Merge commit 'f17a0dd1c2e0' into clk-next
[deliverable/linux.git] / drivers / media / rc / rc-main.c
1 /* rc-main.c - Remote Controller core module
2 *
3 * Copyright (C) 2009-2010 by Mauro Carvalho Chehab
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation version 2 of the License.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 */
14
15 #include <media/rc-core.h>
16 #include <linux/atomic.h>
17 #include <linux/spinlock.h>
18 #include <linux/delay.h>
19 #include <linux/input.h>
20 #include <linux/leds.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/device.h>
24 #include <linux/module.h>
25 #include "rc-core-priv.h"
26
27 /* Sizes are in bytes, 256 bytes allows for 32 entries on x64 */
28 #define IR_TAB_MIN_SIZE 256
29 #define IR_TAB_MAX_SIZE 8192
30 #define RC_DEV_MAX 256
31
32 /* FIXME: IR_KEYPRESS_TIMEOUT should be protocol specific */
33 #define IR_KEYPRESS_TIMEOUT 250
34
35 /* Used to keep track of known keymaps */
36 static LIST_HEAD(rc_map_list);
37 static DEFINE_SPINLOCK(rc_map_lock);
38 static struct led_trigger *led_feedback;
39
40 /* Used to keep track of rc devices */
41 static DEFINE_IDA(rc_ida);
42
43 static struct rc_map_list *seek_rc_map(const char *name)
44 {
45 struct rc_map_list *map = NULL;
46
47 spin_lock(&rc_map_lock);
48 list_for_each_entry(map, &rc_map_list, list) {
49 if (!strcmp(name, map->map.name)) {
50 spin_unlock(&rc_map_lock);
51 return map;
52 }
53 }
54 spin_unlock(&rc_map_lock);
55
56 return NULL;
57 }
58
59 struct rc_map *rc_map_get(const char *name)
60 {
61
62 struct rc_map_list *map;
63
64 map = seek_rc_map(name);
65 #ifdef CONFIG_MODULES
66 if (!map) {
67 int rc = request_module("%s", name);
68 if (rc < 0) {
69 printk(KERN_ERR "Couldn't load IR keymap %s\n", name);
70 return NULL;
71 }
72 msleep(20); /* Give some time for IR to register */
73
74 map = seek_rc_map(name);
75 }
76 #endif
77 if (!map) {
78 printk(KERN_ERR "IR keymap %s not found\n", name);
79 return NULL;
80 }
81
82 printk(KERN_INFO "Registered IR keymap %s\n", map->map.name);
83
84 return &map->map;
85 }
86 EXPORT_SYMBOL_GPL(rc_map_get);
87
88 int rc_map_register(struct rc_map_list *map)
89 {
90 spin_lock(&rc_map_lock);
91 list_add_tail(&map->list, &rc_map_list);
92 spin_unlock(&rc_map_lock);
93 return 0;
94 }
95 EXPORT_SYMBOL_GPL(rc_map_register);
96
97 void rc_map_unregister(struct rc_map_list *map)
98 {
99 spin_lock(&rc_map_lock);
100 list_del(&map->list);
101 spin_unlock(&rc_map_lock);
102 }
103 EXPORT_SYMBOL_GPL(rc_map_unregister);
104
105
106 static struct rc_map_table empty[] = {
107 { 0x2a, KEY_COFFEE },
108 };
109
110 static struct rc_map_list empty_map = {
111 .map = {
112 .scan = empty,
113 .size = ARRAY_SIZE(empty),
114 .rc_type = RC_TYPE_UNKNOWN, /* Legacy IR type */
115 .name = RC_MAP_EMPTY,
116 }
117 };
118
119 /**
120 * ir_create_table() - initializes a scancode table
121 * @rc_map: the rc_map to initialize
122 * @name: name to assign to the table
123 * @rc_type: ir type to assign to the new table
124 * @size: initial size of the table
125 * @return: zero on success or a negative error code
126 *
127 * This routine will initialize the rc_map and will allocate
128 * memory to hold at least the specified number of elements.
129 */
130 static int ir_create_table(struct rc_map *rc_map,
131 const char *name, u64 rc_type, size_t size)
132 {
133 rc_map->name = name;
134 rc_map->rc_type = rc_type;
135 rc_map->alloc = roundup_pow_of_two(size * sizeof(struct rc_map_table));
136 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
137 rc_map->scan = kmalloc(rc_map->alloc, GFP_KERNEL);
138 if (!rc_map->scan)
139 return -ENOMEM;
140
141 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
142 rc_map->size, rc_map->alloc);
143 return 0;
144 }
145
146 /**
147 * ir_free_table() - frees memory allocated by a scancode table
148 * @rc_map: the table whose mappings need to be freed
149 *
150 * This routine will free memory alloctaed for key mappings used by given
151 * scancode table.
152 */
153 static void ir_free_table(struct rc_map *rc_map)
154 {
155 rc_map->size = 0;
156 kfree(rc_map->scan);
157 rc_map->scan = NULL;
158 }
159
160 /**
161 * ir_resize_table() - resizes a scancode table if necessary
162 * @rc_map: the rc_map to resize
163 * @gfp_flags: gfp flags to use when allocating memory
164 * @return: zero on success or a negative error code
165 *
166 * This routine will shrink the rc_map if it has lots of
167 * unused entries and grow it if it is full.
168 */
169 static int ir_resize_table(struct rc_map *rc_map, gfp_t gfp_flags)
170 {
171 unsigned int oldalloc = rc_map->alloc;
172 unsigned int newalloc = oldalloc;
173 struct rc_map_table *oldscan = rc_map->scan;
174 struct rc_map_table *newscan;
175
176 if (rc_map->size == rc_map->len) {
177 /* All entries in use -> grow keytable */
178 if (rc_map->alloc >= IR_TAB_MAX_SIZE)
179 return -ENOMEM;
180
181 newalloc *= 2;
182 IR_dprintk(1, "Growing table to %u bytes\n", newalloc);
183 }
184
185 if ((rc_map->len * 3 < rc_map->size) && (oldalloc > IR_TAB_MIN_SIZE)) {
186 /* Less than 1/3 of entries in use -> shrink keytable */
187 newalloc /= 2;
188 IR_dprintk(1, "Shrinking table to %u bytes\n", newalloc);
189 }
190
191 if (newalloc == oldalloc)
192 return 0;
193
194 newscan = kmalloc(newalloc, gfp_flags);
195 if (!newscan) {
196 IR_dprintk(1, "Failed to kmalloc %u bytes\n", newalloc);
197 return -ENOMEM;
198 }
199
200 memcpy(newscan, rc_map->scan, rc_map->len * sizeof(struct rc_map_table));
201 rc_map->scan = newscan;
202 rc_map->alloc = newalloc;
203 rc_map->size = rc_map->alloc / sizeof(struct rc_map_table);
204 kfree(oldscan);
205 return 0;
206 }
207
208 /**
209 * ir_update_mapping() - set a keycode in the scancode->keycode table
210 * @dev: the struct rc_dev device descriptor
211 * @rc_map: scancode table to be adjusted
212 * @index: index of the mapping that needs to be updated
213 * @keycode: the desired keycode
214 * @return: previous keycode assigned to the mapping
215 *
216 * This routine is used to update scancode->keycode mapping at given
217 * position.
