Merge tag 'boards-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / drivers / media / i2c / ov7670.c
1 /*
2 * A V4L2 driver for OmniVision OV7670 cameras.
3 *
4 * Copyright 2006 One Laptop Per Child Association, Inc. Written
5 * by Jonathan Corbet with substantial inspiration from Mark
6 * McClelland's ovcamchip code.
7 *
8 * Copyright 2006-7 Jonathan Corbet <corbet@lwn.net>
9 *
10 * This file may be distributed under the terms of the GNU General
11 * Public License, version 2.
12 */
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/i2c.h>
17 #include <linux/delay.h>
18 #include <linux/videodev2.h>
19 #include <media/v4l2-device.h>
20 #include <media/v4l2-chip-ident.h>
21 #include <media/v4l2-ctrls.h>
22 #include <media/v4l2-mediabus.h>
23 #include <media/ov7670.h>
24
25 MODULE_AUTHOR("Jonathan Corbet <corbet@lwn.net>");
26 MODULE_DESCRIPTION("A low-level driver for OmniVision ov7670 sensors");
27 MODULE_LICENSE("GPL");
28
29 static bool debug;
30 module_param(debug, bool, 0644);
31 MODULE_PARM_DESC(debug, "Debug level (0-1)");
32
33 /*
34 * Basic window sizes. These probably belong somewhere more globally
35 * useful.
36 */
37 #define VGA_WIDTH 640
38 #define VGA_HEIGHT 480
39 #define QVGA_WIDTH 320
40 #define QVGA_HEIGHT 240
41 #define CIF_WIDTH 352
42 #define CIF_HEIGHT 288
43 #define QCIF_WIDTH 176
44 #define QCIF_HEIGHT 144
45
46 /*
47 * The 7670 sits on i2c with ID 0x42
48 */
49 #define OV7670_I2C_ADDR 0x42
50
51 #define PLL_FACTOR 4
52
53 /* Registers */
54 #define REG_GAIN 0x00 /* Gain lower 8 bits (rest in vref) */
55 #define REG_BLUE 0x01 /* blue gain */
56 #define REG_RED 0x02 /* red gain */
57 #define REG_VREF 0x03 /* Pieces of GAIN, VSTART, VSTOP */
58 #define REG_COM1 0x04 /* Control 1 */
59 #define COM1_CCIR656 0x40 /* CCIR656 enable */
60 #define REG_BAVE 0x05 /* U/B Average level */
61 #define REG_GbAVE 0x06 /* Y/Gb Average level */
62 #define REG_AECHH 0x07 /* AEC MS 5 bits */
63 #define REG_RAVE 0x08 /* V/R Average level */
64 #define REG_COM2 0x09 /* Control 2 */
65 #define COM2_SSLEEP 0x10 /* Soft sleep mode */
66 #define REG_PID 0x0a /* Product ID MSB */
67 #define REG_VER 0x0b /* Product ID LSB */
68 #define REG_COM3 0x0c /* Control 3 */
69 #define COM3_SWAP 0x40 /* Byte swap */
70 #define COM3_SCALEEN 0x08 /* Enable scaling */
71 #define COM3_DCWEN 0x04 /* Enable downsamp/crop/window */
72 #define REG_COM4 0x0d /* Control 4 */
73 #define REG_COM5 0x0e /* All "reserved" */
74 #define REG_COM6 0x0f /* Control 6 */
75 #define REG_AECH 0x10 /* More bits of AEC value */
76 #define REG_CLKRC 0x11 /* Clocl control */
77 #define CLK_EXT 0x40 /* Use external clock directly */
78 #define CLK_SCALE 0x3f /* Mask for internal clock scale */
79 #define REG_COM7 0x12 /* Control 7 */
80 #define COM7_RESET 0x80 /* Register reset */
81 #define COM7_FMT_MASK 0x38
82 #define COM7_FMT_VGA 0x00
83 #define COM7_FMT_CIF 0x20 /* CIF format */
84 #define COM7_FMT_QVGA 0x10 /* QVGA format */
85 #define COM7_FMT_QCIF 0x08 /* QCIF format */
86 #define COM7_RGB 0x04 /* bits 0 and 2 - RGB format */
87 #define COM7_YUV 0x00 /* YUV */
88 #define COM7_BAYER 0x01 /* Bayer format */
89 #define COM7_PBAYER 0x05 /* "Processed bayer" */
90 #define REG_COM8 0x13 /* Control 8 */
91 #define COM8_FASTAEC 0x80 /* Enable fast AGC/AEC */
92 #define COM8_AECSTEP 0x40 /* Unlimited AEC step size */
93 #define COM8_BFILT 0x20 /* Band filter enable */
94 #define COM8_AGC 0x04 /* Auto gain enable */
95 #define COM8_AWB 0x02 /* White balance enable */
96 #define COM8_AEC 0x01 /* Auto exposure enable */
97 #define REG_COM9 0x14 /* Control 9 - gain ceiling */
98 #define REG_COM10 0x15 /* Control 10 */
99 #define COM10_HSYNC 0x40 /* HSYNC instead of HREF */
100 #define COM10_PCLK_HB 0x20 /* Suppress PCLK on horiz blank */
101 #define COM10_HREF_REV 0x08 /* Reverse HREF */
102 #define COM10_VS_LEAD 0x04 /* VSYNC on clock leading edge */
103 #define COM10_VS_NEG 0x02 /* VSYNC negative */
104 #define COM10_HS_NEG 0x01 /* HSYNC negative */
105 #define REG_HSTART 0x17 /* Horiz start high bits */
106 #define REG_HSTOP 0x18 /* Horiz stop high bits */
107 #define REG_VSTART 0x19 /* Vert start high bits */
108 #define REG_VSTOP 0x1a /* Vert stop high bits */
109 #define REG_PSHFT 0x1b /* Pixel delay after HREF */
110 #define REG_MIDH 0x1c /* Manuf. ID high */
111 #define REG_MIDL 0x1d /* Manuf. ID low */
112 #define REG_MVFP 0x1e /* Mirror / vflip */
113 #define MVFP_MIRROR 0x20 /* Mirror image */
114 #define MVFP_FLIP 0x10 /* Vertical flip */
115
116 #define REG_AEW 0x24 /* AGC upper limit */
117 #define REG_AEB 0x25 /* AGC lower limit */
118 #define REG_VPT 0x26 /* AGC/AEC fast mode op region */
119 #define REG_HSYST 0x30 /* HSYNC rising edge delay */
120 #define REG_HSYEN 0x31 /* HSYNC falling edge delay */
121 #define REG_HREF 0x32 /* HREF pieces */
122 #define REG_TSLB 0x3a /* lots of stuff */
123 #define TSLB_YLAST 0x04 /* UYVY or VYUY - see com13 */
124 #define REG_COM11 0x3b /* Control 11 */
125 #define COM11_NIGHT 0x80 /* NIght mode enable */
126 #define COM11_NMFR 0x60 /* Two bit NM frame rate */
127 #define COM11_HZAUTO 0x10 /* Auto detect 50/60 Hz */
128 #define COM11_50HZ 0x08 /* Manual 50Hz select */
129 #define COM11_EXP 0x02
130 #define REG_COM12 0x3c /* Control 12 */
131 #define COM12_HREF 0x80 /* HREF always */
132 #define REG_COM13 0x3d /* Control 13 */
133 #define COM13_GAMMA 0x80 /* Gamma enable */
134 #define COM13_UVSAT 0x40 /* UV saturation auto adjustment */
135 #define COM13_UVSWAP 0x01 /* V before U - w/TSLB */
136 #define REG_COM14 0x3e /* Control 14 */
137 #define COM14_DCWEN 0x10 /* DCW/PCLK-scale enable */
138 #define REG_EDGE 0x3f /* Edge enhancement factor */
139 #define REG_COM15 0x40 /* Control 15 */
140 #define COM15_R10F0 0x00 /* Data range 10 to F0 */
141 #define COM15_R01FE 0x80 /* 01 to FE */
142 #define COM15_R00FF 0xc0 /* 00 to FF */
143 #define COM15_RGB565 0x10 /* RGB565 output */
144 #define COM15_RGB555 0x30 /* RGB555 output */
145 #define REG_COM16 0x41 /* Control 16 */
146 #define COM16_AWBGAIN 0x08 /* AWB gain enable */
147 #define REG_COM17 0x42 /* Control 17 */
148 #define COM17_AECWIN 0xc0 /* AEC window - must match COM4 */
149 #define COM17_CBAR 0x08 /* DSP Color bar */
150
151 /*
152 * This matrix defines how the colors are generated, must be
153 * tweaked to adjust hue and saturation.
