Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[deliverable/linux.git] / drivers / media / pci / cx23885 / cx23888-ir.c
1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
3 *
4 * CX23888 Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
26
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
30
31 #include "cx23885.h"
32
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
36
37 #define CX23888_IR_REG_BASE 0x170000
38 /*
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
41 */
42 #define CX23888_IR_CNTRL_REG 0x170000
43 #define CNTRL_WIN_3_3 0x00000000
44 #define CNTRL_WIN_4_3 0x00000001
45 #define CNTRL_WIN_3_4 0x00000002
46 #define CNTRL_WIN_4_4 0x00000003
47 #define CNTRL_WIN 0x00000003
48 #define CNTRL_EDG_NONE 0x00000000
49 #define CNTRL_EDG_FALL 0x00000004
50 #define CNTRL_EDG_RISE 0x00000008
51 #define CNTRL_EDG_BOTH 0x0000000C
52 #define CNTRL_EDG 0x0000000C
53 #define CNTRL_DMD 0x00000010
54 #define CNTRL_MOD 0x00000020
55 #define CNTRL_RFE 0x00000040
56 #define CNTRL_TFE 0x00000080
57 #define CNTRL_RXE 0x00000100
58 #define CNTRL_TXE 0x00000200
59 #define CNTRL_RIC 0x00000400
60 #define CNTRL_TIC 0x00000800
61 #define CNTRL_CPL 0x00001000
62 #define CNTRL_LBM 0x00002000
63 #define CNTRL_R 0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO 0x00008000
66
67 #define CX23888_IR_TXCLK_REG 0x170004
68 #define TXCLK_TCD 0x0000FFFF
69
70 #define CX23888_IR_RXCLK_REG 0x170008
71 #define RXCLK_RCD 0x0000FFFF
72
73 #define CX23888_IR_CDUTY_REG 0x17000C
74 #define CDUTY_CDC 0x0000000F
75
76 #define CX23888_IR_STATS_REG 0x170010
77 #define STATS_RTO 0x00000001
78 #define STATS_ROR 0x00000002
79 #define STATS_RBY 0x00000004
80 #define STATS_TBY 0x00000008
81 #define STATS_RSR 0x00000010
82 #define STATS_TSR 0x00000020
83
84 #define CX23888_IR_IRQEN_REG 0x170014
85 #define IRQEN_RTE 0x00000001
86 #define IRQEN_ROE 0x00000002
87 #define IRQEN_RSE 0x00000010
88 #define IRQEN_TSE 0x00000020
89
90 #define CX23888_IR_FILTR_REG 0x170018
91 #define FILTR_LPF 0x0000FFFF
92
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG 0x170040
95 #define FIFO_RXTX 0x0000FFFF
96 #define FIFO_RXTX_LVL 0x00010000
97 #define FIFO_RXTX_RTO 0x0001FFFF
98 #define FIFO_RX_NDV 0x00020000
99 #define FIFO_RX_DEPTH 8
100 #define FIFO_TX_DEPTH 8
101
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG 0x17001C
104 #define CX23888_IR_TIMOL_REG 0x170020
105 #define CX23888_IR_WAKE0_REG 0x170024
106 #define CX23888_IR_WAKE1_REG 0x170028
107 #define CX23888_IR_WAKE2_REG 0x17002C
108 #define CX23888_IR_MASK0_REG 0x170030
109 #define CX23888_IR_MASK1_REG 0x170034
110 #define CX23888_IR_MAKS2_REG 0x170038
111 #define CX23888_IR_DPIPG_REG 0x17003C
112 #define CX23888_IR_LEARN_REG 0x170044
113
114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
116
117 /*
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
121 */
122 union cx23888_ir_fifo_rec {
123 u32 hw_fifo_data;
124 struct ir_raw_event ir_core_data;
125 };
126
127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
129
130 struct cx23888_ir_state {
131 struct v4l2_subdev sd;
132 struct cx23885_dev *dev;
133 u32 id;
134 u32 rev;
135
136 struct v4l2_subdev_ir_parameters rx_params;
137 struct mutex rx_params_lock;
138 atomic_t rxclk_divider;
139 atomic_t rx_invert;
140
141 struct kfifo rx_kfifo;
142 spinlock_t rx_kfifo_lock;
143
144 struct v4l2_subdev_ir_parameters tx_params;
145 struct mutex tx_params_lock;
146 atomic_t txclk_divider;
147 };
148
149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
150 {
151 return v4l2_get_subdevdata(sd);
152 }
153
154 /*
155 * IR register block read and write functions
156 */
157 static
158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
159 {
160 cx_write(addr, value);
161 return 0;
162 }
163
164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
165 {
166 return cx_read(addr);
167 }
168
169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170 u32 and_mask, u32 or_value)
171 {
172 cx_andor(addr, ~and_mask, or_value);
173 return 0;
174 }
175
176 /*
177 * Rx and Tx Clock Divider register computations
178 *
179 * Note the largest clock divider value of 0xffff corresponds to:
180 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181 * which fits in 21 bits, so we'll use unsigned int for time arguments.
