Merge branch 'for-4.8/hid-led' into for-linus
[deliverable/linux.git] / drivers / media / platform / exynos4-is / fimc-core.c
1 /*
2 * Samsung S5P/EXYNOS4 SoC series FIMC (CAMIF) driver
3 *
4 * Copyright (C) 2010-2012 Samsung Electronics Co., Ltd.
5 * Sylwester Nawrocki <s.nawrocki@samsung.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation, either version 2 of the License,
10 * or (at your option) any later version.
11 */
12
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/bug.h>
18 #include <linux/interrupt.h>
19 #include <linux/device.h>
20 #include <linux/platform_device.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/list.h>
23 #include <linux/mfd/syscon.h>
24 #include <linux/io.h>
25 #include <linux/of.h>
26 #include <linux/of_device.h>
27 #include <linux/slab.h>
28 #include <linux/clk.h>
29 #include <media/v4l2-ioctl.h>
30 #include <media/videobuf2-v4l2.h>
31 #include <media/videobuf2-dma-contig.h>
32
33 #include "fimc-core.h"
34 #include "fimc-reg.h"
35 #include "media-dev.h"
36
37 static char *fimc_clocks[MAX_FIMC_CLOCKS] = {
38 "sclk_fimc", "fimc"
39 };
40
41 static struct fimc_fmt fimc_formats[] = {
42 {
43 .name = "RGB565",
44 .fourcc = V4L2_PIX_FMT_RGB565,
45 .depth = { 16 },
46 .color = FIMC_FMT_RGB565,
47 .memplanes = 1,
48 .colplanes = 1,
49 .flags = FMT_FLAGS_M2M,
50 }, {
51 .name = "BGR666",
52 .fourcc = V4L2_PIX_FMT_BGR666,
53 .depth = { 32 },
54 .color = FIMC_FMT_RGB666,
55 .memplanes = 1,
56 .colplanes = 1,
57 .flags = FMT_FLAGS_M2M,
58 }, {
59 .name = "BGRA8888, 32 bpp",
60 .fourcc = V4L2_PIX_FMT_BGR32,
61 .depth = { 32 },
62 .color = FIMC_FMT_RGB888,
63 .memplanes = 1,
64 .colplanes = 1,
65 .flags = FMT_FLAGS_M2M | FMT_HAS_ALPHA,
66 }, {
67 .name = "ARGB1555",
68 .fourcc = V4L2_PIX_FMT_RGB555,
69 .depth = { 16 },
70 .color = FIMC_FMT_RGB555,
71 .memplanes = 1,
72 .colplanes = 1,
73 .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
74 }, {
75 .name = "ARGB4444",
76 .fourcc = V4L2_PIX_FMT_RGB444,
77 .depth = { 16 },
78 .color = FIMC_FMT_RGB444,
79 .memplanes = 1,
80 .colplanes = 1,
81 .flags = FMT_FLAGS_M2M_OUT | FMT_HAS_ALPHA,
82 }, {
83 .name = "YUV 4:4:4",
84 .mbus_code = MEDIA_BUS_FMT_YUV10_1X30,
85 .flags = FMT_FLAGS_WRITEBACK,
86 }, {
87 .name = "YUV 4:2:2 packed, YCbYCr",
88 .fourcc = V4L2_PIX_FMT_YUYV,
89 .depth = { 16 },
90 .color = FIMC_FMT_YCBYCR422,
91 .memplanes = 1,
92 .colplanes = 1,
93 .mbus_code = MEDIA_BUS_FMT_YUYV8_2X8,
94 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
95 }, {
96 .name = "YUV 4:2:2 packed, CbYCrY",
97 .fourcc = V4L2_PIX_FMT_UYVY,
98 .depth = { 16 },
99 .color = FIMC_FMT_CBYCRY422,
100 .memplanes = 1,
101 .colplanes = 1,
102 .mbus_code = MEDIA_BUS_FMT_UYVY8_2X8,
103 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
104 }, {
105 .name = "YUV 4:2:2 packed, CrYCbY",
106 .fourcc = V4L2_PIX_FMT_VYUY,
107 .depth = { 16 },
108 .color = FIMC_FMT_CRYCBY422,
109 .memplanes = 1,
110 .colplanes = 1,
111 .mbus_code = MEDIA_BUS_FMT_VYUY8_2X8,
112 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
113 }, {
114 .name = "YUV 4:2:2 packed, YCrYCb",
115 .fourcc = V4L2_PIX_FMT_YVYU,
116 .depth = { 16 },
117 .color = FIMC_FMT_YCRYCB422,
118 .memplanes = 1,
119 .colplanes = 1,
120 .mbus_code = MEDIA_BUS_FMT_YVYU8_2X8,
121 .flags = FMT_FLAGS_M2M | FMT_FLAGS_CAM,
122 }, {
123 .name = "YUV 4:2:2 planar, Y/Cb/Cr",
124 .fourcc = V4L2_PIX_FMT_YUV422P,
125 .depth = { 16 },
126 .color = FIMC_FMT_YCBYCR422,
127 .memplanes = 1,
128 .colplanes = 3,
129 .flags = FMT_FLAGS_M2M,
130 }, {
131 .name = "YUV 4:2:2 planar, Y/CbCr",
132 .fourcc = V4L2_PIX_FMT_NV16,
133 .depth = { 16 },
134 .color = FIMC_FMT_YCBYCR422,
135 .memplanes = 1,
136 .colplanes = 2,
137 .flags = FMT_FLAGS_M2M,
138 }, {
139 .name = "YUV 4:2:2 planar, Y/CrCb",
140 .fourcc = V4L2_PIX_FMT_NV61,
141 .depth = { 16 },
142 .color = FIMC_FMT_YCRYCB422,
143 .memplanes = 1,
144 .colplanes = 2,
145 .flags = FMT_FLAGS_M2M,
146 }, {
147 .name = "YUV 4:2:0 planar, YCbCr",
148 .fourcc = V4L2_PIX_FMT_YUV420,
149 .depth = { 12 },
150 .color = FIMC_FMT_YCBCR420,
151 .memplanes = 1,
152 .colplanes = 3,
153 .flags = FMT_FLAGS_M2M,
154 }, {
155 .name = "YUV 4:2:0 planar, Y/CbCr",
