Merge branches 'pm-cpufreq-fixes' and 'pm-cpuidle'
[deliverable/linux.git] / drivers / media / platform / ti-vpe / vpdma.c
1 /*
2 * VPDMA helper library
3 *
4 * Copyright (c) 2013 Texas Instruments Inc.
5 *
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License version 2 as published by
12 * the Free Software Foundation.
13 */
14
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/err.h>
18 #include <linux/firmware.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/platform_device.h>
22 #include <linux/sched.h>
23 #include <linux/slab.h>
24 #include <linux/videodev2.h>
25
26 #include "vpdma.h"
27 #include "vpdma_priv.h"
28
29 #define VPDMA_FIRMWARE "vpdma-1b8.bin"
30
31 const struct vpdma_data_format vpdma_yuv_fmts[] = {
32 [VPDMA_DATA_FMT_Y444] = {
33 .type = VPDMA_DATA_FMT_TYPE_YUV,
34 .data_type = DATA_TYPE_Y444,
35 .depth = 8,
36 },
37 [VPDMA_DATA_FMT_Y422] = {
38 .type = VPDMA_DATA_FMT_TYPE_YUV,
39 .data_type = DATA_TYPE_Y422,
40 .depth = 8,
41 },
42 [VPDMA_DATA_FMT_Y420] = {
43 .type = VPDMA_DATA_FMT_TYPE_YUV,
44 .data_type = DATA_TYPE_Y420,
45 .depth = 8,
46 },
47 [VPDMA_DATA_FMT_C444] = {
48 .type = VPDMA_DATA_FMT_TYPE_YUV,
49 .data_type = DATA_TYPE_C444,
50 .depth = 8,
51 },
52 [VPDMA_DATA_FMT_C422] = {
53 .type = VPDMA_DATA_FMT_TYPE_YUV,
54 .data_type = DATA_TYPE_C422,
55 .depth = 8,
56 },
57 [VPDMA_DATA_FMT_C420] = {
58 .type = VPDMA_DATA_FMT_TYPE_YUV,
59 .data_type = DATA_TYPE_C420,
60 .depth = 4,
61 },
62 [VPDMA_DATA_FMT_YC422] = {
63 .type = VPDMA_DATA_FMT_TYPE_YUV,
64 .data_type = DATA_TYPE_YC422,
65 .depth = 16,
66 },
67 [VPDMA_DATA_FMT_YC444] = {
68 .type = VPDMA_DATA_FMT_TYPE_YUV,
69 .data_type = DATA_TYPE_YC444,
70 .depth = 24,
71 },
72 [VPDMA_DATA_FMT_CY422] = {
73 .type = VPDMA_DATA_FMT_TYPE_YUV,
74 .data_type = DATA_TYPE_CY422,
75 .depth = 16,
76 },
77 };
78
79 const struct vpdma_data_format vpdma_rgb_fmts[] = {
80 [VPDMA_DATA_FMT_RGB565] = {
81 .type = VPDMA_DATA_FMT_TYPE_RGB,
82 .data_type = DATA_TYPE_RGB16_565,
83 .depth = 16,
84 },
85 [VPDMA_DATA_FMT_ARGB16_1555] = {
86 .type = VPDMA_DATA_FMT_TYPE_RGB,
87 .data_type = DATA_TYPE_ARGB_1555,
88 .depth = 16,
89 },
90 [VPDMA_DATA_FMT_ARGB16] = {
91 .type = VPDMA_DATA_FMT_TYPE_RGB,
92 .data_type = DATA_TYPE_ARGB_4444,
93 .depth = 16,
94 },
95 [VPDMA_DATA_FMT_RGBA16_5551] = {
96 .type = VPDMA_DATA_FMT_TYPE_RGB,
97 .data_type = DATA_TYPE_RGBA_5551,
98 .depth = 16,
99 },
100 [VPDMA_DATA_FMT_RGBA16] = {
101 .type = VPDMA_DATA_FMT_TYPE_RGB,
102 .data_type = DATA_TYPE_RGBA_4444,
103 .depth = 16,
104 },
105 [VPDMA_DATA_FMT_ARGB24] = {
106 .type = VPDMA_DATA_FMT_TYPE_RGB,
107 .data_type = DATA_TYPE_ARGB24_6666,
108 .depth = 24,
109 },
110 [VPDMA_DATA_FMT_RGB24] = {
111 .type = VPDMA_DATA_FMT_TYPE_RGB,
112 .data_type = DATA_TYPE_RGB24_888,
113 .depth = 24,
114 },
115 [VPDMA_DATA_FMT_ARGB32] = {
116 .type = VPDMA_DATA_FMT_TYPE_RGB,
117 .data_type = DATA_TYPE_ARGB32_8888,
118 .depth = 32,
119 },
120 [VPDMA_DATA_FMT_RGBA24] = {
121 .type = VPDMA_DATA_FMT_TYPE_RGB,
122 .data_type = DATA_TYPE_RGBA24_6666,
123 .depth = 24,
124 },
125 [VPDMA_DATA_FMT_RGBA32] = {
126 .type = VPDMA_DATA_FMT_TYPE_RGB,
127 .data_type = DATA_TYPE_RGBA32_8888,
128 .depth = 32,
129 },
130 [VPDMA_DATA_FMT_BGR565] = {
131 .type = VPDMA_DATA_FMT_TYPE_RGB,
