = dib8000_read_word(state, 1798) &
1348 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1349 reg |= (drive<<12) | (drive<<6) | drive;
1350 dib8000_write_word(state, 1798, reg);
1351
1352 /* drive host bus 5,6 */
1353 reg = dib8000_read_word(state, 1799) & ~((0x7 << 2) | (0x7 << 8));
1354 reg |= (drive<<8) | (drive<<2);
1355 dib8000_write_word(state, 1799, reg);
1356
1357 /* drive host bus 7, 8, 9 */
1358 reg = dib8000_read_word(state, 1800) &
1359 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1360 reg |= (drive<<12) | (drive<<6) | drive;
1361 dib8000_write_word(state, 1800, reg);
1362
1363 /* drive host bus 10, 11 */
1364 reg = dib8000_read_word(state, 1801) & ~((0x7 << 2) | (0x7 << 8));
1365 reg |= (drive<<8) | (drive<<2);
1366 dib8000_write_word(state, 1801, reg);
1367
1368 /* drive host bus 12, 13, 14 */
1369 reg = dib8000_read_word(state, 1802) &
1370 ~(0x7 | (0x7 << 6) | (0x7 << 12));
1371 reg |= (drive<<12) | (drive<<6) | drive;
1372 dib8000_write_word(state, 1802, reg);
1373 }
1374
1375 static u32 dib8096p_calcSyncFreq(u32 P_Kin, u32 P_Kout,
1376 u32 insertExtSynchro, u32 syncSize)
1377 {
1378 u32 quantif = 3;
1379 u32 nom = (insertExtSynchro * P_Kin+syncSize);
1380 u32 denom = P_Kout;
1381 u32 syncFreq = ((nom << quantif) / denom);
1382
1383 if ((syncFreq & ((1 << quantif) - 1)) != 0)
1384 syncFreq = (syncFreq >> quantif) + 1;
1385 else
1386 syncFreq = (syncFreq >> quantif);
1387
1388 if (syncFreq != 0)
1389 syncFreq = syncFreq - 1;
1390
1391 return syncFreq;
1392 }
1393
1394 static void dib8096p_cfg_DibTx(struct dib8000_state *state, u32 P_Kin,
1395 u32 P_Kout, u32 insertExtSynchro, u32 synchroMode,
1396 u32 syncWord, u32 syncSize)
1397 {
1398 dprintk("Configure DibStream Tx");
1399
1400 dib8000_write_word(state, 1615, 1);
1401 dib8000_write_word(state, 1603, P_Kin);
1402 dib8000_write_word(state, 1605, P_Kout);
1403 dib8000_write_word(state, 1606, insertExtSynchro);
1404 dib8000_write_word(state, 1608, synchroMode);
1405 dib8000_write_word(state, 1609, (syncWord >> 16) & 0xffff);
1406 dib8000_write_word(state, 1610, syncWord & 0xffff);
1407 dib8000_write_word(state, 1612, syncSize);
1408 dib8000_write_word(state, 1615, 0);
1409 }
1410
1411 static void dib8096p_cfg_DibRx(struct dib8000_state *state, u32 P_Kin,
1412 u32 P_Kout, u32 synchroMode, u32 insertExtSynchro,
1413 u32 syncWord, u32 syncSize, u32 dataOutRate)
1414 {
1415 u32 syncFreq;
1416
1417 dprintk("Configure DibStream Rx synchroMode = %d", synchroMode);
1418
1419 if ((P_Kin != 0) && (P_Kout != 0)) {
1420 syncFreq = dib8096p_calcSyncFreq(P_Kin, P_Kout,
1421 insertExtSynchro, syncSize);
1422 dib8000_write_word(state, 1542, syncFreq);
1423 }
1424
1425 dib8000_write_word(state, 1554, 1);
1426 dib8000_write_word(state, 1536, P_Kin);
1427 dib8000_write_word(state, 1537, P_Kout);
1428 dib8000_write_word(state, 1539, synchroMode);
1429 dib8000_write_word(state, 1540, (syncWord >> 16) & 0xffff);
1430 dib8000_write_word(state, 1541, syncWord & 0xffff);
1431 dib8000_write_word(state, 1543, syncSize);
1432 dib8000_write_word(state, 1544, dataOutRate);
1433 dib8000_write_word(state, 1554, 0);
1434 }
1435
1436 static void dib8096p_enMpegMux(struct dib8000_state *state, int onoff)
1437 {
1438 u16 reg_1287;
1439
1440 reg_1287 = dib8000_read_word(state, 1287);
1441
1442 switch (onoff) {
1443 case 1:
1444 reg_1287 &= ~(1 << 8);
1445 break;
1446 case 0:
1447 reg_1287 |= (1 << 8);
1448 break;
1449 }
1450
1451 dib8000_write_word(state, 1287, reg_1287);
1452 }
1453
1454 static void dib8096p_configMpegMux(struct dib8000_state *state,
1455 u16 pulseWidth, u16 enSerialMode, u16 enSerialClkDiv2)
1456 {
1457 u16 reg_1287;
1458
1459 dprintk("Enable Mpeg mux");
1460
1461 dib8096p_enMpegMux(state, 0);
1462
1463 /* If the input mode is MPEG do not divide the serial clock */
1464 if ((enSerialMode == 1) && (state->input_mode_mpeg == 1))
1465 enSerialClkDiv2 = 0;
1466
1467 reg_1287 = ((pulseWidth & 0x1f) << 3) |
1468 ((enSerialMode & 0x1) << 2) | (enSerialClkDiv2 & 0x1);
1469 dib8000_write_word(state, 1287, reg_1287);
1470
1471 dib8096p_enMpegMux(state, 1);
1472 }
1473
1474 static void dib8096p_setDibTxMux(struct dib8000_state *state, int mode)
1475 {
1476 u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 7);
1477
1478 switch (mode) {
1479 case MPEG_ON_DIBTX:
1480 dprintk("SET MPEG ON DIBSTREAM TX");
1481 dib8096p_cfg_DibTx(state, 8, 5, 0, 0, 0, 0);
1482 reg_1288 |= (1 << 9); break;
1483 case DIV_ON_DIBTX:
1484 dprintk("SET DIV_OUT ON DIBSTREAM TX");
1485 dib8096p_cfg_DibTx(state, 5, 5, 0, 0, 0, 0);
1486 reg_1288 |= (1 << 8); break;
1487 case ADC_ON_DIBTX:
1488 dprintk("SET ADC_OUT ON DIBSTREAM TX");
1489 dib8096p_cfg_DibTx(state, 20, 5, 10, 0, 0, 0);
1490 reg_1288 |= (1 << 7); break;
1491 default:
1492 break;
1493 }
1494 dib8000_write_word(state, 1288, reg_1288);
1495 }
1496
1497 static void dib8096p_setHostBusMux(struct dib8000_state *state, int mode)
1498 {
1499 u16 reg_1288 = dib8000_read_word(state, 1288) & ~(0x7 << 4);
1500
1501 switch (mode) {
1502 case DEMOUT_ON_HOSTBUS:
1503 dprintk("SET DEM OUT OLD INTERF ON HOST BUS");
1504 dib8096p_enMpegMux(state, 0);
1505 reg_1288 |= (1 << 6);
1506 break;
1507 case DIBTX_ON_HOSTBUS:
1508 dprintk("SET DIBSTREAM TX ON HOST BUS");
1509 dib8096p_enMpegMux(state, 0);
1510 reg_1288 |= (1 << 5);
1511 break;
1512 case MPEG_ON_HOSTBUS:
1513 dprintk("SET MPEG MUX ON HOST BUS");
1514 reg_1288 |= (1 << 4);
1515 break;
1516 default:
1517 break;
1518 }
1519 dib8000_write_word(state, 1288, reg_1288);
1520 }
1521
1522 static int dib8096p_set_diversity_in(struct dvb_frontend *fe, int onoff)
1523 {
1524 struct dib8000_state *state = fe->demodulator_priv;
1525 u16 reg_1287;
1526
1527 switch (onoff) {
1528 case 0: /* only use the internal way - not the diversity input */
1529 dprintk("%s mode OFF : by default Enable Mpeg INPUT",
1530 __func__);
1531 /* outputRate = 8 */
1532 dib8096p_cfg_DibRx(state, 8, 5, 0, 0, 0, 8, 0);
1533
1534 /* Do not divide the serial clock of MPEG MUX in
1535 SERIAL MODE in case input mode MPEG is used */
1536 reg_1287 = dib8000_read_word(state, 1287);
1537 /* enSerialClkDiv2 == 1 ? */
1538 if ((reg_1287 & 0x1) == 1) {
1539 /* force enSerialClkDiv2 = 0 */
1540 reg_1287 &= ~0x1;
1541 dib8000_write_word(state, 1287, reg_1287);
1542 }
1543 state->input_mode_mpeg = 1;
1544 break;
1545 case 1: /* both ways */
1546 case 2: /* only the diversity input */
1547 dprintk("%s ON : Enable diversity INPUT", __func__);
1548 dib8096p_cfg_DibRx(state, 5, 5, 0, 0, 0, 0, 0);
1549 state->input_mode_mpeg = 0;
1550 break;
1551 }
1552
1553 dib8000_set_diversity_in(state->fe[0], onoff);
1554 return 0;
1555 }
1556
1557 static int dib8096p_set_output_mode(struct dvb_frontend *fe, int mode)
1558 {
1559 struct dib8000_state *state = fe->demodulator_priv;
1560 u16 outreg, smo_mode, fifo_threshold;
1561 u8 prefer_mpeg_mux_use = 1;
1562 int ret = 0;
1563
1564 state->output_mode = mode;
1565 dib8096p_host_bus_drive(state, 1);
1566
1567 fifo_threshold = 1792;
1568 smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
1569 outreg = dib8000_read_word(state, 1286) &
1570 ~((1 << 10) | (0x7 << 6) | (1 << 1));
1571
1572 switch (mode) {
1573 case OUTMODE_HIGH_Z:
1574 outreg = 0;
1575 break;
1576
1577 case OUTMODE_MPEG2_SERIAL:
1578 if (prefer_mpeg_mux_use) {
1579 dprintk("dib8096P setting output mode TS_SERIAL using Mpeg Mux");
1580 dib8096p_configMpegMux(state, 3, 1, 1);
1581 dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
1582 } else {/* Use Smooth block */
1583 dprintk("dib8096P setting output mode TS_SERIAL using Smooth bloc");
1584 dib8096p_setHostBusMux(state,
1585 DEMOUT_ON_HOSTBUS);
1586 outreg |= (2 << 6) | (0 << 1);
1587 }
1588 break;
1589
1590 case OUTMODE_MPEG2_PAR_GATED_CLK:
1591 if (prefer_mpeg_mux_use) {
1592 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Mpeg Mux");
1593 dib8096p_configMpegMux(state, 2, 0, 0);
1594 dib8096p_setHostBusMux(state, MPEG_ON_HOSTBUS);
1595 } else { /* Use Smooth block */
1596 dprintk("dib8096P setting output mode TS_PARALLEL_GATED using Smooth block");
1597 dib8096p_setHostBusMux(state,
1598 DEMOUT_ON_HOSTBUS);
1599 outreg |= (0 << 6);
1600 }
1601 break;
1602
1603 case OUTMODE_MPEG2_PAR_CONT_CLK: /* Using Smooth block only */
1604 dprintk("dib8096P setting output mode TS_PARALLEL_CONT using Smooth block");
1605 dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
1606 outreg |= (1 << 6);
1607 break;
1608
1609 case OUTMODE_MPEG2_FIFO:
1610 /* Using Smooth block because not supported
1611 by new Mpeg Mux bloc */
1612 dprintk("dib8096P setting output mode TS_FIFO using Smooth block");
1613 dib8096p_setHostBusMux(state, DEMOUT_ON_HOSTBUS);
1614 outreg |= (5 << 6);
1615 smo_mode |= (3 << 1);
1616 fifo_threshold = 512;
1617 break;
1618
1619 case OUTMODE_DIVERSITY:
1620 dprintk("dib8096P setting output mode MODE_DIVERSITY");
1621 dib8096p_setDibTxMux(state, DIV_ON_DIBTX);
1622 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
1623 break;
1624
1625 case OUTMODE_ANALOG_ADC:
1626 dprintk("dib8096P setting output mode MODE_ANALOG_ADC");
1627 dib8096p_setDibTxMux(state, ADC_ON_DIBTX);
1628 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
1629 break;
1630 }
1631
1632 if (mode != OUTMODE_HIGH_Z)
1633 outreg |= (1<<10);
1634
1635 dprintk("output_mpeg2_in_188_bytes = %d",
1636 state->cfg.output_mpeg2_in_188_bytes);
1637 if (state->cfg.output_mpeg2_in_188_bytes)
1638 smo_mode |= (1 << 5);
1639
1640 ret |= dib8000_write_word(state, 299, smo_mode);
1641 /* synchronous fread */
1642 ret |= dib8000_write_word(state, 299 + 1, fifo_threshold);
1643 ret |= dib8000_write_word(state, 1286, outreg);
1644
1645 return ret;
1646 }
1647
1648 static int map_addr_to_serpar_number(struct i2c_msg *msg)
1649 {
1650 if (msg->buf[0] <= 15)
1651 msg->buf[0] -= 1;
1652 else if (msg->buf[0] == 17)
1653 msg->buf[0] = 15;
1654 else if (msg->buf[0] == 16)
1655 msg->buf[0] = 17;
1656 else if (msg->buf[0] == 19)
1657 msg->buf[0] = 16;
1658 else if (msg->buf[0] >= 21 && msg->buf[0] <= 25)
1659 msg->buf[0] -= 3;
1660 else if (msg->buf[0] == 28)
1661 msg->buf[0] = 23;
1662 else if (msg->buf[0] == 99)
1663 msg->buf[0] = 99;
1664 else
1665 return -EINVAL;
1666 return 0;
1667 }
1668
1669 static int dib8096p_tuner_write_serpar(struct i2c_adapter *i2c_adap,
1670 struct i2c_msg msg[], int num)
1671 {
1672 struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1673 u8 n_overflow = 1;
1674 u16 i = 1000;
1675 u16 serpar_num = msg[0].buf[0];
1676
1677 while (n_overflow == 1 && i) {
1678 n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
1679 i--;
1680 if (i == 0)
1681 dprintk("Tuner ITF: write busy (overflow)");
1682 }
1683 dib8000_write_word(state, 1985, (1 << 6) | (serpar_num & 0x3f));
1684 dib8000_write_word(state, 1986, (msg[0].buf[1] << 8) | msg[0].buf[2]);
1685
1686 return num;
1687 }
1688
1689 static int dib8096p_tuner_read_serpar(struct i2c_adapter *i2c_adap,
1690 struct i2c_msg msg[], int num)
1691 {
1692 struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1693 u8 n_overflow = 1, n_empty = 1;
1694 u16 i = 1000;
1695 u16 serpar_num = msg[0].buf[0];
1696 u16 read_word;
1697
1698 while (n_overflow == 1 && i) {
1699 n_overflow = (dib8000_read_word(state, 1984) >> 1) & 0x1;
1700 i--;
1701 if (i == 0)
1702 dprintk("TunerITF: read busy (overflow)");
1703 }
1704 dib8000_write_word(state, 1985, (0<<6) | (serpar_num&0x3f));
1705
1706 i = 1000;
1707 while (n_empty == 1 && i) {
1708 n_empty = dib8000_read_word(state, 1984)&0x1;
1709 i--;
1710 if (i == 0)
1711 dprintk("TunerITF: read busy (empty)");
1712 }
1713
1714 read_word = dib8000_read_word(state, 1987);
1715 msg[1].buf[0] = (read_word >> 8) & 0xff;
1716 msg[1].buf[1] = (read_word) & 0xff;
1717
1718 return num;
1719 }
1720
1721 static int dib8096p_tuner_rw_serpar(struct i2c_adapter *i2c_adap,
1722 struct i2c_msg msg[], int num)
1723 {
1724 if (map_addr_to_serpar_number(&msg[0]) == 0) {
1725 if (num == 1) /* write */
1726 return dib8096p_tuner_write_serpar(i2c_adap, msg, 1);
1727 else /* read */
1728 return dib8096p_tuner_read_serpar(i2c_adap, msg, 2);
1729 }
1730 return num;
1731 }
1732
1733 static int dib8096p_rw_on_apb(struct i2c_adapter *i2c_adap,
1734 struct i2c_msg msg[], int num, u16 apb_address)
1735 {
1736 struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1737 u16 word;
1738
1739 if (num == 1) { /* write */
1740 dib8000_write_word(state, apb_address,
1741 ((msg[0].buf[1] << 8) | (msg[0].buf[2])));
1742 } else {
1743 word = dib8000_read_word(state, apb_address);
1744 msg[1].buf[0] = (word >> 8) & 0xff;
1745 msg[1].buf[1] = (word) & 0xff;
1746 }
1747 return num;
1748 }
1749
1750 static int dib8096p_tuner_xfer(struct i2c_adapter *i2c_adap,
1751 struct i2c_msg msg[], int num)
1752 {
1753 struct dib8000_state *state = i2c_get_adapdata(i2c_adap);
1754 u16 apb_address = 0, word;
1755 int i = 0;
1756
1757 switch (msg[0].buf[0]) {
1758 case 0x12:
1759 apb_address = 1920;
1760 break;
1761 case 0x14:
1762 apb_address = 1921;
1763 break;
1764 case 0x24:
1765 apb_address = 1922;
1766 break;
1767 case 0x1a:
1768 apb_address = 1923;
1769 break;
1770 case 0x22:
1771 apb_address = 1924;
1772 break;
1773 case 0x33:
1774 apb_address = 1926;
1775 break;