218 */
219 static unsigned int ir_update_mapping(struct rc_dev *dev,
220 struct rc_map *rc_map,
221 unsigned int index,
222 unsigned int new_keycode)
223 {
224 int old_keycode = rc_map->scan[index].keycode;
225 int i;
226
227 /* Did the user wish to remove the mapping? */
228 if (new_keycode == KEY_RESERVED || new_keycode == KEY_UNKNOWN) {
229 IR_dprintk(1, "#%d: Deleting scan 0x%04x\n",
230 index, rc_map->scan[index].scancode);
231 rc_map->len--;
232 memmove(&rc_map->scan[index], &rc_map->scan[index+ 1],
233 (rc_map->len - index) * sizeof(struct rc_map_table));
234 } else {
235 IR_dprintk(1, "#%d: %s scan 0x%04x with key 0x%04x\n",
236 index,
237 old_keycode == KEY_RESERVED ? "New" : "Replacing",
238 rc_map->scan[index].scancode, new_keycode);
239 rc_map->scan[index].keycode = new_keycode;
240 __set_bit(new_keycode, dev->input_dev->keybit);
241 }
242
243 if (old_keycode != KEY_RESERVED) {
244 /* A previous mapping was updated... */
245 __clear_bit(old_keycode, dev->input_dev->keybit);
246 /* ... but another scancode might use the same keycode */
247 for (i = 0; i < rc_map->len; i++) {
248 if (rc_map->scan[i].keycode == old_keycode) {
249 __set_bit(old_keycode, dev->input_dev->keybit);
250 break;
251 }
252 }
253
254 /* Possibly shrink the keytable, failure is not a problem */
255 ir_resize_table(rc_map, GFP_ATOMIC);
256 }
257
258 return old_keycode;
259 }
260
261 /**
262 * ir_establish_scancode() - set a keycode in the scancode->keycode table
263 * @dev: the struct rc_dev device descriptor
264 * @rc_map: scancode table to be searched
265 * @scancode: the desired scancode
266 * @resize: controls whether we allowed to resize the table to
267 * accommodate not yet present scancodes
268 * @return: index of the mapping containing scancode in question
269 * or -1U in case of failure.
270 *
271 * This routine is used to locate given scancode in rc_map.
272 * If scancode is not yet present the routine will allocate a new slot
273 * for it.
274 */
275 static unsigned int ir_establish_scancode(struct rc_dev *dev,
276 struct rc_map *rc_map,
277 unsigned int scancode,
278 bool resize)
279 {
280 unsigned int i;
281
282 /*
283 * Unfortunately, some hardware-based IR decoders don't provide
284 * all bits for the complete IR code. In general, they provide only
285 * the command part of the IR code. Yet, as it is possible to replace
286 * the provided IR with another one, it is needed to allow loading
287 * IR tables from other remotes. So, we support specifying a mask to
288 * indicate the valid bits of the scancodes.
289 */
290 if (dev->scancode_mask)
291 scancode &= dev->scancode_mask;
292
293 /* First check if we already have a mapping for this ir command */
294 for (i = 0; i < rc_map->len; i++) {
295 if (rc_map->scan[i].scancode == scancode)
296 return i;
297
298 /* Keytable is sorted from lowest to highest scancode */
299 if (rc_map->scan[i].scancode >= scancode)
300 break;
301 }
302
303 /* No previous mapping found, we might need to grow the table */
304 if (rc_map->size == rc_map->len) {
305 if (!resize || ir_resize_table(rc_map, GFP_ATOMIC))
306 return -1U;
307 }
308
309 /* i is the proper index to insert our new keycode */
310 if (i < rc_map->len)
311 memmove(&rc_map->scan[i + 1], &rc_map->scan[i],
312 (rc_map->len - i) * sizeof(struct rc_map_table));
313 rc_map->scan[i].scancode = scancode;
314 rc_map->scan[i].keycode = KEY_RESERVED;
315 rc_map->len++;
316
317 return i;
318 }
319
320 /**
321 * ir_setkeycode() - set a keycode in the scancode->keycode table
322 * @idev: the struct input_dev device descriptor
323 * @scancode: the desired scancode
324 * @keycode: result
325 * @return: -EINVAL if the keycode could not be inserted, otherwise zero.
326 *
327 * This routine is used to handle evdev EVIOCSKEY ioctl.
328 */
329 static int ir_setkeycode(struct input_dev *idev,
330 const struct input_keymap_entry *ke,
331 unsigned int *old_keycode)
332 {
333 struct rc_dev *rdev = input_get_drvdata(idev);
334 struct rc_map *rc_map = &rdev->rc_map;
335 unsigned int index;
336 unsigned int scancode;
337 int retval = 0;
338 unsigned long flags;
339
340 spin_lock_irqsave(&rc_map->lock, flags);
341
342 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
343 index = ke->index;
344 if (index >= rc_map->len) {
345 retval = -EINVAL;
346 goto out;
347 }
348 } else {
349 retval = input_scancode_to_scalar(ke, &scancode);
350 if (retval)
351 goto out;
352
353 index = ir_establish_scancode(rdev, rc_map, scancode, true);
354 if (index >= rc_map->len) {
355 retval = -ENOMEM;
356 goto out;
357 }
358 }
359
360 *old_keycode = ir_update_mapping(rdev, rc_map, index, ke->keycode);
361
362 out:
363 spin_unlock_irqrestore(&rc_map->lock, flags);
364 return retval;
365 }
366
367 /**
368 * ir_setkeytable() - sets several entries in the scancode->keycode table
369 * @dev: the struct rc_dev device descriptor
370 * @to: the struct rc_map to copy entries to
371 * @from: the struct rc_map to copy entries from
372 * @return: -ENOMEM if all keycodes could not be inserted, otherwise zero.
373 *
374 * This routine is used to handle table initialization.
375 */
376 static int ir_setkeytable(struct rc_dev *dev,
377 const struct rc_map *from)
378 {
379 struct rc_map *rc_map = &dev->rc_map;
380 unsigned int i, index;
381 int rc;
382
383 rc = ir_create_table(rc_map, from->name,
384 from->rc_type, from->size);
385 if (rc)
386 return rc;
387
388 IR_dprintk(1, "Allocated space for %u keycode entries (%u bytes)\n",
389 rc_map->size, rc_map->alloc);
390
391 for (i = 0; i < from->size; i++) {
392 index = ir_establish_scancode(dev, rc_map,
393 from->scan[i].scancode, false);
394 if (index >= rc_map->len) {
395 rc = -ENOMEM;
396 break;
397 }
398
399 ir_update_mapping(dev, rc_map, index,
400 from->scan[i].keycode);
401 }
402
403 if (rc)
404 ir_free_table(rc_map);
405
406 return rc;
407 }
408
409 /**
410 * ir_lookup_by_scancode() - locate mapping by scancode
411 * @rc_map: the struct rc_map to search
412 * @scancode: scancode to look for in the table
413 * @return: index in the table, -1U if not found
414 *
415 * This routine performs binary search in RC keykeymap table for
416 * given scancode.
