Merge branch 'perf/rbtree_copy' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / media / i2c / adv7604.c
1 /*
2 * adv7604 - Analog Devices ADV7604 video decoder driver
3 *
4 * Copyright 2012 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
5 *
6 * This program is free software; you may redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; version 2 of the License.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
11 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
12 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
13 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
14 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
15 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
16 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
17 * SOFTWARE.
18 *
19 */
20
21 /*
22 * References (c = chapter, p = page):
23 * REF_01 - Analog devices, ADV7604, Register Settings Recommendations,
24 * Revision 2.5, June 2010
25 * REF_02 - Analog devices, Register map documentation, Documentation of
26 * the register maps, Software manual, Rev. F, June 2010
27 * REF_03 - Analog devices, ADV7604, Hardware Manual, Rev. F, August 2010
28 */
29
30 #include <linux/delay.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/hdmi.h>
33 #include <linux/i2c.h>
34 #include <linux/kernel.h>
35 #include <linux/module.h>
36 #include <linux/slab.h>
37 #include <linux/v4l2-dv-timings.h>
38 #include <linux/videodev2.h>
39 #include <linux/workqueue.h>
40
41 #include <media/adv7604.h>
42 #include <media/v4l2-ctrls.h>
43 #include <media/v4l2-device.h>
44 #include <media/v4l2-dv-timings.h>
45 #include <media/v4l2-of.h>
46
47 static int debug;
48 module_param(debug, int, 0644);
49 MODULE_PARM_DESC(debug, "debug level (0-2)");
50
51 MODULE_DESCRIPTION("Analog Devices ADV7604 video decoder driver");
52 MODULE_AUTHOR("Hans Verkuil <hans.verkuil@cisco.com>");
53 MODULE_AUTHOR("Mats Randgaard <mats.randgaard@cisco.com>");
54 MODULE_LICENSE("GPL");
55
56 /* ADV7604 system clock frequency */
57 #define ADV76XX_FSC (28636360)
58
59 #define ADV76XX_RGB_OUT (1 << 1)
60
61 #define ADV76XX_OP_FORMAT_SEL_8BIT (0 << 0)
62 #define ADV7604_OP_FORMAT_SEL_10BIT (1 << 0)
63 #define ADV76XX_OP_FORMAT_SEL_12BIT (2 << 0)
64
65 #define ADV76XX_OP_MODE_SEL_SDR_422 (0 << 5)
66 #define ADV7604_OP_MODE_SEL_DDR_422 (1 << 5)
67 #define ADV76XX_OP_MODE_SEL_SDR_444 (2 << 5)
68 #define ADV7604_OP_MODE_SEL_DDR_444 (3 << 5)
69 #define ADV76XX_OP_MODE_SEL_SDR_422_2X (4 << 5)
70 #define ADV7604_OP_MODE_SEL_ADI_CM (5 << 5)
71
72 #define ADV76XX_OP_CH_SEL_GBR (0 << 5)
73 #define ADV76XX_OP_CH_SEL_GRB (1 << 5)
74 #define ADV76XX_OP_CH_SEL_BGR (2 << 5)
75 #define ADV76XX_OP_CH_SEL_RGB (3 << 5)
76 #define ADV76XX_OP_CH_SEL_BRG (4 << 5)
77 #define ADV76XX_OP_CH_SEL_RBG (5 << 5)
78
79 #define ADV76XX_OP_SWAP_CB_CR (1 << 0)
80
81 enum adv76xx_type {
82 ADV7604,
83 ADV7611,
84 };
85
86 struct adv76xx_reg_seq {
87 unsigned int reg;
88 u8 val;
89 };
90
91 struct adv76xx_format_info {
92 u32 code;
93 u8 op_ch_sel;
94 bool rgb_out;
95 bool swap_cb_cr;
96 u8 op_format_sel;
97 };
98
99 struct adv76xx_cfg_read_infoframe {
100 const char *desc;
101 u8 present_mask;
102 u8 head_addr;
103 u8 payload_addr;
104 };
105
106 struct adv76xx_chip_info {
107 enum adv76xx_type type;
108
109 bool has_afe;
110 unsigned int max_port;
111 unsigned int num_dv_ports;
112
113 unsigned int edid_enable_reg;
114 unsigned int edid_status_reg;
115 unsigned int lcf_reg;
116
117 unsigned int cable_det_mask;
118 unsigned int tdms_lock_mask;
119 unsigned int fmt_change_digital_mask;
120 unsigned int cp_csc;
121
122 const struct adv76xx_format_info *formats;
123 unsigned int nformats;
124
125 void (*set_termination)(struct v4l2_subdev *sd, bool enable);
126 void (*setup_irqs)(struct v4l2_subdev *sd);
127 unsigned int (*read_hdmi_pixelclock)(struct v4l2_subdev *sd);
128 unsigned int (*read_cable_det)(struct v4l2_subdev *sd);
129
130 /* 0 = AFE, 1 = HDMI */
131 const struct adv76xx_reg_seq *recommended_settings[2];
132 unsigned int num_recommended_settings[2];
133
134 unsigned long page_mask;
135
136 /* Masks for timings */
137 unsigned int linewidth_mask;
138 unsigned int field0_height_mask;
139 unsigned int field1_height_mask;
140 unsigned int hfrontporch_mask;
141 unsigned int hsync_mask;
142 unsigned int hbackporch_mask;
143 unsigned int field0_vfrontporch_mask;
144 unsigned int field1_vfrontporch_mask;
145 unsigned int field0_vsync_mask;
146 unsigned int field1_vsync_mask;
147 unsigned int field0_vbackporch_mask;
148 unsigned int field1_vbackporch_mask;
149 };
150
151 /*
152 **********************************************************************
153 *
154 * Arrays with configuration parameters for the ADV7604
155 *
156 **********************************************************************
157 */
158
159 struct adv76xx_state {
160 const struct adv76xx_chip_info *info;
161 struct adv76xx_platform_data pdata;
162
163 struct gpio_desc *hpd_gpio[4];
164
165 struct v4l2_subdev sd;
166 struct media_pad pads[ADV76XX_PAD_MAX];
167 unsigned int source_pad;
168
169 struct v4l2_ctrl_handler hdl;
170
171 enum adv76xx_pad selected_input;
172
173 struct v4l2_dv_timings timings;
174 const struct adv76xx_format_info *format;
175
176 struct {
177 u8 edid[256];
178 u32 present;
179 unsigned blocks;
180 } edid;
181 u16 spa_port_a[2];
182 struct v4l2_fract aspect_ratio;
183 u32 rgb_quantization_range;
184 struct workqueue_struct *work_queues;
185 struct delayed_work delayed_work_enable_hotplug;
186 bool restart_stdi_once;
187
188 /* i2c clients */
189 struct i2c_client *i2c_clients[ADV76XX_PAGE_MAX];
190
191 /* controls */
192 struct v4l2_ctrl *detect_tx_5v_ctrl;
193 struct v4l2_ctrl *analog_sampling_phase_ctrl;
194 struct v4l2_ctrl *free_run_color_manual_ctrl;
195 struct v4l2_ctrl *free_run_color_ctrl;
196 struct v4l2_ctrl *rgb_quantization_range_ctrl;
197 };
198
199 static bool adv76xx_has_afe(struct adv76xx_state *state)
200 {
201 return state->info->has_afe;
202 }
203
204 /* Supported CEA and DMT timings */
205 static const struct v4l2_dv_timings adv76xx_timings[] = {
206 V4L2_DV_BT_CEA_720X480P59_94,
207 V4L2_DV_BT_CEA_720X576P50,
208 V4L2_DV_BT_CEA_1280X720P24,
209 V4L2_DV_BT_CEA_1280X720P25,
210 V4L2_DV_BT_CEA_1280X720P50,
211 V4L2_DV_BT_CEA_1280X720P60,
212 V4L2_DV_BT_CEA_1920X1080P24,
213 V4L2_DV_BT_CEA_1920X1080P25,
214 V4L2_DV_BT_CEA_1920X1080P30,
215 V4L2_DV_BT_CEA_1920X1080P50,
216 V4L2_DV_BT_CEA_1920X1080P60,
217
218 /* sorted by DMT ID */
219 V4L2_DV_BT_DMT_640X350P85,
220 V4L2_DV_BT_DMT_640X400P85,
221 V4L2_DV_BT_DMT_720X400P85,
222 V4L2_DV_BT_DMT_640X480P60,
223 V4L2_DV_BT_DMT_640X480P72,
224 V4L2_DV_BT_DMT_640X480P75,
225 V4L2_DV_BT_DMT_640X480P85,
226 V4L2_DV_BT_DMT_800X600P56,
227 V4L2_DV_BT_DMT_800X600P60,
228 V4L2_DV_BT_DMT_800X600P72,
229 V4L2_DV_BT_DMT_800X600P75,
230 V4L2_DV_BT_DMT_800X600P85,
231 V4L2_DV_BT_DMT_848X480P60,
232 V4L2_DV_BT_DMT_1024X768P60,
233 V4L2_DV_BT_DMT_1024X768P70,
234 V4L2_DV_BT_DMT_1024X768P75,
235 V4L2_DV_BT_DMT_1024X768P85,
236 V4L2_DV_BT_DMT_1152X864P75,
237 V4L2_DV_BT_DMT_1280X768P60_RB,
238 V4L2_DV_BT_DMT_1280X768P60,
239 V4L2_DV_BT_DMT_1280X768P75,
240 V4L2_DV_BT_DMT_1280X768P85,
241 V4L2_DV_BT_DMT_1280X800P60_RB,
242 V4L2_DV_BT_DMT_1280X800P60,
243 V4L2_DV_BT_DMT_1280X800P75,
244 V4L2_DV_BT_DMT_1280X800P85,
245 V4L2_DV_BT_DMT_1280X960P60,
246 V4L2_DV_BT_DMT_1280X960P85,
247 V4L2_DV_BT_DMT_1280X1024P60,
248 V4L2_DV_BT_DMT_1280X1024P75,
249 V4L2_DV_BT_DMT_1280X1024P85,
250 V4L2_DV_BT_DMT_1360X768P60,
251 V4L2_DV_BT_DMT_1400X1050P60_RB,
252 V4L2_DV_BT_DMT_1400X1050P60,
253 V4L2_DV_BT_DMT_1400X1050P75,
254 V4L2_DV_BT_DMT_1400X1050P85,
255 V4L2_DV_BT_DMT_1440X900P60_RB,
256 V4L2_DV_BT_DMT_1440X900P60,
257 V4L2_DV_BT_DMT_1600X1200P60,
258 V4L2_DV_BT_DMT_1680X1050P60_RB,
259 V4L2_DV_BT_DMT_1680X1050P60,
260 V4L2_DV_BT_DMT_1792X1344P60,
261 V4L2_DV_BT_DMT_1856X1392P60,
262 V4L2_DV_BT_DMT_1920X1200P60_RB,
263 V4L2_DV_BT_DMT_1366X768P60_RB,
264 V4L2_DV_BT_DMT_1366X768P60,
265 V4L2_DV_BT_DMT_1920X1080P60,
266 { },
267 };
268
269 struct adv76xx_video_standards {
270 struct v4l2_dv_timings timings;
271 u8 vid_std;
272 u8 v_freq;
273 };
274
275 /* sorted by number of lines */
276 static const struct adv76xx_video_standards adv7604_prim_mode_comp[] = {
277 /* { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 }, TODO flickering */
278 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
279 { V4L2_DV_BT_CEA_1280X720P50, 0x19, 0x01 },
280 { V4L2_DV_BT_CEA_1280X720P60, 0x19, 0x00 },
281 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
282 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
283 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
284 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
285 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
286 /* TODO add 1920x1080P60_RB (CVT timing) */
287 { },
288 };
289
290 /* sorted by number of lines */
291 static const struct adv76xx_video_standards adv7604_prim_mode_gr[] = {
292 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
293 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
294 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
295 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
296 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
297 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
298 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
299 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
300 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
301 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
302 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
303 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
304 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
305 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
306 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
307 { V4L2_DV_BT_DMT_1360X768P60, 0x12, 0x00 },
308 { V4L2_DV_BT_DMT_1366X768P60, 0x13, 0x00 },
309 { V4L2_DV_BT_DMT_1400X1050P60, 0x14, 0x00 },
310 { V4L2_DV_BT_DMT_1400X1050P75, 0x15, 0x00 },
311 { V4L2_DV_BT_DMT_1600X1200P60, 0x16, 0x00 }, /* TODO not tested */
312 /* TODO add 1600X1200P60_RB (not a DMT timing) */
313 { V4L2_DV_BT_DMT_1680X1050P60, 0x18, 0x00 },
314 { V4L2_DV_BT_DMT_1920X1200P60_RB, 0x19, 0x00 }, /* TODO not tested */
315 { },
316 };
317
318 /* sorted by number of lines */
319 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_comp[] = {
320 { V4L2_DV_BT_CEA_720X480P59_94, 0x0a, 0x00 },
321 { V4L2_DV_BT_CEA_720X576P50, 0x0b, 0x00 },
322 { V4L2_DV_BT_CEA_1280X720P50, 0x13, 0x01 },
323 { V4L2_DV_BT_CEA_1280X720P60, 0x13, 0x00 },
324 { V4L2_DV_BT_CEA_1920X1080P24, 0x1e, 0x04 },
325 { V4L2_DV_BT_CEA_1920X1080P25, 0x1e, 0x03 },
326 { V4L2_DV_BT_CEA_1920X1080P30, 0x1e, 0x02 },
327 { V4L2_DV_BT_CEA_1920X1080P50, 0x1e, 0x01 },
328 { V4L2_DV_BT_CEA_1920X1080P60, 0x1e, 0x00 },
329 { },
330 };
331
332 /* sorted by number of lines */
333 static const struct adv76xx_video_standards adv76xx_prim_mode_hdmi_gr[] = {
334 { V4L2_DV_BT_DMT_640X480P60, 0x08, 0x00 },
335 { V4L2_DV_BT_DMT_640X480P72, 0x09, 0x00 },
336 { V4L2_DV_BT_DMT_640X480P75, 0x0a, 0x00 },
337 { V4L2_DV_BT_DMT_640X480P85, 0x0b, 0x00 },
338 { V4L2_DV_BT_DMT_800X600P56, 0x00, 0x00 },
339 { V4L2_DV_BT_DMT_800X600P60, 0x01, 0x00 },
340 { V4L2_DV_BT_DMT_800X600P72, 0x02, 0x00 },
341 { V4L2_DV_BT_DMT_800X600P75, 0x03, 0x00 },
342 { V4L2_DV_BT_DMT_800X600P85, 0x04, 0x00 },
343 { V4L2_DV_BT_DMT_1024X768P60, 0x0c, 0x00 },
344 { V4L2_DV_BT_DMT_1024X768P70, 0x0d, 0x00 },
345 { V4L2_DV_BT_DMT_1024X768P75, 0x0e, 0x00 },
346 { V4L2_DV_BT_DMT_1024X768P85, 0x0f, 0x00 },
347 { V4L2_DV_BT_DMT_1280X1024P60, 0x05, 0x00 },
348 { V4L2_DV_BT_DMT_1280X1024P75, 0x06, 0x00 },
349 { },
350 };
351
352 static const struct v4l2_event adv76xx_ev_fmt = {
353 .type = V4L2_EVENT_SOURCE_CHANGE,
354 .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION,
355 };
356
357 /* ----------------------------------------------------------------------- */
358
359 static inline struct adv76xx_state *to_state(struct v4l2_subdev *sd)
360 {
361 return container_of(sd, struct adv76xx_state, sd);
362 }
363
364 static inline unsigned htotal(const struct v4l2_bt_timings *t)
365 {
366 return V4L2_DV_BT_FRAME_WIDTH(t);
367 }
368
369 static inline unsigned vtotal(const struct v4l2_bt_timings *t)
370 {
371 return V4L2_DV_BT_FRAME_HEIGHT(t);
372 }
373
374 /* ----------------------------------------------------------------------- */
375
376 static s32 adv_smbus_read_byte_data_check(struct i2c_client *client,
377 u8 command, bool check)
378 {
379 union i2c_smbus_data data;
380
381 if (!i2c_smbus_xfer(client->adapter, client->addr, client->flags,
382 I2C_SMBUS_READ, command,
383 I2C_SMBUS_BYTE_DATA, &data))
384 return data.byte;
385 if (check)
386 v4l_err(client, "error reading %02x, %02x\n",
387 client->addr, command);
388 return -EIO;
389 }
390
391 static s32 adv_smbus_read_byte_data(struct adv76xx_state *state,
392 enum adv76xx_page page, u8 command)
393 {
394 return adv_smbus_read_byte_data_check(state->i2c_clients[page],
395 command, true);
396 }
397
398 static s32 adv_smbus_write_byte_data(struct adv76xx_state *state,
399 enum adv76xx_page page, u8 command,
400 u8 value)
401 {
402 struct i2c_client *client = state->i2c_clients[page];
403 union i2c_smbus_data data;
404 int err;
405 int i;
406
407 data.byte = value;
408 for (i = 0; i < 3; i++) {
409 err = i2c_smbus_xfer(client->adapter, client->addr,
410 client->flags,
411 I2C_SMBUS_WRITE, command,
412 I2C_SMBUS_BYTE_DATA, &data);
413 if (!err)
414 break;
415 }
416 if (err < 0)
417 v4l_err(client, "error writing %02x, %02x, %02x\n",
418 client->addr, command, value);
419 return err;
420 }
421
422 static s32 adv_smbus_write_i2c_block_data(struct adv76xx_state *state,