156 .fourcc = V4L2_PIX_FMT_NV12,
157 .depth = { 12 },
158 .color = FIMC_FMT_YCBCR420,
159 .memplanes = 1,
160 .colplanes = 2,
161 .flags = FMT_FLAGS_M2M,
162 }, {
163 .name = "YUV 4:2:0 non-contig. 2p, Y/CbCr",
164 .fourcc = V4L2_PIX_FMT_NV12M,
165 .color = FIMC_FMT_YCBCR420,
166 .depth = { 8, 4 },
167 .memplanes = 2,
168 .colplanes = 2,
169 .flags = FMT_FLAGS_M2M,
170 }, {
171 .name = "YUV 4:2:0 non-contig. 3p, Y/Cb/Cr",
172 .fourcc = V4L2_PIX_FMT_YUV420M,
173 .color = FIMC_FMT_YCBCR420,
174 .depth = { 8, 2, 2 },
175 .memplanes = 3,
176 .colplanes = 3,
177 .flags = FMT_FLAGS_M2M,
178 }, {
179 .name = "YUV 4:2:0 non-contig. 2p, tiled",
180 .fourcc = V4L2_PIX_FMT_NV12MT,
181 .color = FIMC_FMT_YCBCR420,
182 .depth = { 8, 4 },
183 .memplanes = 2,
184 .colplanes = 2,
185 .flags = FMT_FLAGS_M2M,
186 }, {
187 .name = "JPEG encoded data",
188 .fourcc = V4L2_PIX_FMT_JPEG,
189 .color = FIMC_FMT_JPEG,
190 .depth = { 8 },
191 .memplanes = 1,
192 .colplanes = 1,
193 .mbus_code = MEDIA_BUS_FMT_JPEG_1X8,
194 .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
195 }, {
196 .name = "S5C73MX interleaved UYVY/JPEG",
197 .fourcc = V4L2_PIX_FMT_S5C_UYVY_JPG,
198 .color = FIMC_FMT_YUYV_JPEG,
199 .depth = { 8 },
200 .memplanes = 2,
201 .colplanes = 1,
202 .mdataplanes = 0x2, /* plane 1 holds frame meta data */
203 .mbus_code = MEDIA_BUS_FMT_S5C_UYVY_JPEG_1X8,
204 .flags = FMT_FLAGS_CAM | FMT_FLAGS_COMPRESSED,
205 },
206 };
207
208 struct fimc_fmt *fimc_get_format(unsigned int index)
209 {
210 if (index >= ARRAY_SIZE(fimc_formats))
211 return NULL;
212
213 return &fimc_formats[index];
214 }
215
216 int fimc_check_scaler_ratio(struct fimc_ctx *ctx, int sw, int sh,
217 int dw, int dh, int rotation)
218 {
219 if (rotation == 90 || rotation == 270)
220 swap(dw, dh);
221
222 if (!ctx->scaler.enabled)
223 return (sw == dw && sh == dh) ? 0 : -EINVAL;
224
225 if ((sw >= SCALER_MAX_HRATIO * dw) || (sh >= SCALER_MAX_VRATIO * dh))
226 return -EINVAL;
227
228 return 0;
229 }
230
231 static int fimc_get_scaler_factor(u32 src, u32 tar, u32 *ratio, u32 *shift)
232 {
233 u32 sh = 6;
234
235 if (src >= 64 * tar)
236 return -EINVAL;
237
238 while (sh--) {
239 u32 tmp = 1 << sh;
240 if (src >= tar * tmp) {
241 *shift = sh, *ratio = tmp;
242 return 0;
243 }
244 }
245 *shift = 0, *ratio = 1;
246 return 0;
247 }
248
249 int fimc_set_scaler_info(struct fimc_ctx *ctx)
250 {
251 const struct fimc_variant *variant = ctx->fimc_dev->variant;
252 struct device *dev = &ctx->fimc_dev->pdev->dev;
253 struct fimc_scaler *sc = &ctx->scaler;
254 struct fimc_frame *s_frame = &ctx->s_frame;
255 struct fimc_frame *d_frame = &ctx->d_frame;
256 int tx, ty, sx, sy;
257 int ret;
258
259 if (ctx->rotation == 90 || ctx->rotation == 270) {
260 ty = d_frame->width;
261 tx = d_frame->height;
262 } else {
263 tx = d_frame->width;
264 ty = d_frame->height;
265 }
266 if (tx <= 0 || ty <= 0) {
267 dev_err(dev, "Invalid target size: %dx%d\n", tx, ty);
268 return -EINVAL;
269 }
270
271 sx = s_frame->width;
272 sy = s_frame->height;
273 if (sx <= 0 || sy <= 0) {
274 dev_err(dev, "Invalid source size: %dx%d\n", sx, sy);
275 return -EINVAL;
276 }
277 sc->real_width = sx;
278 sc->real_height = sy;
279
280 ret = fimc_get_scaler_factor(sx, tx, &sc->pre_hratio, &sc->hfactor);
281 if (ret)
282 return ret;
283
284 ret = fimc_get_scaler_factor(sy, ty, &sc->pre_vratio, &sc->vfactor);
285 if (ret)
286 return ret;
287
288 sc->pre_dst_width = sx / sc->pre_hratio;
289 sc->pre_dst_height = sy / sc->pre_vratio;
290
291 if (variant->has_mainscaler_ext) {
292 sc->main_hratio = (sx << 14) / (tx << sc->hfactor);
293 sc->main_vratio = (sy << 14) / (ty << sc->vfactor);
294 } else {
295 sc->main_hratio = (sx << 8) / (tx << sc->hfactor);
296 sc->main_vratio = (sy << 8) / (ty << sc->vfactor);
297
298 }
299
300 sc->scaleup_h = (tx >= sx) ? 1 : 0;
301 sc->scaleup_v = (ty >= sy) ? 1 : 0;
302
303 /* check to see if input and output size/format differ */
304 if (s_frame->fmt->color == d_frame->fmt->color
305 && s_frame->width == d_frame->width
306 && s_frame->height == d_frame->height)
307 sc->copy_mode = 1;
308 else
309 sc->copy_mode = 0;
310
311 return 0;
312 }
313