182 */
183 static inline u16 count_to_clock_divider(unsigned int d)
184 {
185 if (d > RXCLK_RCD + 1)
186 d = RXCLK_RCD;
187 else if (d < 2)
188 d = 1;
189 else
190 d--;
191 return (u16) d;
192 }
193
194 static inline u16 ns_to_clock_divider(unsigned int ns)
195 {
196 return count_to_clock_divider(
197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
198 }
199
200 static inline unsigned int clock_divider_to_ns(unsigned int divider)
201 {
202 /* Period of the Rx or Tx clock in ns */
203 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204 CX23888_IR_REFCLK_FREQ / 1000000);
205 }
206
207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
208 {
209 return count_to_clock_divider(
210 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
211 }
212
213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
214 {
215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
216 }
217
218 static inline u16 freq_to_clock_divider(unsigned int freq,
219 unsigned int rollovers)
220 {
221 return count_to_clock_divider(
222 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
223 }
224
225 static inline unsigned int clock_divider_to_freq(unsigned int divider,
226 unsigned int rollovers)
227 {
228 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229 (divider + 1) * rollovers);
230 }
231
232 /*
233 * Low Pass Filter register calculations
234 *
235 * Note the largest count value of 0xffff corresponds to:
236 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237 * which fits in 21 bits, so we'll use unsigned int for time arguments.
238 */
239 static inline u16 count_to_lpf_count(unsigned int d)
240 {
241 if (d > FILTR_LPF)
242 d = FILTR_LPF;
243 else if (d < 4)
244 d = 0;
245 return (u16) d;
246 }
247
248 static inline u16 ns_to_lpf_count(unsigned int ns)
249 {
250 return count_to_lpf_count(
251 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
252 }
253
254 static inline unsigned int lpf_count_to_ns(unsigned int count)
255 {
256 /* Duration of the Low Pass Filter rejection window in ns */
257 return DIV_ROUND_CLOSEST(count * 1000,
258 CX23888_IR_REFCLK_FREQ / 1000000);
259 }
260
261 static inline unsigned int lpf_count_to_us(unsigned int count)
262 {
263 /* Duration of the Low Pass Filter rejection window in us */
264 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
265 }
266
267 /*
268 * FIFO register pulse width count compuations
269 */
270 static u32 clock_divider_to_resolution(u16 divider)
271 {
272 /*
273 * Resolution is the duration of 1 tick of the readable portion of
274 * of the pulse width counter as read from the FIFO. The two lsb's are
275 * not readable, hence the << 2. This function returns ns.
276 */
277 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
278 CX23888_IR_REFCLK_FREQ / 1000000);
279 }
280
281 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
282 {
283 u64 n;
284 u32 rem;
285
286 /*
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
289 */
290 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 n++;
294 return n;
295 }
296
297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
298 {
299 u64 n;
300 u32 rem;
301
302 /*
303 * The 2 lsb's of the pulse width timer count are not readable, hence
304 * the (count << 2) | 0x3
305 */
306 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
307 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309 n++;
310 return (unsigned int) n;
311 }
312
313 /*
314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
315 *
316 * The total pulse clock count is an 18 bit pulse width timer count as the most
317 * significant part and (up to) 16 bit clock divider count as a modulus.
318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319 * width timer count's least significant bit.
