[media] media: videobuf2: Replace videobuf2-core with videobuf2-v4l2
[deliverable/linux.git] / drivers / media / pci / cx23885 / cx23888-ir.c
1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #include <linux/kfifo.h>
20 #include <linux/slab.h>
21
22 #include <media/v4l2-device.h>
23 #include <media/rc-core.h>
24
25 #include "cx23885.h"
26 #include "cx23888-ir.h"
27
28 static unsigned int ir_888_debug;
29 module_param(ir_888_debug, int, 0644);
30 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
31
32 #define CX23888_IR_REG_BASE 0x170000
33 /*
34 * These CX23888 register offsets have a straightforward one to one mapping
35 * to the CX23885 register offsets of 0x200 through 0x218
36 */
37 #define CX23888_IR_CNTRL_REG 0x170000
38 #define CNTRL_WIN_3_3 0x00000000
39 #define CNTRL_WIN_4_3 0x00000001
40 #define CNTRL_WIN_3_4 0x00000002
41 #define CNTRL_WIN_4_4 0x00000003
42 #define CNTRL_WIN 0x00000003
43 #define CNTRL_EDG_NONE 0x00000000
44 #define CNTRL_EDG_FALL 0x00000004
45 #define CNTRL_EDG_RISE 0x00000008
46 #define CNTRL_EDG_BOTH 0x0000000C
47 #define CNTRL_EDG 0x0000000C
48 #define CNTRL_DMD 0x00000010
49 #define CNTRL_MOD 0x00000020
50 #define CNTRL_RFE 0x00000040
51 #define CNTRL_TFE 0x00000080
52 #define CNTRL_RXE 0x00000100
53 #define CNTRL_TXE 0x00000200
54 #define CNTRL_RIC 0x00000400
55 #define CNTRL_TIC 0x00000800
56 #define CNTRL_CPL 0x00001000
57 #define CNTRL_LBM 0x00002000
58 #define CNTRL_R 0x00004000
59 /* CX23888 specific control flag */
60 #define CNTRL_IVO 0x00008000
61
62 #define CX23888_IR_TXCLK_REG 0x170004
63 #define TXCLK_TCD 0x0000FFFF
64
65 #define CX23888_IR_RXCLK_REG 0x170008
66 #define RXCLK_RCD 0x0000FFFF
67
68 #define CX23888_IR_CDUTY_REG 0x17000C
69 #define CDUTY_CDC 0x0000000F
70
71 #define CX23888_IR_STATS_REG 0x170010
72 #define STATS_RTO 0x00000001
73 #define STATS_ROR 0x00000002
74 #define STATS_RBY 0x00000004
75 #define STATS_TBY 0x00000008
76 #define STATS_RSR 0x00000010
77 #define STATS_TSR 0x00000020
78
79 #define CX23888_IR_IRQEN_REG 0x170014
80 #define IRQEN_RTE 0x00000001
81 #define IRQEN_ROE 0x00000002
82 #define IRQEN_RSE 0x00000010
83 #define IRQEN_TSE 0x00000020
84
85 #define CX23888_IR_FILTR_REG 0x170018
86 #define FILTR_LPF 0x0000FFFF
87
88 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
89 #define CX23888_IR_FIFO_REG 0x170040
90 #define FIFO_RXTX 0x0000FFFF
91 #define FIFO_RXTX_LVL 0x00010000
92 #define FIFO_RXTX_RTO 0x0001FFFF
93 #define FIFO_RX_NDV 0x00020000
94 #define FIFO_RX_DEPTH 8
95 #define FIFO_TX_DEPTH 8
96
97 /* CX23888 unique registers */
98 #define CX23888_IR_SEEDP_REG 0x17001C
99 #define CX23888_IR_TIMOL_REG 0x170020
100 #define CX23888_IR_WAKE0_REG 0x170024
101 #define CX23888_IR_WAKE1_REG 0x170028
102 #define CX23888_IR_WAKE2_REG 0x17002C
103 #define CX23888_IR_MASK0_REG 0x170030
104 #define CX23888_IR_MASK1_REG 0x170034
105 #define CX23888_IR_MAKS2_REG 0x170038
106 #define CX23888_IR_DPIPG_REG 0x17003C
107 #define CX23888_IR_LEARN_REG 0x170044
108
109 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
110 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
111
112 /*
113 * We use this union internally for convenience, but callers to tx_write
114 * and rx_read will be expecting records of type struct ir_raw_event.