423 enum adv76xx_page page, u8 command,
424 unsigned length, const u8 *values)
425 {
426 struct i2c_client *client = state->i2c_clients[page];
427 union i2c_smbus_data data;
428
429 if (length > I2C_SMBUS_BLOCK_MAX)
430 length = I2C_SMBUS_BLOCK_MAX;
431 data.block[0] = length;
432 memcpy(data.block + 1, values, length);
433 return i2c_smbus_xfer(client->adapter, client->addr, client->flags,
434 I2C_SMBUS_WRITE, command,
435 I2C_SMBUS_I2C_BLOCK_DATA, &data);
436 }
437
438 /* ----------------------------------------------------------------------- */
439
440 static inline int io_read(struct v4l2_subdev *sd, u8 reg)
441 {
442 struct adv76xx_state *state = to_state(sd);
443
444 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_IO, reg);
445 }
446
447 static inline int io_write(struct v4l2_subdev *sd, u8 reg, u8 val)
448 {
449 struct adv76xx_state *state = to_state(sd);
450
451 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_IO, reg, val);
452 }
453
454 static inline int io_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
455 {
456 return io_write(sd, reg, (io_read(sd, reg) & ~mask) | val);
457 }
458
459 static inline int avlink_read(struct v4l2_subdev *sd, u8 reg)
460 {
461 struct adv76xx_state *state = to_state(sd);
462
463 return adv_smbus_read_byte_data(state, ADV7604_PAGE_AVLINK, reg);
464 }
465
466 static inline int avlink_write(struct v4l2_subdev *sd, u8 reg, u8 val)
467 {
468 struct adv76xx_state *state = to_state(sd);
469
470 return adv_smbus_write_byte_data(state, ADV7604_PAGE_AVLINK, reg, val);
471 }
472
473 static inline int cec_read(struct v4l2_subdev *sd, u8 reg)
474 {
475 struct adv76xx_state *state = to_state(sd);
476
477 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CEC, reg);
478 }
479
480 static inline int cec_write(struct v4l2_subdev *sd, u8 reg, u8 val)
481 {
482 struct adv76xx_state *state = to_state(sd);
483
484 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CEC, reg, val);
485 }
486
487 static inline int infoframe_read(struct v4l2_subdev *sd, u8 reg)
488 {
489 struct adv76xx_state *state = to_state(sd);
490
491 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_INFOFRAME, reg);
492 }
493
494 static inline int infoframe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
495 {
496 struct adv76xx_state *state = to_state(sd);
497
498 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_INFOFRAME,
499 reg, val);
500 }
501
502 static inline int afe_read(struct v4l2_subdev *sd, u8 reg)
503 {
504 struct adv76xx_state *state = to_state(sd);
505
506 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_AFE, reg);
507 }
508
509 static inline int afe_write(struct v4l2_subdev *sd, u8 reg, u8 val)
510 {
511 struct adv76xx_state *state = to_state(sd);
512
513 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_AFE, reg, val);
514 }
515
516 static inline int rep_read(struct v4l2_subdev *sd, u8 reg)
517 {
518 struct adv76xx_state *state = to_state(sd);
519
520 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_REP, reg);
521 }
522
523 static inline int rep_write(struct v4l2_subdev *sd, u8 reg, u8 val)
524 {
525 struct adv76xx_state *state = to_state(sd);
526
527 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_REP, reg, val);
528 }
529
530 static inline int rep_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
531 {
532 return rep_write(sd, reg, (rep_read(sd, reg) & ~mask) | val);
533 }
534
535 static inline int edid_read(struct v4l2_subdev *sd, u8 reg)
536 {
537 struct adv76xx_state *state = to_state(sd);
538
539 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_EDID, reg);
540 }
541
542 static inline int edid_write(struct v4l2_subdev *sd, u8 reg, u8 val)
543 {
544 struct adv76xx_state *state = to_state(sd);
545
546 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_EDID, reg, val);
547 }
548
549 static inline int edid_write_block(struct v4l2_subdev *sd,
550 unsigned len, const u8 *val)
551 {
552 struct adv76xx_state *state = to_state(sd);
553 int err = 0;
554 int i;
555
556 v4l2_dbg(2, debug, sd, "%s: write EDID block (%d byte)\n", __func__, len);
557
558 for (i = 0; !err && i < len; i += I2C_SMBUS_BLOCK_MAX)
559 err = adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_EDID,
560 i, I2C_SMBUS_BLOCK_MAX, val + i);
561 return err;
562 }
563
564 static void adv76xx_set_hpd(struct adv76xx_state *state, unsigned int hpd)
565 {
566 unsigned int i;
567
568 for (i = 0; i < state->info->num_dv_ports; ++i)
569 gpiod_set_value_cansleep(state->hpd_gpio[i], hpd & BIT(i));
570
571 v4l2_subdev_notify(&state->sd, ADV76XX_HOTPLUG, &hpd);
572 }
573
574 static void adv76xx_delayed_work_enable_hotplug(struct work_struct *work)
575 {
576 struct delayed_work *dwork = to_delayed_work(work);
577 struct adv76xx_state *state = container_of(dwork, struct adv76xx_state,
578 delayed_work_enable_hotplug);
579 struct v4l2_subdev *sd = &state->sd;
580
581 v4l2_dbg(2, debug, sd, "%s: enable hotplug\n", __func__);
582
583 adv76xx_set_hpd(state, state->edid.present);
584 }
585
586 static inline int hdmi_read(struct v4l2_subdev *sd, u8 reg)
587 {
588 struct adv76xx_state *state = to_state(sd);
589
590 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_HDMI, reg);
591 }
592
593 static u16 hdmi_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
594 {
595 return ((hdmi_read(sd, reg) << 8) | hdmi_read(sd, reg + 1)) & mask;
596 }
597
598 static inline int hdmi_write(struct v4l2_subdev *sd, u8 reg, u8 val)
599 {
600 struct adv76xx_state *state = to_state(sd);
601
602 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_HDMI, reg, val);
603 }
604
605 static inline int hdmi_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
606 {
607 return hdmi_write(sd, reg, (hdmi_read(sd, reg) & ~mask) | val);
608 }
609
610 static inline int test_write(struct v4l2_subdev *sd, u8 reg, u8 val)
611 {
612 struct adv76xx_state *state = to_state(sd);
613
614 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_TEST, reg, val);
615 }
616
617 static inline int cp_read(struct v4l2_subdev *sd, u8 reg)
618 {
619 struct adv76xx_state *state = to_state(sd);
620
621 return adv_smbus_read_byte_data(state, ADV76XX_PAGE_CP, reg);
622 }
623
624 static u16 cp_read16(struct v4l2_subdev *sd, u8 reg, u16 mask)
625 {
626 return ((cp_read(sd, reg) << 8) | cp_read(sd, reg + 1)) & mask;
627 }
628
629 static inline int cp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
630 {
631 struct adv76xx_state *state = to_state(sd);
632
633 return adv_smbus_write_byte_data(state, ADV76XX_PAGE_CP, reg, val);
634 }
635
636 static inline int cp_write_clr_set(struct v4l2_subdev *sd, u8 reg, u8 mask, u8 val)
637 {
638 return cp_write(sd, reg, (cp_read(sd, reg) & ~mask) | val);
639 }
640
641 static inline int vdp_read(struct v4l2_subdev *sd, u8 reg)
642 {
643 struct adv76xx_state *state = to_state(sd);
644
645 return adv_smbus_read_byte_data(state, ADV7604_PAGE_VDP, reg);
646 }
647
648 static inline int vdp_write(struct v4l2_subdev *sd, u8 reg, u8 val)
649 {
650 struct adv76xx_state *state = to_state(sd);
651
652 return adv_smbus_write_byte_data(state, ADV7604_PAGE_VDP, reg, val);
653 }
654
655 #define ADV76XX_REG(page, offset) (((page) << 8) | (offset))
656 #define ADV76XX_REG_SEQ_TERM 0xffff
657
658 #ifdef CONFIG_VIDEO_ADV_DEBUG
659 static int adv76xx_read_reg(struct v4l2_subdev *sd, unsigned int reg)
660 {
661 struct adv76xx_state *state = to_state(sd);
662 unsigned int page = reg >> 8;
663
664 if (!(BIT(page) & state->info->page_mask))
665 return -EINVAL;
666
667 reg &= 0xff;
668
669 return adv_smbus_read_byte_data(state, page, reg);
670 }
671 #endif
672
673 static int adv76xx_write_reg(struct v4l2_subdev *sd, unsigned int reg, u8 val)
674 {
675 struct adv76xx_state *state = to_state(sd);
676 unsigned int page = reg >> 8;
677
678 if (!(BIT(page) & state->info->page_mask))
679 return -EINVAL;
680
681 reg &= 0xff;
682
683 return adv_smbus_write_byte_data(state, page, reg, val);
684 }
685
686 static void adv76xx_write_reg_seq(struct v4l2_subdev *sd,
687 const struct adv76xx_reg_seq *reg_seq)
688 {
689 unsigned int i;
690
691 for (i = 0; reg_seq[i].reg != ADV76XX_REG_SEQ_TERM; i++)
692 adv76xx_write_reg(sd, reg_seq[i].reg, reg_seq[i].val);
693 }
694
695 /* -----------------------------------------------------------------------------
696 * Format helpers
697 */
698
699 static const struct adv76xx_format_info adv7604_formats[] = {
700 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
701 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
702 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
703 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
704 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
705 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
706 { MEDIA_BUS_FMT_YUYV10_2X10, ADV76XX_OP_CH_SEL_RGB, false, false,
707 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
708 { MEDIA_BUS_FMT_YVYU10_2X10, ADV76XX_OP_CH_SEL_RGB, false, true,
709 ADV76XX_OP_MODE_SEL_SDR_422 | ADV7604_OP_FORMAT_SEL_10BIT },
710 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
711 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
712 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
713 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
714 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
715 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
716 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
717 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
718 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
719 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
720 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
721 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
722 { MEDIA_BUS_FMT_UYVY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, false,
723 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
724 { MEDIA_BUS_FMT_VYUY10_1X20, ADV76XX_OP_CH_SEL_RBG, false, true,
725 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
726 { MEDIA_BUS_FMT_YUYV10_1X20, ADV76XX_OP_CH_SEL_RGB, false, false,
727 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
728 { MEDIA_BUS_FMT_YVYU10_1X20, ADV76XX_OP_CH_SEL_RGB, false, true,
729 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV7604_OP_FORMAT_SEL_10BIT },
730 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
731 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
732 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
733 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
734 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
735 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
736 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
737 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
738 };
739
740 static const struct adv76xx_format_info adv7611_formats[] = {
741 { MEDIA_BUS_FMT_RGB888_1X24, ADV76XX_OP_CH_SEL_RGB, true, false,
742 ADV76XX_OP_MODE_SEL_SDR_444 | ADV76XX_OP_FORMAT_SEL_8BIT },
743 { MEDIA_BUS_FMT_YUYV8_2X8, ADV76XX_OP_CH_SEL_RGB, false, false,
744 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
745 { MEDIA_BUS_FMT_YVYU8_2X8, ADV76XX_OP_CH_SEL_RGB, false, true,
746 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_8BIT },
747 { MEDIA_BUS_FMT_YUYV12_2X12, ADV76XX_OP_CH_SEL_RGB, false, false,
748 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
749 { MEDIA_BUS_FMT_YVYU12_2X12, ADV76XX_OP_CH_SEL_RGB, false, true,
750 ADV76XX_OP_MODE_SEL_SDR_422 | ADV76XX_OP_FORMAT_SEL_12BIT },
751 { MEDIA_BUS_FMT_UYVY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, false,
752 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
753 { MEDIA_BUS_FMT_VYUY8_1X16, ADV76XX_OP_CH_SEL_RBG, false, true,
754 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
755 { MEDIA_BUS_FMT_YUYV8_1X16, ADV76XX_OP_CH_SEL_RGB, false, false,
756 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
757 { MEDIA_BUS_FMT_YVYU8_1X16, ADV76XX_OP_CH_SEL_RGB, false, true,
758 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_8BIT },
759 { MEDIA_BUS_FMT_UYVY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, false,
760 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
761 { MEDIA_BUS_FMT_VYUY12_1X24, ADV76XX_OP_CH_SEL_RBG, false, true,
762 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
763 { MEDIA_BUS_FMT_YUYV12_1X24, ADV76XX_OP_CH_SEL_RGB, false, false,
764 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
765 { MEDIA_BUS_FMT_YVYU12_1X24, ADV76XX_OP_CH_SEL_RGB, false, true,
766 ADV76XX_OP_MODE_SEL_SDR_422_2X | ADV76XX_OP_FORMAT_SEL_12BIT },
767 };
768
769 static const struct adv76xx_format_info *
770 adv76xx_format_info(struct adv76xx_state *state, u32 code)
771 {
772 unsigned int i;
773
774 for (i = 0; i < state->info->nformats; ++i) {
775 if (state->info->formats[i].code == code)
776 return &state->info->formats[i];
777 }
778
779 return NULL;
780 }
781
782 /* ----------------------------------------------------------------------- */
783
784 static inline bool is_analog_input(struct v4l2_subdev *sd)
785 {
786 struct adv76xx_state *state = to_state(sd);
787
788 return state->selected_input == ADV7604_PAD_VGA_RGB ||
789 state->selected_input == ADV7604_PAD_VGA_COMP;
790 }
791
792 static inline bool is_digital_input(struct v4l2_subdev *sd)
793 {
794 struct adv76xx_state *state = to_state(sd);
795
796 return state->selected_input == ADV76XX_PAD_HDMI_PORT_A ||
797 state->selected_input == ADV7604_PAD_HDMI_PORT_B ||
798 state->selected_input == ADV7604_PAD_HDMI_PORT_C ||
799 state->selected_input == ADV7604_PAD_HDMI_PORT_D;
800 }
801
802 /* ----------------------------------------------------------------------- */
803
804 #ifdef CONFIG_VIDEO_ADV_DEBUG
805 static void adv76xx_inv_register(struct v4l2_subdev *sd)
806 {
807 v4l2_info(sd, "0x000-0x0ff: IO Map\n");
808 v4l2_info(sd, "0x100-0x1ff: AVLink Map\n");