1776 case 0x34:
1777 apb_address = 1927;
1778 break;
1779 case 0x35:
1780 apb_address = 1928;
1781 break;
1782 case 0x36:
1783 apb_address = 1929;
1784 break;
1785 case 0x37:
1786 apb_address = 1930;
1787 break;
1788 case 0x38:
1789 apb_address = 1931;
1790 break;
1791 case 0x39:
1792 apb_address = 1932;
1793 break;
1794 case 0x2a:
1795 apb_address = 1935;
1796 break;
1797 case 0x2b:
1798 apb_address = 1936;
1799 break;
1800 case 0x2c:
1801 apb_address = 1937;
1802 break;
1803 case 0x2d:
1804 apb_address = 1938;
1805 break;
1806 case 0x2e:
1807 apb_address = 1939;
1808 break;
1809 case 0x2f:
1810 apb_address = 1940;
1811 break;
1812 case 0x30:
1813 apb_address = 1941;
1814 break;
1815 case 0x31:
1816 apb_address = 1942;
1817 break;
1818 case 0x32:
1819 apb_address = 1943;
1820 break;
1821 case 0x3e:
1822 apb_address = 1944;
1823 break;
1824 case 0x3f:
1825 apb_address = 1945;
1826 break;
1827 case 0x40:
1828 apb_address = 1948;
1829 break;
1830 case 0x25:
1831 apb_address = 936;
1832 break;
1833 case 0x26:
1834 apb_address = 937;
1835 break;
1836 case 0x27:
1837 apb_address = 938;
1838 break;
1839 case 0x28:
1840 apb_address = 939;
1841 break;
1842 case 0x1d:
1843 /* get sad sel request */
1844 i = ((dib8000_read_word(state, 921) >> 12)&0x3);
1845 word = dib8000_read_word(state, 924+i);
1846 msg[1].buf[0] = (word >> 8) & 0xff;
1847 msg[1].buf[1] = (word) & 0xff;
1848 return num;
1849 case 0x1f:
1850 if (num == 1) { /* write */
1851 word = (u16) ((msg[0].buf[1] << 8) |
1852 msg[0].buf[2]);
1853 /* in the VGAMODE Sel are located on bit 0/1 */
1854 word &= 0x3;
1855 word = (dib8000_read_word(state, 921) &
1856 ~(3<<12)) | (word<<12);
1857 /* Set the proper input */
1858 dib8000_write_word(state, 921, word);
1859 return num;
1860 }
1861 }
1862
1863 if (apb_address != 0) /* R/W acces via APB */
1864 return dib8096p_rw_on_apb(i2c_adap, msg, num, apb_address);
1865 else /* R/W access via SERPAR */
1866 return dib8096p_tuner_rw_serpar(i2c_adap, msg, num);
1867
1868 return 0;
1869 }
1870
1871 static u32 dib8096p_i2c_func(struct i2c_adapter *adapter)
1872 {
1873 return I2C_FUNC_I2C;
1874 }
1875
1876 static struct i2c_algorithm dib8096p_tuner_xfer_algo = {
1877 .master_xfer = dib8096p_tuner_xfer,
1878 .functionality = dib8096p_i2c_func,
1879 };
1880
1881 static struct i2c_adapter *dib8096p_get_i2c_tuner(struct dvb_frontend *fe)
1882 {
1883 struct dib8000_state *st = fe->demodulator_priv;
1884 return &st->dib8096p_tuner_adap;
1885 }
1886
1887 static int dib8096p_tuner_sleep(struct dvb_frontend *fe, int onoff)
1888 {
1889 struct dib8000_state *state = fe->demodulator_priv;
1890 u16 en_cur_state;
1891
1892 dprintk("sleep dib8096p: %d", onoff);
1893
1894 en_cur_state = dib8000_read_word(state, 1922);
1895
1896 /* LNAs and MIX are ON and therefore it is a valid configuration */
1897 if (en_cur_state > 0xff)
1898 state->tuner_enable = en_cur_state ;
1899
1900 if (onoff)
1901 en_cur_state &= 0x00ff;
1902 else {
1903 if (state->tuner_enable != 0)
1904 en_cur_state = state->tuner_enable;
1905 }
1906
1907 dib8000_write_word(state, 1922, en_cur_state);
1908
1909 return 0;
1910 }
1911
1912 static const s32 lut_1000ln_mant[] =
1913 {
1914 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
1915 };
1916
1917 static s32 dib8000_get_adc_power(struct dvb_frontend *fe, u8 mode)
1918 {
1919 struct dib8000_state *state = fe->demodulator_priv;
1920 u32 ix = 0, tmp_val = 0, exp = 0, mant = 0;
1921 s32 val;
1922
1923 val = dib8000_read32(state, 384);
1924 if (mode) {
1925 tmp_val = val;
1926 while (tmp_val >>= 1)
1927 exp++;
1928 mant = (val * 1000 / (1<<exp));
1929 ix = (u8)((mant-1000)/100); /* index of the LUT */
1930 val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908);
1931 val = (val*256)/1000;
1932 }
1933 return val;
1934 }
1935
1936 static int dib8090p_get_dc_power(struct dvb_frontend *fe, u8 IQ)
1937 {
1938 struct dib8000_state *state = fe->demodulator_priv;
1939 int val = 0;
1940
1941 switch (IQ) {
1942 case 1:
1943 val = dib8000_read_word(state, 403);
1944 break;
1945 case 0:
1946 val = dib8000_read_word(state, 404);
1947 break;
1948 }
1949 if (val & 0x200)
1950 val -= 1024;
1951
1952 return val;
1953 }
1954
1955 static void dib8000_update_timf(struct dib8000_state *state)
1956 {
1957 u32 timf = state->timf = dib8000_read32(state, 435);
1958
1959 dib8000_write_word(state, 29, (u16) (timf >> 16));
1960 dib8000_write_word(state, 30, (u16) (timf & 0xffff));
1961 dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default);
1962 }
1963
1964 static u32 dib8000_ctrl_timf(struct dvb_frontend *fe, uint8_t op, uint32_t timf)
1965 {
1966 struct dib8000_state *state = fe->demodulator_priv;
1967
1968 switch (op) {
1969 case DEMOD_TIMF_SET:
1970 state->timf = timf;
1971 break;
1972 case DEMOD_TIMF_UPDATE:
1973 dib8000_update_timf(state);
1974 break;
1975 case DEMOD_TIMF_GET:
1976 break;
1977 }
1978 dib8000_set_bandwidth(state->fe[0], 6000);
1979
1980 return state->timf;
1981 }
1982
1983 static const u16 adc_target_16dB[11] = {
1984 7250, 7238, 7264, 7309, 7338, 7382, 7427, 7456, 7500, 7544, 7574
1985 };
1986
1987 static const u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
1988
1989 static u16 dib8000_set_layer(struct dib8000_state *state, u8 layer_index, u16 max_constellation)
1990 {
1991 u8 cr, constellation, time_intlv;
1992 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
1993
1994 switch (c->layer[layer_index].modulation) {
1995 case DQPSK:
1996 constellation = 0;
1997 break;
1998 case QPSK:
1999 constellation = 1;
2000 break;
2001 case QAM_16:
2002 constellation = 2;
2003 break;
2004 case QAM_64:
2005 default:
2006 constellation = 3;
2007 break;
2008 }
2009
2010 switch (c->layer[layer_index].fec) {
2011 case FEC_1_2:
2012 cr = 1;
2013 break;
2014 case FEC_2_3:
2015 cr = 2;
2016 break;
2017 case FEC_3_4:
2018 cr = 3;
2019 break;
2020 case FEC_5_6:
2021 cr = 5;
2022 break;
2023 case FEC_7_8:
2024 default:
2025 cr = 7;
2026 break;
2027 }
2028
2029 time_intlv = fls(c->layer[layer_index].interleaving);
2030 if (time_intlv > 3 && !(time_intlv == 4 && c->isdbt_sb_mode == 1))
2031 time_intlv = 0;
2032
2033 dib8000_write_word(state, 2 + layer_index, (constellation << 10) | ((c->layer[layer_index].segment_count & 0xf) << 6) | (cr << 3) | time_intlv);
2034 if (c->layer[layer_index].segment_count > 0) {
2035 switch (max_constellation) {
2036 case DQPSK:
2037 case QPSK:
2038 if (c->layer[layer_index].modulation == QAM_16 || c->layer[layer_index].modulation == QAM_64)
2039 max_constellation = c->layer[layer_index].modulation;
2040 break;
2041 case QAM_16:
2042 if (c->layer[layer_index].modulation == QAM_64)
2043 max_constellation = c->layer[layer_index].modulation;
2044 break;
2045 }
2046 }
2047
2048 return max_constellation;
2049 }
2050
2051 static const u16 adp_Q64[4] = {0x0148, 0xfff0, 0x00a4, 0xfff8}; /* P_adp_regul_cnt 0.04, P_adp_noise_cnt -0.002, P_adp_regul_ext 0.02, P_adp_noise_ext -0.001 */
2052 static const u16 adp_Q16[4] = {0x023d, 0xffdf, 0x00a4, 0xfff0}; /* P_adp_regul_cnt 0.07, P_adp_noise_cnt -0.004, P_adp_regul_ext 0.02, P_adp_noise_ext -0.002 */
2053 static const u16 adp_Qdefault[4] = {0x099a, 0xffae, 0x0333, 0xfff8}; /* P_adp_regul_cnt 0.3, P_adp_noise_cnt -0.01, P_adp_regul_ext 0.1, P_adp_noise_ext -0.002 */
2054 static u16 dib8000_adp_fine_tune(struct dib8000_state *state, u16 max_constellation)
2055 {
2056 u16 i, ana_gain = 0;
2057 const u16 *adp;
2058
2059 /* channel estimation fine configuration */
2060 switch (max_constellation) {
2061 case QAM_64:
2062 ana_gain = 0x7;
2063 adp = &adp_Q64[0];
2064 break;
2065 case QAM_16:
2066 ana_gain = 0x7;
2067 adp = &adp_Q16[0];
2068 break;
2069 default:
2070 ana_gain = 0;
2071 adp = &adp_Qdefault[0];
2072 break;
2073 }
2074
2075 for (i = 0; i < 4; i++)
2076 dib8000_write_word(state, 215 + i, adp[i]);
2077
2078 return ana_gain;
2079 }
2080
2081 static void dib8000_update_ana_gain(struct dib8000_state *state, u16 ana_gain)
2082 {
2083 u16 i;
2084
2085 dib8000_write_word(state, 116, ana_gain);
2086
2087 /* update ADC target depending on ana_gain */
2088 if (ana_gain) { /* set -16dB ADC target for ana_gain=-1 */
2089 for (i = 0; i < 10; i++)
2090 dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
2091 } else { /* set -22dB ADC target for ana_gain=0 */
2092 for (i = 0; i < 10; i++)
2093 dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
2094 }
2095 }
2096
2097 static void dib8000_load_ana_fe_coefs(struct dib8000_state *state, const s16 *ana_fe)
2098 {
2099 u16 mode = 0;
2100
2101 if (state->isdbt_cfg_loaded == 0)
2102 for (mode = 0; mode < 24; mode++)
2103 dib8000_write_word(state, 117 + mode, ana_fe[mode]);
2104 }
2105
2106 static const u16 lut_prbs_2k[14] = {
2107 0, 0x423, 0x009, 0x5C7, 0x7A6, 0x3D8, 0x527, 0x7FF, 0x79B, 0x3D6, 0x3A2, 0x53B, 0x2F4, 0x213
2108 };
2109 static const u16 lut_prbs_4k[14] = {
2110 0, 0x208, 0x0C3, 0x7B9, 0x423, 0x5C7, 0x3D8, 0x7FF, 0x3D6, 0x53B, 0x213, 0x029, 0x0D0, 0x48E
2111 };
2112 static const u16 lut_prbs_8k[14] = {
2113 0, 0x740, 0x069, 0x7DD, 0x208, 0x7B9, 0x5C7, 0x7FF, 0x53B, 0x029, 0x48E, 0x4C4, 0x367, 0x684
2114 };
2115
2116 static u16 dib8000_get_init_prbs(struct dib8000_state *state, u16 subchannel)
2117 {
2118 int sub_channel_prbs_group = 0;
2119
2120 sub_channel_prbs_group = (subchannel / 3) + 1;
2121 dprintk("sub_channel_prbs_group = %d , subchannel =%d prbs = 0x%04x", sub_channel_prbs_group, subchannel, lut_prbs_8k[sub_channel_prbs_group]);
2122
2123 switch (state->fe[0]->dtv_property_cache.transmission_mode) {
2124 case TRANSMISSION_MODE_2K:
2125 return lut_prbs_2k[sub_channel_prbs_group];
2126 case TRANSMISSION_MODE_4K:
2127 return lut_prbs_4k[sub_channel_prbs_group];
2128 default:
2129 case TRANSMISSION_MODE_8K:
2130 return lut_prbs_8k[sub_channel_prbs_group];
2131 }
2132 }
2133
2134 static void dib8000_set_13seg_channel(struct dib8000_state *state)
2135 {
2136 u16 i;
2137 u16 coff_pow = 0x2800;
2138
2139 state->seg_mask = 0x1fff; /* All 13 segments enabled */
2140
2141 /* ---- COFF ---- Carloff, the most robust --- */
2142 if (state->isdbt_cfg_loaded == 0) { /* if not Sound Broadcasting mode : put default values for 13 segments */
2143 dib8000_write_word(state, 180, (16 << 6) | 9);
2144 dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
2145 coff_pow = 0x2800;
2146 for (i = 0; i < 6; i++)
2147 dib8000_write_word(state, 181+i, coff_pow);
2148
2149 /* P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1 */
2150 /* P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1 */
2151 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
2152
2153 /* P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6 */
2154 dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
2155 /* P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1 */
2156 dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
2157
2158 dib8000_write_word(state, 228, 0); /* default value */
2159 dib8000_write_word(state, 265, 31); /* default value */
2160 dib8000_write_word(state, 205, 0x200f); /* init value */
2161 }
2162
2163 /*
2164 * make the cpil_coff_lock more robust but slower p_coff_winlen
2165 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2166 */
2167
2168 if (state->cfg.pll->ifreq == 0)
2169 dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
2170
2171 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_13seg);
2172 }
2173
2174 static void dib8000_set_subchannel_prbs(struct dib8000_state *state, u16 init_prbs)
2175 {
2176 u16 reg_1;
2177
2178 reg_1 = dib8000_read_word(state, 1);
2179 dib8000_write_word(state, 1, (init_prbs << 2) | (reg_1 & 0x3)); /* ADDR 1 */
2180 }
2181
2182 static void dib8000_small_fine_tune(struct dib8000_state *state)
2183 {
2184 u16 i;
2185 const s16 *ncoeff;
2186 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2187
2188 dib8000_write_word(state, 352, state->seg_diff_mask);
2189 dib8000_write_word(state, 353, state->seg_mask);
2190
2191 /* P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5 */
2192 dib8000_write_word(state, 351, (c->isdbt_sb_mode << 9) | (c->isdbt_sb_mode << 8) | (13 << 4) | 5);
2193
2194 if (c->isdbt_sb_mode) {
2195 /* ---- SMALL ---- */
2196 switch (c->transmission_mode) {
2197 case TRANSMISSION_MODE_2K:
2198 if (c->isdbt_partial_reception == 0) { /* 1-seg */
2199 if (c->layer[0].modulation == DQPSK) /* DQPSK */
2200 ncoeff = coeff_2k_sb_1seg_dqpsk;
2201 else /* QPSK or QAM */
2202 ncoeff = coeff_2k_sb_1seg;
2203 } else { /* 3-segments */
2204 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2205 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2206 ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
2207 else /* QPSK or QAM on external segments */
2208 ncoeff = coeff_2k_sb_3seg_0dqpsk;
2209 } else { /* QPSK or QAM on central segment */
2210 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2211 ncoeff = coeff_2k_sb_3seg_1dqpsk;
2212 else /* QPSK or QAM on external segments */
2213 ncoeff = coeff_2k_sb_3seg;
2214 }
2215 }
2216 break;
2217 case TRANSMISSION_MODE_4K:
2218 if (c->isdbt_partial_reception == 0) { /* 1-seg */
2219 if (c->layer[0].modulation == DQPSK) /* DQPSK */
2220 ncoeff = coeff_4k_sb_1seg_dqpsk;
2221 else /* QPSK or QAM */
