[media] media: videobuf2: Replace videobuf2-core with videobuf2-v4l2
[deliverable/linux.git] / drivers / media / platform / ti-vpe / vpe.c
1 /*
2 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
3 *
4 * Copyright (c) 2013 Texas Instruments Inc.
5 * David Griego, <dagriego@biglakesoftware.com>
6 * Dale Farnsworth, <dale@farnsworth.org>
7 * Archit Taneja, <archit@ti.com>
8 *
9 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
10 * Pawel Osciak, <pawel@osciak.com>
11 * Marek Szyprowski, <m.szyprowski@samsung.com>
12 *
13 * Based on the virtual v4l2-mem2mem example device
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License version 2 as published by
17 * the Free Software Foundation
18 */
19
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/err.h>
23 #include <linux/fs.h>
24 #include <linux/interrupt.h>
25 #include <linux/io.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/sched.h>
32 #include <linux/slab.h>
33 #include <linux/videodev2.h>
34 #include <linux/log2.h>
35 #include <linux/sizes.h>
36
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-ctrls.h>
39 #include <media/v4l2-device.h>
40 #include <media/v4l2-event.h>
41 #include <media/v4l2-ioctl.h>
42 #include <media/v4l2-mem2mem.h>
43 #include <media/videobuf2-v4l2.h>
44 #include <media/videobuf2-dma-contig.h>
45
46 #include "vpdma.h"
47 #include "vpe_regs.h"
48 #include "sc.h"
49 #include "csc.h"
50
51 #define VPE_MODULE_NAME "vpe"
52
53 /* minimum and maximum frame sizes */
54 #define MIN_W 32
55 #define MIN_H 32
56 #define MAX_W 1920
57 #define MAX_H 1080
58
59 /* required alignments */
60 #define S_ALIGN 0 /* multiple of 1 */
61 #define H_ALIGN 1 /* multiple of 2 */
62
63 /* flags that indicate a format can be used for capture/output */
64 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
65 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
66
67 /* used as plane indices */
68 #define VPE_MAX_PLANES 2
69 #define VPE_LUMA 0
70 #define VPE_CHROMA 1
71
72 /* per m2m context info */
73 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
74
75 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
76
77 /*
78 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
79 * 3 output descriptors, and 10 control descriptors
80 */
81 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
82 13 * VPDMA_CFD_CTD_DESC_SIZE)
83
84 #define vpe_dbg(vpedev, fmt, arg...) \
85 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
86 #define vpe_err(vpedev, fmt, arg...) \
87 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
88
89 struct vpe_us_coeffs {
90 unsigned short anchor_fid0_c0;
91 unsigned short anchor_fid0_c1;
92 unsigned short anchor_fid0_c2;
93 unsigned short anchor_fid0_c3;
94 unsigned short interp_fid0_c0;
95 unsigned short interp_fid0_c1;
96 unsigned short interp_fid0_c2;
97 unsigned short interp_fid0_c3;
98 unsigned short anchor_fid1_c0;
99 unsigned short anchor_fid1_c1;
100 unsigned short anchor_fid1_c2;
101 unsigned short anchor_fid1_c3;
102 unsigned short interp_fid1_c0;
103 unsigned short interp_fid1_c1;
104 unsigned short interp_fid1_c2;
105 unsigned short interp_fid1_c3;
106 };
107
108 /*
109 * Default upsampler coefficients
110 */
111 static const struct vpe_us_coeffs us_coeffs[] = {
112 {
113 /* Coefficients for progressive input */
114 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
115 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
116 },
117 {
118 /* Coefficients for Top Field Interlaced input */
119 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
120 /* Coefficients for Bottom Field Interlaced input */
121 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
122 },
123 };
124
125 /*
126 * the following registers are for configuring some of the parameters of the
127 * motion and edge detection blocks inside DEI, these generally remain the same,
128 * these could be passed later via userspace if some one needs to tweak these.
129 */
130 struct vpe_dei_regs {
131 unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */
132 unsigned long edi_config_reg; /* VPE_DEI_REG3 */
133 unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */
134 unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */
135 unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */
136 unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */
137 };
138
139 /*
140 * default expert DEI register values, unlikely to be modified.
141 */
142 static const struct vpe_dei_regs dei_regs = {
143 .mdt_spacial_freq_thr_reg = 0x020C0804u,
144 .edi_config_reg = 0x0118100Fu,
145 .edi_lut_reg0 = 0x08040200u,
146 .edi_lut_reg1 = 0x1010100Cu,
147 .edi_lut_reg2 = 0x10101010u,
148 .edi_lut_reg3 = 0x10101010u,
149 };
150
151 /*
152 * The port_data structure contains per-port data.
153 */
154 struct vpe_port_data {
155 enum vpdma_channel channel; /* VPDMA channel */
156 u8 vb_index; /* input frame f, f-1, f-2 index */
157 u8 vb_part; /* plane index for co-panar formats */
158 };
159
160 /*
161 * Define indices into the port_data tables
162 */
163 #define VPE_PORT_LUMA1_IN 0
164 #define VPE_PORT_CHROMA1_IN 1
165 #define VPE_PORT_LUMA2_IN 2
166 #define VPE_PORT_CHROMA2_IN 3
167 #define VPE_PORT_LUMA3_IN 4
168 #define VPE_PORT_CHROMA3_IN 5
169 #define VPE_PORT_MV_IN 6
170 #define VPE_PORT_MV_OUT 7
171 #define VPE_PORT_LUMA_OUT 8
172 #define VPE_PORT_CHROMA_OUT 9
173 #define VPE_PORT_RGB_OUT 10
174
175 static const struct vpe_port_data port_data[11] = {
176 [VPE_PORT_LUMA1_IN] = {
177 .channel = VPE_CHAN_LUMA1_IN,
178 .vb_index = 0,
179 .vb_part = VPE_LUMA,
180 },
181 [VPE_PORT_CHROMA1_IN] = {
182 .channel = VPE_CHAN_CHROMA1_IN,
183 .vb_index = 0,
184 .vb_part = VPE_CHROMA,
185 },
186 [VPE_PORT_LUMA2_IN] = {
187 .channel = VPE_CHAN_LUMA2_IN,
188 .vb_index = 1,
189 .vb_part = VPE_LUMA,
190 },
191 [VPE_PORT_CHROMA2_IN] = {
192 .channel = VPE_CHAN_CHROMA2_IN,
193 .vb_index = 1,
194 .vb_part = VPE_CHROMA,
195 },
196 [VPE_PORT_LUMA3_IN] = {
197 .channel = VPE_CHAN_LUMA3_IN,
198 .vb_index = 2,
199 .vb_part = VPE_LUMA,
200 },
201 [VPE_PORT_CHROMA3_IN] = {
202 .channel = VPE_CHAN_CHROMA3_IN,
203 .vb_index = 2,
204 .vb_part = VPE_CHROMA,
205 },
206 [VPE_PORT_MV_IN] = {
207 .channel = VPE_CHAN_MV_IN,
208 },
209 [VPE_PORT_MV_OUT] = {
210 .channel = VPE_CHAN_MV_OUT,
211 },
212 [VPE_PORT_LUMA_OUT] = {
213 .channel = VPE_CHAN_LUMA_OUT,
214 .vb_part = VPE_LUMA,
215 },
216 [VPE_PORT_CHROMA_OUT] = {
217 .channel = VPE_CHAN_CHROMA_OUT,
218 .vb_part = VPE_CHROMA,
219 },
220 [VPE_PORT_RGB_OUT] = {
221 .channel = VPE_CHAN_RGB_OUT,
222 .vb_part = VPE_LUMA,
223 },
224 };
225
226
227 /* driver info for each of the supported video formats */
228 struct vpe_fmt {
229 char *name; /* human-readable name */
230 u32 fourcc; /* standard format identifier */
231 u8 types; /* CAPTURE and/or OUTPUT */
232 u8 coplanar; /* set for unpacked Luma and Chroma */
233 /* vpdma format info for each plane */
234 struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
235 };
236
237 static struct vpe_fmt vpe_formats[] = {
238 {
239 .name = "YUV 422 co-planar",
240 .fourcc = V4L2_PIX_FMT_NV16,
241 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
242 .coplanar = 1,
243 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
244 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
245 },
246 },
247 {
248 .name = "YUV 420 co-planar",
249 .fourcc = V4L2_PIX_FMT_NV12,
250 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
251 .coplanar = 1,
252 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
253 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
254 },
255 },
256 {
257 .name = "YUYV 422 packed",
258 .fourcc = V4L2_PIX_FMT_YUYV,
259 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
260 .coplanar = 0,
261 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YC422],
262 },
263 },
264 {
265 .name = "UYVY 422 packed",
266 .fourcc = V4L2_PIX_FMT_UYVY,
267 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
268 .coplanar = 0,
269 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CY422],
270 },
271 },
272 {
273 .name = "RGB888 packed",
274 .fourcc = V4L2_PIX_FMT_RGB24,
275 .types = VPE_FMT_TYPE_CAPTURE,
276 .coplanar = 0,
277 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
278 },
279 },
280 {
281 .name = "ARGB32",
282 .fourcc = V4L2_PIX_FMT_RGB32,
283 .types = VPE_FMT_TYPE_CAPTURE,
284 .coplanar = 0,
285 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
286 },
287 },
288 {
289 .name = "BGR888 packed",
290 .fourcc = V4L2_PIX_FMT_BGR24,
291 .types = VPE_FMT_TYPE_CAPTURE,
292 .coplanar = 0,
293 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
294 },
295 },
296 {
297 .name = "ABGR32",
298 .fourcc = V4L2_PIX_FMT_BGR32,
299 .types = VPE_FMT_TYPE_CAPTURE,
300 .coplanar = 0,
301 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
302 },
303 },
304 };
305
306 /*
307 * per-queue, driver-specific private data.