314 static irqreturn_t fimc_irq_handler(int irq, void *priv)
315 {
316 struct fimc_dev *fimc = priv;
317 struct fimc_ctx *ctx;
318
319 fimc_hw_clear_irq(fimc);
320
321 spin_lock(&fimc->slock);
322
323 if (test_and_clear_bit(ST_M2M_PEND, &fimc->state)) {
324 if (test_and_clear_bit(ST_M2M_SUSPENDING, &fimc->state)) {
325 set_bit(ST_M2M_SUSPENDED, &fimc->state);
326 wake_up(&fimc->irq_queue);
327 goto out;
328 }
329 ctx = v4l2_m2m_get_curr_priv(fimc->m2m.m2m_dev);
330 if (ctx != NULL) {
331 spin_unlock(&fimc->slock);
332 fimc_m2m_job_finish(ctx, VB2_BUF_STATE_DONE);
333
334 if (ctx->state & FIMC_CTX_SHUT) {
335 ctx->state &= ~FIMC_CTX_SHUT;
336 wake_up(&fimc->irq_queue);
337 }
338 return IRQ_HANDLED;
339 }
340 } else if (test_bit(ST_CAPT_PEND, &fimc->state)) {
341 int last_buf = test_bit(ST_CAPT_JPEG, &fimc->state) &&
342 fimc->vid_cap.reqbufs_count == 1;
343 fimc_capture_irq_handler(fimc, !last_buf);
344 }
345 out:
346 spin_unlock(&fimc->slock);
347 return IRQ_HANDLED;
348 }
349
350 /* The color format (colplanes, memplanes) must be already configured. */
351 int fimc_prepare_addr(struct fimc_ctx *ctx, struct vb2_buffer *vb,
352 struct fimc_frame *frame, struct fimc_addr *paddr)
353 {
354 int ret = 0;
355 u32 pix_size;
356
357 if (vb == NULL || frame == NULL)
358 return -EINVAL;
359
360 pix_size = frame->width * frame->height;
361
362 dbg("memplanes= %d, colplanes= %d, pix_size= %d",
363 frame->fmt->memplanes, frame->fmt->colplanes, pix_size);
364
365 paddr->y = vb2_dma_contig_plane_dma_addr(vb, 0);
366
367 if (frame->fmt->memplanes == 1) {
368 switch (frame->fmt->colplanes) {
369 case 1:
370 paddr->cb = 0;
371 paddr->cr = 0;
372 break;
373 case 2:
374 /* decompose Y into Y/Cb */
375 paddr->cb = (u32)(paddr->y + pix_size);
376 paddr->cr = 0;
377 break;
378 case 3:
379 paddr->cb = (u32)(paddr->y + pix_size);
380 /* decompose Y into Y/Cb/Cr */
381 if (FIMC_FMT_YCBCR420 == frame->fmt->color)
382 paddr->cr = (u32)(paddr->cb
383 + (pix_size >> 2));
384 else /* 422 */
385 paddr->cr = (u32)(paddr->cb
386 + (pix_size >> 1));
387 break;
388 default:
389 return -EINVAL;
390 }
391 } else if (!frame->fmt->mdataplanes) {
392 if (frame->fmt->memplanes >= 2)
393 paddr->cb = vb2_dma_contig_plane_dma_addr(vb, 1);
394
395 if (frame->fmt->memplanes == 3)
396 paddr->cr = vb2_dma_contig_plane_dma_addr(vb, 2);
397 }
398
399 dbg("PHYS_ADDR: y= 0x%X cb= 0x%X cr= 0x%X ret= %d",
400 paddr->y, paddr->cb, paddr->cr, ret);
401
402 return ret;
403 }
404
405 /* Set order for 1 and 2 plane YCBCR 4:2:2 formats. */
406 void fimc_set_yuv_order(struct fimc_ctx *ctx)
407 {
408 /* The one only mode supported in SoC. */
409 ctx->in_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
410 ctx->out_order_2p = FIMC_REG_CIOCTRL_ORDER422_2P_LSB_CRCB;
411
412 /* Set order for 1 plane input formats. */
413 switch (ctx->s_frame.fmt->color) {
414 case FIMC_FMT_YCRYCB422:
415 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCRYCB;
416 break;
417 case FIMC_FMT_CBYCRY422:
418 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CBYCRY;
419 break;
420 case FIMC_FMT_CRYCBY422:
421 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_CRYCBY;
422 break;
423 case FIMC_FMT_YCBYCR422:
424 default:
425 ctx->in_order_1p = FIMC_REG_MSCTRL_ORDER422_YCBYCR;
426 break;
427 }
428 dbg("ctx->in_order_1p= %d", ctx->in_order_1p);
429
430 switch (ctx->d_frame.fmt->color) {
431 case FIMC_FMT_YCRYCB422:
432 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCRYCB;
433 break;
434 case FIMC_FMT_CBYCRY422:
435 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CBYCRY;
436 break;
437 case FIMC_FMT_CRYCBY422:
438 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_CRYCBY;
439 break;
440 case FIMC_FMT_YCBYCR422:
441 default:
442 ctx->out_order_1p = FIMC_REG_CIOCTRL_ORDER422_YCBYCR;
443 break;
444 }
445 dbg("ctx->out_order_1p= %d", ctx->out_order_1p);
446 }
447
448 void fimc_prepare_dma_offset(struct fimc_ctx *ctx, struct fimc_frame *f)
449 {
450 bool pix_hoff = ctx->fimc_dev->drv_data->dma_pix_hoff;
451 u32 i, depth = 0;
452
453 for (i = 0; i < f->fmt->memplanes; i++)
454 depth += f->fmt->depth[i];
455
456 f->dma_offset.y_h = f->offs_h;
457 if (!pix_hoff)