2222 ncoeff = coeff_4k_sb_1seg;
2223 } else { /* 3-segments */
2224 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2225 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2226 ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
2227 else /* QPSK or QAM on external segments */
2228 ncoeff = coeff_4k_sb_3seg_0dqpsk;
2229 } else { /* QPSK or QAM on central segment */
2230 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2231 ncoeff = coeff_4k_sb_3seg_1dqpsk;
2232 else /* QPSK or QAM on external segments */
2233 ncoeff = coeff_4k_sb_3seg;
2234 }
2235 }
2236 break;
2237 case TRANSMISSION_MODE_AUTO:
2238 case TRANSMISSION_MODE_8K:
2239 default:
2240 if (c->isdbt_partial_reception == 0) { /* 1-seg */
2241 if (c->layer[0].modulation == DQPSK) /* DQPSK */
2242 ncoeff = coeff_8k_sb_1seg_dqpsk;
2243 else /* QPSK or QAM */
2244 ncoeff = coeff_8k_sb_1seg;
2245 } else { /* 3-segments */
2246 if (c->layer[0].modulation == DQPSK) { /* DQPSK on central segment */
2247 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2248 ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
2249 else /* QPSK or QAM on external segments */
2250 ncoeff = coeff_8k_sb_3seg_0dqpsk;
2251 } else { /* QPSK or QAM on central segment */
2252 if (c->layer[1].modulation == DQPSK) /* DQPSK on external segments */
2253 ncoeff = coeff_8k_sb_3seg_1dqpsk;
2254 else /* QPSK or QAM on external segments */
2255 ncoeff = coeff_8k_sb_3seg;
2256 }
2257 }
2258 break;
2259 }
2260
2261 for (i = 0; i < 8; i++)
2262 dib8000_write_word(state, 343 + i, ncoeff[i]);
2263 }
2264 }
2265
2266 static const u16 coff_thres_1seg[3] = {300, 150, 80};
2267 static const u16 coff_thres_3seg[3] = {350, 300, 250};
2268 static void dib8000_set_sb_channel(struct dib8000_state *state)
2269 {
2270 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2271 const u16 *coff;
2272 u16 i;
2273
2274 if (c->transmission_mode == TRANSMISSION_MODE_2K || c->transmission_mode == TRANSMISSION_MODE_4K) {
2275 dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); /* adp_pass =1 */
2276 dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); /* pha3_force_pha_shift = 1 */
2277 } else {
2278 dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); /* adp_pass =0 */
2279 dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); /* pha3_force_pha_shift = 0 */
2280 }
2281
2282 if (c->isdbt_partial_reception == 1) /* 3-segments */
2283 state->seg_mask = 0x00E0;
2284 else /* 1-segment */
2285 state->seg_mask = 0x0040;
2286
2287 dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
2288
2289 /* ---- COFF ---- Carloff, the most robust --- */
2290 /* P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64, P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1 */
2291 dib8000_write_word(state, 187, (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~c->isdbt_partial_reception & 1) << 2) | 0x3);
2292
2293 dib8000_write_word(state, 340, (16 << 6) | (8 << 0)); /* P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8 */
2294 dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));/* P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1 */
2295
2296 /* Sound Broadcasting mode 1 seg */
2297 if (c->isdbt_partial_reception == 0) {
2298 /* P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width = (P_mode == 3) , P_coff_one_seg_sym = (P_mode-1) */
2299 if (state->mode == 3)
2300 dib8000_write_word(state, 180, 0x1fcf | ((state->mode - 1) << 14));
2301 else
2302 dib8000_write_word(state, 180, 0x0fcf | ((state->mode - 1) << 14));
2303
2304 /* P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4 */
2305 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
2306 coff = &coff_thres_1seg[0];
2307 } else { /* Sound Broadcasting mode 3 seg */
2308 dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
2309 /* P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4 */
2310 dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
2311 coff = &coff_thres_3seg[0];
2312 }
2313
2314 dib8000_write_word(state, 228, 1); /* P_2d_mode_byp=1 */
2315 dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); /* P_cspu_win_cut = 0 */
2316
2317 if (c->isdbt_partial_reception == 0 && c->transmission_mode == TRANSMISSION_MODE_2K)
2318 dib8000_write_word(state, 265, 15); /* P_equal_noise_sel = 15 */
2319
2320 /* Write COFF thres */
2321 for (i = 0 ; i < 3; i++) {
2322 dib8000_write_word(state, 181+i, coff[i]);
2323 dib8000_write_word(state, 184+i, coff[i]);
2324 }
2325
2326 /*
2327 * make the cpil_coff_lock more robust but slower p_coff_winlen
2328 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
2329 */
2330
2331 dib8000_write_word(state, 266, ~state->seg_mask | state->seg_diff_mask); /* P_equal_noise_seg_inh */
2332
2333 if (c->isdbt_partial_reception == 0)
2334 dib8000_write_word(state, 178, 64); /* P_fft_powrange = 64 */
2335 else
2336 dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
2337 }
2338
2339 static void dib8000_set_isdbt_common_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
2340 {
2341 u16 p_cfr_left_edge = 0, p_cfr_right_edge = 0;
2342 u16 tmcc_pow = 0, ana_gain = 0, tmp = 0, i = 0, nbseg_diff = 0 ;
2343 u16 max_constellation = DQPSK;
2344 int init_prbs;
2345 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2346
2347 if (autosearching)
2348 c->isdbt_partial_reception = 1;
2349
2350 /* P_mode */
2351 dib8000_write_word(state, 10, (seq << 4));
2352
2353 /* init mode */
2354 state->mode = fft_to_mode(state);
2355
2356 /* set guard */
2357 tmp = dib8000_read_word(state, 1);
2358 dib8000_write_word(state, 1, (tmp&0xfffc) | (c->guard_interval & 0x3));
2359
2360 dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) | ((c->isdbt_partial_reception & 1) << 5) | ((c->isdbt_sb_mode & 1) << 4));
2361
2362 /* signal optimization parameter */
2363 if (c->isdbt_partial_reception) {
2364 state->seg_diff_mask = (c->layer[0].modulation == DQPSK) << permu_seg[0];
2365 for (i = 1; i < 3; i++)
2366 nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
2367 for (i = 0; i < nbseg_diff; i++)
2368 state->seg_diff_mask |= 1 << permu_seg[i+1];
2369 } else {
2370 for (i = 0; i < 3; i++)
2371 nbseg_diff += (c->layer[i].modulation == DQPSK) * c->layer[i].segment_count;
2372 for (i = 0; i < nbseg_diff; i++)
2373 state->seg_diff_mask |= 1 << permu_seg[i];
2374 }
2375
2376 if (state->seg_diff_mask)
2377 dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
2378 else
2379 dib8000_write_word(state, 268, (2 << 9) | 39); /*init value */
2380
2381 for (i = 0; i < 3; i++)
2382 max_constellation = dib8000_set_layer(state, i, max_constellation);
2383 if (autosearching == 0) {
2384 state->layer_b_nb_seg = c->layer[1].segment_count;
2385 state->layer_c_nb_seg = c->layer[2].segment_count;
2386 }
2387
2388 /* WRITE: Mode & Diff mask */
2389 dib8000_write_word(state, 0, (state->mode << 13) | state->seg_diff_mask);
2390
2391 state->differential_constellation = (state->seg_diff_mask != 0);
2392
2393 /* channel estimation fine configuration */
2394 ana_gain = dib8000_adp_fine_tune(state, max_constellation);
2395
2396 /* update ana_gain depending on max constellation */
2397 dib8000_update_ana_gain(state, ana_gain);
2398
2399 /* ---- ANA_FE ---- */
2400 if (c->isdbt_partial_reception) /* 3-segments */
2401 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_3seg);
2402 else
2403 dib8000_load_ana_fe_coefs(state, ana_fe_coeff_1seg); /* 1-segment */
2404
2405 /* TSB or ISDBT ? apply it now */
2406 if (c->isdbt_sb_mode) {
2407 dib8000_set_sb_channel(state);
2408 if (c->isdbt_sb_subchannel < 14)
2409 init_prbs = dib8000_get_init_prbs(state, c->isdbt_sb_subchannel);
2410 else
2411 init_prbs = 0;
2412 } else {
2413 dib8000_set_13seg_channel(state);
2414 init_prbs = 0xfff;
2415 }
2416
2417 /* SMALL */
2418 dib8000_small_fine_tune(state);
2419
2420 dib8000_set_subchannel_prbs(state, init_prbs);
2421
2422 /* ---- CHAN_BLK ---- */
2423 for (i = 0; i < 13; i++) {
2424 if ((((~state->seg_diff_mask) >> i) & 1) == 1) {
2425 p_cfr_left_edge += (1 << i) * ((i == 0) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i - 1)) & 1) == 0));
2426 p_cfr_right_edge += (1 << i) * ((i == 12) || ((((state->seg_mask & (~state->seg_diff_mask)) >> (i + 1)) & 1) == 0));
2427 }
2428 }
2429 dib8000_write_word(state, 222, p_cfr_left_edge); /* p_cfr_left_edge */
2430 dib8000_write_word(state, 223, p_cfr_right_edge); /* p_cfr_right_edge */
2431 /* "P_cspu_left_edge" & "P_cspu_right_edge" not used => do not care */
2432
2433 dib8000_write_word(state, 189, ~state->seg_mask | state->seg_diff_mask); /* P_lmod4_seg_inh */
2434 dib8000_write_word(state, 192, ~state->seg_mask | state->seg_diff_mask); /* P_pha3_seg_inh */
2435 dib8000_write_word(state, 225, ~state->seg_mask | state->seg_diff_mask); /* P_tac_seg_inh */
2436
2437 if (!autosearching)
2438 dib8000_write_word(state, 288, (~state->seg_mask | state->seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
2439 else
2440 dib8000_write_word(state, 288, 0x1fff); /*disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels. */
2441
2442 dib8000_write_word(state, 211, state->seg_mask & (~state->seg_diff_mask)); /* P_des_seg_enabled */
2443 dib8000_write_word(state, 287, ~state->seg_mask | 0x1000); /* P_tmcc_seg_inh */
2444
2445 dib8000_write_word(state, 178, 32); /* P_fft_powrange = 32 */
2446
2447 /* ---- TMCC ---- */
2448 for (i = 0; i < 3; i++)
2449 tmcc_pow += (((c->layer[i].modulation == DQPSK) * 4 + 1) * c->layer[i].segment_count) ;
2450
2451 /* Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9); */
2452 /* Threshold is set at 1/4 of max power. */
2453 tmcc_pow *= (1 << (9-2));
2454 dib8000_write_word(state, 290, tmcc_pow); /* P_tmcc_dec_thres_2k */
2455 dib8000_write_word(state, 291, tmcc_pow); /* P_tmcc_dec_thres_4k */
2456 dib8000_write_word(state, 292, tmcc_pow); /* P_tmcc_dec_thres_8k */
2457 /*dib8000_write_word(state, 287, (1 << 13) | 0x1000 ); */
2458
2459 /* ---- PHA3 ---- */
2460 if (state->isdbt_cfg_loaded == 0)
2461 dib8000_write_word(state, 250, 3285); /* p_2d_hspeed_thr0 */
2462
2463 state->isdbt_cfg_loaded = 0;
2464 }
2465
2466 static u32 dib8000_wait_lock(struct dib8000_state *state, u32 internal,
2467 u32 wait0_ms, u32 wait1_ms, u32 wait2_ms)
2468 {
2469 u32 value = 0; /* P_search_end0 wait time */
2470 u16 reg = 11; /* P_search_end0 start addr */
2471
2472 for (reg = 11; reg < 16; reg += 2) {
2473 if (reg == 11) {
2474 if (state->revision == 0x8090)
2475 value = internal * wait1_ms;
2476 else
2477 value = internal * wait0_ms;
2478 } else if (reg == 13)
2479 value = internal * wait1_ms;
2480 else if (reg == 15)
2481 value = internal * wait2_ms;
2482 dib8000_write_word(state, reg, (u16)((value >> 16) & 0xffff));
2483 dib8000_write_word(state, (reg + 1), (u16)(value & 0xffff));
2484 }
2485 return value;
2486 }
2487
2488 static int dib8000_autosearch_start(struct dvb_frontend *fe)
2489 {
2490 struct dib8000_state *state = fe->demodulator_priv;
2491 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2492 u8 slist = 0;
2493 u32 value, internal = state->cfg.pll->internal;
2494
2495 if (state->revision == 0x8090)
2496 internal = dib8000_read32(state, 23) / 1000;
2497
2498 if ((state->revision >= 0x8002) &&
2499 (state->autosearch_state == AS_SEARCHING_FFT)) {
2500 dib8000_write_word(state, 37, 0x0065); /* P_ctrl_pha_off_max default values */
2501 dib8000_write_word(state, 116, 0x0000); /* P_ana_gain to 0 */
2502
2503 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x1fff) | (0 << 13) | (1 << 15)); /* P_mode = 0, P_restart_search=1 */
2504 dib8000_write_word(state, 1, (dib8000_read_word(state, 1) & 0xfffc) | 0); /* P_guard = 0 */
2505 dib8000_write_word(state, 6, 0); /* P_lock0_mask = 0 */
2506 dib8000_write_word(state, 7, 0); /* P_lock1_mask = 0 */
2507 dib8000_write_word(state, 8, 0); /* P_lock2_mask = 0 */
2508 dib8000_write_word(state, 10, (dib8000_read_word(state, 10) & 0x200) | (16 << 4) | (0 << 0)); /* P_search_list=16, P_search_maxtrial=0 */
2509
2510 if (state->revision == 0x8090)
2511 value = dib8000_wait_lock(state, internal, 10, 10, 10); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2512 else
2513 value = dib8000_wait_lock(state, internal, 20, 20, 20); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2514
2515 dib8000_write_word(state, 17, 0);
2516 dib8000_write_word(state, 18, 200); /* P_search_rstst = 200 */
2517 dib8000_write_word(state, 19, 0);
2518 dib8000_write_word(state, 20, 400); /* P_search_rstend = 400 */
2519 dib8000_write_word(state, 21, (value >> 16) & 0xffff); /* P_search_checkst */
2520 dib8000_write_word(state, 22, value & 0xffff);
2521
2522 if (state->revision == 0x8090)
2523 dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (0 << 8)); /* P_corm_alpha = 0 */
2524 else
2525 dib8000_write_word(state, 32, (dib8000_read_word(state, 32) & 0xf0ff) | (9 << 8)); /* P_corm_alpha = 3 */
2526 dib8000_write_word(state, 355, 2); /* P_search_param_max = 2 */
2527
2528 /* P_search_param_select = (1 | 1<<4 | 1 << 8) */
2529 dib8000_write_word(state, 356, 0);
2530 dib8000_write_word(state, 357, 0x111);
2531
2532 dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (1 << 13)); /* P_restart_ccg = 1 */