308 * there is one source queue and one destination queue for each m2m context.
309 */
310 struct vpe_q_data {
311 unsigned int width; /* frame width */
312 unsigned int height; /* frame height */
313 unsigned int bytesperline[VPE_MAX_PLANES]; /* bytes per line in memory */
314 enum v4l2_colorspace colorspace;
315 enum v4l2_field field; /* supported field value */
316 unsigned int flags;
317 unsigned int sizeimage[VPE_MAX_PLANES]; /* image size in memory */
318 struct v4l2_rect c_rect; /* crop/compose rectangle */
319 struct vpe_fmt *fmt; /* format info */
320 };
321
322 /* vpe_q_data flag bits */
323 #define Q_DATA_FRAME_1D (1 << 0)
324 #define Q_DATA_MODE_TILED (1 << 1)
325 #define Q_DATA_INTERLACED (1 << 2)
326
327 enum {
328 Q_DATA_SRC = 0,
329 Q_DATA_DST = 1,
330 };
331
332 /* find our format description corresponding to the passed v4l2_format */
333 static struct vpe_fmt *find_format(struct v4l2_format *f)
334 {
335 struct vpe_fmt *fmt;
336 unsigned int k;
337
338 for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
339 fmt = &vpe_formats[k];
340 if (fmt->fourcc == f->fmt.pix.pixelformat)
341 return fmt;
342 }
343
344 return NULL;
345 }
346
347 /*
348 * there is one vpe_dev structure in the driver, it is shared by
349 * all instances.
350 */
351 struct vpe_dev {
352 struct v4l2_device v4l2_dev;
353 struct video_device vfd;
354 struct v4l2_m2m_dev *m2m_dev;
355
356 atomic_t num_instances; /* count of driver instances */
357 dma_addr_t loaded_mmrs; /* shadow mmrs in device */
358 struct mutex dev_mutex;
359 spinlock_t lock;
360
361 int irq;
362 void __iomem *base;
363 struct resource *res;
364
365 struct vb2_alloc_ctx *alloc_ctx;
366 struct vpdma_data *vpdma; /* vpdma data handle */
367 struct sc_data *sc; /* scaler data handle */
368 struct csc_data *csc; /* csc data handle */
369 };
370
371 /*
372 * There is one vpe_ctx structure for each m2m context.
373 */
374 struct vpe_ctx {
375 struct v4l2_fh fh;
376 struct vpe_dev *dev;
377 struct v4l2_ctrl_handler hdl;
378
379 unsigned int field; /* current field */
380 unsigned int sequence; /* current frame/field seq */
381 unsigned int aborting; /* abort after next irq */
382
383 unsigned int bufs_per_job; /* input buffers per batch */
384 unsigned int bufs_completed; /* bufs done in this batch */
385
386 struct vpe_q_data q_data[2]; /* src & dst queue data */
387 struct vb2_buffer *src_vbs[VPE_MAX_SRC_BUFS];
388 struct vb2_buffer *dst_vb;
389
390 dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */
391 void *mv_buf[2]; /* virtual addrs of motion vector bufs */
392 size_t mv_buf_size; /* current motion vector buffer size */
393 struct vpdma_buf mmr_adb; /* shadow reg addr/data block */
394 struct vpdma_buf sc_coeff_h; /* h coeff buffer */
395 struct vpdma_buf sc_coeff_v; /* v coeff buffer */
396 struct vpdma_desc_list desc_list; /* DMA descriptor list */
397
398 bool deinterlacing; /* using de-interlacer */
399 bool load_mmrs; /* have new shadow reg values */
400
401 unsigned int src_mv_buf_selector;
402 };
403
404
405 /*
406 * M2M devices get 2 queues.
407 * Return the queue given the type.
408 */
409 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
410 enum v4l2_buf_type type)
411 {
412 switch (type) {
413 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
414 case V4L2_BUF_TYPE_VIDEO_OUTPUT:
415 return &ctx->q_data[Q_DATA_SRC];
416 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
417 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
418 return &ctx->q_data[Q_DATA_DST];
419 default:
420 BUG();
421 }
422 return NULL;
423 }
424
425 static u32 read_reg(struct vpe_dev *dev, int offset)
426 {
427 return ioread32(dev->base + offset);
428 }
429
430 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
431 {
432 iowrite32(value, dev->base + offset);
433 }
434
435 /* register field read/write helpers */
436 static int get_field(u32 value, u32 mask, int shift)
437 {
438 return (value & (mask << shift)) >> shift;
439 }
440
441 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
442 {
443 return get_field(read_reg(dev, offset), mask, shift);
444 }
445
446 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
447 {
448 u32 val = *valp;
449
450 val &= ~(mask << shift);
451 val |= (field & mask) << shift;
452 *valp = val;
453 }
454
455 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
456 u32 mask, int shift)
457 {
458 u32 val = read_reg(dev, offset);
459
460 write_field(&val, field, mask, shift);
461
462 write_reg(dev, offset, val);
463 }
464
465 /*
466 * DMA address/data block for the shadow registers
467 */
468 struct vpe_mmr_adb {
469 struct vpdma_adb_hdr out_fmt_hdr;
470 u32 out_fmt_reg[1];
471 u32 out_fmt_pad[3];
472 struct vpdma_adb_hdr us1_hdr;
473 u32 us1_regs[8];
474 struct vpdma_adb_hdr us2_hdr;
475 u32 us2_regs[8];
476 struct vpdma_adb_hdr us3_hdr;
477 u32 us3_regs[8];
478 struct vpdma_adb_hdr dei_hdr;
479 u32 dei_regs[8];
480 struct vpdma_adb_hdr sc_hdr0;
481 u32 sc_regs0[7];
482 u32 sc_pad0[1];
483 struct vpdma_adb_hdr sc_hdr8;
484 u32 sc_regs8[6];
485 u32 sc_pad8[2];
486 struct vpdma_adb_hdr sc_hdr17;
487 u32 sc_regs17[9];
488 u32 sc_pad17[3];
489 struct vpdma_adb_hdr csc_hdr;
490 u32 csc_regs[6];
491 u32 csc_pad[2];
492 };
493
494 #define GET_OFFSET_TOP(ctx, obj, reg) \
495 ((obj)->res->start - ctx->dev->res->start + reg)
496
497 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
498 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
499 /*
500 * Set the headers for all of the address/data block structures.
501 */
502 static void init_adb_hdrs(struct vpe_ctx *ctx)
503 {
504 VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
505 VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
506 VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
507 VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
508 VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
509 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
510 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
511 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
512 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
513 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
514 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
515 VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
516 GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
517 };
518
519 /*
520 * Allocate or re-allocate the motion vector DMA buffers
521 * There are two buffers, one for input and one for output.
522 * However, the roles are reversed after each field is processed.
523 * In other words, after each field is processed, the previous
524 * output (dst) MV buffer becomes the new input (src) MV buffer.
525 */
526 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
527 {
528 struct device *dev = ctx->dev->v4l2_dev.dev;
529
530 if (ctx->mv_buf_size == size)
531 return 0;
532
533 if (ctx->mv_buf[0])
534 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
535 ctx->mv_buf_dma[0]);
536
537 if (ctx->mv_buf[1])
538 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
539 ctx->mv_buf_dma[1]);
540
541 if (size == 0)
542 return 0;
543
544 ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
545 GFP_KERNEL);
546 if (!ctx->mv_buf[0]) {
547 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
548 return -ENOMEM;
549 }
550
551 ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
552 GFP_KERNEL);
553 if (!ctx->mv_buf[1]) {
554 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
555 dma_free_coherent(dev, size, ctx->mv_buf[0],
556 ctx->mv_buf_dma[0]);
557
558 return -ENOMEM;
559 }
560
561 ctx->mv_buf_size = size;
562 ctx->src_mv_buf_selector = 0;
563
564 return 0;
565 }
566
567 static void free_mv_buffers(struct vpe_ctx *ctx)
568 {
569 realloc_mv_buffers(ctx, 0);
570 }
571
572 /*
573 * While de-interlacing, we keep the two most recent input buffers
574 * around. This function frees those two buffers when we have
575 * finished processing the current stream.
