Merge remote-tracking branch 'asoc/topic/adsp' into asoc-next
[deliverable/linux.git] / drivers / media / rc / ene_ir.c
1 /*
2 * driver for ENE KB3926 B/C/D/E/F CIR (pnp id: ENE0XXX)
3 *
4 * Copyright (C) 2010 Maxim Levitsky <maximlevitsky@gmail.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
19 * USA
20 *
21 * Special thanks to:
22 * Sami R. <maesesami@gmail.com> for lot of help in debugging and therefore
23 * bringing to life support for transmission & learning mode.
24 *
25 * Charlie Andrews <charliethepilot@googlemail.com> for lots of help in
26 * bringing up the support of new firmware buffer that is popular
27 * on latest notebooks
28 *
29 * ENE for partial device documentation
30 *
31 */
32
33 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34
35 #include <linux/kernel.h>
36 #include <linux/module.h>
37 #include <linux/pnp.h>
38 #include <linux/io.h>
39 #include <linux/interrupt.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <media/rc-core.h>
43 #include "ene_ir.h"
44
45 static int sample_period;
46 static bool learning_mode_force;
47 static int debug;
48 static bool txsim;
49
50 static void ene_set_reg_addr(struct ene_device *dev, u16 reg)
51 {
52 outb(reg >> 8, dev->hw_io + ENE_ADDR_HI);
53 outb(reg & 0xFF, dev->hw_io + ENE_ADDR_LO);
54 }
55
56 /* read a hardware register */
57 static u8 ene_read_reg(struct ene_device *dev, u16 reg)
58 {
59 u8 retval;
60 ene_set_reg_addr(dev, reg);
61 retval = inb(dev->hw_io + ENE_IO);
62 dbg_regs("reg %04x == %02x", reg, retval);
63 return retval;
64 }
65
66 /* write a hardware register */
67 static void ene_write_reg(struct ene_device *dev, u16 reg, u8 value)
68 {
69 dbg_regs("reg %04x <- %02x", reg, value);
70 ene_set_reg_addr(dev, reg);
71 outb(value, dev->hw_io + ENE_IO);
72 }
73
74 /* Set bits in hardware register */
75 static void ene_set_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
76 {
77 dbg_regs("reg %04x |= %02x", reg, mask);
78 ene_set_reg_addr(dev, reg);
79 outb(inb(dev->hw_io + ENE_IO) | mask, dev->hw_io + ENE_IO);
80 }
81
82 /* Clear bits in hardware register */
83 static void ene_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask)
84 {
85 dbg_regs("reg %04x &= ~%02x ", reg, mask);
86 ene_set_reg_addr(dev, reg);
87 outb(inb(dev->hw_io + ENE_IO) & ~mask, dev->hw_io + ENE_IO);
88 }
89
90 /* A helper to set/clear a bit in register according to boolean variable */
91 static void ene_set_clear_reg_mask(struct ene_device *dev, u16 reg, u8 mask,
92 bool set)
93 {
94 if (set)
95 ene_set_reg_mask(dev, reg, mask);
96 else
97 ene_clear_reg_mask(dev, reg, mask);
98 }
99
100 /* detect hardware features */
101 static int ene_hw_detect(struct ene_device *dev)
102 {
103 u8 chip_major, chip_minor;
104 u8 hw_revision, old_ver;
105 u8 fw_reg2, fw_reg1;
106
107 ene_clear_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
108 chip_major = ene_read_reg(dev, ENE_ECVER_MAJOR);
109 chip_minor = ene_read_reg(dev, ENE_ECVER_MINOR);
110 ene_set_reg_mask(dev, ENE_ECSTS, ENE_ECSTS_RSRVD);
111
112 hw_revision = ene_read_reg(dev, ENE_ECHV);
113 old_ver = ene_read_reg(dev, ENE_HW_VER_OLD);
114
115 dev->pll_freq = (ene_read_reg(dev, ENE_PLLFRH) << 4) +
116 (ene_read_reg(dev, ENE_PLLFRL) >> 4);
117
118 if (sample_period != ENE_DEFAULT_SAMPLE_PERIOD)
119 dev->rx_period_adjust =
120 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 2 : 4;
121
122 if (hw_revision == 0xFF) {
123 pr_warn("device seems to be disabled\n");
124 pr_warn("send a mail to lirc-list@lists.sourceforge.net\n");
125 pr_warn("please attach output of acpidump and dmidecode\n");
126 return -ENODEV;
127 }
128
129 pr_notice("chip is 0x%02x%02x - kbver = 0x%02x, rev = 0x%02x\n",
130 chip_major, chip_minor, old_ver, hw_revision);
131
132 pr_notice("PLL freq = %d\n", dev->pll_freq);
133
134 if (chip_major == 0x33) {
135 pr_warn("chips 0x33xx aren't supported\n");
136 return -ENODEV;
137 }
138
139 if (chip_major == 0x39 && chip_minor == 0x26 && hw_revision == 0xC0) {
140 dev->hw_revision = ENE_HW_C;
141 pr_notice("KB3926C detected\n");
142 } else if (old_ver == 0x24 && hw_revision == 0xC0) {
143 dev->hw_revision = ENE_HW_B;
144 pr_notice("KB3926B detected\n");
145 } else {
146 dev->hw_revision = ENE_HW_D;
147 pr_notice("KB3926D or higher detected\n");
148 }
149
150 /* detect features hardware supports */
151 if (dev->hw_revision < ENE_HW_C)
152 return 0;
153
154 fw_reg1 = ene_read_reg(dev, ENE_FW1);
155 fw_reg2 = ene_read_reg(dev, ENE_FW2);
156
157 pr_notice("Firmware regs: %02x %02x\n", fw_reg1, fw_reg2);
158
159 dev->hw_use_gpio_0a = !!(fw_reg2 & ENE_FW2_GP0A);
160 dev->hw_learning_and_tx_capable = !!(fw_reg2 & ENE_FW2_LEARNING);
161 dev->hw_extra_buffer = !!(fw_reg1 & ENE_FW1_HAS_EXTRA_BUF);
162
163 if (dev->hw_learning_and_tx_capable)
