2c7217fb1415fae76c897d8b5cc31c06c253883d
[deliverable/linux.git] / drivers / media / dvb-frontends / mb86a20s.c
1 /*
2 * Fujitu mb86a20s ISDB-T/ISDB-Tsb Module driver
3 *
4 * Copyright (C) 2010-2013 Mauro Carvalho Chehab <mchehab@redhat.com>
5 * Copyright (C) 2009-2010 Douglas Landgraf <dougsland@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation version 2.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 */
16
17 #include <linux/kernel.h>
18 #include <asm/div64.h>
19
20 #include "dvb_frontend.h"
21 #include "mb86a20s.h"
22
23 #define NUM_LAYERS 3
24
25 static int debug = 1;
26 module_param(debug, int, 0644);
27 MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
28
29 enum mb86a20s_bandwidth {
30 MB86A20S_13SEG = 0,
31 MB86A20S_13SEG_PARTIAL = 1,
32 MB86A20S_1SEG = 2,
33 MB86A20S_3SEG = 3,
34 };
35
36 u8 mb86a20s_subchannel[] = {
37 0xb0, 0xc0, 0xd0, 0xe0,
38 0xf0, 0x00, 0x10, 0x20,
39 };
40
41 struct mb86a20s_state {
42 struct i2c_adapter *i2c;
43 const struct mb86a20s_config *config;
44 u32 last_frequency;
45
46 struct dvb_frontend frontend;
47
48 u32 if_freq;
49 enum mb86a20s_bandwidth bw;
50 bool inversion;
51 u32 subchannel;
52
53 u32 estimated_rate[NUM_LAYERS];
54 unsigned long get_strength_time;
55
56 bool need_init;
57 };
58
59 struct regdata {
60 u8 reg;
61 u8 data;
62 };
63
64 #define BER_SAMPLING_RATE 1 /* Seconds */
65
66 /*
67 * Initialization sequence: Use whatevere default values that PV SBTVD
68 * does on its initialisation, obtained via USB snoop
69 */
70 static struct regdata mb86a20s_init1[] = {
71 { 0x70, 0x0f },
72 { 0x70, 0xff },
73 { 0x08, 0x01 },
74 { 0x50, 0xd1 }, { 0x51, 0x20 },
75 };
76
77 static struct regdata mb86a20s_init2[] = {
78 { 0x28, 0x22 }, { 0x29, 0x00 }, { 0x2a, 0x1f }, { 0x2b, 0xf0 },
79 { 0x3b, 0x21 },
80 { 0x3c, 0x38 },
81 { 0x01, 0x0d },
82 { 0x04, 0x08 }, { 0x05, 0x03 },
83 { 0x04, 0x0e }, { 0x05, 0x00 },
84 { 0x04, 0x0f }, { 0x05, 0x37 },
85 { 0x04, 0x0b }, { 0x05, 0x78 },
86 { 0x04, 0x00 }, { 0x05, 0x00 },
87 { 0x04, 0x01 }, { 0x05, 0x1e },
88 { 0x04, 0x02 }, { 0x05, 0x07 },
89 { 0x04, 0x03 }, { 0x05, 0xd0 },
90 { 0x04, 0x09 }, { 0x05, 0x00 },
91 { 0x04, 0x0a }, { 0x05, 0xff },
92 { 0x04, 0x27 }, { 0x05, 0x00 },
93 { 0x04, 0x28 }, { 0x05, 0x00 },
94 { 0x04, 0x1e }, { 0x05, 0x00 },
95 { 0x04, 0x29 }, { 0x05, 0x64 },
96 { 0x04, 0x32 }, { 0x05, 0x02 },
97 { 0x04, 0x14 }, { 0x05, 0x02 },
98 { 0x04, 0x04 }, { 0x05, 0x00 },
99 { 0x04, 0x05 }, { 0x05, 0x22 },
100 { 0x04, 0x06 }, { 0x05, 0x0e },
101 { 0x04, 0x07 }, { 0x05, 0xd8 },
102 { 0x04, 0x12 }, { 0x05, 0x00 },
103 { 0x04, 0x13 }, { 0x05, 0xff },
104 { 0x04, 0x15 }, { 0x05, 0x4e },
105 { 0x04, 0x16 }, { 0x05, 0x20 },
106
107 /*
108 * On this demod, when the bit count reaches the count below,
109 * it collects the bit error count. The bit counters are initialized
110 * to 65535 here. This warrants that all of them will be quickly
111 * calculated when device gets locked. As TMCC is parsed, the values
112 * will be adjusted later in the driver's code.
113 */
114 { 0x52, 0x01 }, /* Turn on BER before Viterbi */
115 { 0x50, 0xa7 }, { 0x51, 0x00 },
116 { 0x50, 0xa8 }, { 0x51, 0xff },
117 { 0x50, 0xa9 }, { 0x51, 0xff },
118 { 0x50, 0xaa }, { 0x51, 0x00 },
119 { 0x50, 0xab }, { 0x51, 0xff },
120 { 0x50, 0xac }, { 0x51, 0xff },
121 { 0x50, 0xad }, { 0x51, 0x00 },
122 { 0x50, 0xae }, { 0x51, 0xff },
123 { 0x50, 0xaf }, { 0x51, 0xff },
124
125 /*
126 * On this demod, post BER counts blocks. When the count reaches the
127 * value below, it collects the block error count. The block counters
128 * are initialized to 127 here. This warrants that all of them will be
129 * quickly calculated when device gets locked. As TMCC is parsed, the
130 * values will be adjusted later in the driver's code.
131 */
132 { 0x5e, 0x07 }, /* Turn on BER after Viterbi */
133 { 0x50, 0xdc }, { 0x51, 0x00 },
134 { 0x50, 0xdd }, { 0x51, 0x7f },
135 { 0x50, 0xde }, { 0x51, 0x00 },
136 { 0x50, 0xdf }, { 0x51, 0x7f },
137 { 0x50, 0xe0 }, { 0x51, 0x00 },
138 { 0x50, 0xe1 }, { 0x51, 0x7f },
139
140 /*
141 * On this demod, when the block count reaches the count below,
142 * it collects the block error count. The block counters are initialized
143 * to 127 here. This warrants that all of them will be quickly
144 * calculated when device gets locked. As TMCC is parsed, the values
145 * will be adjusted later in the driver's code.
146 */
147 { 0x50, 0xb0 }, { 0x51, 0x07 }, /* Enable PER */
148 { 0x50, 0xb2 }, { 0x51, 0x00 },
149 { 0x50, 0xb3 }, { 0x51, 0x7f },
150 { 0x50, 0xb4 }, { 0x51, 0x00 },
151 { 0x50, 0xb5 }, { 0x51, 0x7f },
152 { 0x50, 0xb6 }, { 0x51, 0x00 },
153 { 0x50, 0xb7 }, { 0x51, 0x7f },
154
155 { 0x50, 0x50 }, { 0x51, 0x02 }, /* MER manual mode */
156 { 0x50, 0x51 }, { 0x51, 0x04 }, /* MER symbol 4 */
157 { 0x45, 0x04 }, /* CN symbol 4 */
158 { 0x48, 0x04 }, /* CN manual mode */
159
160 { 0x50, 0xd6 }, { 0x51, 0x1f },
161 { 0x50, 0xd2 }, { 0x51, 0x03 },
162 { 0x50, 0xd7 }, { 0x51, 0xbf },
163 { 0x28, 0x74 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xff },
164 { 0x28, 0x46 }, { 0x29, 0x00 }, { 0x2a, 0x1a }, { 0x2b, 0x0c },
165
166 { 0x04, 0x40 }, { 0x05, 0x00 },
167 { 0x28, 0x00 }, { 0x2b, 0x08 },
168 { 0x28, 0x05 }, { 0x2b, 0x00 },
169 { 0x1c, 0x01 },
170 { 0x28, 0x06 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x1f },
171 { 0x28, 0x07 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x18 },
172 { 0x28, 0x08 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x12 },
173 { 0x28, 0x09 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x30 },
174 { 0x28, 0x0a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x37 },
175 { 0x28, 0x0b }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x02 },
176 { 0x28, 0x0c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x09 },
177 { 0x28, 0x0d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x06 },
178 { 0x28, 0x0e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7b },
179 { 0x28, 0x0f }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x76 },
180 { 0x28, 0x10 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x7d },
181 { 0x28, 0x11 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x08 },
182 { 0x28, 0x12 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0b },
183 { 0x28, 0x13 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
184 { 0x28, 0x14 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf2 },
185 { 0x28, 0x15 }, { 0x29, 0x00 }, { 0x2a, 0x01 }, { 0x2b, 0xf3 },
186 { 0x28, 0x16 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x05 },
187 { 0x28, 0x17 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x16 },
188 { 0x28, 0x18 }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x0f },
189 { 0x28, 0x19 }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xef },
190 { 0x28, 0x1a }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xd8 },
191 { 0x28, 0x1b }, { 0x29, 0x00 }, { 0x2a, 0x07 }, { 0x2b, 0xf1 },
192 { 0x28, 0x1c }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x3d },
193 { 0x28, 0x1d }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x94 },
194 { 0x28, 0x1e }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0xba },
195 { 0x50, 0x1e }, { 0x51, 0x5d },
196 { 0x50, 0x22 }, { 0x51, 0x00 },
197 { 0x50, 0x23 }, { 0x51, 0xc8 },
198 { 0x50, 0x24 }, { 0x51, 0x00 },
199 { 0x50, 0x25 }, { 0x51, 0xf0 },
200 { 0x50, 0x26 }, { 0x51, 0x00 },
201 { 0x50, 0x27 }, { 0x51, 0xc3 },
202 { 0x50, 0x39 }, { 0x51, 0x02 },
203 { 0xec, 0x0f },
204 { 0xeb, 0x1f },
205 { 0x28, 0x6a }, { 0x29, 0x00 }, { 0x2a, 0x00 }, { 0x2b, 0x00 },
206 { 0xd0, 0x00 },
207 };
208
209 static struct regdata mb86a20s_reset_reception[] = {
210 { 0x70, 0xf0 },
211 { 0x70, 0xff },
212 { 0x08, 0x01 },
213 { 0x08, 0x00 },
214 };
215
216 static struct regdata mb86a20s_per_ber_reset[] = {
217 { 0x53, 0x00 }, /* pre BER Counter reset */