576 */
577 static void free_vbs(struct vpe_ctx *ctx)
578 {
579 struct vpe_dev *dev = ctx->dev;
580 unsigned long flags;
581
582 if (ctx->src_vbs[2] == NULL)
583 return;
584
585 spin_lock_irqsave(&dev->lock, flags);
586 if (ctx->src_vbs[2]) {
587 v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
588 v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
589 }
590 spin_unlock_irqrestore(&dev->lock, flags);
591 }
592
593 /*
594 * Enable or disable the VPE clocks
595 */
596 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
597 {
598 u32 val = 0;
599
600 if (on)
601 val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
602 write_reg(dev, VPE_CLK_ENABLE, val);
603 }
604
605 static void vpe_top_reset(struct vpe_dev *dev)
606 {
607
608 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
609 VPE_DATA_PATH_CLK_RESET_SHIFT);
610
611 usleep_range(100, 150);
612
613 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
614 VPE_DATA_PATH_CLK_RESET_SHIFT);
615 }
616
617 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
618 {
619 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
620 VPE_VPDMA_CLK_RESET_SHIFT);
621
622 usleep_range(100, 150);
623
624 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
625 VPE_VPDMA_CLK_RESET_SHIFT);
626 }
627
628 /*
629 * Load the correct of upsampler coefficients into the shadow MMRs
630 */
631 static void set_us_coefficients(struct vpe_ctx *ctx)
632 {
633 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
634 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
635 u32 *us1_reg = &mmr_adb->us1_regs[0];
636 u32 *us2_reg = &mmr_adb->us2_regs[0];
637 u32 *us3_reg = &mmr_adb->us3_regs[0];
638 const unsigned short *cp, *end_cp;
639
640 cp = &us_coeffs[0].anchor_fid0_c0;
641
642 if (s_q_data->flags & Q_DATA_INTERLACED) /* interlaced */
643 cp += sizeof(us_coeffs[0]) / sizeof(*cp);
644
645 end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
646
647 while (cp < end_cp) {
648 write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
649 write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
650 *us2_reg++ = *us1_reg;
651 *us3_reg++ = *us1_reg++;
652 }
653 ctx->load_mmrs = true;
654 }
655
656 /*
657 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
658 */
659 static void set_cfg_and_line_modes(struct vpe_ctx *ctx)
660 {
661 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
662 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
663 u32 *us1_reg0 = &mmr_adb->us1_regs[0];
664 u32 *us2_reg0 = &mmr_adb->us2_regs[0];
665 u32 *us3_reg0 = &mmr_adb->us3_regs[0];
666 int line_mode = 1;
667 int cfg_mode = 1;
668
669 /*
670 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
671 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
672 */
673
674 if (fmt->fourcc == V4L2_PIX_FMT_NV12) {
675 cfg_mode = 0;
676 line_mode = 0; /* double lines to line buffer */
677 }
678
679 write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
680 write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
681 write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
682
683 /* regs for now */
684 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
685 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
686 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
687
688 /* frame start for input luma */
689 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
690 VPE_CHAN_LUMA1_IN);
691 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
692 VPE_CHAN_LUMA2_IN);
693 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
694 VPE_CHAN_LUMA3_IN);
695
696 /* frame start for input chroma */
697 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
698 VPE_CHAN_CHROMA1_IN);
699 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
700 VPE_CHAN_CHROMA2_IN);
701 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
702 VPE_CHAN_CHROMA3_IN);
703
704 /* frame start for MV in client */
705 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
706 VPE_CHAN_MV_IN);
707
708 ctx->load_mmrs = true;
709 }
710
711 /*
712 * Set the shadow registers that are modified when the source
713 * format changes.
714 */
715 static void set_src_registers(struct vpe_ctx *ctx)
716 {
717 set_us_coefficients(ctx);
718 }
719
720 /*
721 * Set the shadow registers that are modified when the destination
722 * format changes.
723 */
724 static void set_dst_registers(struct vpe_ctx *ctx)
725 {
726 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
727 enum v4l2_colorspace clrspc = ctx->q_data[Q_DATA_DST].colorspace;
728 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
729 u32 val = 0;
730
731 if (clrspc == V4L2_COLORSPACE_SRGB)
732 val |= VPE_RGB_OUT_SELECT;
733 else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
734 val |= VPE_COLOR_SEPARATE_422;
735
736 /*
737 * the source of CHR_DS and CSC is always the scaler, irrespective of
738 * whether it's used or not
739 */
740 val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
741
742 if (fmt->fourcc != V4L2_PIX_FMT_NV12)
743 val |= VPE_DS_BYPASS;
744
745 mmr_adb->out_fmt_reg[0] = val;
746
747 ctx->load_mmrs = true;
748 }
749
750 /*
751 * Set the de-interlacer shadow register values
752 */
753 static void set_dei_regs(struct vpe_ctx *ctx)
754 {
755 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
756 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
757 unsigned int src_h = s_q_data->c_rect.height;
758 unsigned int src_w = s_q_data->c_rect.width;
759 u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
760 bool deinterlace = true;
761 u32 val = 0;
762
763 /*
764 * according to TRM, we should set DEI in progressive bypass mode when
765 * the input content is progressive, however, DEI is bypassed correctly
766 * for both progressive and interlace content in interlace bypass mode.
767 * It has been recommended not to use progressive bypass mode.
768 */
769 if ((!ctx->deinterlacing && (s_q_data->flags & Q_DATA_INTERLACED)) ||
770 !(s_q_data->flags & Q_DATA_INTERLACED)) {
771 deinterlace = false;
772 val = VPE_DEI_INTERLACE_BYPASS;
773 }
774
775 src_h = deinterlace ? src_h * 2 : src_h;
776
777 val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
778 (src_w << VPE_DEI_WIDTH_SHIFT) |
779 VPE_DEI_FIELD_FLUSH;
780
781 *dei_mmr0 = val;
782
783 ctx->load_mmrs = true;
784 }
785
786 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
787 {
788 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
789 u32 *dei_mmr = &mmr_adb->dei_regs[0];
790 const struct vpe_dei_regs *cur = &dei_regs;
791
792 dei_mmr[2] = cur->mdt_spacial_freq_thr_reg;
793 dei_mmr[3] = cur->edi_config_reg;
794 dei_mmr[4] = cur->edi_lut_reg0;
795 dei_mmr[5] = cur->edi_lut_reg1;
796 dei_mmr[6] = cur->edi_lut_reg2;
797 dei_mmr[7] = cur->edi_lut_reg3;
798
799 ctx->load_mmrs = true;
800 }
801
802 /*
803 * Set the shadow registers whose values are modified when either the
804 * source or destination format is changed.
805 */
806 static int set_srcdst_params(struct vpe_ctx *ctx)
807 {
808 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
809 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
810 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
811 unsigned int src_w = s_q_data->c_rect.width;
812 unsigned int src_h = s_q_data->c_rect.height;
813 unsigned int dst_w = d_q_data->c_rect.width;
814 unsigned int dst_h = d_q_data->c_rect.height;
815 size_t mv_buf_size;
816 int ret;
817
818 ctx->sequence = 0;
819 ctx->field = V4L2_FIELD_TOP;
820
821 if ((s_q_data->flags & Q_DATA_INTERLACED) &&
822 !(d_q_data->flags & Q_DATA_INTERLACED)) {
823 int bytes_per_line;
824 const struct vpdma_data_format *mv =
825 &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
