[media] media-device: split media initialization and registration
[deliverable/linux.git] / drivers / media / platform / omap3isp / isp.c
1 /*
2 * isp.c
3 *
4 * TI OMAP3 ISP - Core
5 *
6 * Copyright (C) 2006-2010 Nokia Corporation
7 * Copyright (C) 2007-2009 Texas Instruments, Inc.
8 *
9 * Contacts: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10 * Sakari Ailus <sakari.ailus@iki.fi>
11 *
12 * Contributors:
13 * Laurent Pinchart <laurent.pinchart@ideasonboard.com>
14 * Sakari Ailus <sakari.ailus@iki.fi>
15 * David Cohen <dacohen@gmail.com>
16 * Stanimir Varbanov <svarbanov@mm-sol.com>
17 * Vimarsh Zutshi <vimarsh.zutshi@gmail.com>
18 * Tuukka Toivonen <tuukkat76@gmail.com>
19 * Sergio Aguirre <saaguirre@ti.com>
20 * Antti Koskipaa <akoskipa@gmail.com>
21 * Ivan T. Ivanov <iivanov@mm-sol.com>
22 * RaniSuneela <r-m@ti.com>
23 * Atanas Filipov <afilipov@mm-sol.com>
24 * Gjorgji Rosikopulos <grosikopulos@mm-sol.com>
25 * Hiroshi DOYU <hiroshi.doyu@nokia.com>
26 * Nayden Kanchev <nkanchev@mm-sol.com>
27 * Phil Carmody <ext-phil.2.carmody@nokia.com>
28 * Artem Bityutskiy <artem.bityutskiy@nokia.com>
29 * Dominic Curran <dcurran@ti.com>
30 * Ilkka Myllyperkio <ilkka.myllyperkio@sofica.fi>
31 * Pallavi Kulkarni <p-kulkarni@ti.com>
32 * Vaibhav Hiremath <hvaibhav@ti.com>
33 * Mohit Jalori <mjalori@ti.com>
34 * Sameer Venkatraman <sameerv@ti.com>
35 * Senthilvadivu Guruswamy <svadivu@ti.com>
36 * Thara Gopinath <thara@ti.com>
37 * Toni Leinonen <toni.leinonen@nokia.com>
38 * Troy Laramy <t-laramy@ti.com>
39 *
40 * This program is free software; you can redistribute it and/or modify
41 * it under the terms of the GNU General Public License version 2 as
42 * published by the Free Software Foundation.
43 */
44
45 #include <asm/cacheflush.h>
46
47 #include <linux/clk.h>
48 #include <linux/clkdev.h>
49 #include <linux/delay.h>
50 #include <linux/device.h>
51 #include <linux/dma-mapping.h>
52 #include <linux/i2c.h>
53 #include <linux/interrupt.h>
54 #include <linux/mfd/syscon.h>
55 #include <linux/module.h>
56 #include <linux/omap-iommu.h>
57 #include <linux/platform_device.h>
58 #include <linux/regulator/consumer.h>
59 #include <linux/slab.h>
60 #include <linux/sched.h>
61 #include <linux/vmalloc.h>
62
63 #include <asm/dma-iommu.h>
64
65 #include <media/v4l2-common.h>
66 #include <media/v4l2-device.h>
67 #include <media/v4l2-of.h>
68
69 #include "isp.h"
70 #include "ispreg.h"
71 #include "ispccdc.h"
72 #include "isppreview.h"
73 #include "ispresizer.h"
74 #include "ispcsi2.h"
75 #include "ispccp2.h"
76 #include "isph3a.h"
77 #include "isphist.h"
78
79 static unsigned int autoidle;
80 module_param(autoidle, int, 0444);
81 MODULE_PARM_DESC(autoidle, "Enable OMAP3ISP AUTOIDLE support");
82
83 static void isp_save_ctx(struct isp_device *isp);
84
85 static void isp_restore_ctx(struct isp_device *isp);
86
87 static const struct isp_res_mapping isp_res_maps[] = {
88 {
89 .isp_rev = ISP_REVISION_2_0,
90 .offset = {
91 /* first MMIO area */
92 0x0000, /* base, len 0x0070 */
93 0x0400, /* ccp2, len 0x01f0 */
94 0x0600, /* ccdc, len 0x00a8 */
95 0x0a00, /* hist, len 0x0048 */
96 0x0c00, /* h3a, len 0x0060 */
97 0x0e00, /* preview, len 0x00a0 */
98 0x1000, /* resizer, len 0x00ac */
99 0x1200, /* sbl, len 0x00fc */
100 /* second MMIO area */
101 0x0000, /* csi2a, len 0x0170 */
102 0x0170, /* csiphy2, len 0x000c */
103 },
104 .phy_type = ISP_PHY_TYPE_3430,
105 },
106 {
107 .isp_rev = ISP_REVISION_15_0,
108 .offset = {
109 /* first MMIO area */
110 0x0000, /* base, len 0x0070 */
111 0x0400, /* ccp2, len 0x01f0 */
112 0x0600, /* ccdc, len 0x00a8 */
113 0x0a00, /* hist, len 0x0048 */
114 0x0c00, /* h3a, len 0x0060 */
115 0x0e00, /* preview, len 0x00a0 */
116 0x1000, /* resizer, len 0x00ac */
117 0x1200, /* sbl, len 0x00fc */
118 /* second MMIO area */
119 0x0000, /* csi2a, len 0x0170 (1st area) */
120 0x0170, /* csiphy2, len 0x000c */
121 0x01c0, /* csi2a, len 0x0040 (2nd area) */
122 0x0400, /* csi2c, len 0x0170 (1st area) */
123 0x0570, /* csiphy1, len 0x000c */
124 0x05c0, /* csi2c, len 0x0040 (2nd area) */
125 },
126 .phy_type = ISP_PHY_TYPE_3630,
127 },
128 };
129
130 /* Structure for saving/restoring ISP module registers */
131 static struct isp_reg isp_reg_list[] = {
132 {OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG, 0},
133 {OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, 0},
134 {OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL, 0},
135 {0, ISP_TOK_TERM, 0}
136 };
137
138 /*
139 * omap3isp_flush - Post pending L3 bus writes by doing a register readback
140 * @isp: OMAP3 ISP device
141 *
142 * In order to force posting of pending writes, we need to write and
143 * readback the same register, in this case the revision register.
144 *
145 * See this link for reference:
146 * http://www.mail-archive.com/linux-omap@vger.kernel.org/msg08149.html
147 */
148 void omap3isp_flush(struct isp_device *isp)
149 {
150 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
151 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
152 }
153
154 /* -----------------------------------------------------------------------------
155 * XCLK
156 */
157
158 #define to_isp_xclk(_hw) container_of(_hw, struct isp_xclk, hw)
159
160 static void isp_xclk_update(struct isp_xclk *xclk, u32 divider)
161 {
162 switch (xclk->id) {
163 case ISP_XCLK_A:
164 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
165 ISPTCTRL_CTRL_DIVA_MASK,
166 divider << ISPTCTRL_CTRL_DIVA_SHIFT);
167 break;
168 case ISP_XCLK_B:
169 isp_reg_clr_set(xclk->isp, OMAP3_ISP_IOMEM_MAIN, ISP_TCTRL_CTRL,
170 ISPTCTRL_CTRL_DIVB_MASK,
171 divider << ISPTCTRL_CTRL_DIVB_SHIFT);
172 break;
173 }
174 }
175
176 static int isp_xclk_prepare(struct clk_hw *hw)
177 {
178 struct isp_xclk *xclk = to_isp_xclk(hw);
179
180 omap3isp_get(xclk->isp);
181
182 return 0;
183 }
184
185 static void isp_xclk_unprepare(struct clk_hw *hw)
186 {
187 struct isp_xclk *xclk = to_isp_xclk(hw);
188
189 omap3isp_put(xclk->isp);
190 }
191
192 static int isp_xclk_enable(struct clk_hw *hw)
193 {
194 struct isp_xclk *xclk = to_isp_xclk(hw);
195 unsigned long flags;
196
197 spin_lock_irqsave(&xclk->lock, flags);
198 isp_xclk_update(xclk, xclk->divider);
199 xclk->enabled = true;
200 spin_unlock_irqrestore(&xclk->lock, flags);
201
202 return 0;
203 }
204
205 static void isp_xclk_disable(struct clk_hw *hw)
206 {
207 struct isp_xclk *xclk = to_isp_xclk(hw);
208 unsigned long flags;
209
210 spin_lock_irqsave(&xclk->lock, flags);
211 isp_xclk_update(xclk, 0);
212 xclk->enabled = false;
213 spin_unlock_irqrestore(&xclk->lock, flags);
214 }
215
216 static unsigned long isp_xclk_recalc_rate(struct clk_hw *hw,
217 unsigned long parent_rate)
218 {
219 struct isp_xclk *xclk = to_isp_xclk(hw);
220
221 return parent_rate / xclk->divider;
222 }
223
224 static u32 isp_xclk_calc_divider(unsigned long *rate, unsigned long parent_rate)
225 {
226 u32 divider;
227
228 if (*rate >= parent_rate) {
229 *rate = parent_rate;
230 return ISPTCTRL_CTRL_DIV_BYPASS;
231 }
232
233 if (*rate == 0)
234 *rate = 1;
235
236 divider = DIV_ROUND_CLOSEST(parent_rate, *rate);
237 if (divider >= ISPTCTRL_CTRL_DIV_BYPASS)
238 divider = ISPTCTRL_CTRL_DIV_BYPASS - 1;
239
240 *rate = parent_rate / divider;
241 return divider;
242 }
243
244 static long isp_xclk_round_rate(struct clk_hw *hw, unsigned long rate,
245 unsigned long *parent_rate)
246 {
247 isp_xclk_calc_divider(&rate, *parent_rate);
248 return rate;
249 }
250
251 static int isp_xclk_set_rate(struct clk_hw *hw, unsigned long rate,
252 unsigned long parent_rate)
253 {
254 struct isp_xclk *xclk = to_isp_xclk(hw);
255 unsigned long flags;
256 u32 divider;
257
258 divider = isp_xclk_calc_divider(&rate, parent_rate);
259
260 spin_lock_irqsave(&xclk->lock, flags);
261
262 xclk->divider = divider;
263 if (xclk->enabled)
264 isp_xclk_update(xclk, divider);
265
266 spin_unlock_irqrestore(&xclk->lock, flags);
267
268 dev_dbg(xclk->isp->dev, "%s: cam_xclk%c set to %lu Hz (div %u)\n",
269 __func__, xclk->id == ISP_XCLK_A ? 'a' : 'b', rate, divider);
270 return 0;
271 }
272
273 static const struct clk_ops isp_xclk_ops = {
274 .prepare = isp_xclk_prepare,
275 .unprepare = isp_xclk_unprepare,
276 .enable = isp_xclk_enable,
277 .disable = isp_xclk_disable,
278 .recalc_rate = isp_xclk_recalc_rate,
279 .round_rate = isp_xclk_round_rate,
280 .set_rate = isp_xclk_set_rate,
281 };
282
283 static const char *isp_xclk_parent_name = "cam_mclk";
284
285 static const struct clk_init_data isp_xclk_init_data = {
286 .name = "cam_xclk",
287 .ops = &isp_xclk_ops,
288 .parent_names = &isp_xclk_parent_name,
289 .num_parents = 1,
290 };
291
292 static struct clk *isp_xclk_src_get(struct of_phandle_args *clkspec, void *data)
293 {
294 unsigned int idx = clkspec->args[0];
295 struct isp_device *isp = data;
296
297 if (idx >= ARRAY_SIZE(isp->xclks))
298 return ERR_PTR(-ENOENT);
299
300 return isp->xclks[idx].clk;
301 }
302
303 static int isp_xclk_init(struct isp_device *isp)
304 {
305 struct device_node *np = isp->dev->of_node;
306 struct clk_init_data init;
307 unsigned int i;
308
309 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i)
310 isp->xclks[i].clk = ERR_PTR(-EINVAL);
311
312 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
313 struct isp_xclk *xclk = &isp->xclks[i];
314
315 xclk->isp = isp;
316 xclk->id = i == 0 ? ISP_XCLK_A : ISP_XCLK_B;
317 xclk->divider = 1;
318 spin_lock_init(&xclk->lock);
319
320 init.name = i == 0 ? "cam_xclka" : "cam_xclkb";
321 init.ops = &isp_xclk_ops;
322 init.parent_names = &isp_xclk_parent_name;
323 init.num_parents = 1;
324
325 xclk->hw.init = &init;
326 /*
327 * The first argument is NULL in order to avoid circular
328 * reference, as this driver takes reference on the
329 * sensor subdevice modules and the sensors would take
330 * reference on this module through clk_get().