164 dev->hw_fan_input = !!(fw_reg2 & ENE_FW2_FAN_INPUT);
165
166 pr_notice("Hardware features:\n");
167
168 if (dev->hw_learning_and_tx_capable) {
169 pr_notice("* Supports transmitting & learning mode\n");
170 pr_notice(" This feature is rare and therefore,\n");
171 pr_notice(" you are welcome to test it,\n");
172 pr_notice(" and/or contact the author via:\n");
173 pr_notice(" lirc-list@lists.sourceforge.net\n");
174 pr_notice(" or maximlevitsky@gmail.com\n");
175
176 pr_notice("* Uses GPIO %s for IR raw input\n",
177 dev->hw_use_gpio_0a ? "40" : "0A");
178
179 if (dev->hw_fan_input)
180 pr_notice("* Uses unused fan feedback input as source of demodulated IR data\n");
181 }
182
183 if (!dev->hw_fan_input)
184 pr_notice("* Uses GPIO %s for IR demodulated input\n",
185 dev->hw_use_gpio_0a ? "0A" : "40");
186
187 if (dev->hw_extra_buffer)
188 pr_notice("* Uses new style input buffer\n");
189 return 0;
190 }
191
192 /* Read properities of hw sample buffer */
193 static void ene_rx_setup_hw_buffer(struct ene_device *dev)
194 {
195 u16 tmp;
196
197 ene_rx_read_hw_pointer(dev);
198 dev->r_pointer = dev->w_pointer;
199
200 if (!dev->hw_extra_buffer) {
201 dev->buffer_len = ENE_FW_PACKET_SIZE * 2;
202 return;
203 }
204
205 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER);
206 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER+1) << 8;
207 dev->extra_buf1_address = tmp;
208
209 dev->extra_buf1_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 2);
210
211 tmp = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 3);
212 tmp |= ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 4) << 8;
213 dev->extra_buf2_address = tmp;
214
215 dev->extra_buf2_len = ene_read_reg(dev, ENE_FW_SAMPLE_BUFFER + 5);
216
217 dev->buffer_len = dev->extra_buf1_len + dev->extra_buf2_len + 8;
218
219 pr_notice("Hardware uses 2 extended buffers:\n");
220 pr_notice(" 0x%04x - len : %d\n",
221 dev->extra_buf1_address, dev->extra_buf1_len);
222 pr_notice(" 0x%04x - len : %d\n",
223 dev->extra_buf2_address, dev->extra_buf2_len);
224
225 pr_notice("Total buffer len = %d\n", dev->buffer_len);
226
227 if (dev->buffer_len > 64 || dev->buffer_len < 16)
228 goto error;
229
230 if (dev->extra_buf1_address > 0xFBFC ||
231 dev->extra_buf1_address < 0xEC00)
232 goto error;
233
234 if (dev->extra_buf2_address > 0xFBFC ||
235 dev->extra_buf2_address < 0xEC00)
236 goto error;
237
238 if (dev->r_pointer > dev->buffer_len)
239 goto error;
240
241 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
242 return;
243 error:
244 pr_warn("Error validating extra buffers, device probably won't work\n");
245 dev->hw_extra_buffer = false;
246 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
247 }
248
249
250 /* Restore the pointers to extra buffers - to make module reload work*/
251 static void ene_rx_restore_hw_buffer(struct ene_device *dev)
252 {
253 if (!dev->hw_extra_buffer)
254 return;
255
256 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 0,
257 dev->extra_buf1_address & 0xFF);
258 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 1,
259 dev->extra_buf1_address >> 8);
260 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 2, dev->extra_buf1_len);
261
262 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 3,
263 dev->extra_buf2_address & 0xFF);
264 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 4,
265 dev->extra_buf2_address >> 8);
266 ene_write_reg(dev, ENE_FW_SAMPLE_BUFFER + 5,
267 dev->extra_buf2_len);
268 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_EXTRA_BUF_HND);
269 }
270
271 /* Read hardware write pointer */
272 static void ene_rx_read_hw_pointer(struct ene_device *dev)
273 {
274 if (dev->hw_extra_buffer)
275 dev->w_pointer = ene_read_reg(dev, ENE_FW_RX_POINTER);
276 else
277 dev->w_pointer = ene_read_reg(dev, ENE_FW2)
278 & ENE_FW2_BUF_WPTR ? 0 : ENE_FW_PACKET_SIZE;
279
280 dbg_verbose("RB: HW write pointer: %02x, driver read pointer: %02x",
281 dev->w_pointer, dev->r_pointer);
282 }
283
284 /* Gets address of next sample from HW ring buffer */
285 static int ene_rx_get_sample_reg(struct ene_device *dev)
286 {
287 int r_pointer;
288
289 if (dev->r_pointer == dev->w_pointer) {
290 dbg_verbose("RB: hit end, try update w_pointer");
291 ene_rx_read_hw_pointer(dev);
292 }
293
294 if (dev->r_pointer == dev->w_pointer) {
295 dbg_verbose("RB: end of data at %d", dev->r_pointer);
296 return 0;
297 }
298
299 dbg_verbose("RB: reading at offset %d", dev->r_pointer);
300 r_pointer = dev->r_pointer;
301
302 dev->r_pointer++;
303 if (dev->r_pointer == dev->buffer_len)
304 dev->r_pointer = 0;
305
306 dbg_verbose("RB: next read will be from offset %d", dev->r_pointer);
307
308 if (r_pointer < 8) {
309 dbg_verbose("RB: read at main buffer at %d", r_pointer);