115 * Always ensure the size of this union is dictated by struct ir_raw_event.
116 */
117 union cx23888_ir_fifo_rec {
118 u32 hw_fifo_data;
119 struct ir_raw_event ir_core_data;
120 };
121
122 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
123 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
124
125 struct cx23888_ir_state {
126 struct v4l2_subdev sd;
127 struct cx23885_dev *dev;
128
129 struct v4l2_subdev_ir_parameters rx_params;
130 struct mutex rx_params_lock;
131 atomic_t rxclk_divider;
132 atomic_t rx_invert;
133
134 struct kfifo rx_kfifo;
135 spinlock_t rx_kfifo_lock;
136
137 struct v4l2_subdev_ir_parameters tx_params;
138 struct mutex tx_params_lock;
139 atomic_t txclk_divider;
140 };
141
142 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
143 {
144 return v4l2_get_subdevdata(sd);
145 }
146
147 /*
148 * IR register block read and write functions
149 */
150 static
151 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
152 {
153 cx_write(addr, value);
154 return 0;
155 }
156
157 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
158 {
159 return cx_read(addr);
160 }
161
162 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
163 u32 and_mask, u32 or_value)
164 {
165 cx_andor(addr, ~and_mask, or_value);
166 return 0;
167 }
168
169 /*
170 * Rx and Tx Clock Divider register computations
171 *
172 * Note the largest clock divider value of 0xffff corresponds to:
173 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
174 * which fits in 21 bits, so we'll use unsigned int for time arguments.
175 */
176 static inline u16 count_to_clock_divider(unsigned int d)
177 {
178 if (d > RXCLK_RCD + 1)
179 d = RXCLK_RCD;
180 else if (d < 2)
181 d = 1;
182 else
183 d--;
184 return (u16) d;
185 }
186
187 static inline u16 ns_to_clock_divider(unsigned int ns)
188 {
189 return count_to_clock_divider(
190 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
191 }
192
193 static inline unsigned int clock_divider_to_ns(unsigned int divider)
194 {
195 /* Period of the Rx or Tx clock in ns */
196 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
197 CX23888_IR_REFCLK_FREQ / 1000000);
198 }
199
200 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
201 {
202 return count_to_clock_divider(
203 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
204 }
205
206 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
207 {
208 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
209 }
210
211 static inline u16 freq_to_clock_divider(unsigned int freq,
212 unsigned int rollovers)
213 {
214 return count_to_clock_divider(
215 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
216 }
217
218 static inline unsigned int clock_divider_to_freq(unsigned int divider,
219 unsigned int rollovers)
220 {
221 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
222 (divider + 1) * rollovers);
223 }
224
225 /*
226 * Low Pass Filter register calculations
227 *
228 * Note the largest count value of 0xffff corresponds to:
229 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
230 * which fits in 21 bits, so we'll use unsigned int for time arguments.
231 */
232 static inline u16 count_to_lpf_count(unsigned int d)
233 {
234 if (d > FILTR_LPF)
235 d = FILTR_LPF;
236 else if (d < 4)
237 d = 0;
238 return (u16) d;
239 }
240
241 static inline u16 ns_to_lpf_count(unsigned int ns)
242 {
243 return count_to_lpf_count(
244 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
245 }
246
247 static inline unsigned int lpf_count_to_ns(unsigned int count)
248 {
249 /* Duration of the Low Pass Filter rejection window in ns */
250 return DIV_ROUND_CLOSEST(count * 1000,
251 CX23888_IR_REFCLK_FREQ / 1000000);
252 }
253
254 static inline unsigned int lpf_count_to_us(unsigned int count)
255 {
256 /* Duration of the Low Pass Filter rejection window in us */
257 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
258 }
259
260 /*
261 * FIFO register pulse width count computations
262 */
263 static u32 clock_divider_to_resolution(u16 divider)
264 {
265 /*
266 * Resolution is the duration of 1 tick of the readable portion of
267 * of the pulse width counter as read from the FIFO. The two lsb's are
268 * not readable, hence the << 2. This function returns ns.