320 */
321 static u64 ns_to_pulse_clocks(u32 ns)
322 {
323 u64 clocks;
324 u32 rem;
325 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
326 rem = do_div(clocks, 1000); /* /1000 = cycles */
327 if (rem >= 1000 / 2)
328 clocks++;
329 return clocks;
330 }
331
332 static u16 pulse_clocks_to_clock_divider(u64 count)
333 {
334 do_div(count, (FIFO_RXTX << 2) | 0x3);
335
336 /* net result needs to be rounded down and decremented by 1 */
337 if (count > RXCLK_RCD + 1)
338 count = RXCLK_RCD;
339 else if (count < 2)
340 count = 1;
341 else
342 count--;
343 return (u16) count;
344 }
345
346 /*
347 * IR Control Register helpers
348 */
349 enum tx_fifo_watermark {
350 TX_FIFO_HALF_EMPTY = 0,
351 TX_FIFO_EMPTY = CNTRL_TIC,
352 };
353
354 enum rx_fifo_watermark {
355 RX_FIFO_HALF_FULL = 0,
356 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
357 };
358
359 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
360 enum tx_fifo_watermark level)
361 {
362 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
363 }
364
365 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
366 enum rx_fifo_watermark level)
367 {
368 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
369 }
370
371 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
372 {
373 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
374 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
375 }
376
377 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
378 {
379 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
380 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
381 }
382
383 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
384 bool enable)
385 {
386 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
387 enable ? CNTRL_MOD : 0);
388 }
389
390 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
391 bool enable)
392 {
393 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
394 enable ? CNTRL_DMD : 0);
395 }
396
397 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
398 u32 edge_types)
399 {
400 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
401 edge_types & CNTRL_EDG_BOTH);
402 }
403
404 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
405 unsigned int carrier,
406 unsigned int *carrier_range_low,
407 unsigned int *carrier_range_high)
408 {
409 u32 v;
410 unsigned int c16 = carrier * 16;
411
412 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
413 v = CNTRL_WIN_3_4;
414 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
415 } else {
416 v = CNTRL_WIN_3_3;
417 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
418 }
419
420 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
421 v |= CNTRL_WIN_4_3;
422 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
423 } else {
424 v |= CNTRL_WIN_3_3;
425 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
426 }
427 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
428 }
429
430 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
431 bool invert)
432 {
433 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
434 invert ? CNTRL_CPL : 0);
435 }
436
437 static inline void control_tx_level_invert(struct cx23885_dev *dev,
438 bool invert)
439 {
440 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
441 invert ? CNTRL_IVO : 0);
442 }
443
444 /*
445 * IR Rx & Tx Clock Register helpers
446 */
447 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
448 unsigned int freq,
449 u16 *divider)
450 {
451 *divider = carrier_freq_to_clock_divider(freq);
452 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
453 return clock_divider_to_carrier_freq(*divider);
454 }
455
456 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
457 unsigned int freq,
458 u16 *divider)
459 {
460 *divider = carrier_freq_to_clock_divider(freq);
461 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
462 return clock_divider_to_carrier_freq(*divider);
463 }
464
465 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
466 u16 *divider)
467 {
468 u64 pulse_clocks;
469
470 if (ns > IR_MAX_DURATION)
471 ns = IR_MAX_DURATION;
472 pulse_clocks = ns_to_pulse_clocks(ns);
473 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
474 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
475 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
476 }
477
478 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
479 u16 *divider)
480 {
481 u64 pulse_clocks;
482
483 if (ns > IR_MAX_DURATION)
484 ns = IR_MAX_DURATION;
485 pulse_clocks = ns_to_pulse_clocks(ns);
486 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
487 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
488 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
489 }
490
491 /*
492 * IR Tx Carrier Duty Cycle register helpers
493 */
494 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
495 unsigned int duty_cycle)
496 {
497 u32 n;
498 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
499 if (n != 0)
500 n--;
501 if (n > 15)
502 n = 15;
503 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
504 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
505 }
506
507 /*
508 * IR Filter Register helpers
509 */
510 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
511 {
512 u32 count = ns_to_lpf_count(min_width_ns);
513 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
514 return lpf_count_to_ns(count);
515 }
516
517 /*
518 * IR IRQ Enable Register helpers
519 */
520 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
521 {
522 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
523 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
524 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
525 }
526
527 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
528 {
529 mask &= IRQEN_TSE;
530 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
531 }
532
533 /*
534 * V4L2 Subdevice IR Ops
535 */
536 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
537 bool *handled)
538 {
539 struct cx23888_ir_state *state = to_state(sd);
540 struct cx23885_dev *dev = state->dev;
541 unsigned long flags;
542
543 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
544 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
545 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
546
547 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
548 unsigned int i, j, k;
549 u32 events, v;
550 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
551
552 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
553 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
554 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
555 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
556
557 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
558 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
559 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
560 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
561
562 *handled = false;
563 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
564 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
565 rto ? "rto" : " ", ror ? "ror" : " ",
566 stats & STATS_TBY ? "tby" : " ",
567 stats & STATS_RBY ? "rby" : " ");
568
569 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
570 tse ? "tse" : " ", rse ? "rse" : " ",
571 rte ? "rte" : " ", roe ? "roe" : " ");
572
573 /*
574 * Transmitter interrupt service
575 */
576 if (tse && tsr) {
577 /*
578 * TODO:
579 * Check the watermark threshold setting
580 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
581 * Push the data to the hardware FIFO.