2533 dib8000_write_word(state, 770, (dib8000_read_word(state, 770) & 0xdfff) | (0 << 13)); /* P_restart_ccg = 0 */
2534 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x7ff) | (0 << 15) | (1 << 13)); /* P_restart_search = 0; */
2535 } else if ((state->revision >= 0x8002) &&
2536 (state->autosearch_state == AS_SEARCHING_GUARD)) {
2537 c->transmission_mode = TRANSMISSION_MODE_8K;
2538 c->guard_interval = GUARD_INTERVAL_1_8;
2539 c->inversion = 0;
2540 c->layer[0].modulation = QAM_64;
2541 c->layer[0].fec = FEC_2_3;
2542 c->layer[0].interleaving = 0;
2543 c->layer[0].segment_count = 13;
2544
2545 slist = 16;
2546 c->transmission_mode = state->found_nfft;
2547
2548 dib8000_set_isdbt_common_channel(state, slist, 1);
2549
2550 /* set lock_mask values */
2551 dib8000_write_word(state, 6, 0x4);
2552 if (state->revision == 0x8090)
2553 dib8000_write_word(state, 7, ((1 << 12) | (1 << 11) | (1 << 10)));/* tmcc_dec_lock, tmcc_sync_lock, tmcc_data_lock, tmcc_bch_uncor */
2554 else
2555 dib8000_write_word(state, 7, 0x8);
2556 dib8000_write_word(state, 8, 0x1000);
2557
2558 /* set lock_mask wait time values */
2559 if (state->revision == 0x8090)
2560 dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2561 else
2562 dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2563
2564 dib8000_write_word(state, 355, 3); /* P_search_param_max = 3 */
2565
2566 /* P_search_param_select = 0xf; look for the 4 different guard intervals */
2567 dib8000_write_word(state, 356, 0);
2568 dib8000_write_word(state, 357, 0xf);
2569
2570 value = dib8000_read_word(state, 0);
2571 dib8000_write_word(state, 0, (u16)((1 << 15) | value));
2572 dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
2573 dib8000_write_word(state, 0, (u16)value);
2574 } else {
2575 c->inversion = 0;
2576 c->layer[0].modulation = QAM_64;
2577 c->layer[0].fec = FEC_2_3;
2578 c->layer[0].interleaving = 0;
2579 c->layer[0].segment_count = 13;
2580 if (!c->isdbt_sb_mode)
2581 c->layer[0].segment_count = 13;
2582
2583 /* choose the right list, in sb, always do everything */
2584 if (c->isdbt_sb_mode) {
2585 slist = 7;
2586 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
2587 } else {
2588 if (c->guard_interval == GUARD_INTERVAL_AUTO) {
2589 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2590 c->transmission_mode = TRANSMISSION_MODE_8K;
2591 c->guard_interval = GUARD_INTERVAL_1_8;
2592 slist = 7;
2593 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 to have autosearch start ok with mode2 */
2594 } else {
2595 c->guard_interval = GUARD_INTERVAL_1_8;
2596 slist = 3;
2597 }
2598 } else {
2599 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2600 c->transmission_mode = TRANSMISSION_MODE_8K;
2601 slist = 2;
2602 dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); /* P_mode = 1 */
2603 } else
2604 slist = 0;
2605 }
2606 }
2607 dprintk("Using list for autosearch : %d", slist);
2608
2609 dib8000_set_isdbt_common_channel(state, slist, 1);
2610
2611 /* set lock_mask values */
2612 dib8000_write_word(state, 6, 0x4);
2613 if (state->revision == 0x8090)
2614 dib8000_write_word(state, 7, (1 << 12) | (1 << 11) | (1 << 10));
2615 else
2616 dib8000_write_word(state, 7, 0x8);
2617 dib8000_write_word(state, 8, 0x1000);
2618
2619 /* set lock_mask wait time values */
2620 if (state->revision == 0x8090)
2621 dib8000_wait_lock(state, internal, 50, 200, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2622 else
2623 dib8000_wait_lock(state, internal, 50, 100, 1000); /* time in ms configure P_search_end0 P_search_end1 P_search_end2 */
2624
2625 value = dib8000_read_word(state, 0);
2626 dib8000_write_word(state, 0, (u16)((1 << 15) | value));
2627 dib8000_read_word(state, 1284); /* reset the INT. n_irq_pending */
2628 dib8000_write_word(state, 0, (u16)value);
2629 }
2630 return 0;
2631 }
2632
2633 static int dib8000_autosearch_irq(struct dvb_frontend *fe)
2634 {
2635 struct dib8000_state *state = fe->demodulator_priv;
2636 u16 irq_pending = dib8000_read_word(state, 1284);
2637
2638 if ((state->revision >= 0x8002) &&
2639 (state->autosearch_state == AS_SEARCHING_FFT)) {
2640 if (irq_pending & 0x1) {
2641 dprintk("dib8000_autosearch_irq: max correlation result available");
2642 return 3;
2643 }
2644 } else {
2645 if (irq_pending & 0x1) { /* failed */
2646 dprintk("dib8000_autosearch_irq failed");
2647 return 1;
2648 }
2649
2650 if (irq_pending & 0x2) { /* succeeded */
2651 dprintk("dib8000_autosearch_irq succeeded");
2652 return 2;
2653 }
2654 }
2655
2656 return 0; // still pending
2657 }
2658
2659 static void dib8000_viterbi_state(struct dib8000_state *state, u8 onoff)
2660 {
2661 u16 tmp;
2662
2663 tmp = dib8000_read_word(state, 771);
2664 if (onoff) /* start P_restart_chd : channel_decoder */
2665 dib8000_write_word(state, 771, tmp & 0xfffd);
2666 else /* stop P_restart_chd : channel_decoder */
2667 dib8000_write_word(state, 771, tmp | (1<<1));
2668 }
2669
2670 static void dib8000_set_dds(struct dib8000_state *state, s32 offset_khz)
2671 {
2672 s16 unit_khz_dds_val;
2673 u32 abs_offset_khz = ABS(offset_khz);
2674 u32 dds = state->cfg.pll->ifreq & 0x1ffffff;
2675 u8 invert = !!(state->cfg.pll->ifreq & (1 << 25));
2676 u8 ratio;
2677
2678 if (state->revision == 0x8090) {
2679 ratio = 4;
2680 unit_khz_dds_val = (1<<26) / (dib8000_read32(state, 23) / 1000);
2681 if (offset_khz < 0)
2682 dds = (1 << 26) - (abs_offset_khz * unit_khz_dds_val);
2683 else
2684 dds = (abs_offset_khz * unit_khz_dds_val);
2685
2686 if (invert)
2687 dds = (1<<26) - dds;
2688 } else {
2689 ratio = 2;
2690 unit_khz_dds_val = (u16) (67108864 / state->cfg.pll->internal);
2691
2692 if (offset_khz < 0)
2693 unit_khz_dds_val *= -1;
2694
2695 /* IF tuner */
2696 if (invert)
2697 dds -= abs_offset_khz * unit_khz_dds_val;
2698 else
2699 dds += abs_offset_khz * unit_khz_dds_val;
2700 }
2701
2702 dprintk("setting a DDS frequency offset of %c%dkHz", invert ? '-' : ' ', dds / unit_khz_dds_val);
2703
2704 if (abs_offset_khz <= (state->cfg.pll->internal / ratio)) {
2705 /* Max dds offset is the half of the demod freq */
2706 dib8000_write_word(state, 26, invert);
2707 dib8000_write_word(state, 27, (u16)(dds >> 16) & 0x1ff);
2708 dib8000_write_word(state, 28, (u16)(dds & 0xffff));
2709 }
2710 }
2711
2712 static void dib8000_set_frequency_offset(struct dib8000_state *state)
2713 {
2714 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2715 int i;
2716 u32 current_rf;
2717 int total_dds_offset_khz;
2718
2719 if (state->fe[0]->ops.tuner_ops.get_frequency)
2720 state->fe[0]->ops.tuner_ops.get_frequency(state->fe[0], &current_rf);
2721 else
2722 current_rf = c->frequency;
2723 current_rf /= 1000;
2724 total_dds_offset_khz = (int)current_rf - (int)c->frequency / 1000;
2725
2726 if (c->isdbt_sb_mode) {
2727 state->subchannel = c->isdbt_sb_subchannel;
2728
2729 i = dib8000_read_word(state, 26) & 1; /* P_dds_invspec */
2730 dib8000_write_word(state, 26, c->inversion ^ i);
2731
2732 if (state->cfg.pll->ifreq == 0) { /* low if tuner */
2733 if ((c->inversion ^ i) == 0)
2734 dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
2735 } else {
2736 if ((c->inversion ^ i) == 0)
2737 total_dds_offset_khz *= -1;
2738 }
2739 }
2740
2741 dprintk("%dkhz tuner offset (frequency = %dHz & current_rf = %dHz) total_dds_offset_hz = %d", c->frequency - current_rf, c->frequency, current_rf, total_dds_offset_khz);
2742
2743 /* apply dds offset now */
2744 dib8000_set_dds(state, total_dds_offset_khz);
2745 }
2746
2747 static u16 LUT_isdbt_symbol_duration[4] = { 26, 101, 63 };
2748
2749 static u32 dib8000_get_symbol_duration(struct dib8000_state *state)
2750 {
2751 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2752 u16 i;
2753
2754 switch (c->transmission_mode) {
2755 case TRANSMISSION_MODE_2K:
2756 i = 0;
2757 break;
2758 case TRANSMISSION_MODE_4K:
2759 i = 2;
2760 break;
2761 default:
2762 case TRANSMISSION_MODE_AUTO:
2763 case TRANSMISSION_MODE_8K:
2764 i = 1;
2765 break;
2766 }
2767
2768 return (LUT_isdbt_symbol_duration[i] / (c->bandwidth_hz / 1000)) + 1;
2769 }
2770
2771 static void dib8000_set_isdbt_loop_params(struct dib8000_state *state, enum param_loop_step loop_step)
2772 {
2773 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2774 u16 reg_32 = 0, reg_37 = 0;
2775
2776 switch (loop_step) {
2777 case LOOP_TUNE_1:
2778 if (c->isdbt_sb_mode) {
2779 if (c->isdbt_partial_reception == 0) {
2780 reg_32 = ((11 - state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x40 */
2781 reg_37 = (3 << 5) | (0 << 4) | (10 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
2782 } else { /* Sound Broadcasting mode 3 seg */
2783 reg_32 = ((10 - state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x60 */
2784 reg_37 = (3 << 5) | (0 << 4) | (9 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (9-P_mode) */
2785 }
2786 } else { /* 13-seg start conf offset loop parameters */
2787 reg_32 = ((9 - state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
2788 reg_37 = (3 << 5) | (0 << 4) | (8 - state->mode); /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
2789 }
2790 break;
2791 case LOOP_TUNE_2:
2792 if (c->isdbt_sb_mode) {
2793 if (c->isdbt_partial_reception == 0) { /* Sound Broadcasting mode 1 seg */
2794 reg_32 = ((13-state->mode) << 12) | (6 << 8) | 0x40; /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40*/
2795 reg_37 = (12-state->mode) | ((5 + state->mode) << 5);
2796 } else { /* Sound Broadcasting mode 3 seg */
2797 reg_32 = ((12-state->mode) << 12) | (6 << 8) | 0x60; /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 */
2798 reg_37 = (11-state->mode) | ((5 + state->mode) << 5);
2799 }
2800 } else { /* 13 seg */
2801 reg_32 = ((11-state->mode) << 12) | (6 << 8) | 0x80; /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 */
2802 reg_37 = ((5+state->mode) << 5) | (10 - state->mode);
2803 }
2804 break;
2805 }
2806 dib8000_write_word(state, 32, reg_32);
2807 dib8000_write_word(state, 37, reg_37);
2808 }
2809
2810 static void dib8000_demod_restart(struct dib8000_state *state)
2811 {
2812 dib8000_write_word(state, 770, 0x4000);
2813 dib8000_write_word(state, 770, 0x0000);
2814 return;
2815 }
2816
2817 static void dib8000_set_sync_wait(struct dib8000_state *state)
2818 {
2819 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2820 u16 sync_wait = 64;
2821
2822 /* P_dvsy_sync_wait - reuse mode */
2823 switch (c->transmission_mode) {
2824 case TRANSMISSION_MODE_8K:
2825 sync_wait = 256;
2826 break;
2827 case TRANSMISSION_MODE_4K:
2828 sync_wait = 128;
2829 break;
2830 default:
2831 case TRANSMISSION_MODE_2K:
2832 sync_wait = 64;
2833 break;
2834 }
2835
2836 if (state->cfg.diversity_delay == 0)
2837 sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + 48; /* add 50% SFN margin + compensate for one DVSY-fifo */
2838 else
2839 sync_wait = (sync_wait * (1 << (c->guard_interval)) * 3) / 2 + state->cfg.diversity_delay; /* add 50% SFN margin + compensate for DVSY-fifo */
2840
2841 dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | (sync_wait << 4));
2842 }
2843
2844 static unsigned long dib8000_get_timeout(struct dib8000_state *state, u32 delay, enum timeout_mode mode)
2845 {
2846 if (mode == SYMBOL_DEPENDENT_ON)
2847 delay *= state->symbol_duration;
2848
2849 return jiffies + usecs_to_jiffies(delay * 100);
2850 }
2851
2852 static s32 dib8000_get_status(struct dvb_frontend *fe)
2853 {
2854 struct dib8000_state *state = fe->demodulator_priv;
2855 return state->status;
2856 }
2857
2858 static enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
2859 {
2860 struct dib8000_state *state = fe->demodulator_priv;
2861 return state->tune_state;
2862 }
2863
2864 static int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
2865 {
2866 struct dib8000_state *state = fe->demodulator_priv;
2867
2868 state->tune_state = tune_state;
2869 return 0;
2870 }
2871
2872 static int dib8000_tune_restart_from_demod(struct dvb_frontend *fe)
2873 {
2874 struct dib8000_state *state = fe->demodulator_priv;
2875
2876 state->status = FE_STATUS_TUNE_PENDING;
2877 state->tune_state = CT_DEMOD_START;
2878 return 0;
2879 }
2880
2881 static u16 dib8000_read_lock(struct dvb_frontend *fe)
2882 {
2883 struct dib8000_state *state = fe->demodulator_priv;
2884
2885 if (state->revision == 0x8090)
2886 return dib8000_read_word(state, 570);
2887 return dib8000_read_word(state, 568);
2888 }
2889
2890 static int dib8090p_init_sdram(struct dib8000_state *state)
2891 {
2892 u16 reg = 0;
2893 dprintk("init sdram");
2894
2895 reg = dib8000_read_word(state, 274) & 0xfff0;
2896 dib8000_write_word(state, 274, reg | 0x7); /* P_dintlv_delay_ram = 7 because of MobileSdram */
2897
2898 dib8000_write_word(state, 1803, (7 << 2));
2899
2900 reg = dib8000_read_word(state, 1280);
2901 dib8000_write_word(state, 1280, reg | (1 << 2)); /* force restart P_restart_sdram */
2902 dib8000_write_word(state, 1280, reg); /* release restart P_restart_sdram */
2903
2904 return 0;
2905 }
2906
2907 /**
2908 * is_manual_mode - Check if TMCC should be used for parameters settings
2909 * @c: struct dvb_frontend_properties
2910 *
2911 * By default, TMCC table should be used for parameter settings on most
2912 * usercases. However, sometimes it is desirable to lock the demod to
2913 * use the manual parameters.