269 */
270 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
271 CX23888_IR_REFCLK_FREQ / 1000000);
272 }
273
274 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
275 {
276 u64 n;
277 u32 rem;
278
279 /*
280 * The 2 lsb's of the pulse width timer count are not readable, hence
281 * the (count << 2) | 0x3
282 */
283 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
284 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
285 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
286 n++;
287 return n;
288 }
289
290 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
291 {
292 u64 n;
293 u32 rem;
294
295 /*
296 * The 2 lsb's of the pulse width timer count are not readable, hence
297 * the (count << 2) | 0x3
298 */
299 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
300 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
301 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
302 n++;
303 return (unsigned int) n;
304 }
305
306 /*
307 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
308 *
309 * The total pulse clock count is an 18 bit pulse width timer count as the most
310 * significant part and (up to) 16 bit clock divider count as a modulus.
311 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
312 * width timer count's least significant bit.
313 */
314 static u64 ns_to_pulse_clocks(u32 ns)
315 {
316 u64 clocks;
317 u32 rem;
318 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
319 rem = do_div(clocks, 1000); /* /1000 = cycles */
320 if (rem >= 1000 / 2)
321 clocks++;
322 return clocks;
323 }
324
325 static u16 pulse_clocks_to_clock_divider(u64 count)
326 {
327 do_div(count, (FIFO_RXTX << 2) | 0x3);
328
329 /* net result needs to be rounded down and decremented by 1 */
330 if (count > RXCLK_RCD + 1)
331 count = RXCLK_RCD;
332 else if (count < 2)
333 count = 1;
334 else
335 count--;
336 return (u16) count;
337 }
338
339 /*
340 * IR Control Register helpers
341 */
342 enum tx_fifo_watermark {
343 TX_FIFO_HALF_EMPTY = 0,
344 TX_FIFO_EMPTY = CNTRL_TIC,
345 };
346
347 enum rx_fifo_watermark {
348 RX_FIFO_HALF_FULL = 0,
349 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
350 };
351
352 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
353 enum tx_fifo_watermark level)
354 {
355 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
356 }
357
358 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
359 enum rx_fifo_watermark level)
360 {
361 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
362 }
363
364 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
365 {
366 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
367 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
368 }
369
370 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
371 {
372 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
373 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
374 }
375
376 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
377 bool enable)
378 {
379 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
380 enable ? CNTRL_MOD : 0);
381 }
382
383 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
384 bool enable)
385 {
386 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
387 enable ? CNTRL_DMD : 0);
388 }
389
390 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
391 u32 edge_types)
392 {
393 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
394 edge_types & CNTRL_EDG_BOTH);
395 }
396
397 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
398 unsigned int carrier,
399 unsigned int *carrier_range_low,
400 unsigned int *carrier_range_high)
401 {
402 u32 v;
403 unsigned int c16 = carrier * 16;
404
405 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
406 v = CNTRL_WIN_3_4;
407 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
408 } else {
409 v = CNTRL_WIN_3_3;
410 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
411 }
412
413 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
414 v |= CNTRL_WIN_4_3;
415 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
416 } else {
417 v |= CNTRL_WIN_3_3;
418 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
419 }
420 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
421 }
422
423 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
424 bool invert)
425 {
426 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
427 invert ? CNTRL_CPL : 0);
428 }
429
430 static inline void control_tx_level_invert(struct cx23885_dev *dev,
431 bool invert)
432 {
433 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
434 invert ? CNTRL_IVO : 0);
435 }
436
437 /*
438 * IR Rx & Tx Clock Register helpers
439 */
440 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
441 unsigned int freq,
442 u16 *divider)
443 {
444 *divider = carrier_freq_to_clock_divider(freq);
445 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
446 return clock_divider_to_carrier_freq(*divider);
447 }
448
449 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