458 f->dma_offset.y_h *= (depth >> 3);
459
460 f->dma_offset.y_v = f->offs_v;
461
462 f->dma_offset.cb_h = f->offs_h;
463 f->dma_offset.cb_v = f->offs_v;
464
465 f->dma_offset.cr_h = f->offs_h;
466 f->dma_offset.cr_v = f->offs_v;
467
468 if (!pix_hoff) {
469 if (f->fmt->colplanes == 3) {
470 f->dma_offset.cb_h >>= 1;
471 f->dma_offset.cr_h >>= 1;
472 }
473 if (f->fmt->color == FIMC_FMT_YCBCR420) {
474 f->dma_offset.cb_v >>= 1;
475 f->dma_offset.cr_v >>= 1;
476 }
477 }
478
479 dbg("in_offset: color= %d, y_h= %d, y_v= %d",
480 f->fmt->color, f->dma_offset.y_h, f->dma_offset.y_v);
481 }
482
483 static int fimc_set_color_effect(struct fimc_ctx *ctx, enum v4l2_colorfx colorfx)
484 {
485 struct fimc_effect *effect = &ctx->effect;
486
487 switch (colorfx) {
488 case V4L2_COLORFX_NONE:
489 effect->type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
490 break;
491 case V4L2_COLORFX_BW:
492 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
493 effect->pat_cb = 128;
494 effect->pat_cr = 128;
495 break;
496 case V4L2_COLORFX_SEPIA:
497 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
498 effect->pat_cb = 115;
499 effect->pat_cr = 145;
500 break;
501 case V4L2_COLORFX_NEGATIVE:
502 effect->type = FIMC_REG_CIIMGEFF_FIN_NEGATIVE;
503 break;
504 case V4L2_COLORFX_EMBOSS:
505 effect->type = FIMC_REG_CIIMGEFF_FIN_EMBOSSING;
506 break;
507 case V4L2_COLORFX_ART_FREEZE:
508 effect->type = FIMC_REG_CIIMGEFF_FIN_ARTFREEZE;
509 break;
510 case V4L2_COLORFX_SILHOUETTE:
511 effect->type = FIMC_REG_CIIMGEFF_FIN_SILHOUETTE;
512 break;
513 case V4L2_COLORFX_SET_CBCR:
514 effect->type = FIMC_REG_CIIMGEFF_FIN_ARBITRARY;
515 effect->pat_cb = ctx->ctrls.colorfx_cbcr->val >> 8;
516 effect->pat_cr = ctx->ctrls.colorfx_cbcr->val & 0xff;
517 break;
518 default:
519 return -EINVAL;
520 }
521
522 return 0;
523 }
524
525 /*
526 * V4L2 controls handling
527 */
528 #define ctrl_to_ctx(__ctrl) \
529 container_of((__ctrl)->handler, struct fimc_ctx, ctrls.handler)
530
531 static int __fimc_s_ctrl(struct fimc_ctx *ctx, struct v4l2_ctrl *ctrl)
532 {
533 struct fimc_dev *fimc = ctx->fimc_dev;
534 const struct fimc_variant *variant = fimc->variant;
535 int ret = 0;
536
537 if (ctrl->flags & V4L2_CTRL_FLAG_INACTIVE)
538 return 0;
539
540 switch (ctrl->id) {
541 case V4L2_CID_HFLIP:
542 ctx->hflip = ctrl->val;
543 break;
544
545 case V4L2_CID_VFLIP:
546 ctx->vflip = ctrl->val;
547 break;
548
549 case V4L2_CID_ROTATE:
550 if (fimc_capture_pending(fimc)) {
551 ret = fimc_check_scaler_ratio(ctx, ctx->s_frame.width,
552 ctx->s_frame.height, ctx->d_frame.width,
553 ctx->d_frame.height, ctrl->val);
554 if (ret)
555 return -EINVAL;
556 }
557 if ((ctrl->val == 90 || ctrl->val == 270) &&
558 !variant->has_out_rot)
559 return -EINVAL;
560
561 ctx->rotation = ctrl->val;
562 break;
563
564 case V4L2_CID_ALPHA_COMPONENT:
565 ctx->d_frame.alpha = ctrl->val;
566 break;
567
568 case V4L2_CID_COLORFX:
569 ret = fimc_set_color_effect(ctx, ctrl->val);
570 if (ret)
571 return ret;
572 break;
573 }
574
575 ctx->state |= FIMC_PARAMS;
576 set_bit(ST_CAPT_APPLY_CFG, &fimc->state);
577 return 0;
578 }
579
580 static int fimc_s_ctrl(struct v4l2_ctrl *ctrl)
581 {
582 struct fimc_ctx *ctx = ctrl_to_ctx(ctrl);
583 unsigned long flags;
584 int ret;
585
586 spin_lock_irqsave(&ctx->fimc_dev->slock, flags);
587 ret = __fimc_s_ctrl(ctx, ctrl);
588 spin_unlock_irqrestore(&ctx->fimc_dev->slock, flags);
589
590 return ret;
591 }
592
593 static const struct v4l2_ctrl_ops fimc_ctrl_ops = {
594 .s_ctrl = fimc_s_ctrl,
595 };
596
597 int fimc_ctrls_create(struct fimc_ctx *ctx)
598 {
599 unsigned int max_alpha = fimc_get_alpha_mask(ctx->d_frame.fmt);
600 struct fimc_ctrls *ctrls = &ctx->ctrls;
601 struct v4l2_ctrl_handler *handler = &ctrls->handler;
602
603 if (ctx->ctrls.ready)
604 return 0;
605
606 v4l2_ctrl_handler_init(handler, 6);
607
608 ctrls->rotate = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
609 V4L2_CID_ROTATE, 0, 270, 90, 0);
610 ctrls->hflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
611 V4L2_CID_HFLIP, 0, 1, 1, 0);
612 ctrls->vflip = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
613 V4L2_CID_VFLIP, 0, 1, 1, 0);