331 */
332 xclk->clk = clk_register(NULL, &xclk->hw);
333 if (IS_ERR(xclk->clk))
334 return PTR_ERR(xclk->clk);
335 }
336
337 if (np)
338 of_clk_add_provider(np, isp_xclk_src_get, isp);
339
340 return 0;
341 }
342
343 static void isp_xclk_cleanup(struct isp_device *isp)
344 {
345 struct device_node *np = isp->dev->of_node;
346 unsigned int i;
347
348 if (np)
349 of_clk_del_provider(np);
350
351 for (i = 0; i < ARRAY_SIZE(isp->xclks); ++i) {
352 struct isp_xclk *xclk = &isp->xclks[i];
353
354 if (!IS_ERR(xclk->clk))
355 clk_unregister(xclk->clk);
356 }
357 }
358
359 /* -----------------------------------------------------------------------------
360 * Interrupts
361 */
362
363 /*
364 * isp_enable_interrupts - Enable ISP interrupts.
365 * @isp: OMAP3 ISP device
366 */
367 static void isp_enable_interrupts(struct isp_device *isp)
368 {
369 static const u32 irq = IRQ0ENABLE_CSIA_IRQ
370 | IRQ0ENABLE_CSIB_IRQ
371 | IRQ0ENABLE_CCDC_LSC_PREF_ERR_IRQ
372 | IRQ0ENABLE_CCDC_LSC_DONE_IRQ
373 | IRQ0ENABLE_CCDC_VD0_IRQ
374 | IRQ0ENABLE_CCDC_VD1_IRQ
375 | IRQ0ENABLE_HS_VS_IRQ
376 | IRQ0ENABLE_HIST_DONE_IRQ
377 | IRQ0ENABLE_H3A_AWB_DONE_IRQ
378 | IRQ0ENABLE_H3A_AF_DONE_IRQ
379 | IRQ0ENABLE_PRV_DONE_IRQ
380 | IRQ0ENABLE_RSZ_DONE_IRQ;
381
382 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
383 isp_reg_writel(isp, irq, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
384 }
385
386 /*
387 * isp_disable_interrupts - Disable ISP interrupts.
388 * @isp: OMAP3 ISP device
389 */
390 static void isp_disable_interrupts(struct isp_device *isp)
391 {
392 isp_reg_writel(isp, 0, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0ENABLE);
393 }
394
395 /*
396 * isp_core_init - ISP core settings
397 * @isp: OMAP3 ISP device
398 * @idle: Consider idle state.
399 *
400 * Set the power settings for the ISP and SBL bus and configure the HS/VS
401 * interrupt source.
402 *
403 * We need to configure the HS/VS interrupt source before interrupts get
404 * enabled, as the sensor might be free-running and the ISP default setting
405 * (HS edge) would put an unnecessary burden on the CPU.
406 */
407 static void isp_core_init(struct isp_device *isp, int idle)
408 {
409 isp_reg_writel(isp,
410 ((idle ? ISP_SYSCONFIG_MIDLEMODE_SMARTSTANDBY :
411 ISP_SYSCONFIG_MIDLEMODE_FORCESTANDBY) <<
412 ISP_SYSCONFIG_MIDLEMODE_SHIFT) |
413 ((isp->revision == ISP_REVISION_15_0) ?
414 ISP_SYSCONFIG_AUTOIDLE : 0),
415 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
416
417 isp_reg_writel(isp,
418 (isp->autoidle ? ISPCTRL_SBL_AUTOIDLE : 0) |
419 ISPCTRL_SYNC_DETECT_VSRISE,
420 OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
421 }
422
423 /*
424 * Configure the bridge and lane shifter. Valid inputs are
425 *
426 * CCDC_INPUT_PARALLEL: Parallel interface
427 * CCDC_INPUT_CSI2A: CSI2a receiver
428 * CCDC_INPUT_CCP2B: CCP2b receiver
429 * CCDC_INPUT_CSI2C: CSI2c receiver
430 *
431 * The bridge and lane shifter are configured according to the selected input
432 * and the ISP platform data.
433 */
434 void omap3isp_configure_bridge(struct isp_device *isp,
435 enum ccdc_input_entity input,
436 const struct isp_parallel_cfg *parcfg,
437 unsigned int shift, unsigned int bridge)
438 {
439 u32 ispctrl_val;
440
441 ispctrl_val = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
442 ispctrl_val &= ~ISPCTRL_SHIFT_MASK;
443 ispctrl_val &= ~ISPCTRL_PAR_CLK_POL_INV;
444 ispctrl_val &= ~ISPCTRL_PAR_SER_CLK_SEL_MASK;
445 ispctrl_val &= ~ISPCTRL_PAR_BRIDGE_MASK;
446 ispctrl_val |= bridge;
447
448 switch (input) {
449 case CCDC_INPUT_PARALLEL:
450 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_PARALLEL;
451 ispctrl_val |= parcfg->clk_pol << ISPCTRL_PAR_CLK_POL_SHIFT;
452 shift += parcfg->data_lane_shift * 2;
453 break;
454
455 case CCDC_INPUT_CSI2A:
456 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIA;
457 break;
458
459 case CCDC_INPUT_CCP2B:
460 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIB;
461 break;
462
463 case CCDC_INPUT_CSI2C:
464 ispctrl_val |= ISPCTRL_PAR_SER_CLK_SEL_CSIC;
465 break;
466
467 default:
468 return;
469 }
470
471 ispctrl_val |= ((shift/2) << ISPCTRL_SHIFT_SHIFT) & ISPCTRL_SHIFT_MASK;
472
473 isp_reg_writel(isp, ispctrl_val, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL);
474 }
475
476 void omap3isp_hist_dma_done(struct isp_device *isp)
477 {
478 if (omap3isp_ccdc_busy(&isp->isp_ccdc) ||
479 omap3isp_stat_pcr_busy(&isp->isp_hist)) {
480 /* Histogram cannot be enabled in this frame anymore */
481 atomic_set(&isp->isp_hist.buf_err, 1);
482 dev_dbg(isp->dev, "hist: Out of synchronization with "
483 "CCDC. Ignoring next buffer.\n");
484 }
485 }
486
487 static inline void isp_isr_dbg(struct isp_device *isp, u32 irqstatus)
488 {
489 static const char *name[] = {
490 "CSIA_IRQ",
491 "res1",
492 "res2",
493 "CSIB_LCM_IRQ",
494 "CSIB_IRQ",
495 "res5",
496 "res6",
497 "res7",
498 "CCDC_VD0_IRQ",
499 "CCDC_VD1_IRQ",
500 "CCDC_VD2_IRQ",
501 "CCDC_ERR_IRQ",
502 "H3A_AF_DONE_IRQ",
503 "H3A_AWB_DONE_IRQ",
504 "res14",
505 "res15",
506 "HIST_DONE_IRQ",
507 "CCDC_LSC_DONE",
508 "CCDC_LSC_PREFETCH_COMPLETED",
509 "CCDC_LSC_PREFETCH_ERROR",
510 "PRV_DONE_IRQ",
511 "CBUFF_IRQ",
512 "res22",
513 "res23",
514 "RSZ_DONE_IRQ",
515 "OVF_IRQ",
516 "res26",
517 "res27",
518 "MMU_ERR_IRQ",
519 "OCP_ERR_IRQ",
520 "SEC_ERR_IRQ",
521 "HS_VS_IRQ",
522 };
523 int i;
524
525 dev_dbg(isp->dev, "ISP IRQ: ");
526
527 for (i = 0; i < ARRAY_SIZE(name); i++) {
528 if ((1 << i) & irqstatus)
529 printk(KERN_CONT "%s ", name[i]);
530 }
531 printk(KERN_CONT "\n");
532 }
533
534 static void isp_isr_sbl(struct isp_device *isp)
535 {
536 struct device *dev = isp->dev;
537 struct isp_pipeline *pipe;
538 u32 sbl_pcr;
539
540 /*
541 * Handle shared buffer logic overflows for video buffers.
542 * ISPSBL_PCR_CCDCPRV_2_RSZ_OVF can be safely ignored.
543 */
544 sbl_pcr = isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
545 isp_reg_writel(isp, sbl_pcr, OMAP3_ISP_IOMEM_SBL, ISPSBL_PCR);
546 sbl_pcr &= ~ISPSBL_PCR_CCDCPRV_2_RSZ_OVF;
547
548 if (sbl_pcr)
549 dev_dbg(dev, "SBL overflow (PCR = 0x%08x)\n", sbl_pcr);
550
551 if (sbl_pcr & ISPSBL_PCR_CSIB_WBL_OVF) {
552 pipe = to_isp_pipeline(&isp->isp_ccp2.subdev.entity);
553 if (pipe != NULL)
554 pipe->error = true;
555 }
556
557 if (sbl_pcr & ISPSBL_PCR_CSIA_WBL_OVF) {
558 pipe = to_isp_pipeline(&isp->isp_csi2a.subdev.entity);
559 if (pipe != NULL)
560 pipe->error = true;
561 }
562
563 if (sbl_pcr & ISPSBL_PCR_CCDC_WBL_OVF) {
564 pipe = to_isp_pipeline(&isp->isp_ccdc.subdev.entity);
565 if (pipe != NULL)
566 pipe->error = true;
567 }
568
569 if (sbl_pcr & ISPSBL_PCR_PRV_WBL_OVF) {
570 pipe = to_isp_pipeline(&isp->isp_prev.subdev.entity);
571 if (pipe != NULL)
572 pipe->error = true;
573 }
574
575 if (sbl_pcr & (ISPSBL_PCR_RSZ1_WBL_OVF
576 | ISPSBL_PCR_RSZ2_WBL_OVF
577 | ISPSBL_PCR_RSZ3_WBL_OVF
578 | ISPSBL_PCR_RSZ4_WBL_OVF)) {
579 pipe = to_isp_pipeline(&isp->isp_res.subdev.entity);
580 if (pipe != NULL)
581 pipe->error = true;
582 }
583
584 if (sbl_pcr & ISPSBL_PCR_H3A_AF_WBL_OVF)
585 omap3isp_stat_sbl_overflow(&isp->isp_af);
586
587 if (sbl_pcr & ISPSBL_PCR_H3A_AEAWB_WBL_OVF)
588 omap3isp_stat_sbl_overflow(&isp->isp_aewb);
589 }
590
591 /*
592 * isp_isr - Interrupt Service Routine for Camera ISP module.
593 * @irq: Not used currently.
594 * @_isp: Pointer to the OMAP3 ISP device
595 *
596 * Handles the corresponding callback if plugged in.