450 unsigned int freq,
451 u16 *divider)
452 {
453 *divider = carrier_freq_to_clock_divider(freq);
454 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
455 return clock_divider_to_carrier_freq(*divider);
456 }
457
458 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
459 u16 *divider)
460 {
461 u64 pulse_clocks;
462
463 if (ns > IR_MAX_DURATION)
464 ns = IR_MAX_DURATION;
465 pulse_clocks = ns_to_pulse_clocks(ns);
466 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
467 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
468 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
469 }
470
471 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
472 u16 *divider)
473 {
474 u64 pulse_clocks;
475
476 if (ns > IR_MAX_DURATION)
477 ns = IR_MAX_DURATION;
478 pulse_clocks = ns_to_pulse_clocks(ns);
479 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
480 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
481 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
482 }
483
484 /*
485 * IR Tx Carrier Duty Cycle register helpers
486 */
487 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
488 unsigned int duty_cycle)
489 {
490 u32 n;
491 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
492 if (n != 0)
493 n--;
494 if (n > 15)
495 n = 15;
496 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
497 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
498 }
499
500 /*
501 * IR Filter Register helpers
502 */
503 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
504 {
505 u32 count = ns_to_lpf_count(min_width_ns);
506 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
507 return lpf_count_to_ns(count);
508 }
509
510 /*
511 * IR IRQ Enable Register helpers
512 */
513 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
514 {
515 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
516 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
517 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
518 }
519
520 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
521 {
522 mask &= IRQEN_TSE;
523 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
524 }
525
526 /*
527 * V4L2 Subdevice IR Ops
528 */
529 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
530 bool *handled)
531 {
532 struct cx23888_ir_state *state = to_state(sd);
533 struct cx23885_dev *dev = state->dev;
534 unsigned long flags;
535
536 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
537 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
538 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
539
540 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
541 unsigned int i, j, k;
542 u32 events, v;
543 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
544
545 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
546 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
547 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
548 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
549
550 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
551 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
552 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
553 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
554
555 *handled = false;
556 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
557 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
558 rto ? "rto" : " ", ror ? "ror" : " ",
559 stats & STATS_TBY ? "tby" : " ",
560 stats & STATS_RBY ? "rby" : " ");
561
562 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
563 tse ? "tse" : " ", rse ? "rse" : " ",
564 rte ? "rte" : " ", roe ? "roe" : " ");
565
566 /*
567 * Transmitter interrupt service
568 */
569 if (tse && tsr) {
570 /*
571 * TODO:
572 * Check the watermark threshold setting
573 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
574 * Push the data to the hardware FIFO.
575 * If there was nothing more to send in the tx_kfifo, disable
576 * the TSR IRQ and notify the v4l2_device.
577 * If there was something in the tx_kfifo, check the tx_kfifo
578 * level and notify the v4l2_device, if it is low.
579 */
580 /* For now, inhibit TSR interrupt until Tx is implemented */
581 irqenable_tx(dev, 0);
582 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
583 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
584 *handled = true;
585 }
586
587 /*
588 * Receiver interrupt service
589 */
590 kror = 0;
591 if ((rse && rsr) || (rte && rto)) {
592 /*
593 * Receive data on RSR to clear the STATS_RSR.
594 * Receive data on RTO, since we may not have yet hit the RSR
595 * watermark when we receive the RTO.
596 */
597 for (i = 0, v = FIFO_RX_NDV;
598 (v & FIFO_RX_NDV) && !kror; i = 0) {
599 for (j = 0;
600 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
601 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
602 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
603 i++;
604 }
605 if (i == 0)
606 break;