417 */
418 static unsigned int ir_lookup_by_scancode(const struct rc_map *rc_map,
419 unsigned int scancode)
420 {
421 int start = 0;
422 int end = rc_map->len - 1;
423 int mid;
424
425 while (start <= end) {
426 mid = (start + end) / 2;
427 if (rc_map->scan[mid].scancode < scancode)
428 start = mid + 1;
429 else if (rc_map->scan[mid].scancode > scancode)
430 end = mid - 1;
431 else
432 return mid;
433 }
434
435 return -1U;
436 }
437
438 /**
439 * ir_getkeycode() - get a keycode from the scancode->keycode table
440 * @idev: the struct input_dev device descriptor
441 * @scancode: the desired scancode
442 * @keycode: used to return the keycode, if found, or KEY_RESERVED
443 * @return: always returns zero.
444 *
445 * This routine is used to handle evdev EVIOCGKEY ioctl.
446 */
447 static int ir_getkeycode(struct input_dev *idev,
448 struct input_keymap_entry *ke)
449 {
450 struct rc_dev *rdev = input_get_drvdata(idev);
451 struct rc_map *rc_map = &rdev->rc_map;
452 struct rc_map_table *entry;
453 unsigned long flags;
454 unsigned int index;
455 unsigned int scancode;
456 int retval;
457
458 spin_lock_irqsave(&rc_map->lock, flags);
459
460 if (ke->flags & INPUT_KEYMAP_BY_INDEX) {
461 index = ke->index;
462 } else {
463 retval = input_scancode_to_scalar(ke, &scancode);
464 if (retval)
465 goto out;
466
467 index = ir_lookup_by_scancode(rc_map, scancode);
468 }
469
470 if (index < rc_map->len) {
471 entry = &rc_map->scan[index];
472
473 ke->index = index;
474 ke->keycode = entry->keycode;
475 ke->len = sizeof(entry->scancode);
476 memcpy(ke->scancode, &entry->scancode, sizeof(entry->scancode));
477
478 } else if (!(ke->flags & INPUT_KEYMAP_BY_INDEX)) {
479 /*
480 * We do not really know the valid range of scancodes
481 * so let's respond with KEY_RESERVED to anything we
482 * do not have mapping for [yet].
483 */
484 ke->index = index;
485 ke->keycode = KEY_RESERVED;
486 } else {
487 retval = -EINVAL;
488 goto out;
489 }
490
491 retval = 0;
492
493 out:
494 spin_unlock_irqrestore(&rc_map->lock, flags);
495 return retval;
496 }
497
498 /**
499 * rc_g_keycode_from_table() - gets the keycode that corresponds to a scancode
500 * @dev: the struct rc_dev descriptor of the device
501 * @scancode: the scancode to look for
502 * @return: the corresponding keycode, or KEY_RESERVED
503 *
504 * This routine is used by drivers which need to convert a scancode to a
505 * keycode. Normally it should not be used since drivers should have no
506 * interest in keycodes.
507 */
508 u32 rc_g_keycode_from_table(struct rc_dev *dev, u32 scancode)
509 {
510 struct rc_map *rc_map = &dev->rc_map;
511 unsigned int keycode;
512 unsigned int index;
513 unsigned long flags;
514
515 spin_lock_irqsave(&rc_map->lock, flags);
516
517 index = ir_lookup_by_scancode(rc_map, scancode);
518 keycode = index < rc_map->len ?
519 rc_map->scan[index].keycode : KEY_RESERVED;
520
521 spin_unlock_irqrestore(&rc_map->lock, flags);
522
523 if (keycode != KEY_RESERVED)
524 IR_dprintk(1, "%s: scancode 0x%04x keycode 0x%02x\n",
525 dev->input_name, scancode, keycode);
526
527 return keycode;
528 }
529 EXPORT_SYMBOL_GPL(rc_g_keycode_from_table);
530
531 /**
532 * ir_do_keyup() - internal function to signal the release of a keypress
533 * @dev: the struct rc_dev descriptor of the device
534 * @sync: whether or not to call input_sync
535 *
536 * This function is used internally to release a keypress, it must be
537 * called with keylock held.
538 */
539 static void ir_do_keyup(struct rc_dev *dev, bool sync)
540 {
541 if (!dev->keypressed)
542 return;
543
544 IR_dprintk(1, "keyup key 0x%04x\n", dev->last_keycode);
545 input_report_key(dev->input_dev, dev->last_keycode, 0);
546 led_trigger_event(led_feedback, LED_OFF);
547 if (sync)
548 input_sync(dev->input_dev);
549 dev->keypressed = false;
550 }
551
552 /**
553 * rc_keyup() - signals the release of a keypress
554 * @dev: the struct rc_dev descriptor of the device
555 *
556 * This routine is used to signal that a key has been released on the
557 * remote control.
558 */
559 void rc_keyup(struct rc_dev *dev)
560 {
561 unsigned long flags;
562
563 spin_lock_irqsave(&dev->keylock, flags);
564 ir_do_keyup(dev, true);
565 spin_unlock_irqrestore(&dev->keylock, flags);
566 }
567 EXPORT_SYMBOL_GPL(rc_keyup);
568
569 /**
570 * ir_timer_keyup() - generates a keyup event after a timeout
571 * @cookie: a pointer to the struct rc_dev for the device
572 *
573 * This routine will generate a keyup event some time after a keydown event
574 * is generated when no further activity has been detected.
575 */
576 static void ir_timer_keyup(unsigned long cookie)
577 {
578 struct rc_dev *dev = (struct rc_dev *)cookie;
579 unsigned long flags;
580
581 /*
582 * ir->keyup_jiffies is used to prevent a race condition if a
583 * hardware interrupt occurs at this point and the keyup timer
584 * event is moved further into the future as a result.
585 *
586 * The timer will then be reactivated and this function called
587 * again in the future. We need to exit gracefully in that case
588 * to allow the input subsystem to do its auto-repeat magic or
589 * a keyup event might follow immediately after the keydown.
590 */
591 spin_lock_irqsave(&dev->keylock, flags);
592 if (time_is_before_eq_jiffies(dev->keyup_jiffies))
593 ir_do_keyup(dev, true);
594 spin_unlock_irqrestore(&dev->keylock, flags);
595 }
596
597 /**
598 * rc_repeat() - signals that a key is still pressed
599 * @dev: the struct rc_dev descriptor of the device
600 *
601 * This routine is used by IR decoders when a repeat message which does
602 * not include the necessary bits to reproduce the scancode has been
603 * received.