218 { 0x53, 0x07 },
219
220 { 0x5f, 0x00 }, /* post BER Counter reset */
221 { 0x5f, 0x07 },
222
223 { 0x50, 0xb1 }, /* PER Counter reset */
224 { 0x51, 0x07 },
225 { 0x51, 0x00 },
226 };
227
228 /*
229 * I2C read/write functions and macros
230 */
231
232 static int mb86a20s_i2c_writereg(struct mb86a20s_state *state,
233 u8 i2c_addr, u8 reg, u8 data)
234 {
235 u8 buf[] = { reg, data };
236 struct i2c_msg msg = {
237 .addr = i2c_addr, .flags = 0, .buf = buf, .len = 2
238 };
239 int rc;
240
241 rc = i2c_transfer(state->i2c, &msg, 1);
242 if (rc != 1) {
243 dev_err(&state->i2c->dev,
244 "%s: writereg error (rc == %i, reg == 0x%02x, data == 0x%02x)\n",
245 __func__, rc, reg, data);
246 return rc;
247 }
248
249 return 0;
250 }
251
252 static int mb86a20s_i2c_writeregdata(struct mb86a20s_state *state,
253 u8 i2c_addr, struct regdata *rd, int size)
254 {
255 int i, rc;
256
257 for (i = 0; i < size; i++) {
258 rc = mb86a20s_i2c_writereg(state, i2c_addr, rd[i].reg,
259 rd[i].data);
260 if (rc < 0)
261 return rc;
262 }
263 return 0;
264 }
265
266 static int mb86a20s_i2c_readreg(struct mb86a20s_state *state,
267 u8 i2c_addr, u8 reg)
268 {
269 u8 val;
270 int rc;
271 struct i2c_msg msg[] = {
272 { .addr = i2c_addr, .flags = 0, .buf = &reg, .len = 1 },
273 { .addr = i2c_addr, .flags = I2C_M_RD, .buf = &val, .len = 1 }
274 };
275
276 rc = i2c_transfer(state->i2c, msg, 2);
277
278 if (rc != 2) {
279 dev_err(&state->i2c->dev, "%s: reg=0x%x (error=%d)\n",
280 __func__, reg, rc);
281 return (rc < 0) ? rc : -EIO;
282 }
283
284 return val;
285 }
286
287 #define mb86a20s_readreg(state, reg) \
288 mb86a20s_i2c_readreg(state, state->config->demod_address, reg)
289 #define mb86a20s_writereg(state, reg, val) \
290 mb86a20s_i2c_writereg(state, state->config->demod_address, reg, val)
291 #define mb86a20s_writeregdata(state, regdata) \
292 mb86a20s_i2c_writeregdata(state, state->config->demod_address, \
293 regdata, ARRAY_SIZE(regdata))
294
295 /*
296 * Ancillary internal routines (likely compiled inlined)
297 *
298 * The functions below assume that gateway lock has already obtained
299 */
300
301 static int mb86a20s_read_status(struct dvb_frontend *fe, fe_status_t *status)
302 {
303 struct mb86a20s_state *state = fe->demodulator_priv;
304 int val;
305
306 *status = 0;
307
308 val = mb86a20s_readreg(state, 0x0a) & 0xf;
309 if (val < 0)
310 return val;
311
312 if (val >= 2)
313 *status |= FE_HAS_SIGNAL;
314
315 if (val >= 4)
316 *status |= FE_HAS_CARRIER;
317
318 if (val >= 5)
319 *status |= FE_HAS_VITERBI;
320
321 if (val >= 7)
322 *status |= FE_HAS_SYNC;
323
324 if (val >= 8) /* Maybe 9? */
325 *status |= FE_HAS_LOCK;
326
327 dev_dbg(&state->i2c->dev, "%s: Status = 0x%02x (state = %d)\n",
328 __func__, *status, val);
329
330 return val;
331 }
332
333 static int mb86a20s_read_signal_strength(struct dvb_frontend *fe)
334 {
335 struct mb86a20s_state *state = fe->demodulator_priv;
336 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
337 int rc;
338 unsigned rf_max, rf_min, rf;
339
340 if (state->get_strength_time &&
341 (!time_after(jiffies, state->get_strength_time)))
342 return c->strength.stat[0].uvalue;
343
344 /* Reset its value if an error happen */
345 c->strength.stat[0].uvalue = 0;
346
347 /* Does a binary search to get RF strength */
348 rf_max = 0xfff;
349 rf_min = 0;
350 do {
351 rf = (rf_max + rf_min) / 2;
352 rc = mb86a20s_writereg(state, 0x04, 0x1f);
353 if (rc < 0)
354 return rc;
355 rc = mb86a20s_writereg(state, 0x05, rf >> 8);
356 if (rc < 0)
357 return rc;
358 rc = mb86a20s_writereg(state, 0x04, 0x20);
359 if (rc < 0)
360 return rc;
361 rc = mb86a20s_writereg(state, 0x05, rf);
362 if (rc < 0)
363 return rc;
364
365 rc = mb86a20s_readreg(state, 0x02);
366 if (rc < 0)
367 return rc;
368 if (rc & 0x08)
369 rf_min = (rf_max + rf_min) / 2;
370 else
371 rf_max = (rf_max + rf_min) / 2;
372 if (rf_max - rf_min < 4) {
373 rf = (rf_max + rf_min) / 2;
374
375 /* Rescale it from 2^12 (4096) to 2^16 */
376 rf = rf << (16 - 12);
377 if (rf)
378 rf |= (1 << 12) - 1;
379
380 dev_dbg(&state->i2c->dev,
381 "%s: signal strength = %d (%d < RF=%d < %d)\n",
382 __func__, rf, rf_min, rf >> 4, rf_max);
383 c->strength.stat[0].uvalue = rf;
384 state->get_strength_time = jiffies +
385 msecs_to_jiffies(1000);
386 return 0;
387 }
388 } while (1);
389 }
390
391 static int mb86a20s_get_modulation(struct mb86a20s_state *state,
392 unsigned layer)
393 {
394 int rc;
395 static unsigned char reg[] = {
396 [0] = 0x86, /* Layer A */
397 [1] = 0x8a, /* Layer B */
398 [2] = 0x8e, /* Layer C */
399 };
400
401 if (layer >= ARRAY_SIZE(reg))
402 return -EINVAL;
403 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
404 if (rc < 0)
405 return rc;
406 rc = mb86a20s_readreg(state, 0x6e);
407 if (rc < 0)
408 return rc;
409 switch ((rc >> 4) & 0x07) {
410 case 0:
411 return DQPSK;
412 case 1:
413 return QPSK;
414 case 2:
415 return QAM_16;
416 case 3:
417 return QAM_64;
418 default:
419 return QAM_AUTO;
420 }
421 }
422
423 static int mb86a20s_get_fec(struct mb86a20s_state *state,
424 unsigned layer)
425 {
426 int rc;
427
428 static unsigned char reg[] = {
429 [0] = 0x87, /* Layer A */
430 [1] = 0x8b, /* Layer B */
431 [2] = 0x8f, /* Layer C */
432 };
433
434 if (layer >= ARRAY_SIZE(reg))
435 return -EINVAL;
436 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
437 if (rc < 0)
438 return rc;
439 rc = mb86a20s_readreg(state, 0x6e);
440 if (rc < 0)
441 return rc;
442 switch ((rc >> 4) & 0x07) {
443 case 0:
444 return FEC_1_2;
445 case 1:
446 return FEC_2_3;
447 case 2:
448 return FEC_3_4;
449 case 3:
450 return FEC_5_6;
451 case 4:
452 return FEC_7_8;
453 default:
454 return FEC_AUTO;
455 }
456 }
457
458 static int mb86a20s_get_interleaving(struct mb86a20s_state *state,
459 unsigned layer)
460 {
461 int rc;
462
463 static unsigned char reg[] = {
464 [0] = 0x88, /* Layer A */
465 [1] = 0x8c, /* Layer B */
466 [2] = 0x90, /* Layer C */
467 };
468
469 if (layer >= ARRAY_SIZE(reg))
470 return -EINVAL;
471 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
472 if (rc < 0)
473 return rc;
474 rc = mb86a20s_readreg(state, 0x6e);
475 if (rc < 0)
476 return rc;
477
478 switch ((rc >> 4) & 0x07) {
479 case 1:
480 return GUARD_INTERVAL_1_4;
481 case 2:
482 return GUARD_INTERVAL_1_8;
483 case 3:
484 return GUARD_INTERVAL_1_16;
485 case 4:
486 return GUARD_INTERVAL_1_32;
487
488 default:
489 case 0:
490 return GUARD_INTERVAL_AUTO;
491 }
492 }
493
494 static int mb86a20s_get_segment_count(struct mb86a20s_state *state,
495 unsigned layer)
496 {
497 int rc, count;
498 static unsigned char reg[] = {
499 [0] = 0x89, /* Layer A */
500 [1] = 0x8d, /* Layer B */
501 [2] = 0x91, /* Layer C */
502 };
503
504 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
505
506 if (layer >= ARRAY_SIZE(reg))
507 return -EINVAL;
508
509 rc = mb86a20s_writereg(state, 0x6d, reg[layer]);
510 if (rc < 0)
511 return rc;
512 rc = mb86a20s_readreg(state, 0x6e);
513 if (rc < 0)
514 return rc;
515 count = (rc >> 4) & 0x0f;
516
517 dev_dbg(&state->i2c->dev, "%s: segments: %d.\n", __func__, count);
518
519 return count;
520 }
521
522 static void mb86a20s_reset_frontend_cache(struct dvb_frontend *fe)
523 {
524 struct mb86a20s_state *state = fe->demodulator_priv;
525 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
526
527 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
528
529 /* Fixed parameters */
530 c->delivery_system = SYS_ISDBT;
531 c->bandwidth_hz = 6000000;
532
533 /* Initialize values that will be later autodetected */
534 c->isdbt_layer_enabled = 0;
535 c->transmission_mode = TRANSMISSION_MODE_AUTO;
536 c->guard_interval = GUARD_INTERVAL_AUTO;
537 c->isdbt_sb_mode = 0;
538 c->isdbt_sb_segment_count = 0;
539 }
540
541 /*
542 * Estimates the bit rate using the per-segment bit rate given by
543 * ABNT/NBR 15601 spec (table 4).