2914 *
2915 * On manual mode, the current dib8000_tune state machine is very restrict:
2916 * It requires that both per-layer and per-transponder parameters to be
2917 * properly specified, otherwise the device won't lock.
2918 *
2919 * Check if all those conditions are properly satisfied before allowing
2920 * the device to use the manual frequency lock mode.
2921 */
2922 static int is_manual_mode(struct dtv_frontend_properties *c)
2923 {
2924 int i, n_segs = 0;
2925
2926 /* Use auto mode on DVB-T compat mode */
2927 if (c->delivery_system != SYS_ISDBT)
2928 return 0;
2929
2930 /*
2931 * Transmission mode is only detected on auto mode, currently
2932 */
2933 if (c->transmission_mode == TRANSMISSION_MODE_AUTO) {
2934 dprintk("transmission mode auto");
2935 return 0;
2936 }
2937
2938 /*
2939 * Guard interval is only detected on auto mode, currently
2940 */
2941 if (c->guard_interval == GUARD_INTERVAL_AUTO) {
2942 dprintk("guard interval auto");
2943 return 0;
2944 }
2945
2946 /*
2947 * If no layer is enabled, assume auto mode, as at least one
2948 * layer should be enabled
2949 */
2950 if (!c->isdbt_layer_enabled) {
2951 dprintk("no layer modulation specified");
2952 return 0;
2953 }
2954
2955 /*
2956 * Check if the per-layer parameters aren't auto and
2957 * disable a layer if segment count is 0 or invalid.
2958 */
2959 for (i = 0; i < 3; i++) {
2960 if (!(c->isdbt_layer_enabled & 1 << i))
2961 continue;
2962
2963 if ((c->layer[i].segment_count > 13) ||
2964 (c->layer[i].segment_count == 0)) {
2965 c->isdbt_layer_enabled &= ~(1 << i);
2966 continue;
2967 }
2968
2969 n_segs += c->layer[i].segment_count;
2970
2971 if ((c->layer[i].modulation == QAM_AUTO) ||
2972 (c->layer[i].fec == FEC_AUTO)) {
2973 dprintk("layer %c has either modulation or FEC auto",
2974 'A' + i);
2975 return 0;
2976 }
2977 }
2978
2979 /*
2980 * Userspace specified a wrong number of segments.
2981 * fallback to auto mode.
2982 */
2983 if (n_segs == 0 || n_segs > 13) {
2984 dprintk("number of segments is invalid");
2985 return 0;
2986 }
2987
2988 /* Everything looks ok for manual mode */
2989 return 1;
2990 }
2991
2992 static int dib8000_tune(struct dvb_frontend *fe)
2993 {
2994 struct dib8000_state *state = fe->demodulator_priv;
2995 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
2996 enum frontend_tune_state *tune_state = &state->tune_state;
2997
2998 u16 locks, deeper_interleaver = 0, i;
2999 int ret = 1; /* 1 symbol duration (in 100us unit) delay most of the time */
3000
3001 unsigned long *timeout = &state->timeout;
3002 unsigned long now = jiffies;
3003 #ifdef DIB8000_AGC_FREEZE
3004 u16 agc1, agc2;
3005 #endif
3006
3007 u32 corm[4] = {0, 0, 0, 0};
3008 u8 find_index, max_value;
3009
3010 #if 0
3011 if (*tune_state < CT_DEMOD_STOP)
3012 dprintk("IN: context status = %d, TUNE_STATE %d autosearch step = %u jiffies = %lu",
3013 state->channel_parameters_set, *tune_state, state->autosearch_state, now);
3014 #endif
3015
3016 switch (*tune_state) {
3017 case CT_DEMOD_START: /* 30 */
3018 dib8000_reset_stats(fe);
3019
3020 if (state->revision == 0x8090)
3021 dib8090p_init_sdram(state);
3022 state->status = FE_STATUS_TUNE_PENDING;
3023 state->channel_parameters_set = is_manual_mode(c);
3024
3025 dprintk("Tuning channel on %s search mode",
3026 state->channel_parameters_set ? "manual" : "auto");
3027
3028 dib8000_viterbi_state(state, 0); /* force chan dec in restart */
3029
3030 /* Layer monitor */
3031 dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
3032
3033 dib8000_set_frequency_offset(state);
3034 dib8000_set_bandwidth(fe, c->bandwidth_hz / 1000);
3035
3036 if (state->channel_parameters_set == 0) { /* The channel struct is unknown, search it ! */
3037 #ifdef DIB8000_AGC_FREEZE
3038 if (state->revision != 0x8090) {
3039 state->agc1_max = dib8000_read_word(state, 108);
3040 state->agc1_min = dib8000_read_word(state, 109);
3041 state->agc2_max = dib8000_read_word(state, 110);
3042 state->agc2_min = dib8000_read_word(state, 111);
3043 agc1 = dib8000_read_word(state, 388);
3044 agc2 = dib8000_read_word(state, 389);
3045 dib8000_write_word(state, 108, agc1);
3046 dib8000_write_word(state, 109, agc1);
3047 dib8000_write_word(state, 110, agc2);
3048 dib8000_write_word(state, 111, agc2);
3049 }
3050 #endif
3051 state->autosearch_state = AS_SEARCHING_FFT;
3052 state->found_nfft = TRANSMISSION_MODE_AUTO;
3053 state->found_guard = GUARD_INTERVAL_AUTO;
3054 *tune_state = CT_DEMOD_SEARCH_NEXT;
3055 } else { /* we already know the channel struct so TUNE only ! */
3056 state->autosearch_state = AS_DONE;
3057 *tune_state = CT_DEMOD_STEP_3;
3058 }
3059 state->symbol_duration = dib8000_get_symbol_duration(state);
3060 break;
3061
3062 case CT_DEMOD_SEARCH_NEXT: /* 51 */
3063 dib8000_autosearch_start(fe);
3064 if (state->revision == 0x8090)
3065 ret = 50;
3066 else
3067 ret = 15;
3068 *tune_state = CT_DEMOD_STEP_1;
3069 break;
3070
3071 case CT_DEMOD_STEP_1: /* 31 */
3072 switch (dib8000_autosearch_irq(fe)) {
3073 case 1: /* fail */
3074 state->status = FE_STATUS_TUNE_FAILED;
3075 state->autosearch_state = AS_DONE;
3076 *tune_state = CT_DEMOD_STOP; /* else we are done here */
3077 break;
3078 case 2: /* Succes */
3079 state->status = FE_STATUS_FFT_SUCCESS; /* signal to the upper layer, that there was a channel found and the parameters can be read */
3080 *tune_state = CT_DEMOD_STEP_3;
3081 if (state->autosearch_state == AS_SEARCHING_GUARD)
3082 *tune_state = CT_DEMOD_STEP_2;
3083 else
3084 state->autosearch_state = AS_DONE;
3085 break;
3086 case 3: /* Autosearch FFT max correlation endded */
3087 *tune_state = CT_DEMOD_STEP_2;
3088 break;
3089 }
3090 break;
3091
3092 case CT_DEMOD_STEP_2:
3093 switch (state->autosearch_state) {
3094 case AS_SEARCHING_FFT:
3095 /* searching for the correct FFT */
3096 if (state->revision == 0x8090) {
3097 corm[2] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
3098 corm[1] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
3099 corm[0] = (dib8000_read_word(state, 600) << 16) | (dib8000_read_word(state, 601));
3100 } else {
3101 corm[2] = (dib8000_read_word(state, 594) << 16) | (dib8000_read_word(state, 595));
3102 corm[1] = (dib8000_read_word(state, 596) << 16) | (dib8000_read_word(state, 597));
3103 corm[0] = (dib8000_read_word(state, 598) << 16) | (dib8000_read_word(state, 599));
3104 }
3105 /* dprintk("corm fft: %u %u %u", corm[0], corm[1], corm[2]); */
3106
3107 max_value = 0;
3108 for (find_index = 1 ; find_index < 3 ; find_index++) {
3109 if (corm[max_value] < corm[find_index])
3110 max_value = find_index ;
3111 }
3112
3113 switch (max_value) {
3114 case 0:
3115 state->found_nfft = TRANSMISSION_MODE_2K;
3116 break;
3117 case 1:
3118 state->found_nfft = TRANSMISSION_MODE_4K;
3119 break;
3120 case 2:
3121 default:
3122 state->found_nfft = TRANSMISSION_MODE_8K;
3123 break;
3124 }
3125 /* dprintk("Autosearch FFT has found Mode %d", max_value + 1); */
3126
3127 *tune_state = CT_DEMOD_SEARCH_NEXT;
3128 state->autosearch_state = AS_SEARCHING_GUARD;
3129 if (state->revision == 0x8090)
3130 ret = 50;
3131 else
3132 ret = 10;
3133 break;
3134 case AS_SEARCHING_GUARD:
3135 /* searching for the correct guard interval */
3136 if (state->revision == 0x8090)
3137 state->found_guard = dib8000_read_word(state, 572) & 0x3;
3138 else
3139 state->found_guard = dib8000_read_word(state, 570) & 0x3;
3140 /* dprintk("guard interval found=%i", state->found_guard); */
3141
3142 *tune_state = CT_DEMOD_STEP_3;
3143 break;
3144 default:
3145 /* the demod should never be in this state */
3146 state->status = FE_STATUS_TUNE_FAILED;
3147 state->autosearch_state = AS_DONE;
3148 *tune_state = CT_DEMOD_STOP; /* else we are done here */
3149 break;
3150 }
3151 break;
3152
3153 case CT_DEMOD_STEP_3: /* 33 */
3154 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_1);
3155 dib8000_set_isdbt_common_channel(state, 0, 0);/* setting the known channel parameters here */
3156 *tune_state = CT_DEMOD_STEP_4;
3157 break;
3158
3159 case CT_DEMOD_STEP_4: /* (34) */
3160 dib8000_demod_restart(state);
3161
3162 dib8000_set_sync_wait(state);
3163 dib8000_set_diversity_in(state->fe[0], state->diversity_onoff);
3164
3165 locks = (dib8000_read_word(state, 180) >> 6) & 0x3f; /* P_coff_winlen ? */
3166 /* coff should lock over P_coff_winlen ofdm symbols : give 3 times this length to lock */
3167 *timeout = dib8000_get_timeout(state, 2 * locks, SYMBOL_DEPENDENT_ON);
3168 *tune_state = CT_DEMOD_STEP_5;
3169 break;
3170
3171 case CT_DEMOD_STEP_5: /* (35) */
3172 locks = dib8000_read_lock(fe);
3173 if (locks & (0x3 << 11)) { /* coff-lock and off_cpil_lock achieved */
3174 dib8000_update_timf(state); /* we achieved a coff_cpil_lock - it's time to update the timf */
3175 if (!state->differential_constellation) {
3176 /* 2 times lmod4_win_len + 10 symbols (pipe delay after coff + nb to compute a 1st correlation) */
3177 *timeout = dib8000_get_timeout(state, (20 * ((dib8000_read_word(state, 188)>>5)&0x1f)), SYMBOL_DEPENDENT_ON);
3178 *tune_state = CT_DEMOD_STEP_7;
3179 } else {
3180 *tune_state = CT_DEMOD_STEP_8;
3181 }
3182 } else if (time_after(now, *timeout)) {
3183 *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
3184 }
3185 break;
3186
3187 case CT_DEMOD_STEP_6: /* (36) if there is an input (diversity) */
3188 if ((state->fe[1] != NULL) && (state->output_mode != OUTMODE_DIVERSITY)) {
3189 /* if there is a diversity fe in input and this fe is has not already failled : wait here until this this fe has succedeed or failled */
3190 if (dib8000_get_status(state->fe[1]) <= FE_STATUS_STD_SUCCESS) /* Something is locked on the input fe */
3191 *tune_state = CT_DEMOD_STEP_8; /* go for mpeg */
3192 else if (dib8000_get_status(state->fe[1]) >= FE_STATUS_TUNE_TIME_TOO_SHORT) { /* fe in input failled also, break the current one */
3193 *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
3194 dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3195 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3196 state->status = FE_STATUS_TUNE_FAILED;
3197 }
3198 } else {
3199 dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3200 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3201 *tune_state = CT_DEMOD_STOP; /* else we are done here ; step 8 will close the loops and exit */
3202 state->status = FE_STATUS_TUNE_FAILED;
3203 }
3204 break;
3205
3206 case CT_DEMOD_STEP_7: /* 37 */
3207 locks = dib8000_read_lock(fe);
3208 if (locks & (1<<10)) { /* lmod4_lock */
3209 ret = 14; /* wait for 14 symbols */
3210 *tune_state = CT_DEMOD_STEP_8;
3211 } else if (time_after(now, *timeout))
3212 *tune_state = CT_DEMOD_STEP_6; /* goto check for diversity input connection */
3213 break;
3214
3215 case CT_DEMOD_STEP_8: /* 38 */
3216 dib8000_viterbi_state(state, 1); /* start viterbi chandec */
3217 dib8000_set_isdbt_loop_params(state, LOOP_TUNE_2);
3218
3219 /* mpeg will never lock on this condition because init_prbs is not set : search for it !*/
3220 if (c->isdbt_sb_mode
3221 && c->isdbt_sb_subchannel < 14
3222 && !state->differential_constellation) {
3223 state->subchannel = 0;
3224 *tune_state = CT_DEMOD_STEP_11;
3225 } else {
3226 *tune_state = CT_DEMOD_STEP_9;
3227 state->status = FE_STATUS_LOCKED;
3228 }
3229 break;
3230
3231 case CT_DEMOD_STEP_9: /* 39 */
3232 if ((state->revision == 0x8090) || ((dib8000_read_word(state, 1291) >> 9) & 0x1)) { /* fe capable of deinterleaving : esram */
3233 /* defines timeout for mpeg lock depending on interleaver length of longest layer */
3234 for (i = 0; i < 3; i++) {
3235 if (c->layer[i].interleaving >= deeper_interleaver) {
3236 dprintk("layer%i: time interleaver = %d ", i, c->layer[i].interleaving);
3237 if (c->layer[i].segment_count > 0) { /* valid layer */
3238 deeper_interleaver = c->layer[0].interleaving;
3239 state->longest_intlv_layer = i;
3240 }
3241 }
3242 }
3243
3244 if (deeper_interleaver == 0)
3245 locks = 2; /* locks is the tmp local variable name */
3246 else if (deeper_interleaver == 3)
3247 locks = 8;
3248 else
3249 locks = 2 * deeper_interleaver;
3250
3251 if (state->diversity_onoff != 0) /* because of diversity sync */
3252 locks *= 2;
3253
3254 *timeout = now + msecs_to_jiffies(200 * locks); /* give the mpeg lock 800ms if sram is present */
3255 dprintk("Deeper interleaver mode = %d on layer %d : timeout mult factor = %d => will use timeout = %ld",
3256 deeper_interleaver, state->longest_intlv_layer, locks, *timeout);
3257
3258 *tune_state = CT_DEMOD_STEP_10;
3259 } else
3260 *tune_state = CT_DEMOD_STOP;
3261 break;
3262
3263 case CT_DEMOD_STEP_10: /* 40 */
3264 locks = dib8000_read_lock(fe);
3265 if (locks&(1<<(7-state->longest_intlv_layer))) { /* mpeg lock : check the longest one */
3266 dprintk("ISDB-T layer locks: Layer A %s, Layer B %s, Layer C %s",
3267 c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3268 c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3269 c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3270 if (c->isdbt_sb_mode
3271 && c->isdbt_sb_subchannel < 14
3272 && !state->differential_constellation)