132 .data_type = DATA_TYPE_BGR16_565,
133 .depth = 16,
134 },
135 [VPDMA_DATA_FMT_ABGR16_1555] = {
136 .type = VPDMA_DATA_FMT_TYPE_RGB,
137 .data_type = DATA_TYPE_ABGR_1555,
138 .depth = 16,
139 },
140 [VPDMA_DATA_FMT_ABGR16] = {
141 .type = VPDMA_DATA_FMT_TYPE_RGB,
142 .data_type = DATA_TYPE_ABGR_4444,
143 .depth = 16,
144 },
145 [VPDMA_DATA_FMT_BGRA16_5551] = {
146 .type = VPDMA_DATA_FMT_TYPE_RGB,
147 .data_type = DATA_TYPE_BGRA_5551,
148 .depth = 16,
149 },
150 [VPDMA_DATA_FMT_BGRA16] = {
151 .type = VPDMA_DATA_FMT_TYPE_RGB,
152 .data_type = DATA_TYPE_BGRA_4444,
153 .depth = 16,
154 },
155 [VPDMA_DATA_FMT_ABGR24] = {
156 .type = VPDMA_DATA_FMT_TYPE_RGB,
157 .data_type = DATA_TYPE_ABGR24_6666,
158 .depth = 24,
159 },
160 [VPDMA_DATA_FMT_BGR24] = {
161 .type = VPDMA_DATA_FMT_TYPE_RGB,
162 .data_type = DATA_TYPE_BGR24_888,
163 .depth = 24,
164 },
165 [VPDMA_DATA_FMT_ABGR32] = {
166 .type = VPDMA_DATA_FMT_TYPE_RGB,
167 .data_type = DATA_TYPE_ABGR32_8888,
168 .depth = 32,
169 },
170 [VPDMA_DATA_FMT_BGRA24] = {
171 .type = VPDMA_DATA_FMT_TYPE_RGB,
172 .data_type = DATA_TYPE_BGRA24_6666,
173 .depth = 24,
174 },
175 [VPDMA_DATA_FMT_BGRA32] = {
176 .type = VPDMA_DATA_FMT_TYPE_RGB,
177 .data_type = DATA_TYPE_BGRA32_8888,
178 .depth = 32,
179 },
180 };
181
182 const struct vpdma_data_format vpdma_misc_fmts[] = {
183 [VPDMA_DATA_FMT_MV] = {
184 .type = VPDMA_DATA_FMT_TYPE_MISC,
185 .data_type = DATA_TYPE_MV,
186 .depth = 4,
187 },
188 };
189
190 struct vpdma_channel_info {
191 int num; /* VPDMA channel number */
192 int cstat_offset; /* client CSTAT register offset */
193 };
194
195 static const struct vpdma_channel_info chan_info[] = {
196 [VPE_CHAN_LUMA1_IN] = {
197 .num = VPE_CHAN_NUM_LUMA1_IN,
198 .cstat_offset = VPDMA_DEI_LUMA1_CSTAT,
199 },
200 [VPE_CHAN_CHROMA1_IN] = {
201 .num = VPE_CHAN_NUM_CHROMA1_IN,
202 .cstat_offset = VPDMA_DEI_CHROMA1_CSTAT,
203 },
204 [VPE_CHAN_LUMA2_IN] = {
205 .num = VPE_CHAN_NUM_LUMA2_IN,
206 .cstat_offset = VPDMA_DEI_LUMA2_CSTAT,
207 },
208 [VPE_CHAN_CHROMA2_IN] = {
209 .num = VPE_CHAN_NUM_CHROMA2_IN,
210 .cstat_offset = VPDMA_DEI_CHROMA2_CSTAT,
211 },
212 [VPE_CHAN_LUMA3_IN] = {
213 .num = VPE_CHAN_NUM_LUMA3_IN,
214 .cstat_offset = VPDMA_DEI_LUMA3_CSTAT,
215 },
216 [VPE_CHAN_CHROMA3_IN] = {
217 .num = VPE_CHAN_NUM_CHROMA3_IN,
218 .cstat_offset = VPDMA_DEI_CHROMA3_CSTAT,
219 },
220 [VPE_CHAN_MV_IN] = {
221 .num = VPE_CHAN_NUM_MV_IN,
222 .cstat_offset = VPDMA_DEI_MV_IN_CSTAT,
223 },
224 [VPE_CHAN_MV_OUT] = {
225 .num = VPE_CHAN_NUM_MV_OUT,
226 .cstat_offset = VPDMA_DEI_MV_OUT_CSTAT,
227 },
228 [VPE_CHAN_LUMA_OUT] = {
229 .num = VPE_CHAN_NUM_LUMA_OUT,
230 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
231 },
232 [VPE_CHAN_CHROMA_OUT] = {
233 .num = VPE_CHAN_NUM_CHROMA_OUT,
234 .cstat_offset = VPDMA_VIP_UP_UV_CSTAT,
235 },
236 [VPE_CHAN_RGB_OUT] = {
237 .num = VPE_CHAN_NUM_RGB_OUT,
238 .cstat_offset = VPDMA_VIP_UP_Y_CSTAT,
239 },
240 };
241
242 static u32 read_reg(struct vpdma_data *vpdma, int offset)
243 {
244 return ioread32(vpdma->base + offset);
245 }
246
247 static void write_reg(struct vpdma_data *vpdma, int offset, u32 value)
248 {
249 iowrite32(value, vpdma->base + offset);
250 }
251
252 static int read_field_reg(struct vpdma_data *vpdma, int offset,