607 j = i * sizeof(union cx23888_ir_fifo_rec);
608 k = kfifo_in_locked(&state->rx_kfifo,
609 (unsigned char *) rx_data, j,
610 &state->rx_kfifo_lock);
611 if (k != j)
612 kror++; /* rx_kfifo over run */
613 }
614 *handled = true;
615 }
616
617 events = 0;
618 v = 0;
619 if (kror) {
620 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
621 v4l2_err(sd, "IR receiver software FIFO overrun\n");
622 }
623 if (roe && ror) {
624 /*
625 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
626 * the Rx FIFO Over Run status (STATS_ROR)
627 */
628 v |= CNTRL_RFE;
629 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
630 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
631 }
632 if (rte && rto) {
633 /*
634 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
635 * the Rx Pulse Width Timer Time Out (STATS_RTO)
636 */
637 v |= CNTRL_RXE;
638 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
639 }
640 if (v) {
641 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
642 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
643 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
644 *handled = true;
645 }
646
647 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
648 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
649 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
650 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
651
652 if (events)
653 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
654 return 0;
655 }
656
657 /* Receiver */
658 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
659 ssize_t *num)
660 {
661 struct cx23888_ir_state *state = to_state(sd);
662 bool invert = (bool) atomic_read(&state->rx_invert);
663 u16 divider = (u16) atomic_read(&state->rxclk_divider);
664
665 unsigned int i, n;
666 union cx23888_ir_fifo_rec *p;
667 unsigned u, v, w;
668
669 n = count / sizeof(union cx23888_ir_fifo_rec)
670 * sizeof(union cx23888_ir_fifo_rec);
671 if (n == 0) {
672 *num = 0;
673 return 0;
674 }
675
676 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
677
678 n /= sizeof(union cx23888_ir_fifo_rec);
679 *num = n * sizeof(union cx23888_ir_fifo_rec);
680
681 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
682
683 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
684 /* Assume RTO was because of no IR light input */
685 u = 0;
686 w = 1;
687 } else {
688 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
689 if (invert)
690 u = u ? 0 : 1;
691 w = 0;
692 }
693
694 v = (unsigned) pulse_width_count_to_ns(
695 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
696 if (v > IR_MAX_DURATION)
697 v = IR_MAX_DURATION;
698
699 init_ir_raw_event(&p->ir_core_data);
700 p->ir_core_data.pulse = u;
701 p->ir_core_data.duration = v;
702 p->ir_core_data.timeout = w;
703
704 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
705 v, u ? "mark" : "space", w ? "(timed out)" : "");
706 if (w)
707 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
708 }
709 return 0;
710 }
711
712 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
713 struct v4l2_subdev_ir_parameters *p)
714 {
715 struct cx23888_ir_state *state = to_state(sd);
716 mutex_lock(&state->rx_params_lock);
717 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
718 mutex_unlock(&state->rx_params_lock);
719 return 0;
720 }
721
722 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
723 {
724 struct cx23888_ir_state *state = to_state(sd);
725 struct cx23885_dev *dev = state->dev;
726
727 mutex_lock(&state->rx_params_lock);
728
729 /* Disable or slow down all IR Rx circuits and counters */
730 irqenable_rx(dev, 0);
731 control_rx_enable(dev, false);
732 control_rx_demodulation_enable(dev, false);
733 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
734 filter_rx_s_min_width(dev, 0);
735 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
736
737 state->rx_params.shutdown = true;
738
739 mutex_unlock(&state->rx_params_lock);
740 return 0;
741 }
742
743 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
744 struct v4l2_subdev_ir_parameters *p)
745 {
746 struct cx23888_ir_state *state = to_state(sd);
747 struct cx23885_dev *dev = state->dev;
748 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
749 u16 rxclk_divider;
750
751 if (p->shutdown)
752 return cx23888_ir_rx_shutdown(sd);
753
754 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
755 return -ENOSYS;
756
757 mutex_lock(&state->rx_params_lock);
758
759 o->shutdown = p->shutdown;
760
761 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
762
763 o->bytes_per_data_element = p->bytes_per_data_element
764 = sizeof(union cx23888_ir_fifo_rec);
765
766 /* Before we tweak the hardware, we have to disable the receiver */
767 irqenable_rx(dev, 0);
768 control_rx_enable(dev, false);
769
770 control_rx_demodulation_enable(dev, p->modulation);
771 o->modulation = p->modulation;
772
773 if (p->modulation) {
774 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