544 */
545 static u32 isdbt_rate[3][5][4] = {
546 { /* DQPSK/QPSK */
547 { 280850, 312060, 330420, 340430 }, /* 1/2 */
548 { 374470, 416080, 440560, 453910 }, /* 2/3 */
549 { 421280, 468090, 495630, 510650 }, /* 3/4 */
550 { 468090, 520100, 550700, 567390 }, /* 5/6 */
551 { 491500, 546110, 578230, 595760 }, /* 7/8 */
552 }, { /* QAM16 */
553 { 561710, 624130, 660840, 680870 }, /* 1/2 */
554 { 748950, 832170, 881120, 907820 }, /* 2/3 */
555 { 842570, 936190, 991260, 1021300 }, /* 3/4 */
556 { 936190, 1040210, 1101400, 1134780 }, /* 5/6 */
557 { 983000, 1092220, 1156470, 1191520 }, /* 7/8 */
558 }, { /* QAM64 */
559 { 842570, 936190, 991260, 1021300 }, /* 1/2 */
560 { 1123430, 1248260, 1321680, 1361740 }, /* 2/3 */
561 { 1263860, 1404290, 1486900, 1531950 }, /* 3/4 */
562 { 1404290, 1560320, 1652110, 1702170 }, /* 5/6 */
563 { 1474500, 1638340, 1734710, 1787280 }, /* 7/8 */
564 }
565 };
566
567 static void mb86a20s_layer_bitrate(struct dvb_frontend *fe, u32 layer,
568 u32 modulation, u32 forward_error_correction,
569 u32 interleaving,
570 u32 segment)
571 {
572 struct mb86a20s_state *state = fe->demodulator_priv;
573 u32 rate;
574 int mod, fec, guard;
575
576 /*
577 * If modulation/fec/interleaving is not detected, the default is
578 * to consider the lowest bit rate, to avoid taking too long time
579 * to get BER.
580 */
581 switch (modulation) {
582 case DQPSK:
583 case QPSK:
584 default:
585 mod = 0;
586 break;
587 case QAM_16:
588 mod = 1;
589 break;
590 case QAM_64:
591 mod = 2;
592 break;
593 }
594
595 switch (forward_error_correction) {
596 default:
597 case FEC_1_2:
598 case FEC_AUTO:
599 fec = 0;
600 break;
601 case FEC_2_3:
602 fec = 1;
603 break;
604 case FEC_3_4:
605 fec = 2;
606 break;
607 case FEC_5_6:
608 fec = 3;
609 break;
610 case FEC_7_8:
611 fec = 4;
612 break;
613 }
614
615 switch (interleaving) {
616 default:
617 case GUARD_INTERVAL_1_4:
618 guard = 0;
619 break;
620 case GUARD_INTERVAL_1_8:
621 guard = 1;
622 break;
623 case GUARD_INTERVAL_1_16:
624 guard = 2;
625 break;
626 case GUARD_INTERVAL_1_32:
627 guard = 3;
628 break;
629 }
630
631 /* Samples BER at BER_SAMPLING_RATE seconds */
632 rate = isdbt_rate[mod][fec][guard] * segment * BER_SAMPLING_RATE;
633
634 /* Avoids sampling too quickly or to overflow the register */
635 if (rate < 256)
636 rate = 256;
637 else if (rate > (1 << 24) - 1)
638 rate = (1 << 24) - 1;
639
640 dev_dbg(&state->i2c->dev,
641 "%s: layer %c bitrate: %d kbps; counter = %d (0x%06x)\n",
642 __func__, 'A' + layer,
643 segment * isdbt_rate[mod][fec][guard]/1000,
644 rate, rate);
645
646 state->estimated_rate[layer] = rate;
647 }
648
649 static int mb86a20s_get_frontend(struct dvb_frontend *fe)
650 {
651 struct mb86a20s_state *state = fe->demodulator_priv;
652 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
653 int layer, rc;
654
655 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
656
657 /* Reset frontend cache to default values */
658 mb86a20s_reset_frontend_cache(fe);
659
660 /* Check for partial reception */
661 rc = mb86a20s_writereg(state, 0x6d, 0x85);
662 if (rc < 0)
663 return rc;
664 rc = mb86a20s_readreg(state, 0x6e);
665 if (rc < 0)
666 return rc;
667 c->isdbt_partial_reception = (rc & 0x10) ? 1 : 0;
668
669 /* Get per-layer data */
670
671 for (layer = 0; layer < NUM_LAYERS; layer++) {
672 dev_dbg(&state->i2c->dev, "%s: getting data for layer %c.\n",
673 __func__, 'A' + layer);
674
675 rc = mb86a20s_get_segment_count(state, layer);
676 if (rc < 0)
677 goto noperlayer_error;
678 if (rc >= 0 && rc < 14) {
679 c->layer[layer].segment_count = rc;
680 } else {
681 c->layer[layer].segment_count = 0;
682 state->estimated_rate[layer] = 0;
683 continue;
684 }
685 c->isdbt_layer_enabled |= 1 << layer;
686 rc = mb86a20s_get_modulation(state, layer);
687 if (rc < 0)
688 goto noperlayer_error;
689 dev_dbg(&state->i2c->dev, "%s: modulation %d.\n",
690 __func__, rc);
691 c->layer[layer].modulation = rc;
692 rc = mb86a20s_get_fec(state, layer);
693 if (rc < 0)
694 goto noperlayer_error;
695 dev_dbg(&state->i2c->dev, "%s: FEC %d.\n",
696 __func__, rc);
697 c->layer[layer].fec = rc;
698 rc = mb86a20s_get_interleaving(state, layer);
699 if (rc < 0)
700 goto noperlayer_error;
701 dev_dbg(&state->i2c->dev, "%s: interleaving %d.\n",
702 __func__, rc);
703 c->layer[layer].interleaving = rc;
704 mb86a20s_layer_bitrate(fe, layer, c->layer[layer].modulation,
705 c->layer[layer].fec,
706 c->layer[layer].interleaving,
707 c->layer[layer].segment_count);
708 }
709
710 rc = mb86a20s_writereg(state, 0x6d, 0x84);
711 if (rc < 0)
712 return rc;
713 if ((rc & 0x60) == 0x20) {
714 c->isdbt_sb_mode = 1;
715 /* At least, one segment should exist */
716 if (!c->isdbt_sb_segment_count)
717 c->isdbt_sb_segment_count = 1;
718 }
719
720 /* Get transmission mode and guard interval */
721 rc = mb86a20s_readreg(state, 0x07);
722 if (rc < 0)
723 return rc;
724 if ((rc & 0x60) == 0x20) {
725 switch (rc & 0x0c >> 2) {
726 case 0:
727 c->transmission_mode = TRANSMISSION_MODE_2K;
728 break;
729 case 1:
730 c->transmission_mode = TRANSMISSION_MODE_4K;
731 break;
732 case 2:
733 c->transmission_mode = TRANSMISSION_MODE_8K;
734 break;
735 }
736 }
737 if (!(rc & 0x10)) {
738 switch (rc & 0x3) {
739 case 0:
740 c->guard_interval = GUARD_INTERVAL_1_4;
741 break;
742 case 1:
743 c->guard_interval = GUARD_INTERVAL_1_8;
744 break;
745 case 2:
746 c->guard_interval = GUARD_INTERVAL_1_16;
747 break;
748 }
749 }
750 return 0;
751
752 noperlayer_error:
753
754 /* per-layer info is incomplete; discard all per-layer */
755 c->isdbt_layer_enabled = 0;
756
757 return rc;
758 }
759
760 static int mb86a20s_reset_counters(struct dvb_frontend *fe)
761 {
762 struct mb86a20s_state *state = fe->demodulator_priv;
763 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
764 int rc, val;
765
766 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
767
768 /* Reset the counters, if the channel changed */
769 if (state->last_frequency != c->frequency) {
770 memset(&c->cnr, 0, sizeof(c->cnr));
771 memset(&c->pre_bit_error, 0, sizeof(c->pre_bit_error));
772 memset(&c->pre_bit_count, 0, sizeof(c->pre_bit_count));
773 memset(&c->post_bit_error, 0, sizeof(c->post_bit_error));
774 memset(&c->post_bit_count, 0, sizeof(c->post_bit_count));
775 memset(&c->block_error, 0, sizeof(c->block_error));
776 memset(&c->block_count, 0, sizeof(c->block_count));
777
778 state->last_frequency = c->frequency;
779 }
780
781 /* Clear status for most stats */
782
783 /* BER/PER counter reset */