597 */
598 static irqreturn_t isp_isr(int irq, void *_isp)
599 {
600 static const u32 ccdc_events = IRQ0STATUS_CCDC_LSC_PREF_ERR_IRQ |
601 IRQ0STATUS_CCDC_LSC_DONE_IRQ |
602 IRQ0STATUS_CCDC_VD0_IRQ |
603 IRQ0STATUS_CCDC_VD1_IRQ |
604 IRQ0STATUS_HS_VS_IRQ;
605 struct isp_device *isp = _isp;
606 u32 irqstatus;
607
608 irqstatus = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
609 isp_reg_writel(isp, irqstatus, OMAP3_ISP_IOMEM_MAIN, ISP_IRQ0STATUS);
610
611 isp_isr_sbl(isp);
612
613 if (irqstatus & IRQ0STATUS_CSIA_IRQ)
614 omap3isp_csi2_isr(&isp->isp_csi2a);
615
616 if (irqstatus & IRQ0STATUS_CSIB_IRQ)
617 omap3isp_ccp2_isr(&isp->isp_ccp2);
618
619 if (irqstatus & IRQ0STATUS_CCDC_VD0_IRQ) {
620 if (isp->isp_ccdc.output & CCDC_OUTPUT_PREVIEW)
621 omap3isp_preview_isr_frame_sync(&isp->isp_prev);
622 if (isp->isp_ccdc.output & CCDC_OUTPUT_RESIZER)
623 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
624 omap3isp_stat_isr_frame_sync(&isp->isp_aewb);
625 omap3isp_stat_isr_frame_sync(&isp->isp_af);
626 omap3isp_stat_isr_frame_sync(&isp->isp_hist);
627 }
628
629 if (irqstatus & ccdc_events)
630 omap3isp_ccdc_isr(&isp->isp_ccdc, irqstatus & ccdc_events);
631
632 if (irqstatus & IRQ0STATUS_PRV_DONE_IRQ) {
633 if (isp->isp_prev.output & PREVIEW_OUTPUT_RESIZER)
634 omap3isp_resizer_isr_frame_sync(&isp->isp_res);
635 omap3isp_preview_isr(&isp->isp_prev);
636 }
637
638 if (irqstatus & IRQ0STATUS_RSZ_DONE_IRQ)
639 omap3isp_resizer_isr(&isp->isp_res);
640
641 if (irqstatus & IRQ0STATUS_H3A_AWB_DONE_IRQ)
642 omap3isp_stat_isr(&isp->isp_aewb);
643
644 if (irqstatus & IRQ0STATUS_H3A_AF_DONE_IRQ)
645 omap3isp_stat_isr(&isp->isp_af);
646
647 if (irqstatus & IRQ0STATUS_HIST_DONE_IRQ)
648 omap3isp_stat_isr(&isp->isp_hist);
649
650 omap3isp_flush(isp);
651
652 #if defined(DEBUG) && defined(ISP_ISR_DEBUG)
653 isp_isr_dbg(isp, irqstatus);
654 #endif
655
656 return IRQ_HANDLED;
657 }
658
659 /* -----------------------------------------------------------------------------
660 * Pipeline power management
661 *
662 * Entities must be powered up when part of a pipeline that contains at least
663 * one open video device node.
664 *
665 * To achieve this use the entity use_count field to track the number of users.
666 * For entities corresponding to video device nodes the use_count field stores
667 * the users count of the node. For entities corresponding to subdevs the
668 * use_count field stores the total number of users of all video device nodes
669 * in the pipeline.
670 *
671 * The omap3isp_pipeline_pm_use() function must be called in the open() and
672 * close() handlers of video device nodes. It increments or decrements the use
673 * count of all subdev entities in the pipeline.
674 *
675 * To react to link management on powered pipelines, the link setup notification
676 * callback updates the use count of all entities in the source and sink sides
677 * of the link.
678 */
679
680 /*
681 * isp_pipeline_pm_use_count - Count the number of users of a pipeline
682 * @entity: The entity
683 *
684 * Return the total number of users of all video device nodes in the pipeline.
685 */
686 static int isp_pipeline_pm_use_count(struct media_entity *entity)
687 {
688 struct media_entity_graph graph;
689 int use = 0;
690
691 media_entity_graph_walk_start(&graph, entity);
692
693 while ((entity = media_entity_graph_walk_next(&graph))) {
694 if (is_media_entity_v4l2_io(entity))
695 use += entity->use_count;
696 }
697
698 return use;
699 }
700
701 /*
702 * isp_pipeline_pm_power_one - Apply power change to an entity
703 * @entity: The entity
704 * @change: Use count change
705 *
706 * Change the entity use count by @change. If the entity is a subdev update its
707 * power state by calling the core::s_power operation when the use count goes
708 * from 0 to != 0 or from != 0 to 0.
709 *
710 * Return 0 on success or a negative error code on failure.
711 */
712 static int isp_pipeline_pm_power_one(struct media_entity *entity, int change)
713 {
714 struct v4l2_subdev *subdev;
715 int ret;
716
717 subdev = is_media_entity_v4l2_subdev(entity)
718 ? media_entity_to_v4l2_subdev(entity) : NULL;
719
720 if (entity->use_count == 0 && change > 0 && subdev != NULL) {
721 ret = v4l2_subdev_call(subdev, core, s_power, 1);
722 if (ret < 0 && ret != -ENOIOCTLCMD)
723 return ret;
724 }
725
726 entity->use_count += change;
727 WARN_ON(entity->use_count < 0);
728
729 if (entity->use_count == 0 && change < 0 && subdev != NULL)
730 v4l2_subdev_call(subdev, core, s_power, 0);
731
732 return 0;
733 }
734
735 /*
736 * isp_pipeline_pm_power - Apply power change to all entities in a pipeline
737 * @entity: The entity
738 * @change: Use count change
739 *
740 * Walk the pipeline to update the use count and the power state of all non-node
741 * entities.
742 *
743 * Return 0 on success or a negative error code on failure.
744 */
745 static int isp_pipeline_pm_power(struct media_entity *entity, int change)
746 {
747 struct media_entity_graph graph;
748 struct media_entity *first = entity;
749 int ret = 0;
750
751 if (!change)
752 return 0;
753
754 media_entity_graph_walk_start(&graph, entity);
755
756 while (!ret && (entity = media_entity_graph_walk_next(&graph)))
757 if (is_media_entity_v4l2_subdev(entity))
758 ret = isp_pipeline_pm_power_one(entity, change);
759
760 if (!ret)
761 return 0;
762
763 media_entity_graph_walk_start(&graph, first);
764
765 while ((first = media_entity_graph_walk_next(&graph))
766 && first != entity)
767 if (is_media_entity_v4l2_subdev(first))
768 isp_pipeline_pm_power_one(first, -change);
769
770 return ret;
771 }
772
773 /*
774 * omap3isp_pipeline_pm_use - Update the use count of an entity
775 * @entity: The entity
776 * @use: Use (1) or stop using (0) the entity
777 *
778 * Update the use count of all entities in the pipeline and power entities on or
779 * off accordingly.
780 *
781 * Return 0 on success or a negative error code on failure. Powering entities
782 * off is assumed to never fail. No failure can occur when the use parameter is
783 * set to 0.
784 */
785 int omap3isp_pipeline_pm_use(struct media_entity *entity, int use)
786 {
787 int change = use ? 1 : -1;
788 int ret;
789
790 mutex_lock(&entity->graph_obj.mdev->graph_mutex);
791
792 /* Apply use count to node. */
793 entity->use_count += change;
794 WARN_ON(entity->use_count < 0);
795
796 /* Apply power change to connected non-nodes. */
797 ret = isp_pipeline_pm_power(entity, change);
798 if (ret < 0)
799 entity->use_count -= change;
800
801 mutex_unlock(&entity->graph_obj.mdev->graph_mutex);
802
803 return ret;
804 }
805
806 /*
807 * isp_pipeline_link_notify - Link management notification callback
808 * @link: The link
809 * @flags: New link flags that will be applied
810 * @notification: The link's state change notification type (MEDIA_DEV_NOTIFY_*)
811 *
812 * React to link management on powered pipelines by updating the use count of
813 * all entities in the source and sink sides of the link. Entities are powered
814 * on or off accordingly.
815 *
816 * Return 0 on success or a negative error code on failure. Powering entities
817 * off is assumed to never fail. This function will not fail for disconnection
818 * events.
819 */
820 static int isp_pipeline_link_notify(struct media_link *link, u32 flags,
821 unsigned int notification)
822 {
823 struct media_entity *source = link->source->entity;
824 struct media_entity *sink = link->sink->entity;
825 int source_use = isp_pipeline_pm_use_count(source);
826 int sink_use = isp_pipeline_pm_use_count(sink);
827 int ret;
828
829 if (notification == MEDIA_DEV_NOTIFY_POST_LINK_CH &&
830 !(flags & MEDIA_LNK_FL_ENABLED)) {
831 /* Powering off entities is assumed to never fail. */
832 isp_pipeline_pm_power(source, -sink_use);
833 isp_pipeline_pm_power(sink, -source_use);
834 return 0;
835 }
836
837 if (notification == MEDIA_DEV_NOTIFY_PRE_LINK_CH &&
838 (flags & MEDIA_LNK_FL_ENABLED)) {
839
840 ret = isp_pipeline_pm_power(source, sink_use);
841 if (ret < 0)
842 return ret;
843
844 ret = isp_pipeline_pm_power(sink, source_use);
845 if (ret < 0)
846 isp_pipeline_pm_power(source, -sink_use);
847
848 return ret;
849 }
850
851 return 0;
852 }
853
854 /* -----------------------------------------------------------------------------
855 * Pipeline stream management
856 */
857
858 /*
859 * isp_pipeline_enable - Enable streaming on a pipeline
860 * @pipe: ISP pipeline
861 * @mode: Stream mode (single shot or continuous)
862 *
863 * Walk the entities chain starting at the pipeline output video node and start
864 * all modules in the chain in the given mode.
865 *
866 * Return 0 if successful, or the return value of the failed video::s_stream
867 * operation otherwise.
868 */
869 static int isp_pipeline_enable(struct isp_pipeline *pipe,
870 enum isp_pipeline_stream_state mode)
871 {
872 struct isp_device *isp = pipe->output->isp;
873 struct media_entity *entity;
874 struct media_pad *pad;
875 struct v4l2_subdev *subdev;
876 unsigned long flags;
877 int ret;
878
879 /* Refuse to start streaming if an entity included in the pipeline has
880 * crashed. This check must be performed before the loop below to avoid
881 * starting entities if the pipeline won't start anyway (those entities
882 * would then likely fail to stop, making the problem worse).
883 */
884 if (pipe->entities & isp->crashed)
885 return -EIO;
886
887 spin_lock_irqsave(&pipe->lock, flags);
888 pipe->state &= ~(ISP_PIPELINE_IDLE_INPUT | ISP_PIPELINE_IDLE_OUTPUT);
889 spin_unlock_irqrestore(&pipe->lock, flags);
890
891 pipe->do_propagation = false;
892
893 entity = &pipe->output->video.entity;
894 while (1) {
895 pad = &entity->pads[0];
896 if (!(pad->flags & MEDIA_PAD_FL_SINK))
897 break;
898
899 pad = media_entity_remote_pad(pad);
900 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
901 break;
902
903 entity = pad->entity;
904 subdev = media_entity_to_v4l2_subdev(entity);
905
906 ret = v4l2_subdev_call(subdev, video, s_stream, mode);
907 if (ret < 0 && ret != -ENOIOCTLCMD)
908 return ret;
909
910 if (subdev == &isp->isp_ccdc.subdev) {
911 v4l2_subdev_call(&isp->isp_aewb.subdev, video,
912 s_stream, mode);
913 v4l2_subdev_call(&isp->isp_af.subdev, video,
914 s_stream, mode);
915 v4l2_subdev_call(&isp->isp_hist.subdev, video,
916 s_stream, mode);
917 pipe->do_propagation = true;
918 }
919 }
920
921 return 0;
922 }
923
924 static int isp_pipeline_wait_resizer(struct isp_device *isp)
925 {
926 return omap3isp_resizer_busy(&isp->isp_res);
927 }
928
929 static int isp_pipeline_wait_preview(struct isp_device *isp)
930 {
931 return omap3isp_preview_busy(&isp->isp_prev);
932 }
933
934 static int isp_pipeline_wait_ccdc(struct isp_device *isp)
935 {
936 return omap3isp_stat_busy(&isp->isp_af)
937 || omap3isp_stat_busy(&isp->isp_aewb)
938 || omap3isp_stat_busy(&isp->isp_hist)
939 || omap3isp_ccdc_busy(&isp->isp_ccdc);
940 }
941
942 #define ISP_STOP_TIMEOUT msecs_to_jiffies(1000)
943
944 static int isp_pipeline_wait(struct isp_device *isp,
945 int(*busy)(struct isp_device *isp))
946 {
947 unsigned long timeout = jiffies + ISP_STOP_TIMEOUT;
948
949 while (!time_after(jiffies, timeout)) {
950 if (!busy(isp))
951 return 0;
952 }
953
954 return 1;
955 }
956
957 /*
958 * isp_pipeline_disable - Disable streaming on a pipeline
959 * @pipe: ISP pipeline
960 *
961 * Walk the entities chain starting at the pipeline output video node and stop
962 * all modules in the chain. Wait synchronously for the modules to be stopped if
963 * necessary.
964 *
965 * Return 0 if all modules have been properly stopped, or -ETIMEDOUT if a module
966 * can't be stopped (in which case a software reset of the ISP is probably
967 * necessary).