775 &rxclk_divider);
776
777 o->carrier_freq = p->carrier_freq;
778
779 o->duty_cycle = p->duty_cycle = 50;
780
781 control_rx_s_carrier_window(dev, p->carrier_freq,
782 &p->carrier_range_lower,
783 &p->carrier_range_upper);
784 o->carrier_range_lower = p->carrier_range_lower;
785 o->carrier_range_upper = p->carrier_range_upper;
786
787 p->max_pulse_width =
788 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
789 } else {
790 p->max_pulse_width =
791 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
792 &rxclk_divider);
793 }
794 o->max_pulse_width = p->max_pulse_width;
795 atomic_set(&state->rxclk_divider, rxclk_divider);
796
797 p->noise_filter_min_width =
798 filter_rx_s_min_width(dev, p->noise_filter_min_width);
799 o->noise_filter_min_width = p->noise_filter_min_width;
800
801 p->resolution = clock_divider_to_resolution(rxclk_divider);
802 o->resolution = p->resolution;
803
804 /* FIXME - make this dependent on resolution for better performance */
805 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
806
807 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
808
809 o->invert_level = p->invert_level;
810 atomic_set(&state->rx_invert, p->invert_level);
811
812 o->interrupt_enable = p->interrupt_enable;
813 o->enable = p->enable;
814 if (p->enable) {
815 unsigned long flags;
816
817 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
818 kfifo_reset(&state->rx_kfifo);
819 /* reset tx_fifo too if there is one... */
820 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
821 if (p->interrupt_enable)
822 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
823 control_rx_enable(dev, p->enable);
824 }
825
826 mutex_unlock(&state->rx_params_lock);
827 return 0;
828 }
829
830 /* Transmitter */
831 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
832 ssize_t *num)
833 {
834 struct cx23888_ir_state *state = to_state(sd);
835 struct cx23885_dev *dev = state->dev;
836 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
837 irqenable_tx(dev, IRQEN_TSE);
838 *num = count;
839 return 0;
840 }
841
842 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
843 struct v4l2_subdev_ir_parameters *p)
844 {
845 struct cx23888_ir_state *state = to_state(sd);
846 mutex_lock(&state->tx_params_lock);
847 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
848 mutex_unlock(&state->tx_params_lock);
849 return 0;
850 }
851
852 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
853 {
854 struct cx23888_ir_state *state = to_state(sd);
855 struct cx23885_dev *dev = state->dev;
856
857 mutex_lock(&state->tx_params_lock);
858
859 /* Disable or slow down all IR Tx circuits and counters */
860 irqenable_tx(dev, 0);
861 control_tx_enable(dev, false);
862 control_tx_modulation_enable(dev, false);
863 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
864
865 state->tx_params.shutdown = true;
866
867 mutex_unlock(&state->tx_params_lock);
868 return 0;
869 }
870
871 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
872 struct v4l2_subdev_ir_parameters *p)
873 {
874 struct cx23888_ir_state *state = to_state(sd);
875 struct cx23885_dev *dev = state->dev;
876 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
877 u16 txclk_divider;
878
879 if (p->shutdown)
880 return cx23888_ir_tx_shutdown(sd);
881
882 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
883 return -ENOSYS;
884
885 mutex_lock(&state->tx_params_lock);
886
887 o->shutdown = p->shutdown;
888
889 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
890
891 o->bytes_per_data_element = p->bytes_per_data_element
892 = sizeof(union cx23888_ir_fifo_rec);
893
894 /* Before we tweak the hardware, we have to disable the transmitter */
895 irqenable_tx(dev, 0);
896 control_tx_enable(dev, false);
897
898 control_tx_modulation_enable(dev, p->modulation);
899 o->modulation = p->modulation;
900
901 if (p->modulation) {
902 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
903 &txclk_divider);
904 o->carrier_freq = p->carrier_freq;
905
906 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
907 o->duty_cycle = p->duty_cycle;
908
909 p->max_pulse_width =
910 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
911 } else {
912 p->max_pulse_width =
913 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
914 &txclk_divider);
915 }
916 o->max_pulse_width = p->max_pulse_width;
917 atomic_set(&state->txclk_divider, txclk_divider);
918
919 p->resolution = clock_divider_to_resolution(txclk_divider);
920 o->resolution = p->resolution;
921
922 /* FIXME - make this dependent on resolution for better performance */
923 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
924
925 control_tx_polarity_invert(dev, p->invert_carrier_sense);
926 o->invert_carrier_sense = p->invert_carrier_sense;
927
928 control_tx_level_invert(dev, p->invert_level);
929 o->invert_level = p->invert_level;
930
931 o->interrupt_enable = p->interrupt_enable;
932 o->enable = p->enable;
933 if (p->enable) {