604 */
605 void rc_repeat(struct rc_dev *dev)
606 {
607 unsigned long flags;
608
609 spin_lock_irqsave(&dev->keylock, flags);
610
611 input_event(dev->input_dev, EV_MSC, MSC_SCAN, dev->last_scancode);
612 input_sync(dev->input_dev);
613
614 if (!dev->keypressed)
615 goto out;
616
617 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
618 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
619
620 out:
621 spin_unlock_irqrestore(&dev->keylock, flags);
622 }
623 EXPORT_SYMBOL_GPL(rc_repeat);
624
625 /**
626 * ir_do_keydown() - internal function to process a keypress
627 * @dev: the struct rc_dev descriptor of the device
628 * @protocol: the protocol of the keypress
629 * @scancode: the scancode of the keypress
630 * @keycode: the keycode of the keypress
631 * @toggle: the toggle value of the keypress
632 *
633 * This function is used internally to register a keypress, it must be
634 * called with keylock held.
635 */
636 static void ir_do_keydown(struct rc_dev *dev, enum rc_type protocol,
637 u32 scancode, u32 keycode, u8 toggle)
638 {
639 bool new_event = (!dev->keypressed ||
640 dev->last_protocol != protocol ||
641 dev->last_scancode != scancode ||
642 dev->last_toggle != toggle);
643
644 if (new_event && dev->keypressed)
645 ir_do_keyup(dev, false);
646
647 input_event(dev->input_dev, EV_MSC, MSC_SCAN, scancode);
648
649 if (new_event && keycode != KEY_RESERVED) {
650 /* Register a keypress */
651 dev->keypressed = true;
652 dev->last_protocol = protocol;
653 dev->last_scancode = scancode;
654 dev->last_toggle = toggle;
655 dev->last_keycode = keycode;
656
657 IR_dprintk(1, "%s: key down event, "
658 "key 0x%04x, protocol 0x%04x, scancode 0x%08x\n",
659 dev->input_name, keycode, protocol, scancode);
660 input_report_key(dev->input_dev, keycode, 1);
661
662 led_trigger_event(led_feedback, LED_FULL);
663 }
664
665 input_sync(dev->input_dev);
666 }
667
668 /**
669 * rc_keydown() - generates input event for a key press
670 * @dev: the struct rc_dev descriptor of the device
671 * @protocol: the protocol for the keypress
672 * @scancode: the scancode for the keypress
673 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
674 * support toggle values, this should be set to zero)
675 *
676 * This routine is used to signal that a key has been pressed on the
677 * remote control.
678 */
679 void rc_keydown(struct rc_dev *dev, enum rc_type protocol, u32 scancode, u8 toggle)
680 {
681 unsigned long flags;
682 u32 keycode = rc_g_keycode_from_table(dev, scancode);
683
684 spin_lock_irqsave(&dev->keylock, flags);
685 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
686
687 if (dev->keypressed) {
688 dev->keyup_jiffies = jiffies + msecs_to_jiffies(IR_KEYPRESS_TIMEOUT);
689 mod_timer(&dev->timer_keyup, dev->keyup_jiffies);
690 }
691 spin_unlock_irqrestore(&dev->keylock, flags);
692 }
693 EXPORT_SYMBOL_GPL(rc_keydown);
694
695 /**
696 * rc_keydown_notimeout() - generates input event for a key press without
697 * an automatic keyup event at a later time
698 * @dev: the struct rc_dev descriptor of the device
699 * @protocol: the protocol for the keypress
700 * @scancode: the scancode for the keypress
701 * @toggle: the toggle value (protocol dependent, if the protocol doesn't
702 * support toggle values, this should be set to zero)
703 *
704 * This routine is used to signal that a key has been pressed on the
705 * remote control. The driver must manually call rc_keyup() at a later stage.
706 */
707 void rc_keydown_notimeout(struct rc_dev *dev, enum rc_type protocol,
708 u32 scancode, u8 toggle)
709 {
710 unsigned long flags;
711 u32 keycode = rc_g_keycode_from_table(dev, scancode);
712
713 spin_lock_irqsave(&dev->keylock, flags);
714 ir_do_keydown(dev, protocol, scancode, keycode, toggle);
715 spin_unlock_irqrestore(&dev->keylock, flags);
716 }
717 EXPORT_SYMBOL_GPL(rc_keydown_notimeout);
718
719 int rc_open(struct rc_dev *rdev)
720 {
721 int rval = 0;
722
723 if (!rdev)
724 return -EINVAL;
725
726 mutex_lock(&rdev->lock);
727
728 if (!rdev->users++ && rdev->open != NULL)
729 rval = rdev->open(rdev);
730
731 if (rval)
732 rdev->users--;
733
734 mutex_unlock(&rdev->lock);
735
736 return rval;
737 }
738 EXPORT_SYMBOL_GPL(rc_open);
739
740 static int ir_open(struct input_dev *idev)
741 {
742 struct rc_dev *rdev = input_get_drvdata(idev);
743
744 return rc_open(rdev);
745 }
746
747 void rc_close(struct rc_dev *rdev)
748 {
749 if (rdev) {
750 mutex_lock(&rdev->lock);
751
752 if (!--rdev->users && rdev->close != NULL)
753 rdev->close(rdev);
754
755 mutex_unlock(&rdev->lock);
756 }
757 }
758 EXPORT_SYMBOL_GPL(rc_close);
759
760 static void ir_close(struct input_dev *idev)
761 {
762 struct rc_dev *rdev = input_get_drvdata(idev);
763 rc_close(rdev);
764 }
765
766 /* class for /sys/class/rc */
767 static char *rc_devnode(struct device *dev, umode_t *mode)
768 {
769 return kasprintf(GFP_KERNEL, "rc/%s", dev_name(dev));
770 }
771
772 static struct class rc_class = {
773 .name = "rc",
774 .devnode = rc_devnode,
775 };
776
777 /*
778 * These are the protocol textual descriptions that are
779 * used by the sysfs protocols file. Note that the order
780 * of the entries is relevant.
781 */
782 static const struct {
783 u64 type;
784 const char *name;
785 const char *module_name;
786 } proto_names[] = {
787 { RC_BIT_NONE, "none", NULL },
788 { RC_BIT_OTHER, "other", NULL },
789 { RC_BIT_UNKNOWN, "unknown", NULL },
790 { RC_BIT_RC5 |
791 RC_BIT_RC5X, "rc-5", "ir-rc5-decoder" },
792 { RC_BIT_NEC, "nec", "ir-nec-decoder" },
793 { RC_BIT_RC6_0 |
794 RC_BIT_RC6_6A_20 |
795 RC_BIT_RC6_6A_24 |
796 RC_BIT_RC6_6A_32 |
797 RC_BIT_RC6_MCE, "rc-6", "ir-rc6-decoder" },
798 { RC_BIT_JVC, "jvc", "ir-jvc-decoder" },
799 { RC_BIT_SONY12 |
800 RC_BIT_SONY15 |
801 RC_BIT_SONY20, "sony", "ir-sony-decoder" },
802 { RC_BIT_RC5_SZ, "rc-5-sz", "ir-rc5-decoder" },
803 { RC_BIT_SANYO, "sanyo", "ir-sanyo-decoder" },
804 { RC_BIT_SHARP, "sharp", "ir-sharp-decoder" },
805 { RC_BIT_MCE_KBD, "mce_kbd", "ir-mce_kbd-decoder" },
806 { RC_BIT_XMP, "xmp", "ir-xmp-decoder" },
807 };
808
809 /**
810 * struct rc_filter_attribute - Device attribute relating to a filter type.