582 * If there was nothing more to send in the tx_kfifo, disable
583 * the TSR IRQ and notify the v4l2_device.
584 * If there was something in the tx_kfifo, check the tx_kfifo
585 * level and notify the v4l2_device, if it is low.
586 */
587 /* For now, inhibit TSR interrupt until Tx is implemented */
588 irqenable_tx(dev, 0);
589 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
590 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
591 *handled = true;
592 }
593
594 /*
595 * Receiver interrupt service
596 */
597 kror = 0;
598 if ((rse && rsr) || (rte && rto)) {
599 /*
600 * Receive data on RSR to clear the STATS_RSR.
601 * Receive data on RTO, since we may not have yet hit the RSR
602 * watermark when we receive the RTO.
603 */
604 for (i = 0, v = FIFO_RX_NDV;
605 (v & FIFO_RX_NDV) && !kror; i = 0) {
606 for (j = 0;
607 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
608 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
609 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
610 i++;
611 }
612 if (i == 0)
613 break;
614 j = i * sizeof(union cx23888_ir_fifo_rec);
615 k = kfifo_in_locked(&state->rx_kfifo,
616 (unsigned char *) rx_data, j,
617 &state->rx_kfifo_lock);
618 if (k != j)
619 kror++; /* rx_kfifo over run */
620 }
621 *handled = true;
622 }
623
624 events = 0;
625 v = 0;
626 if (kror) {
627 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
628 v4l2_err(sd, "IR receiver software FIFO overrun\n");
629 }
630 if (roe && ror) {
631 /*
632 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
633 * the Rx FIFO Over Run status (STATS_ROR)
634 */
635 v |= CNTRL_RFE;
636 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
637 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
638 }
639 if (rte && rto) {
640 /*
641 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
642 * the Rx Pulse Width Timer Time Out (STATS_RTO)
643 */
644 v |= CNTRL_RXE;
645 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
646 }
647 if (v) {
648 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
649 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
650 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
651 *handled = true;
652 }
653
654 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
655 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
656 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
657 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
658
659 if (events)
660 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
661 return 0;
662 }
663
664 /* Receiver */
665 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
666 ssize_t *num)
667 {
668 struct cx23888_ir_state *state = to_state(sd);
669 bool invert = (bool) atomic_read(&state->rx_invert);
670 u16 divider = (u16) atomic_read(&state->rxclk_divider);
671
672 unsigned int i, n;
673 union cx23888_ir_fifo_rec *p;
674 unsigned u, v, w;
675
676 n = count / sizeof(union cx23888_ir_fifo_rec)
677 * sizeof(union cx23888_ir_fifo_rec);
678 if (n == 0) {
679 *num = 0;
680 return 0;
681 }
682
683 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
684
685 n /= sizeof(union cx23888_ir_fifo_rec);
686 *num = n * sizeof(union cx23888_ir_fifo_rec);
687
688 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
689
690 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
691 /* Assume RTO was because of no IR light input */
692 u = 0;
693 w = 1;
694 } else {
695 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
696 if (invert)
697 u = u ? 0 : 1;
698 w = 0;
699 }
700
701 v = (unsigned) pulse_width_count_to_ns(
702 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
703 if (v > IR_MAX_DURATION)
704 v = IR_MAX_DURATION;
705
706 init_ir_raw_event(&p->ir_core_data);
707 p->ir_core_data.pulse = u;
708 p->ir_core_data.duration = v;
709 p->ir_core_data.timeout = w;
710
711 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s %s\n",
712 v, u ? "mark" : "space", w ? "(timed out)" : "");
713 if (w)
714 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
715 }
716 return 0;
717 }
718
719 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
720 struct v4l2_subdev_ir_parameters *p)
721 {
722 struct cx23888_ir_state *state = to_state(sd);
723 mutex_lock(&state->rx_params_lock);
724 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
725 mutex_unlock(&state->rx_params_lock);