310 return ENE_FW_SAMPLE_BUFFER + r_pointer;
311 }
312
313 r_pointer -= 8;
314
315 if (r_pointer < dev->extra_buf1_len) {
316 dbg_verbose("RB: read at 1st extra buffer at %d", r_pointer);
317 return dev->extra_buf1_address + r_pointer;
318 }
319
320 r_pointer -= dev->extra_buf1_len;
321
322 if (r_pointer < dev->extra_buf2_len) {
323 dbg_verbose("RB: read at 2nd extra buffer at %d", r_pointer);
324 return dev->extra_buf2_address + r_pointer;
325 }
326
327 dbg("attempt to read beyond ring buffer end");
328 return 0;
329 }
330
331 /* Sense current received carrier */
332 void ene_rx_sense_carrier(struct ene_device *dev)
333 {
334 DEFINE_IR_RAW_EVENT(ev);
335
336 int carrier, duty_cycle;
337 int period = ene_read_reg(dev, ENE_CIRCAR_PRD);
338 int hperiod = ene_read_reg(dev, ENE_CIRCAR_HPRD);
339
340 if (!(period & ENE_CIRCAR_PRD_VALID))
341 return;
342
343 period &= ~ENE_CIRCAR_PRD_VALID;
344
345 if (!period)
346 return;
347
348 dbg("RX: hardware carrier period = %02x", period);
349 dbg("RX: hardware carrier pulse period = %02x", hperiod);
350
351 carrier = 2000000 / period;
352 duty_cycle = (hperiod * 100) / period;
353 dbg("RX: sensed carrier = %d Hz, duty cycle %d%%",
354 carrier, duty_cycle);
355 if (dev->carrier_detect_enabled) {
356 ev.carrier_report = true;
357 ev.carrier = carrier;
358 ev.duty_cycle = duty_cycle;
359 ir_raw_event_store(dev->rdev, &ev);
360 }
361 }
362
363 /* this enables/disables the CIR RX engine */
364 static void ene_rx_enable_cir_engine(struct ene_device *dev, bool enable)
365 {
366 ene_set_clear_reg_mask(dev, ENE_CIRCFG,
367 ENE_CIRCFG_RX_EN | ENE_CIRCFG_RX_IRQ, enable);
368 }
369
370 /* this selects input for CIR engine. Ether GPIO 0A or GPIO40*/
371 static void ene_rx_select_input(struct ene_device *dev, bool gpio_0a)
372 {
373 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_GPIO0A, gpio_0a);
374 }
375
376 /*
377 * this enables alternative input via fan tachometer sensor and bypasses
378 * the hw CIR engine
379 */
380 static void ene_rx_enable_fan_input(struct ene_device *dev, bool enable)
381 {
382 if (!dev->hw_fan_input)
383 return;
384
385 if (!enable)
386 ene_write_reg(dev, ENE_FAN_AS_IN1, 0);
387 else {
388 ene_write_reg(dev, ENE_FAN_AS_IN1, ENE_FAN_AS_IN1_EN);
389 ene_write_reg(dev, ENE_FAN_AS_IN2, ENE_FAN_AS_IN2_EN);
390 }
391 }
392
393 /* setup the receiver for RX*/
394 static void ene_rx_setup(struct ene_device *dev)
395 {
396 bool learning_mode = dev->learning_mode_enabled ||
397 dev->carrier_detect_enabled;
398 int sample_period_adjust = 0;
399
400 dbg("RX: setup receiver, learning mode = %d", learning_mode);
401
402
403 /* This selects RLC input and clears CFG2 settings */
404 ene_write_reg(dev, ENE_CIRCFG2, 0x00);
405
406 /* set sample period*/
407 if (sample_period == ENE_DEFAULT_SAMPLE_PERIOD)
408 sample_period_adjust =
409 dev->pll_freq == ENE_DEFAULT_PLL_FREQ ? 1 : 2;
410
411 ene_write_reg(dev, ENE_CIRRLC_CFG,
412 (sample_period + sample_period_adjust) |
413 ENE_CIRRLC_CFG_OVERFLOW);
414 /* revB doesn't support inputs */
415 if (dev->hw_revision < ENE_HW_C)
416 goto select_timeout;
417
418 if (learning_mode) {
419
420 WARN_ON(!dev->hw_learning_and_tx_capable);
421
422 /* Enable the opposite of the normal input
423 That means that if GPIO40 is normally used, use GPIO0A
424 and vice versa.
425 This input will carry non demodulated
426 signal, and we will tell the hw to demodulate it itself */
427 ene_rx_select_input(dev, !dev->hw_use_gpio_0a);
428 dev->rx_fan_input_inuse = false;
429
430 /* Enable carrier demodulation */
431 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
432
433 /* Enable carrier detection */
434 ene_write_reg(dev, ENE_CIRCAR_PULS, 0x63);
435 ene_set_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT,
436 dev->carrier_detect_enabled || debug);
437 } else {
438 if (dev->hw_fan_input)
439 dev->rx_fan_input_inuse = true;
440 else
441 ene_rx_select_input(dev, dev->hw_use_gpio_0a);
442
443 /* Disable carrier detection & demodulation */
444 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_CARR_DEMOD);
445 ene_clear_reg_mask(dev, ENE_CIRCFG2, ENE_CIRCFG2_CARR_DETECT);
446 }
447
448 select_timeout:
449 if (dev->rx_fan_input_inuse) {
450 dev->rdev->rx_resolution = US_TO_NS(ENE_FW_SAMPLE_PERIOD_FAN);
451
452 /* Fan input doesn't support timeouts, it just ends the
453 input with a maximum sample */
454 dev->rdev->min_timeout = dev->rdev->max_timeout =
455 US_TO_NS(ENE_FW_SMPL_BUF_FAN_MSK *
456 ENE_FW_SAMPLE_PERIOD_FAN);
457 } else {
458 dev->rdev->rx_resolution = US_TO_NS(sample_period);
459
460 /* Theoreticly timeout is unlimited, but we cap it
461 * because it was seen that on one device, it
462 * would stop sending spaces after around 250 msec.