809 v4l2_info(sd, "0x200-0x2ff: CEC Map\n");
810 v4l2_info(sd, "0x300-0x3ff: InfoFrame Map\n");
811 v4l2_info(sd, "0x400-0x4ff: ESDP Map\n");
812 v4l2_info(sd, "0x500-0x5ff: DPP Map\n");
813 v4l2_info(sd, "0x600-0x6ff: AFE Map\n");
814 v4l2_info(sd, "0x700-0x7ff: Repeater Map\n");
815 v4l2_info(sd, "0x800-0x8ff: EDID Map\n");
816 v4l2_info(sd, "0x900-0x9ff: HDMI Map\n");
817 v4l2_info(sd, "0xa00-0xaff: Test Map\n");
818 v4l2_info(sd, "0xb00-0xbff: CP Map\n");
819 v4l2_info(sd, "0xc00-0xcff: VDP Map\n");
820 }
821
822 static int adv76xx_g_register(struct v4l2_subdev *sd,
823 struct v4l2_dbg_register *reg)
824 {
825 int ret;
826
827 ret = adv76xx_read_reg(sd, reg->reg);
828 if (ret < 0) {
829 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
830 adv76xx_inv_register(sd);
831 return ret;
832 }
833
834 reg->size = 1;
835 reg->val = ret;
836
837 return 0;
838 }
839
840 static int adv76xx_s_register(struct v4l2_subdev *sd,
841 const struct v4l2_dbg_register *reg)
842 {
843 int ret;
844
845 ret = adv76xx_write_reg(sd, reg->reg, reg->val);
846 if (ret < 0) {
847 v4l2_info(sd, "Register %03llx not supported\n", reg->reg);
848 adv76xx_inv_register(sd);
849 return ret;
850 }
851
852 return 0;
853 }
854 #endif
855
856 static unsigned int adv7604_read_cable_det(struct v4l2_subdev *sd)
857 {
858 u8 value = io_read(sd, 0x6f);
859
860 return ((value & 0x10) >> 4)
861 | ((value & 0x08) >> 2)
862 | ((value & 0x04) << 0)
863 | ((value & 0x02) << 2);
864 }
865
866 static unsigned int adv7611_read_cable_det(struct v4l2_subdev *sd)
867 {
868 u8 value = io_read(sd, 0x6f);
869
870 return value & 1;
871 }
872
873 static int adv76xx_s_detect_tx_5v_ctrl(struct v4l2_subdev *sd)
874 {
875 struct adv76xx_state *state = to_state(sd);
876 const struct adv76xx_chip_info *info = state->info;
877
878 return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl,
879 info->read_cable_det(sd));
880 }
881
882 static int find_and_set_predefined_video_timings(struct v4l2_subdev *sd,
883 u8 prim_mode,
884 const struct adv76xx_video_standards *predef_vid_timings,
885 const struct v4l2_dv_timings *timings)
886 {
887 int i;
888
889 for (i = 0; predef_vid_timings[i].timings.bt.width; i++) {
890 if (!v4l2_match_dv_timings(timings, &predef_vid_timings[i].timings,
891 is_digital_input(sd) ? 250000 : 1000000))
892 continue;
893 io_write(sd, 0x00, predef_vid_timings[i].vid_std); /* video std */
894 io_write(sd, 0x01, (predef_vid_timings[i].v_freq << 4) +
895 prim_mode); /* v_freq and prim mode */
896 return 0;
897 }
898
899 return -1;
900 }
901
902 static int configure_predefined_video_timings(struct v4l2_subdev *sd,
903 struct v4l2_dv_timings *timings)
904 {
905 struct adv76xx_state *state = to_state(sd);
906 int err;
907
908 v4l2_dbg(1, debug, sd, "%s", __func__);
909
910 if (adv76xx_has_afe(state)) {
911 /* reset to default values */
912 io_write(sd, 0x16, 0x43);
913 io_write(sd, 0x17, 0x5a);
914 }
915 /* disable embedded syncs for auto graphics mode */
916 cp_write_clr_set(sd, 0x81, 0x10, 0x00);
917 cp_write(sd, 0x8f, 0x00);
918 cp_write(sd, 0x90, 0x00);
919 cp_write(sd, 0xa2, 0x00);
920 cp_write(sd, 0xa3, 0x00);
921 cp_write(sd, 0xa4, 0x00);
922 cp_write(sd, 0xa5, 0x00);
923 cp_write(sd, 0xa6, 0x00);
924 cp_write(sd, 0xa7, 0x00);
925 cp_write(sd, 0xab, 0x00);
926 cp_write(sd, 0xac, 0x00);
927
928 if (is_analog_input(sd)) {
929 err = find_and_set_predefined_video_timings(sd,
930 0x01, adv7604_prim_mode_comp, timings);
931 if (err)
932 err = find_and_set_predefined_video_timings(sd,
933 0x02, adv7604_prim_mode_gr, timings);
934 } else if (is_digital_input(sd)) {
935 err = find_and_set_predefined_video_timings(sd,
936 0x05, adv76xx_prim_mode_hdmi_comp, timings);
937 if (err)
938 err = find_and_set_predefined_video_timings(sd,
939 0x06, adv76xx_prim_mode_hdmi_gr, timings);
940 } else {
941 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
942 __func__, state->selected_input);
943 err = -1;
944 }
945
946
947 return err;
948 }
949
950 static void configure_custom_video_timings(struct v4l2_subdev *sd,
951 const struct v4l2_bt_timings *bt)
952 {
953 struct adv76xx_state *state = to_state(sd);
954 u32 width = htotal(bt);
955 u32 height = vtotal(bt);
956 u16 cp_start_sav = bt->hsync + bt->hbackporch - 4;
957 u16 cp_start_eav = width - bt->hfrontporch;
958 u16 cp_start_vbi = height - bt->vfrontporch;
959 u16 cp_end_vbi = bt->vsync + bt->vbackporch;
960 u16 ch1_fr_ll = (((u32)bt->pixelclock / 100) > 0) ?
961 ((width * (ADV76XX_FSC / 100)) / ((u32)bt->pixelclock / 100)) : 0;
962 const u8 pll[2] = {
963 0xc0 | ((width >> 8) & 0x1f),
964 width & 0xff
965 };
966
967 v4l2_dbg(2, debug, sd, "%s\n", __func__);
968
969 if (is_analog_input(sd)) {
970 /* auto graphics */
971 io_write(sd, 0x00, 0x07); /* video std */
972 io_write(sd, 0x01, 0x02); /* prim mode */
973 /* enable embedded syncs for auto graphics mode */
974 cp_write_clr_set(sd, 0x81, 0x10, 0x10);
975
976 /* Should only be set in auto-graphics mode [REF_02, p. 91-92] */
977 /* setup PLL_DIV_MAN_EN and PLL_DIV_RATIO */
978 /* IO-map reg. 0x16 and 0x17 should be written in sequence */
979 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_IO,
980 0x16, 2, pll))
981 v4l2_err(sd, "writing to reg 0x16 and 0x17 failed\n");
982
983 /* active video - horizontal timing */
984 cp_write(sd, 0xa2, (cp_start_sav >> 4) & 0xff);
985 cp_write(sd, 0xa3, ((cp_start_sav & 0x0f) << 4) |
986 ((cp_start_eav >> 8) & 0x0f));
987 cp_write(sd, 0xa4, cp_start_eav & 0xff);
988
989 /* active video - vertical timing */
990 cp_write(sd, 0xa5, (cp_start_vbi >> 4) & 0xff);
991 cp_write(sd, 0xa6, ((cp_start_vbi & 0xf) << 4) |
992 ((cp_end_vbi >> 8) & 0xf));
993 cp_write(sd, 0xa7, cp_end_vbi & 0xff);
994 } else if (is_digital_input(sd)) {
995 /* set default prim_mode/vid_std for HDMI
996 according to [REF_03, c. 4.2] */
997 io_write(sd, 0x00, 0x02); /* video std */
998 io_write(sd, 0x01, 0x06); /* prim mode */
999 } else {
1000 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1001 __func__, state->selected_input);
1002 }
1003
1004 cp_write(sd, 0x8f, (ch1_fr_ll >> 8) & 0x7);
1005 cp_write(sd, 0x90, ch1_fr_ll & 0xff);
1006 cp_write(sd, 0xab, (height >> 4) & 0xff);
1007 cp_write(sd, 0xac, (height & 0x0f) << 4);
1008 }
1009
1010 static void adv76xx_set_offset(struct v4l2_subdev *sd, bool auto_offset, u16 offset_a, u16 offset_b, u16 offset_c)
1011 {
1012 struct adv76xx_state *state = to_state(sd);
1013 u8 offset_buf[4];
1014
1015 if (auto_offset) {
1016 offset_a = 0x3ff;
1017 offset_b = 0x3ff;
1018 offset_c = 0x3ff;
1019 }
1020
1021 v4l2_dbg(2, debug, sd, "%s: %s offset: a = 0x%x, b = 0x%x, c = 0x%x\n",
1022 __func__, auto_offset ? "Auto" : "Manual",
1023 offset_a, offset_b, offset_c);
1024
1025 offset_buf[0] = (cp_read(sd, 0x77) & 0xc0) | ((offset_a & 0x3f0) >> 4);
1026 offset_buf[1] = ((offset_a & 0x00f) << 4) | ((offset_b & 0x3c0) >> 6);
1027 offset_buf[2] = ((offset_b & 0x03f) << 2) | ((offset_c & 0x300) >> 8);
1028 offset_buf[3] = offset_c & 0x0ff;
1029
1030 /* Registers must be written in this order with no i2c access in between */
1031 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1032 0x77, 4, offset_buf))
1033 v4l2_err(sd, "%s: i2c error writing to CP reg 0x77, 0x78, 0x79, 0x7a\n", __func__);
1034 }
1035
1036 static void adv76xx_set_gain(struct v4l2_subdev *sd, bool auto_gain, u16 gain_a, u16 gain_b, u16 gain_c)
1037 {
1038 struct adv76xx_state *state = to_state(sd);
1039 u8 gain_buf[4];
1040 u8 gain_man = 1;
1041 u8 agc_mode_man = 1;
1042
1043 if (auto_gain) {
1044 gain_man = 0;
1045 agc_mode_man = 0;
1046 gain_a = 0x100;
1047 gain_b = 0x100;
1048 gain_c = 0x100;
1049 }
1050
1051 v4l2_dbg(2, debug, sd, "%s: %s gain: a = 0x%x, b = 0x%x, c = 0x%x\n",
1052 __func__, auto_gain ? "Auto" : "Manual",
1053 gain_a, gain_b, gain_c);
1054
1055 gain_buf[0] = ((gain_man << 7) | (agc_mode_man << 6) | ((gain_a & 0x3f0) >> 4));
1056 gain_buf[1] = (((gain_a & 0x00f) << 4) | ((gain_b & 0x3c0) >> 6));
1057 gain_buf[2] = (((gain_b & 0x03f) << 2) | ((gain_c & 0x300) >> 8));
1058 gain_buf[3] = ((gain_c & 0x0ff));
1059
1060 /* Registers must be written in this order with no i2c access in between */
1061 if (adv_smbus_write_i2c_block_data(state, ADV76XX_PAGE_CP,
1062 0x73, 4, gain_buf))
1063 v4l2_err(sd, "%s: i2c error writing to CP reg 0x73, 0x74, 0x75, 0x76\n", __func__);
1064 }
1065
1066 static void set_rgb_quantization_range(struct v4l2_subdev *sd)
1067 {
1068 struct adv76xx_state *state = to_state(sd);
1069 bool rgb_output = io_read(sd, 0x02) & 0x02;
1070 bool hdmi_signal = hdmi_read(sd, 0x05) & 0x80;
1071
1072 v4l2_dbg(2, debug, sd, "%s: RGB quantization range: %d, RGB out: %d, HDMI: %d\n",
1073 __func__, state->rgb_quantization_range,
1074 rgb_output, hdmi_signal);
1075
1076 adv76xx_set_gain(sd, true, 0x0, 0x0, 0x0);
1077 adv76xx_set_offset(sd, true, 0x0, 0x0, 0x0);
1078
1079 switch (state->rgb_quantization_range) {
1080 case V4L2_DV_RGB_RANGE_AUTO:
1081 if (state->selected_input == ADV7604_PAD_VGA_RGB) {
1082 /* Receiving analog RGB signal
1083 * Set RGB full range (0-255) */
1084 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1085 break;
1086 }
1087
1088 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1089 /* Receiving analog YPbPr signal
1090 * Set automode */
1091 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1092 break;
1093 }
1094
1095 if (hdmi_signal) {
1096 /* Receiving HDMI signal
1097 * Set automode */
1098 io_write_clr_set(sd, 0x02, 0xf0, 0xf0);
1099 break;
1100 }
1101
1102 /* Receiving DVI-D signal
1103 * ADV7604 selects RGB limited range regardless of
1104 * input format (CE/IT) in automatic mode */
1105 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO) {
1106 /* RGB limited range (16-235) */
1107 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1108 } else {
1109 /* RGB full range (0-255) */
1110 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1111
1112 if (is_digital_input(sd) && rgb_output) {
1113 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1114 } else {
1115 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1116 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1117 }
1118 }
1119 break;
1120 case V4L2_DV_RGB_RANGE_LIMITED:
1121 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1122 /* YCrCb limited range (16-235) */
1123 io_write_clr_set(sd, 0x02, 0xf0, 0x20);
1124 break;
1125 }
1126
1127 /* RGB limited range (16-235) */
1128 io_write_clr_set(sd, 0x02, 0xf0, 0x00);
1129
1130 break;
1131 case V4L2_DV_RGB_RANGE_FULL:
1132 if (state->selected_input == ADV7604_PAD_VGA_COMP) {
1133 /* YCrCb full range (0-255) */
1134 io_write_clr_set(sd, 0x02, 0xf0, 0x60);
1135 break;
1136 }
1137
1138 /* RGB full range (0-255) */
1139 io_write_clr_set(sd, 0x02, 0xf0, 0x10);
1140
1141 if (is_analog_input(sd) || hdmi_signal)
1142 break;
1143
1144 /* Adjust gain/offset for DVI-D signals only */
1145 if (rgb_output) {
1146 adv76xx_set_offset(sd, false, 0x40, 0x40, 0x40);
1147 } else {
1148 adv76xx_set_gain(sd, false, 0xe0, 0xe0, 0xe0);
1149 adv76xx_set_offset(sd, false, 0x70, 0x70, 0x70);
1150 }
1151 break;
1152 }
1153 }
1154
1155 static int adv76xx_s_ctrl(struct v4l2_ctrl *ctrl)
1156 {
1157 struct v4l2_subdev *sd =
1158 &container_of(ctrl->handler, struct adv76xx_state, hdl)->sd;
1159
1160 struct adv76xx_state *state = to_state(sd);
1161
1162 switch (ctrl->id) {
1163 case V4L2_CID_BRIGHTNESS:
1164 cp_write(sd, 0x3c, ctrl->val);
1165 return 0;
1166 case V4L2_CID_CONTRAST:
1167 cp_write(sd, 0x3a, ctrl->val);
1168 return 0;
1169 case V4L2_CID_SATURATION:
1170 cp_write(sd, 0x3b, ctrl->val);
1171 return 0;
1172 case V4L2_CID_HUE:
1173 cp_write(sd, 0x3d, ctrl->val);
1174 return 0;
1175 case V4L2_CID_DV_RX_RGB_RANGE:
1176 state->rgb_quantization_range = ctrl->val;
1177 set_rgb_quantization_range(sd);
1178 return 0;
1179 case V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE:
1180 if (!adv76xx_has_afe(state))
1181 return -EINVAL;
1182 /* Set the analog sampling phase. This is needed to find the
1183 best sampling phase for analog video: an application or
1184 driver has to try a number of phases and analyze the picture
1185 quality before settling on the best performing phase. */
1186 afe_write(sd, 0xc8, ctrl->val);
1187 return 0;
1188 case V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL:
1189 /* Use the default blue color for free running mode,
1190 or supply your own. */
1191 cp_write_clr_set(sd, 0xbf, 0x04, ctrl->val << 2);
1192 return 0;
1193 case V4L2_CID_ADV_RX_FREE_RUN_COLOR:
1194 cp_write(sd, 0xc0, (ctrl->val & 0xff0000) >> 16);
1195 cp_write(sd, 0xc1, (ctrl->val & 0x00ff00) >> 8);
1196 cp_write(sd, 0xc2, (u8)(ctrl->val & 0x0000ff));
1197 return 0;
1198 }
1199 return -EINVAL;
1200 }
1201
1202 /* ----------------------------------------------------------------------- */
1203
1204 static inline bool no_power(struct v4l2_subdev *sd)
1205 {
1206 /* Entire chip or CP powered off */
1207 return io_read(sd, 0x0c) & 0x24;
1208 }
1209
1210 static inline bool no_signal_tmds(struct v4l2_subdev *sd)
1211 {
1212 struct adv76xx_state *state = to_state(sd);
1213
1214 return !(io_read(sd, 0x6a) & (0x10 >> state->selected_input));
1215 }
1216
1217 static inline bool no_lock_tmds(struct v4l2_subdev *sd)
1218 {
1219 struct adv76xx_state *state = to_state(sd);
1220 const struct adv76xx_chip_info *info = state->info;
1221
1222 return (io_read(sd, 0x6a) & info->tdms_lock_mask) != info->tdms_lock_mask;
1223 }
1224
1225 static inline bool is_hdmi(struct v4l2_subdev *sd)
1226 {
1227 return hdmi_read(sd, 0x05) & 0x80;
1228 }
1229
1230 static inline bool no_lock_sspd(struct v4l2_subdev *sd)
1231 {
1232 struct adv76xx_state *state = to_state(sd);
1233
1234 /*
1235 * Chips without a AFE don't expose registers for the SSPD, so just assume
1236 * that we have a lock.