614
615 if (ctx->fimc_dev->drv_data->alpha_color)
616 ctrls->alpha = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
617 V4L2_CID_ALPHA_COMPONENT,
618 0, max_alpha, 1, 0);
619 else
620 ctrls->alpha = NULL;
621
622 ctrls->colorfx = v4l2_ctrl_new_std_menu(handler, &fimc_ctrl_ops,
623 V4L2_CID_COLORFX, V4L2_COLORFX_SET_CBCR,
624 ~0x983f, V4L2_COLORFX_NONE);
625
626 ctrls->colorfx_cbcr = v4l2_ctrl_new_std(handler, &fimc_ctrl_ops,
627 V4L2_CID_COLORFX_CBCR, 0, 0xffff, 1, 0);
628
629 ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
630
631 if (!handler->error) {
632 v4l2_ctrl_cluster(2, &ctrls->colorfx);
633 ctrls->ready = true;
634 }
635
636 return handler->error;
637 }
638
639 void fimc_ctrls_delete(struct fimc_ctx *ctx)
640 {
641 struct fimc_ctrls *ctrls = &ctx->ctrls;
642
643 if (ctrls->ready) {
644 v4l2_ctrl_handler_free(&ctrls->handler);
645 ctrls->ready = false;
646 ctrls->alpha = NULL;
647 }
648 }
649
650 void fimc_ctrls_activate(struct fimc_ctx *ctx, bool active)
651 {
652 unsigned int has_alpha = ctx->d_frame.fmt->flags & FMT_HAS_ALPHA;
653 struct fimc_ctrls *ctrls = &ctx->ctrls;
654
655 if (!ctrls->ready)
656 return;
657
658 mutex_lock(ctrls->handler.lock);
659 v4l2_ctrl_activate(ctrls->rotate, active);
660 v4l2_ctrl_activate(ctrls->hflip, active);
661 v4l2_ctrl_activate(ctrls->vflip, active);
662 v4l2_ctrl_activate(ctrls->colorfx, active);
663 if (ctrls->alpha)
664 v4l2_ctrl_activate(ctrls->alpha, active && has_alpha);
665
666 if (active) {
667 fimc_set_color_effect(ctx, ctrls->colorfx->cur.val);
668 ctx->rotation = ctrls->rotate->val;
669 ctx->hflip = ctrls->hflip->val;
670 ctx->vflip = ctrls->vflip->val;
671 } else {
672 ctx->effect.type = FIMC_REG_CIIMGEFF_FIN_BYPASS;
673 ctx->rotation = 0;
674 ctx->hflip = 0;
675 ctx->vflip = 0;
676 }
677 mutex_unlock(ctrls->handler.lock);
678 }
679
680 /* Update maximum value of the alpha color control */
681 void fimc_alpha_ctrl_update(struct fimc_ctx *ctx)
682 {
683 struct fimc_dev *fimc = ctx->fimc_dev;
684 struct v4l2_ctrl *ctrl = ctx->ctrls.alpha;
685
686 if (ctrl == NULL || !fimc->drv_data->alpha_color)
687 return;
688
689 v4l2_ctrl_lock(ctrl);
690 ctrl->maximum = fimc_get_alpha_mask(ctx->d_frame.fmt);
691
692 if (ctrl->cur.val > ctrl->maximum)
693 ctrl->cur.val = ctrl->maximum;
694
695 v4l2_ctrl_unlock(ctrl);
696 }
697
698 void __fimc_get_format(struct fimc_frame *frame, struct v4l2_format *f)
699 {
700 struct v4l2_pix_format_mplane *pixm = &f->fmt.pix_mp;
701 int i;
702
703 pixm->width = frame->o_width;
704 pixm->height = frame->o_height;
705 pixm->field = V4L2_FIELD_NONE;
706 pixm->pixelformat = frame->fmt->fourcc;
707 pixm->colorspace = V4L2_COLORSPACE_JPEG;
708 pixm->num_planes = frame->fmt->memplanes;
709
710 for (i = 0; i < pixm->num_planes; ++i) {
711 pixm->plane_fmt[i].bytesperline = frame->bytesperline[i];
712 pixm->plane_fmt[i].sizeimage = frame->payload[i];
713 }
714 }
715
716 /**
717 * fimc_adjust_mplane_format - adjust bytesperline/sizeimage for each plane
718 * @fmt: fimc pixel format description (input)
719 * @width: requested pixel width
720 * @height: requested pixel height
721 * @pix: multi-plane format to adjust
722 */
723 void fimc_adjust_mplane_format(struct fimc_fmt *fmt, u32 width, u32 height,
724 struct v4l2_pix_format_mplane *pix)
725 {
726 u32 bytesperline = 0;
727 int i;
728
729 pix->colorspace = V4L2_COLORSPACE_JPEG;
730 pix->field = V4L2_FIELD_NONE;
731 pix->num_planes = fmt->memplanes;
732 pix->pixelformat = fmt->fourcc;
733 pix->height = height;
734 pix->width = width;
735
736 for (i = 0; i < pix->num_planes; ++i) {
737 struct v4l2_plane_pix_format *plane_fmt = &pix->plane_fmt[i];
738 u32 bpl = plane_fmt->bytesperline;
739
740 if (fmt->colplanes > 1 && (bpl == 0 || bpl < pix->width))
741 bpl = pix->width; /* Planar */
742
743 if (fmt->colplanes == 1 && /* Packed */
744 (bpl == 0 || ((bpl * 8) / fmt->depth[i]) < pix->width))
745 bpl = (pix->width * fmt->depth[0]) / 8;
746 /*
747 * Currently bytesperline for each plane is same, except
748 * V4L2_PIX_FMT_YUV420M format. This calculation may need
749 * to be changed when other multi-planar formats are added
750 * to the fimc_formats[] array.