463 * Besides, this is close to 2^32 anyway and timeout is u32.
464 */
465 dev->rdev->min_timeout = US_TO_NS(127 * sample_period);
466 dev->rdev->max_timeout = US_TO_NS(200000);
467 }
468
469 if (dev->hw_learning_and_tx_capable)
470 dev->rdev->tx_resolution = US_TO_NS(sample_period);
471
472 if (dev->rdev->timeout > dev->rdev->max_timeout)
473 dev->rdev->timeout = dev->rdev->max_timeout;
474 if (dev->rdev->timeout < dev->rdev->min_timeout)
475 dev->rdev->timeout = dev->rdev->min_timeout;
476 }
477
478 /* Enable the device for receive */
479 static void ene_rx_enable(struct ene_device *dev)
480 {
481 u8 reg_value;
482
483 /* Enable system interrupt */
484 if (dev->hw_revision < ENE_HW_C) {
485 ene_write_reg(dev, ENEB_IRQ, dev->irq << 1);
486 ene_write_reg(dev, ENEB_IRQ_UNK1, 0x01);
487 } else {
488 reg_value = ene_read_reg(dev, ENE_IRQ) & 0xF0;
489 reg_value |= ENE_IRQ_UNK_EN;
490 reg_value &= ~ENE_IRQ_STATUS;
491 reg_value |= (dev->irq & ENE_IRQ_MASK);
492 ene_write_reg(dev, ENE_IRQ, reg_value);
493 }
494
495 /* Enable inputs */
496 ene_rx_enable_fan_input(dev, dev->rx_fan_input_inuse);
497 ene_rx_enable_cir_engine(dev, !dev->rx_fan_input_inuse);
498
499 /* ack any pending irqs - just in case */
500 ene_irq_status(dev);
501
502 /* enable firmware bits */
503 ene_set_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
504
505 /* enter idle mode */
506 ir_raw_event_set_idle(dev->rdev, true);
507 dev->rx_enabled = true;
508 }
509
510 /* Disable the device receiver */
511 static void ene_rx_disable(struct ene_device *dev)
512 {
513 /* disable inputs */
514 ene_rx_enable_cir_engine(dev, false);
515 ene_rx_enable_fan_input(dev, false);
516
517 /* disable hardware IRQ and firmware flag */
518 ene_clear_reg_mask(dev, ENE_FW1, ENE_FW1_ENABLE | ENE_FW1_IRQ);
519
520 ir_raw_event_set_idle(dev->rdev, true);
521 dev->rx_enabled = false;
522 }
523
524 /* This resets the receiver. Useful to stop stream of spaces at end of
525 * transmission
526 */
527 static void ene_rx_reset(struct ene_device *dev)
528 {
529 ene_clear_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
530 ene_set_reg_mask(dev, ENE_CIRCFG, ENE_CIRCFG_RX_EN);
531 }
532
533 /* Set up the TX carrier frequency and duty cycle */
534 static void ene_tx_set_carrier(struct ene_device *dev)
535 {
536 u8 tx_puls_width;
537 unsigned long flags;
538
539 spin_lock_irqsave(&dev->hw_lock, flags);
540
541 ene_set_clear_reg_mask(dev, ENE_CIRCFG,
542 ENE_CIRCFG_TX_CARR, dev->tx_period > 0);
543
544 if (!dev->tx_period)
545 goto unlock;
546
547 BUG_ON(dev->tx_duty_cycle >= 100 || dev->tx_duty_cycle <= 0);
548
549 tx_puls_width = dev->tx_period / (100 / dev->tx_duty_cycle);
550
551 if (!tx_puls_width)
552 tx_puls_width = 1;
553
554 dbg("TX: pulse distance = %d * 500 ns", dev->tx_period);
555 dbg("TX: pulse width = %d * 500 ns", tx_puls_width);
556
557 ene_write_reg(dev, ENE_CIRMOD_PRD, dev->tx_period | ENE_CIRMOD_PRD_POL);
558 ene_write_reg(dev, ENE_CIRMOD_HPRD, tx_puls_width);
559 unlock:
560 spin_unlock_irqrestore(&dev->hw_lock, flags);
561 }
562
563 /* Enable/disable transmitters */
564 static void ene_tx_set_transmitters(struct ene_device *dev)
565 {
566 unsigned long flags;
567
568 spin_lock_irqsave(&dev->hw_lock, flags);
569 ene_set_clear_reg_mask(dev, ENE_GPIOFS8, ENE_GPIOFS8_GPIO41,
570 !!(dev->transmitter_mask & 0x01));
571 ene_set_clear_reg_mask(dev, ENE_GPIOFS1, ENE_GPIOFS1_GPIO0D,
572 !!(dev->transmitter_mask & 0x02));
573 spin_unlock_irqrestore(&dev->hw_lock, flags);
574 }
575
576 /* prepare transmission */
577 static void ene_tx_enable(struct ene_device *dev)
578 {
579 u8 conf1 = ene_read_reg(dev, ENE_CIRCFG);
580 u8 fwreg2 = ene_read_reg(dev, ENE_FW2);
581
582 dev->saved_conf1 = conf1;
583
584 /* Show information about currently connected transmitter jacks */
585 if (fwreg2 & ENE_FW2_EMMITER1_CONN)
586 dbg("TX: Transmitter #1 is connected");
587
588 if (fwreg2 & ENE_FW2_EMMITER2_CONN)
589 dbg("TX: Transmitter #2 is connected");
590
591 if (!(fwreg2 & (ENE_FW2_EMMITER1_CONN | ENE_FW2_EMMITER2_CONN)))
592 pr_warn("TX: transmitter cable isn't connected!\n");
593
594 /* disable receive on revc */
595 if (dev->hw_revision == ENE_HW_C)
596 conf1 &= ~ENE_CIRCFG_RX_EN;