726 return 0;
727 }
728
729 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
730 {
731 struct cx23888_ir_state *state = to_state(sd);
732 struct cx23885_dev *dev = state->dev;
733
734 mutex_lock(&state->rx_params_lock);
735
736 /* Disable or slow down all IR Rx circuits and counters */
737 irqenable_rx(dev, 0);
738 control_rx_enable(dev, false);
739 control_rx_demodulation_enable(dev, false);
740 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
741 filter_rx_s_min_width(dev, 0);
742 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
743
744 state->rx_params.shutdown = true;
745
746 mutex_unlock(&state->rx_params_lock);
747 return 0;
748 }
749
750 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
751 struct v4l2_subdev_ir_parameters *p)
752 {
753 struct cx23888_ir_state *state = to_state(sd);
754 struct cx23885_dev *dev = state->dev;
755 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
756 u16 rxclk_divider;
757
758 if (p->shutdown)
759 return cx23888_ir_rx_shutdown(sd);
760
761 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
762 return -ENOSYS;
763
764 mutex_lock(&state->rx_params_lock);
765
766 o->shutdown = p->shutdown;
767
768 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
769
770 o->bytes_per_data_element = p->bytes_per_data_element
771 = sizeof(union cx23888_ir_fifo_rec);
772
773 /* Before we tweak the hardware, we have to disable the receiver */
774 irqenable_rx(dev, 0);
775 control_rx_enable(dev, false);
776
777 control_rx_demodulation_enable(dev, p->modulation);
778 o->modulation = p->modulation;
779
780 if (p->modulation) {
781 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
782 &rxclk_divider);
783
784 o->carrier_freq = p->carrier_freq;
785
786 o->duty_cycle = p->duty_cycle = 50;
787
788 control_rx_s_carrier_window(dev, p->carrier_freq,
789 &p->carrier_range_lower,
790 &p->carrier_range_upper);
791 o->carrier_range_lower = p->carrier_range_lower;
792 o->carrier_range_upper = p->carrier_range_upper;
793
794 p->max_pulse_width =
795 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
796 } else {
797 p->max_pulse_width =
798 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
799 &rxclk_divider);
800 }
801 o->max_pulse_width = p->max_pulse_width;
802 atomic_set(&state->rxclk_divider, rxclk_divider);
803
804 p->noise_filter_min_width =
805 filter_rx_s_min_width(dev, p->noise_filter_min_width);
806 o->noise_filter_min_width = p->noise_filter_min_width;
807
808 p->resolution = clock_divider_to_resolution(rxclk_divider);
809 o->resolution = p->resolution;
810
811 /* FIXME - make this dependent on resolution for better performance */
812 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
813
814 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
815
816 o->invert_level = p->invert_level;
817 atomic_set(&state->rx_invert, p->invert_level);
818
819 o->interrupt_enable = p->interrupt_enable;
820 o->enable = p->enable;
821 if (p->enable) {
822 unsigned long flags;
823
824 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
825 kfifo_reset(&state->rx_kfifo);
826 /* reset tx_fifo too if there is one... */
827 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
828 if (p->interrupt_enable)
829 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
830 control_rx_enable(dev, p->enable);
831 }
832
833 mutex_unlock(&state->rx_params_lock);
834 return 0;
835 }
836
837 /* Transmitter */
838 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
839 ssize_t *num)
840 {
841 struct cx23888_ir_state *state = to_state(sd);
842 struct cx23885_dev *dev = state->dev;
843 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
844 irqenable_tx(dev, IRQEN_TSE);
845 *num = count;
846 return 0;
847 }
848
849 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
850 struct v4l2_subdev_ir_parameters *p)
851 {
852 struct cx23888_ir_state *state = to_state(sd);
853 mutex_lock(&state->tx_params_lock);
854 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
855 mutex_unlock(&state->tx_params_lock);
856 return 0;
857 }
858
859 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
860 {
861 struct cx23888_ir_state *state = to_state(sd);
862 struct cx23885_dev *dev = state->dev;
863
864 mutex_lock(&state->tx_params_lock);
865
866 /* Disable or slow down all IR Tx circuits and counters */
867 irqenable_tx(dev, 0);