826
827 /*
828 * we make sure that the source image has a 16 byte aligned
829 * stride, we need to do the same for the motion vector buffer
830 * by aligning it's stride to the next 16 byte boundry. this
831 * extra space will not be used by the de-interlacer, but will
832 * ensure that vpdma operates correctly
833 */
834 bytes_per_line = ALIGN((s_q_data->width * mv->depth) >> 3,
835 VPDMA_STRIDE_ALIGN);
836 mv_buf_size = bytes_per_line * s_q_data->height;
837
838 ctx->deinterlacing = true;
839 src_h <<= 1;
840 } else {
841 ctx->deinterlacing = false;
842 mv_buf_size = 0;
843 }
844
845 free_vbs(ctx);
846
847 ret = realloc_mv_buffers(ctx, mv_buf_size);
848 if (ret)
849 return ret;
850
851 set_cfg_and_line_modes(ctx);
852 set_dei_regs(ctx);
853
854 csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
855 s_q_data->colorspace, d_q_data->colorspace);
856
857 sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
858 sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
859
860 sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
861 &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
862 src_w, src_h, dst_w, dst_h);
863
864 return 0;
865 }
866
867 /*
868 * Return the vpe_ctx structure for a given struct file
869 */
870 static struct vpe_ctx *file2ctx(struct file *file)
871 {
872 return container_of(file->private_data, struct vpe_ctx, fh);
873 }
874
875 /*
876 * mem2mem callbacks
877 */
878
879 /**
880 * job_ready() - check whether an instance is ready to be scheduled to run
881 */
882 static int job_ready(void *priv)
883 {
884 struct vpe_ctx *ctx = priv;
885 int needed = ctx->bufs_per_job;
886
887 if (ctx->deinterlacing && ctx->src_vbs[2] == NULL)
888 needed += 2; /* need additional two most recent fields */
889
890 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) < needed)
891 return 0;
892
893 if (v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) < needed)
894 return 0;
895
896 return 1;
897 }
898
899 static void job_abort(void *priv)
900 {
901 struct vpe_ctx *ctx = priv;
902
903 /* Will cancel the transaction in the next interrupt handler */
904 ctx->aborting = 1;
905 }
906
907 /*
908 * Lock access to the device
909 */
910 static void vpe_lock(void *priv)
911 {
912 struct vpe_ctx *ctx = priv;
913 struct vpe_dev *dev = ctx->dev;
914 mutex_lock(&dev->dev_mutex);
915 }
916
917 static void vpe_unlock(void *priv)
918 {
919 struct vpe_ctx *ctx = priv;
920 struct vpe_dev *dev = ctx->dev;
921 mutex_unlock(&dev->dev_mutex);
922 }
923
924 static void vpe_dump_regs(struct vpe_dev *dev)
925 {
926 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
927
928 vpe_dbg(dev, "VPE Registers:\n");
929
930 DUMPREG(PID);
931 DUMPREG(SYSCONFIG);
932 DUMPREG(INT0_STATUS0_RAW);
933 DUMPREG(INT0_STATUS0);
934 DUMPREG(INT0_ENABLE0);
935 DUMPREG(INT0_STATUS1_RAW);
936 DUMPREG(INT0_STATUS1);
937 DUMPREG(INT0_ENABLE1);
938 DUMPREG(CLK_ENABLE);
939 DUMPREG(CLK_RESET);
940 DUMPREG(CLK_FORMAT_SELECT);
941 DUMPREG(CLK_RANGE_MAP);
942 DUMPREG(US1_R0);
943 DUMPREG(US1_R1);
944 DUMPREG(US1_R2);
945 DUMPREG(US1_R3);
946 DUMPREG(US1_R4);
947 DUMPREG(US1_R5);
948 DUMPREG(US1_R6);
949 DUMPREG(US1_R7);
950 DUMPREG(US2_R0);
951 DUMPREG(US2_R1);
952 DUMPREG(US2_R2);
953 DUMPREG(US2_R3);
954 DUMPREG(US2_R4);
955 DUMPREG(US2_R5);
956 DUMPREG(US2_R6);
957 DUMPREG(US2_R7);
958 DUMPREG(US3_R0);
959 DUMPREG(US3_R1);
960 DUMPREG(US3_R2);
961 DUMPREG(US3_R3);
962 DUMPREG(US3_R4);
963 DUMPREG(US3_R5);
964 DUMPREG(US3_R6);
965 DUMPREG(US3_R7);
966 DUMPREG(DEI_FRAME_SIZE);
967 DUMPREG(MDT_BYPASS);
968 DUMPREG(MDT_SF_THRESHOLD);
969 DUMPREG(EDI_CONFIG);
970 DUMPREG(DEI_EDI_LUT_R0);
971 DUMPREG(DEI_EDI_LUT_R1);
972 DUMPREG(DEI_EDI_LUT_R2);
973 DUMPREG(DEI_EDI_LUT_R3);
974 DUMPREG(DEI_FMD_WINDOW_R0);
975 DUMPREG(DEI_FMD_WINDOW_R1);
976 DUMPREG(DEI_FMD_CONTROL_R0);
977 DUMPREG(DEI_FMD_CONTROL_R1);
978 DUMPREG(DEI_FMD_STATUS_R0);
979 DUMPREG(DEI_FMD_STATUS_R1);
980 DUMPREG(DEI_FMD_STATUS_R2);
981 #undef DUMPREG
982
983 sc_dump_regs(dev->sc);
984 csc_dump_regs(dev->csc);
985 }
986
987 static void add_out_dtd(struct vpe_ctx *ctx, int port)
988 {
989 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
990 const struct vpe_port_data *p_data = &port_data[port];
991 struct vb2_buffer *vb = ctx->dst_vb;
992 struct vpe_fmt *fmt = q_data->fmt;
993 const struct vpdma_data_format *vpdma_fmt;
994 int mv_buf_selector = !ctx->src_mv_buf_selector;
995 dma_addr_t dma_addr;
996 u32 flags = 0;
997
998 if (port == VPE_PORT_MV_OUT) {
999 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1000 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1001 } else {
1002 /* to incorporate interleaved formats */
1003 int plane = fmt->coplanar ? p_data->vb_part : 0;
1004
1005 vpdma_fmt = fmt->vpdma_fmt[plane];
1006 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1007 if (!dma_addr) {
1008 vpe_err(ctx->dev,
1009 "acquiring output buffer(%d) dma_addr failed\n",
1010 port);
1011 return;
1012 }
1013 }
1014
1015 if (q_data->flags & Q_DATA_FRAME_1D)
1016 flags |= VPDMA_DATA_FRAME_1D;
1017 if (q_data->flags & Q_DATA_MODE_TILED)
1018 flags |= VPDMA_DATA_MODE_TILED;
1019
1020 vpdma_add_out_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1021 vpdma_fmt, dma_addr, p_data->channel, flags);
1022 }
1023
1024 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1025 {
1026 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1027 const struct vpe_port_data *p_data = &port_data[port];
1028 struct vb2_buffer *vb = ctx->src_vbs[p_data->vb_index];
1029 struct vpe_fmt *fmt = q_data->fmt;
1030 const struct vpdma_data_format *vpdma_fmt;
1031 int mv_buf_selector = ctx->src_mv_buf_selector;
1032 int field = vb->v4l2_buf.field == V4L2_FIELD_BOTTOM;
1033 int frame_width, frame_height;
1034 dma_addr_t dma_addr;
1035 u32 flags = 0;
1036
1037 if (port == VPE_PORT_MV_IN) {
1038 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1039 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1040 } else {
1041 /* to incorporate interleaved formats */
1042 int plane = fmt->coplanar ? p_data->vb_part : 0;
1043
1044 vpdma_fmt = fmt->vpdma_fmt[plane];
1045
1046 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1047 if (!dma_addr) {
1048 vpe_err(ctx->dev,
1049 "acquiring input buffer(%d) dma_addr failed\n",
1050 port);
1051 return;
1052 }
1053 }
1054
1055 if (q_data->flags & Q_DATA_FRAME_1D)
1056 flags |= VPDMA_DATA_FRAME_1D;
1057 if (q_data->flags & Q_DATA_MODE_TILED)
1058 flags |= VPDMA_DATA_MODE_TILED;
1059
1060 frame_width = q_data->c_rect.width;
1061 frame_height = q_data->c_rect.height;
1062
1063 if (p_data->vb_part && fmt->fourcc == V4L2_PIX_FMT_NV12)
1064 frame_height /= 2;
1065
1066 vpdma_add_in_dtd(&ctx->desc_list, q_data->width, &q_data->c_rect,
1067 vpdma_fmt, dma_addr, p_data->channel, field, flags, frame_width,
1068 frame_height, 0, 0);
1069 }
1070
1071 /*
1072 * Enable the expected IRQ sources
1073 */
1074 static void enable_irqs(struct vpe_ctx *ctx)
1075 {
1076 write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1077 write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1078 VPE_DS1_UV_ERROR_INT);
1079
1080 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, true);
1081 }
1082
1083 static void disable_irqs(struct vpe_ctx *ctx)
1084 {
1085 write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1086 write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1087
1088 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, false);
1089 }
1090
1091 /* device_run() - prepares and starts the device
1092 *
1093 * This function is only called when both the source and destination
1094 * buffers are in place.