154 *
155 * Order: v-red, v-green, v-blue, u-red, u-green, u-blue
156 *
157 * They are nine-bit signed quantities, with the sign bit
158 * stored in 0x58. Sign for v-red is bit 0, and up from there.
159 */
160 #define REG_CMATRIX_BASE 0x4f
161 #define CMATRIX_LEN 6
162 #define REG_CMATRIX_SIGN 0x58
163
164
165 #define REG_BRIGHT 0x55 /* Brightness */
166 #define REG_CONTRAS 0x56 /* Contrast control */
167
168 #define REG_GFIX 0x69 /* Fix gain control */
169
170 #define REG_DBLV 0x6b /* PLL control an debugging */
171 #define DBLV_BYPASS 0x00 /* Bypass PLL */
172 #define DBLV_X4 0x01 /* clock x4 */
173 #define DBLV_X6 0x10 /* clock x6 */
174 #define DBLV_X8 0x11 /* clock x8 */
175
176 #define REG_REG76 0x76 /* OV's name */
177 #define R76_BLKPCOR 0x80 /* Black pixel correction enable */
178 #define R76_WHTPCOR 0x40 /* White pixel correction enable */
179
180 #define REG_RGB444 0x8c /* RGB 444 control */
181 #define R444_ENABLE 0x02 /* Turn on RGB444, overrides 5x5 */
182 #define R444_RGBX 0x01 /* Empty nibble at end */
183
184 #define REG_HAECC1 0x9f /* Hist AEC/AGC control 1 */
185 #define REG_HAECC2 0xa0 /* Hist AEC/AGC control 2 */
186
187 #define REG_BD50MAX 0xa5 /* 50hz banding step limit */
188 #define REG_HAECC3 0xa6 /* Hist AEC/AGC control 3 */
189 #define REG_HAECC4 0xa7 /* Hist AEC/AGC control 4 */
190 #define REG_HAECC5 0xa8 /* Hist AEC/AGC control 5 */
191 #define REG_HAECC6 0xa9 /* Hist AEC/AGC control 6 */
192 #define REG_HAECC7 0xaa /* Hist AEC/AGC control 7 */
193 #define REG_BD60MAX 0xab /* 60hz banding step limit */
194
195 enum ov7670_model {
196 MODEL_OV7670 = 0,
197 MODEL_OV7675,
198 };
199
200 struct ov7670_win_size {
201 int width;
202 int height;
203 unsigned char com7_bit;
204 int hstart; /* Start/stop values for the camera. Note */
205 int hstop; /* that they do not always make complete */
206 int vstart; /* sense to humans, but evidently the sensor */
207 int vstop; /* will do the right thing... */
208 struct regval_list *regs; /* Regs to tweak */
209 };
210
211 struct ov7670_devtype {
212 /* formats supported for each model */
213 struct ov7670_win_size *win_sizes;
214 unsigned int n_win_sizes;
215 /* callbacks for frame rate control */
216 int (*set_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
217 void (*get_framerate)(struct v4l2_subdev *, struct v4l2_fract *);
218 };
219
220 /*
221 * Information we maintain about a known sensor.
222 */
223 struct ov7670_format_struct; /* coming later */
224 struct ov7670_info {
225 struct v4l2_subdev sd;
226 struct v4l2_ctrl_handler hdl;
227 struct {
228 /* gain cluster */
229 struct v4l2_ctrl *auto_gain;
230 struct v4l2_ctrl *gain;
231 };
232 struct {
233 /* exposure cluster */
234 struct v4l2_ctrl *auto_exposure;
235 struct v4l2_ctrl *exposure;
236 };
237 struct {
238 /* saturation/hue cluster */
239 struct v4l2_ctrl *saturation;
240 struct v4l2_ctrl *hue;
241 };
242 struct ov7670_format_struct *fmt; /* Current format */
243 int min_width; /* Filter out smaller sizes */
244 int min_height; /* Filter out smaller sizes */
245 int clock_speed; /* External clock speed (MHz) */
246 u8 clkrc; /* Clock divider value */
247 bool use_smbus; /* Use smbus I/O instead of I2C */
248 bool pll_bypass;
249 bool pclk_hb_disable;
250 const struct ov7670_devtype *devtype; /* Device specifics */
251 };
252
253 static inline struct ov7670_info *to_state(struct v4l2_subdev *sd)
254 {
255 return container_of(sd, struct ov7670_info, sd);
256 }
257
258 static inline struct v4l2_subdev *to_sd(struct v4l2_ctrl *ctrl)
259 {
260 return &container_of(ctrl->handler, struct ov7670_info, hdl)->sd;
261 }
262
263
264
265 /*
266 * The default register settings, as obtained from OmniVision. There
267 * is really no making sense of most of these - lots of "reserved" values
268 * and such.
269 *
270 * These settings give VGA YUYV.
271 */
272
273 struct regval_list {
274 unsigned char reg_num;
275 unsigned char value;
276 };
277
278 static struct regval_list ov7670_default_regs[] = {
279 { REG_COM7, COM7_RESET },
280 /*
281 * Clock scale: 3 = 15fps
282 * 2 = 20fps
283 * 1 = 30fps
284 */
285 { REG_CLKRC, 0x1 }, /* OV: clock scale (30 fps) */
286 { REG_TSLB, 0x04 }, /* OV */
287 { REG_COM7, 0 }, /* VGA */
288 /*
289 * Set the hardware window. These values from OV don't entirely
290 * make sense - hstop is less than hstart. But they work...
291 */
292 { REG_HSTART, 0x13 }, { REG_HSTOP, 0x01 },
293 { REG_HREF, 0xb6 }, { REG_VSTART, 0x02 },
294 { REG_VSTOP, 0x7a }, { REG_VREF, 0x0a },
295
296 { REG_COM3, 0 }, { REG_COM14, 0 },
297 /* Mystery scaling numbers */
298 { 0x70, 0x3a }, { 0x71, 0x35 },
299 { 0x72, 0x11 }, { 0x73, 0xf0 },
300 { 0xa2, 0x02 }, { REG_COM10, 0x0 },
301
302 /* Gamma curve values */
303 { 0x7a, 0x20 }, { 0x7b, 0x10 },
304 { 0x7c, 0x1e }, { 0x7d, 0x35 },
305 { 0x7e, 0x5a }, { 0x7f, 0x69 },
306 { 0x80, 0x76 }, { 0x81, 0x80 },
307 { 0x82, 0x88 }, { 0x83, 0x8f },
308 { 0x84, 0x96 }, { 0x85, 0xa3 },
309 { 0x86, 0xaf }, { 0x87, 0xc4 },
310 { 0x88, 0xd7 }, { 0x89, 0xe8 },
311
312 /* AGC and AEC parameters. Note we start by disabling those features,
313 then turn them only after tweaking the values. */
314 { REG_COM8, COM8_FASTAEC | COM8_AECSTEP | COM8_BFILT },
315 { REG_GAIN, 0 }, { REG_AECH, 0 },
316 { REG_COM4, 0x40 }, /* magic reserved bit */
317 { REG_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
318 { REG_BD50MAX, 0x05 }, { REG_BD60MAX, 0x07 },
319 { REG_AEW, 0x95 }, { REG_AEB, 0x33 },
320 { REG_VPT, 0xe3 }, { REG_HAECC1, 0x78 },
321 { REG_HAECC2, 0x68 }, { 0xa1, 0x03 }, /* magic */
322 { REG_HAECC3, 0xd8 }, { REG_HAECC4, 0xd8 },
323 { REG_HAECC5, 0xf0 }, { REG_HAECC6, 0x90 },
324 { REG_HAECC7, 0x94 },
325 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC },
326
327 /* Almost all of these are magic "reserved" values. */
328 { REG_COM5, 0x61 }, { REG_COM6, 0x4b },
329 { 0x16, 0x02 }, { REG_MVFP, 0x07 },
330 { 0x21, 0x02 }, { 0x22, 0x91 },
331 { 0x29, 0x07 }, { 0x33, 0x0b },
332 { 0x35, 0x0b }, { 0x37, 0x1d },
333 { 0x38, 0x71 }, { 0x39, 0x2a },
334 { REG_COM12, 0x78 }, { 0x4d, 0x40 },
335 { 0x4e, 0x20 }, { REG_GFIX, 0 },