868 control_tx_enable(dev, false);
869 control_tx_modulation_enable(dev, false);
870 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
871
872 state->tx_params.shutdown = true;
873
874 mutex_unlock(&state->tx_params_lock);
875 return 0;
876 }
877
878 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
879 struct v4l2_subdev_ir_parameters *p)
880 {
881 struct cx23888_ir_state *state = to_state(sd);
882 struct cx23885_dev *dev = state->dev;
883 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
884 u16 txclk_divider;
885
886 if (p->shutdown)
887 return cx23888_ir_tx_shutdown(sd);
888
889 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
890 return -ENOSYS;
891
892 mutex_lock(&state->tx_params_lock);
893
894 o->shutdown = p->shutdown;
895
896 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
897
898 o->bytes_per_data_element = p->bytes_per_data_element
899 = sizeof(union cx23888_ir_fifo_rec);
900
901 /* Before we tweak the hardware, we have to disable the transmitter */
902 irqenable_tx(dev, 0);
903 control_tx_enable(dev, false);
904
905 control_tx_modulation_enable(dev, p->modulation);
906 o->modulation = p->modulation;
907
908 if (p->modulation) {
909 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
910 &txclk_divider);
911 o->carrier_freq = p->carrier_freq;
912
913 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
914 o->duty_cycle = p->duty_cycle;
915
916 p->max_pulse_width =
917 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
918 } else {
919 p->max_pulse_width =
920 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
921 &txclk_divider);
922 }
923 o->max_pulse_width = p->max_pulse_width;
924 atomic_set(&state->txclk_divider, txclk_divider);
925
926 p->resolution = clock_divider_to_resolution(txclk_divider);
927 o->resolution = p->resolution;
928
929 /* FIXME - make this dependent on resolution for better performance */
930 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
931
932 control_tx_polarity_invert(dev, p->invert_carrier_sense);
933 o->invert_carrier_sense = p->invert_carrier_sense;
934
935 control_tx_level_invert(dev, p->invert_level);
936 o->invert_level = p->invert_level;
937
938 o->interrupt_enable = p->interrupt_enable;
939 o->enable = p->enable;
940 if (p->enable) {
941 if (p->interrupt_enable)
942 irqenable_tx(dev, IRQEN_TSE);
943 control_tx_enable(dev, p->enable);
944 }
945
946 mutex_unlock(&state->tx_params_lock);
947 return 0;
948 }
949
950
951 /*
952 * V4L2 Subdevice Core Ops
953 */
954 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
955 {
956 struct cx23888_ir_state *state = to_state(sd);
957 struct cx23885_dev *dev = state->dev;
958 char *s;
959 int i, j;
960
961 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
962 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
963 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
964 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
965 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
966 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
967 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
968
969 v4l2_info(sd, "IR Receiver:\n");
970 v4l2_info(sd, "\tEnabled: %s\n",
971 cntrl & CNTRL_RXE ? "yes" : "no");
972 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
973 cntrl & CNTRL_DMD ? "enabled" : "disabled");
974 v4l2_info(sd, "\tFIFO: %s\n",
975 cntrl & CNTRL_RFE ? "enabled" : "disabled");
976 switch (cntrl & CNTRL_EDG) {
977 case CNTRL_EDG_NONE:
978 s = "disabled";
979 break;
980 case CNTRL_EDG_FALL:
981 s = "falling edge";
982 break;
983 case CNTRL_EDG_RISE:
984 s = "rising edge";
985 break;
986 case CNTRL_EDG_BOTH:
987 s = "rising & falling edges";
988 break;
989 default:
990 s = "??? edge";
991 break;
992 }
993 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
994 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
995 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
996 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
997 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
998 v4l2_info(sd, "\tLoopback mode: %s\n",
999 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1000 if (cntrl & CNTRL_DMD) {
1001 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1002 clock_divider_to_carrier_freq(rxclk));
1003 switch (cntrl & CNTRL_WIN) {
1004 case CNTRL_WIN_3_3:
1005 i = 3;
1006 j = 3;
1007 break;