751 */
752 if (i == 0)
753 bytesperline = bpl;
754 else if (i == 1 && fmt->memplanes == 3)
755 bytesperline /= 2;
756
757 plane_fmt->bytesperline = bytesperline;
758 plane_fmt->sizeimage = max((pix->width * pix->height *
759 fmt->depth[i]) / 8, plane_fmt->sizeimage);
760 }
761 }
762
763 /**
764 * fimc_find_format - lookup fimc color format by fourcc or media bus format
765 * @pixelformat: fourcc to match, ignored if null
766 * @mbus_code: media bus code to match, ignored if null
767 * @mask: the color flags to match
768 * @index: offset in the fimc_formats array, ignored if negative
769 */
770 struct fimc_fmt *fimc_find_format(const u32 *pixelformat, const u32 *mbus_code,
771 unsigned int mask, int index)
772 {
773 struct fimc_fmt *fmt, *def_fmt = NULL;
774 unsigned int i;
775 int id = 0;
776
777 if (index >= (int)ARRAY_SIZE(fimc_formats))
778 return NULL;
779
780 for (i = 0; i < ARRAY_SIZE(fimc_formats); ++i) {
781 fmt = &fimc_formats[i];
782 if (!(fmt->flags & mask))
783 continue;
784 if (pixelformat && fmt->fourcc == *pixelformat)
785 return fmt;
786 if (mbus_code && fmt->mbus_code == *mbus_code)
787 return fmt;
788 if (index == id)
789 def_fmt = fmt;
790 id++;
791 }
792 return def_fmt;
793 }
794
795 static void fimc_clk_put(struct fimc_dev *fimc)
796 {
797 int i;
798 for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
799 if (IS_ERR(fimc->clock[i]))
800 continue;
801 clk_unprepare(fimc->clock[i]);
802 clk_put(fimc->clock[i]);
803 fimc->clock[i] = ERR_PTR(-EINVAL);
804 }
805 }
806
807 static int fimc_clk_get(struct fimc_dev *fimc)
808 {
809 int i, ret;
810
811 for (i = 0; i < MAX_FIMC_CLOCKS; i++)
812 fimc->clock[i] = ERR_PTR(-EINVAL);
813
814 for (i = 0; i < MAX_FIMC_CLOCKS; i++) {
815 fimc->clock[i] = clk_get(&fimc->pdev->dev, fimc_clocks[i]);
816 if (IS_ERR(fimc->clock[i])) {
817 ret = PTR_ERR(fimc->clock[i]);
818 goto err;
819 }
820 ret = clk_prepare(fimc->clock[i]);
821 if (ret < 0) {
822 clk_put(fimc->clock[i]);
823 fimc->clock[i] = ERR_PTR(-EINVAL);
824 goto err;
825 }
826 }
827 return 0;
828 err:
829 fimc_clk_put(fimc);
830 dev_err(&fimc->pdev->dev, "failed to get clock: %s\n",
831 fimc_clocks[i]);
832 return -ENXIO;
833 }
834
835 #ifdef CONFIG_PM
836 static int fimc_m2m_suspend(struct fimc_dev *fimc)
837 {
838 unsigned long flags;
839 int timeout;
840
841 spin_lock_irqsave(&fimc->slock, flags);
842 if (!fimc_m2m_pending(fimc)) {
843 spin_unlock_irqrestore(&fimc->slock, flags);
844 return 0;
845 }
846 clear_bit(ST_M2M_SUSPENDED, &fimc->state);
847 set_bit(ST_M2M_SUSPENDING, &fimc->state);
848 spin_unlock_irqrestore(&fimc->slock, flags);
849
850 timeout = wait_event_timeout(fimc->irq_queue,
851 test_bit(ST_M2M_SUSPENDED, &fimc->state),
852 FIMC_SHUTDOWN_TIMEOUT);
853
854 clear_bit(ST_M2M_SUSPENDING, &fimc->state);
855 return timeout == 0 ? -EAGAIN : 0;
856 }
857
858 static int fimc_m2m_resume(struct fimc_dev *fimc)
859 {
860 struct fimc_ctx *ctx;
861 unsigned long flags;
862
863 spin_lock_irqsave(&fimc->slock, flags);
864 /* Clear for full H/W setup in first run after resume */
865 ctx = fimc->m2m.ctx;
866 fimc->m2m.ctx = NULL;
867 spin_unlock_irqrestore(&fimc->slock, flags);
868
869 if (test_and_clear_bit(ST_M2M_SUSPENDED, &fimc->state))
870 fimc_m2m_job_finish(ctx, VB2_BUF_STATE_ERROR);
871
872 return 0;
873 }
874 #endif /* CONFIG_PM */
875
876 static const struct of_device_id fimc_of_match[];
877
878 static int fimc_parse_dt(struct fimc_dev *fimc, u32 *clk_freq)
879 {
880 struct device *dev = &fimc->pdev->dev;
881 struct device_node *node = dev->of_node;
882 const struct of_device_id *of_id;
883 struct fimc_variant *v;
884 struct fimc_pix_limit *lim;
885 u32 args[FIMC_PIX_LIMITS_MAX];
886 int ret;
887
888 if (of_property_read_bool(node, "samsung,lcd-wb"))
889 return -ENODEV;
890
891 v = devm_kzalloc(dev, sizeof(*v) + sizeof(*lim), GFP_KERNEL);
892 if (!v)
893 return -ENOMEM;
894
895 of_id = of_match_node(fimc_of_match, node);
896 if (!of_id)
897 return -EINVAL;
898 fimc->drv_data = of_id->data;
899 ret = of_property_read_u32_array(node, "samsung,pix-limits",
900 args, FIMC_PIX_LIMITS_MAX);
901 if (ret < 0)
902 return ret;
903
904 lim = (struct fimc_pix_limit *)&v[1];
905
906 lim->scaler_en_w = args[0];
907 lim->scaler_dis_w = args[1];
908 lim->out_rot_en_w = args[2];
909 lim->out_rot_dis_w = args[3];
910 v->pix_limit = lim;
911
912 ret = of_property_read_u32_array(node, "samsung,min-pix-sizes",
913 args, 2);
914 v->min_inp_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[0];
915 v->min_out_pixsize = ret ? FIMC_DEF_MIN_SIZE : args[1];
916 ret = of_property_read_u32_array(node, "samsung,min-pix-alignment",
917 args, 2);
918 v->min_vsize_align = ret ? FIMC_DEF_HEIGHT_ALIGN : args[0];