784 rc = mb86a20s_writeregdata(state, mb86a20s_per_ber_reset);
785 if (rc < 0)
786 goto err;
787
788 /* CNR counter reset */
789 rc = mb86a20s_readreg(state, 0x45);
790 if (rc < 0)
791 goto err;
792 val = rc;
793 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
794 if (rc < 0)
795 goto err;
796 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
797 if (rc < 0)
798 goto err;
799
800 /* MER counter reset */
801 rc = mb86a20s_writereg(state, 0x50, 0x50);
802 if (rc < 0)
803 goto err;
804 rc = mb86a20s_readreg(state, 0x51);
805 if (rc < 0)
806 goto err;
807 val = rc;
808 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
809 if (rc < 0)
810 goto err;
811 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
812 if (rc < 0)
813 goto err;
814
815 goto ok;
816 err:
817 dev_err(&state->i2c->dev,
818 "%s: Can't reset FE statistics (error %d).\n",
819 __func__, rc);
820 ok:
821 return rc;
822 }
823
824 static int mb86a20s_get_pre_ber(struct dvb_frontend *fe,
825 unsigned layer,
826 u32 *error, u32 *count)
827 {
828 struct mb86a20s_state *state = fe->demodulator_priv;
829 int rc, val;
830
831 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
832
833 if (layer >= NUM_LAYERS)
834 return -EINVAL;
835
836 /* Check if the BER measures are already available */
837 rc = mb86a20s_readreg(state, 0x54);
838 if (rc < 0)
839 return rc;
840
841 /* Check if data is available for that layer */
842 if (!(rc & (1 << layer))) {
843 dev_dbg(&state->i2c->dev,
844 "%s: preBER for layer %c is not available yet.\n",
845 __func__, 'A' + layer);
846 return -EBUSY;
847 }
848
849 /* Read Bit Error Count */
850 rc = mb86a20s_readreg(state, 0x55 + layer * 3);
851 if (rc < 0)
852 return rc;
853 *error = rc << 16;
854 rc = mb86a20s_readreg(state, 0x56 + layer * 3);
855 if (rc < 0)
856 return rc;
857 *error |= rc << 8;
858 rc = mb86a20s_readreg(state, 0x57 + layer * 3);
859 if (rc < 0)
860 return rc;
861 *error |= rc;
862
863 dev_dbg(&state->i2c->dev,
864 "%s: bit error before Viterbi for layer %c: %d.\n",
865 __func__, 'A' + layer, *error);
866
867 /* Read Bit Count */
868 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
869 if (rc < 0)
870 return rc;
871 rc = mb86a20s_readreg(state, 0x51);
872 if (rc < 0)
873 return rc;
874 *count = rc << 16;
875 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
876 if (rc < 0)
877 return rc;
878 rc = mb86a20s_readreg(state, 0x51);
879 if (rc < 0)
880 return rc;
881 *count |= rc << 8;
882 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
883 if (rc < 0)
884 return rc;
885 rc = mb86a20s_readreg(state, 0x51);
886 if (rc < 0)
887 return rc;
888 *count |= rc;
889
890 dev_dbg(&state->i2c->dev,
891 "%s: bit count before Viterbi for layer %c: %d.\n",
892 __func__, 'A' + layer, *count);
893
894
895 /*
896 * As we get TMCC data from the frontend, we can better estimate the
897 * BER bit counters, in order to do the BER measure during a longer
898 * time. Use those data, if available, to update the bit count
899 * measure.
900 */
901
902 if (state->estimated_rate[layer]
903 && state->estimated_rate[layer] != *count) {
904 dev_dbg(&state->i2c->dev,
905 "%s: updating layer %c preBER counter to %d.\n",
906 __func__, 'A' + layer, state->estimated_rate[layer]);
907
908 /* Turn off BER before Viterbi */
909 rc = mb86a20s_writereg(state, 0x52, 0x00);
910
911 /* Update counter for this layer */
912 rc = mb86a20s_writereg(state, 0x50, 0xa7 + layer * 3);
913 if (rc < 0)
914 return rc;
915 rc = mb86a20s_writereg(state, 0x51,
916 state->estimated_rate[layer] >> 16);
917 if (rc < 0)
918 return rc;
919 rc = mb86a20s_writereg(state, 0x50, 0xa8 + layer * 3);
920 if (rc < 0)
921 return rc;
922 rc = mb86a20s_writereg(state, 0x51,
923 state->estimated_rate[layer] >> 8);
924 if (rc < 0)
925 return rc;
926 rc = mb86a20s_writereg(state, 0x50, 0xa9 + layer * 3);
927 if (rc < 0)
928 return rc;
929 rc = mb86a20s_writereg(state, 0x51,
930 state->estimated_rate[layer]);
931 if (rc < 0)
932 return rc;
933
934 /* Turn on BER before Viterbi */
935 rc = mb86a20s_writereg(state, 0x52, 0x01);
936
937 /* Reset all preBER counters */
938 rc = mb86a20s_writereg(state, 0x53, 0x00);
939 if (rc < 0)
940 return rc;
941 rc = mb86a20s_writereg(state, 0x53, 0x07);
942 } else {
943 /* Reset counter to collect new data */
944 rc = mb86a20s_readreg(state, 0x53);
945 if (rc < 0)
946 return rc;
947 val = rc;
948 rc = mb86a20s_writereg(state, 0x53, val & ~(1 << layer));
949 if (rc < 0)
950 return rc;
951 rc = mb86a20s_writereg(state, 0x53, val | (1 << layer));
952 }
953
954 return rc;
955 }
956
957 static int mb86a20s_get_post_ber(struct dvb_frontend *fe,
958 unsigned layer,
959 u32 *error, u32 *count)
960 {
961 struct mb86a20s_state *state = fe->demodulator_priv;
962 u32 counter, collect_rate;
963 int rc, val;
964
965 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
966
967 if (layer >= NUM_LAYERS)
968 return -EINVAL;
969
970 /* Check if the BER measures are already available */
971 rc = mb86a20s_readreg(state, 0x60);
972 if (rc < 0)
973 return rc;
974
975 /* Check if data is available for that layer */
976 if (!(rc & (1 << layer))) {
977 dev_dbg(&state->i2c->dev,
978 "%s: post BER for layer %c is not available yet.\n",
979 __func__, 'A' + layer);
980 return -EBUSY;
981 }
982
983 /* Read Bit Error Count */
984 rc = mb86a20s_readreg(state, 0x64 + layer * 3);
985 if (rc < 0)
986 return rc;
987 *error = rc << 16;
988 rc = mb86a20s_readreg(state, 0x65 + layer * 3);
989 if (rc < 0)
990 return rc;
991 *error |= rc << 8;
992 rc = mb86a20s_readreg(state, 0x66 + layer * 3);
993 if (rc < 0)
994 return rc;
995 *error |= rc;
996
997 dev_dbg(&state->i2c->dev,
998 "%s: post bit error for layer %c: %d.\n",
999 __func__, 'A' + layer, *error);
1000
1001 /* Read Bit Count */
1002 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1003 if (rc < 0)
1004 return rc;
1005 rc = mb86a20s_readreg(state, 0x51);
1006 if (rc < 0)
1007 return rc;
1008 counter = rc << 8;
1009 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1010 if (rc < 0)
1011 return rc;
1012 rc = mb86a20s_readreg(state, 0x51);
1013 if (rc < 0)
1014 return rc;
1015 counter |= rc;
1016 *count = counter * 204 * 8;
1017
1018 dev_dbg(&state->i2c->dev,
1019 "%s: post bit count for layer %c: %d.\n",
1020 __func__, 'A' + layer, *count);
1021
1022 /*
1023 * As we get TMCC data from the frontend, we can better estimate the
1024 * BER bit counters, in order to do the BER measure during a longer
1025 * time. Use those data, if available, to update the bit count
1026 * measure.