968 */
969 static int isp_pipeline_disable(struct isp_pipeline *pipe)
970 {
971 struct isp_device *isp = pipe->output->isp;
972 struct media_entity *entity;
973 struct media_pad *pad;
974 struct v4l2_subdev *subdev;
975 int failure = 0;
976 int ret;
977 u32 id;
978
979 /*
980 * We need to stop all the modules after CCDC first or they'll
981 * never stop since they may not get a full frame from CCDC.
982 */
983 entity = &pipe->output->video.entity;
984 while (1) {
985 pad = &entity->pads[0];
986 if (!(pad->flags & MEDIA_PAD_FL_SINK))
987 break;
988
989 pad = media_entity_remote_pad(pad);
990 if (!pad || !is_media_entity_v4l2_subdev(pad->entity))
991 break;
992
993 entity = pad->entity;
994 subdev = media_entity_to_v4l2_subdev(entity);
995
996 if (subdev == &isp->isp_ccdc.subdev) {
997 v4l2_subdev_call(&isp->isp_aewb.subdev,
998 video, s_stream, 0);
999 v4l2_subdev_call(&isp->isp_af.subdev,
1000 video, s_stream, 0);
1001 v4l2_subdev_call(&isp->isp_hist.subdev,
1002 video, s_stream, 0);
1003 }
1004
1005 ret = v4l2_subdev_call(subdev, video, s_stream, 0);
1006
1007 if (subdev == &isp->isp_res.subdev)
1008 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_resizer);
1009 else if (subdev == &isp->isp_prev.subdev)
1010 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_preview);
1011 else if (subdev == &isp->isp_ccdc.subdev)
1012 ret |= isp_pipeline_wait(isp, isp_pipeline_wait_ccdc);
1013
1014 /* Handle stop failures. An entity that fails to stop can
1015 * usually just be restarted. Flag the stop failure nonetheless
1016 * to trigger an ISP reset the next time the device is released,
1017 * just in case.
1018 *
1019 * The preview engine is a special case. A failure to stop can
1020 * mean a hardware crash. When that happens the preview engine
1021 * won't respond to read/write operations on the L4 bus anymore,
1022 * resulting in a bus fault and a kernel oops next time it gets
1023 * accessed. Mark it as crashed to prevent pipelines including
1024 * it from being started.
1025 */
1026 if (ret) {
1027 dev_info(isp->dev, "Unable to stop %s\n", subdev->name);
1028 isp->stop_failure = true;
1029 if (subdev == &isp->isp_prev.subdev) {
1030 id = media_entity_id(&subdev->entity);
1031 isp->crashed |= 1U << id;
1032 }
1033 failure = -ETIMEDOUT;
1034 }
1035 }
1036
1037 return failure;
1038 }
1039
1040 /*
1041 * omap3isp_pipeline_set_stream - Enable/disable streaming on a pipeline
1042 * @pipe: ISP pipeline
1043 * @state: Stream state (stopped, single shot or continuous)
1044 *
1045 * Set the pipeline to the given stream state. Pipelines can be started in
1046 * single-shot or continuous mode.
1047 *
1048 * Return 0 if successful, or the return value of the failed video::s_stream
1049 * operation otherwise. The pipeline state is not updated when the operation
1050 * fails, except when stopping the pipeline.
1051 */
1052 int omap3isp_pipeline_set_stream(struct isp_pipeline *pipe,
1053 enum isp_pipeline_stream_state state)
1054 {
1055 int ret;
1056
1057 if (state == ISP_PIPELINE_STREAM_STOPPED)
1058 ret = isp_pipeline_disable(pipe);
1059 else
1060 ret = isp_pipeline_enable(pipe, state);
1061
1062 if (ret == 0 || state == ISP_PIPELINE_STREAM_STOPPED)
1063 pipe->stream_state = state;
1064
1065 return ret;
1066 }
1067
1068 /*
1069 * omap3isp_pipeline_cancel_stream - Cancel stream on a pipeline
1070 * @pipe: ISP pipeline
1071 *
1072 * Cancelling a stream mark all buffers on all video nodes in the pipeline as
1073 * erroneous and makes sure no new buffer can be queued. This function is called
1074 * when a fatal error that prevents any further operation on the pipeline
1075 * occurs.
1076 */
1077 void omap3isp_pipeline_cancel_stream(struct isp_pipeline *pipe)
1078 {
1079 if (pipe->input)
1080 omap3isp_video_cancel_stream(pipe->input);
1081 if (pipe->output)
1082 omap3isp_video_cancel_stream(pipe->output);
1083 }
1084
1085 /*
1086 * isp_pipeline_resume - Resume streaming on a pipeline
1087 * @pipe: ISP pipeline
1088 *
1089 * Resume video output and input and re-enable pipeline.
1090 */
1091 static void isp_pipeline_resume(struct isp_pipeline *pipe)
1092 {
1093 int singleshot = pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT;
1094
1095 omap3isp_video_resume(pipe->output, !singleshot);
1096 if (singleshot)
1097 omap3isp_video_resume(pipe->input, 0);
1098 isp_pipeline_enable(pipe, pipe->stream_state);
1099 }
1100
1101 /*
1102 * isp_pipeline_suspend - Suspend streaming on a pipeline
1103 * @pipe: ISP pipeline
1104 *
1105 * Suspend pipeline.
1106 */
1107 static void isp_pipeline_suspend(struct isp_pipeline *pipe)
1108 {
1109 isp_pipeline_disable(pipe);
1110 }
1111
1112 /*
1113 * isp_pipeline_is_last - Verify if entity has an enabled link to the output
1114 * video node
1115 * @me: ISP module's media entity
1116 *
1117 * Returns 1 if the entity has an enabled link to the output video node or 0
1118 * otherwise. It's true only while pipeline can have no more than one output
1119 * node.
1120 */
1121 static int isp_pipeline_is_last(struct media_entity *me)
1122 {
1123 struct isp_pipeline *pipe;
1124 struct media_pad *pad;
1125
1126 if (!me->pipe)
1127 return 0;
1128 pipe = to_isp_pipeline(me);
1129 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED)
1130 return 0;
1131 pad = media_entity_remote_pad(&pipe->output->pad);
1132 return pad->entity == me;
1133 }
1134
1135 /*
1136 * isp_suspend_module_pipeline - Suspend pipeline to which belongs the module
1137 * @me: ISP module's media entity
1138 *
1139 * Suspend the whole pipeline if module's entity has an enabled link to the
1140 * output video node. It works only while pipeline can have no more than one
1141 * output node.
1142 */
1143 static void isp_suspend_module_pipeline(struct media_entity *me)
1144 {
1145 if (isp_pipeline_is_last(me))
1146 isp_pipeline_suspend(to_isp_pipeline(me));
1147 }
1148
1149 /*
1150 * isp_resume_module_pipeline - Resume pipeline to which belongs the module
1151 * @me: ISP module's media entity
1152 *
1153 * Resume the whole pipeline if module's entity has an enabled link to the
1154 * output video node. It works only while pipeline can have no more than one
1155 * output node.
1156 */
1157 static void isp_resume_module_pipeline(struct media_entity *me)
1158 {
1159 if (isp_pipeline_is_last(me))
1160 isp_pipeline_resume(to_isp_pipeline(me));
1161 }
1162
1163 /*
1164 * isp_suspend_modules - Suspend ISP submodules.
1165 * @isp: OMAP3 ISP device
1166 *
1167 * Returns 0 if suspend left in idle state all the submodules properly,
1168 * or returns 1 if a general Reset is required to suspend the submodules.
1169 */
1170 static int isp_suspend_modules(struct isp_device *isp)
1171 {
1172 unsigned long timeout;
1173
1174 omap3isp_stat_suspend(&isp->isp_aewb);
1175 omap3isp_stat_suspend(&isp->isp_af);
1176 omap3isp_stat_suspend(&isp->isp_hist);
1177 isp_suspend_module_pipeline(&isp->isp_res.subdev.entity);
1178 isp_suspend_module_pipeline(&isp->isp_prev.subdev.entity);
1179 isp_suspend_module_pipeline(&isp->isp_ccdc.subdev.entity);
1180 isp_suspend_module_pipeline(&isp->isp_csi2a.subdev.entity);
1181 isp_suspend_module_pipeline(&isp->isp_ccp2.subdev.entity);
1182
1183 timeout = jiffies + ISP_STOP_TIMEOUT;
1184 while (omap3isp_stat_busy(&isp->isp_af)
1185 || omap3isp_stat_busy(&isp->isp_aewb)
1186 || omap3isp_stat_busy(&isp->isp_hist)
1187 || omap3isp_preview_busy(&isp->isp_prev)
1188 || omap3isp_resizer_busy(&isp->isp_res)
1189 || omap3isp_ccdc_busy(&isp->isp_ccdc)) {
1190 if (time_after(jiffies, timeout)) {
1191 dev_info(isp->dev, "can't stop modules.\n");
1192 return 1;
1193 }
1194 msleep(1);
1195 }
1196
1197 return 0;
1198 }
1199
1200 /*
1201 * isp_resume_modules - Resume ISP submodules.
1202 * @isp: OMAP3 ISP device
1203 */
1204 static void isp_resume_modules(struct isp_device *isp)
1205 {
1206 omap3isp_stat_resume(&isp->isp_aewb);
1207 omap3isp_stat_resume(&isp->isp_af);
1208 omap3isp_stat_resume(&isp->isp_hist);
1209 isp_resume_module_pipeline(&isp->isp_res.subdev.entity);
1210 isp_resume_module_pipeline(&isp->isp_prev.subdev.entity);
1211 isp_resume_module_pipeline(&isp->isp_ccdc.subdev.entity);
1212 isp_resume_module_pipeline(&isp->isp_csi2a.subdev.entity);
1213 isp_resume_module_pipeline(&isp->isp_ccp2.subdev.entity);
1214 }
1215
1216 /*
1217 * isp_reset - Reset ISP with a timeout wait for idle.
1218 * @isp: OMAP3 ISP device
1219 */
1220 static int isp_reset(struct isp_device *isp)
1221 {
1222 unsigned long timeout = 0;
1223
1224 isp_reg_writel(isp,
1225 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG)
1226 | ISP_SYSCONFIG_SOFTRESET,
1227 OMAP3_ISP_IOMEM_MAIN, ISP_SYSCONFIG);
1228 while (!(isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN,
1229 ISP_SYSSTATUS) & 0x1)) {
1230 if (timeout++ > 10000) {
1231 dev_alert(isp->dev, "cannot reset ISP\n");
1232 return -ETIMEDOUT;
1233 }
1234 udelay(1);
1235 }
1236
1237 isp->stop_failure = false;
1238 isp->crashed = 0;
1239 return 0;
1240 }
1241
1242 /*
1243 * isp_save_context - Saves the values of the ISP module registers.
1244 * @isp: OMAP3 ISP device
1245 * @reg_list: Structure containing pairs of register address and value to
1246 * modify on OMAP.
1247 */
1248 static void
1249 isp_save_context(struct isp_device *isp, struct isp_reg *reg_list)
1250 {
1251 struct isp_reg *next = reg_list;
1252
1253 for (; next->reg != ISP_TOK_TERM; next++)
1254 next->val = isp_reg_readl(isp, next->mmio_range, next->reg);
1255 }
1256
1257 /*
1258 * isp_restore_context - Restores the values of the ISP module registers.
1259 * @isp: OMAP3 ISP device
1260 * @reg_list: Structure containing pairs of register address and value to
1261 * modify on OMAP.
1262 */
1263 static void
1264 isp_restore_context(struct isp_device *isp, struct isp_reg *reg_list)
1265 {
1266 struct isp_reg *next = reg_list;
1267
1268 for (; next->reg != ISP_TOK_TERM; next++)
1269 isp_reg_writel(isp, next->val, next->mmio_range, next->reg);
1270 }
1271
1272 /*
1273 * isp_save_ctx - Saves ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1274 * @isp: OMAP3 ISP device
1275 *
1276 * Routine for saving the context of each module in the ISP.
1277 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1278 */
1279 static void isp_save_ctx(struct isp_device *isp)
1280 {
1281 isp_save_context(isp, isp_reg_list);
1282 omap_iommu_save_ctx(isp->dev);
1283 }
1284
1285 /*
1286 * isp_restore_ctx - Restores ISP, CCDC, HIST, H3A, PREV, RESZ & MMU context.
1287 * @isp: OMAP3 ISP device
1288 *
1289 * Routine for restoring the context of each module in the ISP.