253 u32 mask, int shift)
254 {
255 return (read_reg(vpdma, offset) & (mask << shift)) >> shift;
256 }
257
258 static void write_field_reg(struct vpdma_data *vpdma, int offset, u32 field,
259 u32 mask, int shift)
260 {
261 u32 val = read_reg(vpdma, offset);
262
263 val &= ~(mask << shift);
264 val |= (field & mask) << shift;
265
266 write_reg(vpdma, offset, val);
267 }
268
269 void vpdma_dump_regs(struct vpdma_data *vpdma)
270 {
271 struct device *dev = &vpdma->pdev->dev;
272
273 #define DUMPREG(r) dev_dbg(dev, "%-35s %08x\n", #r, read_reg(vpdma, VPDMA_##r))
274
275 dev_dbg(dev, "VPDMA Registers:\n");
276
277 DUMPREG(PID);
278 DUMPREG(LIST_ADDR);
279 DUMPREG(LIST_ATTR);
280 DUMPREG(LIST_STAT_SYNC);
281 DUMPREG(BG_RGB);
282 DUMPREG(BG_YUV);
283 DUMPREG(SETUP);
284 DUMPREG(MAX_SIZE1);
285 DUMPREG(MAX_SIZE2);
286 DUMPREG(MAX_SIZE3);
287
288 /*
289 * dumping registers of only group0 and group3, because VPE channels
290 * lie within group0 and group3 registers
291 */
292 DUMPREG(INT_CHAN_STAT(0));
293 DUMPREG(INT_CHAN_MASK(0));
294 DUMPREG(INT_CHAN_STAT(3));
295 DUMPREG(INT_CHAN_MASK(3));
296 DUMPREG(INT_CLIENT0_STAT);
297 DUMPREG(INT_CLIENT0_MASK);
298 DUMPREG(INT_CLIENT1_STAT);
299 DUMPREG(INT_CLIENT1_MASK);
300 DUMPREG(INT_LIST0_STAT);
301 DUMPREG(INT_LIST0_MASK);
302
303 /*
304 * these are registers specific to VPE clients, we can make this
305 * function dump client registers specific to VPE or VIP based on
306 * who is using it
307 */
308 DUMPREG(DEI_CHROMA1_CSTAT);
309 DUMPREG(DEI_LUMA1_CSTAT);
310 DUMPREG(DEI_CHROMA2_CSTAT);
311 DUMPREG(DEI_LUMA2_CSTAT);
312 DUMPREG(DEI_CHROMA3_CSTAT);
313 DUMPREG(DEI_LUMA3_CSTAT);
314 DUMPREG(DEI_MV_IN_CSTAT);
315 DUMPREG(DEI_MV_OUT_CSTAT);
316 DUMPREG(VIP_UP_Y_CSTAT);
317 DUMPREG(VIP_UP_UV_CSTAT);
318 DUMPREG(VPI_CTL_CSTAT);
319 }
320
321 /*
322 * Allocate a DMA buffer
323 */
324 int vpdma_alloc_desc_buf(struct vpdma_buf *buf, size_t size)
325 {
326 buf->size = size;
327 buf->mapped = false;
328 buf->addr = kzalloc(size, GFP_KERNEL);
329 if (!buf->addr)
330 return -ENOMEM;
331
332 WARN_ON(((unsigned long)buf->addr & VPDMA_DESC_ALIGN) != 0);
333
334 return 0;
335 }
336
337 void vpdma_free_desc_buf(struct vpdma_buf *buf)
338 {
339 WARN_ON(buf->mapped);
340 kfree(buf->addr);
341 buf->addr = NULL;
342 buf->size = 0;
343 }
344
345 /*
346 * map descriptor/payload DMA buffer, enabling DMA access
347 */
348 int vpdma_map_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
349 {
350 struct device *dev = &vpdma->pdev->dev;
351
352 WARN_ON(buf->mapped);
353 buf->dma_addr = dma_map_single(dev, buf->addr, buf->size,
354 DMA_TO_DEVICE);
355 if (dma_mapping_error(dev, buf->dma_addr)) {
356 dev_err(dev, "failed to map buffer\n");
357 return -EINVAL;
358 }
359
360 buf->mapped = true;
361
362 return 0;
363 }
364
365 /*
366 * unmap descriptor/payload DMA buffer, disabling DMA access and
367 * allowing the main processor to acces the data
368 */
369 void vpdma_unmap_desc_buf(struct vpdma_data *vpdma, struct vpdma_buf *buf)
370 {
371 struct device *dev = &vpdma->pdev->dev;
372
373 if (buf->mapped)
374 dma_unmap_single(dev, buf->dma_addr, buf->size, DMA_TO_DEVICE);
375
376 buf->mapped = false;
377 }
378
379 /*