597
598 /* Enable TX engine */
599 conf1 |= ENE_CIRCFG_TX_EN | ENE_CIRCFG_TX_IRQ;
600 ene_write_reg(dev, ENE_CIRCFG, conf1);
601 }
602
603 /* end transmission */
604 static void ene_tx_disable(struct ene_device *dev)
605 {
606 ene_write_reg(dev, ENE_CIRCFG, dev->saved_conf1);
607 dev->tx_buffer = NULL;
608 }
609
610
611 /* TX one sample - must be called with dev->hw_lock*/
612 static void ene_tx_sample(struct ene_device *dev)
613 {
614 u8 raw_tx;
615 u32 sample;
616 bool pulse = dev->tx_sample_pulse;
617
618 if (!dev->tx_buffer) {
619 pr_warn("TX: BUG: attempt to transmit NULL buffer\n");
620 return;
621 }
622
623 /* Grab next TX sample */
624 if (!dev->tx_sample) {
625
626 if (dev->tx_pos == dev->tx_len) {
627 if (!dev->tx_done) {
628 dbg("TX: no more data to send");
629 dev->tx_done = true;
630 goto exit;
631 } else {
632 dbg("TX: last sample sent by hardware");
633 ene_tx_disable(dev);
634 complete(&dev->tx_complete);
635 return;
636 }
637 }
638
639 sample = dev->tx_buffer[dev->tx_pos++];
640 dev->tx_sample_pulse = !dev->tx_sample_pulse;
641
642 dev->tx_sample = DIV_ROUND_CLOSEST(sample, sample_period);
643
644 if (!dev->tx_sample)
645 dev->tx_sample = 1;
646 }
647
648 raw_tx = min(dev->tx_sample , (unsigned int)ENE_CIRRLC_OUT_MASK);
649 dev->tx_sample -= raw_tx;
650
651 dbg("TX: sample %8d (%s)", raw_tx * sample_period,
652 pulse ? "pulse" : "space");
653 if (pulse)
654 raw_tx |= ENE_CIRRLC_OUT_PULSE;
655
656 ene_write_reg(dev,
657 dev->tx_reg ? ENE_CIRRLC_OUT1 : ENE_CIRRLC_OUT0, raw_tx);
658
659 dev->tx_reg = !dev->tx_reg;
660 exit:
661 /* simulate TX done interrupt */
662 if (txsim)
663 mod_timer(&dev->tx_sim_timer, jiffies + HZ / 500);
664 }
665
666 /* timer to simulate tx done interrupt */
667 static void ene_tx_irqsim(unsigned long data)
668 {
669 struct ene_device *dev = (struct ene_device *)data;
670 unsigned long flags;
671
672 spin_lock_irqsave(&dev->hw_lock, flags);
673 ene_tx_sample(dev);
674 spin_unlock_irqrestore(&dev->hw_lock, flags);
675 }
676
677
678 /* read irq status and ack it */
679 static int ene_irq_status(struct ene_device *dev)
680 {
681 u8 irq_status;
682 u8 fw_flags1, fw_flags2;
683 int retval = 0;
684
685 fw_flags2 = ene_read_reg(dev, ENE_FW2);
686
687 if (dev->hw_revision < ENE_HW_C) {
688 irq_status = ene_read_reg(dev, ENEB_IRQ_STATUS);
689
690 if (!(irq_status & ENEB_IRQ_STATUS_IR))
691 return 0;
692
693 ene_clear_reg_mask(dev, ENEB_IRQ_STATUS, ENEB_IRQ_STATUS_IR);
694 return ENE_IRQ_RX;
695 }
696
697 irq_status = ene_read_reg(dev, ENE_IRQ);
698 if (!(irq_status & ENE_IRQ_STATUS))
699 return 0;
700
701 /* original driver does that twice - a workaround ? */
702 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
703 ene_write_reg(dev, ENE_IRQ, irq_status & ~ENE_IRQ_STATUS);
704
705 /* check RX interrupt */
706 if (fw_flags2 & ENE_FW2_RXIRQ) {
707 retval |= ENE_IRQ_RX;
708 ene_write_reg(dev, ENE_FW2, fw_flags2 & ~ENE_FW2_RXIRQ);
709 }
710
711 /* check TX interrupt */
712 fw_flags1 = ene_read_reg(dev, ENE_FW1);
713 if (fw_flags1 & ENE_FW1_TXIRQ) {
714 ene_write_reg(dev, ENE_FW1, fw_flags1 & ~ENE_FW1_TXIRQ);
715 retval |= ENE_IRQ_TX;
716 }
717
718 return retval;
719 }
720
721 /* interrupt handler */
722 static irqreturn_t ene_isr(int irq, void *data)
723 {
724 u16 hw_value, reg;
725 int hw_sample, irq_status;
726 bool pulse;
727 unsigned long flags;
728 irqreturn_t retval = IRQ_NONE;
729 struct ene_device *dev = (struct ene_device *)data;
730 DEFINE_IR_RAW_EVENT(ev);
731
732 spin_lock_irqsave(&dev->hw_lock, flags);
733
734 dbg_verbose("ISR called");
735 ene_rx_read_hw_pointer(dev);
736 irq_status = ene_irq_status(dev);
737
738 if (!irq_status)
739 goto unlock;
740
741 retval = IRQ_HANDLED;
742
743 if (irq_status & ENE_IRQ_TX) {
744 dbg_verbose("TX interrupt");
745 if (!dev->hw_learning_and_tx_capable) {
746 dbg("TX interrupt on unsupported device!");
747 goto unlock;
748 }
749 ene_tx_sample(dev);
750 }
751
752 if (!(irq_status & ENE_IRQ_RX))
753 goto unlock;
754
755 dbg_verbose("RX interrupt");
756
757 if (dev->hw_learning_and_tx_capable)
758 ene_rx_sense_carrier(dev);
759
760 /* On hardware that don't support extra buffer we need to trust
761 the interrupt and not track the read pointer */