1290 * CCDC, HIST, H3A, PREV, RESZ and MMU.
1291 */
1292 static void isp_restore_ctx(struct isp_device *isp)
1293 {
1294 isp_restore_context(isp, isp_reg_list);
1295 omap_iommu_restore_ctx(isp->dev);
1296 omap3isp_ccdc_restore_context(isp);
1297 omap3isp_preview_restore_context(isp);
1298 }
1299
1300 /* -----------------------------------------------------------------------------
1301 * SBL resources management
1302 */
1303 #define OMAP3_ISP_SBL_READ (OMAP3_ISP_SBL_CSI1_READ | \
1304 OMAP3_ISP_SBL_CCDC_LSC_READ | \
1305 OMAP3_ISP_SBL_PREVIEW_READ | \
1306 OMAP3_ISP_SBL_RESIZER_READ)
1307 #define OMAP3_ISP_SBL_WRITE (OMAP3_ISP_SBL_CSI1_WRITE | \
1308 OMAP3_ISP_SBL_CSI2A_WRITE | \
1309 OMAP3_ISP_SBL_CSI2C_WRITE | \
1310 OMAP3_ISP_SBL_CCDC_WRITE | \
1311 OMAP3_ISP_SBL_PREVIEW_WRITE)
1312
1313 void omap3isp_sbl_enable(struct isp_device *isp, enum isp_sbl_resource res)
1314 {
1315 u32 sbl = 0;
1316
1317 isp->sbl_resources |= res;
1318
1319 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ)
1320 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1321
1322 if (isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ)
1323 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1324
1325 if (isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE)
1326 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1327
1328 if (isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE)
1329 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1330
1331 if (isp->sbl_resources & OMAP3_ISP_SBL_WRITE)
1332 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1333
1334 if (isp->sbl_resources & OMAP3_ISP_SBL_READ)
1335 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1336
1337 isp_reg_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1338 }
1339
1340 void omap3isp_sbl_disable(struct isp_device *isp, enum isp_sbl_resource res)
1341 {
1342 u32 sbl = 0;
1343
1344 isp->sbl_resources &= ~res;
1345
1346 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI1_READ))
1347 sbl |= ISPCTRL_SBL_SHARED_RPORTA;
1348
1349 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CCDC_LSC_READ))
1350 sbl |= ISPCTRL_SBL_SHARED_RPORTB;
1351
1352 if (!(isp->sbl_resources & OMAP3_ISP_SBL_CSI2C_WRITE))
1353 sbl |= ISPCTRL_SBL_SHARED_WPORTC;
1354
1355 if (!(isp->sbl_resources & OMAP3_ISP_SBL_RESIZER_WRITE))
1356 sbl |= ISPCTRL_SBL_WR0_RAM_EN;
1357
1358 if (!(isp->sbl_resources & OMAP3_ISP_SBL_WRITE))
1359 sbl |= ISPCTRL_SBL_WR1_RAM_EN;
1360
1361 if (!(isp->sbl_resources & OMAP3_ISP_SBL_READ))
1362 sbl |= ISPCTRL_SBL_RD_RAM_EN;
1363
1364 isp_reg_clr(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL, sbl);
1365 }
1366
1367 /*
1368 * isp_module_sync_idle - Helper to sync module with its idle state
1369 * @me: ISP submodule's media entity
1370 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1371 * @stopping: flag which tells module wants to stop
1372 *
1373 * This function checks if ISP submodule needs to wait for next interrupt. If
1374 * yes, makes the caller to sleep while waiting for such event.
1375 */
1376 int omap3isp_module_sync_idle(struct media_entity *me, wait_queue_head_t *wait,
1377 atomic_t *stopping)
1378 {
1379 struct isp_pipeline *pipe = to_isp_pipeline(me);
1380
1381 if (pipe->stream_state == ISP_PIPELINE_STREAM_STOPPED ||
1382 (pipe->stream_state == ISP_PIPELINE_STREAM_SINGLESHOT &&
1383 !isp_pipeline_ready(pipe)))
1384 return 0;
1385
1386 /*
1387 * atomic_set() doesn't include memory barrier on ARM platform for SMP
1388 * scenario. We'll call it here to avoid race conditions.
1389 */
1390 atomic_set(stopping, 1);
1391 smp_mb();
1392
1393 /*
1394 * If module is the last one, it's writing to memory. In this case,
1395 * it's necessary to check if the module is already paused due to
1396 * DMA queue underrun or if it has to wait for next interrupt to be
1397 * idle.
1398 * If it isn't the last one, the function won't sleep but *stopping
1399 * will still be set to warn next submodule caller's interrupt the
1400 * module wants to be idle.
1401 */
1402 if (isp_pipeline_is_last(me)) {
1403 struct isp_video *video = pipe->output;
1404 unsigned long flags;
1405 spin_lock_irqsave(&video->irqlock, flags);
1406 if (video->dmaqueue_flags & ISP_VIDEO_DMAQUEUE_UNDERRUN) {
1407 spin_unlock_irqrestore(&video->irqlock, flags);
1408 atomic_set(stopping, 0);
1409 smp_mb();
1410 return 0;
1411 }
1412 spin_unlock_irqrestore(&video->irqlock, flags);
1413 if (!wait_event_timeout(*wait, !atomic_read(stopping),
1414 msecs_to_jiffies(1000))) {
1415 atomic_set(stopping, 0);
1416 smp_mb();
1417 return -ETIMEDOUT;
1418 }
1419 }
1420
1421 return 0;
1422 }
1423
1424 /*
1425 * omap3isp_module_sync_is_stopping - Helper to verify if module was stopping
1426 * @wait: ISP submodule's wait queue for streamoff/interrupt synchronization
1427 * @stopping: flag which tells module wants to stop
1428 *
1429 * This function checks if ISP submodule was stopping. In case of yes, it
1430 * notices the caller by setting stopping to 0 and waking up the wait queue.
1431 * Returns 1 if it was stopping or 0 otherwise.
1432 */
1433 int omap3isp_module_sync_is_stopping(wait_queue_head_t *wait,
1434 atomic_t *stopping)
1435 {
1436 if (atomic_cmpxchg(stopping, 1, 0)) {
1437 wake_up(wait);
1438 return 1;
1439 }
1440
1441 return 0;
1442 }
1443
1444 /* --------------------------------------------------------------------------
1445 * Clock management
1446 */
1447
1448 #define ISPCTRL_CLKS_MASK (ISPCTRL_H3A_CLK_EN | \
1449 ISPCTRL_HIST_CLK_EN | \
1450 ISPCTRL_RSZ_CLK_EN | \
1451 (ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN) | \
1452 (ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN))
1453
1454 static void __isp_subclk_update(struct isp_device *isp)
1455 {
1456 u32 clk = 0;
1457
1458 /* AEWB and AF share the same clock. */
1459 if (isp->subclk_resources &
1460 (OMAP3_ISP_SUBCLK_AEWB | OMAP3_ISP_SUBCLK_AF))
1461 clk |= ISPCTRL_H3A_CLK_EN;
1462
1463 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_HIST)
1464 clk |= ISPCTRL_HIST_CLK_EN;
1465
1466 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_RESIZER)
1467 clk |= ISPCTRL_RSZ_CLK_EN;
1468
1469 /* NOTE: For CCDC & Preview submodules, we need to affect internal
1470 * RAM as well.
1471 */
1472 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_CCDC)
1473 clk |= ISPCTRL_CCDC_CLK_EN | ISPCTRL_CCDC_RAM_EN;
1474
1475 if (isp->subclk_resources & OMAP3_ISP_SUBCLK_PREVIEW)
1476 clk |= ISPCTRL_PREV_CLK_EN | ISPCTRL_PREV_RAM_EN;
1477
1478 isp_reg_clr_set(isp, OMAP3_ISP_IOMEM_MAIN, ISP_CTRL,
1479 ISPCTRL_CLKS_MASK, clk);
1480 }
1481
1482 void omap3isp_subclk_enable(struct isp_device *isp,
1483 enum isp_subclk_resource res)
1484 {
1485 isp->subclk_resources |= res;
1486
1487 __isp_subclk_update(isp);
1488 }
1489
1490 void omap3isp_subclk_disable(struct isp_device *isp,
1491 enum isp_subclk_resource res)
1492 {
1493 isp->subclk_resources &= ~res;
1494
1495 __isp_subclk_update(isp);
1496 }
1497
1498 /*
1499 * isp_enable_clocks - Enable ISP clocks
1500 * @isp: OMAP3 ISP device
1501 *
1502 * Return 0 if successful, or clk_prepare_enable return value if any of them
1503 * fails.
1504 */
1505 static int isp_enable_clocks(struct isp_device *isp)
1506 {
1507 int r;
1508 unsigned long rate;
1509
1510 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_ICK]);
1511 if (r) {
1512 dev_err(isp->dev, "failed to enable cam_ick clock\n");
1513 goto out_clk_enable_ick;
1514 }
1515 r = clk_set_rate(isp->clock[ISP_CLK_CAM_MCLK], CM_CAM_MCLK_HZ);
1516 if (r) {
1517 dev_err(isp->dev, "clk_set_rate for cam_mclk failed\n");
1518 goto out_clk_enable_mclk;
1519 }
1520 r = clk_prepare_enable(isp->clock[ISP_CLK_CAM_MCLK]);
1521 if (r) {
1522 dev_err(isp->dev, "failed to enable cam_mclk clock\n");
1523 goto out_clk_enable_mclk;
1524 }
1525 rate = clk_get_rate(isp->clock[ISP_CLK_CAM_MCLK]);
1526 if (rate != CM_CAM_MCLK_HZ)
1527 dev_warn(isp->dev, "unexpected cam_mclk rate:\n"
1528 " expected : %d\n"
1529 " actual : %ld\n", CM_CAM_MCLK_HZ, rate);
1530 r = clk_prepare_enable(isp->clock[ISP_CLK_CSI2_FCK]);
1531 if (r) {
1532 dev_err(isp->dev, "failed to enable csi2_fck clock\n");
1533 goto out_clk_enable_csi2_fclk;
1534 }
1535 return 0;
1536
1537 out_clk_enable_csi2_fclk:
1538 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1539 out_clk_enable_mclk:
1540 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1541 out_clk_enable_ick:
1542 return r;
1543 }
1544
1545 /*
1546 * isp_disable_clocks - Disable ISP clocks
1547 * @isp: OMAP3 ISP device
1548 */
1549 static void isp_disable_clocks(struct isp_device *isp)
1550 {
1551 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_ICK]);
1552 clk_disable_unprepare(isp->clock[ISP_CLK_CAM_MCLK]);
1553 clk_disable_unprepare(isp->clock[ISP_CLK_CSI2_FCK]);
1554 }
1555
1556 static const char *isp_clocks[] = {
1557 "cam_ick",
1558 "cam_mclk",
1559 "csi2_96m_fck",
1560 "l3_ick",
1561 };
1562
1563 static int isp_get_clocks(struct isp_device *isp)
1564 {
1565 struct clk *clk;
1566 unsigned int i;
1567
1568 for (i = 0; i < ARRAY_SIZE(isp_clocks); ++i) {
1569 clk = devm_clk_get(isp->dev, isp_clocks[i]);
1570 if (IS_ERR(clk)) {
1571 dev_err(isp->dev, "clk_get %s failed\n", isp_clocks[i]);
1572 return PTR_ERR(clk);
1573 }
1574
1575 isp->clock[i] = clk;
1576 }
1577
1578 return 0;
1579 }
1580
1581 /*
1582 * omap3isp_get - Acquire the ISP resource.
1583 *
1584 * Initializes the clocks for the first acquire.
1585 *
1586 * Increment the reference count on the ISP. If the first reference is taken,
1587 * enable clocks and power-up all submodules.
1588 *
1589 * Return a pointer to the ISP device structure, or NULL if an error occurred.