1008 case CNTRL_WIN_4_3:
1009 i = 4;
1010 j = 3;
1011 break;
1012 case CNTRL_WIN_3_4:
1013 i = 3;
1014 j = 4;
1015 break;
1016 case CNTRL_WIN_4_4:
1017 i = 4;
1018 j = 4;
1019 break;
1020 default:
1021 i = 0;
1022 j = 0;
1023 break;
1024 }
1025 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1026 "-%1d/+%1d, %u to %u Hz\n", i, j,
1027 clock_divider_to_freq(rxclk, 16 + j),
1028 clock_divider_to_freq(rxclk, 16 - i));
1029 }
1030 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1031 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1032 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1033 v4l2_info(sd, "\tLow pass filter: %s\n",
1034 filtr ? "enabled" : "disabled");
1035 if (filtr)
1036 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1037 "%u ns\n",
1038 lpf_count_to_us(filtr),
1039 lpf_count_to_ns(filtr));
1040 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1041 stats & STATS_RTO ? "yes" : "no");
1042 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1043 irqen & IRQEN_RTE ? "enabled" : "disabled");
1044 v4l2_info(sd, "\tFIFO overrun: %s\n",
1045 stats & STATS_ROR ? "yes" : "no");
1046 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1047 irqen & IRQEN_ROE ? "enabled" : "disabled");
1048 v4l2_info(sd, "\tBusy: %s\n",
1049 stats & STATS_RBY ? "yes" : "no");
1050 v4l2_info(sd, "\tFIFO service requested: %s\n",
1051 stats & STATS_RSR ? "yes" : "no");
1052 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1053 irqen & IRQEN_RSE ? "enabled" : "disabled");
1054
1055 v4l2_info(sd, "IR Transmitter:\n");
1056 v4l2_info(sd, "\tEnabled: %s\n",
1057 cntrl & CNTRL_TXE ? "yes" : "no");
1058 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1059 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1060 v4l2_info(sd, "\tFIFO: %s\n",
1061 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1062 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1063 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1064 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1065 cntrl & CNTRL_IVO ? "yes" : "no");
1066 v4l2_info(sd, "\tCarrier polarity: %s\n",
1067 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1068 : "space:noburst mark:burst");
1069 if (cntrl & CNTRL_MOD) {
1070 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1071 clock_divider_to_carrier_freq(txclk));
1072 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1073 cduty + 1);
1074 }
1075 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1076 pulse_width_count_to_us(FIFO_RXTX, txclk),
1077 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1078 v4l2_info(sd, "\tBusy: %s\n",
1079 stats & STATS_TBY ? "yes" : "no");
1080 v4l2_info(sd, "\tFIFO service requested: %s\n",
1081 stats & STATS_TSR ? "yes" : "no");
1082 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1083 irqen & IRQEN_TSE ? "enabled" : "disabled");
1084
1085 return 0;
1086 }
1087
1088 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1089 {
1090 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1091 }
1092
1093 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1094 struct v4l2_dbg_chip_ident *chip)
1095 {
1096 struct cx23888_ir_state *state = to_state(sd);
1097
1098 if (cx23888_ir_dbg_match(&chip->match)) {
1099 chip->ident = state->id;
1100 chip->revision = state->rev;
1101 }
1102 return 0;
1103 }
1104
1105 #ifdef CONFIG_VIDEO_ADV_DEBUG
1106 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1107 struct v4l2_dbg_register *reg)
1108 {
1109 struct cx23888_ir_state *state = to_state(sd);
1110 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1111
1112 if (!cx23888_ir_dbg_match(&reg->match))
1113 return -EINVAL;
1114 if ((addr & 0x3) != 0)
1115 return -EINVAL;
1116 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1117 return -EINVAL;
1118 if (!capable(CAP_SYS_ADMIN))
1119 return -EPERM;
1120 reg->size = 4;
1121 reg->val = cx23888_ir_read4(state->dev, addr);
1122 return 0;
1123 }
1124
1125 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1126 struct v4l2_dbg_register *reg)
1127 {
1128 struct cx23888_ir_state *state = to_state(sd);
1129 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1130
1131 if (!cx23888_ir_dbg_match(&reg->match))
1132 return -EINVAL;
1133 if ((addr & 0x3) != 0)
1134 return -EINVAL;
1135 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1136 return -EINVAL;