919 v->hor_offs_align = ret ? FIMC_DEF_HOR_OFFS_ALIGN : args[1];
920
921 ret = of_property_read_u32(node, "samsung,rotators", &args[1]);
922 v->has_inp_rot = ret ? 1 : args[1] & 0x01;
923 v->has_out_rot = ret ? 1 : args[1] & 0x10;
924 v->has_mainscaler_ext = of_property_read_bool(node,
925 "samsung,mainscaler-ext");
926
927 v->has_isp_wb = of_property_read_bool(node, "samsung,isp-wb");
928 v->has_cam_if = of_property_read_bool(node, "samsung,cam-if");
929 of_property_read_u32(node, "clock-frequency", clk_freq);
930 fimc->id = of_alias_get_id(node, "fimc");
931
932 fimc->variant = v;
933 return 0;
934 }
935
936 static int fimc_probe(struct platform_device *pdev)
937 {
938 struct device *dev = &pdev->dev;
939 u32 lclk_freq = 0;
940 struct fimc_dev *fimc;
941 struct resource *res;
942 int ret = 0;
943
944 fimc = devm_kzalloc(dev, sizeof(*fimc), GFP_KERNEL);
945 if (!fimc)
946 return -ENOMEM;
947
948 fimc->pdev = pdev;
949
950 if (dev->of_node) {
951 ret = fimc_parse_dt(fimc, &lclk_freq);
952 if (ret < 0)
953 return ret;
954 } else {
955 fimc->drv_data = fimc_get_drvdata(pdev);
956 fimc->id = pdev->id;
957 }
958 if (!fimc->drv_data || fimc->id >= fimc->drv_data->num_entities ||
959 fimc->id < 0) {
960 dev_err(dev, "Invalid driver data or device id (%d)\n",
961 fimc->id);
962 return -EINVAL;
963 }
964 if (!dev->of_node)
965 fimc->variant = fimc->drv_data->variant[fimc->id];
966
967 init_waitqueue_head(&fimc->irq_queue);
968 spin_lock_init(&fimc->slock);
969 mutex_init(&fimc->lock);
970
971 fimc->sysreg = fimc_get_sysreg_regmap(dev->of_node);
972 if (IS_ERR(fimc->sysreg))
973 return PTR_ERR(fimc->sysreg);
974
975 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
976 fimc->regs = devm_ioremap_resource(dev, res);
977 if (IS_ERR(fimc->regs))
978 return PTR_ERR(fimc->regs);
979
980 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
981 if (res == NULL) {
982 dev_err(dev, "Failed to get IRQ resource\n");
983 return -ENXIO;
984 }
985
986 ret = fimc_clk_get(fimc);
987 if (ret)
988 return ret;
989
990 if (lclk_freq == 0)
991 lclk_freq = fimc->drv_data->lclk_frequency;
992
993 ret = clk_set_rate(fimc->clock[CLK_BUS], lclk_freq);
994 if (ret < 0)
995 return ret;
996
997 ret = clk_enable(fimc->clock[CLK_BUS]);
998 if (ret < 0)
999 return ret;
1000
1001 ret = devm_request_irq(dev, res->start, fimc_irq_handler,
1002 0, dev_name(dev), fimc);
1003 if (ret < 0) {
1004 dev_err(dev, "failed to install irq (%d)\n", ret);
1005 goto err_sclk;
1006 }
1007
1008 ret = fimc_initialize_capture_subdev(fimc);
1009 if (ret < 0)
1010 goto err_sclk;
1011
1012 platform_set_drvdata(pdev, fimc);
1013 pm_runtime_enable(dev);
1014
1015 if (!pm_runtime_enabled(dev)) {
1016 ret = clk_enable(fimc->clock[CLK_GATE]);
1017 if (ret < 0)
1018 goto err_sd;
1019 }
1020
1021 /* Initialize contiguous memory allocator */
1022 fimc->alloc_ctx = vb2_dma_contig_init_ctx(dev);
1023 if (IS_ERR(fimc->alloc_ctx)) {
1024 ret = PTR_ERR(fimc->alloc_ctx);
1025 goto err_gclk;
1026 }
1027
1028 dev_dbg(dev, "FIMC.%d registered successfully\n", fimc->id);
1029 return 0;
1030
1031 err_gclk:
1032 if (!pm_runtime_enabled(dev))
1033 clk_disable(fimc->clock[CLK_GATE]);
1034 err_sd:
1035 fimc_unregister_capture_subdev(fimc);
1036 err_sclk:
1037 clk_disable(fimc->clock[CLK_BUS]);
1038 fimc_clk_put(fimc);
1039 return ret;
1040 }
1041
1042 #ifdef CONFIG_PM
1043 static int fimc_runtime_resume(struct device *dev)
1044 {
1045 struct fimc_dev *fimc = dev_get_drvdata(dev);
1046
1047 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1048
1049 /* Enable clocks and perform basic initialization */
1050 clk_enable(fimc->clock[CLK_GATE]);
1051 fimc_hw_reset(fimc);
1052
1053 /* Resume the capture or mem-to-mem device */
1054 if (fimc_capture_busy(fimc))
1055 return fimc_capture_resume(fimc);
1056
1057 return fimc_m2m_resume(fimc);
1058 }
1059
1060 static int fimc_runtime_suspend(struct device *dev)
1061 {
1062 struct fimc_dev *fimc = dev_get_drvdata(dev);
1063 int ret = 0;
1064
1065 if (fimc_capture_busy(fimc))
1066 ret = fimc_capture_suspend(fimc);
1067 else
1068 ret = fimc_m2m_suspend(fimc);
1069 if (!ret)
1070 clk_disable(fimc->clock[CLK_GATE]);
1071
1072 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1073 return ret;
1074 }
1075 #endif
1076
1077 #ifdef CONFIG_PM_SLEEP
1078 static int fimc_resume(struct device *dev)
1079 {
1080 struct fimc_dev *fimc = dev_get_drvdata(dev);
1081 unsigned long flags;
1082
1083 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1084
1085 /* Do not resume if the device was idle before system suspend */
1086 spin_lock_irqsave(&fimc->slock, flags);
1087 if (!test_and_clear_bit(ST_LPM, &fimc->state) ||