1237 */
1238 if (adv76xx_has_afe(state))
1239 return false;
1240
1241 /* TODO channel 2 */
1242 return ((cp_read(sd, 0xb5) & 0xd0) != 0xd0);
1243 }
1244
1245 static inline bool no_lock_stdi(struct v4l2_subdev *sd)
1246 {
1247 /* TODO channel 2 */
1248 return !(cp_read(sd, 0xb1) & 0x80);
1249 }
1250
1251 static inline bool no_signal(struct v4l2_subdev *sd)
1252 {
1253 bool ret;
1254
1255 ret = no_power(sd);
1256
1257 ret |= no_lock_stdi(sd);
1258 ret |= no_lock_sspd(sd);
1259
1260 if (is_digital_input(sd)) {
1261 ret |= no_lock_tmds(sd);
1262 ret |= no_signal_tmds(sd);
1263 }
1264
1265 return ret;
1266 }
1267
1268 static inline bool no_lock_cp(struct v4l2_subdev *sd)
1269 {
1270 struct adv76xx_state *state = to_state(sd);
1271
1272 if (!adv76xx_has_afe(state))
1273 return false;
1274
1275 /* CP has detected a non standard number of lines on the incoming
1276 video compared to what it is configured to receive by s_dv_timings */
1277 return io_read(sd, 0x12) & 0x01;
1278 }
1279
1280 static inline bool in_free_run(struct v4l2_subdev *sd)
1281 {
1282 return cp_read(sd, 0xff) & 0x10;
1283 }
1284
1285 static int adv76xx_g_input_status(struct v4l2_subdev *sd, u32 *status)
1286 {
1287 *status = 0;
1288 *status |= no_power(sd) ? V4L2_IN_ST_NO_POWER : 0;
1289 *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0;
1290 if (!in_free_run(sd) && no_lock_cp(sd))
1291 *status |= is_digital_input(sd) ?
1292 V4L2_IN_ST_NO_SYNC : V4L2_IN_ST_NO_H_LOCK;
1293
1294 v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status);
1295
1296 return 0;
1297 }
1298
1299 /* ----------------------------------------------------------------------- */
1300
1301 struct stdi_readback {
1302 u16 bl, lcf, lcvs;
1303 u8 hs_pol, vs_pol;
1304 bool interlaced;
1305 };
1306
1307 static int stdi2dv_timings(struct v4l2_subdev *sd,
1308 struct stdi_readback *stdi,
1309 struct v4l2_dv_timings *timings)
1310 {
1311 struct adv76xx_state *state = to_state(sd);
1312 u32 hfreq = (ADV76XX_FSC * 8) / stdi->bl;
1313 u32 pix_clk;
1314 int i;
1315
1316 for (i = 0; adv76xx_timings[i].bt.height; i++) {
1317 if (vtotal(&adv76xx_timings[i].bt) != stdi->lcf + 1)
1318 continue;
1319 if (adv76xx_timings[i].bt.vsync != stdi->lcvs)
1320 continue;
1321
1322 pix_clk = hfreq * htotal(&adv76xx_timings[i].bt);
1323
1324 if ((pix_clk < adv76xx_timings[i].bt.pixelclock + 1000000) &&
1325 (pix_clk > adv76xx_timings[i].bt.pixelclock - 1000000)) {
1326 *timings = adv76xx_timings[i];
1327 return 0;
1328 }
1329 }
1330
1331 if (v4l2_detect_cvt(stdi->lcf + 1, hfreq, stdi->lcvs,
1332 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1333 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1334 false, timings))
1335 return 0;
1336 if (v4l2_detect_gtf(stdi->lcf + 1, hfreq, stdi->lcvs,
1337 (stdi->hs_pol == '+' ? V4L2_DV_HSYNC_POS_POL : 0) |
1338 (stdi->vs_pol == '+' ? V4L2_DV_VSYNC_POS_POL : 0),
1339 false, state->aspect_ratio, timings))
1340 return 0;
1341
1342 v4l2_dbg(2, debug, sd,
1343 "%s: No format candidate found for lcvs = %d, lcf=%d, bl = %d, %chsync, %cvsync\n",
1344 __func__, stdi->lcvs, stdi->lcf, stdi->bl,
1345 stdi->hs_pol, stdi->vs_pol);
1346 return -1;
1347 }
1348
1349
1350 static int read_stdi(struct v4l2_subdev *sd, struct stdi_readback *stdi)
1351 {
1352 struct adv76xx_state *state = to_state(sd);
1353 const struct adv76xx_chip_info *info = state->info;
1354 u8 polarity;
1355
1356 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1357 v4l2_dbg(2, debug, sd, "%s: STDI and/or SSPD not locked\n", __func__);
1358 return -1;
1359 }
1360
1361 /* read STDI */
1362 stdi->bl = cp_read16(sd, 0xb1, 0x3fff);
1363 stdi->lcf = cp_read16(sd, info->lcf_reg, 0x7ff);
1364 stdi->lcvs = cp_read(sd, 0xb3) >> 3;
1365 stdi->interlaced = io_read(sd, 0x12) & 0x10;
1366
1367 if (adv76xx_has_afe(state)) {
1368 /* read SSPD */
1369 polarity = cp_read(sd, 0xb5);
1370 if ((polarity & 0x03) == 0x01) {
1371 stdi->hs_pol = polarity & 0x10
1372 ? (polarity & 0x08 ? '+' : '-') : 'x';
1373 stdi->vs_pol = polarity & 0x40
1374 ? (polarity & 0x20 ? '+' : '-') : 'x';
1375 } else {
1376 stdi->hs_pol = 'x';
1377 stdi->vs_pol = 'x';
1378 }
1379 } else {
1380 polarity = hdmi_read(sd, 0x05);
1381 stdi->hs_pol = polarity & 0x20 ? '+' : '-';
1382 stdi->vs_pol = polarity & 0x10 ? '+' : '-';
1383 }
1384
1385 if (no_lock_stdi(sd) || no_lock_sspd(sd)) {
1386 v4l2_dbg(2, debug, sd,
1387 "%s: signal lost during readout of STDI/SSPD\n", __func__);
1388 return -1;
1389 }
1390
1391 if (stdi->lcf < 239 || stdi->bl < 8 || stdi->bl == 0x3fff) {
1392 v4l2_dbg(2, debug, sd, "%s: invalid signal\n", __func__);
1393 memset(stdi, 0, sizeof(struct stdi_readback));
1394 return -1;
1395 }
1396
1397 v4l2_dbg(2, debug, sd,
1398 "%s: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %chsync, %cvsync, %s\n",
1399 __func__, stdi->lcf, stdi->bl, stdi->lcvs,
1400 stdi->hs_pol, stdi->vs_pol,
1401 stdi->interlaced ? "interlaced" : "progressive");
1402
1403 return 0;
1404 }
1405
1406 static int adv76xx_enum_dv_timings(struct v4l2_subdev *sd,
1407 struct v4l2_enum_dv_timings *timings)
1408 {
1409 struct adv76xx_state *state = to_state(sd);
1410
1411 if (timings->index >= ARRAY_SIZE(adv76xx_timings) - 1)
1412 return -EINVAL;
1413
1414 if (timings->pad >= state->source_pad)
1415 return -EINVAL;
1416
1417 memset(timings->reserved, 0, sizeof(timings->reserved));
1418 timings->timings = adv76xx_timings[timings->index];
1419 return 0;
1420 }
1421
1422 static int adv76xx_dv_timings_cap(struct v4l2_subdev *sd,
1423 struct v4l2_dv_timings_cap *cap)
1424 {
1425 struct adv76xx_state *state = to_state(sd);
1426
1427 if (cap->pad >= state->source_pad)
1428 return -EINVAL;
1429
1430 cap->type = V4L2_DV_BT_656_1120;
1431 cap->bt.max_width = 1920;
1432 cap->bt.max_height = 1200;
1433 cap->bt.min_pixelclock = 25000000;
1434
1435 switch (cap->pad) {
1436 case ADV76XX_PAD_HDMI_PORT_A:
1437 case ADV7604_PAD_HDMI_PORT_B:
1438 case ADV7604_PAD_HDMI_PORT_C:
1439 case ADV7604_PAD_HDMI_PORT_D:
1440 cap->bt.max_pixelclock = 225000000;
1441 break;
1442 case ADV7604_PAD_VGA_RGB:
1443 case ADV7604_PAD_VGA_COMP:
1444 default:
1445 cap->bt.max_pixelclock = 170000000;
1446 break;
1447 }
1448
1449 cap->bt.standards = V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT |
1450 V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT;
1451 cap->bt.capabilities = V4L2_DV_BT_CAP_PROGRESSIVE |
1452 V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM;
1453 return 0;
1454 }
1455
1456 /* Fill the optional fields .standards and .flags in struct v4l2_dv_timings
1457 if the format is listed in adv76xx_timings[] */
1458 static void adv76xx_fill_optional_dv_timings_fields(struct v4l2_subdev *sd,
1459 struct v4l2_dv_timings *timings)
1460 {
1461 int i;
1462
1463 for (i = 0; adv76xx_timings[i].bt.width; i++) {
1464 if (v4l2_match_dv_timings(timings, &adv76xx_timings[i],
1465 is_digital_input(sd) ? 250000 : 1000000)) {
1466 *timings = adv76xx_timings[i];
1467 break;
1468 }
1469 }
1470 }
1471
1472 static unsigned int adv7604_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1473 {
1474 unsigned int freq;
1475 int a, b;
1476
1477 a = hdmi_read(sd, 0x06);
1478 b = hdmi_read(sd, 0x3b);
1479 if (a < 0 || b < 0)
1480 return 0;
1481 freq = a * 1000000 + ((b & 0x30) >> 4) * 250000;
1482
1483 if (is_hdmi(sd)) {
1484 /* adjust for deep color mode */
1485 unsigned bits_per_channel = ((hdmi_read(sd, 0x0b) & 0x60) >> 4) + 8;
1486
1487 freq = freq * 8 / bits_per_channel;
1488 }
1489
1490 return freq;
1491 }
1492
1493 static unsigned int adv7611_read_hdmi_pixelclock(struct v4l2_subdev *sd)
1494 {
1495 int a, b;
1496
1497 a = hdmi_read(sd, 0x51);
1498 b = hdmi_read(sd, 0x52);
1499 if (a < 0 || b < 0)
1500 return 0;
1501 return ((a << 1) | (b >> 7)) * 1000000 + (b & 0x7f) * 1000000 / 128;
1502 }
1503
1504 static int adv76xx_query_dv_timings(struct v4l2_subdev *sd,
1505 struct v4l2_dv_timings *timings)
1506 {
1507 struct adv76xx_state *state = to_state(sd);
1508 const struct adv76xx_chip_info *info = state->info;
1509 struct v4l2_bt_timings *bt = &timings->bt;
1510 struct stdi_readback stdi;
1511
1512 if (!timings)
1513 return -EINVAL;
1514
1515 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1516
1517 if (no_signal(sd)) {
1518 state->restart_stdi_once = true;
1519 v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__);
1520 return -ENOLINK;
1521 }
1522
1523 /* read STDI */
1524 if (read_stdi(sd, &stdi)) {
1525 v4l2_dbg(1, debug, sd, "%s: STDI/SSPD not locked\n", __func__);
1526 return -ENOLINK;
1527 }
1528 bt->interlaced = stdi.interlaced ?
1529 V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE;
1530
1531 if (is_digital_input(sd)) {
1532 timings->type = V4L2_DV_BT_656_1120;
1533
1534 bt->width = hdmi_read16(sd, 0x07, info->linewidth_mask);
1535 bt->height = hdmi_read16(sd, 0x09, info->field0_height_mask);
1536 bt->pixelclock = info->read_hdmi_pixelclock(sd);
1537 bt->hfrontporch = hdmi_read16(sd, 0x20, info->hfrontporch_mask);
1538 bt->hsync = hdmi_read16(sd, 0x22, info->hsync_mask);
1539 bt->hbackporch = hdmi_read16(sd, 0x24, info->hbackporch_mask);
1540 bt->vfrontporch = hdmi_read16(sd, 0x2a,
1541 info->field0_vfrontporch_mask) / 2;
1542 bt->vsync = hdmi_read16(sd, 0x2e, info->field0_vsync_mask) / 2;
1543 bt->vbackporch = hdmi_read16(sd, 0x32,
1544 info->field0_vbackporch_mask) / 2;
1545 bt->polarities = ((hdmi_read(sd, 0x05) & 0x10) ? V4L2_DV_VSYNC_POS_POL : 0) |
1546 ((hdmi_read(sd, 0x05) & 0x20) ? V4L2_DV_HSYNC_POS_POL : 0);
1547 if (bt->interlaced == V4L2_DV_INTERLACED) {
1548 bt->height += hdmi_read16(sd, 0x0b,
1549 info->field1_height_mask);
1550 bt->il_vfrontporch = hdmi_read16(sd, 0x2c,
1551 info->field1_vfrontporch_mask) / 2;
1552 bt->il_vsync = hdmi_read16(sd, 0x30,
1553 info->field1_vsync_mask) / 2;
1554 bt->il_vbackporch = hdmi_read16(sd, 0x34,
1555 info->field1_vbackporch_mask) / 2;
1556 }
1557 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1558 } else {
1559 /* find format
1560 * Since LCVS values are inaccurate [REF_03, p. 275-276],
1561 * stdi2dv_timings() is called with lcvs +-1 if the first attempt fails.
1562 */
1563 if (!stdi2dv_timings(sd, &stdi, timings))
1564 goto found;
1565 stdi.lcvs += 1;
1566 v4l2_dbg(1, debug, sd, "%s: lcvs + 1 = %d\n", __func__, stdi.lcvs);
1567 if (!stdi2dv_timings(sd, &stdi, timings))
1568 goto found;
1569 stdi.lcvs -= 2;
1570 v4l2_dbg(1, debug, sd, "%s: lcvs - 1 = %d\n", __func__, stdi.lcvs);
1571 if (stdi2dv_timings(sd, &stdi, timings)) {
1572 /*
1573 * The STDI block may measure wrong values, especially
1574 * for lcvs and lcf. If the driver can not find any
1575 * valid timing, the STDI block is restarted to measure
1576 * the video timings again. The function will return an
1577 * error, but the restart of STDI will generate a new
1578 * STDI interrupt and the format detection process will
1579 * restart.