1095 */
1096 static void device_run(void *priv)
1097 {
1098 struct vpe_ctx *ctx = priv;
1099 struct sc_data *sc = ctx->dev->sc;
1100 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1101
1102 if (ctx->deinterlacing && ctx->src_vbs[2] == NULL) {
1103 ctx->src_vbs[2] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1104 WARN_ON(ctx->src_vbs[2] == NULL);
1105 ctx->src_vbs[1] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1106 WARN_ON(ctx->src_vbs[1] == NULL);
1107 }
1108
1109 ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1110 WARN_ON(ctx->src_vbs[0] == NULL);
1111 ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1112 WARN_ON(ctx->dst_vb == NULL);
1113
1114 /* config descriptors */
1115 if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1116 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1117 vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1118 ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1119 ctx->load_mmrs = false;
1120 }
1121
1122 if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1123 sc->load_coeff_h) {
1124 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1125 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1126 &ctx->sc_coeff_h, 0);
1127
1128 sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1129 sc->load_coeff_h = false;
1130 }
1131
1132 if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1133 sc->load_coeff_v) {
1134 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1135 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1136 &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1137
1138 sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1139 sc->load_coeff_v = false;
1140 }
1141
1142 /* output data descriptors */
1143 if (ctx->deinterlacing)
1144 add_out_dtd(ctx, VPE_PORT_MV_OUT);
1145
1146 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1147 add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1148 } else {
1149 add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1150 if (d_q_data->fmt->coplanar)
1151 add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1152 }
1153
1154 /* input data descriptors */
1155 if (ctx->deinterlacing) {
1156 add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1157 add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1158
1159 add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1160 add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1161 }
1162
1163 add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1164 add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1165
1166 if (ctx->deinterlacing)
1167 add_in_dtd(ctx, VPE_PORT_MV_IN);
1168
1169 /* sync on channel control descriptors for input ports */
1170 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1171 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1172
1173 if (ctx->deinterlacing) {
1174 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1175 VPE_CHAN_LUMA2_IN);
1176 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1177 VPE_CHAN_CHROMA2_IN);
1178
1179 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1180 VPE_CHAN_LUMA3_IN);
1181 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1182 VPE_CHAN_CHROMA3_IN);
1183
1184 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1185 }
1186
1187 /* sync on channel control descriptors for output ports */
1188 if (d_q_data->colorspace == V4L2_COLORSPACE_SRGB) {
1189 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1190 VPE_CHAN_RGB_OUT);
1191 } else {
1192 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1193 VPE_CHAN_LUMA_OUT);
1194 if (d_q_data->fmt->coplanar)
1195 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1196 VPE_CHAN_CHROMA_OUT);
1197 }
1198
1199 if (ctx->deinterlacing)
1200 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1201
1202 enable_irqs(ctx);
1203
1204 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1205 vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list);
1206 }
1207
1208 static void dei_error(struct vpe_ctx *ctx)
1209 {
1210 dev_warn(ctx->dev->v4l2_dev.dev,
1211 "received DEI error interrupt\n");
1212 }
1213
1214 static void ds1_uv_error(struct vpe_ctx *ctx)
1215 {
1216 dev_warn(ctx->dev->v4l2_dev.dev,
1217 "received downsampler error interrupt\n");
1218 }
1219
1220 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1221 {
1222 struct vpe_dev *dev = (struct vpe_dev *)data;
1223 struct vpe_ctx *ctx;
1224 struct vpe_q_data *d_q_data;
1225 struct vb2_buffer *s_vb, *d_vb;
1226 struct v4l2_buffer *s_buf, *d_buf;
1227 unsigned long flags;
1228 u32 irqst0, irqst1;
1229
1230 irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1231 if (irqst0) {
1232 write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1233 vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1234 }
1235
1236 irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1237 if (irqst1) {
1238 write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1239 vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1240 }
1241
1242 ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1243 if (!ctx) {
1244 vpe_err(dev, "instance released before end of transaction\n");
1245 goto handled;
1246 }
1247
1248 if (irqst1) {
1249 if (irqst1 & VPE_DEI_ERROR_INT) {
1250 irqst1 &= ~VPE_DEI_ERROR_INT;
1251 dei_error(ctx);
1252 }
1253 if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1254 irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1255 ds1_uv_error(ctx);
1256 }
1257 }
1258
1259 if (irqst0) {
1260 if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1261 vpdma_clear_list_stat(ctx->dev->vpdma);
1262
1263 irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1264 }
1265
1266 if (irqst0 | irqst1) {
1267 dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: "
1268 "INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1269 irqst0, irqst1);
1270 }
1271
1272 disable_irqs(ctx);
1273
1274 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1275 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1276 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1277 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1278
1279 vpdma_reset_desc_list(&ctx->desc_list);
1280
1281 /* the previous dst mv buffer becomes the next src mv buffer */
1282 ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1283
1284 if (ctx->aborting)
1285 goto finished;
1286
1287 s_vb = ctx->src_vbs[0];
1288 d_vb = ctx->dst_vb;
1289 s_buf = &s_vb->v4l2_buf;
1290 d_buf = &d_vb->v4l2_buf;
1291
1292 d_buf->flags = s_buf->flags;
1293
1294 d_buf->timestamp = s_buf->timestamp;
1295 if (s_buf->flags & V4L2_BUF_FLAG_TIMECODE)
1296 d_buf->timecode = s_buf->timecode;
1297
1298 d_buf->sequence = ctx->sequence;
1299
1300 d_q_data = &ctx->q_data[Q_DATA_DST];
1301 if (d_q_data->flags & Q_DATA_INTERLACED) {
1302 d_buf->field = ctx->field;
1303 if (ctx->field == V4L2_FIELD_BOTTOM) {
1304 ctx->sequence++;
1305 ctx->field = V4L2_FIELD_TOP;
1306 } else {
1307 WARN_ON(ctx->field != V4L2_FIELD_TOP);
1308 ctx->field = V4L2_FIELD_BOTTOM;
1309 }
1310 } else {
1311 d_buf->field = V4L2_FIELD_NONE;
1312 ctx->sequence++;
1313 }
1314
1315 if (ctx->deinterlacing)
1316 s_vb = ctx->src_vbs[2];
1317
1318 spin_lock_irqsave(&dev->lock, flags);
1319 v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1320 v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1321 spin_unlock_irqrestore(&dev->lock, flags);
1322
1323 if (ctx->deinterlacing) {
1324 ctx->src_vbs[2] = ctx->src_vbs[1];
1325 ctx->src_vbs[1] = ctx->src_vbs[0];
1326 }
1327
1328 ctx->bufs_completed++;
1329 if (ctx->bufs_completed < ctx->bufs_per_job) {
1330 device_run(ctx);
1331 goto handled;
1332 }
1333
1334 finished:
1335 vpe_dbg(ctx->dev, "finishing transaction\n");
1336 ctx->bufs_completed = 0;
1337 v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1338 handled:
1339 return IRQ_HANDLED;
1340 }
1341
1342 /*
1343 * video ioctls
1344 */
1345 static int vpe_querycap(struct file *file, void *priv,
1346 struct v4l2_capability *cap)
1347 {
1348 strncpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver) - 1);
1349 strncpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card) - 1);
1350 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1351 VPE_MODULE_NAME);
1352 cap->device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING;
1353 cap->capabilities = cap->device_caps | V4L2_CAP_DEVICE_CAPS;
1354 return 0;
1355 }
1356
1357 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1358 {
1359 int i, index;
1360 struct vpe_fmt *fmt = NULL;
1361
1362 index = 0;
1363 for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1364 if (vpe_formats[i].types & type) {
1365 if (index == f->index) {
1366 fmt = &vpe_formats[i];
1367 break;
1368 }
1369 index++;
1370 }
1371 }
1372
1373 if (!fmt)
1374 return -EINVAL;
1375
1376 strncpy(f->description, fmt->name, sizeof(f->description) - 1);
1377 f->pixelformat = fmt->fourcc;