1590 */
1591 static struct isp_device *__omap3isp_get(struct isp_device *isp, bool irq)
1592 {
1593 struct isp_device *__isp = isp;
1594
1595 if (isp == NULL)
1596 return NULL;
1597
1598 mutex_lock(&isp->isp_mutex);
1599 if (isp->ref_count > 0)
1600 goto out;
1601
1602 if (isp_enable_clocks(isp) < 0) {
1603 __isp = NULL;
1604 goto out;
1605 }
1606
1607 /* We don't want to restore context before saving it! */
1608 if (isp->has_context)
1609 isp_restore_ctx(isp);
1610
1611 if (irq)
1612 isp_enable_interrupts(isp);
1613
1614 out:
1615 if (__isp != NULL)
1616 isp->ref_count++;
1617 mutex_unlock(&isp->isp_mutex);
1618
1619 return __isp;
1620 }
1621
1622 struct isp_device *omap3isp_get(struct isp_device *isp)
1623 {
1624 return __omap3isp_get(isp, true);
1625 }
1626
1627 /*
1628 * omap3isp_put - Release the ISP
1629 *
1630 * Decrement the reference count on the ISP. If the last reference is released,
1631 * power-down all submodules, disable clocks and free temporary buffers.
1632 */
1633 static void __omap3isp_put(struct isp_device *isp, bool save_ctx)
1634 {
1635 if (isp == NULL)
1636 return;
1637
1638 mutex_lock(&isp->isp_mutex);
1639 BUG_ON(isp->ref_count == 0);
1640 if (--isp->ref_count == 0) {
1641 isp_disable_interrupts(isp);
1642 if (save_ctx) {
1643 isp_save_ctx(isp);
1644 isp->has_context = 1;
1645 }
1646 /* Reset the ISP if an entity has failed to stop. This is the
1647 * only way to recover from such conditions.
1648 */
1649 if (isp->crashed || isp->stop_failure)
1650 isp_reset(isp);
1651 isp_disable_clocks(isp);
1652 }
1653 mutex_unlock(&isp->isp_mutex);
1654 }
1655
1656 void omap3isp_put(struct isp_device *isp)
1657 {
1658 __omap3isp_put(isp, true);
1659 }
1660
1661 /* --------------------------------------------------------------------------
1662 * Platform device driver
1663 */
1664
1665 /*
1666 * omap3isp_print_status - Prints the values of the ISP Control Module registers
1667 * @isp: OMAP3 ISP device
1668 */
1669 #define ISP_PRINT_REGISTER(isp, name)\
1670 dev_dbg(isp->dev, "###ISP " #name "=0x%08x\n", \
1671 isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_##name))
1672 #define SBL_PRINT_REGISTER(isp, name)\
1673 dev_dbg(isp->dev, "###SBL " #name "=0x%08x\n", \
1674 isp_reg_readl(isp, OMAP3_ISP_IOMEM_SBL, ISPSBL_##name))
1675
1676 void omap3isp_print_status(struct isp_device *isp)
1677 {
1678 dev_dbg(isp->dev, "-------------ISP Register dump--------------\n");
1679
1680 ISP_PRINT_REGISTER(isp, SYSCONFIG);
1681 ISP_PRINT_REGISTER(isp, SYSSTATUS);
1682 ISP_PRINT_REGISTER(isp, IRQ0ENABLE);
1683 ISP_PRINT_REGISTER(isp, IRQ0STATUS);
1684 ISP_PRINT_REGISTER(isp, TCTRL_GRESET_LENGTH);
1685 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_REPLAY);
1686 ISP_PRINT_REGISTER(isp, CTRL);
1687 ISP_PRINT_REGISTER(isp, TCTRL_CTRL);
1688 ISP_PRINT_REGISTER(isp, TCTRL_FRAME);
1689 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_DELAY);
1690 ISP_PRINT_REGISTER(isp, TCTRL_STRB_DELAY);
1691 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_DELAY);
1692 ISP_PRINT_REGISTER(isp, TCTRL_PSTRB_LENGTH);
1693 ISP_PRINT_REGISTER(isp, TCTRL_STRB_LENGTH);
1694 ISP_PRINT_REGISTER(isp, TCTRL_SHUT_LENGTH);
1695
1696 SBL_PRINT_REGISTER(isp, PCR);
1697 SBL_PRINT_REGISTER(isp, SDR_REQ_EXP);
1698
1699 dev_dbg(isp->dev, "--------------------------------------------\n");
1700 }
1701
1702 #ifdef CONFIG_PM
1703
1704 /*
1705 * Power management support.
1706 *
1707 * As the ISP can't properly handle an input video stream interruption on a non
1708 * frame boundary, the ISP pipelines need to be stopped before sensors get
1709 * suspended. However, as suspending the sensors can require a running clock,
1710 * which can be provided by the ISP, the ISP can't be completely suspended
1711 * before the sensor.
1712 *
1713 * To solve this problem power management support is split into prepare/complete
1714 * and suspend/resume operations. The pipelines are stopped in prepare() and the
1715 * ISP clocks get disabled in suspend(). Similarly, the clocks are reenabled in
1716 * resume(), and the the pipelines are restarted in complete().
1717 *
1718 * TODO: PM dependencies between the ISP and sensors are not modelled explicitly
1719 * yet.
1720 */
1721 static int isp_pm_prepare(struct device *dev)
1722 {
1723 struct isp_device *isp = dev_get_drvdata(dev);
1724 int reset;
1725
1726 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1727
1728 if (isp->ref_count == 0)
1729 return 0;
1730
1731 reset = isp_suspend_modules(isp);
1732 isp_disable_interrupts(isp);
1733 isp_save_ctx(isp);
1734 if (reset)
1735 isp_reset(isp);
1736
1737 return 0;
1738 }
1739
1740 static int isp_pm_suspend(struct device *dev)
1741 {
1742 struct isp_device *isp = dev_get_drvdata(dev);
1743
1744 WARN_ON(mutex_is_locked(&isp->isp_mutex));
1745
1746 if (isp->ref_count)
1747 isp_disable_clocks(isp);
1748
1749 return 0;
1750 }
1751
1752 static int isp_pm_resume(struct device *dev)
1753 {
1754 struct isp_device *isp = dev_get_drvdata(dev);
1755
1756 if (isp->ref_count == 0)
1757 return 0;
1758
1759 return isp_enable_clocks(isp);
1760 }
1761
1762 static void isp_pm_complete(struct device *dev)
1763 {
1764 struct isp_device *isp = dev_get_drvdata(dev);
1765
1766 if (isp->ref_count == 0)
1767 return;
1768
1769 isp_restore_ctx(isp);
1770 isp_enable_interrupts(isp);
1771 isp_resume_modules(isp);
1772 }
1773
1774 #else
1775
1776 #define isp_pm_prepare NULL
1777 #define isp_pm_suspend NULL
1778 #define isp_pm_resume NULL
1779 #define isp_pm_complete NULL
1780
1781 #endif /* CONFIG_PM */
1782
1783 static void isp_unregister_entities(struct isp_device *isp)
1784 {
1785 omap3isp_csi2_unregister_entities(&isp->isp_csi2a);
1786 omap3isp_ccp2_unregister_entities(&isp->isp_ccp2);
1787 omap3isp_ccdc_unregister_entities(&isp->isp_ccdc);
1788 omap3isp_preview_unregister_entities(&isp->isp_prev);
1789 omap3isp_resizer_unregister_entities(&isp->isp_res);
1790 omap3isp_stat_unregister_entities(&isp->isp_aewb);
1791 omap3isp_stat_unregister_entities(&isp->isp_af);
1792 omap3isp_stat_unregister_entities(&isp->isp_hist);
1793
1794 v4l2_device_unregister(&isp->v4l2_dev);
1795 media_device_unregister(&isp->media_dev);
1796 media_device_cleanup(&isp->media_dev);
1797 }
1798
1799 static int isp_link_entity(
1800 struct isp_device *isp, struct media_entity *entity,
1801 enum isp_interface_type interface)
1802 {
1803 struct media_entity *input;
1804 unsigned int flags;
1805 unsigned int pad;
1806 unsigned int i;
1807
1808 /* Connect the sensor to the correct interface module.
1809 * Parallel sensors are connected directly to the CCDC, while
1810 * serial sensors are connected to the CSI2a, CCP2b or CSI2c
1811 * receiver through CSIPHY1 or CSIPHY2.
1812 */
1813 switch (interface) {
1814 case ISP_INTERFACE_PARALLEL:
1815 input = &isp->isp_ccdc.subdev.entity;
1816 pad = CCDC_PAD_SINK;
1817 flags = 0;
1818 break;
1819
1820 case ISP_INTERFACE_CSI2A_PHY2:
1821 input = &isp->isp_csi2a.subdev.entity;
1822 pad = CSI2_PAD_SINK;
1823 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1824 break;
1825
1826 case ISP_INTERFACE_CCP2B_PHY1:
1827 case ISP_INTERFACE_CCP2B_PHY2:
1828 input = &isp->isp_ccp2.subdev.entity;
1829 pad = CCP2_PAD_SINK;
1830 flags = 0;
1831 break;
1832
1833 case ISP_INTERFACE_CSI2C_PHY1:
1834 input = &isp->isp_csi2c.subdev.entity;
1835 pad = CSI2_PAD_SINK;
1836 flags = MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED;
1837 break;
1838
1839 default:
1840 dev_err(isp->dev, "%s: invalid interface type %u\n", __func__,
1841 interface);
1842 return -EINVAL;
1843 }
1844
1845 /*
1846 * Not all interfaces are available on all revisions of the
1847 * ISP. The sub-devices of those interfaces aren't initialised
1848 * in such a case. Check this by ensuring the num_pads is
1849 * non-zero.
1850 */
1851 if (!input->num_pads) {
1852 dev_err(isp->dev, "%s: invalid input %u\n", entity->name,
1853 interface);
1854 return -EINVAL;
1855 }
1856
1857 for (i = 0; i < entity->num_pads; i++) {
1858 if (entity->pads[i].flags & MEDIA_PAD_FL_SOURCE)
1859 break;
1860 }
1861 if (i == entity->num_pads) {
1862 dev_err(isp->dev, "%s: no source pad in external entity\n",
1863 __func__);
1864 return -EINVAL;
1865 }
1866
1867 return media_create_pad_link(entity, i, input, pad, flags);
1868 }
1869
1870 static int isp_register_entities(struct isp_device *isp)
1871 {
1872 int ret;
1873
1874 isp->media_dev.dev = isp->dev;
1875 strlcpy(isp->media_dev.model, "TI OMAP3 ISP",
1876 sizeof(isp->media_dev.model));
1877 isp->media_dev.hw_revision = isp->revision;
1878 isp->media_dev.link_notify = isp_pipeline_link_notify;
1879 media_device_init(&isp->media_dev);
1880
1881 isp->v4l2_dev.mdev = &isp->media_dev;
1882 ret = v4l2_device_register(isp->dev, &isp->v4l2_dev);
1883 if (ret < 0) {
1884 dev_err(isp->dev, "%s: V4L2 device registration failed (%d)\n",
1885 __func__, ret);
1886 goto done;
1887 }
1888
1889 /* Register internal entities */
1890 ret = omap3isp_ccp2_register_entities(&isp->isp_ccp2, &isp->v4l2_dev);
1891 if (ret < 0)
1892 goto done;
1893
1894 ret = omap3isp_csi2_register_entities(&isp->isp_csi2a, &isp->v4l2_dev);
1895 if (ret < 0)
1896 goto done;
1897
1898 ret = omap3isp_ccdc_register_entities(&isp->isp_ccdc, &isp->v4l2_dev);
1899 if (ret < 0)
1900 goto done;
1901
1902 ret = omap3isp_preview_register_entities(&isp->isp_prev,
1903 &isp->v4l2_dev);
1904 if (ret < 0)
1905 goto done;
1906
1907 ret = omap3isp_resizer_register_entities(&isp->isp_res, &isp->v4l2_dev);
1908 if (ret < 0)
1909 goto done;
1910
1911 ret = omap3isp_stat_register_entities(&isp->isp_aewb, &isp->v4l2_dev);
1912 if (ret < 0)
1913 goto done;
1914
1915 ret = omap3isp_stat_register_entities(&isp->isp_af, &isp->v4l2_dev);
1916 if (ret < 0)
1917 goto done;
1918
1919 ret = omap3isp_stat_register_entities(&isp->isp_hist, &isp->v4l2_dev);
1920 if (ret < 0)
1921 goto done;
1922
1923 done:
1924 if (ret < 0)
1925 isp_unregister_entities(isp);
1926
1927 return ret;
1928 }
1929
1930 /*
1931 * isp_create_links() - Create links for internal and external ISP entities
1932 * @isp : Pointer to ISP device
1933 *
1934 * This function creates all links between ISP internal and external entities.