336 { 0x6b, 0x4a }, { 0x74, 0x10 },
337 { 0x8d, 0x4f }, { 0x8e, 0 },
338 { 0x8f, 0 }, { 0x90, 0 },
339 { 0x91, 0 }, { 0x96, 0 },
340 { 0x9a, 0 }, { 0xb0, 0x84 },
341 { 0xb1, 0x0c }, { 0xb2, 0x0e },
342 { 0xb3, 0x82 }, { 0xb8, 0x0a },
343
344 /* More reserved magic, some of which tweaks white balance */
345 { 0x43, 0x0a }, { 0x44, 0xf0 },
346 { 0x45, 0x34 }, { 0x46, 0x58 },
347 { 0x47, 0x28 }, { 0x48, 0x3a },
348 { 0x59, 0x88 }, { 0x5a, 0x88 },
349 { 0x5b, 0x44 }, { 0x5c, 0x67 },
350 { 0x5d, 0x49 }, { 0x5e, 0x0e },
351 { 0x6c, 0x0a }, { 0x6d, 0x55 },
352 { 0x6e, 0x11 }, { 0x6f, 0x9f }, /* "9e for advance AWB" */
353 { 0x6a, 0x40 }, { REG_BLUE, 0x40 },
354 { REG_RED, 0x60 },
355 { REG_COM8, COM8_FASTAEC|COM8_AECSTEP|COM8_BFILT|COM8_AGC|COM8_AEC|COM8_AWB },
356
357 /* Matrix coefficients */
358 { 0x4f, 0x80 }, { 0x50, 0x80 },
359 { 0x51, 0 }, { 0x52, 0x22 },
360 { 0x53, 0x5e }, { 0x54, 0x80 },
361 { 0x58, 0x9e },
362
363 { REG_COM16, COM16_AWBGAIN }, { REG_EDGE, 0 },
364 { 0x75, 0x05 }, { 0x76, 0xe1 },
365 { 0x4c, 0 }, { 0x77, 0x01 },
366 { REG_COM13, 0xc3 }, { 0x4b, 0x09 },
367 { 0xc9, 0x60 }, { REG_COM16, 0x38 },
368 { 0x56, 0x40 },
369
370 { 0x34, 0x11 }, { REG_COM11, COM11_EXP|COM11_HZAUTO },
371 { 0xa4, 0x88 }, { 0x96, 0 },
372 { 0x97, 0x30 }, { 0x98, 0x20 },
373 { 0x99, 0x30 }, { 0x9a, 0x84 },
374 { 0x9b, 0x29 }, { 0x9c, 0x03 },
375 { 0x9d, 0x4c }, { 0x9e, 0x3f },
376 { 0x78, 0x04 },
377
378 /* Extra-weird stuff. Some sort of multiplexor register */
379 { 0x79, 0x01 }, { 0xc8, 0xf0 },
380 { 0x79, 0x0f }, { 0xc8, 0x00 },
381 { 0x79, 0x10 }, { 0xc8, 0x7e },
382 { 0x79, 0x0a }, { 0xc8, 0x80 },
383 { 0x79, 0x0b }, { 0xc8, 0x01 },
384 { 0x79, 0x0c }, { 0xc8, 0x0f },
385 { 0x79, 0x0d }, { 0xc8, 0x20 },
386 { 0x79, 0x09 }, { 0xc8, 0x80 },
387 { 0x79, 0x02 }, { 0xc8, 0xc0 },
388 { 0x79, 0x03 }, { 0xc8, 0x40 },
389 { 0x79, 0x05 }, { 0xc8, 0x30 },
390 { 0x79, 0x26 },
391
392 { 0xff, 0xff }, /* END MARKER */
393 };
394
395
396 /*
397 * Here we'll try to encapsulate the changes for just the output
398 * video format.
399 *
400 * RGB656 and YUV422 come from OV; RGB444 is homebrewed.
401 *
402 * IMPORTANT RULE: the first entry must be for COM7, see ov7670_s_fmt for why.
403 */
404
405
406 static struct regval_list ov7670_fmt_yuv422[] = {
407 { REG_COM7, 0x0 }, /* Selects YUV mode */
408 { REG_RGB444, 0 }, /* No RGB444 please */
409 { REG_COM1, 0 }, /* CCIR601 */
410 { REG_COM15, COM15_R00FF },
411 { REG_COM9, 0x48 }, /* 32x gain ceiling; 0x8 is reserved bit */
412 { 0x4f, 0x80 }, /* "matrix coefficient 1" */
413 { 0x50, 0x80 }, /* "matrix coefficient 2" */
414 { 0x51, 0 }, /* vb */
415 { 0x52, 0x22 }, /* "matrix coefficient 4" */
416 { 0x53, 0x5e }, /* "matrix coefficient 5" */
417 { 0x54, 0x80 }, /* "matrix coefficient 6" */
418 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
419 { 0xff, 0xff },
420 };
421
422 static struct regval_list ov7670_fmt_rgb565[] = {
423 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
424 { REG_RGB444, 0 }, /* No RGB444 please */
425 { REG_COM1, 0x0 }, /* CCIR601 */
426 { REG_COM15, COM15_RGB565 },
427 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
428 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
429 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
430 { 0x51, 0 }, /* vb */
431 { 0x52, 0x3d }, /* "matrix coefficient 4" */
432 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
433 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
434 { REG_COM13, COM13_GAMMA|COM13_UVSAT },
435 { 0xff, 0xff },
436 };
437
438 static struct regval_list ov7670_fmt_rgb444[] = {
439 { REG_COM7, COM7_RGB }, /* Selects RGB mode */
440 { REG_RGB444, R444_ENABLE }, /* Enable xxxxrrrr ggggbbbb */
441 { REG_COM1, 0x0 }, /* CCIR601 */
442 { REG_COM15, COM15_R01FE|COM15_RGB565 }, /* Data range needed? */
443 { REG_COM9, 0x38 }, /* 16x gain ceiling; 0x8 is reserved bit */
444 { 0x4f, 0xb3 }, /* "matrix coefficient 1" */
445 { 0x50, 0xb3 }, /* "matrix coefficient 2" */
446 { 0x51, 0 }, /* vb */
447 { 0x52, 0x3d }, /* "matrix coefficient 4" */
448 { 0x53, 0xa7 }, /* "matrix coefficient 5" */
449 { 0x54, 0xe4 }, /* "matrix coefficient 6" */
450 { REG_COM13, COM13_GAMMA|COM13_UVSAT|0x2 }, /* Magic rsvd bit */
451 { 0xff, 0xff },
452 };
453
454 static struct regval_list ov7670_fmt_raw[] = {
455 { REG_COM7, COM7_BAYER },
456 { REG_COM13, 0x08 }, /* No gamma, magic rsvd bit */
457 { REG_COM16, 0x3d }, /* Edge enhancement, denoise */
458 { REG_REG76, 0xe1 }, /* Pix correction, magic rsvd */
459 { 0xff, 0xff },
460 };
461
462
463
464 /*
465 * Low-level register I/O.
466 *
467 * Note that there are two versions of these. On the XO 1, the
468 * i2c controller only does SMBUS, so that's what we use. The
469 * ov7670 is not really an SMBUS device, though, so the communication
470 * is not always entirely reliable.
471 */
472 static int ov7670_read_smbus(struct v4l2_subdev *sd, unsigned char reg,
473 unsigned char *value)
474 {
475 struct i2c_client *client = v4l2_get_subdevdata(sd);
476 int ret;
477
478 ret = i2c_smbus_read_byte_data(client, reg);
479 if (ret >= 0) {
480 *value = (unsigned char)ret;
481 ret = 0;
482 }
483 return ret;
484 }
485
486
487 static int ov7670_write_smbus(struct v4l2_subdev *sd, unsigned char reg,
488 unsigned char value)
489 {
490 struct i2c_client *client = v4l2_get_subdevdata(sd);
491 int ret = i2c_smbus_write_byte_data(client, reg, value);
492
493 if (reg == REG_COM7 && (value & COM7_RESET))
494 msleep(5); /* Wait for reset to run */
495 return ret;
496 }
497
498 /*
499 * On most platforms, we'd rather do straight i2c I/O.
500 */
501 static int ov7670_read_i2c(struct v4l2_subdev *sd, unsigned char reg,
502 unsigned char *value)
503 {
504 struct i2c_client *client = v4l2_get_subdevdata(sd);
505 u8 data = reg;
506 struct i2c_msg msg;
507 int ret;
508
509 /*
510 * Send out the register address...
511 */
512 msg.addr = client->addr;
513 msg.flags = 0;
514 msg.len = 1;
515 msg.buf = &data;
516 ret = i2c_transfer(client->adapter, &msg, 1);
517 if (ret < 0) {
518 printk(KERN_ERR "Error %d on register write\n", ret);
519 return ret;
520 }
521 /*
522 * ...then read back the result.