762 if (!dev->hw_extra_buffer)
763 dev->r_pointer = dev->w_pointer == 0 ? ENE_FW_PACKET_SIZE : 0;
764
765 while (1) {
766
767 reg = ene_rx_get_sample_reg(dev);
768
769 dbg_verbose("next sample to read at: %04x", reg);
770 if (!reg)
771 break;
772
773 hw_value = ene_read_reg(dev, reg);
774
775 if (dev->rx_fan_input_inuse) {
776
777 int offset = ENE_FW_SMPL_BUF_FAN - ENE_FW_SAMPLE_BUFFER;
778
779 /* read high part of the sample */
780 hw_value |= ene_read_reg(dev, reg + offset) << 8;
781 pulse = hw_value & ENE_FW_SMPL_BUF_FAN_PLS;
782
783 /* clear space bit, and other unused bits */
784 hw_value &= ENE_FW_SMPL_BUF_FAN_MSK;
785 hw_sample = hw_value * ENE_FW_SAMPLE_PERIOD_FAN;
786
787 } else {
788 pulse = !(hw_value & ENE_FW_SAMPLE_SPACE);
789 hw_value &= ~ENE_FW_SAMPLE_SPACE;
790 hw_sample = hw_value * sample_period;
791
792 if (dev->rx_period_adjust) {
793 hw_sample *= 100;
794 hw_sample /= (100 + dev->rx_period_adjust);
795 }
796 }
797
798 if (!dev->hw_extra_buffer && !hw_sample) {
799 dev->r_pointer = dev->w_pointer;
800 continue;
801 }
802
803 dbg("RX: %d (%s)", hw_sample, pulse ? "pulse" : "space");
804
805 ev.duration = US_TO_NS(hw_sample);
806 ev.pulse = pulse;
807 ir_raw_event_store_with_filter(dev->rdev, &ev);
808 }
809
810 ir_raw_event_handle(dev->rdev);
811 unlock:
812 spin_unlock_irqrestore(&dev->hw_lock, flags);
813 return retval;
814 }
815
816 /* Initialize default settings */
817 static void ene_setup_default_settings(struct ene_device *dev)
818 {
819 dev->tx_period = 32;
820 dev->tx_duty_cycle = 50; /*%*/
821 dev->transmitter_mask = 0x03;
822 dev->learning_mode_enabled = learning_mode_force;
823
824 /* Set reasonable default timeout */
825 dev->rdev->timeout = US_TO_NS(150000);
826 }
827
828 /* Upload all hardware settings at once. Used at load and resume time */
829 static void ene_setup_hw_settings(struct ene_device *dev)
830 {
831 if (dev->hw_learning_and_tx_capable) {
832 ene_tx_set_carrier(dev);
833 ene_tx_set_transmitters(dev);
834 }
835
836 ene_rx_setup(dev);
837 }
838
839 /* outside interface: called on first open*/
840 static int ene_open(struct rc_dev *rdev)
841 {
842 struct ene_device *dev = rdev->priv;
843 unsigned long flags;
844
845 spin_lock_irqsave(&dev->hw_lock, flags);
846 ene_rx_enable(dev);
847 spin_unlock_irqrestore(&dev->hw_lock, flags);
848 return 0;
849 }
850
851 /* outside interface: called on device close*/
852 static void ene_close(struct rc_dev *rdev)
853 {
854 struct ene_device *dev = rdev->priv;
855 unsigned long flags;
856 spin_lock_irqsave(&dev->hw_lock, flags);
857
858 ene_rx_disable(dev);
859 spin_unlock_irqrestore(&dev->hw_lock, flags);
860 }
861
862 /* outside interface: set transmitter mask */
863 static int ene_set_tx_mask(struct rc_dev *rdev, u32 tx_mask)
864 {
865 struct ene_device *dev = rdev->priv;
866 dbg("TX: attempt to set transmitter mask %02x", tx_mask);
867
868 /* invalid txmask */
869 if (!tx_mask || tx_mask & ~0x03) {
870 dbg("TX: invalid mask");
871 /* return count of transmitters */
872 return 2;
873 }
874
875 dev->transmitter_mask = tx_mask;
876 ene_tx_set_transmitters(dev);
877 return 0;
878 }
879
880 /* outside interface : set tx carrier */
881 static int ene_set_tx_carrier(struct rc_dev *rdev, u32 carrier)
882 {
883 struct ene_device *dev = rdev->priv;
884 u32 period;
885
886 dbg("TX: attempt to set tx carrier to %d kHz", carrier);
887 if (carrier == 0)
888 return -EINVAL;
889
890 period = 2000000 / carrier;
891 if (period && (period > ENE_CIRMOD_PRD_MAX ||
892 period < ENE_CIRMOD_PRD_MIN)) {
893
894 dbg("TX: out of range %d-%d kHz carrier",
895 2000 / ENE_CIRMOD_PRD_MIN, 2000 / ENE_CIRMOD_PRD_MAX);
896 return -1;
897 }
898
899 dev->tx_period = period;
900 ene_tx_set_carrier(dev);
901 return 0;
902 }
903
904 /*outside interface : set tx duty cycle */
905 static int ene_set_tx_duty_cycle(struct rc_dev *rdev, u32 duty_cycle)
906 {
907 struct ene_device *dev = rdev->priv;
908 dbg("TX: setting duty cycle to %d%%", duty_cycle);
909 dev->tx_duty_cycle = duty_cycle;
910 ene_tx_set_carrier(dev);
911 return 0;
912 }
913
914 /* outside interface: enable learning mode */
915 static int ene_set_learning_mode(struct rc_dev *rdev, int enable)