1088 (!fimc_m2m_active(fimc) && !fimc_capture_busy(fimc))) {
1089 spin_unlock_irqrestore(&fimc->slock, flags);
1090 return 0;
1091 }
1092 fimc_hw_reset(fimc);
1093 spin_unlock_irqrestore(&fimc->slock, flags);
1094
1095 if (fimc_capture_busy(fimc))
1096 return fimc_capture_resume(fimc);
1097
1098 return fimc_m2m_resume(fimc);
1099 }
1100
1101 static int fimc_suspend(struct device *dev)
1102 {
1103 struct fimc_dev *fimc = dev_get_drvdata(dev);
1104
1105 dbg("fimc%d: state: 0x%lx", fimc->id, fimc->state);
1106
1107 if (test_and_set_bit(ST_LPM, &fimc->state))
1108 return 0;
1109 if (fimc_capture_busy(fimc))
1110 return fimc_capture_suspend(fimc);
1111
1112 return fimc_m2m_suspend(fimc);
1113 }
1114 #endif /* CONFIG_PM_SLEEP */
1115
1116 static int fimc_remove(struct platform_device *pdev)
1117 {
1118 struct fimc_dev *fimc = platform_get_drvdata(pdev);
1119
1120 pm_runtime_disable(&pdev->dev);
1121 if (!pm_runtime_status_suspended(&pdev->dev))
1122 clk_disable(fimc->clock[CLK_GATE]);
1123 pm_runtime_set_suspended(&pdev->dev);
1124
1125 fimc_unregister_capture_subdev(fimc);
1126 vb2_dma_contig_cleanup_ctx(fimc->alloc_ctx);
1127
1128 clk_disable(fimc->clock[CLK_BUS]);
1129 fimc_clk_put(fimc);
1130
1131 dev_info(&pdev->dev, "driver unloaded\n");
1132 return 0;
1133 }
1134
1135 /* Image pixel limits, similar across several FIMC HW revisions. */
1136 static const struct fimc_pix_limit s5p_pix_limit[4] = {
1137 [0] = {
1138 .scaler_en_w = 3264,
1139 .scaler_dis_w = 8192,
1140 .out_rot_en_w = 1920,
1141 .out_rot_dis_w = 4224,
1142 },
1143 [1] = {
1144 .scaler_en_w = 4224,
1145 .scaler_dis_w = 8192,
1146 .out_rot_en_w = 1920,
1147 .out_rot_dis_w = 4224,
1148 },
1149 [2] = {
1150 .scaler_en_w = 1920,
1151 .scaler_dis_w = 8192,
1152 .out_rot_en_w = 1280,
1153 .out_rot_dis_w = 1920,
1154 },
1155 };
1156
1157 static const struct fimc_variant fimc0_variant_s5pv210 = {
1158 .has_inp_rot = 1,
1159 .has_out_rot = 1,
1160 .has_cam_if = 1,
1161 .min_inp_pixsize = 16,
1162 .min_out_pixsize = 16,
1163 .hor_offs_align = 8,
1164 .min_vsize_align = 16,
1165 .pix_limit = &s5p_pix_limit[1],
1166 };
1167
1168 static const struct fimc_variant fimc1_variant_s5pv210 = {
1169 .has_inp_rot = 1,
1170 .has_out_rot = 1,
1171 .has_cam_if = 1,
1172 .has_mainscaler_ext = 1,
1173 .min_inp_pixsize = 16,
1174 .min_out_pixsize = 16,
1175 .hor_offs_align = 1,
1176 .min_vsize_align = 1,
1177 .pix_limit = &s5p_pix_limit[2],
1178 };
1179
1180 static const struct fimc_variant fimc2_variant_s5pv210 = {
1181 .has_cam_if = 1,
1182 .min_inp_pixsize = 16,
1183 .min_out_pixsize = 16,
1184 .hor_offs_align = 8,
1185 .min_vsize_align = 16,
1186 .pix_limit = &s5p_pix_limit[2],
1187 };
1188
1189 /* S5PV210, S5PC110 */
1190 static const struct fimc_drvdata fimc_drvdata_s5pv210 = {
1191 .variant = {
1192 [0] = &fimc0_variant_s5pv210,
1193 [1] = &fimc1_variant_s5pv210,
1194 [2] = &fimc2_variant_s5pv210,
1195 },
1196 .num_entities = 3,
1197 .lclk_frequency = 166000000UL,
1198 .out_buf_count = 4,
1199 .dma_pix_hoff = 1,
1200 };
1201
1202 /* EXYNOS4210, S5PV310, S5PC210 */
1203 static const struct fimc_drvdata fimc_drvdata_exynos4210 = {
1204 .num_entities = 4,
1205 .lclk_frequency = 166000000UL,
1206 .dma_pix_hoff = 1,
1207 .cistatus2 = 1,
1208 .alpha_color = 1,
1209 .out_buf_count = 32,
1210 };
1211
1212 /* EXYNOS4212, EXYNOS4412 */
1213 static const struct fimc_drvdata fimc_drvdata_exynos4x12 = {
1214 .num_entities = 4,
1215 .lclk_frequency = 166000000UL,
1216 .dma_pix_hoff = 1,
1217 .cistatus2 = 1,
1218 .alpha_color = 1,
1219 .out_buf_count = 32,
1220 };
1221
1222 static const struct of_device_id fimc_of_match[] = {
1223 {
1224 .compatible = "samsung,s5pv210-fimc",
1225 .data = &fimc_drvdata_s5pv210,
1226 }, {
1227 .compatible = "samsung,exynos4210-fimc",
1228 .data = &fimc_drvdata_exynos4210,
1229 }, {
1230 .compatible = "samsung,exynos4212-fimc",
1231 .data = &fimc_drvdata_exynos4x12,
1232 },
1233 { /* sentinel */ },
1234 };
1235
1236 static const struct dev_pm_ops fimc_pm_ops = {
1237 SET_SYSTEM_SLEEP_PM_OPS(fimc_suspend, fimc_resume)
1238 SET_RUNTIME_PM_OPS(fimc_runtime_suspend, fimc_runtime_resume, NULL)
1239 };
1240
1241 static struct platform_driver fimc_driver = {
1242 .probe = fimc_probe,
1243 .remove = fimc_remove,
1244 .driver = {
1245 .of_match_table = fimc_of_match,
1246 .name = FIMC_DRIVER_NAME,
1247 .pm = &fimc_pm_ops,
1248 }
1249 };
1250
1251 int __init fimc_register_driver(void)
1252 {
1253 return platform_driver_register(&fimc_driver);
1254 }
1255
1256 void __exit fimc_unregister_driver(void)
1257 {
1258 platform_driver_unregister(&fimc_driver);
1259 }
This page took 0.058452 seconds and 5 git commands to generate.