1378 return 0;
1379 }
1380
1381 static int vpe_enum_fmt(struct file *file, void *priv,
1382 struct v4l2_fmtdesc *f)
1383 {
1384 if (V4L2_TYPE_IS_OUTPUT(f->type))
1385 return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1386
1387 return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1388 }
1389
1390 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1391 {
1392 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1393 struct vpe_ctx *ctx = file2ctx(file);
1394 struct vb2_queue *vq;
1395 struct vpe_q_data *q_data;
1396 int i;
1397
1398 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1399 if (!vq)
1400 return -EINVAL;
1401
1402 q_data = get_q_data(ctx, f->type);
1403
1404 pix->width = q_data->width;
1405 pix->height = q_data->height;
1406 pix->pixelformat = q_data->fmt->fourcc;
1407 pix->field = q_data->field;
1408
1409 if (V4L2_TYPE_IS_OUTPUT(f->type)) {
1410 pix->colorspace = q_data->colorspace;
1411 } else {
1412 struct vpe_q_data *s_q_data;
1413
1414 /* get colorspace from the source queue */
1415 s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1416
1417 pix->colorspace = s_q_data->colorspace;
1418 }
1419
1420 pix->num_planes = q_data->fmt->coplanar ? 2 : 1;
1421
1422 for (i = 0; i < pix->num_planes; i++) {
1423 pix->plane_fmt[i].bytesperline = q_data->bytesperline[i];
1424 pix->plane_fmt[i].sizeimage = q_data->sizeimage[i];
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1431 struct vpe_fmt *fmt, int type)
1432 {
1433 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1434 struct v4l2_plane_pix_format *plane_fmt;
1435 unsigned int w_align;
1436 int i, depth, depth_bytes;
1437
1438 if (!fmt || !(fmt->types & type)) {
1439 vpe_err(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1440 pix->pixelformat);
1441 return -EINVAL;
1442 }
1443
1444 if (pix->field != V4L2_FIELD_NONE && pix->field != V4L2_FIELD_ALTERNATE)
1445 pix->field = V4L2_FIELD_NONE;
1446
1447 depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1448
1449 /*
1450 * the line stride should 16 byte aligned for VPDMA to work, based on
1451 * the bytes per pixel, figure out how much the width should be aligned
1452 * to make sure line stride is 16 byte aligned
1453 */
1454 depth_bytes = depth >> 3;
1455
1456 if (depth_bytes == 3)
1457 /*
1458 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1459 * really help in ensuring line stride is 16 byte aligned
1460 */
1461 w_align = 4;
1462 else
1463 /*
1464 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1465 * can ensure a line stride alignment of 16 bytes. For example,
1466 * if bpp is 2, then the line stride can be 16 byte aligned if
1467 * the width is 8 byte aligned
1468 */
1469 w_align = order_base_2(VPDMA_DESC_ALIGN / depth_bytes);
1470
1471 v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1472 &pix->height, MIN_H, MAX_H, H_ALIGN,
1473 S_ALIGN);
1474
1475 pix->num_planes = fmt->coplanar ? 2 : 1;
1476 pix->pixelformat = fmt->fourcc;
1477
1478 if (!pix->colorspace) {
1479 if (fmt->fourcc == V4L2_PIX_FMT_RGB24 ||
1480 fmt->fourcc == V4L2_PIX_FMT_BGR24 ||
1481 fmt->fourcc == V4L2_PIX_FMT_RGB32 ||
1482 fmt->fourcc == V4L2_PIX_FMT_BGR32) {
1483 pix->colorspace = V4L2_COLORSPACE_SRGB;
1484 } else {
1485 if (pix->height > 1280) /* HD */
1486 pix->colorspace = V4L2_COLORSPACE_REC709;
1487 else /* SD */
1488 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1489 }
1490 }
1491
1492 memset(pix->reserved, 0, sizeof(pix->reserved));
1493 for (i = 0; i < pix->num_planes; i++) {
1494 plane_fmt = &pix->plane_fmt[i];
1495 depth = fmt->vpdma_fmt[i]->depth;
1496
1497 if (i == VPE_LUMA)
1498 plane_fmt->bytesperline = (pix->width * depth) >> 3;
1499 else
1500 plane_fmt->bytesperline = pix->width;
1501
1502 plane_fmt->sizeimage =
1503 (pix->height * pix->width * depth) >> 3;
1504
1505 memset(plane_fmt->reserved, 0, sizeof(plane_fmt->reserved));
1506 }
1507
1508 return 0;
1509 }
1510
1511 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1512 {
1513 struct vpe_ctx *ctx = file2ctx(file);
1514 struct vpe_fmt *fmt = find_format(f);
1515
1516 if (V4L2_TYPE_IS_OUTPUT(f->type))
1517 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1518 else
1519 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1520 }
1521
1522 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1523 {
1524 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1525 struct v4l2_plane_pix_format *plane_fmt;
1526 struct vpe_q_data *q_data;
1527 struct vb2_queue *vq;
1528 int i;
1529
1530 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1531 if (!vq)
1532 return -EINVAL;
1533
1534 if (vb2_is_busy(vq)) {
1535 vpe_err(ctx->dev, "queue busy\n");
1536 return -EBUSY;
1537 }
1538
1539 q_data = get_q_data(ctx, f->type);
1540 if (!q_data)
1541 return -EINVAL;
1542
1543 q_data->fmt = find_format(f);
1544 q_data->width = pix->width;
1545 q_data->height = pix->height;
1546 q_data->colorspace = pix->colorspace;
1547 q_data->field = pix->field;
1548
1549 for (i = 0; i < pix->num_planes; i++) {
1550 plane_fmt = &pix->plane_fmt[i];
1551
1552 q_data->bytesperline[i] = plane_fmt->bytesperline;
1553 q_data->sizeimage[i] = plane_fmt->sizeimage;
1554 }
1555
1556 q_data->c_rect.left = 0;
1557 q_data->c_rect.top = 0;
1558 q_data->c_rect.width = q_data->width;
1559 q_data->c_rect.height = q_data->height;
1560
1561 if (q_data->field == V4L2_FIELD_ALTERNATE)
1562 q_data->flags |= Q_DATA_INTERLACED;
1563 else
1564 q_data->flags &= ~Q_DATA_INTERLACED;
1565
1566 vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1567 f->type, q_data->width, q_data->height, q_data->fmt->fourcc,
1568 q_data->bytesperline[VPE_LUMA]);
1569 if (q_data->fmt->coplanar)
1570 vpe_dbg(ctx->dev, " bpl_uv %d\n",
1571 q_data->bytesperline[VPE_CHROMA]);
1572
1573 return 0;
1574 }
1575
1576 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1577 {
1578 int ret;
1579 struct vpe_ctx *ctx = file2ctx(file);
1580
1581 ret = vpe_try_fmt(file, priv, f);
1582 if (ret)
1583 return ret;
1584
1585 ret = __vpe_s_fmt(ctx, f);
1586 if (ret)
1587 return ret;
1588
1589 if (V4L2_TYPE_IS_OUTPUT(f->type))
1590 set_src_registers(ctx);
1591 else
1592 set_dst_registers(ctx);
1593
1594 return set_srcdst_params(ctx);
1595 }
1596
1597 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1598 {
1599 struct vpe_q_data *q_data;
1600
1601 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1602 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1603 return -EINVAL;
1604
1605 q_data = get_q_data(ctx, s->type);
1606 if (!q_data)
1607 return -EINVAL;
1608
1609 switch (s->target) {
1610 case V4L2_SEL_TGT_COMPOSE:
1611 /*
1612 * COMPOSE target is only valid for capture buffer type, return
1613 * error for output buffer type
1614 */
1615 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1616 return -EINVAL;
1617 break;
1618 case V4L2_SEL_TGT_CROP:
1619 /*
1620 * CROP target is only valid for output buffer type, return
1621 * error for capture buffer type
1622 */
1623 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1624 return -EINVAL;
1625 break;
1626 /*
1627 * bound and default crop/compose targets are invalid targets to
1628 * try/set
1629 */
1630 default:
1631 return -EINVAL;
1632 }
1633
1634 if (s->r.top < 0 || s->r.left < 0) {
1635 vpe_err(ctx->dev, "negative values for top and left\n");
1636 s->r.top = s->r.left = 0;
1637 }
1638
1639 v4l_bound_align_image(&s->r.width, MIN_W, q_data->width, 1,
1640 &s->r.height, MIN_H, q_data->height, H_ALIGN, S_ALIGN);
1641
1642 /* adjust left/top if cropping rectangle is out of bounds */
1643 if (s->r.left + s->r.width > q_data->width)
1644 s->r.left = q_data->width - s->r.width;
1645 if (s->r.top + s->r.height > q_data->height)
1646 s->r.top = q_data->height - s->r.height;
1647
1648 return 0;
1649 }
1650
1651 static int vpe_g_selection(struct file *file, void *fh,
1652 struct v4l2_selection *s)
1653 {
1654 struct vpe_ctx *ctx = file2ctx(file);
1655 struct vpe_q_data *q_data;
1656 bool use_c_rect = false;
1657
1658 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1659 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1660 return -EINVAL;
1661
1662 q_data = get_q_data(ctx, s->type);
1663 if (!q_data)
1664 return -EINVAL;
1665
1666 switch (s->target) {
1667 case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1668 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1669 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1670 return -EINVAL;
1671 break;
1672 case V4L2_SEL_TGT_CROP_BOUNDS:
1673 case V4L2_SEL_TGT_CROP_DEFAULT:
1674 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1675 return -EINVAL;
1676 break;
1677 case V4L2_SEL_TGT_COMPOSE:
1678 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1679 return -EINVAL;
1680 use_c_rect = true;
1681 break;
1682 case V4L2_SEL_TGT_CROP:
1683 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1684 return -EINVAL;