1935 *
1936 * Return: A negative error code on failure or zero on success. Possible error
1937 * codes are those returned by media_create_pad_link().
1938 */
1939 static int isp_create_links(struct isp_device *isp)
1940 {
1941 int ret;
1942
1943 /* Create links between entities and video nodes. */
1944 ret = media_create_pad_link(
1945 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1946 &isp->isp_csi2a.video_out.video.entity, 0, 0);
1947 if (ret < 0)
1948 return ret;
1949
1950 ret = media_create_pad_link(
1951 &isp->isp_ccp2.video_in.video.entity, 0,
1952 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SINK, 0);
1953 if (ret < 0)
1954 return ret;
1955
1956 ret = media_create_pad_link(
1957 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
1958 &isp->isp_ccdc.video_out.video.entity, 0, 0);
1959 if (ret < 0)
1960 return ret;
1961
1962 ret = media_create_pad_link(
1963 &isp->isp_prev.video_in.video.entity, 0,
1964 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
1965 if (ret < 0)
1966 return ret;
1967
1968 ret = media_create_pad_link(
1969 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
1970 &isp->isp_prev.video_out.video.entity, 0, 0);
1971 if (ret < 0)
1972 return ret;
1973
1974 ret = media_create_pad_link(
1975 &isp->isp_res.video_in.video.entity, 0,
1976 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
1977 if (ret < 0)
1978 return ret;
1979
1980 ret = media_create_pad_link(
1981 &isp->isp_res.subdev.entity, RESZ_PAD_SOURCE,
1982 &isp->isp_res.video_out.video.entity, 0, 0);
1983
1984 if (ret < 0)
1985 return ret;
1986
1987 /* Create links between entities. */
1988 ret = media_create_pad_link(
1989 &isp->isp_csi2a.subdev.entity, CSI2_PAD_SOURCE,
1990 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1991 if (ret < 0)
1992 return ret;
1993
1994 ret = media_create_pad_link(
1995 &isp->isp_ccp2.subdev.entity, CCP2_PAD_SOURCE,
1996 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SINK, 0);
1997 if (ret < 0)
1998 return ret;
1999
2000 ret = media_create_pad_link(
2001 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2002 &isp->isp_prev.subdev.entity, PREV_PAD_SINK, 0);
2003 if (ret < 0)
2004 return ret;
2005
2006 ret = media_create_pad_link(
2007 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_OF,
2008 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2009 if (ret < 0)
2010 return ret;
2011
2012 ret = media_create_pad_link(
2013 &isp->isp_prev.subdev.entity, PREV_PAD_SOURCE,
2014 &isp->isp_res.subdev.entity, RESZ_PAD_SINK, 0);
2015 if (ret < 0)
2016 return ret;
2017
2018 ret = media_create_pad_link(
2019 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2020 &isp->isp_aewb.subdev.entity, 0,
2021 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2022 if (ret < 0)
2023 return ret;
2024
2025 ret = media_create_pad_link(
2026 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2027 &isp->isp_af.subdev.entity, 0,
2028 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2029 if (ret < 0)
2030 return ret;
2031
2032 ret = media_create_pad_link(
2033 &isp->isp_ccdc.subdev.entity, CCDC_PAD_SOURCE_VP,
2034 &isp->isp_hist.subdev.entity, 0,
2035 MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE);
2036 if (ret < 0)
2037 return ret;
2038
2039 return 0;
2040 }
2041
2042 static void isp_cleanup_modules(struct isp_device *isp)
2043 {
2044 omap3isp_h3a_aewb_cleanup(isp);
2045 omap3isp_h3a_af_cleanup(isp);
2046 omap3isp_hist_cleanup(isp);
2047 omap3isp_resizer_cleanup(isp);
2048 omap3isp_preview_cleanup(isp);
2049 omap3isp_ccdc_cleanup(isp);
2050 omap3isp_ccp2_cleanup(isp);
2051 omap3isp_csi2_cleanup(isp);
2052 }
2053
2054 static int isp_initialize_modules(struct isp_device *isp)
2055 {
2056 int ret;
2057
2058 ret = omap3isp_csiphy_init(isp);
2059 if (ret < 0) {
2060 dev_err(isp->dev, "CSI PHY initialization failed\n");
2061 goto error_csiphy;
2062 }
2063
2064 ret = omap3isp_csi2_init(isp);
2065 if (ret < 0) {
2066 dev_err(isp->dev, "CSI2 initialization failed\n");
2067 goto error_csi2;
2068 }
2069
2070 ret = omap3isp_ccp2_init(isp);
2071 if (ret < 0) {
2072 dev_err(isp->dev, "CCP2 initialization failed\n");
2073 goto error_ccp2;
2074 }
2075
2076 ret = omap3isp_ccdc_init(isp);
2077 if (ret < 0) {
2078 dev_err(isp->dev, "CCDC initialization failed\n");
2079 goto error_ccdc;
2080 }
2081
2082 ret = omap3isp_preview_init(isp);
2083 if (ret < 0) {
2084 dev_err(isp->dev, "Preview initialization failed\n");
2085 goto error_preview;
2086 }
2087
2088 ret = omap3isp_resizer_init(isp);
2089 if (ret < 0) {
2090 dev_err(isp->dev, "Resizer initialization failed\n");
2091 goto error_resizer;
2092 }
2093
2094 ret = omap3isp_hist_init(isp);
2095 if (ret < 0) {
2096 dev_err(isp->dev, "Histogram initialization failed\n");
2097 goto error_hist;
2098 }
2099
2100 ret = omap3isp_h3a_aewb_init(isp);
2101 if (ret < 0) {
2102 dev_err(isp->dev, "H3A AEWB initialization failed\n");
2103 goto error_h3a_aewb;
2104 }
2105
2106 ret = omap3isp_h3a_af_init(isp);
2107 if (ret < 0) {
2108 dev_err(isp->dev, "H3A AF initialization failed\n");
2109 goto error_h3a_af;
2110 }
2111
2112 return 0;
2113
2114 error_h3a_af:
2115 omap3isp_h3a_aewb_cleanup(isp);
2116 error_h3a_aewb:
2117 omap3isp_hist_cleanup(isp);
2118 error_hist:
2119 omap3isp_resizer_cleanup(isp);
2120 error_resizer:
2121 omap3isp_preview_cleanup(isp);
2122 error_preview:
2123 omap3isp_ccdc_cleanup(isp);
2124 error_ccdc:
2125 omap3isp_ccp2_cleanup(isp);
2126 error_ccp2:
2127 omap3isp_csi2_cleanup(isp);
2128 error_csi2:
2129 error_csiphy:
2130 return ret;
2131 }
2132
2133 static void isp_detach_iommu(struct isp_device *isp)
2134 {
2135 arm_iommu_release_mapping(isp->mapping);
2136 isp->mapping = NULL;
2137 iommu_group_remove_device(isp->dev);
2138 }
2139
2140 static int isp_attach_iommu(struct isp_device *isp)
2141 {
2142 struct dma_iommu_mapping *mapping;
2143 struct iommu_group *group;
2144 int ret;
2145
2146 /* Create a device group and add the device to it. */
2147 group = iommu_group_alloc();
2148 if (IS_ERR(group)) {
2149 dev_err(isp->dev, "failed to allocate IOMMU group\n");
2150 return PTR_ERR(group);
2151 }
2152
2153 ret = iommu_group_add_device(group, isp->dev);
2154 iommu_group_put(group);
2155
2156 if (ret < 0) {
2157 dev_err(isp->dev, "failed to add device to IPMMU group\n");
2158 return ret;
2159 }
2160
2161 /*
2162 * Create the ARM mapping, used by the ARM DMA mapping core to allocate
2163 * VAs. This will allocate a corresponding IOMMU domain.
2164 */
2165 mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G);
2166 if (IS_ERR(mapping)) {
2167 dev_err(isp->dev, "failed to create ARM IOMMU mapping\n");
2168 ret = PTR_ERR(mapping);
2169 goto error;
2170 }
2171
2172 isp->mapping = mapping;
2173
2174 /* Attach the ARM VA mapping to the device. */
2175 ret = arm_iommu_attach_device(isp->dev, mapping);
2176 if (ret < 0) {
2177 dev_err(isp->dev, "failed to attach device to VA mapping\n");
2178 goto error;
2179 }
2180
2181 return 0;
2182
2183 error:
2184 isp_detach_iommu(isp);
2185 return ret;
2186 }
2187
2188 /*
2189 * isp_remove - Remove ISP platform device
2190 * @pdev: Pointer to ISP platform device
2191 *
2192 * Always returns 0.
2193 */
2194 static int isp_remove(struct platform_device *pdev)
2195 {
2196 struct isp_device *isp = platform_get_drvdata(pdev);
2197
2198 v4l2_async_notifier_unregister(&isp->notifier);
2199 isp_unregister_entities(isp);
2200 isp_cleanup_modules(isp);
2201 isp_xclk_cleanup(isp);
2202
2203 __omap3isp_get(isp, false);
2204 isp_detach_iommu(isp);
2205 __omap3isp_put(isp, false);
2206
2207 return 0;
2208 }
2209
2210 enum isp_of_phy {
2211 ISP_OF_PHY_PARALLEL = 0,
2212 ISP_OF_PHY_CSIPHY1,
2213 ISP_OF_PHY_CSIPHY2,
2214 };
2215
2216 static int isp_of_parse_node(struct device *dev, struct device_node *node,
2217 struct isp_async_subdev *isd)
2218 {
2219 struct isp_bus_cfg *buscfg = &isd->bus;
2220 struct v4l2_of_endpoint vep;
2221 unsigned int i;
2222
2223 v4l2_of_parse_endpoint(node, &vep);
2224
2225 dev_dbg(dev, "parsing endpoint %s, interface %u\n", node->full_name,
2226 vep.base.port);
2227
2228 switch (vep.base.port) {
2229 case ISP_OF_PHY_PARALLEL:
2230 buscfg->interface = ISP_INTERFACE_PARALLEL;
2231 buscfg->bus.parallel.data_lane_shift =
2232 vep.bus.parallel.data_shift;
2233 buscfg->bus.parallel.clk_pol =
2234 !!(vep.bus.parallel.flags
2235 & V4L2_MBUS_PCLK_SAMPLE_FALLING);
2236 buscfg->bus.parallel.hs_pol =
2237 !!(vep.bus.parallel.flags & V4L2_MBUS_VSYNC_ACTIVE_LOW);
2238 buscfg->bus.parallel.vs_pol =
2239 !!(vep.bus.parallel.flags & V4L2_MBUS_HSYNC_ACTIVE_LOW);
2240 buscfg->bus.parallel.fld_pol =
2241 !!(vep.bus.parallel.flags & V4L2_MBUS_FIELD_EVEN_LOW);
2242 buscfg->bus.parallel.data_pol =
2243 !!(vep.bus.parallel.flags & V4L2_MBUS_DATA_ACTIVE_LOW);
2244 break;
2245
2246 case ISP_OF_PHY_CSIPHY1:
2247 case ISP_OF_PHY_CSIPHY2:
2248 /* FIXME: always assume CSI-2 for now. */
2249 switch (vep.base.port) {
2250 case ISP_OF_PHY_CSIPHY1:
2251 buscfg->interface = ISP_INTERFACE_CSI2C_PHY1;
2252 break;
2253 case ISP_OF_PHY_CSIPHY2:
2254 buscfg->interface = ISP_INTERFACE_CSI2A_PHY2;
2255 break;
2256 }
2257 buscfg->bus.csi2.lanecfg.clk.pos = vep.bus.mipi_csi2.clock_lane;
2258 buscfg->bus.csi2.lanecfg.clk.pol =
2259 vep.bus.mipi_csi2.lane_polarities[0];
2260 dev_dbg(dev, "clock lane polarity %u, pos %u\n",
2261 buscfg->bus.csi2.lanecfg.clk.pol,
2262 buscfg->bus.csi2.lanecfg.clk.pos);
2263
2264 for (i = 0; i < ISP_CSIPHY2_NUM_DATA_LANES; i++) {
2265 buscfg->bus.csi2.lanecfg.data[i].pos =
2266 vep.bus.mipi_csi2.data_lanes[i];
2267 buscfg->bus.csi2.lanecfg.data[i].pol =
2268 vep.bus.mipi_csi2.lane_polarities[i + 1];
2269 dev_dbg(dev, "data lane %u polarity %u, pos %u\n", i,
2270 buscfg->bus.csi2.lanecfg.data[i].pol,
2271 buscfg->bus.csi2.lanecfg.data[i].pos);
2272 }
2273
2274 /*
2275 * FIXME: now we assume the CRC is always there.