811 * @attr: Device attribute.
812 * @type: Filter type.
813 * @mask: false for filter value, true for filter mask.
814 */
815 struct rc_filter_attribute {
816 struct device_attribute attr;
817 enum rc_filter_type type;
818 bool mask;
819 };
820 #define to_rc_filter_attr(a) container_of(a, struct rc_filter_attribute, attr)
821
822 #define RC_PROTO_ATTR(_name, _mode, _show, _store, _type) \
823 struct rc_filter_attribute dev_attr_##_name = { \
824 .attr = __ATTR(_name, _mode, _show, _store), \
825 .type = (_type), \
826 }
827 #define RC_FILTER_ATTR(_name, _mode, _show, _store, _type, _mask) \
828 struct rc_filter_attribute dev_attr_##_name = { \
829 .attr = __ATTR(_name, _mode, _show, _store), \
830 .type = (_type), \
831 .mask = (_mask), \
832 }
833
834 static bool lirc_is_present(void)
835 {
836 #if defined(CONFIG_LIRC_MODULE)
837 struct module *lirc;
838
839 mutex_lock(&module_mutex);
840 lirc = find_module("lirc_dev");
841 mutex_unlock(&module_mutex);
842
843 return lirc ? true : false;
844 #elif defined(CONFIG_LIRC)
845 return true;
846 #else
847 return false;
848 #endif
849 }
850
851 /**
852 * show_protocols() - shows the current/wakeup IR protocol(s)
853 * @device: the device descriptor
854 * @mattr: the device attribute struct
855 * @buf: a pointer to the output buffer
856 *
857 * This routine is a callback routine for input read the IR protocol type(s).
858 * it is trigged by reading /sys/class/rc/rc?/[wakeup_]protocols.
859 * It returns the protocol names of supported protocols.
860 * Enabled protocols are printed in brackets.
861 *
862 * dev->lock is taken to guard against races between device
863 * registration, store_protocols and show_protocols.
864 */
865 static ssize_t show_protocols(struct device *device,
866 struct device_attribute *mattr, char *buf)
867 {
868 struct rc_dev *dev = to_rc_dev(device);
869 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
870 u64 allowed, enabled;
871 char *tmp = buf;
872 int i;
873
874 /* Device is being removed */
875 if (!dev)
876 return -EINVAL;
877
878 if (!atomic_read(&dev->initialized))
879 return -ERESTARTSYS;
880
881 mutex_lock(&dev->lock);
882
883 if (fattr->type == RC_FILTER_NORMAL) {
884 enabled = dev->enabled_protocols;
885 allowed = dev->allowed_protocols;
886 if (dev->raw && !allowed)
887 allowed = ir_raw_get_allowed_protocols();
888 } else {
889 enabled = dev->enabled_wakeup_protocols;
890 allowed = dev->allowed_wakeup_protocols;
891 }
892
893 mutex_unlock(&dev->lock);
894
895 IR_dprintk(1, "%s: allowed - 0x%llx, enabled - 0x%llx\n",
896 __func__, (long long)allowed, (long long)enabled);
897
898 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
899 if (allowed & enabled & proto_names[i].type)
900 tmp += sprintf(tmp, "[%s] ", proto_names[i].name);
901 else if (allowed & proto_names[i].type)
902 tmp += sprintf(tmp, "%s ", proto_names[i].name);
903
904 if (allowed & proto_names[i].type)
905 allowed &= ~proto_names[i].type;
906 }
907
908 if (dev->driver_type == RC_DRIVER_IR_RAW && lirc_is_present())
909 tmp += sprintf(tmp, "[lirc] ");
910
911 if (tmp != buf)
912 tmp--;
913 *tmp = '\n';
914
915 return tmp + 1 - buf;
916 }
917
918 /**
919 * parse_protocol_change() - parses a protocol change request
920 * @protocols: pointer to the bitmask of current protocols
921 * @buf: pointer to the buffer with a list of changes
922 *
923 * Writing "+proto" will add a protocol to the protocol mask.
924 * Writing "-proto" will remove a protocol from protocol mask.
925 * Writing "proto" will enable only "proto".
926 * Writing "none" will disable all protocols.
927 * Returns the number of changes performed or a negative error code.
928 */
929 static int parse_protocol_change(u64 *protocols, const char *buf)
930 {
931 const char *tmp;
932 unsigned count = 0;
933 bool enable, disable;
934 u64 mask;
935 int i;
936
937 while ((tmp = strsep((char **)&buf, " \n")) != NULL) {
938 if (!*tmp)
939 break;
940
941 if (*tmp == '+') {
942 enable = true;
943 disable = false;
944 tmp++;
945 } else if (*tmp == '-') {
946 enable = false;
947 disable = true;
948 tmp++;
949 } else {
950 enable = false;
951 disable = false;
952 }
953
954 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
955 if (!strcasecmp(tmp, proto_names[i].name)) {
956 mask = proto_names[i].type;
957 break;
958 }
959 }
960
961 if (i == ARRAY_SIZE(proto_names)) {
962 if (!strcasecmp(tmp, "lirc"))
963 mask = 0;
964 else {
965 IR_dprintk(1, "Unknown protocol: '%s'\n", tmp);
966 return -EINVAL;
967 }
968 }
969
970 count++;
971
972 if (enable)
973 *protocols |= mask;
974 else if (disable)
975 *protocols &= ~mask;
976 else
977 *protocols = mask;
978 }
979
980 if (!count) {
981 IR_dprintk(1, "Protocol not specified\n");
982 return -EINVAL;
983 }
984
985 return count;
986 }
987
988 static void ir_raw_load_modules(u64 *protocols)
989
990 {
991 u64 available;
992 int i, ret;
993
994 for (i = 0; i < ARRAY_SIZE(proto_names); i++) {
995 if (proto_names[i].type == RC_BIT_NONE ||
996 proto_names[i].type & (RC_BIT_OTHER | RC_BIT_UNKNOWN))
997 continue;
998
999 available = ir_raw_get_allowed_protocols();
1000 if (!(*protocols & proto_names[i].type & ~available))
1001 continue;
1002
1003 if (!proto_names[i].module_name) {
1004 pr_err("Can't enable IR protocol %s\n",
1005 proto_names[i].name);
1006 *protocols &= ~proto_names[i].type;
1007 continue;
1008 }
1009
1010 ret = request_module("%s", proto_names[i].module_name);
1011 if (ret < 0) {
1012 pr_err("Couldn't load IR protocol module %s\n",
1013 proto_names[i].module_name);
1014 *protocols &= ~proto_names[i].type;
1015 continue;
1016 }
1017 msleep(20);
1018 available = ir_raw_get_allowed_protocols();
1019 if (!(*protocols & proto_names[i].type & ~available))
1020 continue;
1021
1022 pr_err("Loaded IR protocol module %s, \
1023 but protocol %s still not available\n",
1024 proto_names[i].module_name,
1025 proto_names[i].name);
1026 *protocols &= ~proto_names[i].type;
1027 }
1028 }
1029
1030 /**
1031 * store_protocols() - changes the current/wakeup IR protocol(s)
1032 * @device: the device descriptor
1033 * @mattr: the device attribute struct
1034 * @buf: a pointer to the input buffer
1035 * @len: length of the input buffer
1036 *
1037 * This routine is for changing the IR protocol type.