1027 */
1028
1029 if (!state->estimated_rate[layer])
1030 goto reset_measurement;
1031
1032 collect_rate = state->estimated_rate[layer] / 204 / 8;
1033 if (collect_rate < 32)
1034 collect_rate = 32;
1035 if (collect_rate > 65535)
1036 collect_rate = 65535;
1037 if (collect_rate != counter) {
1038 dev_dbg(&state->i2c->dev,
1039 "%s: updating postBER counter on layer %c to %d.\n",
1040 __func__, 'A' + layer, collect_rate);
1041
1042 /* Turn off BER after Viterbi */
1043 rc = mb86a20s_writereg(state, 0x5e, 0x00);
1044
1045 /* Update counter for this layer */
1046 rc = mb86a20s_writereg(state, 0x50, 0xdc + layer * 2);
1047 if (rc < 0)
1048 return rc;
1049 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1050 if (rc < 0)
1051 return rc;
1052 rc = mb86a20s_writereg(state, 0x50, 0xdd + layer * 2);
1053 if (rc < 0)
1054 return rc;
1055 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1056 if (rc < 0)
1057 return rc;
1058
1059 /* Turn on BER after Viterbi */
1060 rc = mb86a20s_writereg(state, 0x5e, 0x07);
1061
1062 /* Reset all preBER counters */
1063 rc = mb86a20s_writereg(state, 0x5f, 0x00);
1064 if (rc < 0)
1065 return rc;
1066 rc = mb86a20s_writereg(state, 0x5f, 0x07);
1067
1068 return rc;
1069 }
1070
1071 reset_measurement:
1072 /* Reset counter to collect new data */
1073 rc = mb86a20s_readreg(state, 0x5f);
1074 if (rc < 0)
1075 return rc;
1076 val = rc;
1077 rc = mb86a20s_writereg(state, 0x5f, val & ~(1 << layer));
1078 if (rc < 0)
1079 return rc;
1080 rc = mb86a20s_writereg(state, 0x5f, val | (1 << layer));
1081
1082 return rc;
1083 }
1084
1085 static int mb86a20s_get_blk_error(struct dvb_frontend *fe,
1086 unsigned layer,
1087 u32 *error, u32 *count)
1088 {
1089 struct mb86a20s_state *state = fe->demodulator_priv;
1090 int rc, val;
1091 u32 collect_rate;
1092 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1093
1094 if (layer >= NUM_LAYERS)
1095 return -EINVAL;
1096
1097 /* Check if the PER measures are already available */
1098 rc = mb86a20s_writereg(state, 0x50, 0xb8);
1099 if (rc < 0)
1100 return rc;
1101 rc = mb86a20s_readreg(state, 0x51);
1102 if (rc < 0)
1103 return rc;
1104
1105 /* Check if data is available for that layer */
1106
1107 if (!(rc & (1 << layer))) {
1108 dev_dbg(&state->i2c->dev,
1109 "%s: block counts for layer %c aren't available yet.\n",
1110 __func__, 'A' + layer);
1111 return -EBUSY;
1112 }
1113
1114 /* Read Packet error Count */
1115 rc = mb86a20s_writereg(state, 0x50, 0xb9 + layer * 2);
1116 if (rc < 0)
1117 return rc;
1118 rc = mb86a20s_readreg(state, 0x51);
1119 if (rc < 0)
1120 return rc;
1121 *error = rc << 8;
1122 rc = mb86a20s_writereg(state, 0x50, 0xba + layer * 2);
1123 if (rc < 0)
1124 return rc;
1125 rc = mb86a20s_readreg(state, 0x51);
1126 if (rc < 0)
1127 return rc;
1128 *error |= rc;
1129 dev_dbg(&state->i2c->dev, "%s: block error for layer %c: %d.\n",
1130 __func__, 'A' + layer, *error);
1131
1132 /* Read Bit Count */
1133 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1134 if (rc < 0)
1135 return rc;
1136 rc = mb86a20s_readreg(state, 0x51);
1137 if (rc < 0)
1138 return rc;
1139 *count = rc << 8;
1140 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1141 if (rc < 0)
1142 return rc;
1143 rc = mb86a20s_readreg(state, 0x51);
1144 if (rc < 0)
1145 return rc;
1146 *count |= rc;
1147
1148 dev_dbg(&state->i2c->dev,
1149 "%s: block count for layer %c: %d.\n",
1150 __func__, 'A' + layer, *count);
1151
1152 /*
1153 * As we get TMCC data from the frontend, we can better estimate the
1154 * BER bit counters, in order to do the BER measure during a longer
1155 * time. Use those data, if available, to update the bit count
1156 * measure.
1157 */
1158
1159 if (!state->estimated_rate[layer])
1160 goto reset_measurement;
1161
1162 collect_rate = state->estimated_rate[layer] / 204 / 8;
1163 if (collect_rate < 32)
1164 collect_rate = 32;
1165 if (collect_rate > 65535)
1166 collect_rate = 65535;
1167
1168 if (collect_rate != *count) {
1169 dev_dbg(&state->i2c->dev,
1170 "%s: updating PER counter on layer %c to %d.\n",
1171 __func__, 'A' + layer, collect_rate);
1172
1173 /* Stop PER measurement */
1174 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1175 if (rc < 0)
1176 return rc;
1177 rc = mb86a20s_writereg(state, 0x51, 0x00);
1178 if (rc < 0)
1179 return rc;
1180
1181 /* Update this layer's counter */
1182 rc = mb86a20s_writereg(state, 0x50, 0xb2 + layer * 2);
1183 if (rc < 0)
1184 return rc;
1185 rc = mb86a20s_writereg(state, 0x51, collect_rate >> 8);
1186 if (rc < 0)
1187 return rc;
1188 rc = mb86a20s_writereg(state, 0x50, 0xb3 + layer * 2);
1189 if (rc < 0)
1190 return rc;
1191 rc = mb86a20s_writereg(state, 0x51, collect_rate & 0xff);
1192 if (rc < 0)
1193 return rc;
1194
1195 /* start PER measurement */
1196 rc = mb86a20s_writereg(state, 0x50, 0xb0);
1197 if (rc < 0)
1198 return rc;
1199 rc = mb86a20s_writereg(state, 0x51, 0x07);
1200 if (rc < 0)
1201 return rc;
1202
1203 /* Reset all counters to collect new data */
1204 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1205 if (rc < 0)
1206 return rc;
1207 rc = mb86a20s_writereg(state, 0x51, 0x07);
1208 if (rc < 0)
1209 return rc;
1210 rc = mb86a20s_writereg(state, 0x51, 0x00);
1211
1212 return rc;
1213 }
1214
1215 reset_measurement:
1216 /* Reset counter to collect new data */
1217 rc = mb86a20s_writereg(state, 0x50, 0xb1);
1218 if (rc < 0)
1219 return rc;
1220 rc = mb86a20s_readreg(state, 0x51);
1221 if (rc < 0)
1222 return rc;
1223 val = rc;
1224 rc = mb86a20s_writereg(state, 0x51, val | (1 << layer));
1225 if (rc < 0)
1226 return rc;
1227 rc = mb86a20s_writereg(state, 0x51, val & ~(1 << layer));
1228
1229 return rc;
1230 }
1231
1232 struct linear_segments {
1233 unsigned x, y;
1234 };
1235
1236 /*
1237 * All tables below return a dB/1000 measurement
1238 */
1239
1240 static struct linear_segments cnr_to_db_table[] = {
1241 { 19648, 0},
1242 { 18187, 1000},
1243 { 16534, 2000},
1244 { 14823, 3000},
1245 { 13161, 4000},
1246 { 11622, 5000},
1247 { 10279, 6000},
1248 { 9089, 7000},
1249 { 8042, 8000},
1250 { 7137, 9000},
1251 { 6342, 10000},
1252 { 5641, 11000},
1253 { 5030, 12000},
1254 { 4474, 13000},
1255 { 3988, 14000},
1256 { 3556, 15000},
1257 { 3180, 16000},
1258 { 2841, 17000},
1259 { 2541, 18000},
1260 { 2276, 19000},
1261 { 2038, 20000},
1262 { 1800, 21000},
1263 { 1625, 22000},
1264 { 1462, 23000},
1265 { 1324, 24000},
1266 { 1175, 25000},
1267 { 1063, 26000},
1268 { 980, 27000},
1269 { 907, 28000},
1270 { 840, 29000},
1271 { 788, 30000},
1272 };
1273
1274 static struct linear_segments cnr_64qam_table[] = {
1275 { 3922688, 0},
1276 { 3920384, 1000},
1277 { 3902720, 2000},
1278 { 3894784, 3000},
1279 { 3882496, 4000},
1280 { 3872768, 5000},
1281 { 3858944, 6000},
1282 { 3851520, 7000},
1283 { 3838976, 8000},
1284 { 3829248, 9000},
1285 { 3818240, 10000},
1286 { 3806976, 11000},
1287 { 3791872, 12000},
1288 { 3767040, 13000},
1289 { 3720960, 14000},
1290 { 3637504, 15000},
1291 { 3498496, 16000},
1292 { 3296000, 17000},
1293 { 3031040, 18000},
1294 { 2715392, 19000},
1295 { 2362624, 20000},
1296 { 1963264, 21000},
1297 { 1649664, 22000},
1298 { 1366784, 23000},
1299 { 1120768, 24000},
1300 { 890880, 25000},
1301 { 723456, 26000},
1302 { 612096, 27000},
1303 { 518912, 28000},
1304 { 448256, 29000},
1305 { 388864, 30000},
1306 };
1307
1308 static struct linear_segments cnr_16qam_table[] = {
1309 { 5314816, 0},
1310 { 5219072, 1000},
1311 { 5118720, 2000},
1312 { 4998912, 3000},
1313 { 4875520, 4000},
1314 { 4736000, 5000},
1315 { 4604160, 6000},
1316 { 4458752, 7000},
1317 { 4300288, 8000},
1318 { 4092928, 9000},
1319 { 3836160, 10000},
1320 { 3521024, 11000},
1321 { 3155968, 12000},
1322 { 2756864, 13000},
1323 { 2347008, 14000},
1324 { 1955072, 15000},
1325 { 1593600, 16000},
1326 { 1297920, 17000},
1327 { 1043968, 18000},
1328 { 839680, 19000},
1329 { 672256, 20000},
1330 { 523008, 21000},
1331 { 424704, 22000},
1332 { 345088, 23000},
1333 { 280064, 24000},
1334 { 221440, 25000},
1335 { 179712, 26000},
1336 { 151040, 27000},
1337 { 128512, 28000},
1338 { 110080, 29000},
1339 { 95744, 30000},
1340 };
1341
1342 struct linear_segments cnr_qpsk_table[] = {
1343 { 2834176, 0},
1344 { 2683648, 1000},
1345 { 2536960, 2000},
1346 { 2391808, 3000},
1347 { 2133248, 4000},
1348 { 1906176, 5000},
1349 { 1666560, 6000},
1350 { 1422080, 7000},
1351 { 1189632, 8000},
1352 { 976384, 9000},
1353 { 790272, 10000},
1354 { 633344, 11000},
1355 { 505600, 12000},
1356 { 402944, 13000},
1357 { 320768, 14000},
1358 { 255488, 15000},
1359 { 204032, 16000},
1360 { 163072, 17000},
1361 { 130304, 18000},
1362 { 105216, 19000},
1363 { 83456, 20000},
1364 { 65024, 21000},
1365 { 52480, 22000},