934 if (p->interrupt_enable)
935 irqenable_tx(dev, IRQEN_TSE);
936 control_tx_enable(dev, p->enable);
937 }
938
939 mutex_unlock(&state->tx_params_lock);
940 return 0;
941 }
942
943
944 /*
945 * V4L2 Subdevice Core Ops
946 */
947 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
948 {
949 struct cx23888_ir_state *state = to_state(sd);
950 struct cx23885_dev *dev = state->dev;
951 char *s;
952 int i, j;
953
954 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
955 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
956 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
957 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
958 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
959 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
960 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
961
962 v4l2_info(sd, "IR Receiver:\n");
963 v4l2_info(sd, "\tEnabled: %s\n",
964 cntrl & CNTRL_RXE ? "yes" : "no");
965 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
966 cntrl & CNTRL_DMD ? "enabled" : "disabled");
967 v4l2_info(sd, "\tFIFO: %s\n",
968 cntrl & CNTRL_RFE ? "enabled" : "disabled");
969 switch (cntrl & CNTRL_EDG) {
970 case CNTRL_EDG_NONE:
971 s = "disabled";
972 break;
973 case CNTRL_EDG_FALL:
974 s = "falling edge";
975 break;
976 case CNTRL_EDG_RISE:
977 s = "rising edge";
978 break;
979 case CNTRL_EDG_BOTH:
980 s = "rising & falling edges";
981 break;
982 default:
983 s = "??? edge";
984 break;
985 }
986 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
987 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
988 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
989 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
990 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
991 v4l2_info(sd, "\tLoopback mode: %s\n",
992 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
993 if (cntrl & CNTRL_DMD) {
994 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
995 clock_divider_to_carrier_freq(rxclk));
996 switch (cntrl & CNTRL_WIN) {
997 case CNTRL_WIN_3_3:
998 i = 3;
999 j = 3;
1000 break;
1001 case CNTRL_WIN_4_3:
1002 i = 4;
1003 j = 3;
1004 break;
1005 case CNTRL_WIN_3_4:
1006 i = 3;
1007 j = 4;
1008 break;
1009 case CNTRL_WIN_4_4:
1010 i = 4;
1011 j = 4;
1012 break;
1013 default:
1014 i = 0;
1015 j = 0;
1016 break;
1017 }
1018 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1019 "-%1d/+%1d, %u to %u Hz\n", i, j,
1020 clock_divider_to_freq(rxclk, 16 + j),
1021 clock_divider_to_freq(rxclk, 16 - i));
1022 }
1023 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1024 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1025 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1026 v4l2_info(sd, "\tLow pass filter: %s\n",
1027 filtr ? "enabled" : "disabled");
1028 if (filtr)
1029 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1030 "%u ns\n",
1031 lpf_count_to_us(filtr),
1032 lpf_count_to_ns(filtr));
1033 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1034 stats & STATS_RTO ? "yes" : "no");
1035 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1036 irqen & IRQEN_RTE ? "enabled" : "disabled");
1037 v4l2_info(sd, "\tFIFO overrun: %s\n",
1038 stats & STATS_ROR ? "yes" : "no");
1039 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1040 irqen & IRQEN_ROE ? "enabled" : "disabled");
1041 v4l2_info(sd, "\tBusy: %s\n",
1042 stats & STATS_RBY ? "yes" : "no");
1043 v4l2_info(sd, "\tFIFO service requested: %s\n",
1044 stats & STATS_RSR ? "yes" : "no");
1045 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1046 irqen & IRQEN_RSE ? "enabled" : "disabled");
1047
1048 v4l2_info(sd, "IR Transmitter:\n");
1049 v4l2_info(sd, "\tEnabled: %s\n",
1050 cntrl & CNTRL_TXE ? "yes" : "no");
1051 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1052 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1053 v4l2_info(sd, "\tFIFO: %s\n",
1054 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1055 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1056 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1057 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1058 cntrl & CNTRL_IVO ? "yes" : "no");
1059 v4l2_info(sd, "\tCarrier polarity: %s\n",
1060 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1061 : "space:noburst mark:burst");
1062 if (cntrl & CNTRL_MOD) {
1063 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1064 clock_divider_to_carrier_freq(txclk));
1065 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1066 cduty + 1);
1067 }
1068 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1069 pulse_width_count_to_us(FIFO_RXTX, txclk),
1070 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1071 v4l2_info(sd, "\tBusy: %s\n",
1072 stats & STATS_TBY ? "yes" : "no");
1073 v4l2_info(sd, "\tFIFO service requested: %s\n",
1074 stats & STATS_TSR ? "yes" : "no");
1075 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1076 irqen & IRQEN_TSE ? "enabled" : "disabled");