380 * create a descriptor list, the user of this list will append configuration,
381 * control and data descriptors to this list, this list will be submitted to
382 * VPDMA. VPDMA's list parser will go through each descriptor and perform the
383 * required DMA operations
384 */
385 int vpdma_create_desc_list(struct vpdma_desc_list *list, size_t size, int type)
386 {
387 int r;
388
389 r = vpdma_alloc_desc_buf(&list->buf, size);
390 if (r)
391 return r;
392
393 list->next = list->buf.addr;
394
395 list->type = type;
396
397 return 0;
398 }
399
400 /*
401 * once a descriptor list is parsed by VPDMA, we reset the list by emptying it,
402 * to allow new descriptors to be added to the list.
403 */
404 void vpdma_reset_desc_list(struct vpdma_desc_list *list)
405 {
406 list->next = list->buf.addr;
407 }
408
409 /*
410 * free the buffer allocated fot the VPDMA descriptor list, this should be
411 * called when the user doesn't want to use VPDMA any more.
412 */
413 void vpdma_free_desc_list(struct vpdma_desc_list *list)
414 {
415 vpdma_free_desc_buf(&list->buf);
416
417 list->next = NULL;
418 }
419
420 static bool vpdma_list_busy(struct vpdma_data *vpdma, int list_num)
421 {
422 return read_reg(vpdma, VPDMA_LIST_STAT_SYNC) & BIT(list_num + 16);
423 }
424
425 /*
426 * submit a list of DMA descriptors to the VPE VPDMA, do not wait for completion
427 */
428 int vpdma_submit_descs(struct vpdma_data *vpdma, struct vpdma_desc_list *list)
429 {
430 /* we always use the first list */
431 int list_num = 0;
432 int list_size;
433
434 if (vpdma_list_busy(vpdma, list_num))
435 return -EBUSY;
436
437 /* 16-byte granularity */
438 list_size = (list->next - list->buf.addr) >> 4;
439
440 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) list->buf.dma_addr);
441
442 write_reg(vpdma, VPDMA_LIST_ATTR,
443 (list_num << VPDMA_LIST_NUM_SHFT) |
444 (list->type << VPDMA_LIST_TYPE_SHFT) |
445 list_size);
446
447 return 0;
448 }
449
450 static void dump_cfd(struct vpdma_cfd *cfd)
451 {
452 int class;
453
454 class = cfd_get_class(cfd);
455
456 pr_debug("config descriptor of payload class: %s\n",
457 class == CFD_CLS_BLOCK ? "simple block" :
458 "address data block");
459
460 if (class == CFD_CLS_BLOCK)
461 pr_debug("word0: dst_addr_offset = 0x%08x\n",
462 cfd->dest_addr_offset);
463
464 if (class == CFD_CLS_BLOCK)
465 pr_debug("word1: num_data_wrds = %d\n", cfd->block_len);
466
467 pr_debug("word2: payload_addr = 0x%08x\n", cfd->payload_addr);
468
469 pr_debug("word3: pkt_type = %d, direct = %d, class = %d, dest = %d, "
470 "payload_len = %d\n", cfd_get_pkt_type(cfd),
471 cfd_get_direct(cfd), class, cfd_get_dest(cfd),
472 cfd_get_payload_len(cfd));
473 }
474
475 /*
476 * append a configuration descriptor to the given descriptor list, where the
477 * payload is in the form of a simple data block specified in the descriptor
478 * header, this is used to upload scaler coefficients to the scaler module
479 */
480 void vpdma_add_cfd_block(struct vpdma_desc_list *list, int client,
481 struct vpdma_buf *blk, u32 dest_offset)
482 {
483 struct vpdma_cfd *cfd;
484 int len = blk->size;
485
486 WARN_ON(blk->dma_addr & VPDMA_DESC_ALIGN);
487
488 cfd = list->next;
489 WARN_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
490
491 cfd->dest_addr_offset = dest_offset;