1366 { 42752, 23000},
1367 { 34560, 24000},
1368 { 27136, 25000},
1369 { 22016, 26000},
1370 { 18432, 27000},
1371 { 15616, 28000},
1372 { 13312, 29000},
1373 { 11520, 30000},
1374 };
1375
1376 static u32 interpolate_value(u32 value, struct linear_segments *segments,
1377 unsigned len)
1378 {
1379 u64 tmp64;
1380 u32 dx, dy;
1381 int i, ret;
1382
1383 if (value >= segments[0].x)
1384 return segments[0].y;
1385 if (value < segments[len-1].x)
1386 return segments[len-1].y;
1387
1388 for (i = 1; i < len - 1; i++) {
1389 /* If value is identical, no need to interpolate */
1390 if (value == segments[i].x)
1391 return segments[i].y;
1392 if (value > segments[i].x)
1393 break;
1394 }
1395
1396 /* Linear interpolation between the two (x,y) points */
1397 dy = segments[i].y - segments[i - 1].y;
1398 dx = segments[i - 1].x - segments[i].x;
1399 tmp64 = value - segments[i].x;
1400 tmp64 *= dy;
1401 do_div(tmp64, dx);
1402 ret = segments[i].y - tmp64;
1403
1404 return ret;
1405 }
1406
1407 static int mb86a20s_get_main_CNR(struct dvb_frontend *fe)
1408 {
1409 struct mb86a20s_state *state = fe->demodulator_priv;
1410 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1411 u32 cnr_linear, cnr;
1412 int rc, val;
1413
1414 /* Check if CNR is available */
1415 rc = mb86a20s_readreg(state, 0x45);
1416 if (rc < 0)
1417 return rc;
1418
1419 if (!(rc & 0x40)) {
1420 dev_dbg(&state->i2c->dev, "%s: CNR is not available yet.\n",
1421 __func__);
1422 return -EBUSY;
1423 }
1424 val = rc;
1425
1426 rc = mb86a20s_readreg(state, 0x46);
1427 if (rc < 0)
1428 return rc;
1429 cnr_linear = rc << 8;
1430
1431 rc = mb86a20s_readreg(state, 0x46);
1432 if (rc < 0)
1433 return rc;
1434 cnr_linear |= rc;
1435
1436 cnr = interpolate_value(cnr_linear,
1437 cnr_to_db_table, ARRAY_SIZE(cnr_to_db_table));
1438
1439 c->cnr.stat[0].scale = FE_SCALE_DECIBEL;
1440 c->cnr.stat[0].svalue = cnr;
1441
1442 dev_dbg(&state->i2c->dev, "%s: CNR is %d.%03d dB (%d)\n",
1443 __func__, cnr / 1000, cnr % 1000, cnr_linear);
1444
1445 /* CNR counter reset */
1446 rc = mb86a20s_writereg(state, 0x45, val | 0x10);
1447 if (rc < 0)
1448 return rc;
1449 rc = mb86a20s_writereg(state, 0x45, val & 0x6f);
1450
1451 return rc;
1452 }
1453
1454 static int mb86a20s_get_blk_error_layer_CNR(struct dvb_frontend *fe)
1455 {
1456 struct mb86a20s_state *state = fe->demodulator_priv;
1457 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1458 u32 mer, cnr;
1459 int rc, val, layer;
1460 struct linear_segments *segs;
1461 unsigned segs_len;
1462
1463 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1464
1465 /* Check if the measures are already available */
1466 rc = mb86a20s_writereg(state, 0x50, 0x5b);
1467 if (rc < 0)
1468 return rc;
1469 rc = mb86a20s_readreg(state, 0x51);
1470 if (rc < 0)
1471 return rc;
1472
1473 /* Check if data is available */
1474 if (!(rc & 0x01)) {
1475 dev_dbg(&state->i2c->dev,
1476 "%s: MER measures aren't available yet.\n", __func__);
1477 return -EBUSY;
1478 }
1479
1480 /* Read all layers */
1481 for (layer = 0; layer < NUM_LAYERS; layer++) {
1482 if (!(c->isdbt_layer_enabled & (1 << layer))) {
1483 c->cnr.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1484 continue;
1485 }
1486
1487 rc = mb86a20s_writereg(state, 0x50, 0x52 + layer * 3);
1488 if (rc < 0)
1489 return rc;
1490 rc = mb86a20s_readreg(state, 0x51);
1491 if (rc < 0)
1492 return rc;
1493 mer = rc << 16;
1494 rc = mb86a20s_writereg(state, 0x50, 0x53 + layer * 3);
1495 if (rc < 0)
1496 return rc;
1497 rc = mb86a20s_readreg(state, 0x51);
1498 if (rc < 0)
1499 return rc;
1500 mer |= rc << 8;
1501 rc = mb86a20s_writereg(state, 0x50, 0x54 + layer * 3);
1502 if (rc < 0)
1503 return rc;
1504 rc = mb86a20s_readreg(state, 0x51);
1505 if (rc < 0)
1506 return rc;
1507 mer |= rc;
1508
1509 switch (c->layer[layer].modulation) {
1510 case DQPSK:
1511 case QPSK:
1512 segs = cnr_qpsk_table;
1513 segs_len = ARRAY_SIZE(cnr_qpsk_table);
1514 break;
1515 case QAM_16:
1516 segs = cnr_16qam_table;
1517 segs_len = ARRAY_SIZE(cnr_16qam_table);
1518 break;
1519 default:
1520 case QAM_64:
1521 segs = cnr_64qam_table;
1522 segs_len = ARRAY_SIZE(cnr_64qam_table);
1523 break;
1524 }
1525 cnr = interpolate_value(mer, segs, segs_len);
1526
1527 c->cnr.stat[1 + layer].scale = FE_SCALE_DECIBEL;
1528 c->cnr.stat[1 + layer].svalue = cnr;
1529
1530 dev_dbg(&state->i2c->dev,
1531 "%s: CNR for layer %c is %d.%03d dB (MER = %d).\n",
1532 __func__, 'A' + layer, cnr / 1000, cnr % 1000, mer);
1533
1534 }
1535
1536 /* Start a new MER measurement */
1537 /* MER counter reset */
1538 rc = mb86a20s_writereg(state, 0x50, 0x50);
1539 if (rc < 0)
1540 return rc;
1541 rc = mb86a20s_readreg(state, 0x51);
1542 if (rc < 0)
1543 return rc;
1544 val = rc;
1545
1546 rc = mb86a20s_writereg(state, 0x51, val | 0x01);
1547 if (rc < 0)
1548 return rc;
1549 rc = mb86a20s_writereg(state, 0x51, val & 0x06);
1550 if (rc < 0)
1551 return rc;
1552
1553 return 0;
1554 }
1555
1556 static void mb86a20s_stats_not_ready(struct dvb_frontend *fe)
1557 {
1558 struct mb86a20s_state *state = fe->demodulator_priv;
1559 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1560 int layer;
1561
1562 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1563
1564 /* Fill the length of each status counter */
1565
1566 /* Only global stats */
1567 c->strength.len = 1;
1568
1569 /* Per-layer stats - 3 layers + global */
1570 c->cnr.len = NUM_LAYERS + 1;
1571 c->pre_bit_error.len = NUM_LAYERS + 1;
1572 c->pre_bit_count.len = NUM_LAYERS + 1;
1573 c->post_bit_error.len = NUM_LAYERS + 1;
1574 c->post_bit_count.len = NUM_LAYERS + 1;
1575 c->block_error.len = NUM_LAYERS + 1;
1576 c->block_count.len = NUM_LAYERS + 1;
1577
1578 /* Signal is always available */
1579 c->strength.stat[0].scale = FE_SCALE_RELATIVE;
1580 c->strength.stat[0].uvalue = 0;
1581
1582 /* Put all of them at FE_SCALE_NOT_AVAILABLE */
1583 for (layer = 0; layer < NUM_LAYERS + 1; layer++) {
1584 c->cnr.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1585 c->pre_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1586 c->pre_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1587 c->post_bit_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1588 c->post_bit_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1589 c->block_error.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1590 c->block_count.stat[layer].scale = FE_SCALE_NOT_AVAILABLE;
1591 }
1592 }
1593
1594 static int mb86a20s_get_stats(struct dvb_frontend *fe, int status_nr)
1595 {
1596 struct mb86a20s_state *state = fe->demodulator_priv;
1597 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1598 int rc = 0, layer;
1599 u32 bit_error = 0, bit_count = 0;
1600 u32 t_pre_bit_error = 0, t_pre_bit_count = 0;
1601 u32 t_post_bit_error = 0, t_post_bit_count = 0;
1602 u32 block_error = 0, block_count = 0;
1603 u32 t_block_error = 0, t_block_count = 0;
1604 int active_layers = 0, pre_ber_layers = 0, post_ber_layers = 0;
1605 int per_layers = 0;
1606
1607 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1608
1609 mb86a20s_get_main_CNR(fe);
1610
1611 /* Get per-layer stats */
1612 mb86a20s_get_blk_error_layer_CNR(fe);
1613
1614 /*
1615 * At state 7, only CNR is available
1616 * For BER measures, state=9 is required
1617 * FIXME: we may get MER measures with state=8
1618 */
1619 if (status_nr < 9)
1620 return 0;
1621
1622 for (layer = 0; layer < NUM_LAYERS; layer++) {
1623 if (c->isdbt_layer_enabled & (1 << layer)) {
1624 /* Layer is active and has rc segments */
1625 active_layers++;
1626
1627 /* Handle BER before vterbi */
1628 rc = mb86a20s_get_pre_ber(fe, layer,
1629 &bit_error, &bit_count);
1630 if (rc >= 0) {
1631 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1632 c->pre_bit_error.stat[1 + layer].uvalue += bit_error;
1633 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1634 c->pre_bit_count.stat[1 + layer].uvalue += bit_count;
1635 } else if (rc != -EBUSY) {
1636 /*
1637 * If an I/O error happened,
1638 * measures are now unavailable
1639 */
1640 c->pre_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1641 c->pre_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1642 dev_err(&state->i2c->dev,
1643 "%s: Can't get BER for layer %c (error %d).\n",
1644 __func__, 'A' + layer, rc);
1645 }
1646 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1647 pre_ber_layers++;
1648
1649 /* Handle BER post vterbi */
1650 rc = mb86a20s_get_post_ber(fe, layer,
1651 &bit_error, &bit_count);
1652 if (rc >= 0) {
1653 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1654 c->post_bit_error.stat[1 + layer].uvalue += bit_error;
1655 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1656 c->post_bit_count.stat[1 + layer].uvalue += bit_count;