1685 use_c_rect = true;
1686 break;
1687 default:
1688 return -EINVAL;
1689 }
1690
1691 if (use_c_rect) {
1692 /*
1693 * for CROP/COMPOSE target type, return c_rect params from the
1694 * respective buffer type
1695 */
1696 s->r = q_data->c_rect;
1697 } else {
1698 /*
1699 * for DEFAULT/BOUNDS target type, return width and height from
1700 * S_FMT of the respective buffer type
1701 */
1702 s->r.left = 0;
1703 s->r.top = 0;
1704 s->r.width = q_data->width;
1705 s->r.height = q_data->height;
1706 }
1707
1708 return 0;
1709 }
1710
1711
1712 static int vpe_s_selection(struct file *file, void *fh,
1713 struct v4l2_selection *s)
1714 {
1715 struct vpe_ctx *ctx = file2ctx(file);
1716 struct vpe_q_data *q_data;
1717 struct v4l2_selection sel = *s;
1718 int ret;
1719
1720 ret = __vpe_try_selection(ctx, &sel);
1721 if (ret)
1722 return ret;
1723
1724 q_data = get_q_data(ctx, sel.type);
1725 if (!q_data)
1726 return -EINVAL;
1727
1728 if ((q_data->c_rect.left == sel.r.left) &&
1729 (q_data->c_rect.top == sel.r.top) &&
1730 (q_data->c_rect.width == sel.r.width) &&
1731 (q_data->c_rect.height == sel.r.height)) {
1732 vpe_dbg(ctx->dev,
1733 "requested crop/compose values are already set\n");
1734 return 0;
1735 }
1736
1737 q_data->c_rect = sel.r;
1738
1739 return set_srcdst_params(ctx);
1740 }
1741
1742 /*
1743 * defines number of buffers/frames a context can process with VPE before
1744 * switching to a different context. default value is 1 buffer per context
1745 */
1746 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1747
1748 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1749 {
1750 struct vpe_ctx *ctx =
1751 container_of(ctrl->handler, struct vpe_ctx, hdl);
1752
1753 switch (ctrl->id) {
1754 case V4L2_CID_VPE_BUFS_PER_JOB:
1755 ctx->bufs_per_job = ctrl->val;
1756 break;
1757
1758 default:
1759 vpe_err(ctx->dev, "Invalid control\n");
1760 return -EINVAL;
1761 }
1762
1763 return 0;
1764 }
1765
1766 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1767 .s_ctrl = vpe_s_ctrl,
1768 };
1769
1770 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1771 .vidioc_querycap = vpe_querycap,
1772
1773 .vidioc_enum_fmt_vid_cap_mplane = vpe_enum_fmt,
1774 .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt,
1775 .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt,
1776 .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt,
1777
1778 .vidioc_enum_fmt_vid_out_mplane = vpe_enum_fmt,
1779 .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt,
1780 .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt,
1781 .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt,
1782
1783 .vidioc_g_selection = vpe_g_selection,
1784 .vidioc_s_selection = vpe_s_selection,
1785
1786 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
1787 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
1788 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
1789 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
1790 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
1791 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
1792
1793 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
1794 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
1795 };
1796
1797 /*
1798 * Queue operations
1799 */
1800 static int vpe_queue_setup(struct vb2_queue *vq,
1801 const struct v4l2_format *fmt,
1802 unsigned int *nbuffers, unsigned int *nplanes,
1803 unsigned int sizes[], void *alloc_ctxs[])
1804 {
1805 int i;
1806 struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
1807 struct vpe_q_data *q_data;
1808
1809 q_data = get_q_data(ctx, vq->type);
1810
1811 *nplanes = q_data->fmt->coplanar ? 2 : 1;
1812
1813 for (i = 0; i < *nplanes; i++) {
1814 sizes[i] = q_data->sizeimage[i];
1815 alloc_ctxs[i] = ctx->dev->alloc_ctx;
1816 }
1817
1818 vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
1819 sizes[VPE_LUMA]);
1820 if (q_data->fmt->coplanar)
1821 vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
1822
1823 return 0;
1824 }
1825
1826 static int vpe_buf_prepare(struct vb2_buffer *vb)
1827 {
1828 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1829 struct vpe_q_data *q_data;
1830 int i, num_planes;
1831
1832 vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
1833
1834 q_data = get_q_data(ctx, vb->vb2_queue->type);
1835 num_planes = q_data->fmt->coplanar ? 2 : 1;
1836
1837 if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
1838 if (!(q_data->flags & Q_DATA_INTERLACED)) {
1839 vb->v4l2_buf.field = V4L2_FIELD_NONE;
1840 } else {
1841 if (vb->v4l2_buf.field != V4L2_FIELD_TOP &&
1842 vb->v4l2_buf.field != V4L2_FIELD_BOTTOM)
1843 return -EINVAL;
1844 }
1845 }
1846
1847 for (i = 0; i < num_planes; i++) {
1848 if (vb2_plane_size(vb, i) < q_data->sizeimage[i]) {
1849 vpe_err(ctx->dev,
1850 "data will not fit into plane (%lu < %lu)\n",
1851 vb2_plane_size(vb, i),
1852 (long) q_data->sizeimage[i]);
1853 return -EINVAL;
1854 }
1855 }
1856
1857 for (i = 0; i < num_planes; i++)
1858 vb2_set_plane_payload(vb, i, q_data->sizeimage[i]);
1859
1860 return 0;
1861 }
1862
1863 static void vpe_buf_queue(struct vb2_buffer *vb)
1864 {
1865 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
1866
1867 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vb);
1868 }
1869
1870 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
1871 {
1872 /* currently we do nothing here */
1873
1874 return 0;
1875 }
1876
1877 static void vpe_stop_streaming(struct vb2_queue *q)
1878 {
1879 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
1880
1881 vpe_dump_regs(ctx->dev);
1882 vpdma_dump_regs(ctx->dev->vpdma);
1883 }
1884
1885 static struct vb2_ops vpe_qops = {
1886 .queue_setup = vpe_queue_setup,
1887 .buf_prepare = vpe_buf_prepare,
1888 .buf_queue = vpe_buf_queue,
1889 .wait_prepare = vb2_ops_wait_prepare,
1890 .wait_finish = vb2_ops_wait_finish,
1891 .start_streaming = vpe_start_streaming,
1892 .stop_streaming = vpe_stop_streaming,
1893 };
1894
1895 static int queue_init(void *priv, struct vb2_queue *src_vq,
1896 struct vb2_queue *dst_vq)
1897 {
1898 struct vpe_ctx *ctx = priv;
1899 struct vpe_dev *dev = ctx->dev;
1900 int ret;
1901
1902 memset(src_vq, 0, sizeof(*src_vq));
1903 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
1904 src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1905 src_vq->drv_priv = ctx;
1906 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1907 src_vq->ops = &vpe_qops;
1908 src_vq->mem_ops = &vb2_dma_contig_memops;
1909 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1910 src_vq->lock = &dev->dev_mutex;
1911
1912 ret = vb2_queue_init(src_vq);
1913 if (ret)
1914 return ret;
1915
1916 memset(dst_vq, 0, sizeof(*dst_vq));
1917 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
1918 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
1919 dst_vq->drv_priv = ctx;
1920 dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
1921 dst_vq->ops = &vpe_qops;
1922 dst_vq->mem_ops = &vb2_dma_contig_memops;
1923 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
1924 dst_vq->lock = &dev->dev_mutex;
1925
1926 return vb2_queue_init(dst_vq);
1927 }
1928
1929 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
1930 .ops = &vpe_ctrl_ops,
1931 .id = V4L2_CID_VPE_BUFS_PER_JOB,
1932 .name = "Buffers Per Transaction",
1933 .type = V4L2_CTRL_TYPE_INTEGER,
1934 .def = VPE_DEF_BUFS_PER_JOB,
1935 .min = 1,
1936 .max = VIDEO_MAX_FRAME,
1937 .step = 1,
1938 };
1939
1940 /*
1941 * File operations
1942 */
1943 static int vpe_open(struct file *file)
1944 {
1945 struct vpe_dev *dev = video_drvdata(file);
1946 struct vpe_q_data *s_q_data;
1947 struct v4l2_ctrl_handler *hdl;
1948 struct vpe_ctx *ctx;
1949 int ret;
1950
1951 vpe_dbg(dev, "vpe_open\n");
1952
1953 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1954 if (!ctx)
1955 return -ENOMEM;
1956
1957 ctx->dev = dev;
1958
1959 if (mutex_lock_interruptible(&dev->dev_mutex)) {
1960 ret = -ERESTARTSYS;
1961 goto free_ctx;
1962 }
1963
1964 ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
1965 VPDMA_LIST_TYPE_NORMAL);
1966 if (ret != 0)
1967 goto unlock;
1968
1969 ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
1970 if (ret != 0)
1971 goto free_desc_list;
1972
1973 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
1974 if (ret != 0)
1975 goto free_mmr_adb;
1976
1977 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
1978 if (ret != 0)
1979 goto free_sc_h;
1980
1981 init_adb_hdrs(ctx);
1982
1983 v4l2_fh_init(&ctx->fh, video_devdata(file));
1984 file->private_data = &ctx->fh;
1985
1986 hdl = &ctx->hdl;
1987 v4l2_ctrl_handler_init(hdl, 1);
1988 v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
1989 if (hdl->error) {
1990 ret = hdl->error;
1991 goto exit_fh;
1992 }
1993 ctx->fh.ctrl_handler = hdl;
1994 v4l2_ctrl_handler_setup(hdl);
1995
1996 s_q_data = &ctx->q_data[Q_DATA_SRC];
1997 s_q_data->fmt = &vpe_formats[2];