492 cfd->block_len = len;
493 cfd->payload_addr = (u32) blk->dma_addr;
494 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_BLOCK,
495 client, len >> 4);
496
497 list->next = cfd + 1;
498
499 dump_cfd(cfd);
500 }
501
502 /*
503 * append a configuration descriptor to the given descriptor list, where the
504 * payload is in the address data block format, this is used to a configure a
505 * discontiguous set of MMRs
506 */
507 void vpdma_add_cfd_adb(struct vpdma_desc_list *list, int client,
508 struct vpdma_buf *adb)
509 {
510 struct vpdma_cfd *cfd;
511 unsigned int len = adb->size;
512
513 WARN_ON(len & VPDMA_ADB_SIZE_ALIGN);
514 WARN_ON(adb->dma_addr & VPDMA_DESC_ALIGN);
515
516 cfd = list->next;
517 BUG_ON((void *)(cfd + 1) > (list->buf.addr + list->buf.size));
518
519 cfd->w0 = 0;
520 cfd->w1 = 0;
521 cfd->payload_addr = (u32) adb->dma_addr;
522 cfd->ctl_payload_len = cfd_pkt_payload_len(CFD_INDIRECT, CFD_CLS_ADB,
523 client, len >> 4);
524
525 list->next = cfd + 1;
526
527 dump_cfd(cfd);
528 };
529
530 /*
531 * control descriptor format change based on what type of control descriptor it
532 * is, we only use 'sync on channel' control descriptors for now, so assume it's
533 * that
534 */
535 static void dump_ctd(struct vpdma_ctd *ctd)
536 {
537 pr_debug("control descriptor\n");
538
539 pr_debug("word3: pkt_type = %d, source = %d, ctl_type = %d\n",
540 ctd_get_pkt_type(ctd), ctd_get_source(ctd), ctd_get_ctl(ctd));
541 }
542
543 /*
544 * append a 'sync on channel' type control descriptor to the given descriptor
545 * list, this descriptor stalls the VPDMA list till the time DMA is completed
546 * on the specified channel
547 */
548 void vpdma_add_sync_on_channel_ctd(struct vpdma_desc_list *list,
549 enum vpdma_channel chan)
550 {
551 struct vpdma_ctd *ctd;
552
553 ctd = list->next;
554 WARN_ON((void *)(ctd + 1) > (list->buf.addr + list->buf.size));
555
556 ctd->w0 = 0;
557 ctd->w1 = 0;
558 ctd->w2 = 0;
559 ctd->type_source_ctl = ctd_type_source_ctl(chan_info[chan].num,
560 CTD_TYPE_SYNC_ON_CHANNEL);
561
562 list->next = ctd + 1;
563
564 dump_ctd(ctd);
565 }
566
567 static void dump_dtd(struct vpdma_dtd *dtd)
568 {
569 int dir, chan;
570
571 dir = dtd_get_dir(dtd);
572 chan = dtd_get_chan(dtd);
573
574 pr_debug("%s data transfer descriptor for channel %d\n",
575 dir == DTD_DIR_OUT ? "outbound" : "inbound", chan);
576
577 pr_debug("word0: data_type = %d, notify = %d, field = %d, 1D = %d, "
578 "even_ln_skp = %d, odd_ln_skp = %d, line_stride = %d\n",
579 dtd_get_data_type(dtd), dtd_get_notify(dtd), dtd_get_field(dtd),
580 dtd_get_1d(dtd), dtd_get_even_line_skip(dtd),
581 dtd_get_odd_line_skip(dtd), dtd_get_line_stride(dtd));
582
583 if (dir == DTD_DIR_IN)
584 pr_debug("word1: line_length = %d, xfer_height = %d\n",
585 dtd_get_line_length(dtd), dtd_get_xfer_height(dtd));
586
587 pr_debug("word2: start_addr = %pad\n", &dtd->start_addr);
588
589 pr_debug("word3: pkt_type = %d, mode = %d, dir = %d, chan = %d, "
590 "pri = %d, next_chan = %d\n", dtd_get_pkt_type(dtd),
591 dtd_get_mode(dtd), dir, chan, dtd_get_priority(dtd),
592 dtd_get_next_chan(dtd));
593
594 if (dir == DTD_DIR_IN)
595 pr_debug("word4: frame_width = %d, frame_height = %d\n",
596 dtd_get_frame_width(dtd), dtd_get_frame_height(dtd));