523 */
524 msg.flags = I2C_M_RD;
525 ret = i2c_transfer(client->adapter, &msg, 1);
526 if (ret >= 0) {
527 *value = data;
528 ret = 0;
529 }
530 return ret;
531 }
532
533
534 static int ov7670_write_i2c(struct v4l2_subdev *sd, unsigned char reg,
535 unsigned char value)
536 {
537 struct i2c_client *client = v4l2_get_subdevdata(sd);
538 struct i2c_msg msg;
539 unsigned char data[2] = { reg, value };
540 int ret;
541
542 msg.addr = client->addr;
543 msg.flags = 0;
544 msg.len = 2;
545 msg.buf = data;
546 ret = i2c_transfer(client->adapter, &msg, 1);
547 if (ret > 0)
548 ret = 0;
549 if (reg == REG_COM7 && (value & COM7_RESET))
550 msleep(5); /* Wait for reset to run */
551 return ret;
552 }
553
554 static int ov7670_read(struct v4l2_subdev *sd, unsigned char reg,
555 unsigned char *value)
556 {
557 struct ov7670_info *info = to_state(sd);
558 if (info->use_smbus)
559 return ov7670_read_smbus(sd, reg, value);
560 else
561 return ov7670_read_i2c(sd, reg, value);
562 }
563
564 static int ov7670_write(struct v4l2_subdev *sd, unsigned char reg,
565 unsigned char value)
566 {
567 struct ov7670_info *info = to_state(sd);
568 if (info->use_smbus)
569 return ov7670_write_smbus(sd, reg, value);
570 else
571 return ov7670_write_i2c(sd, reg, value);
572 }
573
574 /*
575 * Write a list of register settings; ff/ff stops the process.
576 */
577 static int ov7670_write_array(struct v4l2_subdev *sd, struct regval_list *vals)
578 {
579 while (vals->reg_num != 0xff || vals->value != 0xff) {
580 int ret = ov7670_write(sd, vals->reg_num, vals->value);
581 if (ret < 0)
582 return ret;
583 vals++;
584 }
585 return 0;
586 }
587
588
589 /*
590 * Stuff that knows about the sensor.
591 */
592 static int ov7670_reset(struct v4l2_subdev *sd, u32 val)
593 {
594 ov7670_write(sd, REG_COM7, COM7_RESET);
595 msleep(1);
596 return 0;
597 }
598
599
600 static int ov7670_init(struct v4l2_subdev *sd, u32 val)
601 {
602 return ov7670_write_array(sd, ov7670_default_regs);
603 }
604
605
606
607 static int ov7670_detect(struct v4l2_subdev *sd)
608 {
609 unsigned char v;
610 int ret;
611
612 ret = ov7670_init(sd, 0);
613 if (ret < 0)
614 return ret;
615 ret = ov7670_read(sd, REG_MIDH, &v);
616 if (ret < 0)
617 return ret;
618 if (v != 0x7f) /* OV manuf. id. */
619 return -ENODEV;
620 ret = ov7670_read(sd, REG_MIDL, &v);
621 if (ret < 0)
622 return ret;
623 if (v != 0xa2)
624 return -ENODEV;
625 /*
626 * OK, we know we have an OmniVision chip...but which one?
627 */
628 ret = ov7670_read(sd, REG_PID, &v);
629 if (ret < 0)
630 return ret;
631 if (v != 0x76) /* PID + VER = 0x76 / 0x73 */
632 return -ENODEV;
633 ret = ov7670_read(sd, REG_VER, &v);
634 if (ret < 0)
635 return ret;
636 if (v != 0x73) /* PID + VER = 0x76 / 0x73 */
637 return -ENODEV;
638 return 0;
639 }
640
641
642 /*
643 * Store information about the video data format. The color matrix
644 * is deeply tied into the format, so keep the relevant values here.
645 * The magic matrix numbers come from OmniVision.
646 */
647 static struct ov7670_format_struct {
648 enum v4l2_mbus_pixelcode mbus_code;
649 enum v4l2_colorspace colorspace;
650 struct regval_list *regs;
651 int cmatrix[CMATRIX_LEN];
652 } ov7670_formats[] = {
653 {
654 .mbus_code = V4L2_MBUS_FMT_YUYV8_2X8,
655 .colorspace = V4L2_COLORSPACE_JPEG,
656 .regs = ov7670_fmt_yuv422,
657 .cmatrix = { 128, -128, 0, -34, -94, 128 },
658 },
659 {
660 .mbus_code = V4L2_MBUS_FMT_RGB444_2X8_PADHI_LE,
661 .colorspace = V4L2_COLORSPACE_SRGB,
662 .regs = ov7670_fmt_rgb444,
663 .cmatrix = { 179, -179, 0, -61, -176, 228 },
664 },
665 {
666 .mbus_code = V4L2_MBUS_FMT_RGB565_2X8_LE,
667 .colorspace = V4L2_COLORSPACE_SRGB,
668 .regs = ov7670_fmt_rgb565,
669 .cmatrix = { 179, -179, 0, -61, -176, 228 },
670 },
671 {
672 .mbus_code = V4L2_MBUS_FMT_SBGGR8_1X8,
673 .colorspace = V4L2_COLORSPACE_SRGB,
674 .regs = ov7670_fmt_raw,
675 .cmatrix = { 0, 0, 0, 0, 0, 0 },
676 },
677 };
678 #define N_OV7670_FMTS ARRAY_SIZE(ov7670_formats)
679
680
681 /*
682 * Then there is the issue of window sizes. Try to capture the info here.
683 */
684
685 /*
686 * QCIF mode is done (by OV) in a very strange way - it actually looks like
687 * VGA with weird scaling options - they do *not* use the canned QCIF mode
688 * which is allegedly provided by the sensor. So here's the weird register
689 * settings.
690 */
691 static struct regval_list ov7670_qcif_regs[] = {
692 { REG_COM3, COM3_SCALEEN|COM3_DCWEN },
693 { REG_COM3, COM3_DCWEN },
694 { REG_COM14, COM14_DCWEN | 0x01},
695 { 0x73, 0xf1 },
696 { 0xa2, 0x52 },
697 { 0x7b, 0x1c },
698 { 0x7c, 0x28 },
699 { 0x7d, 0x3c },
700 { 0x7f, 0x69 },
701 { REG_COM9, 0x38 },
702 { 0xa1, 0x0b },
703 { 0x74, 0x19 },
704 { 0x9a, 0x80 },
705 { 0x43, 0x14 },
706 { REG_COM13, 0xc0 },
707 { 0xff, 0xff },
708 };
709
710 static struct ov7670_win_size ov7670_win_sizes[] = {
711 /* VGA */
712 {
713 .width = VGA_WIDTH,
714 .height = VGA_HEIGHT,
715 .com7_bit = COM7_FMT_VGA,
716 .hstart = 158, /* These values from */
717 .hstop = 14, /* Omnivision */
718 .vstart = 10,
719 .vstop = 490,
720 .regs = NULL,
721 },
722 /* CIF */
723 {
724 .width = CIF_WIDTH,
725 .height = CIF_HEIGHT,
726 .com7_bit = COM7_FMT_CIF,
727 .hstart = 170, /* Empirically determined */
728 .hstop = 90,
729 .vstart = 14,
730 .vstop = 494,
731 .regs = NULL,
732 },
733 /* QVGA */
734 {
735 .width = QVGA_WIDTH,
736 .height = QVGA_HEIGHT,
737 .com7_bit = COM7_FMT_QVGA,
738 .hstart = 168, /* Empirically determined */
739 .hstop = 24,
740 .vstart = 12,
741 .vstop = 492,
742 .regs = NULL,
743 },
744 /* QCIF */
745 {
746 .width = QCIF_WIDTH,
747 .height = QCIF_HEIGHT,
748 .com7_bit = COM7_FMT_VGA, /* see comment above */
749 .hstart = 456, /* Empirically determined */
750 .hstop = 24,
751 .vstart = 14,
752 .vstop = 494,
753 .regs = ov7670_qcif_regs,
754 }
755 };
756
757 static struct ov7670_win_size ov7675_win_sizes[] = {
758 /*
759 * Currently, only VGA is supported. Theoretically it could be possible
760 * to support CIF, QVGA and QCIF too. Taking values for ov7670 as a
761 * base and tweak them empirically could be required.