3273 /* signal to the upper layer, that there was a channel found and the parameters can be read */
3274 state->status = FE_STATUS_DEMOD_SUCCESS;
3275 else
3276 state->status = FE_STATUS_DATA_LOCKED;
3277 *tune_state = CT_DEMOD_STOP;
3278 } else if (time_after(now, *timeout)) {
3279 if (c->isdbt_sb_mode
3280 && c->isdbt_sb_subchannel < 14
3281 && !state->differential_constellation) { /* continue to try init prbs autosearch */
3282 state->subchannel += 3;
3283 *tune_state = CT_DEMOD_STEP_11;
3284 } else { /* we are done mpeg of the longest interleaver xas not locking but let's try if an other layer has locked in the same time */
3285 if (locks & (0x7 << 5)) {
3286 dprintk("Not all ISDB-T layers locked in %d ms: Layer A %s, Layer B %s, Layer C %s",
3287 jiffies_to_msecs(now - *timeout),
3288 c->layer[0].segment_count ? (locks >> 7) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3289 c->layer[1].segment_count ? (locks >> 6) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled",
3290 c->layer[2].segment_count ? (locks >> 5) & 0x1 ? "locked" : "NOT LOCKED" : "not enabled");
3291
3292 state->status = FE_STATUS_DATA_LOCKED;
3293 } else
3294 state->status = FE_STATUS_TUNE_FAILED;
3295 *tune_state = CT_DEMOD_STOP;
3296 }
3297 }
3298 break;
3299
3300 case CT_DEMOD_STEP_11: /* 41 : init prbs autosearch */
3301 if (state->subchannel <= 41) {
3302 dib8000_set_subchannel_prbs(state, dib8000_get_init_prbs(state, state->subchannel));
3303 *tune_state = CT_DEMOD_STEP_9;
3304 } else {
3305 *tune_state = CT_DEMOD_STOP;
3306 state->status = FE_STATUS_TUNE_FAILED;
3307 }
3308 break;
3309
3310 default:
3311 break;
3312 }
3313
3314 /* tuning is finished - cleanup the demod */
3315 switch (*tune_state) {
3316 case CT_DEMOD_STOP: /* (42) */
3317 #ifdef DIB8000_AGC_FREEZE
3318 if ((state->revision != 0x8090) && (state->agc1_max != 0)) {
3319 dib8000_write_word(state, 108, state->agc1_max);
3320 dib8000_write_word(state, 109, state->agc1_min);
3321 dib8000_write_word(state, 110, state->agc2_max);
3322 dib8000_write_word(state, 111, state->agc2_min);
3323 state->agc1_max = 0;
3324 state->agc1_min = 0;
3325 state->agc2_max = 0;
3326 state->agc2_min = 0;
3327 }
3328 #endif
3329 ret = 0;
3330 break;
3331 default:
3332 break;
3333 }
3334
3335 if ((ret > 0) && (*tune_state > CT_DEMOD_STEP_3))
3336 return ret * state->symbol_duration;
3337 if ((ret > 0) && (ret < state->symbol_duration))
3338 return state->symbol_duration; /* at least one symbol */
3339 return ret;
3340 }
3341
3342 static int dib8000_wakeup(struct dvb_frontend *fe)
3343 {
3344 struct dib8000_state *state = fe->demodulator_priv;
3345 u8 index_frontend;
3346 int ret;
3347
3348 dib8000_set_power_mode(state, DIB8000_POWER_ALL);
3349 dib8000_set_adc_state(state, DIBX000_ADC_ON);
3350 if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
3351 dprintk("could not start Slow ADC");
3352
3353 if (state->revision == 0x8090)
3354 dib8000_sad_calib(state);
3355
3356 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3357 ret = state->fe[index_frontend]->ops.init(state->fe[index_frontend]);
3358 if (ret < 0)
3359 return ret;
3360 }
3361
3362 return 0;
3363 }
3364
3365 static int dib8000_sleep(struct dvb_frontend *fe)
3366 {
3367 struct dib8000_state *state = fe->demodulator_priv;
3368 u8 index_frontend;
3369 int ret;
3370
3371 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3372 ret = state->fe[index_frontend]->ops.sleep(state->fe[index_frontend]);
3373 if (ret < 0)
3374 return ret;
3375 }
3376
3377 if (state->revision != 0x8090)
3378 dib8000_set_output_mode(fe, OUTMODE_HIGH_Z);
3379 dib8000_set_power_mode(state, DIB8000_POWER_INTERFACE_ONLY);
3380 return dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(state, DIBX000_ADC_OFF);
3381 }
3382
3383 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat);
3384
3385 static int dib8000_get_frontend(struct dvb_frontend *fe,
3386 struct dtv_frontend_properties *c)
3387 {
3388 struct dib8000_state *state = fe->demodulator_priv;
3389 u16 i, val = 0;
3390 enum fe_status stat = 0;
3391 u8 index_frontend, sub_index_frontend;
3392
3393 c->bandwidth_hz = 6000000;
3394
3395 /*
3396 * If called to early, get_frontend makes dib8000_tune to either
3397 * not lock or not sync. This causes dvbv5-scan/dvbv5-zap to fail.
3398 * So, let's just return if frontend 0 has not locked.
3399 */
3400 dib8000_read_status(fe, &stat);
3401 if (!(stat & FE_HAS_SYNC))
3402 return 0;
3403
3404 dprintk("dib8000_get_frontend: TMCC lock");
3405 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3406 state->fe[index_frontend]->ops.read_status(state->fe[index_frontend], &stat);
3407 if (stat&FE_HAS_SYNC) {
3408 dprintk("TMCC lock on the slave%i", index_frontend);
3409 /* synchronize the cache with the other frontends */
3410 state->fe[index_frontend]->ops.get_frontend(state->fe[index_frontend], c);
3411 for (sub_index_frontend = 0; (sub_index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[sub_index_frontend] != NULL); sub_index_frontend++) {
3412 if (sub_index_frontend != index_frontend) {
3413 state->fe[sub_index_frontend]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
3414 state->fe[sub_index_frontend]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
3415 state->fe[sub_index_frontend]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
3416 state->fe[sub_index_frontend]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
3417 state->fe[sub_index_frontend]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
3418 for (i = 0; i < 3; i++) {
3419 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
3420 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
3421 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
3422 state->fe[sub_index_frontend]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
3423 }
3424 }
3425 }
3426 return 0;
3427 }
3428 }
3429
3430 c->isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
3431
3432 if (state->revision == 0x8090)
3433 val = dib8000_read_word(state, 572);
3434 else
3435 val = dib8000_read_word(state, 570);
3436 c->inversion = (val & 0x40) >> 6;
3437 switch ((val & 0x30) >> 4) {
3438 case 1:
3439 c->transmission_mode = TRANSMISSION_MODE_2K;
3440 dprintk("dib8000_get_frontend: transmission mode 2K");
3441 break;
3442 case 2:
3443 c->transmission_mode = TRANSMISSION_MODE_4K;
3444 dprintk("dib8000_get_frontend: transmission mode 4K");
3445 break;
3446 case 3:
3447 default:
3448 c->transmission_mode = TRANSMISSION_MODE_8K;
3449 dprintk("dib8000_get_frontend: transmission mode 8K");
3450 break;
3451 }
3452
3453 switch (val & 0x3) {
3454 case 0:
3455 c->guard_interval = GUARD_INTERVAL_1_32;
3456 dprintk("dib8000_get_frontend: Guard Interval = 1/32 ");
3457 break;
3458 case 1:
3459 c->guard_interval = GUARD_INTERVAL_1_16;
3460 dprintk("dib8000_get_frontend: Guard Interval = 1/16 ");
3461 break;
3462 case 2:
3463 dprintk("dib8000_get_frontend: Guard Interval = 1/8 ");
3464 c->guard_interval = GUARD_INTERVAL_1_8;
3465 break;
3466 case 3:
3467 dprintk("dib8000_get_frontend: Guard Interval = 1/4 ");
3468 c->guard_interval = GUARD_INTERVAL_1_4;
3469 break;
3470 }
3471
3472 val = dib8000_read_word(state, 505);
3473 c->isdbt_partial_reception = val & 1;
3474 dprintk("dib8000_get_frontend: partial_reception = %d ", c->isdbt_partial_reception);
3475
3476 for (i = 0; i < 3; i++) {
3477 int show;
3478
3479 val = dib8000_read_word(state, 493 + i) & 0x0f;
3480 c->layer[i].segment_count = val;
3481
3482 if (val == 0 || val > 13)
3483 show = 0;
3484 else
3485 show = 1;
3486
3487 if (show)
3488 dprintk("dib8000_get_frontend: Layer %d segments = %d ",
3489 i, c->layer[i].segment_count);
3490
3491 val = dib8000_read_word(state, 499 + i) & 0x3;
3492 /* Interleaving can be 0, 1, 2 or 4 */
3493 if (val == 3)
3494 val = 4;
3495 c->layer[i].interleaving = val;
3496 if (show)
3497 dprintk("dib8000_get_frontend: Layer %d time_intlv = %d ",
3498 i, c->layer[i].interleaving);
3499
3500 val = dib8000_read_word(state, 481 + i);
3501 switch (val & 0x7) {
3502 case 1:
3503 c->layer[i].fec = FEC_1_2;
3504 if (show)
3505 dprintk("dib8000_get_frontend: Layer %d Code Rate = 1/2 ", i);
3506 break;
3507 case 2:
3508 c->layer[i].fec = FEC_2_3;
3509 if (show)
3510 dprintk("dib8000_get_frontend: Layer %d Code Rate = 2/3 ", i);
3511 break;
3512 case 3:
3513 c->layer[i].fec = FEC_3_4;
3514 if (show)
3515 dprintk("dib8000_get_frontend: Layer %d Code Rate = 3/4 ", i);
3516 break;
3517 case 5:
3518 c->layer[i].fec = FEC_5_6;
3519 if (show)
3520 dprintk("dib8000_get_frontend: Layer %d Code Rate = 5/6 ", i);
3521 break;
3522 default:
3523 c->layer[i].fec = FEC_7_8;
3524 if (show)
3525 dprintk("dib8000_get_frontend: Layer %d Code Rate = 7/8 ", i);
3526 break;
3527 }
3528
3529 val = dib8000_read_word(state, 487 + i);
3530 switch (val & 0x3) {
3531 case 0:
3532 c->layer[i].modulation = DQPSK;
3533 if (show)
3534 dprintk("dib8000_get_frontend: Layer %d DQPSK ", i);
3535 break;
3536 case 1:
3537 c->layer[i].modulation = QPSK;
3538 if (show)
3539 dprintk("dib8000_get_frontend: Layer %d QPSK ", i);
3540 break;
3541 case 2:
3542 c->layer[i].modulation = QAM_16;
3543 if (show)
3544 dprintk("dib8000_get_frontend: Layer %d QAM16 ", i);
3545 break;
3546 case 3:
3547 default:
3548 c->layer[i].modulation = QAM_64;
3549 if (show)
3550 dprintk("dib8000_get_frontend: Layer %d QAM64 ", i);
3551 break;
3552 }
3553 }
3554
3555 /* synchronize the cache with the other frontends */
3556 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3557 state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode = c->isdbt_sb_mode;
3558 state->fe[index_frontend]->dtv_property_cache.inversion = c->inversion;
3559 state->fe[index_frontend]->dtv_property_cache.transmission_mode = c->transmission_mode;
3560 state->fe[index_frontend]->dtv_property_cache.guard_interval = c->guard_interval;
3561 state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception = c->isdbt_partial_reception;
3562 for (i = 0; i < 3; i++) {
3563 state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count = c->layer[i].segment_count;
3564 state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving = c->layer[i].interleaving;
3565 state->fe[index_frontend]->dtv_property_cache.layer[i].fec = c->layer[i].fec;
3566 state->fe[index_frontend]->dtv_property_cache.layer[i].modulation = c->layer[i].modulation;
3567 }
3568 }
3569 return 0;
3570 }
3571
3572 static int dib8000_set_frontend(struct dvb_frontend *fe)
3573 {
3574 struct dib8000_state *state = fe->demodulator_priv;
3575 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
3576 int l, i, active, time, time_slave = 0;
3577 u8 exit_condition, index_frontend;
3578 unsigned long delay, callback_time;
3579
3580 if (c->frequency == 0) {
3581 dprintk("dib8000: must at least specify frequency ");
3582 return 0;
3583 }
3584
3585 if (c->bandwidth_hz == 0) {
3586 dprintk("dib8000: no bandwidth specified, set to default ");
3587 c->bandwidth_hz = 6000000;
3588 }
3589
3590 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3591 /* synchronization of the cache */
3592 state->fe[index_frontend]->dtv_property_cache.delivery_system = SYS_ISDBT;
3593 memcpy(&state->fe[index_frontend]->dtv_property_cache, &fe->dtv_property_cache, sizeof(struct dtv_frontend_properties));
3594
3595 /* set output mode and diversity input */
3596 if (state->revision != 0x8090) {
3597 dib8000_set_diversity_in(state->fe[index_frontend], 1);
3598 if (index_frontend != 0)
3599 dib8000_set_output_mode(state->fe[index_frontend],
3600 OUTMODE_DIVERSITY);
3601 else
3602 dib8000_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
3603 } else {
3604 dib8096p_set_diversity_in(state->fe[index_frontend], 1);
3605 if (index_frontend != 0)
3606 dib8096p_set_output_mode(state->fe[index_frontend],
3607 OUTMODE_DIVERSITY);
3608 else
3609 dib8096p_set_output_mode(state->fe[0], OUTMODE_HIGH_Z);
3610 }
3611
3612 /* tune the tuner */
3613 if (state->fe[index_frontend]->ops.tuner_ops.set_params)
3614 state->fe[index_frontend]->ops.tuner_ops.set_params(state->fe[index_frontend]);
3615
3616 dib8000_set_tune_state(state->fe[index_frontend], CT_AGC_START);
3617 }
3618
3619 /* turn off the diversity of the last chip */
3620 if (state->revision != 0x8090)
3621 dib8000_set_diversity_in(state->fe[index_frontend - 1], 0);
3622 else
3623 dib8096p_set_diversity_in(state->fe[index_frontend - 1], 0);
3624
3625 /* start up the AGC */
3626 do {
3627 time = dib8000_agc_startup(state->fe[0]);
3628 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3629 time_slave = dib8000_agc_startup(state->fe[index_frontend]);
3630 if (time == 0)
3631 time = time_slave;
3632 else if ((time_slave != 0) && (time_slave > time))
3633 time = time_slave;
3634 }
3635 if (time == 0)
3636 break;
3637
3638 /*
3639 * Despite dib8000_agc_startup returns time at a 0.1 ms range,
3640 * the actual sleep time depends on CONFIG_HZ. The worse case
3641 * is when CONFIG_HZ=100. In such case, the minimum granularity
3642 * is 10ms. On some real field tests, the tuner sometimes don't
3643 * lock when this timer is lower than 10ms. So, enforce a 10ms
3644 * granularity.