1038 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]protocols.
1039 * See parse_protocol_change() for the valid commands.
1040 * Returns @len on success or a negative error code.
1041 *
1042 * dev->lock is taken to guard against races between device
1043 * registration, store_protocols and show_protocols.
1044 */
1045 static ssize_t store_protocols(struct device *device,
1046 struct device_attribute *mattr,
1047 const char *buf, size_t len)
1048 {
1049 struct rc_dev *dev = to_rc_dev(device);
1050 struct rc_filter_attribute *fattr = to_rc_filter_attr(mattr);
1051 u64 *current_protocols;
1052 int (*change_protocol)(struct rc_dev *dev, u64 *rc_type);
1053 struct rc_scancode_filter *filter;
1054 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1055 u64 old_protocols, new_protocols;
1056 ssize_t rc;
1057
1058 /* Device is being removed */
1059 if (!dev)
1060 return -EINVAL;
1061
1062 if (!atomic_read(&dev->initialized))
1063 return -ERESTARTSYS;
1064
1065 if (fattr->type == RC_FILTER_NORMAL) {
1066 IR_dprintk(1, "Normal protocol change requested\n");
1067 current_protocols = &dev->enabled_protocols;
1068 change_protocol = dev->change_protocol;
1069 filter = &dev->scancode_filter;
1070 set_filter = dev->s_filter;
1071 } else {
1072 IR_dprintk(1, "Wakeup protocol change requested\n");
1073 current_protocols = &dev->enabled_wakeup_protocols;
1074 change_protocol = dev->change_wakeup_protocol;
1075 filter = &dev->scancode_wakeup_filter;
1076 set_filter = dev->s_wakeup_filter;
1077 }
1078
1079 if (!change_protocol) {
1080 IR_dprintk(1, "Protocol switching not supported\n");
1081 return -EINVAL;
1082 }
1083
1084 mutex_lock(&dev->lock);
1085
1086 old_protocols = *current_protocols;
1087 new_protocols = old_protocols;
1088 rc = parse_protocol_change(&new_protocols, buf);
1089 if (rc < 0)
1090 goto out;
1091
1092 rc = change_protocol(dev, &new_protocols);
1093 if (rc < 0) {
1094 IR_dprintk(1, "Error setting protocols to 0x%llx\n",
1095 (long long)new_protocols);
1096 goto out;
1097 }
1098
1099 if (dev->driver_type == RC_DRIVER_IR_RAW)
1100 ir_raw_load_modules(&new_protocols);
1101
1102 if (new_protocols != old_protocols) {
1103 *current_protocols = new_protocols;
1104 IR_dprintk(1, "Protocols changed to 0x%llx\n",
1105 (long long)new_protocols);
1106 }
1107
1108 /*
1109 * If a protocol change was attempted the filter may need updating, even
1110 * if the actual protocol mask hasn't changed (since the driver may have
1111 * cleared the filter).
1112 * Try setting the same filter with the new protocol (if any).
1113 * Fall back to clearing the filter.
1114 */
1115 if (set_filter && filter->mask) {
1116 if (new_protocols)
1117 rc = set_filter(dev, filter);
1118 else
1119 rc = -1;
1120
1121 if (rc < 0) {
1122 filter->data = 0;
1123 filter->mask = 0;
1124 set_filter(dev, filter);
1125 }
1126 }
1127
1128 rc = len;
1129
1130 out:
1131 mutex_unlock(&dev->lock);
1132 return rc;
1133 }
1134
1135 /**
1136 * show_filter() - shows the current scancode filter value or mask
1137 * @device: the device descriptor
1138 * @attr: the device attribute struct
1139 * @buf: a pointer to the output buffer
1140 *
1141 * This routine is a callback routine to read a scancode filter value or mask.
1142 * It is trigged by reading /sys/class/rc/rc?/[wakeup_]filter[_mask].
1143 * It prints the current scancode filter value or mask of the appropriate filter
1144 * type in hexadecimal into @buf and returns the size of the buffer.
1145 *
1146 * Bits of the filter value corresponding to set bits in the filter mask are
1147 * compared against input scancodes and non-matching scancodes are discarded.
1148 *
1149 * dev->lock is taken to guard against races between device registration,
1150 * store_filter and show_filter.
1151 */
1152 static ssize_t show_filter(struct device *device,
1153 struct device_attribute *attr,
1154 char *buf)
1155 {
1156 struct rc_dev *dev = to_rc_dev(device);
1157 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1158 struct rc_scancode_filter *filter;
1159 u32 val;
1160
1161 /* Device is being removed */
1162 if (!dev)
1163 return -EINVAL;
1164
1165 if (!atomic_read(&dev->initialized))
1166 return -ERESTARTSYS;
1167
1168 mutex_lock(&dev->lock);
1169
1170 if (fattr->type == RC_FILTER_NORMAL)
1171 filter = &dev->scancode_filter;
1172 else
1173 filter = &dev->scancode_wakeup_filter;
1174
1175 if (fattr->mask)
1176 val = filter->mask;
1177 else
1178 val = filter->data;
1179 mutex_unlock(&dev->lock);
1180
1181 return sprintf(buf, "%#x\n", val);
1182 }
1183
1184 /**
1185 * store_filter() - changes the scancode filter value
1186 * @device: the device descriptor
1187 * @attr: the device attribute struct
1188 * @buf: a pointer to the input buffer
1189 * @len: length of the input buffer
1190 *
1191 * This routine is for changing a scancode filter value or mask.
1192 * It is trigged by writing to /sys/class/rc/rc?/[wakeup_]filter[_mask].
1193 * Returns -EINVAL if an invalid filter value for the current protocol was
1194 * specified or if scancode filtering is not supported by the driver, otherwise
1195 * returns @len.
1196 *
1197 * Bits of the filter value corresponding to set bits in the filter mask are
1198 * compared against input scancodes and non-matching scancodes are discarded.
1199 *
1200 * dev->lock is taken to guard against races between device registration,
1201 * store_filter and show_filter.