1998 s_q_data->width = 1920;
1999 s_q_data->height = 1080;
2000 s_q_data->bytesperline[VPE_LUMA] = (s_q_data->width *
2001 s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2002 s_q_data->sizeimage[VPE_LUMA] = (s_q_data->bytesperline[VPE_LUMA] *
2003 s_q_data->height);
2004 s_q_data->colorspace = V4L2_COLORSPACE_REC709;
2005 s_q_data->field = V4L2_FIELD_NONE;
2006 s_q_data->c_rect.left = 0;
2007 s_q_data->c_rect.top = 0;
2008 s_q_data->c_rect.width = s_q_data->width;
2009 s_q_data->c_rect.height = s_q_data->height;
2010 s_q_data->flags = 0;
2011
2012 ctx->q_data[Q_DATA_DST] = *s_q_data;
2013
2014 set_dei_shadow_registers(ctx);
2015 set_src_registers(ctx);
2016 set_dst_registers(ctx);
2017 ret = set_srcdst_params(ctx);
2018 if (ret)
2019 goto exit_fh;
2020
2021 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2022
2023 if (IS_ERR(ctx->fh.m2m_ctx)) {
2024 ret = PTR_ERR(ctx->fh.m2m_ctx);
2025 goto exit_fh;
2026 }
2027
2028 v4l2_fh_add(&ctx->fh);
2029
2030 /*
2031 * for now, just report the creation of the first instance, we can later
2032 * optimize the driver to enable or disable clocks when the first
2033 * instance is created or the last instance released
2034 */
2035 if (atomic_inc_return(&dev->num_instances) == 1)
2036 vpe_dbg(dev, "first instance created\n");
2037
2038 ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2039
2040 ctx->load_mmrs = true;
2041
2042 vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2043 ctx, ctx->fh.m2m_ctx);
2044
2045 mutex_unlock(&dev->dev_mutex);
2046
2047 return 0;
2048 exit_fh:
2049 v4l2_ctrl_handler_free(hdl);
2050 v4l2_fh_exit(&ctx->fh);
2051 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2052 free_sc_h:
2053 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2054 free_mmr_adb:
2055 vpdma_free_desc_buf(&ctx->mmr_adb);
2056 free_desc_list:
2057 vpdma_free_desc_list(&ctx->desc_list);
2058 unlock:
2059 mutex_unlock(&dev->dev_mutex);
2060 free_ctx:
2061 kfree(ctx);
2062 return ret;
2063 }
2064
2065 static int vpe_release(struct file *file)
2066 {
2067 struct vpe_dev *dev = video_drvdata(file);
2068 struct vpe_ctx *ctx = file2ctx(file);
2069
2070 vpe_dbg(dev, "releasing instance %p\n", ctx);
2071
2072 mutex_lock(&dev->dev_mutex);
2073 free_vbs(ctx);
2074 free_mv_buffers(ctx);
2075 vpdma_free_desc_list(&ctx->desc_list);
2076 vpdma_free_desc_buf(&ctx->mmr_adb);
2077
2078 v4l2_fh_del(&ctx->fh);
2079 v4l2_fh_exit(&ctx->fh);
2080 v4l2_ctrl_handler_free(&ctx->hdl);
2081 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2082
2083 kfree(ctx);
2084
2085 /*
2086 * for now, just report the release of the last instance, we can later
2087 * optimize the driver to enable or disable clocks when the first
2088 * instance is created or the last instance released
2089 */
2090 if (atomic_dec_return(&dev->num_instances) == 0)
2091 vpe_dbg(dev, "last instance released\n");
2092
2093 mutex_unlock(&dev->dev_mutex);
2094
2095 return 0;
2096 }
2097
2098 static const struct v4l2_file_operations vpe_fops = {
2099 .owner = THIS_MODULE,
2100 .open = vpe_open,
2101 .release = vpe_release,
2102 .poll = v4l2_m2m_fop_poll,
2103 .unlocked_ioctl = video_ioctl2,
2104 .mmap = v4l2_m2m_fop_mmap,
2105 };
2106
2107 static struct video_device vpe_videodev = {
2108 .name = VPE_MODULE_NAME,
2109 .fops = &vpe_fops,
2110 .ioctl_ops = &vpe_ioctl_ops,
2111 .minor = -1,
2112 .release = video_device_release_empty,
2113 .vfl_dir = VFL_DIR_M2M,
2114 };
2115
2116 static struct v4l2_m2m_ops m2m_ops = {
2117 .device_run = device_run,
2118 .job_ready = job_ready,
2119 .job_abort = job_abort,
2120 .lock = vpe_lock,
2121 .unlock = vpe_unlock,
2122 };
2123
2124 static int vpe_runtime_get(struct platform_device *pdev)
2125 {
2126 int r;
2127
2128 dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2129
2130 r = pm_runtime_get_sync(&pdev->dev);
2131 WARN_ON(r < 0);
2132 return r < 0 ? r : 0;
2133 }
2134
2135 static void vpe_runtime_put(struct platform_device *pdev)
2136 {
2137
2138 int r;
2139
2140 dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2141
2142 r = pm_runtime_put_sync(&pdev->dev);
2143 WARN_ON(r < 0 && r != -ENOSYS);
2144 }
2145
2146 static void vpe_fw_cb(struct platform_device *pdev)
2147 {
2148 struct vpe_dev *dev = platform_get_drvdata(pdev);
2149 struct video_device *vfd;
2150 int ret;
2151
2152 vfd = &dev->vfd;
2153 *vfd = vpe_videodev;
2154 vfd->lock = &dev->dev_mutex;
2155 vfd->v4l2_dev = &dev->v4l2_dev;
2156
2157 ret = video_register_device(vfd, VFL_TYPE_GRABBER, 0);
2158 if (ret) {
2159 vpe_err(dev, "Failed to register video device\n");
2160
2161 vpe_set_clock_enable(dev, 0);
2162 vpe_runtime_put(pdev);
2163 pm_runtime_disable(&pdev->dev);
2164 v4l2_m2m_release(dev->m2m_dev);
2165 vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2166 v4l2_device_unregister(&dev->v4l2_dev);
2167
2168 return;
2169 }
2170
2171 video_set_drvdata(vfd, dev);
2172 snprintf(vfd->name, sizeof(vfd->name), "%s", vpe_videodev.name);
2173 dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2174 vfd->num);
2175 }
2176
2177 static int vpe_probe(struct platform_device *pdev)
2178 {
2179 struct vpe_dev *dev;
2180 int ret, irq, func;
2181
2182 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2183 if (!dev)
2184 return -ENOMEM;
2185
2186 spin_lock_init(&dev->lock);
2187
2188 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2189 if (ret)
2190 return ret;
2191
2192 atomic_set(&dev->num_instances, 0);
2193 mutex_init(&dev->dev_mutex);
2194
2195 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2196 "vpe_top");
2197 /*
2198 * HACK: we get resource info from device tree in the form of a list of
2199 * VPE sub blocks, the driver currently uses only the base of vpe_top
2200 * for register access, the driver should be changed later to access
2201 * registers based on the sub block base addresses
2202 */
2203 dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2204 if (!dev->base) {
2205 ret = -ENOMEM;
2206 goto v4l2_dev_unreg;
2207 }
2208
2209 irq = platform_get_irq(pdev, 0);
2210 ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2211 dev);
2212 if (ret)
2213 goto v4l2_dev_unreg;
2214
2215 platform_set_drvdata(pdev, dev);
2216
2217 dev->alloc_ctx = vb2_dma_contig_init_ctx(&pdev->dev);
2218 if (IS_ERR(dev->alloc_ctx)) {
2219 vpe_err(dev, "Failed to alloc vb2 context\n");
2220 ret = PTR_ERR(dev->alloc_ctx);
2221 goto v4l2_dev_unreg;
2222 }
2223
2224 dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2225 if (IS_ERR(dev->m2m_dev)) {
2226 vpe_err(dev, "Failed to init mem2mem device\n");
2227 ret = PTR_ERR(dev->m2m_dev);
2228 goto rel_ctx;
2229 }
2230
2231 pm_runtime_enable(&pdev->dev);
2232
2233 ret = vpe_runtime_get(pdev);
2234 if (ret)
2235 goto rel_m2m;
2236
2237 /* Perform clk enable followed by reset */
2238 vpe_set_clock_enable(dev, 1);
2239
2240 vpe_top_reset(dev);
2241
2242 func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2243 VPE_PID_FUNC_SHIFT);
2244 vpe_dbg(dev, "VPE PID function %x\n", func);
2245
2246 vpe_top_vpdma_reset(dev);
2247
2248 dev->sc = sc_create(pdev);
2249 if (IS_ERR(dev->sc)) {
2250 ret = PTR_ERR(dev->sc);
2251 goto runtime_put;
2252 }
2253
2254 dev->csc = csc_create(pdev);
2255 if (IS_ERR(dev->csc)) {
2256 ret = PTR_ERR(dev->csc);
2257 goto runtime_put;
2258 }
2259
2260 dev->vpdma = vpdma_create(pdev, vpe_fw_cb);
2261 if (IS_ERR(dev->vpdma)) {
2262 ret = PTR_ERR(dev->vpdma);
2263 goto runtime_put;
2264 }
2265
2266 return 0;
2267
2268 runtime_put:
2269 vpe_runtime_put(pdev);
2270 rel_m2m:
2271 pm_runtime_disable(&pdev->dev);
2272 v4l2_m2m_release(dev->m2m_dev);
2273 rel_ctx:
2274 vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2275 v4l2_dev_unreg:
2276 v4l2_device_unregister(&dev->v4l2_dev);
2277
2278 return ret;
2279 }
2280
2281 static int vpe_remove(struct platform_device *pdev)
2282 {
2283 struct vpe_dev *dev = platform_get_drvdata(pdev);
2284
2285 v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2286
2287 v4l2_m2m_release(dev->m2m_dev);
2288 video_unregister_device(&dev->vfd);
2289 v4l2_device_unregister(&dev->v4l2_dev);
2290 vb2_dma_contig_cleanup_ctx(dev->alloc_ctx);
2291
2292 vpe_set_clock_enable(dev, 0);
2293 vpe_runtime_put(pdev);
2294 pm_runtime_disable(&pdev->dev);
2295
2296 return 0;
2297 }
2298
2299 #if defined(CONFIG_OF)
2300 static const struct of_device_id vpe_of_match[] = {
2301 {
2302 .compatible = "ti,vpe",
2303 },
2304 {},
2305 };
2306 #endif
2307
2308 static struct platform_driver vpe_pdrv = {
2309 .probe = vpe_probe,
2310 .remove = vpe_remove,
2311 .driver = {
2312 .name = VPE_MODULE_NAME,
2313 .of_match_table = of_match_ptr(vpe_of_match),
2314 },
2315 };
2316
2317 module_platform_driver(vpe_pdrv);
2318
2319 MODULE_DESCRIPTION("TI VPE driver");
2320 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2321 MODULE_LICENSE("GPL");
This page took 0.098094 seconds and 5 git commands to generate.