1077
1078 return 0;
1079 }
1080
1081 #ifdef CONFIG_VIDEO_ADV_DEBUG
1082 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1083 struct v4l2_dbg_register *reg)
1084 {
1085 struct cx23888_ir_state *state = to_state(sd);
1086 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1087
1088 if ((addr & 0x3) != 0)
1089 return -EINVAL;
1090 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1091 return -EINVAL;
1092 reg->size = 4;
1093 reg->val = cx23888_ir_read4(state->dev, addr);
1094 return 0;
1095 }
1096
1097 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1098 const struct v4l2_dbg_register *reg)
1099 {
1100 struct cx23888_ir_state *state = to_state(sd);
1101 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1102
1103 if ((addr & 0x3) != 0)
1104 return -EINVAL;
1105 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1106 return -EINVAL;
1107 cx23888_ir_write4(state->dev, addr, reg->val);
1108 return 0;
1109 }
1110 #endif
1111
1112 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1113 .log_status = cx23888_ir_log_status,
1114 #ifdef CONFIG_VIDEO_ADV_DEBUG
1115 .g_register = cx23888_ir_g_register,
1116 .s_register = cx23888_ir_s_register,
1117 #endif
1118 .interrupt_service_routine = cx23888_ir_irq_handler,
1119 };
1120
1121 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1122 .rx_read = cx23888_ir_rx_read,
1123 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1124 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1125
1126 .tx_write = cx23888_ir_tx_write,
1127 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1128 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1129 };
1130
1131 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1132 .core = &cx23888_ir_core_ops,
1133 .ir = &cx23888_ir_ir_ops,
1134 };
1135
1136 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1137 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1138 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1139
1140 .enable = false,
1141 .interrupt_enable = false,
1142 .shutdown = true,
1143
1144 .modulation = true,
1145 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1146
1147 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1148 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1149 .noise_filter_min_width = 333333, /* ns */
1150 .carrier_range_lower = 35000,
1151 .carrier_range_upper = 37000,
1152 .invert_level = false,
1153 };
1154
1155 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1156 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1157 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1158
1159 .enable = false,
1160 .interrupt_enable = false,
1161 .shutdown = true,
1162
1163 .modulation = true,
1164 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1165 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1166 .invert_level = false,
1167 .invert_carrier_sense = false,
1168 };
1169
1170 int cx23888_ir_probe(struct cx23885_dev *dev)
1171 {
1172 struct cx23888_ir_state *state;
1173 struct v4l2_subdev *sd;
1174 struct v4l2_subdev_ir_parameters default_params;
1175 int ret;
1176
1177 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1178 if (state == NULL)
1179 return -ENOMEM;
1180
1181 spin_lock_init(&state->rx_kfifo_lock);
1182 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1183 return -ENOMEM;
1184
1185 state->dev = dev;
1186 sd = &state->sd;
1187
1188 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1189 v4l2_set_subdevdata(sd, state);
1190 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1191 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1192 sd->grp_id = CX23885_HW_888_IR;
1193
1194 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1195 if (ret == 0) {
1196 /*
1197 * Ensure no interrupts arrive from '888 specific conditions,
1198 * since we ignore them in this driver to have commonality with
1199 * similar IR controller cores.
1200 */
1201 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1202
1203 mutex_init(&state->rx_params_lock);
1204 default_params = default_rx_params;
1205 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1206
1207 mutex_init(&state->tx_params_lock);
1208 default_params = default_tx_params;
1209 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1210 } else {
1211 kfifo_free(&state->rx_kfifo);
1212 }
1213 return ret;
1214 }
1215
1216 int cx23888_ir_remove(struct cx23885_dev *dev)
1217 {
1218 struct v4l2_subdev *sd;
1219 struct cx23888_ir_state *state;
1220
1221 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1222 if (sd == NULL)
1223 return -ENODEV;
1224
1225 cx23888_ir_rx_shutdown(sd);
1226 cx23888_ir_tx_shutdown(sd);
1227
1228 state = to_state(sd);
1229 v4l2_device_unregister_subdev(sd);
1230 kfifo_free(&state->rx_kfifo);
1231 kfree(state);
1232 /* Nothing more to free() as state held the actual v4l2_subdev object */
1233 return 0;
1234 }
This page took 0.08928 seconds and 5 git commands to generate.