916 {
917 struct ene_device *dev = rdev->priv;
918 unsigned long flags;
919 if (enable == dev->learning_mode_enabled)
920 return 0;
921
922 spin_lock_irqsave(&dev->hw_lock, flags);
923 dev->learning_mode_enabled = enable;
924 ene_rx_disable(dev);
925 ene_rx_setup(dev);
926 ene_rx_enable(dev);
927 spin_unlock_irqrestore(&dev->hw_lock, flags);
928 return 0;
929 }
930
931 static int ene_set_carrier_report(struct rc_dev *rdev, int enable)
932 {
933 struct ene_device *dev = rdev->priv;
934 unsigned long flags;
935
936 if (enable == dev->carrier_detect_enabled)
937 return 0;
938
939 spin_lock_irqsave(&dev->hw_lock, flags);
940 dev->carrier_detect_enabled = enable;
941 ene_rx_disable(dev);
942 ene_rx_setup(dev);
943 ene_rx_enable(dev);
944 spin_unlock_irqrestore(&dev->hw_lock, flags);
945 return 0;
946 }
947
948 /* outside interface: enable or disable idle mode */
949 static void ene_set_idle(struct rc_dev *rdev, bool idle)
950 {
951 struct ene_device *dev = rdev->priv;
952
953 if (idle) {
954 ene_rx_reset(dev);
955 dbg("RX: end of data");
956 }
957 }
958
959 /* outside interface: transmit */
960 static int ene_transmit(struct rc_dev *rdev, unsigned *buf, unsigned n)
961 {
962 struct ene_device *dev = rdev->priv;
963 unsigned long flags;
964
965 dev->tx_buffer = buf;
966 dev->tx_len = n;
967 dev->tx_pos = 0;
968 dev->tx_reg = 0;
969 dev->tx_done = 0;
970 dev->tx_sample = 0;
971 dev->tx_sample_pulse = 0;
972
973 dbg("TX: %d samples", dev->tx_len);
974
975 spin_lock_irqsave(&dev->hw_lock, flags);
976
977 ene_tx_enable(dev);
978
979 /* Transmit first two samples */
980 ene_tx_sample(dev);
981 ene_tx_sample(dev);
982
983 spin_unlock_irqrestore(&dev->hw_lock, flags);
984
985 if (wait_for_completion_timeout(&dev->tx_complete, 2 * HZ) == 0) {
986 dbg("TX: timeout");
987 spin_lock_irqsave(&dev->hw_lock, flags);
988 ene_tx_disable(dev);
989 spin_unlock_irqrestore(&dev->hw_lock, flags);
990 } else
991 dbg("TX: done");
992 return n;
993 }
994
995 /* probe entry */
996 static int ene_probe(struct pnp_dev *pnp_dev, const struct pnp_device_id *id)
997 {
998 int error = -ENOMEM;
999 struct rc_dev *rdev;
1000 struct ene_device *dev;
1001
1002 /* allocate memory */
1003 dev = kzalloc(sizeof(struct ene_device), GFP_KERNEL);
1004 rdev = rc_allocate_device();
1005 if (!dev || !rdev)
1006 goto error1;
1007
1008 /* validate resources */
1009 error = -ENODEV;
1010
1011 /* init these to -1, as 0 is valid for both */
1012 dev->hw_io = -1;
1013 dev->irq = -1;
1014
1015 if (!pnp_port_valid(pnp_dev, 0) ||
1016 pnp_port_len(pnp_dev, 0) < ENE_IO_SIZE)
1017 goto error;
1018
1019 if (!pnp_irq_valid(pnp_dev, 0))
1020 goto error;
1021
1022 spin_lock_init(&dev->hw_lock);
1023
1024 dev->hw_io = pnp_port_start(pnp_dev, 0);
1025
1026 pnp_set_drvdata(pnp_dev, dev);
1027 dev->pnp_dev = pnp_dev;
1028
1029 /* don't allow too short/long sample periods */
1030 if (sample_period < 5 || sample_period > 0x7F)
1031 sample_period = ENE_DEFAULT_SAMPLE_PERIOD;
1032
1033 /* detect hardware version and features */
1034 error = ene_hw_detect(dev);
1035 if (error)
1036 goto error;
1037
1038 if (!dev->hw_learning_and_tx_capable && txsim) {
1039 dev->hw_learning_and_tx_capable = true;
1040 setup_timer(&dev->tx_sim_timer, ene_tx_irqsim,
1041 (long unsigned int)dev);
1042 pr_warn("Simulation of TX activated\n");
1043 }
1044
1045 if (!dev->hw_learning_and_tx_capable)
1046 learning_mode_force = false;
1047
1048 rdev->driver_type = RC_DRIVER_IR_RAW;
1049 rdev->allowed_protos = RC_TYPE_ALL;
1050 rdev->priv = dev;
1051 rdev->open = ene_open;
1052 rdev->close = ene_close;
1053 rdev->s_idle = ene_set_idle;
1054 rdev->driver_name = ENE_DRIVER_NAME;
1055 rdev->map_name = RC_MAP_RC6_MCE;
1056 rdev->input_name = "ENE eHome Infrared Remote Receiver";
1057
1058 if (dev->hw_learning_and_tx_capable) {
1059 rdev->s_learning_mode = ene_set_learning_mode;
1060 init_completion(&dev->tx_complete);
1061 rdev->tx_ir = ene_transmit;
1062 rdev->s_tx_mask = ene_set_tx_mask;
1063 rdev->s_tx_carrier = ene_set_tx_carrier;
1064 rdev->s_tx_duty_cycle = ene_set_tx_duty_cycle;
1065 rdev->s_carrier_report = ene_set_carrier_report;
1066 rdev->input_name = "ENE eHome Infrared Remote Transceiver";
1067 }