1657 } else if (rc != -EBUSY) {
1658 /*
1659 * If an I/O error happened,
1660 * measures are now unavailable
1661 */
1662 c->post_bit_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1663 c->post_bit_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1664 dev_err(&state->i2c->dev,
1665 "%s: Can't get BER for layer %c (error %d).\n",
1666 __func__, 'A' + layer, rc);
1667 }
1668 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1669 post_ber_layers++;
1670
1671 /* Handle Block errors for PER/UCB reports */
1672 rc = mb86a20s_get_blk_error(fe, layer,
1673 &block_error,
1674 &block_count);
1675 if (rc >= 0) {
1676 c->block_error.stat[1 + layer].scale = FE_SCALE_COUNTER;
1677 c->block_error.stat[1 + layer].uvalue += block_error;
1678 c->block_count.stat[1 + layer].scale = FE_SCALE_COUNTER;
1679 c->block_count.stat[1 + layer].uvalue += block_count;
1680 } else if (rc != -EBUSY) {
1681 /*
1682 * If an I/O error happened,
1683 * measures are now unavailable
1684 */
1685 c->block_error.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1686 c->block_count.stat[1 + layer].scale = FE_SCALE_NOT_AVAILABLE;
1687 dev_err(&state->i2c->dev,
1688 "%s: Can't get PER for layer %c (error %d).\n",
1689 __func__, 'A' + layer, rc);
1690
1691 }
1692 if (c->block_error.stat[1 + layer].scale != FE_SCALE_NOT_AVAILABLE)
1693 per_layers++;
1694
1695 /* Update total preBER */
1696 t_pre_bit_error += c->pre_bit_error.stat[1 + layer].uvalue;
1697 t_pre_bit_count += c->pre_bit_count.stat[1 + layer].uvalue;
1698
1699 /* Update total postBER */
1700 t_post_bit_error += c->post_bit_error.stat[1 + layer].uvalue;
1701 t_post_bit_count += c->post_bit_count.stat[1 + layer].uvalue;
1702
1703 /* Update total PER */
1704 t_block_error += c->block_error.stat[1 + layer].uvalue;
1705 t_block_count += c->block_count.stat[1 + layer].uvalue;
1706 }
1707 }
1708
1709 /*
1710 * Start showing global count if at least one error count is
1711 * available.
1712 */
1713 if (pre_ber_layers) {
1714 /*
1715 * At least one per-layer BER measure was read. We can now
1716 * calculate the total BER
1717 *
1718 * Total Bit Error/Count is calculated as the sum of the
1719 * bit errors on all active layers.
1720 */
1721 c->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1722 c->pre_bit_error.stat[0].uvalue = t_pre_bit_error;
1723 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1724 c->pre_bit_count.stat[0].uvalue = t_pre_bit_count;
1725 } else {
1726 c->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1727 c->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1728 }
1729
1730 /*
1731 * Start showing global count if at least one error count is
1732 * available.
1733 */
1734 if (post_ber_layers) {
1735 /*
1736 * At least one per-layer BER measure was read. We can now
1737 * calculate the total BER
1738 *
1739 * Total Bit Error/Count is calculated as the sum of the
1740 * bit errors on all active layers.
1741 */
1742 c->post_bit_error.stat[0].scale = FE_SCALE_COUNTER;
1743 c->post_bit_error.stat[0].uvalue = t_post_bit_error;
1744 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1745 c->post_bit_count.stat[0].uvalue = t_post_bit_count;
1746 } else {
1747 c->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1748 c->post_bit_count.stat[0].scale = FE_SCALE_COUNTER;
1749 }
1750
1751 if (per_layers) {
1752 /*
1753 * At least one per-layer UCB measure was read. We can now
1754 * calculate the total UCB
1755 *
1756 * Total block Error/Count is calculated as the sum of the
1757 * block errors on all active layers.
1758 */
1759 c->block_error.stat[0].scale = FE_SCALE_COUNTER;
1760 c->block_error.stat[0].uvalue = t_block_error;
1761 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1762 c->block_count.stat[0].uvalue = t_block_count;
1763 } else {
1764 c->block_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
1765 c->block_count.stat[0].scale = FE_SCALE_COUNTER;
1766 }
1767
1768 return rc;
1769 }
1770
1771 /*
1772 * The functions below are called via DVB callbacks, so they need to
1773 * properly use the I2C gate control
1774 */
1775
1776 static int mb86a20s_initfe(struct dvb_frontend *fe)
1777 {
1778 struct mb86a20s_state *state = fe->demodulator_priv;
1779 u64 pll;
1780 u32 fclk;
1781 int rc;
1782 u8 regD5 = 1, reg71, reg09 = 0x3a;
1783
1784 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1785
1786 if (fe->ops.i2c_gate_ctrl)
1787 fe->ops.i2c_gate_ctrl(fe, 0);
1788
1789 /* Initialize the frontend */
1790 rc = mb86a20s_writeregdata(state, mb86a20s_init1);
1791 if (rc < 0)
1792 goto err;
1793
1794 if (!state->inversion)
1795 reg09 |= 0x04;
1796 rc = mb86a20s_writereg(state, 0x09, reg09);
1797 if (rc < 0)
1798 goto err;
1799 if (!state->bw)
1800 reg71 = 1;
1801 else
1802 reg71 = 0;
1803 rc = mb86a20s_writereg(state, 0x39, reg71);
1804 if (rc < 0)
1805 goto err;
1806 rc = mb86a20s_writereg(state, 0x71, state->bw);
1807 if (rc < 0)
1808 goto err;
1809 if (state->subchannel) {
1810 rc = mb86a20s_writereg(state, 0x44, state->subchannel);
1811 if (rc < 0)
1812 goto err;
1813 }
1814
1815 fclk = state->config->fclk;
1816 if (!fclk)
1817 fclk = 32571428;
1818
1819 /* Adjust IF frequency to match tuner */
1820 if (fe->ops.tuner_ops.get_if_frequency)
1821 fe->ops.tuner_ops.get_if_frequency(fe, &state->if_freq);
1822
1823 if (!state->if_freq)
1824 state->if_freq = 3300000;
1825
1826 pll = (((u64)1) << 34) * state->if_freq;
1827 do_div(pll, 63 * fclk);
1828 pll = (1 << 25) - pll;
1829 rc = mb86a20s_writereg(state, 0x28, 0x2a);
1830 if (rc < 0)
1831 goto err;
1832 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1833 if (rc < 0)
1834 goto err;
1835 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1836 if (rc < 0)
1837 goto err;
1838 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1839 if (rc < 0)
1840 goto err;
1841 dev_dbg(&state->i2c->dev, "%s: fclk=%d, IF=%d, clock reg=0x%06llx\n",
1842 __func__, fclk, state->if_freq, (long long)pll);
1843
1844 /* pll = freq[Hz] * 2^24/10^6 / 16.285714286 */
1845 pll = state->if_freq * 1677721600L;
1846 do_div(pll, 1628571429L);
1847 rc = mb86a20s_writereg(state, 0x28, 0x20);
1848 if (rc < 0)
1849 goto err;
1850 rc = mb86a20s_writereg(state, 0x29, (pll >> 16) & 0xff);
1851 if (rc < 0)
1852 goto err;
1853 rc = mb86a20s_writereg(state, 0x2a, (pll >> 8) & 0xff);
1854 if (rc < 0)
1855 goto err;
1856 rc = mb86a20s_writereg(state, 0x2b, pll & 0xff);
1857 if (rc < 0)
1858 goto err;
1859 dev_dbg(&state->i2c->dev, "%s: IF=%d, IF reg=0x%06llx\n",
1860 __func__, state->if_freq, (long long)pll);
1861
1862 if (!state->config->is_serial)
1863 regD5 &= ~1;
1864
1865 rc = mb86a20s_writereg(state, 0x50, 0xd5);
1866 if (rc < 0)
1867 goto err;
1868 rc = mb86a20s_writereg(state, 0x51, regD5);
1869 if (rc < 0)
1870 goto err;
1871
1872 rc = mb86a20s_writeregdata(state, mb86a20s_init2);
1873 if (rc < 0)
1874 goto err;
1875
1876
1877 err:
1878 if (fe->ops.i2c_gate_ctrl)
1879 fe->ops.i2c_gate_ctrl(fe, 1);
1880
1881 if (rc < 0) {
1882 state->need_init = true;
1883 dev_info(&state->i2c->dev,
1884 "mb86a20s: Init failed. Will try again later\n");
1885 } else {
1886 state->need_init = false;
1887 dev_dbg(&state->i2c->dev, "Initialization succeeded.\n");
1888 }
1889 return rc;
1890 }
1891
1892 static int mb86a20s_set_frontend(struct dvb_frontend *fe)
1893 {
1894 struct mb86a20s_state *state = fe->demodulator_priv;
1895 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
1896 int rc, if_freq;
1897 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1898
1899 if (!c->isdbt_layer_enabled)
1900 c->isdbt_layer_enabled = 7;
1901
1902 if (c->isdbt_layer_enabled == 1)
1903 state->bw = MB86A20S_1SEG;
1904 else if (c->isdbt_partial_reception)
1905 state->bw = MB86A20S_13SEG_PARTIAL;
1906 else
1907 state->bw = MB86A20S_13SEG;
1908
1909 if (c->inversion == INVERSION_ON)
1910 state->inversion = true;
1911 else
1912 state->inversion = false;
1913
1914 if (!c->isdbt_sb_mode) {
1915 state->subchannel = 0;
1916 } else {
1917 if (c->isdbt_sb_subchannel >= ARRAY_SIZE(mb86a20s_subchannel))
1918 c->isdbt_sb_subchannel = 0;
1919
1920 state->subchannel = mb86a20s_subchannel[c->isdbt_sb_subchannel];
1921 }
1922
1923 /*
1924 * Gate should already be opened, but it doesn't hurt to
1925 * double-check
1926 */
1927 if (fe->ops.i2c_gate_ctrl)
1928 fe->ops.i2c_gate_ctrl(fe, 1);
1929 fe->ops.tuner_ops.set_params(fe);
1930
1931 if (fe->ops.tuner_ops.get_if_frequency)
1932 fe->ops.tuner_ops.get_if_frequency(fe, &if_freq);
1933
1934 /*
1935 * Make it more reliable: if, for some reason, the initial
1936 * device initialization doesn't happen, initialize it when
1937 * a SBTVD parameters are adjusted.