1580 */
1581 if (state->restart_stdi_once) {
1582 v4l2_dbg(1, debug, sd, "%s: restart STDI\n", __func__);
1583 /* TODO restart STDI for Sync Channel 2 */
1584 /* enter one-shot mode */
1585 cp_write_clr_set(sd, 0x86, 0x06, 0x00);
1586 /* trigger STDI restart */
1587 cp_write_clr_set(sd, 0x86, 0x06, 0x04);
1588 /* reset to continuous mode */
1589 cp_write_clr_set(sd, 0x86, 0x06, 0x02);
1590 state->restart_stdi_once = false;
1591 return -ENOLINK;
1592 }
1593 v4l2_dbg(1, debug, sd, "%s: format not supported\n", __func__);
1594 return -ERANGE;
1595 }
1596 state->restart_stdi_once = true;
1597 }
1598 found:
1599
1600 if (no_signal(sd)) {
1601 v4l2_dbg(1, debug, sd, "%s: signal lost during readout\n", __func__);
1602 memset(timings, 0, sizeof(struct v4l2_dv_timings));
1603 return -ENOLINK;
1604 }
1605
1606 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1607 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1608 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1609 __func__, (u32)bt->pixelclock);
1610 return -ERANGE;
1611 }
1612
1613 if (debug > 1)
1614 v4l2_print_dv_timings(sd->name, "adv76xx_query_dv_timings: ",
1615 timings, true);
1616
1617 return 0;
1618 }
1619
1620 static int adv76xx_s_dv_timings(struct v4l2_subdev *sd,
1621 struct v4l2_dv_timings *timings)
1622 {
1623 struct adv76xx_state *state = to_state(sd);
1624 struct v4l2_bt_timings *bt;
1625 int err;
1626
1627 if (!timings)
1628 return -EINVAL;
1629
1630 if (v4l2_match_dv_timings(&state->timings, timings, 0)) {
1631 v4l2_dbg(1, debug, sd, "%s: no change\n", __func__);
1632 return 0;
1633 }
1634
1635 bt = &timings->bt;
1636
1637 if ((is_analog_input(sd) && bt->pixelclock > 170000000) ||
1638 (is_digital_input(sd) && bt->pixelclock > 225000000)) {
1639 v4l2_dbg(1, debug, sd, "%s: pixelclock out of range %d\n",
1640 __func__, (u32)bt->pixelclock);
1641 return -ERANGE;
1642 }
1643
1644 adv76xx_fill_optional_dv_timings_fields(sd, timings);
1645
1646 state->timings = *timings;
1647
1648 cp_write_clr_set(sd, 0x91, 0x40, bt->interlaced ? 0x40 : 0x00);
1649
1650 /* Use prim_mode and vid_std when available */
1651 err = configure_predefined_video_timings(sd, timings);
1652 if (err) {
1653 /* custom settings when the video format
1654 does not have prim_mode/vid_std */
1655 configure_custom_video_timings(sd, bt);
1656 }
1657
1658 set_rgb_quantization_range(sd);
1659
1660 if (debug > 1)
1661 v4l2_print_dv_timings(sd->name, "adv76xx_s_dv_timings: ",
1662 timings, true);
1663 return 0;
1664 }
1665
1666 static int adv76xx_g_dv_timings(struct v4l2_subdev *sd,
1667 struct v4l2_dv_timings *timings)
1668 {
1669 struct adv76xx_state *state = to_state(sd);
1670
1671 *timings = state->timings;
1672 return 0;
1673 }
1674
1675 static void adv7604_set_termination(struct v4l2_subdev *sd, bool enable)
1676 {
1677 hdmi_write(sd, 0x01, enable ? 0x00 : 0x78);
1678 }
1679
1680 static void adv7611_set_termination(struct v4l2_subdev *sd, bool enable)
1681 {
1682 hdmi_write(sd, 0x83, enable ? 0xfe : 0xff);
1683 }
1684
1685 static void enable_input(struct v4l2_subdev *sd)
1686 {
1687 struct adv76xx_state *state = to_state(sd);
1688
1689 if (is_analog_input(sd)) {
1690 io_write(sd, 0x15, 0xb0); /* Disable Tristate of Pins (no audio) */
1691 } else if (is_digital_input(sd)) {
1692 hdmi_write_clr_set(sd, 0x00, 0x03, state->selected_input);
1693 state->info->set_termination(sd, true);
1694 io_write(sd, 0x15, 0xa0); /* Disable Tristate of Pins */
1695 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x00); /* Unmute audio */
1696 } else {
1697 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1698 __func__, state->selected_input);
1699 }
1700 }
1701
1702 static void disable_input(struct v4l2_subdev *sd)
1703 {
1704 struct adv76xx_state *state = to_state(sd);
1705
1706 hdmi_write_clr_set(sd, 0x1a, 0x10, 0x10); /* Mute audio */
1707 msleep(16); /* 512 samples with >= 32 kHz sample rate [REF_03, c. 7.16.10] */
1708 io_write(sd, 0x15, 0xbe); /* Tristate all outputs from video core */
1709 state->info->set_termination(sd, false);
1710 }
1711
1712 static void select_input(struct v4l2_subdev *sd)
1713 {
1714 struct adv76xx_state *state = to_state(sd);
1715 const struct adv76xx_chip_info *info = state->info;
1716
1717 if (is_analog_input(sd)) {
1718 adv76xx_write_reg_seq(sd, info->recommended_settings[0]);
1719
1720 afe_write(sd, 0x00, 0x08); /* power up ADC */
1721 afe_write(sd, 0x01, 0x06); /* power up Analog Front End */
1722 afe_write(sd, 0xc8, 0x00); /* phase control */
1723 } else if (is_digital_input(sd)) {
1724 hdmi_write(sd, 0x00, state->selected_input & 0x03);
1725
1726 adv76xx_write_reg_seq(sd, info->recommended_settings[1]);
1727
1728 if (adv76xx_has_afe(state)) {
1729 afe_write(sd, 0x00, 0xff); /* power down ADC */
1730 afe_write(sd, 0x01, 0xfe); /* power down Analog Front End */
1731 afe_write(sd, 0xc8, 0x40); /* phase control */
1732 }
1733
1734 cp_write(sd, 0x3e, 0x00); /* CP core pre-gain control */
1735 cp_write(sd, 0xc3, 0x39); /* CP coast control. Graphics mode */
1736 cp_write(sd, 0x40, 0x80); /* CP core pre-gain control. Graphics mode */
1737 } else {
1738 v4l2_dbg(2, debug, sd, "%s: Unknown port %d selected\n",
1739 __func__, state->selected_input);
1740 }
1741 }
1742
1743 static int adv76xx_s_routing(struct v4l2_subdev *sd,
1744 u32 input, u32 output, u32 config)
1745 {
1746 struct adv76xx_state *state = to_state(sd);
1747
1748 v4l2_dbg(2, debug, sd, "%s: input %d, selected input %d",
1749 __func__, input, state->selected_input);
1750
1751 if (input == state->selected_input)
1752 return 0;
1753
1754 if (input > state->info->max_port)
1755 return -EINVAL;
1756
1757 state->selected_input = input;
1758
1759 disable_input(sd);
1760 select_input(sd);
1761 enable_input(sd);
1762
1763 v4l2_subdev_notify(sd, V4L2_DEVICE_NOTIFY_EVENT,
1764 (void *)&adv76xx_ev_fmt);
1765 return 0;
1766 }
1767
1768 static int adv76xx_enum_mbus_code(struct v4l2_subdev *sd,
1769 struct v4l2_subdev_pad_config *cfg,
1770 struct v4l2_subdev_mbus_code_enum *code)
1771 {
1772 struct adv76xx_state *state = to_state(sd);
1773
1774 if (code->index >= state->info->nformats)
1775 return -EINVAL;
1776
1777 code->code = state->info->formats[code->index].code;
1778
1779 return 0;
1780 }
1781
1782 static void adv76xx_fill_format(struct adv76xx_state *state,
1783 struct v4l2_mbus_framefmt *format)
1784 {
1785 memset(format, 0, sizeof(*format));
1786
1787 format->width = state->timings.bt.width;
1788 format->height = state->timings.bt.height;
1789 format->field = V4L2_FIELD_NONE;
1790 format->colorspace = V4L2_COLORSPACE_SRGB;
1791
1792 if (state->timings.bt.flags & V4L2_DV_FL_IS_CE_VIDEO)
1793 format->colorspace = (state->timings.bt.height <= 576) ?
1794 V4L2_COLORSPACE_SMPTE170M : V4L2_COLORSPACE_REC709;
1795 }
1796
1797 /*
1798 * Compute the op_ch_sel value required to obtain on the bus the component order
1799 * corresponding to the selected format taking into account bus reordering
1800 * applied by the board at the output of the device.
1801 *
1802 * The following table gives the op_ch_value from the format component order
1803 * (expressed as op_ch_sel value in column) and the bus reordering (expressed as
1804 * adv76xx_bus_order value in row).
1805 *
1806 * | GBR(0) GRB(1) BGR(2) RGB(3) BRG(4) RBG(5)
1807 * ----------+-------------------------------------------------
1808 * RGB (NOP) | GBR GRB BGR RGB BRG RBG
1809 * GRB (1-2) | BGR RGB GBR GRB RBG BRG
1810 * RBG (2-3) | GRB GBR BRG RBG BGR RGB
1811 * BGR (1-3) | RBG BRG RGB BGR GRB GBR
1812 * BRG (ROR) | BRG RBG GRB GBR RGB BGR
1813 * GBR (ROL) | RGB BGR RBG BRG GBR GRB
1814 */
1815 static unsigned int adv76xx_op_ch_sel(struct adv76xx_state *state)
1816 {
1817 #define _SEL(a,b,c,d,e,f) { \
1818 ADV76XX_OP_CH_SEL_##a, ADV76XX_OP_CH_SEL_##b, ADV76XX_OP_CH_SEL_##c, \
1819 ADV76XX_OP_CH_SEL_##d, ADV76XX_OP_CH_SEL_##e, ADV76XX_OP_CH_SEL_##f }
1820 #define _BUS(x) [ADV7604_BUS_ORDER_##x]
1821
1822 static const unsigned int op_ch_sel[6][6] = {
1823 _BUS(RGB) /* NOP */ = _SEL(GBR, GRB, BGR, RGB, BRG, RBG),
1824 _BUS(GRB) /* 1-2 */ = _SEL(BGR, RGB, GBR, GRB, RBG, BRG),
1825 _BUS(RBG) /* 2-3 */ = _SEL(GRB, GBR, BRG, RBG, BGR, RGB),
1826 _BUS(BGR) /* 1-3 */ = _SEL(RBG, BRG, RGB, BGR, GRB, GBR),
1827 _BUS(BRG) /* ROR */ = _SEL(BRG, RBG, GRB, GBR, RGB, BGR),
1828 _BUS(GBR) /* ROL */ = _SEL(RGB, BGR, RBG, BRG, GBR, GRB),
1829 };
1830
1831 return op_ch_sel[state->pdata.bus_order][state->format->op_ch_sel >> 5];
1832 }
1833
1834 static void adv76xx_setup_format(struct adv76xx_state *state)
1835 {
1836 struct v4l2_subdev *sd = &state->sd;
1837
1838 io_write_clr_set(sd, 0x02, 0x02,
1839 state->format->rgb_out ? ADV76XX_RGB_OUT : 0);
1840 io_write(sd, 0x03, state->format->op_format_sel |
1841 state->pdata.op_format_mode_sel);
1842 io_write_clr_set(sd, 0x04, 0xe0, adv76xx_op_ch_sel(state));
1843 io_write_clr_set(sd, 0x05, 0x01,
1844 state->format->swap_cb_cr ? ADV76XX_OP_SWAP_CB_CR : 0);
1845 }
1846
1847 static int adv76xx_get_format(struct v4l2_subdev *sd,
1848 struct v4l2_subdev_pad_config *cfg,
1849 struct v4l2_subdev_format *format)
1850 {
1851 struct adv76xx_state *state = to_state(sd);
1852
1853 if (format->pad != state->source_pad)
1854 return -EINVAL;
1855
1856 adv76xx_fill_format(state, &format->format);
1857
1858 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1859 struct v4l2_mbus_framefmt *fmt;
1860
1861 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1862 format->format.code = fmt->code;
1863 } else {
1864 format->format.code = state->format->code;
1865 }
1866
1867 return 0;
1868 }
1869
1870 static int adv76xx_set_format(struct v4l2_subdev *sd,
1871 struct v4l2_subdev_pad_config *cfg,
1872 struct v4l2_subdev_format *format)
1873 {
1874 struct adv76xx_state *state = to_state(sd);
1875 const struct adv76xx_format_info *info;
1876
1877 if (format->pad != state->source_pad)
1878 return -EINVAL;
1879
1880 info = adv76xx_format_info(state, format->format.code);
1881 if (info == NULL)
1882 info = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
1883
1884 adv76xx_fill_format(state, &format->format);
1885 format->format.code = info->code;
1886
1887 if (format->which == V4L2_SUBDEV_FORMAT_TRY) {
1888 struct v4l2_mbus_framefmt *fmt;
1889
1890 fmt = v4l2_subdev_get_try_format(sd, cfg, format->pad);
1891 fmt->code = format->format.code;
1892 } else {
1893 state->format = info;
1894 adv76xx_setup_format(state);
1895 }
1896
1897 return 0;
1898 }
1899
1900 static int adv76xx_isr(struct v4l2_subdev *sd, u32 status, bool *handled)
1901 {
1902 struct adv76xx_state *state = to_state(sd);
1903 const struct adv76xx_chip_info *info = state->info;
1904 const u8 irq_reg_0x43 = io_read(sd, 0x43);
1905 const u8 irq_reg_0x6b = io_read(sd, 0x6b);
1906 const u8 irq_reg_0x70 = io_read(sd, 0x70);
1907 u8 fmt_change_digital;
1908 u8 fmt_change;
1909 u8 tx_5v;
1910
1911 if (irq_reg_0x43)
1912 io_write(sd, 0x44, irq_reg_0x43);
1913 if (irq_reg_0x70)
1914 io_write(sd, 0x71, irq_reg_0x70);
1915 if (irq_reg_0x6b)
1916 io_write(sd, 0x6c, irq_reg_0x6b);
1917
1918 v4l2_dbg(2, debug, sd, "%s: ", __func__);
1919
1920 /* format change */
1921 fmt_change = irq_reg_0x43 & 0x98;
1922 fmt_change_digital = is_digital_input(sd)
1923 ? irq_reg_0x6b & info->fmt_change_digital_mask
1924 : 0;
1925
1926 if (fmt_change || fmt_change_digital) {
1927 v4l2_dbg(1, debug, sd,
1928 "%s: fmt_change = 0x%x, fmt_change_digital = 0x%x\n",
1929 __func__, fmt_change, fmt_change_digital);
1930
1931 v4l2_subdev_notify(sd, V4L2_DEVICE_NOTIFY_EVENT,
1932 (void *)&adv76xx_ev_fmt);
1933
1934 if (handled)
1935 *handled = true;
1936 }
1937 /* HDMI/DVI mode */
1938 if (irq_reg_0x6b & 0x01) {
1939 v4l2_dbg(1, debug, sd, "%s: irq %s mode\n", __func__,
1940 (io_read(sd, 0x6a) & 0x01) ? "HDMI" : "DVI");
1941 set_rgb_quantization_range(sd);
1942 if (handled)
1943 *handled = true;
1944 }
1945