597 else
598 pr_debug("word4: desc_write_addr = 0x%08x, write_desc = %d, "
599 "drp_data = %d, use_desc_reg = %d\n",
600 dtd_get_desc_write_addr(dtd), dtd_get_write_desc(dtd),
601 dtd_get_drop_data(dtd), dtd_get_use_desc(dtd));
602
603 if (dir == DTD_DIR_IN)
604 pr_debug("word5: hor_start = %d, ver_start = %d\n",
605 dtd_get_h_start(dtd), dtd_get_v_start(dtd));
606 else
607 pr_debug("word5: max_width %d, max_height %d\n",
608 dtd_get_max_width(dtd), dtd_get_max_height(dtd));
609
610 pr_debug("word6: client specific attr0 = 0x%08x\n", dtd->client_attr0);
611 pr_debug("word7: client specific attr1 = 0x%08x\n", dtd->client_attr1);
612 }
613
614 /*
615 * append an outbound data transfer descriptor to the given descriptor list,
616 * this sets up a 'client to memory' VPDMA transfer for the given VPDMA channel
617 *
618 * @list: vpdma desc list to which we add this decriptor
619 * @width: width of the image in pixels in memory
620 * @c_rect: compose params of output image
621 * @fmt: vpdma data format of the buffer
622 * dma_addr: dma address as seen by VPDMA
623 * chan: VPDMA channel
624 * flags: VPDMA flags to configure some descriptor fileds
625 */
626 void vpdma_add_out_dtd(struct vpdma_desc_list *list, int width,
627 const struct v4l2_rect *c_rect,
628 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
629 enum vpdma_channel chan, u32 flags)
630 {
631 int priority = 0;
632 int field = 0;
633 int notify = 1;
634 int channel, next_chan;
635 struct v4l2_rect rect = *c_rect;
636 int depth = fmt->depth;
637 int stride;
638 struct vpdma_dtd *dtd;
639
640 channel = next_chan = chan_info[chan].num;
641
642 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
643 fmt->data_type == DATA_TYPE_C420) {
644 rect.height >>= 1;
645 rect.top >>= 1;
646 depth = 8;
647 }
648
649 stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN);
650
651 dma_addr += rect.top * stride + (rect.left * depth >> 3);
652
653 dtd = list->next;
654 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
655
656 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
657 notify,
658 field,
659 !!(flags & VPDMA_DATA_FRAME_1D),
660 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
661 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
662 stride);
663 dtd->w1 = 0;
664 dtd->start_addr = (u32) dma_addr;
665 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
666 DTD_DIR_OUT, channel, priority, next_chan);
667 dtd->desc_write_addr = dtd_desc_write_addr(0, 0, 0, 0);
668 dtd->max_width_height = dtd_max_width_height(MAX_OUT_WIDTH_1920,
669 MAX_OUT_HEIGHT_1080);
670 dtd->client_attr0 = 0;
671 dtd->client_attr1 = 0;
672
673 list->next = dtd + 1;
674
675 dump_dtd(dtd);
676 }
677
678 /*
679 * append an inbound data transfer descriptor to the given descriptor list,
680 * this sets up a 'memory to client' VPDMA transfer for the given VPDMA channel
681 *
682 * @list: vpdma desc list to which we add this decriptor
683 * @width: width of the image in pixels in memory(not the cropped width)
684 * @c_rect: crop params of input image
685 * @fmt: vpdma data format of the buffer
686 * dma_addr: dma address as seen by VPDMA
687 * chan: VPDMA channel
688 * field: top or bottom field info of the input image