3645 */
3646 time = 10 * (time + 99)/100;
3647 usleep_range(time * 1000, (time + 1) * 1000);
3648 exit_condition = 1;
3649 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3650 if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_AGC_STOP) {
3651 exit_condition = 0;
3652 break;
3653 }
3654 }
3655 } while (exit_condition == 0);
3656
3657 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3658 dib8000_set_tune_state(state->fe[index_frontend], CT_DEMOD_START);
3659
3660 active = 1;
3661 do {
3662 callback_time = 0;
3663 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3664 delay = dib8000_tune(state->fe[index_frontend]);
3665 if (delay != 0) {
3666 delay = jiffies + usecs_to_jiffies(100 * delay);
3667 if (!callback_time || delay < callback_time)
3668 callback_time = delay;
3669 }
3670
3671 /* we are in autosearch */
3672 if (state->channel_parameters_set == 0) { /* searching */
3673 if ((dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_DEMOD_SUCCESS) || (dib8000_get_status(state->fe[index_frontend]) == FE_STATUS_FFT_SUCCESS)) {
3674 dprintk("autosearch succeeded on fe%i", index_frontend);
3675 dib8000_get_frontend(state->fe[index_frontend], c); /* we read the channel parameters from the frontend which was successful */
3676 state->channel_parameters_set = 1;
3677
3678 for (l = 0; (l < MAX_NUMBER_OF_FRONTENDS) && (state->fe[l] != NULL); l++) {
3679 if (l != index_frontend) { /* and for all frontend except the successful one */
3680 dprintk("Restarting frontend %d\n", l);
3681 dib8000_tune_restart_from_demod(state->fe[l]);
3682
3683 state->fe[l]->dtv_property_cache.isdbt_sb_mode = state->fe[index_frontend]->dtv_property_cache.isdbt_sb_mode;
3684 state->fe[l]->dtv_property_cache.inversion = state->fe[index_frontend]->dtv_property_cache.inversion;
3685 state->fe[l]->dtv_property_cache.transmission_mode = state->fe[index_frontend]->dtv_property_cache.transmission_mode;
3686 state->fe[l]->dtv_property_cache.guard_interval = state->fe[index_frontend]->dtv_property_cache.guard_interval;
3687 state->fe[l]->dtv_property_cache.isdbt_partial_reception = state->fe[index_frontend]->dtv_property_cache.isdbt_partial_reception;
3688 for (i = 0; i < 3; i++) {
3689 state->fe[l]->dtv_property_cache.layer[i].segment_count = state->fe[index_frontend]->dtv_property_cache.layer[i].segment_count;
3690 state->fe[l]->dtv_property_cache.layer[i].interleaving = state->fe[index_frontend]->dtv_property_cache.layer[i].interleaving;
3691 state->fe[l]->dtv_property_cache.layer[i].fec = state->fe[index_frontend]->dtv_property_cache.layer[i].fec;
3692 state->fe[l]->dtv_property_cache.layer[i].modulation = state->fe[index_frontend]->dtv_property_cache.layer[i].modulation;
3693 }
3694
3695 }
3696 }
3697 }
3698 }
3699 }
3700 /* tuning is done when the master frontend is done (failed or success) */
3701 if (dib8000_get_status(state->fe[0]) == FE_STATUS_TUNE_FAILED ||
3702 dib8000_get_status(state->fe[0]) == FE_STATUS_LOCKED ||
3703 dib8000_get_status(state->fe[0]) == FE_STATUS_DATA_LOCKED) {
3704 active = 0;
3705 /* we need to wait for all frontends to be finished */
3706 for (index_frontend = 0; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3707 if (dib8000_get_tune_state(state->fe[index_frontend]) != CT_DEMOD_STOP)
3708 active = 1;
3709 }
3710 if (active == 0)
3711 dprintk("tuning done with status %d", dib8000_get_status(state->fe[0]));
3712 }
3713
3714 if ((active == 1) && (callback_time == 0)) {
3715 dprintk("strange callback time something went wrong");
3716 active = 0;
3717 }
3718
3719 while ((active == 1) && (time_before(jiffies, callback_time)))
3720 msleep(100);
3721 } while (active);
3722
3723 /* set output mode */
3724 if (state->revision != 0x8090)
3725 dib8000_set_output_mode(state->fe[0], state->cfg.output_mode);
3726 else {
3727 dib8096p_set_output_mode(state->fe[0], state->cfg.output_mode);
3728 if (state->cfg.enMpegOutput == 0) {
3729 dib8096p_setDibTxMux(state, MPEG_ON_DIBTX);
3730 dib8096p_setHostBusMux(state, DIBTX_ON_HOSTBUS);
3731 }
3732 }
3733
3734 return 0;
3735 }
3736
3737 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat);
3738
3739 static int dib8000_read_status(struct dvb_frontend *fe, enum fe_status *stat)
3740 {
3741 struct dib8000_state *state = fe->demodulator_priv;
3742 u16 lock_slave = 0, lock;
3743 u8 index_frontend;
3744
3745 lock = dib8000_read_lock(fe);
3746 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3747 lock_slave |= dib8000_read_lock(state->fe[index_frontend]);
3748
3749 *stat = 0;
3750
3751 if (((lock >> 13) & 1) || ((lock_slave >> 13) & 1))
3752 *stat |= FE_HAS_SIGNAL;
3753
3754 if (((lock >> 8) & 1) || ((lock_slave >> 8) & 1)) /* Equal */
3755 *stat |= FE_HAS_CARRIER;
3756
3757 if ((((lock >> 1) & 0xf) == 0xf) || (((lock_slave >> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
3758 *stat |= FE_HAS_SYNC;
3759
3760 if ((((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) && ((lock >> 5) & 7)) /* FEC MPEG */
3761 *stat |= FE_HAS_LOCK;
3762
3763 if (((lock >> 12) & 1) || ((lock_slave >> 12) & 1)) {
3764 lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
3765 if (lock & 0x01)
3766 *stat |= FE_HAS_VITERBI;
3767
3768 lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
3769 if (lock & 0x01)
3770 *stat |= FE_HAS_VITERBI;
3771
3772 lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
3773 if (lock & 0x01)
3774 *stat |= FE_HAS_VITERBI;
3775 }
3776 dib8000_get_stats(fe, *stat);
3777
3778 return 0;
3779 }
3780
3781 static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
3782 {
3783 struct dib8000_state *state = fe->demodulator_priv;
3784
3785 /* 13 segments */
3786 if (state->revision == 0x8090)
3787 *ber = (dib8000_read_word(state, 562) << 16) |
3788 dib8000_read_word(state, 563);
3789 else
3790 *ber = (dib8000_read_word(state, 560) << 16) |
3791 dib8000_read_word(state, 561);
3792 return 0;
3793 }
3794
3795 static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
3796 {
3797 struct dib8000_state *state = fe->demodulator_priv;
3798
3799 /* packet error on 13 seg */
3800 if (state->revision == 0x8090)
3801 *unc = dib8000_read_word(state, 567);
3802 else
3803 *unc = dib8000_read_word(state, 565);
3804 return 0;
3805 }
3806
3807 static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
3808 {
3809 struct dib8000_state *state = fe->demodulator_priv;
3810 u8 index_frontend;
3811 u16 val;
3812
3813 *strength = 0;
3814 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++) {
3815 state->fe[index_frontend]->ops.read_signal_strength(state->fe[index_frontend], &val);
3816 if (val > 65535 - *strength)
3817 *strength = 65535;
3818 else
3819 *strength += val;
3820 }
3821
3822 val = 65535 - dib8000_read_word(state, 390);
3823 if (val > 65535 - *strength)
3824 *strength = 65535;
3825 else
3826 *strength += val;
3827 return 0;
3828 }
3829
3830 static u32 dib8000_get_snr(struct dvb_frontend *fe)
3831 {
3832 struct dib8000_state *state = fe->demodulator_priv;
3833 u32 n, s, exp;
3834 u16 val;
3835
3836 if (state->revision != 0x8090)
3837 val = dib8000_read_word(state, 542);
3838 else
3839 val = dib8000_read_word(state, 544);
3840 n = (val >> 6) & 0xff;
3841 exp = (val & 0x3f);
3842 if ((exp & 0x20) != 0)
3843 exp -= 0x40;
3844 n <<= exp+16;
3845
3846 if (state->revision != 0x8090)
3847 val = dib8000_read_word(state, 543);
3848 else
3849 val = dib8000_read_word(state, 545);
3850 s = (val >> 6) & 0xff;
3851 exp = (val & 0x3f);
3852 if ((exp & 0x20) != 0)
3853 exp -= 0x40;
3854 s <<= exp+16;
3855
3856 if (n > 0) {
3857 u32 t = (s/n) << 16;
3858 return t + ((s << 16) - n*t) / n;
3859 }
3860 return 0xffffffff;
3861 }
3862
3863 static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
3864 {
3865 struct dib8000_state *state = fe->demodulator_priv;
3866 u8 index_frontend;
3867 u32 snr_master;
3868
3869 snr_master = dib8000_get_snr(fe);
3870 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL); index_frontend++)
3871 snr_master += dib8000_get_snr(state->fe[index_frontend]);
3872
3873 if ((snr_master >> 16) != 0) {
3874 snr_master = 10*intlog10(snr_master>>16);
3875 *snr = snr_master / ((1 << 24) / 10);
3876 }
3877 else
3878 *snr = 0;
3879
3880 return 0;
3881 }
3882
3883 struct per_layer_regs {
3884 u16 lock, ber, per;
3885 };
3886
3887 static const struct per_layer_regs per_layer_regs[] = {
3888 { 554, 560, 562 },
3889 { 555, 576, 578 },
3890 { 556, 581, 583 },
3891 };
3892
3893 struct linear_segments {
3894 unsigned x;
3895 signed y;
3896 };
3897
3898 /*
3899 * Table to estimate signal strength in dBm.
3900 * This table was empirically determinated by measuring the signal
3901 * strength generated by a DTA-2111 RF generator directly connected into
3902 * a dib8076 device (a PixelView PV-D231U stick), using a good quality
3903 * 3 meters RC6 cable and good RC6 connectors.
3904 * The real value can actually be different on other devices, depending
3905 * on several factors, like if LNA is enabled or not, if diversity is
3906 * enabled, type of connectors, etc.
3907 * Yet, it is better to use this measure in dB than a random non-linear
3908 * percentage value, especially for antenna adjustments.
3909 * On my tests, the precision of the measure using this table is about
3910 * 0.5 dB, with sounds reasonable enough.
3911 */
3912 static struct linear_segments strength_to_db_table[] = {
3913 { 55953, 108500 }, /* -22.5 dBm */
3914 { 55394, 108000 },
3915 { 53834, 107000 },
3916 { 52863, 106000 },
3917 { 52239, 105000 },
3918 { 52012, 104000 },
3919 { 51803, 103000 },
3920 { 51566, 102000 },
3921 { 51356, 101000 },
3922 { 51112, 100000 },
3923 { 50869, 99000 },
3924 { 50600, 98000 },
3925 { 50363, 97000 },
3926 { 50117, 96000 }, /* -35 dBm */
3927 { 49889, 95000 },
3928 { 49680, 94000 },
3929 { 49493, 93000 },
3930 { 49302, 92000 },
3931 { 48929, 91000 },
3932 { 48416, 90000 },
3933 { 48035, 89000 },
3934 { 47593, 88000 },
3935 { 47282, 87000 },
3936 { 46953, 86000 },
3937 { 46698, 85000 },
3938 { 45617, 84000 },
3939 { 44773, 83000 },
3940 { 43845, 82000 },
3941 { 43020, 81000 },
3942 { 42010, 80000 }, /* -51 dBm */
3943 { 0, 0 },
3944 };
3945
3946 static u32 interpolate_value(u32 value, struct linear_segments *segments,
3947 unsigned len)
3948 {
3949 u64 tmp64;
3950 u32 dx;
3951 s32 dy;
3952 int i, ret;
3953
3954 if (value >= segments[0].x)
3955 return segments[0].y;
3956 if (value < segments[len-1].x)
3957 return segments[len-1].y;
3958
3959 for (i = 1; i < len - 1; i++) {
3960 /* If value is identical, no need to interpolate */
3961 if (value == segments[i].x)
3962 return segments[i].y;
3963 if (value > segments[i].x)
3964 break;
3965 }
3966
3967 /* Linear interpolation between the two (x,y) points */
3968 dy = segments[i - 1].y - segments[i].y;
3969 dx = segments[i - 1].x - segments[i].x;
3970
3971 tmp64 = value - segments[i].x;
3972 tmp64 *= dy;
3973 do_div(tmp64, dx);
3974 ret = segments[i].y + tmp64;
3975
3976 return ret;
3977 }
3978
3979 static u32 dib8000_get_time_us(struct dvb_frontend *fe, int layer)
3980 {
3981 struct dib8000_state *state = fe->demodulator_priv;
3982 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
3983 int ini_layer, end_layer, i;
3984 u64 time_us, tmp64;
3985 u32 tmp, denom;
3986 int guard, rate_num, rate_denum = 1, bits_per_symbol, nsegs;
3987 int interleaving = 0, fft_div;
3988
3989 if (layer >= 0) {
3990 ini_layer = layer;
3991 end_layer = layer + 1;
3992 } else {
3993 ini_layer = 0;
3994 end_layer = 3;
3995 }
3996
3997 switch (c->guard_interval) {
3998 case GUARD_INTERVAL_1_4:
3999 guard = 4;
4000 break;
4001 case GUARD_INTERVAL_1_8:
4002 guard = 8;
4003 break;
4004 case GUARD_INTERVAL_1_16:
4005 guard = 16;
4006 break;
4007 default:
4008 case GUARD_INTERVAL_1_32:
4009 guard = 32;
4010 break;
4011 }
4012
4013 switch (c->transmission_mode) {
4014 case TRANSMISSION_MODE_2K:
4015 fft_div = 4;
4016 break;
4017 case TRANSMISSION_MODE_4K:
4018 fft_div = 2;
4019 break;
4020 default:
4021 case TRANSMISSION_MODE_8K:
4022 fft_div = 1;
4023 break;
4024 }
4025
4026 denom = 0;
4027 for (i = ini_layer; i < end_layer; i++) {
4028 nsegs = c->layer[i].segment_count;
4029 if (nsegs == 0 || nsegs > 13)
4030 continue;
4031
4032 switch (c->layer[i].modulation) {
4033 case DQPSK:
4034 case QPSK:
4035 bits_per_symbol = 2;
4036 break;
4037 case QAM_16:
4038 bits_per_symbol = 4;
4039 break;
4040 default:
4041 case QAM_64:
4042 bits_per_symbol = 6;
4043 break;
4044 }
4045
4046 switch (c->layer[i].fec) {
4047 case FEC_1_2:
4048 rate_num = 1;
4049 rate_denum = 2;
4050 break;
4051 case FEC_2_3:
4052 rate_num = 2;
4053 rate_denum = 3;
4054 break;
4055 case FEC_3_4:
4056 rate_num = 3;
4057 rate_denum = 4;
4058 break;
4059 case FEC_5_6:
4060 rate_num = 5;
4061 rate_denum = 6;
4062 break;
4063 default:
4064 case FEC_7_8:
4065 rate_num = 7;
4066 rate_denum = 8;
4067 break;
4068 }
4069
4070 interleaving = c->layer[i].interleaving;
4071
4072 denom += bits_per_symbol * rate_num * fft_div * nsegs * 384;
4073 }
4074
4075 /* If all goes wrong, wait for 1s for the next stats */
4076 if (!denom)
4077 return 0;
4078
4079 /* Estimate the period for the total bit rate */
4080 time_us = rate_denum * (1008 * 1562500L);
4081 tmp64 = time_us;
4082 do_div(tmp64, guard);
4083 time_us = time_us + tmp64;
4084 time_us += denom / 2;
4085 do_div(time_us, denom);
4086
4087 tmp = 1008 * 96 * interleaving;
4088 time_us += tmp + tmp / guard;
4089
4090 return time_us;
4091 }
4092
4093 static int dib8000_get_stats(struct dvb_frontend *fe, enum fe_status stat)
4094 {
4095 struct dib8000_state *state = fe->demodulator_priv;
4096 struct dtv_frontend_properties *c = &state->fe[0]->dtv_property_cache;
4097 int i;
4098 int show_per_stats = 0;
4099 u32 time_us = 0, snr, val;
4100 u64 blocks;
4101 s32 db;
4102 u16 strength;
4103