762 */
763 {
764 .width = VGA_WIDTH,
765 .height = VGA_HEIGHT,
766 .com7_bit = COM7_FMT_VGA,
767 .hstart = 158, /* These values from */
768 .hstop = 14, /* Omnivision */
769 .vstart = 14, /* Empirically determined */
770 .vstop = 494,
771 .regs = NULL,
772 }
773 };
774
775 static void ov7675_get_framerate(struct v4l2_subdev *sd,
776 struct v4l2_fract *tpf)
777 {
778 struct ov7670_info *info = to_state(sd);
779 u32 clkrc = info->clkrc;
780 int pll_factor;
781
782 if (info->pll_bypass)
783 pll_factor = 1;
784 else
785 pll_factor = PLL_FACTOR;
786
787 clkrc++;
788 if (info->fmt->mbus_code == V4L2_MBUS_FMT_SBGGR8_1X8)
789 clkrc = (clkrc >> 1);
790
791 tpf->numerator = 1;
792 tpf->denominator = (5 * pll_factor * info->clock_speed) /
793 (4 * clkrc);
794 }
795
796 static int ov7675_set_framerate(struct v4l2_subdev *sd,
797 struct v4l2_fract *tpf)
798 {
799 struct ov7670_info *info = to_state(sd);
800 u32 clkrc;
801 int pll_factor;
802 int ret;
803
804 /*
805 * The formula is fps = 5/4*pixclk for YUV/RGB and
806 * fps = 5/2*pixclk for RAW.
807 *
808 * pixclk = clock_speed / (clkrc + 1) * PLLfactor
809 *
810 */
811 if (info->pll_bypass) {
812 pll_factor = 1;
813 ret = ov7670_write(sd, REG_DBLV, DBLV_BYPASS);
814 } else {
815 pll_factor = PLL_FACTOR;
816 ret = ov7670_write(sd, REG_DBLV, DBLV_X4);
817 }
818 if (ret < 0)
819 return ret;
820
821 if (tpf->numerator == 0 || tpf->denominator == 0) {
822 clkrc = 0;
823 } else {
824 clkrc = (5 * pll_factor * info->clock_speed * tpf->numerator) /
825 (4 * tpf->denominator);
826 if (info->fmt->mbus_code == V4L2_MBUS_FMT_SBGGR8_1X8)
827 clkrc = (clkrc << 1);
828 clkrc--;
829 }
830
831 /*
832 * The datasheet claims that clkrc = 0 will divide the input clock by 1
833 * but we've checked with an oscilloscope that it divides by 2 instead.
834 * So, if clkrc = 0 just bypass the divider.
835 */
836 if (clkrc <= 0)
837 clkrc = CLK_EXT;
838 else if (clkrc > CLK_SCALE)
839 clkrc = CLK_SCALE;
840 info->clkrc = clkrc;
841
842 /* Recalculate frame rate */
843 ov7675_get_framerate(sd, tpf);
844
845 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
846 if (ret < 0)
847 return ret;
848
849 return ov7670_write(sd, REG_DBLV, DBLV_X4);
850 }
851
852 static void ov7670_get_framerate_legacy(struct v4l2_subdev *sd,
853 struct v4l2_fract *tpf)
854 {
855 struct ov7670_info *info = to_state(sd);
856
857 tpf->numerator = 1;
858 tpf->denominator = info->clock_speed;
859 if ((info->clkrc & CLK_EXT) == 0 && (info->clkrc & CLK_SCALE) > 1)
860 tpf->denominator /= (info->clkrc & CLK_SCALE);
861 }
862
863 static int ov7670_set_framerate_legacy(struct v4l2_subdev *sd,
864 struct v4l2_fract *tpf)
865 {
866 struct ov7670_info *info = to_state(sd);
867 int div;
868
869 if (tpf->numerator == 0 || tpf->denominator == 0)
870 div = 1; /* Reset to full rate */
871 else
872 div = (tpf->numerator * info->clock_speed) / tpf->denominator;
873 if (div == 0)
874 div = 1;
875 else if (div > CLK_SCALE)
876 div = CLK_SCALE;
877 info->clkrc = (info->clkrc & 0x80) | div;
878 tpf->numerator = 1;
879 tpf->denominator = info->clock_speed / div;
880 return ov7670_write(sd, REG_CLKRC, info->clkrc);
881 }
882
883 /*
884 * Store a set of start/stop values into the camera.
885 */
886 static int ov7670_set_hw(struct v4l2_subdev *sd, int hstart, int hstop,
887 int vstart, int vstop)
888 {
889 int ret;
890 unsigned char v;
891 /*
892 * Horizontal: 11 bits, top 8 live in hstart and hstop. Bottom 3 of
893 * hstart are in href[2:0], bottom 3 of hstop in href[5:3]. There is
894 * a mystery "edge offset" value in the top two bits of href.
895 */
896 ret = ov7670_write(sd, REG_HSTART, (hstart >> 3) & 0xff);
897 ret += ov7670_write(sd, REG_HSTOP, (hstop >> 3) & 0xff);
898 ret += ov7670_read(sd, REG_HREF, &v);
899 v = (v & 0xc0) | ((hstop & 0x7) << 3) | (hstart & 0x7);
900 msleep(10);
901 ret += ov7670_write(sd, REG_HREF, v);
902 /*
903 * Vertical: similar arrangement, but only 10 bits.
904 */
905 ret += ov7670_write(sd, REG_VSTART, (vstart >> 2) & 0xff);
906 ret += ov7670_write(sd, REG_VSTOP, (vstop >> 2) & 0xff);
907 ret += ov7670_read(sd, REG_VREF, &v);
908 v = (v & 0xf0) | ((vstop & 0x3) << 2) | (vstart & 0x3);
909 msleep(10);
910 ret += ov7670_write(sd, REG_VREF, v);
911 return ret;
912 }
913
914
915 static int ov7670_enum_mbus_fmt(struct v4l2_subdev *sd, unsigned index,
916 enum v4l2_mbus_pixelcode *code)
917 {
918 if (index >= N_OV7670_FMTS)
919 return -EINVAL;
920
921 *code = ov7670_formats[index].mbus_code;
922 return 0;
923 }
924
925 static int ov7670_try_fmt_internal(struct v4l2_subdev *sd,
926 struct v4l2_mbus_framefmt *fmt,
927 struct ov7670_format_struct **ret_fmt,
928 struct ov7670_win_size **ret_wsize)
929 {
930 int index, i;
931 struct ov7670_win_size *wsize;
932 struct ov7670_info *info = to_state(sd);
933 unsigned int n_win_sizes = info->devtype->n_win_sizes;
934 unsigned int win_sizes_limit = n_win_sizes;
935
936 for (index = 0; index < N_OV7670_FMTS; index++)
937 if (ov7670_formats[index].mbus_code == fmt->code)
938 break;
939 if (index >= N_OV7670_FMTS) {
940 /* default to first format */
941 index = 0;
942 fmt->code = ov7670_formats[0].mbus_code;
943 }
944 if (ret_fmt != NULL)
945 *ret_fmt = ov7670_formats + index;
946 /*
947 * Fields: the OV devices claim to be progressive.
948 */
949 fmt->field = V4L2_FIELD_NONE;
950
951 /*
952 * Don't consider values that don't match min_height and min_width
953 * constraints.
954 */
955 if (info->min_width || info->min_height)
956 for (i = 0; i < n_win_sizes; i++) {
957 wsize = info->devtype->win_sizes + i;
958
959 if (wsize->width < info->min_width ||
960 wsize->height < info->min_height) {
961 win_sizes_limit = i;
962 break;
963 }
964 }
965 /*
966 * Round requested image size down to the nearest
967 * we support, but not below the smallest.
968 */
969 for (wsize = info->devtype->win_sizes;
970 wsize < info->devtype->win_sizes + win_sizes_limit; wsize++)
971 if (fmt->width >= wsize->width && fmt->height >= wsize->height)
972 break;
973 if (wsize >= info->devtype->win_sizes + win_sizes_limit)
974 wsize--; /* Take the smallest one */
975 if (ret_wsize != NULL)
976 *ret_wsize = wsize;
977 /*
978 * Note the size we'll actually handle.
979 */
980 fmt->width = wsize->width;
981 fmt->height = wsize->height;
982 fmt->colorspace = ov7670_formats[index].colorspace;
983 return 0;
984 }
985
986 static int ov7670_try_mbus_fmt(struct v4l2_subdev *sd,
987 struct v4l2_mbus_framefmt *fmt)
988 {
989 return ov7670_try_fmt_internal(sd, fmt, NULL, NULL);
990 }
991
992 /*
993 * Set a format.
994 */
995 static int ov7670_s_mbus_fmt(struct v4l2_subdev *sd,
996 struct v4l2_mbus_framefmt *fmt)
997 {
998 struct ov7670_format_struct *ovfmt;
999 struct ov7670_win_size *wsize;
1000 struct ov7670_info *info = to_state(sd);
1001 unsigned char com7;
1002 int ret;
1003
1004 ret = ov7670_try_fmt_internal(sd, fmt, &ovfmt, &wsize);
1005
1006 if (ret)
1007 return ret;
1008 /*
1009 * COM7 is a pain in the ass, it doesn't like to be read then
1010 * quickly written afterward. But we have everything we need
1011 * to set it absolutely here, as long as the format-specific
1012 * register sets list it first.