1202 */
1203 static ssize_t store_filter(struct device *device,
1204 struct device_attribute *attr,
1205 const char *buf, size_t len)
1206 {
1207 struct rc_dev *dev = to_rc_dev(device);
1208 struct rc_filter_attribute *fattr = to_rc_filter_attr(attr);
1209 struct rc_scancode_filter new_filter, *filter;
1210 int ret;
1211 unsigned long val;
1212 int (*set_filter)(struct rc_dev *dev, struct rc_scancode_filter *filter);
1213 u64 *enabled_protocols;
1214
1215 /* Device is being removed */
1216 if (!dev)
1217 return -EINVAL;
1218
1219 if (!atomic_read(&dev->initialized))
1220 return -ERESTARTSYS;
1221
1222 ret = kstrtoul(buf, 0, &val);
1223 if (ret < 0)
1224 return ret;
1225
1226 if (fattr->type == RC_FILTER_NORMAL) {
1227 set_filter = dev->s_filter;
1228 enabled_protocols = &dev->enabled_protocols;
1229 filter = &dev->scancode_filter;
1230 } else {
1231 set_filter = dev->s_wakeup_filter;
1232 enabled_protocols = &dev->enabled_wakeup_protocols;
1233 filter = &dev->scancode_wakeup_filter;
1234 }
1235
1236 if (!set_filter)
1237 return -EINVAL;
1238
1239 mutex_lock(&dev->lock);
1240
1241 new_filter = *filter;
1242 if (fattr->mask)
1243 new_filter.mask = val;
1244 else
1245 new_filter.data = val;
1246
1247 if (!*enabled_protocols && val) {
1248 /* refuse to set a filter unless a protocol is enabled */
1249 ret = -EINVAL;
1250 goto unlock;
1251 }
1252
1253 ret = set_filter(dev, &new_filter);
1254 if (ret < 0)
1255 goto unlock;
1256
1257 *filter = new_filter;
1258
1259 unlock:
1260 mutex_unlock(&dev->lock);
1261 return (ret < 0) ? ret : len;
1262 }
1263
1264 static void rc_dev_release(struct device *device)
1265 {
1266 struct rc_dev *dev = to_rc_dev(device);
1267
1268 kfree(dev);
1269 }
1270
1271 #define ADD_HOTPLUG_VAR(fmt, val...) \
1272 do { \
1273 int err = add_uevent_var(env, fmt, val); \
1274 if (err) \
1275 return err; \
1276 } while (0)
1277
1278 static int rc_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1279 {
1280 struct rc_dev *dev = to_rc_dev(device);
1281
1282 if (dev->rc_map.name)
1283 ADD_HOTPLUG_VAR("NAME=%s", dev->rc_map.name);
1284 if (dev->driver_name)
1285 ADD_HOTPLUG_VAR("DRV_NAME=%s", dev->driver_name);
1286
1287 return 0;
1288 }
1289
1290 /*
1291 * Static device attribute struct with the sysfs attributes for IR's
1292 */
1293 static RC_PROTO_ATTR(protocols, S_IRUGO | S_IWUSR,
1294 show_protocols, store_protocols, RC_FILTER_NORMAL);
1295 static RC_PROTO_ATTR(wakeup_protocols, S_IRUGO | S_IWUSR,
1296 show_protocols, store_protocols, RC_FILTER_WAKEUP);
1297 static RC_FILTER_ATTR(filter, S_IRUGO|S_IWUSR,
1298 show_filter, store_filter, RC_FILTER_NORMAL, false);
1299 static RC_FILTER_ATTR(filter_mask, S_IRUGO|S_IWUSR,
1300 show_filter, store_filter, RC_FILTER_NORMAL, true);
1301 static RC_FILTER_ATTR(wakeup_filter, S_IRUGO|S_IWUSR,
1302 show_filter, store_filter, RC_FILTER_WAKEUP, false);
1303 static RC_FILTER_ATTR(wakeup_filter_mask, S_IRUGO|S_IWUSR,
1304 show_filter, store_filter, RC_FILTER_WAKEUP, true);
1305
1306 static struct attribute *rc_dev_protocol_attrs[] = {
1307 &dev_attr_protocols.attr.attr,
1308 NULL,
1309 };
1310
1311 static struct attribute_group rc_dev_protocol_attr_grp = {
1312 .attrs = rc_dev_protocol_attrs,
1313 };
1314
1315 static struct attribute *rc_dev_wakeup_protocol_attrs[] = {
1316 &dev_attr_wakeup_protocols.attr.attr,
1317 NULL,
1318 };
1319
1320 static struct attribute_group rc_dev_wakeup_protocol_attr_grp = {
1321 .attrs = rc_dev_wakeup_protocol_attrs,
1322 };
1323
1324 static struct attribute *rc_dev_filter_attrs[] = {
1325 &dev_attr_filter.attr.attr,
1326 &dev_attr_filter_mask.attr.attr,
1327 NULL,
1328 };
1329
1330 static struct attribute_group rc_dev_filter_attr_grp = {
1331 .attrs = rc_dev_filter_attrs,
1332 };
1333
1334 static struct attribute *rc_dev_wakeup_filter_attrs[] = {
1335 &dev_attr_wakeup_filter.attr.attr,
1336 &dev_attr_wakeup_filter_mask.attr.attr,
1337 NULL,
1338 };
1339
1340 static struct attribute_group rc_dev_wakeup_filter_attr_grp = {
1341 .attrs = rc_dev_wakeup_filter_attrs,
1342 };
1343
1344 static struct device_type rc_dev_type = {
1345 .release = rc_dev_release,
1346 .uevent = rc_dev_uevent,
1347 };
1348
1349 struct rc_dev *rc_allocate_device(void)
1350 {
1351 struct rc_dev *dev;
1352
1353 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1354 if (!dev)
1355 return NULL;
1356
1357 dev->input_dev = input_allocate_device();
1358 if (!dev->input_dev) {
1359 kfree(dev);
1360 return NULL;
1361 }
1362
1363 dev->input_dev->getkeycode = ir_getkeycode;
1364 dev->input_dev->setkeycode = ir_setkeycode;
1365 input_set_drvdata(dev->input_dev, dev);
1366
1367 spin_lock_init(&dev->rc_map.lock);
1368 spin_lock_init(&dev->keylock);
1369 mutex_init(&dev->lock);
1370 setup_timer(&dev->timer_keyup, ir_timer_keyup, (unsigned long)dev);
1371
1372 dev->dev.type = &rc_dev_type;
1373 dev->dev.class = &rc_class;
1374 device_initialize(&dev->dev);
1375
1376 __module_get(THIS_MODULE);
1377 return dev;
1378 }
1379 EXPORT_SYMBOL_GPL(rc_allocate_device);
1380
1381 void rc_free_device(struct rc_dev *dev)
1382 {
1383 if (!dev)
1384 return;
1385
1386 input_free_device(dev->input_dev);
1387
1388 put_device(&dev->dev);
1389
1390 /* kfree(dev) will be called by the callback function
1391 rc_dev_release() */
1392
1393 module_put(THIS_MODULE);
1394 }
1395 EXPORT_SYMBOL_GPL(rc_free_device);
1396
1397 int rc_register_device(struct rc_dev *dev)
1398 {