1137 if (!capable(CAP_SYS_ADMIN))
1138 return -EPERM;
1139 cx23888_ir_write4(state->dev, addr, reg->val);
1140 return 0;
1141 }
1142 #endif
1143
1144 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1145 .g_chip_ident = cx23888_ir_g_chip_ident,
1146 .log_status = cx23888_ir_log_status,
1147 #ifdef CONFIG_VIDEO_ADV_DEBUG
1148 .g_register = cx23888_ir_g_register,
1149 .s_register = cx23888_ir_s_register,
1150 #endif
1151 .interrupt_service_routine = cx23888_ir_irq_handler,
1152 };
1153
1154 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1155 .rx_read = cx23888_ir_rx_read,
1156 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1157 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1158
1159 .tx_write = cx23888_ir_tx_write,
1160 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1161 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1162 };
1163
1164 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1165 .core = &cx23888_ir_core_ops,
1166 .ir = &cx23888_ir_ir_ops,
1167 };
1168
1169 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1170 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1171 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1172
1173 .enable = false,
1174 .interrupt_enable = false,
1175 .shutdown = true,
1176
1177 .modulation = true,
1178 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1179
1180 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1181 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1182 .noise_filter_min_width = 333333, /* ns */
1183 .carrier_range_lower = 35000,
1184 .carrier_range_upper = 37000,
1185 .invert_level = false,
1186 };
1187
1188 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1189 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1190 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1191
1192 .enable = false,
1193 .interrupt_enable = false,
1194 .shutdown = true,
1195
1196 .modulation = true,
1197 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1198 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1199 .invert_level = false,
1200 .invert_carrier_sense = false,
1201 };
1202
1203 int cx23888_ir_probe(struct cx23885_dev *dev)
1204 {
1205 struct cx23888_ir_state *state;
1206 struct v4l2_subdev *sd;
1207 struct v4l2_subdev_ir_parameters default_params;
1208 int ret;
1209
1210 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1211 if (state == NULL)
1212 return -ENOMEM;
1213
1214 spin_lock_init(&state->rx_kfifo_lock);
1215 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1216 return -ENOMEM;
1217
1218 state->dev = dev;
1219 state->id = V4L2_IDENT_CX23888_IR;
1220 state->rev = 0;
1221 sd = &state->sd;
1222
1223 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1224 v4l2_set_subdevdata(sd, state);
1225 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1226 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1227 sd->grp_id = CX23885_HW_888_IR;
1228
1229 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1230 if (ret == 0) {
1231 /*
1232 * Ensure no interrupts arrive from '888 specific conditions,
1233 * since we ignore them in this driver to have commonality with
1234 * similar IR controller cores.
1235 */
1236 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1237
1238 mutex_init(&state->rx_params_lock);
1239 memcpy(&default_params, &default_rx_params,
1240 sizeof(struct v4l2_subdev_ir_parameters));
1241 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1242
1243 mutex_init(&state->tx_params_lock);
1244 memcpy(&default_params, &default_tx_params,
1245 sizeof(struct v4l2_subdev_ir_parameters));
1246 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1247 } else {
1248 kfifo_free(&state->rx_kfifo);
1249 }
1250 return ret;
1251 }
1252
1253 int cx23888_ir_remove(struct cx23885_dev *dev)
1254 {
1255 struct v4l2_subdev *sd;
1256 struct cx23888_ir_state *state;
1257
1258 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1259 if (sd == NULL)
1260 return -ENODEV;
1261
1262 cx23888_ir_rx_shutdown(sd);
1263 cx23888_ir_tx_shutdown(sd);
1264
1265 state = to_state(sd);
1266 v4l2_device_unregister_subdev(sd);
1267 kfifo_free(&state->rx_kfifo);
1268 kfree(state);
1269 /* Nothing more to free() as state held the actual v4l2_subdev object */
1270 return 0;
1271 }
This page took 0.083952 seconds and 5 git commands to generate.