2276 * Implement a way to obtain this information from the
2277 * sensor. Frame descriptors, perhaps?
2278 */
2279 buscfg->bus.csi2.crc = 1;
2280 break;
2281
2282 default:
2283 dev_warn(dev, "%s: invalid interface %u\n", node->full_name,
2284 vep.base.port);
2285 break;
2286 }
2287
2288 return 0;
2289 }
2290
2291 static int isp_of_parse_nodes(struct device *dev,
2292 struct v4l2_async_notifier *notifier)
2293 {
2294 struct device_node *node = NULL;
2295
2296 notifier->subdevs = devm_kcalloc(
2297 dev, ISP_MAX_SUBDEVS, sizeof(*notifier->subdevs), GFP_KERNEL);
2298 if (!notifier->subdevs)
2299 return -ENOMEM;
2300
2301 while (notifier->num_subdevs < ISP_MAX_SUBDEVS &&
2302 (node = of_graph_get_next_endpoint(dev->of_node, node))) {
2303 struct isp_async_subdev *isd;
2304
2305 isd = devm_kzalloc(dev, sizeof(*isd), GFP_KERNEL);
2306 if (!isd) {
2307 of_node_put(node);
2308 return -ENOMEM;
2309 }
2310
2311 notifier->subdevs[notifier->num_subdevs] = &isd->asd;
2312
2313 if (isp_of_parse_node(dev, node, isd)) {
2314 of_node_put(node);
2315 return -EINVAL;
2316 }
2317
2318 isd->asd.match.of.node = of_graph_get_remote_port_parent(node);
2319 of_node_put(node);
2320 if (!isd->asd.match.of.node) {
2321 dev_warn(dev, "bad remote port parent\n");
2322 return -EINVAL;
2323 }
2324
2325 isd->asd.match_type = V4L2_ASYNC_MATCH_OF;
2326 notifier->num_subdevs++;
2327 }
2328
2329 return notifier->num_subdevs;
2330 }
2331
2332 static int isp_subdev_notifier_bound(struct v4l2_async_notifier *async,
2333 struct v4l2_subdev *subdev,
2334 struct v4l2_async_subdev *asd)
2335 {
2336 struct isp_async_subdev *isd =
2337 container_of(asd, struct isp_async_subdev, asd);
2338
2339 isd->sd = subdev;
2340 isd->sd->host_priv = &isd->bus;
2341
2342 return 0;
2343 }
2344
2345 static int isp_subdev_notifier_complete(struct v4l2_async_notifier *async)
2346 {
2347 struct isp_device *isp = container_of(async, struct isp_device,
2348 notifier);
2349 struct v4l2_device *v4l2_dev = &isp->v4l2_dev;
2350 struct v4l2_subdev *sd;
2351 struct isp_bus_cfg *bus;
2352 int ret;
2353
2354 list_for_each_entry(sd, &v4l2_dev->subdevs, list) {
2355 /* Only try to link entities whose interface was set on bound */
2356 if (sd->host_priv) {
2357 bus = (struct isp_bus_cfg *)sd->host_priv;
2358 ret = isp_link_entity(isp, &sd->entity, bus->interface);
2359 if (ret < 0)
2360 return ret;
2361 }
2362 }
2363
2364 ret = v4l2_device_register_subdev_nodes(&isp->v4l2_dev);
2365 if (ret < 0)
2366 return ret;
2367
2368 return media_device_register(&isp->media_dev);
2369 }
2370
2371 /*
2372 * isp_probe - Probe ISP platform device
2373 * @pdev: Pointer to ISP platform device
2374 *
2375 * Returns 0 if successful,
2376 * -ENOMEM if no memory available,
2377 * -ENODEV if no platform device resources found
2378 * or no space for remapping registers,
2379 * -EINVAL if couldn't install ISR,
2380 * or clk_get return error value.
2381 */
2382 static int isp_probe(struct platform_device *pdev)
2383 {
2384 struct isp_device *isp;
2385 struct resource *mem;
2386 int ret;
2387 int i, m;
2388
2389 isp = devm_kzalloc(&pdev->dev, sizeof(*isp), GFP_KERNEL);
2390 if (!isp) {
2391 dev_err(&pdev->dev, "could not allocate memory\n");
2392 return -ENOMEM;
2393 }
2394
2395 ret = of_property_read_u32(pdev->dev.of_node, "ti,phy-type",
2396 &isp->phy_type);
2397 if (ret)
2398 return ret;
2399
2400 isp->syscon = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2401 "syscon");
2402 if (IS_ERR(isp->syscon))
2403 return PTR_ERR(isp->syscon);
2404
2405 ret = of_property_read_u32_index(pdev->dev.of_node, "syscon", 1,
2406 &isp->syscon_offset);
2407 if (ret)
2408 return ret;
2409
2410 ret = isp_of_parse_nodes(&pdev->dev, &isp->notifier);
2411 if (ret < 0)
2412 return ret;
2413
2414 isp->autoidle = autoidle;
2415
2416 mutex_init(&isp->isp_mutex);
2417 spin_lock_init(&isp->stat_lock);
2418
2419 isp->dev = &pdev->dev;
2420 isp->ref_count = 0;
2421
2422 ret = dma_coerce_mask_and_coherent(isp->dev, DMA_BIT_MASK(32));
2423 if (ret)
2424 goto error;
2425
2426 platform_set_drvdata(pdev, isp);
2427
2428 /* Regulators */
2429 isp->isp_csiphy1.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy1");
2430 isp->isp_csiphy2.vdd = devm_regulator_get(&pdev->dev, "vdd-csiphy2");
2431
2432 /* Clocks
2433 *
2434 * The ISP clock tree is revision-dependent. We thus need to enable ICLK
2435 * manually to read the revision before calling __omap3isp_get().
2436 *
2437 * Start by mapping the ISP MMIO area, which is in two pieces.
2438 * The ISP IOMMU is in between. Map both now, and fill in the
2439 * ISP revision specific portions a little later in the
2440 * function.
2441 */
2442 for (i = 0; i < 2; i++) {
2443 unsigned int map_idx = i ? OMAP3_ISP_IOMEM_CSI2A_REGS1 : 0;
2444
2445 mem = platform_get_resource(pdev, IORESOURCE_MEM, i);
2446 isp->mmio_base[map_idx] =
2447 devm_ioremap_resource(isp->dev, mem);
2448 if (IS_ERR(isp->mmio_base[map_idx]))
2449 return PTR_ERR(isp->mmio_base[map_idx]);
2450 }
2451
2452 ret = isp_get_clocks(isp);
2453 if (ret < 0)
2454 goto error;
2455
2456 ret = clk_enable(isp->clock[ISP_CLK_CAM_ICK]);
2457 if (ret < 0)
2458 goto error;
2459
2460 isp->revision = isp_reg_readl(isp, OMAP3_ISP_IOMEM_MAIN, ISP_REVISION);
2461 dev_info(isp->dev, "Revision %d.%d found\n",
2462 (isp->revision & 0xf0) >> 4, isp->revision & 0x0f);
2463
2464 clk_disable(isp->clock[ISP_CLK_CAM_ICK]);
2465
2466 if (__omap3isp_get(isp, false) == NULL) {
2467 ret = -ENODEV;
2468 goto error;
2469 }
2470
2471 ret = isp_reset(isp);
2472 if (ret < 0)
2473 goto error_isp;
2474
2475 ret = isp_xclk_init(isp);
2476 if (ret < 0)
2477 goto error_isp;
2478
2479 /* Memory resources */
2480 for (m = 0; m < ARRAY_SIZE(isp_res_maps); m++)
2481 if (isp->revision == isp_res_maps[m].isp_rev)
2482 break;
2483
2484 if (m == ARRAY_SIZE(isp_res_maps)) {
2485 dev_err(isp->dev, "No resource map found for ISP rev %d.%d\n",
2486 (isp->revision & 0xf0) >> 4, isp->revision & 0xf);
2487 ret = -ENODEV;
2488 goto error_isp;
2489 }
2490
2491 for (i = 1; i < OMAP3_ISP_IOMEM_CSI2A_REGS1; i++)
2492 isp->mmio_base[i] =
2493 isp->mmio_base[0] + isp_res_maps[m].offset[i];
2494
2495 for (i = OMAP3_ISP_IOMEM_CSIPHY2; i < OMAP3_ISP_IOMEM_LAST; i++)
2496 isp->mmio_base[i] =
2497 isp->mmio_base[OMAP3_ISP_IOMEM_CSI2A_REGS1]
2498 + isp_res_maps[m].offset[i];
2499
2500 isp->mmio_hist_base_phys =
2501 mem->start + isp_res_maps[m].offset[OMAP3_ISP_IOMEM_HIST];
2502
2503 /* IOMMU */
2504 ret = isp_attach_iommu(isp);
2505 if (ret < 0) {
2506 dev_err(&pdev->dev, "unable to attach to IOMMU\n");
2507 goto error_isp;
2508 }
2509
2510 /* Interrupt */
2511 isp->irq_num = platform_get_irq(pdev, 0);
2512 if (isp->irq_num <= 0) {
2513 dev_err(isp->dev, "No IRQ resource\n");
2514 ret = -ENODEV;
2515 goto error_iommu;
2516 }
2517
2518 if (devm_request_irq(isp->dev, isp->irq_num, isp_isr, IRQF_SHARED,
2519 "OMAP3 ISP", isp)) {
2520 dev_err(isp->dev, "Unable to request IRQ\n");
2521 ret = -EINVAL;
2522 goto error_iommu;
2523 }
2524
2525 /* Entities */
2526 ret = isp_initialize_modules(isp);
2527 if (ret < 0)
2528 goto error_iommu;
2529
2530 ret = isp_register_entities(isp);
2531 if (ret < 0)
2532 goto error_modules;
2533
2534 ret = isp_create_links(isp);
2535 if (ret < 0)
2536 goto error_register_entities;
2537
2538 isp->notifier.bound = isp_subdev_notifier_bound;
2539 isp->notifier.complete = isp_subdev_notifier_complete;
2540
2541 ret = v4l2_async_notifier_register(&isp->v4l2_dev, &isp->notifier);
2542 if (ret)
2543 goto error_register_entities;
2544
2545 isp_core_init(isp, 1);
2546 omap3isp_put(isp);
2547
2548 return 0;
2549
2550 error_register_entities:
2551 isp_unregister_entities(isp);
2552 error_modules:
2553 isp_cleanup_modules(isp);
2554 error_iommu:
2555 isp_detach_iommu(isp);
2556 error_isp:
2557 isp_xclk_cleanup(isp);
2558 __omap3isp_put(isp, false);
2559 error:
2560 mutex_destroy(&isp->isp_mutex);
2561
2562 return ret;
2563 }
2564
2565 static const struct dev_pm_ops omap3isp_pm_ops = {
2566 .prepare = isp_pm_prepare,
2567 .suspend = isp_pm_suspend,
2568 .resume = isp_pm_resume,
2569 .complete = isp_pm_complete,
2570 };
2571
2572 static struct platform_device_id omap3isp_id_table[] = {
2573 { "omap3isp", 0 },
2574 { },
2575 };
2576 MODULE_DEVICE_TABLE(platform, omap3isp_id_table);
2577
2578 static const struct of_device_id omap3isp_of_table[] = {
2579 { .compatible = "ti,omap3-isp" },
2580 { },
2581 };
2582
2583 static struct platform_driver omap3isp_driver = {
2584 .probe = isp_probe,
2585 .remove = isp_remove,
2586 .id_table = omap3isp_id_table,
2587 .driver = {
2588 .name = "omap3isp",
2589 .pm = &omap3isp_pm_ops,
2590 .of_match_table = omap3isp_of_table,
2591 },
2592 };
2593
2594 module_platform_driver(omap3isp_driver);
2595
2596 MODULE_AUTHOR("Nokia Corporation");
2597 MODULE_DESCRIPTION("TI OMAP3 ISP driver");
2598 MODULE_LICENSE("GPL");
2599 MODULE_VERSION(ISP_VIDEO_DRIVER_VERSION);
This page took 0.164502 seconds and 5 git commands to generate.