1946 /* tx 5v detect */
1947 tx_5v = io_read(sd, 0x70) & info->cable_det_mask;
1948 if (tx_5v) {
1949 v4l2_dbg(1, debug, sd, "%s: tx_5v: 0x%x\n", __func__, tx_5v);
1950 io_write(sd, 0x71, tx_5v);
1951 adv76xx_s_detect_tx_5v_ctrl(sd);
1952 if (handled)
1953 *handled = true;
1954 }
1955 return 0;
1956 }
1957
1958 static int adv76xx_get_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
1959 {
1960 struct adv76xx_state *state = to_state(sd);
1961 u8 *data = NULL;
1962
1963 memset(edid->reserved, 0, sizeof(edid->reserved));
1964
1965 switch (edid->pad) {
1966 case ADV76XX_PAD_HDMI_PORT_A:
1967 case ADV7604_PAD_HDMI_PORT_B:
1968 case ADV7604_PAD_HDMI_PORT_C:
1969 case ADV7604_PAD_HDMI_PORT_D:
1970 if (state->edid.present & (1 << edid->pad))
1971 data = state->edid.edid;
1972 break;
1973 default:
1974 return -EINVAL;
1975 }
1976
1977 if (edid->start_block == 0 && edid->blocks == 0) {
1978 edid->blocks = data ? state->edid.blocks : 0;
1979 return 0;
1980 }
1981
1982 if (data == NULL)
1983 return -ENODATA;
1984
1985 if (edid->start_block >= state->edid.blocks)
1986 return -EINVAL;
1987
1988 if (edid->start_block + edid->blocks > state->edid.blocks)
1989 edid->blocks = state->edid.blocks - edid->start_block;
1990
1991 memcpy(edid->edid, data + edid->start_block * 128, edid->blocks * 128);
1992
1993 return 0;
1994 }
1995
1996 static int get_edid_spa_location(const u8 *edid)
1997 {
1998 u8 d;
1999
2000 if ((edid[0x7e] != 1) ||
2001 (edid[0x80] != 0x02) ||
2002 (edid[0x81] != 0x03)) {
2003 return -1;
2004 }
2005
2006 /* search Vendor Specific Data Block (tag 3) */
2007 d = edid[0x82] & 0x7f;
2008 if (d > 4) {
2009 int i = 0x84;
2010 int end = 0x80 + d;
2011
2012 do {
2013 u8 tag = edid[i] >> 5;
2014 u8 len = edid[i] & 0x1f;
2015
2016 if ((tag == 3) && (len >= 5))
2017 return i + 4;
2018 i += len + 1;
2019 } while (i < end);
2020 }
2021 return -1;
2022 }
2023
2024 static int adv76xx_set_edid(struct v4l2_subdev *sd, struct v4l2_edid *edid)
2025 {
2026 struct adv76xx_state *state = to_state(sd);
2027 const struct adv76xx_chip_info *info = state->info;
2028 int spa_loc;
2029 int err;
2030 int i;
2031
2032 memset(edid->reserved, 0, sizeof(edid->reserved));
2033
2034 if (edid->pad > ADV7604_PAD_HDMI_PORT_D)
2035 return -EINVAL;
2036 if (edid->start_block != 0)
2037 return -EINVAL;
2038 if (edid->blocks == 0) {
2039 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2040 state->edid.present &= ~(1 << edid->pad);
2041 adv76xx_set_hpd(state, state->edid.present);
2042 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2043
2044 /* Fall back to a 16:9 aspect ratio */
2045 state->aspect_ratio.numerator = 16;
2046 state->aspect_ratio.denominator = 9;
2047
2048 if (!state->edid.present)
2049 state->edid.blocks = 0;
2050
2051 v4l2_dbg(2, debug, sd, "%s: clear EDID pad %d, edid.present = 0x%x\n",
2052 __func__, edid->pad, state->edid.present);
2053 return 0;
2054 }
2055 if (edid->blocks > 2) {
2056 edid->blocks = 2;
2057 return -E2BIG;
2058 }
2059
2060 v4l2_dbg(2, debug, sd, "%s: write EDID pad %d, edid.present = 0x%x\n",
2061 __func__, edid->pad, state->edid.present);
2062
2063 /* Disable hotplug and I2C access to EDID RAM from DDC port */
2064 cancel_delayed_work_sync(&state->delayed_work_enable_hotplug);
2065 adv76xx_set_hpd(state, 0);
2066 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, 0x00);
2067
2068 spa_loc = get_edid_spa_location(edid->edid);
2069 if (spa_loc < 0)
2070 spa_loc = 0xc0; /* Default value [REF_02, p. 116] */
2071
2072 switch (edid->pad) {
2073 case ADV76XX_PAD_HDMI_PORT_A:
2074 state->spa_port_a[0] = edid->edid[spa_loc];
2075 state->spa_port_a[1] = edid->edid[spa_loc + 1];
2076 break;
2077 case ADV7604_PAD_HDMI_PORT_B:
2078 rep_write(sd, 0x70, edid->edid[spa_loc]);
2079 rep_write(sd, 0x71, edid->edid[spa_loc + 1]);
2080 break;
2081 case ADV7604_PAD_HDMI_PORT_C:
2082 rep_write(sd, 0x72, edid->edid[spa_loc]);
2083 rep_write(sd, 0x73, edid->edid[spa_loc + 1]);
2084 break;
2085 case ADV7604_PAD_HDMI_PORT_D:
2086 rep_write(sd, 0x74, edid->edid[spa_loc]);
2087 rep_write(sd, 0x75, edid->edid[spa_loc + 1]);
2088 break;
2089 default:
2090 return -EINVAL;
2091 }
2092
2093 if (info->type == ADV7604) {
2094 rep_write(sd, 0x76, spa_loc & 0xff);
2095 rep_write_clr_set(sd, 0x77, 0x40, (spa_loc & 0x100) >> 2);
2096 } else {
2097 /* FIXME: Where is the SPA location LSB register ? */
2098 rep_write_clr_set(sd, 0x71, 0x01, (spa_loc & 0x100) >> 8);
2099 }
2100
2101 edid->edid[spa_loc] = state->spa_port_a[0];
2102 edid->edid[spa_loc + 1] = state->spa_port_a[1];
2103
2104 memcpy(state->edid.edid, edid->edid, 128 * edid->blocks);
2105 state->edid.blocks = edid->blocks;
2106 state->aspect_ratio = v4l2_calc_aspect_ratio(edid->edid[0x15],
2107 edid->edid[0x16]);
2108 state->edid.present |= 1 << edid->pad;
2109
2110 err = edid_write_block(sd, 128 * edid->blocks, state->edid.edid);
2111 if (err < 0) {
2112 v4l2_err(sd, "error %d writing edid pad %d\n", err, edid->pad);
2113 return err;
2114 }
2115
2116 /* adv76xx calculates the checksums and enables I2C access to internal
2117 EDID RAM from DDC port. */
2118 rep_write_clr_set(sd, info->edid_enable_reg, 0x0f, state->edid.present);
2119
2120 for (i = 0; i < 1000; i++) {
2121 if (rep_read(sd, info->edid_status_reg) & state->edid.present)
2122 break;
2123 mdelay(1);
2124 }
2125 if (i == 1000) {
2126 v4l2_err(sd, "error enabling edid (0x%x)\n", state->edid.present);
2127 return -EIO;
2128 }
2129
2130 /* enable hotplug after 100 ms */
2131 queue_delayed_work(state->work_queues,
2132 &state->delayed_work_enable_hotplug, HZ / 10);
2133 return 0;
2134 }
2135
2136 /*********** avi info frame CEA-861-E **************/
2137
2138 static const struct adv76xx_cfg_read_infoframe adv76xx_cri[] = {
2139 { "AVI", 0x01, 0xe0, 0x00 },
2140 { "Audio", 0x02, 0xe3, 0x1c },
2141 { "SDP", 0x04, 0xe6, 0x2a },
2142 { "Vendor", 0x10, 0xec, 0x54 }
2143 };
2144
2145 static int adv76xx_read_infoframe(struct v4l2_subdev *sd, int index,
2146 union hdmi_infoframe *frame)
2147 {
2148 uint8_t buffer[32];
2149 u8 len;
2150 int i;
2151
2152 if (!(io_read(sd, 0x60) & adv76xx_cri[index].present_mask)) {
2153 v4l2_info(sd, "%s infoframe not received\n",
2154 adv76xx_cri[index].desc);
2155 return -ENOENT;
2156 }
2157
2158 for (i = 0; i < 3; i++)
2159 buffer[i] = infoframe_read(sd,
2160 adv76xx_cri[index].head_addr + i);
2161
2162 len = buffer[2] + 1;
2163
2164 if (len + 3 > sizeof(buffer)) {
2165 v4l2_err(sd, "%s: invalid %s infoframe length %d\n", __func__,
2166 adv76xx_cri[index].desc, len);
2167 return -ENOENT;
2168 }
2169
2170 for (i = 0; i < len; i++)
2171 buffer[i + 3] = infoframe_read(sd,
2172 adv76xx_cri[index].payload_addr + i);
2173
2174 if (hdmi_infoframe_unpack(frame, buffer) < 0) {
2175 v4l2_err(sd, "%s: unpack of %s infoframe failed\n", __func__,
2176 adv76xx_cri[index].desc);
2177 return -ENOENT;
2178 }
2179 return 0;
2180 }
2181
2182 static void adv76xx_log_infoframes(struct v4l2_subdev *sd)
2183 {
2184 int i;
2185
2186 if (!is_hdmi(sd)) {
2187 v4l2_info(sd, "receive DVI-D signal, no infoframes\n");
2188 return;
2189 }
2190
2191 for (i = 0; i < ARRAY_SIZE(adv76xx_cri); i++) {
2192 union hdmi_infoframe frame;
2193 struct i2c_client *client = v4l2_get_subdevdata(sd);
2194
2195 if (adv76xx_read_infoframe(sd, i, &frame))
2196 return;
2197 hdmi_infoframe_log(KERN_INFO, &client->dev, &frame);
2198 }
2199 }
2200
2201 static int adv76xx_log_status(struct v4l2_subdev *sd)
2202 {
2203 struct adv76xx_state *state = to_state(sd);
2204 const struct adv76xx_chip_info *info = state->info;
2205 struct v4l2_dv_timings timings;
2206 struct stdi_readback stdi;
2207 u8 reg_io_0x02 = io_read(sd, 0x02);
2208 u8 edid_enabled;
2209 u8 cable_det;
2210
2211 static const char * const csc_coeff_sel_rb[16] = {
2212 "bypassed", "YPbPr601 -> RGB", "reserved", "YPbPr709 -> RGB",
2213 "reserved", "RGB -> YPbPr601", "reserved", "RGB -> YPbPr709",
2214 "reserved", "YPbPr709 -> YPbPr601", "YPbPr601 -> YPbPr709",
2215 "reserved", "reserved", "reserved", "reserved", "manual"
2216 };
2217 static const char * const input_color_space_txt[16] = {
2218 "RGB limited range (16-235)", "RGB full range (0-255)",
2219 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2220 "xvYCC Bt.601", "xvYCC Bt.709",
2221 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2222 "invalid", "invalid", "invalid", "invalid", "invalid",
2223 "invalid", "invalid", "automatic"
2224 };
2225 static const char * const hdmi_color_space_txt[16] = {
2226 "RGB limited range (16-235)", "RGB full range (0-255)",
2227 "YCbCr Bt.601 (16-235)", "YCbCr Bt.709 (16-235)",
2228 "xvYCC Bt.601", "xvYCC Bt.709",
2229 "YCbCr Bt.601 (0-255)", "YCbCr Bt.709 (0-255)",
2230 "sYCC", "Adobe YCC 601", "AdobeRGB", "invalid", "invalid",
2231 "invalid", "invalid", "invalid"
2232 };
2233 static const char * const rgb_quantization_range_txt[] = {
2234 "Automatic",
2235 "RGB limited range (16-235)",
2236 "RGB full range (0-255)",
2237 };
2238 static const char * const deep_color_mode_txt[4] = {
2239 "8-bits per channel",
2240 "10-bits per channel",
2241 "12-bits per channel",
2242 "16-bits per channel (not supported)"
2243 };
2244
2245 v4l2_info(sd, "-----Chip status-----\n");
2246 v4l2_info(sd, "Chip power: %s\n", no_power(sd) ? "off" : "on");
2247 edid_enabled = rep_read(sd, info->edid_status_reg);
2248 v4l2_info(sd, "EDID enabled port A: %s, B: %s, C: %s, D: %s\n",
2249 ((edid_enabled & 0x01) ? "Yes" : "No"),
2250 ((edid_enabled & 0x02) ? "Yes" : "No"),
2251 ((edid_enabled & 0x04) ? "Yes" : "No"),
2252 ((edid_enabled & 0x08) ? "Yes" : "No"));
2253 v4l2_info(sd, "CEC: %s\n", !!(cec_read(sd, 0x2a) & 0x01) ?
2254 "enabled" : "disabled");
2255
2256 v4l2_info(sd, "-----Signal status-----\n");
2257 cable_det = info->read_cable_det(sd);
2258 v4l2_info(sd, "Cable detected (+5V power) port A: %s, B: %s, C: %s, D: %s\n",
2259 ((cable_det & 0x01) ? "Yes" : "No"),
2260 ((cable_det & 0x02) ? "Yes" : "No"),
2261 ((cable_det & 0x04) ? "Yes" : "No"),
2262 ((cable_det & 0x08) ? "Yes" : "No"));
2263 v4l2_info(sd, "TMDS signal detected: %s\n",
2264 no_signal_tmds(sd) ? "false" : "true");
2265 v4l2_info(sd, "TMDS signal locked: %s\n",
2266 no_lock_tmds(sd) ? "false" : "true");
2267 v4l2_info(sd, "SSPD locked: %s\n", no_lock_sspd(sd) ? "false" : "true");
2268 v4l2_info(sd, "STDI locked: %s\n", no_lock_stdi(sd) ? "false" : "true");
2269 v4l2_info(sd, "CP locked: %s\n", no_lock_cp(sd) ? "false" : "true");
2270 v4l2_info(sd, "CP free run: %s\n",
2271 (in_free_run(sd)) ? "on" : "off");
2272 v4l2_info(sd, "Prim-mode = 0x%x, video std = 0x%x, v_freq = 0x%x\n",
2273 io_read(sd, 0x01) & 0x0f, io_read(sd, 0x00) & 0x3f,
2274 (io_read(sd, 0x01) & 0x70) >> 4);
2275
2276 v4l2_info(sd, "-----Video Timings-----\n");
2277 if (read_stdi(sd, &stdi))
2278 v4l2_info(sd, "STDI: not locked\n");
2279 else
2280 v4l2_info(sd, "STDI: lcf (frame height - 1) = %d, bl = %d, lcvs (vsync) = %d, %s, %chsync, %cvsync\n",
2281 stdi.lcf, stdi.bl, stdi.lcvs,
2282 stdi.interlaced ? "interlaced" : "progressive",
2283 stdi.hs_pol, stdi.vs_pol);
2284 if (adv76xx_query_dv_timings(sd, &timings))
2285 v4l2_info(sd, "No video detected\n");
2286 else
2287 v4l2_print_dv_timings(sd->name, "Detected format: ",
2288 &timings, true);
2289 v4l2_print_dv_timings(sd->name, "Configured format: ",
2290 &state->timings, true);
2291
2292 if (no_signal(sd))
2293 return 0;
2294
2295 v4l2_info(sd, "-----Color space-----\n");
2296 v4l2_info(sd, "RGB quantization range ctrl: %s\n",
2297 rgb_quantization_range_txt[state->rgb_quantization_range]);
2298 v4l2_info(sd, "Input color space: %s\n",
2299 input_color_space_txt[reg_io_0x02 >> 4]);
2300 v4l2_info(sd, "Output color space: %s %s, saturator %s, alt-gamma %s\n",
2301 (reg_io_0x02 & 0x02) ? "RGB" : "YCbCr",
2302 (reg_io_0x02 & 0x04) ? "(16-235)" : "(0-255)",
2303 (((reg_io_0x02 >> 2) & 0x01) ^ (reg_io_0x02 & 0x01)) ?