1068
1069 dev->rdev = rdev;
1070
1071 ene_rx_setup_hw_buffer(dev);
1072 ene_setup_default_settings(dev);
1073 ene_setup_hw_settings(dev);
1074
1075 device_set_wakeup_capable(&pnp_dev->dev, true);
1076 device_set_wakeup_enable(&pnp_dev->dev, true);
1077
1078 /* claim the resources */
1079 error = -EBUSY;
1080 if (!request_region(dev->hw_io, ENE_IO_SIZE, ENE_DRIVER_NAME)) {
1081 dev->hw_io = -1;
1082 dev->irq = -1;
1083 goto error;
1084 }
1085
1086 dev->irq = pnp_irq(pnp_dev, 0);
1087 if (request_irq(dev->irq, ene_isr,
1088 IRQF_SHARED, ENE_DRIVER_NAME, (void *)dev)) {
1089 dev->irq = -1;
1090 goto error;
1091 }
1092
1093 error = rc_register_device(rdev);
1094 if (error < 0)
1095 goto error;
1096
1097 pr_notice("driver has been successfully loaded\n");
1098 return 0;
1099 error:
1100 if (dev && dev->irq >= 0)
1101 free_irq(dev->irq, dev);
1102 if (dev && dev->hw_io >= 0)
1103 release_region(dev->hw_io, ENE_IO_SIZE);
1104 error1:
1105 rc_free_device(rdev);
1106 kfree(dev);
1107 return error;
1108 }
1109
1110 /* main unload function */
1111 static void ene_remove(struct pnp_dev *pnp_dev)
1112 {
1113 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1114 unsigned long flags;
1115
1116 spin_lock_irqsave(&dev->hw_lock, flags);
1117 ene_rx_disable(dev);
1118 ene_rx_restore_hw_buffer(dev);
1119 spin_unlock_irqrestore(&dev->hw_lock, flags);
1120
1121 free_irq(dev->irq, dev);
1122 release_region(dev->hw_io, ENE_IO_SIZE);
1123 rc_unregister_device(dev->rdev);
1124 kfree(dev);
1125 }
1126
1127 /* enable wake on IR (wakes on specific button on original remote) */
1128 static void ene_enable_wake(struct ene_device *dev, int enable)
1129 {
1130 enable = enable && device_may_wakeup(&dev->pnp_dev->dev);
1131 dbg("wake on IR %s", enable ? "enabled" : "disabled");
1132 ene_set_clear_reg_mask(dev, ENE_FW1, ENE_FW1_WAKE, enable);
1133 }
1134
1135 #ifdef CONFIG_PM
1136 static int ene_suspend(struct pnp_dev *pnp_dev, pm_message_t state)
1137 {
1138 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1139 ene_enable_wake(dev, true);
1140
1141 /* TODO: add support for wake pattern */
1142 return 0;
1143 }
1144
1145 static int ene_resume(struct pnp_dev *pnp_dev)
1146 {
1147 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1148 ene_setup_hw_settings(dev);
1149
1150 if (dev->rx_enabled)
1151 ene_rx_enable(dev);
1152
1153 ene_enable_wake(dev, false);
1154 return 0;
1155 }
1156 #endif
1157
1158 static void ene_shutdown(struct pnp_dev *pnp_dev)
1159 {
1160 struct ene_device *dev = pnp_get_drvdata(pnp_dev);
1161 ene_enable_wake(dev, true);
1162 }
1163
1164 static const struct pnp_device_id ene_ids[] = {
1165 {.id = "ENE0100",},
1166 {.id = "ENE0200",},
1167 {.id = "ENE0201",},
1168 {.id = "ENE0202",},
1169 {},
1170 };
1171
1172 static struct pnp_driver ene_driver = {
1173 .name = ENE_DRIVER_NAME,
1174 .id_table = ene_ids,
1175 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1176
1177 .probe = ene_probe,
1178 .remove = __devexit_p(ene_remove),
1179 #ifdef CONFIG_PM
1180 .suspend = ene_suspend,
1181 .resume = ene_resume,
1182 #endif
1183 .shutdown = ene_shutdown,
1184 };
1185
1186 static int __init ene_init(void)
1187 {
1188 return pnp_register_driver(&ene_driver);
1189 }
1190
1191 static void ene_exit(void)
1192 {
1193 pnp_unregister_driver(&ene_driver);
1194 }
1195
1196 module_param(sample_period, int, S_IRUGO);
1197 MODULE_PARM_DESC(sample_period, "Hardware sample period (50 us default)");
1198
1199 module_param(learning_mode_force, bool, S_IRUGO);
1200 MODULE_PARM_DESC(learning_mode_force, "Enable learning mode by default");
1201
1202 module_param(debug, int, S_IRUGO | S_IWUSR);
1203 MODULE_PARM_DESC(debug, "Debug level");
1204
1205 module_param(txsim, bool, S_IRUGO);
1206 MODULE_PARM_DESC(txsim,
1207 "Simulate TX features on unsupported hardware (dangerous)");
1208
1209 MODULE_DEVICE_TABLE(pnp, ene_ids);
1210 MODULE_DESCRIPTION
1211 ("Infrared input driver for KB3926B/C/D/E/F "
1212 "(aka ENE0100/ENE0200/ENE0201/ENE0202) CIR port");
1213
1214 MODULE_AUTHOR("Maxim Levitsky");
1215 MODULE_LICENSE("GPL");
1216
1217 module_init(ene_init);
1218 module_exit(ene_exit);
This page took 0.06026 seconds and 6 git commands to generate.