689 * flags: VPDMA flags to configure some descriptor fileds
690 * frame_width/height: the complete width/height of the image presented to the
691 * client (this makes sense when multiple channels are
692 * connected to the same client, forming a larger frame)
693 * start_h, start_v: position where the given channel starts providing pixel
694 * data to the client (makes sense when multiple channels
695 * contribute to the client)
696 */
697 void vpdma_add_in_dtd(struct vpdma_desc_list *list, int width,
698 const struct v4l2_rect *c_rect,
699 const struct vpdma_data_format *fmt, dma_addr_t dma_addr,
700 enum vpdma_channel chan, int field, u32 flags, int frame_width,
701 int frame_height, int start_h, int start_v)
702 {
703 int priority = 0;
704 int notify = 1;
705 int depth = fmt->depth;
706 int channel, next_chan;
707 struct v4l2_rect rect = *c_rect;
708 int stride;
709 struct vpdma_dtd *dtd;
710
711 channel = next_chan = chan_info[chan].num;
712
713 if (fmt->type == VPDMA_DATA_FMT_TYPE_YUV &&
714 fmt->data_type == DATA_TYPE_C420) {
715 rect.height >>= 1;
716 rect.top >>= 1;
717 depth = 8;
718 }
719
720 stride = ALIGN((depth * width) >> 3, VPDMA_STRIDE_ALIGN);
721
722 dma_addr += rect.top * stride + (rect.left * depth >> 3);
723
724 dtd = list->next;
725 WARN_ON((void *)(dtd + 1) > (list->buf.addr + list->buf.size));
726
727 dtd->type_ctl_stride = dtd_type_ctl_stride(fmt->data_type,
728 notify,
729 field,
730 !!(flags & VPDMA_DATA_FRAME_1D),
731 !!(flags & VPDMA_DATA_EVEN_LINE_SKIP),
732 !!(flags & VPDMA_DATA_ODD_LINE_SKIP),
733 stride);
734
735 dtd->xfer_length_height = dtd_xfer_length_height(rect.width,
736 rect.height);
737 dtd->start_addr = (u32) dma_addr;
738 dtd->pkt_ctl = dtd_pkt_ctl(!!(flags & VPDMA_DATA_MODE_TILED),
739 DTD_DIR_IN, channel, priority, next_chan);
740 dtd->frame_width_height = dtd_frame_width_height(frame_width,
741 frame_height);
742 dtd->start_h_v = dtd_start_h_v(start_h, start_v);
743 dtd->client_attr0 = 0;
744 dtd->client_attr1 = 0;
745
746 list->next = dtd + 1;
747
748 dump_dtd(dtd);
749 }
750
751 /* set or clear the mask for list complete interrupt */
752 void vpdma_enable_list_complete_irq(struct vpdma_data *vpdma, int list_num,
753 bool enable)
754 {
755 u32 val;
756
757 val = read_reg(vpdma, VPDMA_INT_LIST0_MASK);
758 if (enable)
759 val |= (1 << (list_num * 2));
760 else
761 val &= ~(1 << (list_num * 2));
762 write_reg(vpdma, VPDMA_INT_LIST0_MASK, val);
763 }
764
765 /* clear previosuly occured list intterupts in the LIST_STAT register */
766 void vpdma_clear_list_stat(struct vpdma_data *vpdma)
767 {
768 write_reg(vpdma, VPDMA_INT_LIST0_STAT,
769 read_reg(vpdma, VPDMA_INT_LIST0_STAT));
770 }
771
772 /*
773 * configures the output mode of the line buffer for the given client, the
774 * line buffer content can either be mirrored(each line repeated twice) or
775 * passed to the client as is
776 */
777 void vpdma_set_line_mode(struct vpdma_data *vpdma, int line_mode,
778 enum vpdma_channel chan)
779 {
780 int client_cstat = chan_info[chan].cstat_offset;
781
782 write_field_reg(vpdma, client_cstat, line_mode,
783 VPDMA_CSTAT_LINE_MODE_MASK, VPDMA_CSTAT_LINE_MODE_SHIFT);
784 }
785
786 /*
787 * configures the event which should trigger VPDMA transfer for the given