2304 "enabled" : "disabled",
2305 (reg_io_0x02 & 0x08) ? "enabled" : "disabled");
2306 v4l2_info(sd, "Color space conversion: %s\n",
2307 csc_coeff_sel_rb[cp_read(sd, info->cp_csc) >> 4]);
2308
2309 if (!is_digital_input(sd))
2310 return 0;
2311
2312 v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D");
2313 v4l2_info(sd, "Digital video port selected: %c\n",
2314 (hdmi_read(sd, 0x00) & 0x03) + 'A');
2315 v4l2_info(sd, "HDCP encrypted content: %s\n",
2316 (hdmi_read(sd, 0x05) & 0x40) ? "true" : "false");
2317 v4l2_info(sd, "HDCP keys read: %s%s\n",
2318 (hdmi_read(sd, 0x04) & 0x20) ? "yes" : "no",
2319 (hdmi_read(sd, 0x04) & 0x10) ? "ERROR" : "");
2320 if (is_hdmi(sd)) {
2321 bool audio_pll_locked = hdmi_read(sd, 0x04) & 0x01;
2322 bool audio_sample_packet_detect = hdmi_read(sd, 0x18) & 0x01;
2323 bool audio_mute = io_read(sd, 0x65) & 0x40;
2324
2325 v4l2_info(sd, "Audio: pll %s, samples %s, %s\n",
2326 audio_pll_locked ? "locked" : "not locked",
2327 audio_sample_packet_detect ? "detected" : "not detected",
2328 audio_mute ? "muted" : "enabled");
2329 if (audio_pll_locked && audio_sample_packet_detect) {
2330 v4l2_info(sd, "Audio format: %s\n",
2331 (hdmi_read(sd, 0x07) & 0x20) ? "multi-channel" : "stereo");
2332 }
2333 v4l2_info(sd, "Audio CTS: %u\n", (hdmi_read(sd, 0x5b) << 12) +
2334 (hdmi_read(sd, 0x5c) << 8) +
2335 (hdmi_read(sd, 0x5d) & 0xf0));
2336 v4l2_info(sd, "Audio N: %u\n", ((hdmi_read(sd, 0x5d) & 0x0f) << 16) +
2337 (hdmi_read(sd, 0x5e) << 8) +
2338 hdmi_read(sd, 0x5f));
2339 v4l2_info(sd, "AV Mute: %s\n", (hdmi_read(sd, 0x04) & 0x40) ? "on" : "off");
2340
2341 v4l2_info(sd, "Deep color mode: %s\n", deep_color_mode_txt[(hdmi_read(sd, 0x0b) & 0x60) >> 5]);
2342 v4l2_info(sd, "HDMI colorspace: %s\n", hdmi_color_space_txt[hdmi_read(sd, 0x53) & 0xf]);
2343
2344 adv76xx_log_infoframes(sd);
2345 }
2346
2347 return 0;
2348 }
2349
2350 /* ----------------------------------------------------------------------- */
2351
2352 static const struct v4l2_ctrl_ops adv76xx_ctrl_ops = {
2353 .s_ctrl = adv76xx_s_ctrl,
2354 };
2355
2356 static const struct v4l2_subdev_core_ops adv76xx_core_ops = {
2357 .log_status = adv76xx_log_status,
2358 .interrupt_service_routine = adv76xx_isr,
2359 #ifdef CONFIG_VIDEO_ADV_DEBUG
2360 .g_register = adv76xx_g_register,
2361 .s_register = adv76xx_s_register,
2362 #endif
2363 };
2364
2365 static const struct v4l2_subdev_video_ops adv76xx_video_ops = {
2366 .s_routing = adv76xx_s_routing,
2367 .g_input_status = adv76xx_g_input_status,
2368 .s_dv_timings = adv76xx_s_dv_timings,
2369 .g_dv_timings = adv76xx_g_dv_timings,
2370 .query_dv_timings = adv76xx_query_dv_timings,
2371 };
2372
2373 static const struct v4l2_subdev_pad_ops adv76xx_pad_ops = {
2374 .enum_mbus_code = adv76xx_enum_mbus_code,
2375 .get_fmt = adv76xx_get_format,
2376 .set_fmt = adv76xx_set_format,
2377 .get_edid = adv76xx_get_edid,
2378 .set_edid = adv76xx_set_edid,
2379 .dv_timings_cap = adv76xx_dv_timings_cap,
2380 .enum_dv_timings = adv76xx_enum_dv_timings,
2381 };
2382
2383 static const struct v4l2_subdev_ops adv76xx_ops = {
2384 .core = &adv76xx_core_ops,
2385 .video = &adv76xx_video_ops,
2386 .pad = &adv76xx_pad_ops,
2387 };
2388
2389 /* -------------------------- custom ctrls ---------------------------------- */
2390
2391 static const struct v4l2_ctrl_config adv7604_ctrl_analog_sampling_phase = {
2392 .ops = &adv76xx_ctrl_ops,
2393 .id = V4L2_CID_ADV_RX_ANALOG_SAMPLING_PHASE,
2394 .name = "Analog Sampling Phase",
2395 .type = V4L2_CTRL_TYPE_INTEGER,
2396 .min = 0,
2397 .max = 0x1f,
2398 .step = 1,
2399 .def = 0,
2400 };
2401
2402 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color_manual = {
2403 .ops = &adv76xx_ctrl_ops,
2404 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR_MANUAL,
2405 .name = "Free Running Color, Manual",
2406 .type = V4L2_CTRL_TYPE_BOOLEAN,
2407 .min = false,
2408 .max = true,
2409 .step = 1,
2410 .def = false,
2411 };
2412
2413 static const struct v4l2_ctrl_config adv76xx_ctrl_free_run_color = {
2414 .ops = &adv76xx_ctrl_ops,
2415 .id = V4L2_CID_ADV_RX_FREE_RUN_COLOR,
2416 .name = "Free Running Color",
2417 .type = V4L2_CTRL_TYPE_INTEGER,
2418 .min = 0x0,
2419 .max = 0xffffff,
2420 .step = 0x1,
2421 .def = 0x0,
2422 };
2423
2424 /* ----------------------------------------------------------------------- */
2425
2426 static int adv76xx_core_init(struct v4l2_subdev *sd)
2427 {
2428 struct adv76xx_state *state = to_state(sd);
2429 const struct adv76xx_chip_info *info = state->info;
2430 struct adv76xx_platform_data *pdata = &state->pdata;
2431
2432 hdmi_write(sd, 0x48,
2433 (pdata->disable_pwrdnb ? 0x80 : 0) |
2434 (pdata->disable_cable_det_rst ? 0x40 : 0));
2435
2436 disable_input(sd);
2437
2438 if (pdata->default_input >= 0 &&
2439 pdata->default_input < state->source_pad) {
2440 state->selected_input = pdata->default_input;
2441 select_input(sd);
2442 enable_input(sd);
2443 }
2444
2445 /* power */
2446 io_write(sd, 0x0c, 0x42); /* Power up part and power down VDP */
2447 io_write(sd, 0x0b, 0x44); /* Power down ESDP block */
2448 cp_write(sd, 0xcf, 0x01); /* Power down macrovision */
2449
2450 /* video format */
2451 io_write_clr_set(sd, 0x02, 0x0f,
2452 pdata->alt_gamma << 3 |
2453 pdata->op_656_range << 2 |
2454 pdata->alt_data_sat << 0);
2455 io_write_clr_set(sd, 0x05, 0x0e, pdata->blank_data << 3 |
2456 pdata->insert_av_codes << 2 |
2457 pdata->replicate_av_codes << 1);
2458 adv76xx_setup_format(state);
2459
2460 cp_write(sd, 0x69, 0x30); /* Enable CP CSC */
2461
2462 /* VS, HS polarities */
2463 io_write(sd, 0x06, 0xa0 | pdata->inv_vs_pol << 2 |
2464 pdata->inv_hs_pol << 1 | pdata->inv_llc_pol);
2465
2466 /* Adjust drive strength */
2467 io_write(sd, 0x14, 0x40 | pdata->dr_str_data << 4 |
2468 pdata->dr_str_clk << 2 |
2469 pdata->dr_str_sync);
2470
2471 cp_write(sd, 0xba, (pdata->hdmi_free_run_mode << 1) | 0x01); /* HDMI free run */
2472 cp_write(sd, 0xf3, 0xdc); /* Low threshold to enter/exit free run mode */
2473 cp_write(sd, 0xf9, 0x23); /* STDI ch. 1 - LCVS change threshold -
2474 ADI recommended setting [REF_01, c. 2.3.3] */
2475 cp_write(sd, 0x45, 0x23); /* STDI ch. 2 - LCVS change threshold -
2476 ADI recommended setting [REF_01, c. 2.3.3] */
2477 cp_write(sd, 0xc9, 0x2d); /* use prim_mode and vid_std as free run resolution
2478 for digital formats */
2479
2480 /* HDMI audio */
2481 hdmi_write_clr_set(sd, 0x15, 0x03, 0x03); /* Mute on FIFO over-/underflow [REF_01, c. 1.2.18] */
2482 hdmi_write_clr_set(sd, 0x1a, 0x0e, 0x08); /* Wait 1 s before unmute */
2483 hdmi_write_clr_set(sd, 0x68, 0x06, 0x06); /* FIFO reset on over-/underflow [REF_01, c. 1.2.19] */
2484
2485 /* TODO from platform data */
2486 afe_write(sd, 0xb5, 0x01); /* Setting MCLK to 256Fs */
2487
2488 if (adv76xx_has_afe(state)) {
2489 afe_write(sd, 0x02, pdata->ain_sel); /* Select analog input muxing mode */
2490 io_write_clr_set(sd, 0x30, 1 << 4, pdata->output_bus_lsb_to_msb << 4);
2491 }
2492
2493 /* interrupts */
2494 io_write(sd, 0x40, 0xc0 | pdata->int1_config); /* Configure INT1 */
2495 io_write(sd, 0x46, 0x98); /* Enable SSPD, STDI and CP unlocked interrupts */
2496 io_write(sd, 0x6e, info->fmt_change_digital_mask); /* Enable V_LOCKED and DE_REGEN_LCK interrupts */
2497 io_write(sd, 0x73, info->cable_det_mask); /* Enable cable detection (+5v) interrupts */
2498 info->setup_irqs(sd);
2499
2500 return v4l2_ctrl_handler_setup(sd->ctrl_handler);
2501 }
2502
2503 static void adv7604_setup_irqs(struct v4l2_subdev *sd)
2504 {
2505 io_write(sd, 0x41, 0xd7); /* STDI irq for any change, disable INT2 */
2506 }
2507
2508 static void adv7611_setup_irqs(struct v4l2_subdev *sd)
2509 {
2510 io_write(sd, 0x41, 0xd0); /* STDI irq for any change, disable INT2 */
2511 }
2512
2513 static void adv76xx_unregister_clients(struct adv76xx_state *state)
2514 {
2515 unsigned int i;
2516
2517 for (i = 1; i < ARRAY_SIZE(state->i2c_clients); ++i) {
2518 if (state->i2c_clients[i])
2519 i2c_unregister_device(state->i2c_clients[i]);
2520 }
2521 }
2522
2523 static struct i2c_client *adv76xx_dummy_client(struct v4l2_subdev *sd,
2524 u8 addr, u8 io_reg)
2525 {
2526 struct i2c_client *client = v4l2_get_subdevdata(sd);
2527
2528 if (addr)
2529 io_write(sd, io_reg, addr << 1);
2530 return i2c_new_dummy(client->adapter, io_read(sd, io_reg) >> 1);
2531 }
2532
2533 static const struct adv76xx_reg_seq adv7604_recommended_settings_afe[] = {
2534 /* reset ADI recommended settings for HDMI: */
2535 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2536 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2537 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x04 }, /* HDMI filter optimization */
2538 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x00 }, /* DDC bus active pull-up control */
2539 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x74 }, /* TMDS PLL optimization */
2540 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2541 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0x74 }, /* TMDS PLL optimization */
2542 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x63 }, /* TMDS PLL optimization */
2543 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2544 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2545 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x88 }, /* equaliser */
2546 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2e }, /* equaliser */
2547 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x00 }, /* enable automatic EQ changing */
2548
2549 /* set ADI recommended settings for digitizer */
2550 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2551 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0x7b }, /* ADC noise shaping filter controls */
2552 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x1f }, /* CP core gain controls */
2553 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x3e), 0x04 }, /* CP core pre-gain control */
2554 { ADV76XX_REG(ADV76XX_PAGE_CP, 0xc3), 0x39 }, /* CP coast control. Graphics mode */
2555 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x40), 0x5c }, /* CP core pre-gain control. Graphics mode */
2556
2557 { ADV76XX_REG_SEQ_TERM, 0 },
2558 };
2559
2560 static const struct adv76xx_reg_seq adv7604_recommended_settings_hdmi[] = {
2561 /* set ADI recommended settings for HDMI: */
2562 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 4. */
2563 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x0d), 0x84 }, /* HDMI filter optimization */
2564 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3d), 0x10 }, /* DDC bus active pull-up control */
2565 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x3e), 0x39 }, /* TMDS PLL optimization */
2566 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4e), 0x3b }, /* TMDS PLL optimization */
2567 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xb6 }, /* TMDS PLL optimization */
2568 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x03 }, /* TMDS PLL optimization */
2569 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x18 }, /* equaliser */
2570 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x34 }, /* equaliser */
2571 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x93), 0x8b }, /* equaliser */
2572 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x94), 0x2d }, /* equaliser */
2573 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x96), 0x01 }, /* enable automatic EQ changing */
2574
2575 /* reset ADI recommended settings for digitizer */
2576 /* "ADV7604 Register Settings Recommendations (rev. 2.5, June 2010)" p. 17. */
2577 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x12), 0xfb }, /* ADC noise shaping filter controls */
2578 { ADV76XX_REG(ADV76XX_PAGE_AFE, 0x0c), 0x0d }, /* CP core gain controls */
2579
2580 { ADV76XX_REG_SEQ_TERM, 0 },
2581 };
2582
2583 static const struct adv76xx_reg_seq adv7611_recommended_settings_hdmi[] = {
2584 /* ADV7611 Register Settings Recommendations Rev 1.5, May 2014 */
2585 { ADV76XX_REG(ADV76XX_PAGE_CP, 0x6c), 0x00 },
2586 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x9b), 0x03 },
2587 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x6f), 0x08 },
2588 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x85), 0x1f },
2589 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x87), 0x70 },
2590 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x57), 0xda },
2591 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x58), 0x01 },
2592 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x03), 0x98 },
2593 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x4c), 0x44 },
2594 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8d), 0x04 },
2595 { ADV76XX_REG(ADV76XX_PAGE_HDMI, 0x8e), 0x1e },
2596
2597 { ADV76XX_REG_SEQ_TERM, 0 },
2598 };
2599
2600 static const struct adv76xx_chip_info adv76xx_chip_info[] = {
2601 [ADV7604] = {
2602 .type = ADV7604,
2603 .has_afe = true,
2604 .max_port = ADV7604_PAD_VGA_COMP,
2605 .num_dv_ports = 4,
2606 .edid_enable_reg = 0x77,
2607 .edid_status_reg = 0x7d,
2608 .lcf_reg = 0xb3,
2609 .tdms_lock_mask = 0xe0,
2610 .cable_det_mask = 0x1e,
2611 .fmt_change_digital_mask = 0xc1,
2612 .cp_csc = 0xfc,
2613 .formats = adv7604_formats,