1013 */
1014 com7 = ovfmt->regs[0].value;
1015 com7 |= wsize->com7_bit;
1016 ov7670_write(sd, REG_COM7, com7);
1017 /*
1018 * Now write the rest of the array. Also store start/stops
1019 */
1020 ov7670_write_array(sd, ovfmt->regs + 1);
1021 ov7670_set_hw(sd, wsize->hstart, wsize->hstop, wsize->vstart,
1022 wsize->vstop);
1023 ret = 0;
1024 if (wsize->regs)
1025 ret = ov7670_write_array(sd, wsize->regs);
1026 info->fmt = ovfmt;
1027
1028 /*
1029 * If we're running RGB565, we must rewrite clkrc after setting
1030 * the other parameters or the image looks poor. If we're *not*
1031 * doing RGB565, we must not rewrite clkrc or the image looks
1032 * *really* poor.
1033 *
1034 * (Update) Now that we retain clkrc state, we should be able
1035 * to write it unconditionally, and that will make the frame
1036 * rate persistent too.
1037 */
1038 if (ret == 0)
1039 ret = ov7670_write(sd, REG_CLKRC, info->clkrc);
1040 return 0;
1041 }
1042
1043 /*
1044 * Implement G/S_PARM. There is a "high quality" mode we could try
1045 * to do someday; for now, we just do the frame rate tweak.
1046 */
1047 static int ov7670_g_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1048 {
1049 struct v4l2_captureparm *cp = &parms->parm.capture;
1050 struct ov7670_info *info = to_state(sd);
1051
1052 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1053 return -EINVAL;
1054
1055 memset(cp, 0, sizeof(struct v4l2_captureparm));
1056 cp->capability = V4L2_CAP_TIMEPERFRAME;
1057 info->devtype->get_framerate(sd, &cp->timeperframe);
1058
1059 return 0;
1060 }
1061
1062 static int ov7670_s_parm(struct v4l2_subdev *sd, struct v4l2_streamparm *parms)
1063 {
1064 struct v4l2_captureparm *cp = &parms->parm.capture;
1065 struct v4l2_fract *tpf = &cp->timeperframe;
1066 struct ov7670_info *info = to_state(sd);
1067
1068 if (parms->type != V4L2_BUF_TYPE_VIDEO_CAPTURE)
1069 return -EINVAL;
1070 if (cp->extendedmode != 0)
1071 return -EINVAL;
1072
1073 return info->devtype->set_framerate(sd, tpf);
1074 }
1075
1076
1077 /*
1078 * Frame intervals. Since frame rates are controlled with the clock
1079 * divider, we can only do 30/n for integer n values. So no continuous
1080 * or stepwise options. Here we just pick a handful of logical values.
1081 */
1082
1083 static int ov7670_frame_rates[] = { 30, 15, 10, 5, 1 };
1084
1085 static int ov7670_enum_frameintervals(struct v4l2_subdev *sd,
1086 struct v4l2_frmivalenum *interval)
1087 {
1088 if (interval->index >= ARRAY_SIZE(ov7670_frame_rates))
1089 return -EINVAL;
1090 interval->type = V4L2_FRMIVAL_TYPE_DISCRETE;
1091 interval->discrete.numerator = 1;
1092 interval->discrete.denominator = ov7670_frame_rates[interval->index];
1093 return 0;
1094 }
1095
1096 /*
1097 * Frame size enumeration
1098 */
1099 static int ov7670_enum_framesizes(struct v4l2_subdev *sd,
1100 struct v4l2_frmsizeenum *fsize)
1101 {
1102 struct ov7670_info *info = to_state(sd);
1103 int i;
1104 int num_valid = -1;
1105 __u32 index = fsize->index;
1106 unsigned int n_win_sizes = info->devtype->n_win_sizes;
1107
1108 /*
1109 * If a minimum width/height was requested, filter out the capture
1110 * windows that fall outside that.
1111 */
1112 for (i = 0; i < n_win_sizes; i++) {
1113 struct ov7670_win_size *win = &info->devtype->win_sizes[index];
1114 if (info->min_width && win->width < info->min_width)
1115 continue;
1116 if (info->min_height && win->height < info->min_height)
1117 continue;
1118 if (index == ++num_valid) {
1119 fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1120 fsize->discrete.width = win->width;
1121 fsize->discrete.height = win->height;
1122 return 0;
1123 }
1124 }
1125
1126 return -EINVAL;
1127 }
1128
1129 /*
1130 * Code for dealing with controls.
1131 */
1132
1133 static int ov7670_store_cmatrix(struct v4l2_subdev *sd,
1134 int matrix[CMATRIX_LEN])
1135 {
1136 int i, ret;
1137 unsigned char signbits = 0;
1138
1139 /*
1140 * Weird crap seems to exist in the upper part of
1141 * the sign bits register, so let's preserve it.
1142 */
1143 ret = ov7670_read(sd, REG_CMATRIX_SIGN, &signbits);
1144 signbits &= 0xc0;
1145
1146 for (i = 0; i < CMATRIX_LEN; i++) {
1147 unsigned char raw;
1148
1149 if (matrix[i] < 0) {
1150 signbits |= (1 << i);
1151 if (matrix[i] < -255)
1152 raw = 0xff;
1153 else
1154 raw = (-1 * matrix[i]) & 0xff;
1155 }
1156 else {
1157 if (matrix[i] > 255)
1158 raw = 0xff;
1159 else
1160 raw = matrix[i] & 0xff;
1161 }
1162 ret += ov7670_write(sd, REG_CMATRIX_BASE + i, raw);
1163 }
1164 ret += ov7670_write(sd, REG_CMATRIX_SIGN, signbits);
1165 return ret;
1166 }
1167
1168
1169 /*
1170 * Hue also requires messing with the color matrix. It also requires
1171 * trig functions, which tend not to be well supported in the kernel.
1172 * So here is a simple table of sine values, 0-90 degrees, in steps
1173 * of five degrees. Values are multiplied by 1000.
1174 *
1175 * The following naive approximate trig functions require an argument
1176 * carefully limited to -180 <= theta <= 180.
1177 */
1178 #define SIN_STEP 5
1179 static const int ov7670_sin_table[] = {
1180 0, 87, 173, 258, 342, 422,
1181 499, 573, 642, 707, 766, 819,
1182 866, 906, 939, 965, 984, 996,
1183 1000
1184 };
1185
1186 static int ov7670_sine(int theta)
1187 {
1188 int chs = 1;
1189 int sine;
1190
1191 if (theta < 0) {
1192 theta = -theta;
1193 chs = -1;
1194 }
1195 if (theta <= 90)
1196 sine = ov7670_sin_table[theta/SIN_STEP];
1197 else {
1198 theta -= 90;
1199 sine = 1000 - ov7670_sin_table[theta/SIN_STEP];
1200 }
1201 return sine*chs;
1202 }
1203
1204 static int ov7670_cosine(int theta)
1205 {
1206 theta = 90 - theta;
1207 if (theta > 180)
1208 theta -= 360;
1209 else if (theta < -180)
1210 theta += 360;
1211 return ov7670_sine(theta);
1212 }
1213
1214
1215
1216
1217 static void ov7670_calc_cmatrix(struct ov7670_info *info,
1218 int matrix[CMATRIX_LEN], int sat, int hue)
1219 {
1220 int i;
1221 /*
1222 * Apply the current saturation setting first.
1223 */
1224 for (i = 0; i < CMATRIX_LEN; i++)
1225 matrix[i] = (info->fmt->cmatrix[i] * sat) >> 7;
1226 /*
1227 * Then, if need be, rotate the hue value.