4104 /* Get Signal strength */
4105 dib8000_read_signal_strength(fe, &strength);
4106 val = strength;
4107 db = interpolate_value(val,
4108 strength_to_db_table,
4109 ARRAY_SIZE(strength_to_db_table)) - 131000;
4110 c->strength.stat[0].svalue = db;
4111
4112 /* UCB/BER/CNR measures require lock */
4113 if (!(stat & FE_HAS_LOCK)) {
4114 c->cnr.len = 1;
4115 c->block_count.len = 1;
4116 c->block_error.len = 1;
4117 c->post_bit_error.len = 1;
4118 c->post_bit_count.len = 1;
4119 c->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4120 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4121 c->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4122 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4123 c->block_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
4124 return 0;
4125 }
4126
4127 /* Check if time for stats was elapsed */
4128 if (time_after(jiffies, state->per_jiffies_stats)) {
4129 state->per_jiffies_stats = jiffies + msecs_to_jiffies(1000);
4130
4131 /* Get SNR */
4132 snr = dib8000_get_snr(fe);
4133 for (i = 1; i < MAX_NUMBER_OF_FRONTENDS; i++) {
4134 if (state->fe[i])
4135 snr += dib8000_get_snr(state->fe[i]);
4136 }
4137 snr = snr >> 16;
4138
4139 if (snr) {
4140 snr = 10 * intlog10(snr);
4141 snr = (1000L * snr) >> 24;
4142 } else {
4143 snr = 0;
4144 }
4145 c->cnr.stat[0].svalue = snr;
4146 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
4147
4148 /* Get UCB measures */
4149 dib8000_read_unc_blocks(fe, &val);
4150 if (val < state->init_ucb)
4151 state->init_ucb += 0x100000000LL;
4152
4153 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
4154 c->block_error.stat[0].uvalue = val + state->init_ucb;
4155
4156 /* Estimate the number of packets based on bitrate */
4157 if (!time_us)
4158 time_us = dib8000_get_time_us(fe, -1);
4159
4160 if (time_us) {
4161 blocks = 1250000ULL * 1000000ULL;
4162 do_div(blocks, time_us * 8 * 204);
4163 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
4164 c->block_count.stat[0].uvalue += blocks;
4165 }
4166
4167 show_per_stats = 1;
4168 }
4169
4170 /* Get post-BER measures */
4171 if (time_after(jiffies, state->ber_jiffies_stats)) {
4172 time_us = dib8000_get_time_us(fe, -1);
4173 state->ber_jiffies_stats = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
4174
4175 dprintk("Next all layers stats available in %u us.", time_us);
4176
4177 dib8000_read_ber(fe, &val);
4178 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
4179 c->post_bit_error.stat[0].uvalue += val;
4180
4181 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
4182 c->post_bit_count.stat[0].uvalue += 100000000;
4183 }
4184
4185 if (state->revision < 0x8002)
4186 return 0;
4187
4188 c->block_error.len = 4;
4189 c->post_bit_error.len = 4;
4190 c->post_bit_count.len = 4;
4191
4192 for (i = 0; i < 3; i++) {
4193 unsigned nsegs = c->layer[i].segment_count;
4194
4195 if (nsegs == 0 || nsegs > 13)
4196 continue;
4197
4198 time_us = 0;
4199
4200 if (time_after(jiffies, state->ber_jiffies_stats_layer[i])) {
4201 time_us = dib8000_get_time_us(fe, i);
4202
4203 state->ber_jiffies_stats_layer[i] = jiffies + msecs_to_jiffies((time_us + 500) / 1000);
4204 dprintk("Next layer %c stats will be available in %u us\n",
4205 'A' + i, time_us);
4206
4207 val = dib8000_read_word(state, per_layer_regs[i].ber);
4208 c->post_bit_error.stat[1 + i].scale = FE_SCALE_COUNTER;
4209 c->post_bit_error.stat[1 + i].uvalue += val;
4210
4211 c->post_bit_count.stat[1 + i].scale = FE_SCALE_COUNTER;
4212 c->post_bit_count.stat[1 + i].uvalue += 100000000;
4213 }
4214
4215 if (show_per_stats) {
4216 val = dib8000_read_word(state, per_layer_regs[i].per);
4217
4218 c->block_error.stat[1 + i].scale = FE_SCALE_COUNTER;
4219 c->block_error.stat[1 + i].uvalue += val;
4220
4221 if (!time_us)
4222 time_us = dib8000_get_time_us(fe, i);
4223 if (time_us) {
4224 blocks = 1250000ULL * 1000000ULL;
4225 do_div(blocks, time_us * 8 * 204);
4226 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
4227 c->block_count.stat[0].uvalue += blocks;
4228 }
4229 }
4230 }
4231 return 0;
4232 }
4233
4234 static int dib8000_set_slave_frontend(struct dvb_frontend *fe, struct dvb_frontend *fe_slave)
4235 {
4236 struct dib8000_state *state = fe->demodulator_priv;
4237 u8 index_frontend = 1;
4238
4239 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
4240 index_frontend++;
4241 if (index_frontend < MAX_NUMBER_OF_FRONTENDS) {
4242 dprintk("set slave fe %p to index %i", fe_slave, index_frontend);
4243 state->fe[index_frontend] = fe_slave;
4244 return 0;
4245 }
4246
4247 dprintk("too many slave frontend");
4248 return -ENOMEM;
4249 }
4250
4251 static int dib8000_remove_slave_frontend(struct dvb_frontend *fe)
4252 {
4253 struct dib8000_state *state = fe->demodulator_priv;
4254 u8 index_frontend = 1;
4255
4256 while ((index_frontend < MAX_NUMBER_OF_FRONTENDS) && (state->fe[index_frontend] != NULL))
4257 index_frontend++;
4258 if (index_frontend != 1) {
4259 dprintk("remove slave fe %p (index %i)", state->fe[index_frontend-1], index_frontend-1);
4260 state->fe[index_frontend] = NULL;
4261 return 0;
4262 }
4263
4264 dprintk("no frontend to be removed");
4265 return -ENODEV;
4266 }
4267
4268 static struct dvb_frontend *dib8000_get_slave_frontend(struct dvb_frontend *fe, int slave_index)
4269 {
4270 struct dib8000_state *state = fe->demodulator_priv;
4271
4272 if (slave_index >= MAX_NUMBER_OF_FRONTENDS)
4273 return NULL;
4274 return state->fe[slave_index];
4275 }
4276
4277 static int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods,
4278 u8 default_addr, u8 first_addr, u8 is_dib8096p)
4279 {
4280 int k = 0, ret = 0;
4281 u8 new_addr = 0;
4282 struct i2c_device client = {.adap = host };
4283
4284 client.i2c_write_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
4285 if (!client.i2c_write_buffer) {
4286 dprintk("%s: not enough memory", __func__);
4287 return -ENOMEM;
4288 }
4289 client.i2c_read_buffer = kzalloc(4 * sizeof(u8), GFP_KERNEL);
4290 if (!client.i2c_read_buffer) {
4291 dprintk("%s: not enough memory", __func__);
4292 ret = -ENOMEM;
4293 goto error_memory_read;
4294 }
4295 client.i2c_buffer_lock = kzalloc(sizeof(struct mutex), GFP_KERNEL);
4296 if (!client.i2c_buffer_lock) {
4297 dprintk("%s: not enough memory", __func__);
4298 ret = -ENOMEM;
4299 goto error_memory_lock;
4300 }
4301 mutex_init(client.i2c_buffer_lock);
4302
4303 for (k = no_of_demods - 1; k >= 0; k--) {
4304 /* designated i2c address */
4305 new_addr = first_addr + (k << 1);
4306
4307 client.addr = new_addr;
4308 if (!is_dib8096p)
4309 dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
4310 if (dib8000_identify(&client) == 0) {
4311 /* sram lead in, rdy */
4312 if (!is_dib8096p)
4313 dib8000_i2c_write16(&client, 1287, 0x0003);
4314 client.addr = default_addr;
4315 if (dib8000_identify(&client) == 0) {
4316 dprintk("#%d: not identified", k);
4317 ret = -EINVAL;
4318 goto error;
4319 }
4320 }
4321
4322 /* start diversity to pull_down div_str - just for i2c-enumeration */
4323 dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
4324
4325 /* set new i2c address and force divstart */
4326 dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
4327 client.addr = new_addr;
4328 dib8000_identify(&client);
4329
4330 dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
4331 }
4332
4333 for (k = 0; k < no_of_demods; k++) {
4334 new_addr = first_addr | (k << 1);
4335 client.addr = new_addr;
4336
4337 // unforce divstr
4338 dib8000_i2c_write16(&client, 1285, new_addr << 2);
4339
4340 /* deactivate div - it was just for i2c-enumeration */
4341 dib8000_i2c_write16(&client, 1286, 0);
4342 }
4343
4344 error:
4345 kfree(client.i2c_buffer_lock);
4346 error_memory_lock:
4347 kfree(client.i2c_read_buffer);
4348 error_memory_read:
4349 kfree(client.i2c_write_buffer);
4350
4351 return ret;
4352 }
4353
4354 static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
4355 {
4356 tune->min_delay_ms = 1000;
4357 tune->step_size = 0;
4358 tune->max_drift = 0;
4359 return 0;
4360 }
4361
4362 static void dib8000_release(struct dvb_frontend *fe)
4363 {
4364 struct dib8000_state *st = fe->demodulator_priv;
4365 u8 index_frontend;
4366
4367 for (index_frontend = 1; (index_frontend < MAX_NUMBER_OF_FRONTENDS) && (st->fe[index_frontend] != NULL); index_frontend++)
4368 dvb_frontend_detach(st->fe[index_frontend]);
4369
4370 dibx000_exit_i2c_master(&st->i2c_master);
4371 i2c_del_adapter(&st->dib8096p_tuner_adap);
4372 kfree(st->fe[0]);
4373 kfree(st);
4374 }
4375
4376 static struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
4377 {
4378 struct dib8000_state *st = fe->demodulator_priv;
4379 return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
4380 }
4381
4382 static int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
4383 {
4384 struct dib8000_state *st = fe->demodulator_priv;
4385 u16 val = dib8000_read_word(st, 299) & 0xffef;
4386 val |= (onoff & 0x1) << 4;
4387
4388 dprintk("pid filter enabled %d", onoff);
4389 return dib8000_write_word(st, 299, val);
4390 }
4391
4392 static int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
4393 {
4394 struct dib8000_state *st = fe->demodulator_priv;
4395 dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
4396 return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
4397 }
4398
4399 static const struct dvb_frontend_ops dib8000_ops = {
4400 .delsys = { SYS_ISDBT },
4401 .info = {
4402 .name = "DiBcom 8000 ISDB-T",
4403 .frequency_min = 44250000,
4404 .frequency_max = 867250000,
4405 .frequency_stepsize = 62500,
4406 .caps = FE_CAN_INVERSION_AUTO |
4407 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
4408 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
4409 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
4410 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
4411 },
4412
4413 .release = dib8000_release,
4414
4415 .init = dib8000_wakeup,
4416 .sleep = dib8000_sleep,
4417
4418 .set_frontend = dib8000_set_frontend,
4419 .get_tune_settings = dib8000_fe_get_tune_settings,
4420 .get_frontend = dib8000_get_frontend,
4421
4422 .read_status = dib8000_read_status,
4423 .read_ber = dib8000_read_ber,
4424 .read_signal_strength = dib8000_read_signal_strength,
4425 .read_snr = dib8000_read_snr,
4426 .read_ucblocks = dib8000_read_unc_blocks,
4427 };
4428
4429 static struct dvb_frontend *dib8000_init(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
4430 {
4431 struct dvb_frontend *fe;
4432 struct dib8000_state *state;
4433
4434 dprintk("dib8000_init");
4435
4436 state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
4437 if (state == NULL)
4438 return NULL;
4439 fe = kzalloc(sizeof(struct dvb_frontend), GFP_KERNEL);
4440 if (fe == NULL)
4441 goto error;
4442
4443 memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
4444 state->i2c.adap = i2c_adap;
4445 state->i2c.addr = i2c_addr;
4446 state->i2c.i2c_write_buffer = state->i2c_write_buffer;
4447 state->i2c.i2c_read_buffer = state->i2c_read_buffer;
4448 mutex_init(&state->i2c_buffer_lock);
4449 state->i2c.i2c_buffer_lock = &state->i2c_buffer_lock;
4450 state->gpio_val = cfg->gpio_val;
4451 state->gpio_dir = cfg->gpio_dir;
4452
4453 /* Ensure the output mode remains at the previous default if it's
4454 * not specifically set by the caller.
4455 */
4456 if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
4457 state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
4458
4459 state->fe[0] = fe;
4460 fe->demodulator_priv = state;
4461 memcpy(&state->fe[0]->ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
4462
4463 state->timf_default = cfg->pll->timf;
4464
4465 if (dib8000_identify(&state->i2c) == 0)
4466 goto error;
4467
4468 dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
4469
4470 /* init 8096p tuner adapter */
4471 strncpy(state->dib8096p_tuner_adap.name, "DiB8096P tuner interface",
4472 sizeof(state->dib8096p_tuner_adap.name));
4473 state->dib8096p_tuner_adap.algo = &dib8096p_tuner_xfer_algo;
4474 state->dib8096p_tuner_adap.algo_data = NULL;
4475 state->dib8096p_tuner_adap.dev.parent = state->i2c.adap->dev.parent;
4476 i2c_set_adapdata(&state->dib8096p_tuner_adap, state);
4477 i2c_add_adapter(&state->dib8096p_tuner_adap);
4478
4479 dib8000_reset(fe);
4480
4481 dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
4482 state->current_demod_bw = 6000;
4483
4484 return fe;
4485
4486 error:
4487 kfree(state);
4488 return NULL;
4489 }
4490
4491 void *dib8000_attach(struct dib8000_ops *ops)
4492 {
4493 if (!ops)
4494 return NULL;
4495
4496 ops->pwm_agc_reset = dib8000_pwm_agc_reset;
4497 ops->get_dc_power = dib8090p_get_dc_power;
4498 ops->set_gpio = dib8000_set_gpio;
4499 ops->get_slave_frontend = dib8000_get_slave_frontend;
4500 ops->set_tune_state = dib8000_set_tune_state;
4501 ops->pid_filter_ctrl = dib8000_pid_filter_ctrl;
4502 ops->remove_slave_frontend = dib8000_remove_slave_frontend;
4503 ops->get_adc_power = dib8000_get_adc_power;
4504 ops->update_pll = dib8000_update_pll;
4505 ops->tuner_sleep = dib8096p_tuner_sleep;
4506 ops->get_tune_state = dib8000_get_tune_state;
4507 ops->get_i2c_tuner = dib8096p_get_i2c_tuner;
4508 ops->set_slave_frontend = dib8000_set_slave_frontend;
4509 ops->pid_filter = dib8000_pid_filter;
4510 ops->ctrl_timf = dib8000_ctrl_timf;
4511 ops->init = dib8000_init;
4512 ops->get_i2c_master = dib8000_get_i2c_master;
4513 ops->i2c_enumeration = dib8000_i2c_enumeration;
4514 ops->set_wbd_ref = dib8000_set_wbd_ref;
4515
4516 return ops;
4517 }
4518 EXPORT_SYMBOL(dib8000_attach);
4519
4520 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@parrot.com, Patrick Boettcher <patrick.boettcher@posteo.de>");
4521 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
4522 MODULE_LICENSE("GPL");
This page took 0.164189 seconds and 5 git commands to generate.