2614 .nformats = ARRAY_SIZE(adv7604_formats),
2615 .set_termination = adv7604_set_termination,
2616 .setup_irqs = adv7604_setup_irqs,
2617 .read_hdmi_pixelclock = adv7604_read_hdmi_pixelclock,
2618 .read_cable_det = adv7604_read_cable_det,
2619 .recommended_settings = {
2620 [0] = adv7604_recommended_settings_afe,
2621 [1] = adv7604_recommended_settings_hdmi,
2622 },
2623 .num_recommended_settings = {
2624 [0] = ARRAY_SIZE(adv7604_recommended_settings_afe),
2625 [1] = ARRAY_SIZE(adv7604_recommended_settings_hdmi),
2626 },
2627 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV7604_PAGE_AVLINK) |
2628 BIT(ADV76XX_PAGE_CEC) | BIT(ADV76XX_PAGE_INFOFRAME) |
2629 BIT(ADV7604_PAGE_ESDP) | BIT(ADV7604_PAGE_DPP) |
2630 BIT(ADV76XX_PAGE_AFE) | BIT(ADV76XX_PAGE_REP) |
2631 BIT(ADV76XX_PAGE_EDID) | BIT(ADV76XX_PAGE_HDMI) |
2632 BIT(ADV76XX_PAGE_TEST) | BIT(ADV76XX_PAGE_CP) |
2633 BIT(ADV7604_PAGE_VDP),
2634 .linewidth_mask = 0xfff,
2635 .field0_height_mask = 0xfff,
2636 .field1_height_mask = 0xfff,
2637 .hfrontporch_mask = 0x3ff,
2638 .hsync_mask = 0x3ff,
2639 .hbackporch_mask = 0x3ff,
2640 .field0_vfrontporch_mask = 0x1fff,
2641 .field0_vsync_mask = 0x1fff,
2642 .field0_vbackporch_mask = 0x1fff,
2643 .field1_vfrontporch_mask = 0x1fff,
2644 .field1_vsync_mask = 0x1fff,
2645 .field1_vbackporch_mask = 0x1fff,
2646 },
2647 [ADV7611] = {
2648 .type = ADV7611,
2649 .has_afe = false,
2650 .max_port = ADV76XX_PAD_HDMI_PORT_A,
2651 .num_dv_ports = 1,
2652 .edid_enable_reg = 0x74,
2653 .edid_status_reg = 0x76,
2654 .lcf_reg = 0xa3,
2655 .tdms_lock_mask = 0x43,
2656 .cable_det_mask = 0x01,
2657 .fmt_change_digital_mask = 0x03,
2658 .cp_csc = 0xf4,
2659 .formats = adv7611_formats,
2660 .nformats = ARRAY_SIZE(adv7611_formats),
2661 .set_termination = adv7611_set_termination,
2662 .setup_irqs = adv7611_setup_irqs,
2663 .read_hdmi_pixelclock = adv7611_read_hdmi_pixelclock,
2664 .read_cable_det = adv7611_read_cable_det,
2665 .recommended_settings = {
2666 [1] = adv7611_recommended_settings_hdmi,
2667 },
2668 .num_recommended_settings = {
2669 [1] = ARRAY_SIZE(adv7611_recommended_settings_hdmi),
2670 },
2671 .page_mask = BIT(ADV76XX_PAGE_IO) | BIT(ADV76XX_PAGE_CEC) |
2672 BIT(ADV76XX_PAGE_INFOFRAME) | BIT(ADV76XX_PAGE_AFE) |
2673 BIT(ADV76XX_PAGE_REP) | BIT(ADV76XX_PAGE_EDID) |
2674 BIT(ADV76XX_PAGE_HDMI) | BIT(ADV76XX_PAGE_CP),
2675 .linewidth_mask = 0x1fff,
2676 .field0_height_mask = 0x1fff,
2677 .field1_height_mask = 0x1fff,
2678 .hfrontporch_mask = 0x1fff,
2679 .hsync_mask = 0x1fff,
2680 .hbackporch_mask = 0x1fff,
2681 .field0_vfrontporch_mask = 0x3fff,
2682 .field0_vsync_mask = 0x3fff,
2683 .field0_vbackporch_mask = 0x3fff,
2684 .field1_vfrontporch_mask = 0x3fff,
2685 .field1_vsync_mask = 0x3fff,
2686 .field1_vbackporch_mask = 0x3fff,
2687 },
2688 };
2689
2690 static const struct i2c_device_id adv76xx_i2c_id[] = {
2691 { "adv7604", (kernel_ulong_t)&adv76xx_chip_info[ADV7604] },
2692 { "adv7611", (kernel_ulong_t)&adv76xx_chip_info[ADV7611] },
2693 { }
2694 };
2695 MODULE_DEVICE_TABLE(i2c, adv76xx_i2c_id);
2696
2697 static const struct of_device_id adv76xx_of_id[] __maybe_unused = {
2698 { .compatible = "adi,adv7611", .data = &adv76xx_chip_info[ADV7611] },
2699 { }
2700 };
2701 MODULE_DEVICE_TABLE(of, adv76xx_of_id);
2702
2703 static int adv76xx_parse_dt(struct adv76xx_state *state)
2704 {
2705 struct v4l2_of_endpoint bus_cfg;
2706 struct device_node *endpoint;
2707 struct device_node *np;
2708 unsigned int flags;
2709
2710 np = state->i2c_clients[ADV76XX_PAGE_IO]->dev.of_node;
2711
2712 /* Parse the endpoint. */
2713 endpoint = of_graph_get_next_endpoint(np, NULL);
2714 if (!endpoint)
2715 return -EINVAL;
2716
2717 v4l2_of_parse_endpoint(endpoint, &bus_cfg);
2718 of_node_put(endpoint);
2719
2720 flags = bus_cfg.bus.parallel.flags;
2721
2722 if (flags & V4L2_MBUS_HSYNC_ACTIVE_HIGH)
2723 state->pdata.inv_hs_pol = 1;
2724
2725 if (flags & V4L2_MBUS_VSYNC_ACTIVE_HIGH)
2726 state->pdata.inv_vs_pol = 1;
2727
2728 if (flags & V4L2_MBUS_PCLK_SAMPLE_RISING)
2729 state->pdata.inv_llc_pol = 1;
2730
2731 if (bus_cfg.bus_type == V4L2_MBUS_BT656) {
2732 state->pdata.insert_av_codes = 1;
2733 state->pdata.op_656_range = 1;
2734 }
2735
2736 /* Disable the interrupt for now as no DT-based board uses it. */
2737 state->pdata.int1_config = ADV76XX_INT1_CONFIG_DISABLED;
2738
2739 /* Use the default I2C addresses. */
2740 state->pdata.i2c_addresses[ADV7604_PAGE_AVLINK] = 0x42;
2741 state->pdata.i2c_addresses[ADV76XX_PAGE_CEC] = 0x40;
2742 state->pdata.i2c_addresses[ADV76XX_PAGE_INFOFRAME] = 0x3e;
2743 state->pdata.i2c_addresses[ADV7604_PAGE_ESDP] = 0x38;
2744 state->pdata.i2c_addresses[ADV7604_PAGE_DPP] = 0x3c;
2745 state->pdata.i2c_addresses[ADV76XX_PAGE_AFE] = 0x26;
2746 state->pdata.i2c_addresses[ADV76XX_PAGE_REP] = 0x32;
2747 state->pdata.i2c_addresses[ADV76XX_PAGE_EDID] = 0x36;
2748 state->pdata.i2c_addresses[ADV76XX_PAGE_HDMI] = 0x34;
2749 state->pdata.i2c_addresses[ADV76XX_PAGE_TEST] = 0x30;
2750 state->pdata.i2c_addresses[ADV76XX_PAGE_CP] = 0x22;
2751 state->pdata.i2c_addresses[ADV7604_PAGE_VDP] = 0x24;
2752
2753 /* Hardcode the remaining platform data fields. */
2754 state->pdata.disable_pwrdnb = 0;
2755 state->pdata.disable_cable_det_rst = 0;
2756 state->pdata.default_input = -1;
2757 state->pdata.blank_data = 1;
2758 state->pdata.alt_data_sat = 1;
2759 state->pdata.op_format_mode_sel = ADV7604_OP_FORMAT_MODE0;
2760 state->pdata.bus_order = ADV7604_BUS_ORDER_RGB;
2761
2762 return 0;
2763 }
2764
2765 static int adv76xx_probe(struct i2c_client *client,
2766 const struct i2c_device_id *id)
2767 {
2768 static const struct v4l2_dv_timings cea640x480 =
2769 V4L2_DV_BT_CEA_640X480P59_94;
2770 struct adv76xx_state *state;
2771 struct v4l2_ctrl_handler *hdl;
2772 struct v4l2_subdev *sd;
2773 unsigned int i;
2774 u16 val;
2775 int err;
2776
2777 /* Check if the adapter supports the needed features */
2778 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA))
2779 return -EIO;
2780 v4l_dbg(1, debug, client, "detecting adv76xx client on address 0x%x\n",
2781 client->addr << 1);
2782
2783 state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL);
2784 if (!state) {
2785 v4l_err(client, "Could not allocate adv76xx_state memory!\n");
2786 return -ENOMEM;
2787 }
2788
2789 state->i2c_clients[ADV76XX_PAGE_IO] = client;
2790
2791 /* initialize variables */
2792 state->restart_stdi_once = true;
2793 state->selected_input = ~0;
2794
2795 if (IS_ENABLED(CONFIG_OF) && client->dev.of_node) {
2796 const struct of_device_id *oid;
2797
2798 oid = of_match_node(adv76xx_of_id, client->dev.of_node);
2799 state->info = oid->data;
2800
2801 err = adv76xx_parse_dt(state);
2802 if (err < 0) {
2803 v4l_err(client, "DT parsing error\n");
2804 return err;
2805 }
2806 } else if (client->dev.platform_data) {
2807 struct adv76xx_platform_data *pdata = client->dev.platform_data;
2808
2809 state->info = (const struct adv76xx_chip_info *)id->driver_data;
2810 state->pdata = *pdata;
2811 } else {
2812 v4l_err(client, "No platform data!\n");
2813 return -ENODEV;
2814 }
2815
2816 /* Request GPIOs. */
2817 for (i = 0; i < state->info->num_dv_ports; ++i) {
2818 state->hpd_gpio[i] =
2819 devm_gpiod_get_index_optional(&client->dev, "hpd", i,
2820 GPIOD_OUT_LOW);
2821 if (IS_ERR(state->hpd_gpio[i]))
2822 return PTR_ERR(state->hpd_gpio[i]);
2823
2824 if (state->hpd_gpio[i])
2825 v4l_info(client, "Handling HPD %u GPIO\n", i);
2826 }
2827
2828 state->timings = cea640x480;
2829 state->format = adv76xx_format_info(state, MEDIA_BUS_FMT_YUYV8_2X8);
2830
2831 sd = &state->sd;
2832 v4l2_i2c_subdev_init(sd, client, &adv76xx_ops);
2833 snprintf(sd->name, sizeof(sd->name), "%s %d-%04x",
2834 id->name, i2c_adapter_id(client->adapter),
2835 client->addr);
2836 sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
2837
2838 /*
2839 * Verify that the chip is present. On ADV7604 the RD_INFO register only
2840 * identifies the revision, while on ADV7611 it identifies the model as
2841 * well. Use the HDMI slave address on ADV7604 and RD_INFO on ADV7611.
2842 */
2843 if (state->info->type == ADV7604) {
2844 val = adv_smbus_read_byte_data_check(client, 0xfb, false);
2845 if (val != 0x68) {
2846 v4l2_info(sd, "not an adv7604 on address 0x%x\n",
2847 client->addr << 1);
2848 return -ENODEV;
2849 }
2850 } else {
2851 val = (adv_smbus_read_byte_data_check(client, 0xea, false) << 8)
2852 | (adv_smbus_read_byte_data_check(client, 0xeb, false) << 0);
2853 if (val != 0x2051) {
2854 v4l2_info(sd, "not an adv7611 on address 0x%x\n",
2855 client->addr << 1);
2856 return -ENODEV;
2857 }
2858 }
2859
2860 /* control handlers */
2861 hdl = &state->hdl;
2862 v4l2_ctrl_handler_init(hdl, adv76xx_has_afe(state) ? 9 : 8);
2863
2864 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2865 V4L2_CID_BRIGHTNESS, -128, 127, 1, 0);
2866 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2867 V4L2_CID_CONTRAST, 0, 255, 1, 128);
2868 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2869 V4L2_CID_SATURATION, 0, 255, 1, 128);
2870 v4l2_ctrl_new_std(hdl, &adv76xx_ctrl_ops,
2871 V4L2_CID_HUE, 0, 128, 1, 0);
2872
2873 /* private controls */
2874 state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(hdl, NULL,
2875 V4L2_CID_DV_RX_POWER_PRESENT, 0,
2876 (1 << state->info->num_dv_ports) - 1, 0, 0);
2877 state->rgb_quantization_range_ctrl =
2878 v4l2_ctrl_new_std_menu(hdl, &adv76xx_ctrl_ops,
2879 V4L2_CID_DV_RX_RGB_RANGE, V4L2_DV_RGB_RANGE_FULL,
2880 0, V4L2_DV_RGB_RANGE_AUTO);
2881
2882 /* custom controls */
2883 if (adv76xx_has_afe(state))
2884 state->analog_sampling_phase_ctrl =
2885 v4l2_ctrl_new_custom(hdl, &adv7604_ctrl_analog_sampling_phase, NULL);
2886 state->free_run_color_manual_ctrl =
2887 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color_manual, NULL);
2888 state->free_run_color_ctrl =
2889 v4l2_ctrl_new_custom(hdl, &adv76xx_ctrl_free_run_color, NULL);
2890
2891 sd->ctrl_handler = hdl;
2892 if (hdl->error) {
2893 err = hdl->error;
2894 goto err_hdl;
2895 }
2896 state->detect_tx_5v_ctrl->is_private = true;
2897 state->rgb_quantization_range_ctrl->is_private = true;
2898 if (adv76xx_has_afe(state))
2899 state->analog_sampling_phase_ctrl->is_private = true;
2900 state->free_run_color_manual_ctrl->is_private = true;
2901 state->free_run_color_ctrl->is_private = true;
2902
2903 if (adv76xx_s_detect_tx_5v_ctrl(sd)) {
2904 err = -ENODEV;
2905 goto err_hdl;
2906 }
2907
2908 for (i = 1; i < ADV76XX_PAGE_MAX; ++i) {
2909 if (!(BIT(i) & state->info->page_mask))
2910 continue;
2911
2912 state->i2c_clients[i] =
2913 adv76xx_dummy_client(sd, state->pdata.i2c_addresses[i],
2914 0xf2 + i);
2915 if (state->i2c_clients[i] == NULL) {
2916 err = -ENOMEM;
2917 v4l2_err(sd, "failed to create i2c client %u\n", i);
2918 goto err_i2c;
2919 }
2920 }
2921
2922 /* work queues */
2923 state->work_queues = create_singlethread_workqueue(client->name);
2924 if (!state->work_queues) {
2925 v4l2_err(sd, "Could not create work queue\n");
2926 err = -ENOMEM;
2927 goto err_i2c;
2928 }
2929
2930 INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug,
2931 adv76xx_delayed_work_enable_hotplug);
2932
2933 state->source_pad = state->info->num_dv_ports
2934 + (state->info->has_afe ? 2 : 0);
2935 for (i = 0; i < state->source_pad; ++i)
2936 state->pads[i].flags = MEDIA_PAD_FL_SINK;
2937 state->pads[state->source_pad].flags = MEDIA_PAD_FL_SOURCE;
2938
2939 err = media_entity_init(&sd->entity, state->source_pad + 1,
2940 state->pads, 0);
2941 if (err)
2942 goto err_work_queues;
2943
2944 err = adv76xx_core_init(sd);
2945 if (err)
2946 goto err_entity;
2947 v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name,
2948 client->addr << 1, client->adapter->name);
2949
2950 err = v4l2_async_register_subdev(sd);
2951 if (err)
2952 goto err_entity;
2953
2954 return 0;
2955
2956 err_entity:
2957 media_entity_cleanup(&sd->entity);
2958 err_work_queues:
2959 cancel_delayed_work(&state->delayed_work_enable_hotplug);
2960 destroy_workqueue(state->work_queues);
2961 err_i2c:
2962 adv76xx_unregister_clients(state);
2963 err_hdl:
2964 v4l2_ctrl_handler_free(hdl);
2965 return err;
2966 }
2967
2968 /* ----------------------------------------------------------------------- */
2969
2970 static int adv76xx_remove(struct i2c_client *client)
2971 {
2972 struct v4l2_subdev *sd = i2c_get_clientdata(client);
2973 struct adv76xx_state *state = to_state(sd);
2974
2975 cancel_delayed_work(&state->delayed_work_enable_hotplug);
2976 destroy_workqueue(state->work_queues);
2977 v4l2_async_unregister_subdev(sd);
2978 media_entity_cleanup(&sd->entity);
2979 adv76xx_unregister_clients(to_state(sd));
2980 v4l2_ctrl_handler_free(sd->ctrl_handler);
2981 return 0;
2982 }
2983
2984 /* ----------------------------------------------------------------------- */
2985
2986 static struct i2c_driver adv76xx_driver = {
2987 .driver = {
2988 .owner = THIS_MODULE,
2989 .name = "adv7604",
2990 .of_match_table = of_match_ptr(adv76xx_of_id),
2991 },
2992 .probe = adv76xx_probe,
2993 .remove = adv76xx_remove,
2994 .id_table = adv76xx_i2c_id,
2995 };
2996
2997 module_i2c_driver(adv76xx_driver);
This page took 0.10276 seconds and 5 git commands to generate.