1399 static bool raw_init = false; /* raw decoders loaded? */
1400 struct rc_map *rc_map;
1401 const char *path;
1402 int attr = 0;
1403 int minor;
1404 int rc;
1405
1406 if (!dev || !dev->map_name)
1407 return -EINVAL;
1408
1409 rc_map = rc_map_get(dev->map_name);
1410 if (!rc_map)
1411 rc_map = rc_map_get(RC_MAP_EMPTY);
1412 if (!rc_map || !rc_map->scan || rc_map->size == 0)
1413 return -EINVAL;
1414
1415 set_bit(EV_KEY, dev->input_dev->evbit);
1416 set_bit(EV_REP, dev->input_dev->evbit);
1417 set_bit(EV_MSC, dev->input_dev->evbit);
1418 set_bit(MSC_SCAN, dev->input_dev->mscbit);
1419 if (dev->open)
1420 dev->input_dev->open = ir_open;
1421 if (dev->close)
1422 dev->input_dev->close = ir_close;
1423
1424 minor = ida_simple_get(&rc_ida, 0, RC_DEV_MAX, GFP_KERNEL);
1425 if (minor < 0)
1426 return minor;
1427
1428 dev->minor = minor;
1429 dev_set_name(&dev->dev, "rc%u", dev->minor);
1430 dev_set_drvdata(&dev->dev, dev);
1431 atomic_set(&dev->initialized, 0);
1432
1433 dev->dev.groups = dev->sysfs_groups;
1434 dev->sysfs_groups[attr++] = &rc_dev_protocol_attr_grp;
1435 if (dev->s_filter)
1436 dev->sysfs_groups[attr++] = &rc_dev_filter_attr_grp;
1437 if (dev->s_wakeup_filter)
1438 dev->sysfs_groups[attr++] = &rc_dev_wakeup_filter_attr_grp;
1439 if (dev->change_wakeup_protocol)
1440 dev->sysfs_groups[attr++] = &rc_dev_wakeup_protocol_attr_grp;
1441 dev->sysfs_groups[attr++] = NULL;
1442
1443 rc = device_add(&dev->dev);
1444 if (rc)
1445 goto out_unlock;
1446
1447 rc = ir_setkeytable(dev, rc_map);
1448 if (rc)
1449 goto out_dev;
1450
1451 dev->input_dev->dev.parent = &dev->dev;
1452 memcpy(&dev->input_dev->id, &dev->input_id, sizeof(dev->input_id));
1453 dev->input_dev->phys = dev->input_phys;
1454 dev->input_dev->name = dev->input_name;
1455
1456 /*
1457 * Default delay of 250ms is too short for some protocols, especially
1458 * since the timeout is currently set to 250ms. Increase it to 500ms,
1459 * to avoid wrong repetition of the keycodes. Note that this must be
1460 * set after the call to input_register_device().
1461 */
1462 dev->input_dev->rep[REP_DELAY] = 500;
1463
1464 /*
1465 * As a repeat event on protocols like RC-5 and NEC take as long as
1466 * 110/114ms, using 33ms as a repeat period is not the right thing
1467 * to do.
1468 */
1469 dev->input_dev->rep[REP_PERIOD] = 125;
1470
1471 /* rc_open will be called here */
1472 rc = input_register_device(dev->input_dev);
1473 if (rc)
1474 goto out_table;
1475
1476 path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1477 dev_info(&dev->dev, "%s as %s\n",
1478 dev->input_name ?: "Unspecified device", path ?: "N/A");
1479 kfree(path);
1480
1481 if (dev->driver_type == RC_DRIVER_IR_RAW) {
1482 if (!raw_init) {
1483 request_module_nowait("ir-lirc-codec");
1484 raw_init = true;
1485 }
1486 rc = ir_raw_event_register(dev);
1487 if (rc < 0)
1488 goto out_input;
1489 }
1490
1491 if (dev->change_protocol) {
1492 u64 rc_type = (1ll << rc_map->rc_type);
1493 rc = dev->change_protocol(dev, &rc_type);
1494 if (rc < 0)
1495 goto out_raw;
1496 dev->enabled_protocols = rc_type;
1497 }
1498
1499 /* Allow the RC sysfs nodes to be accessible */
1500 atomic_set(&dev->initialized, 1);
1501
1502 IR_dprintk(1, "Registered rc%u (driver: %s, remote: %s, mode %s)\n",
1503 dev->minor,
1504 dev->driver_name ? dev->driver_name : "unknown",
1505 rc_map->name ? rc_map->name : "unknown",
1506 dev->driver_type == RC_DRIVER_IR_RAW ? "raw" : "cooked");
1507
1508 return 0;
1509
1510 out_raw:
1511 if (dev->driver_type == RC_DRIVER_IR_RAW)
1512 ir_raw_event_unregister(dev);
1513 out_input:
1514 input_unregister_device(dev->input_dev);
1515 dev->input_dev = NULL;
1516 out_table:
1517 ir_free_table(&dev->rc_map);
1518 out_dev:
1519 device_del(&dev->dev);
1520 out_unlock:
1521 ida_simple_remove(&rc_ida, minor);
1522 return rc;
1523 }
1524 EXPORT_SYMBOL_GPL(rc_register_device);
1525
1526 void rc_unregister_device(struct rc_dev *dev)
1527 {
1528 if (!dev)
1529 return;
1530
1531 del_timer_sync(&dev->timer_keyup);
1532
1533 if (dev->driver_type == RC_DRIVER_IR_RAW)
1534 ir_raw_event_unregister(dev);
1535
1536 /* Freeing the table should also call the stop callback */
1537 ir_free_table(&dev->rc_map);
1538 IR_dprintk(1, "Freed keycode table\n");
1539
1540 input_unregister_device(dev->input_dev);
1541 dev->input_dev = NULL;
1542
1543 device_del(&dev->dev);
1544
1545 ida_simple_remove(&rc_ida, dev->minor);
1546
1547 rc_free_device(dev);
1548 }
1549
1550 EXPORT_SYMBOL_GPL(rc_unregister_device);
1551
1552 /*
1553 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1554 */
1555
1556 static int __init rc_core_init(void)
1557 {
1558 int rc = class_register(&rc_class);
1559 if (rc) {
1560 printk(KERN_ERR "rc_core: unable to register rc class\n");
1561 return rc;
1562 }
1563
1564 led_trigger_register_simple("rc-feedback", &led_feedback);
1565 rc_map_register(&empty_map);
1566
1567 return 0;
1568 }
1569
1570 static void __exit rc_core_exit(void)
1571 {
1572 class_unregister(&rc_class);
1573 led_trigger_unregister_simple(led_feedback);
1574 rc_map_unregister(&empty_map);
1575 }
1576
1577 subsys_initcall(rc_core_init);
1578 module_exit(rc_core_exit);
1579
1580 int rc_core_debug; /* ir_debug level (0,1,2) */
1581 EXPORT_SYMBOL_GPL(rc_core_debug);
1582 module_param_named(debug, rc_core_debug, int, 0644);
1583
1584 MODULE_AUTHOR("Mauro Carvalho Chehab");
1585 MODULE_LICENSE("GPL");
This page took 0.066814 seconds and 6 git commands to generate.