1228 */
1229 if (hue != 0) {
1230 int sinth, costh, tmpmatrix[CMATRIX_LEN];
1231
1232 memcpy(tmpmatrix, matrix, CMATRIX_LEN*sizeof(int));
1233 sinth = ov7670_sine(hue);
1234 costh = ov7670_cosine(hue);
1235
1236 matrix[0] = (matrix[3]*sinth + matrix[0]*costh)/1000;
1237 matrix[1] = (matrix[4]*sinth + matrix[1]*costh)/1000;
1238 matrix[2] = (matrix[5]*sinth + matrix[2]*costh)/1000;
1239 matrix[3] = (matrix[3]*costh - matrix[0]*sinth)/1000;
1240 matrix[4] = (matrix[4]*costh - matrix[1]*sinth)/1000;
1241 matrix[5] = (matrix[5]*costh - matrix[2]*sinth)/1000;
1242 }
1243 }
1244
1245
1246
1247 static int ov7670_s_sat_hue(struct v4l2_subdev *sd, int sat, int hue)
1248 {
1249 struct ov7670_info *info = to_state(sd);
1250 int matrix[CMATRIX_LEN];
1251 int ret;
1252
1253 ov7670_calc_cmatrix(info, matrix, sat, hue);
1254 ret = ov7670_store_cmatrix(sd, matrix);
1255 return ret;
1256 }
1257
1258
1259 /*
1260 * Some weird registers seem to store values in a sign/magnitude format!
1261 */
1262
1263 static unsigned char ov7670_abs_to_sm(unsigned char v)
1264 {
1265 if (v > 127)
1266 return v & 0x7f;
1267 return (128 - v) | 0x80;
1268 }
1269
1270 static int ov7670_s_brightness(struct v4l2_subdev *sd, int value)
1271 {
1272 unsigned char com8 = 0, v;
1273 int ret;
1274
1275 ov7670_read(sd, REG_COM8, &com8);
1276 com8 &= ~COM8_AEC;
1277 ov7670_write(sd, REG_COM8, com8);
1278 v = ov7670_abs_to_sm(value);
1279 ret = ov7670_write(sd, REG_BRIGHT, v);
1280 return ret;
1281 }
1282
1283 static int ov7670_s_contrast(struct v4l2_subdev *sd, int value)
1284 {
1285 return ov7670_write(sd, REG_CONTRAS, (unsigned char) value);
1286 }
1287
1288 static int ov7670_s_hflip(struct v4l2_subdev *sd, int value)
1289 {
1290 unsigned char v = 0;
1291 int ret;
1292
1293 ret = ov7670_read(sd, REG_MVFP, &v);
1294 if (value)
1295 v |= MVFP_MIRROR;
1296 else
1297 v &= ~MVFP_MIRROR;
1298 msleep(10); /* FIXME */
1299 ret += ov7670_write(sd, REG_MVFP, v);
1300 return ret;
1301 }
1302
1303 static int ov7670_s_vflip(struct v4l2_subdev *sd, int value)
1304 {
1305 unsigned char v = 0;
1306 int ret;
1307
1308 ret = ov7670_read(sd, REG_MVFP, &v);
1309 if (value)
1310 v |= MVFP_FLIP;
1311 else
1312 v &= ~MVFP_FLIP;
1313 msleep(10); /* FIXME */
1314 ret += ov7670_write(sd, REG_MVFP, v);
1315 return ret;
1316 }
1317
1318 /*
1319 * GAIN is split between REG_GAIN and REG_VREF[7:6]. If one believes
1320 * the data sheet, the VREF parts should be the most significant, but
1321 * experience shows otherwise. There seems to be little value in
1322 * messing with the VREF bits, so we leave them alone.
1323 */
1324 static int ov7670_g_gain(struct v4l2_subdev *sd, __s32 *value)
1325 {
1326 int ret;
1327 unsigned char gain;
1328
1329 ret = ov7670_read(sd, REG_GAIN, &gain);
1330 *value = gain;
1331 return ret;
1332 }
1333
1334 static int ov7670_s_gain(struct v4l2_subdev *sd, int value)
1335 {
1336 int ret;
1337 unsigned char com8;
1338
1339 ret = ov7670_write(sd, REG_GAIN, value & 0xff);
1340 /* Have to turn off AGC as well */
1341 if (ret == 0) {
1342 ret = ov7670_read(sd, REG_COM8, &com8);
1343 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AGC);
1344 }
1345 return ret;
1346 }
1347
1348 /*
1349 * Tweak autogain.
1350 */
1351 static int ov7670_s_autogain(struct v4l2_subdev *sd, int value)
1352 {
1353 int ret;
1354 unsigned char com8;
1355
1356 ret = ov7670_read(sd, REG_COM8, &com8);
1357 if (ret == 0) {
1358 if (value)
1359 com8 |= COM8_AGC;
1360 else
1361 com8 &= ~COM8_AGC;
1362 ret = ov7670_write(sd, REG_COM8, com8);
1363 }
1364 return ret;
1365 }
1366
1367 static int ov7670_s_exp(struct v4l2_subdev *sd, int value)
1368 {
1369 int ret;
1370 unsigned char com1, com8, aech, aechh;
1371
1372 ret = ov7670_read(sd, REG_COM1, &com1) +
1373 ov7670_read(sd, REG_COM8, &com8);
1374 ov7670_read(sd, REG_AECHH, &aechh);
1375 if (ret)
1376 return ret;
1377
1378 com1 = (com1 & 0xfc) | (value & 0x03);
1379 aech = (value >> 2) & 0xff;
1380 aechh = (aechh & 0xc0) | ((value >> 10) & 0x3f);
1381 ret = ov7670_write(sd, REG_COM1, com1) +
1382 ov7670_write(sd, REG_AECH, aech) +
1383 ov7670_write(sd, REG_AECHH, aechh);
1384 /* Have to turn off AEC as well */
1385 if (ret == 0)
1386 ret = ov7670_write(sd, REG_COM8, com8 & ~COM8_AEC);
1387 return ret;
1388 }
1389
1390 /*
1391 * Tweak autoexposure.
1392 */
1393 static int ov7670_s_autoexp(struct v4l2_subdev *sd,
1394 enum v4l2_exposure_auto_type value)
1395 {
1396 int ret;
1397 unsigned char com8;
1398
1399 ret = ov7670_read(sd, REG_COM8, &com8);
1400 if (ret == 0) {
1401 if (value == V4L2_EXPOSURE_AUTO)
1402 com8 |= COM8_AEC;
1403 else
1404 com8 &= ~COM8_AEC;
1405 ret = ov7670_write(sd, REG_COM8, com8);
1406 }
1407 return ret;
1408 }
1409
1410
1411 static int ov7670_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1412 {
1413 struct v4l2_subdev *sd = to_sd(ctrl);
1414 struct ov7670_info *info = to_state(sd);
1415
1416 switch (ctrl->id) {
1417 case V4L2_CID_AUTOGAIN:
1418 return ov7670_g_gain(sd, &info->gain->val);
1419 }
1420 return -EINVAL;
1421 }
1422
1423 static int ov7670_s_ctrl(struct v4l2_ctrl *ctrl)
1424 {
1425 struct v4l2_subdev *sd = to_sd(ctrl);
1426 struct ov7670_info *info = to_state(sd);
1427
1428 switch (ctrl->id) {
1429 case V4L2_CID_BRIGHTNESS:
1430 return ov7670_s_brightness(sd, ctrl->val);
1431 case V4L2_CID_CONTRAST:
1432 return ov7670_s_contrast(sd, ctrl->val);
1433 case V4L2_CID_SATURATION:
1434 return ov7670_s_sat_hue(sd,
1435 info->saturation->val, info->hue->val);
1436 case V4L2_CID_VFLIP:
1437 return ov7670_s_vflip(sd, ctrl->val);
1438 case V4L2_CID_HFLIP:
1439 return ov7670_s_hflip(sd, ctrl->val);
1440 case V4L2_CID_AUTOGAIN:
1441 /* Only set manual gain if auto gain is not explicitly
1442 turned on. */
1443 if (!ctrl->val) {
1444 /* ov7670_s_gain turns off auto gain */
1445 return ov7670_s_gain(sd, info->gain->val);
1446 }
1447 return ov7670_s_autogain(sd, ctrl->val);
1448 case V4L2_CID_EXPOSURE_AUTO:
1449 /* Only set manual exposure if auto exposure is not explicitly
1450 turned on. */
1451 if (ctrl->val == V4L2_EXPOSURE_MANUAL) {
1452 /* ov7670_s_exp turns off auto exposure */
1453 return ov7670_s_exp(sd, info->exposure->val);
1454 }
1455 return ov7670_s_autoexp(sd, ctrl->val);
1456 }
1457 return -EINVAL;
1458 }
1459
1460 static const struct v4l2_ctrl_ops ov7670_ctrl_ops = {
1461 .s_ctrl = ov7670_s_ctrl,
1462 .g_volatile_ctrl = ov7670_g_volatile_ctrl,
1463 };
1464
1465 static int ov7670_g_chip_ident(struct v4l2_subdev *sd,
1466 struct v4l2_dbg_chip_ident *chip)
1467 {
1468 struct i2c_client *client = v4l2_get_subdevdata(sd);
1469
1470 return v4l2_chip_ident_i2c_client(client, chip, V4L2_IDENT_OV7670, 0);
1471 }
1472
1473 #ifdef CONFIG_VIDEO_ADV_DEBUG
1474 static int ov7670_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg)