788 * client
789 */
790 void vpdma_set_frame_start_event(struct vpdma_data *vpdma,
791 enum vpdma_frame_start_event fs_event,
792 enum vpdma_channel chan)
793 {
794 int client_cstat = chan_info[chan].cstat_offset;
795
796 write_field_reg(vpdma, client_cstat, fs_event,
797 VPDMA_CSTAT_FRAME_START_MASK, VPDMA_CSTAT_FRAME_START_SHIFT);
798 }
799
800 static void vpdma_firmware_cb(const struct firmware *f, void *context)
801 {
802 struct vpdma_data *vpdma = context;
803 struct vpdma_buf fw_dma_buf;
804 int i, r;
805
806 dev_dbg(&vpdma->pdev->dev, "firmware callback\n");
807
808 if (!f || !f->data) {
809 dev_err(&vpdma->pdev->dev, "couldn't get firmware\n");
810 return;
811 }
812
813 /* already initialized */
814 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
815 VPDMA_LIST_RDY_SHFT)) {
816 vpdma->cb(vpdma->pdev);
817 return;
818 }
819
820 r = vpdma_alloc_desc_buf(&fw_dma_buf, f->size);
821 if (r) {
822 dev_err(&vpdma->pdev->dev,
823 "failed to allocate dma buffer for firmware\n");
824 goto rel_fw;
825 }
826
827 memcpy(fw_dma_buf.addr, f->data, f->size);
828
829 vpdma_map_desc_buf(vpdma, &fw_dma_buf);
830
831 write_reg(vpdma, VPDMA_LIST_ADDR, (u32) fw_dma_buf.dma_addr);
832
833 for (i = 0; i < 100; i++) { /* max 1 second */
834 msleep_interruptible(10);
835
836 if (read_field_reg(vpdma, VPDMA_LIST_ATTR, VPDMA_LIST_RDY_MASK,
837 VPDMA_LIST_RDY_SHFT))
838 break;
839 }
840
841 if (i == 100) {
842 dev_err(&vpdma->pdev->dev, "firmware upload failed\n");
843 goto free_buf;
844 }
845
846 vpdma->cb(vpdma->pdev);
847
848 free_buf:
849 vpdma_unmap_desc_buf(vpdma, &fw_dma_buf);
850
851 vpdma_free_desc_buf(&fw_dma_buf);
852 rel_fw:
853 release_firmware(f);
854 }
855
856 static int vpdma_load_firmware(struct vpdma_data *vpdma)
857 {
858 int r;
859 struct device *dev = &vpdma->pdev->dev;
860
861 r = request_firmware_nowait(THIS_MODULE, 1,
862 (const char *) VPDMA_FIRMWARE, dev, GFP_KERNEL, vpdma,
863 vpdma_firmware_cb);
864 if (r) {
865 dev_err(dev, "firmware not available %s\n", VPDMA_FIRMWARE);
866 return r;
867 } else {
868 dev_info(dev, "loading firmware %s\n", VPDMA_FIRMWARE);
869 }
870
871 return 0;
872 }
873
874 struct vpdma_data *vpdma_create(struct platform_device *pdev,
875 void (*cb)(struct platform_device *pdev))
876 {
877 struct resource *res;
878 struct vpdma_data *vpdma;
879 int r;
880
881 dev_dbg(&pdev->dev, "vpdma_create\n");
882
883 vpdma = devm_kzalloc(&pdev->dev, sizeof(*vpdma), GFP_KERNEL);
884 if (!vpdma) {
885 dev_err(&pdev->dev, "couldn't alloc vpdma_dev\n");
886 return ERR_PTR(-ENOMEM);
887 }
888
889 vpdma->pdev = pdev;
890 vpdma->cb = cb;
891
892 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "vpdma");
893 if (res == NULL) {
894 dev_err(&pdev->dev, "missing platform resources data\n");
895 return ERR_PTR(-ENODEV);
896 }
897
898 vpdma->base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
899 if (!vpdma->base) {
900 dev_err(&pdev->dev, "failed to ioremap\n");
901 return ERR_PTR(-ENOMEM);
902 }
903
904 r = vpdma_load_firmware(vpdma);
905 if (r) {
906 pr_err("failed to load firmware %s\n", VPDMA_FIRMWARE);
907 return ERR_PTR(r);
908 }
909
910 return vpdma;
911 }
912 MODULE_FIRMWARE(VPDMA_FIRMWARE);
This page took 0.048589 seconds and 5 git commands to generate.