1938 *
1939 * Unfortunately, due to a hard to track bug at tda829x/tda18271,
1940 * the agc callback logic is not called during DVB attach time,
1941 * causing mb86a20s to not be initialized with Kworld SBTVD.
1942 * So, this hack is needed, in order to make Kworld SBTVD to work.
1943 *
1944 * It is also needed to change the IF after the initial init.
1945 *
1946 * HACK: Always init the frontend when set_frontend is called:
1947 * it was noticed that, on some devices, it fails to lock on a
1948 * different channel. So, it is better to reset everything, even
1949 * wasting some time, than to loose channel lock.
1950 */
1951 mb86a20s_initfe(fe);
1952
1953 if (fe->ops.i2c_gate_ctrl)
1954 fe->ops.i2c_gate_ctrl(fe, 0);
1955
1956 rc = mb86a20s_writeregdata(state, mb86a20s_reset_reception);
1957 mb86a20s_reset_counters(fe);
1958 mb86a20s_stats_not_ready(fe);
1959
1960 if (fe->ops.i2c_gate_ctrl)
1961 fe->ops.i2c_gate_ctrl(fe, 1);
1962
1963 return rc;
1964 }
1965
1966 static int mb86a20s_read_status_and_stats(struct dvb_frontend *fe,
1967 fe_status_t *status)
1968 {
1969 struct mb86a20s_state *state = fe->demodulator_priv;
1970 int rc, status_nr;
1971
1972 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
1973
1974 if (fe->ops.i2c_gate_ctrl)
1975 fe->ops.i2c_gate_ctrl(fe, 0);
1976
1977 /* Get lock */
1978 status_nr = mb86a20s_read_status(fe, status);
1979 if (status_nr < 7) {
1980 mb86a20s_stats_not_ready(fe);
1981 mb86a20s_reset_frontend_cache(fe);
1982 }
1983 if (status_nr < 0) {
1984 dev_err(&state->i2c->dev,
1985 "%s: Can't read frontend lock status\n", __func__);
1986 goto error;
1987 }
1988
1989 /* Get signal strength */
1990 rc = mb86a20s_read_signal_strength(fe);
1991 if (rc < 0) {
1992 dev_err(&state->i2c->dev,
1993 "%s: Can't reset VBER registers.\n", __func__);
1994 mb86a20s_stats_not_ready(fe);
1995 mb86a20s_reset_frontend_cache(fe);
1996
1997 rc = 0; /* Status is OK */
1998 goto error;
1999 }
2000
2001 if (status_nr >= 7) {
2002 /* Get TMCC info*/
2003 rc = mb86a20s_get_frontend(fe);
2004 if (rc < 0) {
2005 dev_err(&state->i2c->dev,
2006 "%s: Can't get FE TMCC data.\n", __func__);
2007 rc = 0; /* Status is OK */
2008 goto error;
2009 }
2010
2011 /* Get statistics */
2012 rc = mb86a20s_get_stats(fe, status_nr);
2013 if (rc < 0 && rc != -EBUSY) {
2014 dev_err(&state->i2c->dev,
2015 "%s: Can't get FE statistics.\n", __func__);
2016 rc = 0;
2017 goto error;
2018 }
2019 rc = 0; /* Don't return EBUSY to userspace */
2020 }
2021 goto ok;
2022
2023 error:
2024 mb86a20s_stats_not_ready(fe);
2025
2026 ok:
2027 if (fe->ops.i2c_gate_ctrl)
2028 fe->ops.i2c_gate_ctrl(fe, 1);
2029
2030 return rc;
2031 }
2032
2033 static int mb86a20s_read_signal_strength_from_cache(struct dvb_frontend *fe,
2034 u16 *strength)
2035 {
2036 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
2037
2038
2039 *strength = c->strength.stat[0].uvalue;
2040
2041 return 0;
2042 }
2043
2044 static int mb86a20s_get_frontend_dummy(struct dvb_frontend *fe)
2045 {
2046 /*
2047 * get_frontend is now handled together with other stats
2048 * retrival, when read_status() is called, as some statistics
2049 * will depend on the layers detection.
2050 */
2051 return 0;
2052 };
2053
2054 static int mb86a20s_tune(struct dvb_frontend *fe,
2055 bool re_tune,
2056 unsigned int mode_flags,
2057 unsigned int *delay,
2058 fe_status_t *status)
2059 {
2060 struct mb86a20s_state *state = fe->demodulator_priv;
2061 int rc = 0;
2062
2063 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2064
2065 if (re_tune)
2066 rc = mb86a20s_set_frontend(fe);
2067
2068 if (!(mode_flags & FE_TUNE_MODE_ONESHOT))
2069 mb86a20s_read_status_and_stats(fe, status);
2070
2071 return rc;
2072 }
2073
2074 static void mb86a20s_release(struct dvb_frontend *fe)
2075 {
2076 struct mb86a20s_state *state = fe->demodulator_priv;
2077
2078 dev_dbg(&state->i2c->dev, "%s called.\n", __func__);
2079
2080 kfree(state);
2081 }
2082
2083 static struct dvb_frontend_ops mb86a20s_ops;
2084
2085 struct dvb_frontend *mb86a20s_attach(const struct mb86a20s_config *config,
2086 struct i2c_adapter *i2c)
2087 {
2088 struct mb86a20s_state *state;
2089 u8 rev;
2090
2091 dev_dbg(&i2c->dev, "%s called.\n", __func__);
2092
2093 /* allocate memory for the internal state */
2094 state = kzalloc(sizeof(struct mb86a20s_state), GFP_KERNEL);
2095 if (state == NULL) {
2096 dev_err(&i2c->dev,
2097 "%s: unable to allocate memory for state\n", __func__);
2098 goto error;
2099 }
2100
2101 /* setup the state */
2102 state->config = config;
2103 state->i2c = i2c;
2104
2105 /* create dvb_frontend */
2106 memcpy(&state->frontend.ops, &mb86a20s_ops,
2107 sizeof(struct dvb_frontend_ops));
2108 state->frontend.demodulator_priv = state;
2109
2110 /* Check if it is a mb86a20s frontend */
2111 rev = mb86a20s_readreg(state, 0);
2112
2113 if (rev == 0x13) {
2114 dev_info(&i2c->dev,
2115 "Detected a Fujitsu mb86a20s frontend\n");
2116 } else {
2117 dev_dbg(&i2c->dev,
2118 "Frontend revision %d is unknown - aborting.\n",
2119 rev);
2120 goto error;
2121 }
2122
2123 return &state->frontend;
2124
2125 error:
2126 kfree(state);
2127 return NULL;
2128 }
2129 EXPORT_SYMBOL(mb86a20s_attach);
2130
2131 static struct dvb_frontend_ops mb86a20s_ops = {
2132 .delsys = { SYS_ISDBT },
2133 /* Use dib8000 values per default */
2134 .info = {
2135 .name = "Fujitsu mb86A20s",
2136 .caps = FE_CAN_RECOVER |
2137 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
2138 FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
2139 FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2140 FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_QAM_AUTO |
2141 FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO,
2142 /* Actually, those values depend on the used tuner */
2143 .frequency_min = 45000000,
2144 .frequency_max = 864000000,
2145 .frequency_stepsize = 62500,
2146 },
2147
2148 .release = mb86a20s_release,
2149
2150 .init = mb86a20s_initfe,
2151 .set_frontend = mb86a20s_set_frontend,
2152 .get_frontend = mb86a20s_get_frontend_dummy,
2153 .read_status = mb86a20s_read_status_and_stats,
2154 .read_signal_strength = mb86a20s_read_signal_strength_from_cache,
2155 .tune = mb86a20s_tune,
2156 };
2157
2158 MODULE_DESCRIPTION("DVB Frontend module for Fujitsu mb86A20s hardware");
2159 MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>");
2160 MODULE_LICENSE("GPL");
This page took 0.07504 seconds and 4 git commands to generate.