1475 {
1476 struct i2c_client *client = v4l2_get_subdevdata(sd);
1477 unsigned char val = 0;
1478 int ret;
1479
1480 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1481 return -EINVAL;
1482 if (!capable(CAP_SYS_ADMIN))
1483 return -EPERM;
1484 ret = ov7670_read(sd, reg->reg & 0xff, &val);
1485 reg->val = val;
1486 reg->size = 1;
1487 return ret;
1488 }
1489
1490 static int ov7670_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg)
1491 {
1492 struct i2c_client *client = v4l2_get_subdevdata(sd);
1493
1494 if (!v4l2_chip_match_i2c_client(client, &reg->match))
1495 return -EINVAL;
1496 if (!capable(CAP_SYS_ADMIN))
1497 return -EPERM;
1498 ov7670_write(sd, reg->reg & 0xff, reg->val & 0xff);
1499 return 0;
1500 }
1501 #endif
1502
1503 /* ----------------------------------------------------------------------- */
1504
1505 static const struct v4l2_subdev_core_ops ov7670_core_ops = {
1506 .g_chip_ident = ov7670_g_chip_ident,
1507 .reset = ov7670_reset,
1508 .init = ov7670_init,
1509 #ifdef CONFIG_VIDEO_ADV_DEBUG
1510 .g_register = ov7670_g_register,
1511 .s_register = ov7670_s_register,
1512 #endif
1513 };
1514
1515 static const struct v4l2_subdev_video_ops ov7670_video_ops = {
1516 .enum_mbus_fmt = ov7670_enum_mbus_fmt,
1517 .try_mbus_fmt = ov7670_try_mbus_fmt,
1518 .s_mbus_fmt = ov7670_s_mbus_fmt,
1519 .s_parm = ov7670_s_parm,
1520 .g_parm = ov7670_g_parm,
1521 .enum_frameintervals = ov7670_enum_frameintervals,
1522 .enum_framesizes = ov7670_enum_framesizes,
1523 };
1524
1525 static const struct v4l2_subdev_ops ov7670_ops = {
1526 .core = &ov7670_core_ops,
1527 .video = &ov7670_video_ops,
1528 };
1529
1530 /* ----------------------------------------------------------------------- */
1531
1532 static const struct ov7670_devtype ov7670_devdata[] = {
1533 [MODEL_OV7670] = {
1534 .win_sizes = ov7670_win_sizes,
1535 .n_win_sizes = ARRAY_SIZE(ov7670_win_sizes),
1536 .set_framerate = ov7670_set_framerate_legacy,
1537 .get_framerate = ov7670_get_framerate_legacy,
1538 },
1539 [MODEL_OV7675] = {
1540 .win_sizes = ov7675_win_sizes,
1541 .n_win_sizes = ARRAY_SIZE(ov7675_win_sizes),
1542 .set_framerate = ov7675_set_framerate,
1543 .get_framerate = ov7675_get_framerate,
1544 },
1545 };
1546
1547 static int ov7670_probe(struct i2c_client *client,
1548 const struct i2c_device_id *id)
1549 {
1550 struct v4l2_fract tpf;
1551 struct v4l2_subdev *sd;
1552 struct ov7670_info *info;
1553 int ret;
1554
1555 info = kzalloc(sizeof(struct ov7670_info), GFP_KERNEL);
1556 if (info == NULL)
1557 return -ENOMEM;
1558 sd = &info->sd;
1559 v4l2_i2c_subdev_init(sd, client, &ov7670_ops);
1560
1561 info->clock_speed = 30; /* default: a guess */
1562 if (client->dev.platform_data) {
1563 struct ov7670_config *config = client->dev.platform_data;
1564
1565 /*
1566 * Must apply configuration before initializing device, because it
1567 * selects I/O method.
1568 */
1569 info->min_width = config->min_width;
1570 info->min_height = config->min_height;
1571 info->use_smbus = config->use_smbus;
1572
1573 if (config->clock_speed)
1574 info->clock_speed = config->clock_speed;
1575
1576 /*
1577 * It should be allowed for ov7670 too when it is migrated to
1578 * the new frame rate formula.
1579 */
1580 if (config->pll_bypass && id->driver_data != MODEL_OV7670)
1581 info->pll_bypass = true;
1582
1583 if (config->pclk_hb_disable)
1584 info->pclk_hb_disable = true;
1585 }
1586
1587 /* Make sure it's an ov7670 */
1588 ret = ov7670_detect(sd);
1589 if (ret) {
1590 v4l_dbg(1, debug, client,
1591 "chip found @ 0x%x (%s) is not an ov7670 chip.\n",
1592 client->addr << 1, client->adapter->name);
1593 kfree(info);
1594 return ret;
1595 }
1596 v4l_info(client, "chip found @ 0x%02x (%s)\n",
1597 client->addr << 1, client->adapter->name);
1598
1599 info->devtype = &ov7670_devdata[id->driver_data];
1600 info->fmt = &ov7670_formats[0];
1601 info->clkrc = 0;
1602
1603 /* Set default frame rate to 30 fps */
1604 tpf.numerator = 1;
1605 tpf.denominator = 30;
1606 info->devtype->set_framerate(sd, &tpf);
1607
1608 if (info->pclk_hb_disable)
1609 ov7670_write(sd, REG_COM10, COM10_PCLK_HB);
1610
1611 v4l2_ctrl_handler_init(&info->hdl, 10);
1612 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1613 V4L2_CID_BRIGHTNESS, 0, 255, 1, 128);
1614 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1615 V4L2_CID_CONTRAST, 0, 127, 1, 64);
1616 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1617 V4L2_CID_VFLIP, 0, 1, 1, 0);
1618 v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1619 V4L2_CID_HFLIP, 0, 1, 1, 0);
1620 info->saturation = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1621 V4L2_CID_SATURATION, 0, 256, 1, 128);
1622 info->hue = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1623 V4L2_CID_HUE, -180, 180, 5, 0);
1624 info->gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1625 V4L2_CID_GAIN, 0, 255, 1, 128);
1626 info->auto_gain = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1627 V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1628 info->exposure = v4l2_ctrl_new_std(&info->hdl, &ov7670_ctrl_ops,
1629 V4L2_CID_EXPOSURE, 0, 65535, 1, 500);
1630 info->auto_exposure = v4l2_ctrl_new_std_menu(&info->hdl, &ov7670_ctrl_ops,
1631 V4L2_CID_EXPOSURE_AUTO, V4L2_EXPOSURE_MANUAL, 0,
1632 V4L2_EXPOSURE_AUTO);
1633 sd->ctrl_handler = &info->hdl;
1634 if (info->hdl.error) {
1635 int err = info->hdl.error;
1636
1637 v4l2_ctrl_handler_free(&info->hdl);
1638 kfree(info);
1639 return err;
1640 }
1641 /*
1642 * We have checked empirically that hw allows to read back the gain
1643 * value chosen by auto gain but that's not the case for auto exposure.
1644 */
1645 v4l2_ctrl_auto_cluster(2, &info->auto_gain, 0, true);
1646 v4l2_ctrl_auto_cluster(2, &info->auto_exposure,
1647 V4L2_EXPOSURE_MANUAL, false);
1648 v4l2_ctrl_cluster(2, &info->saturation);
1649 v4l2_ctrl_handler_setup(&info->hdl);
1650
1651 return 0;
1652 }
1653
1654
1655 static int ov7670_remove(struct i2c_client *client)
1656 {
1657 struct v4l2_subdev *sd = i2c_get_clientdata(client);
1658 struct ov7670_info *info = to_state(sd);
1659
1660 v4l2_device_unregister_subdev(sd);
1661 v4l2_ctrl_handler_free(&info->hdl);
1662 kfree(info);
1663 return 0;
1664 }
1665
1666 static const struct i2c_device_id ov7670_id[] = {
1667 { "ov7670", MODEL_OV7670 },
1668 { "ov7675", MODEL_OV7675 },
1669 { }
1670 };
1671 MODULE_DEVICE_TABLE(i2c, ov7670_id);
1672
1673 static struct i2c_driver ov7670_driver = {
1674 .driver = {
1675 .owner = THIS_MODULE,
1676 .name = "ov7670",
1677 },
1678 .probe = ov7670_probe,
1679 .remove = ov7670_remove,
1680 .id_table = ov7670_id,
1681 };
1682
1683 module_i2c_driver(ov7670_driver);
This page took 0.087957 seconds and 5 git commands to generate.